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Abstract 22 

 Neospora caninum is an apicomplexan parasite that causes infectious abortion in cows. As an 

obligate intracellular parasite, N. caninum requires a host cell environment to survive and 24 

replicate. The locomotion and invasion mechanisms of apicomplexan parasites are centred on 

the actin-myosin system to propel the parasite forwards and into the host cell. The functions of 26 

actin, an intrinsically dynamic protein, are modulated by actin-binding proteins (ABPs). Actin-

depolymerising factor (ADF) is a ubiquitous ABP responsible for accelerating actin turnover 28 

in eukaryotic cells and is one of the few known conserved ABPs from apicomplexan parasites. 

Apicomplexan ADFs have nonconventional properties compared with ADF/cofilins from 30 

higher eukaryotes. In the present paper, we characterised the ADF from N. caninum (NcADF) 

using computational and in vitro biochemical approaches to investigate its function in rabbit 32 

muscle actin dynamics. Our predicted computational tertiary structure of NcADF demonstrated 

a conserved structure and phylogeny with respect to other ADF/cofilins, although certain 34 

differences in filamentous actin (F-actin) binding sites were present. The activity of 

recombinant NcADF on heterologous actin was regulated in part by pH and the presence of 36 

inorganic phosphate. In addition, our data suggest a comparatively weak disassembly of F-

actin by NcADF. Taken together, the data presented herein represent a contribution to the field 38 

towards the understanding of the role of ADF in N. caninum and a comparative analysis of 

ABPs in the phylum Apicomplexa. 40 
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1. Introduction 

 Neospora caninum, the etiological agent of neosporosis, represents one of the main causes of 48 

infectious abortion in milk and beef cattle [1]. Additionally, the infection of a herd is associated 

with significant global economic losses to the cattle industry, estimated to be greater than one 50 

billion dollars annually [2]. Together with other significantly threatening parasites to human 

and animal health such as Toxoplasma gondii, Plasmodium, Cryptosporidium, Eimeria, and 52 

Theileria, N. caninum belongs to the phylum Apicomplexa. These obligate intracellular 

parasites make use of filamentous actin (F-actin) in a specific mechanism of invasion and 54 

locomotion, named gliding motility [3], to access the intracellular content of host cells. The 

cellular machinery responsible for gliding motility is composed of specialised protein 56 

associations, including an actin-myosin motor, which generate the propulsion force that moves 

parasites forwards [4-6]. Although apicomplexan actin may not be a determinant for host cell 58 

invasion [7, 8], it is essential for the egress of T. gondii from the parasitophorous vacuole [8,9] 

and for apicoplast replication [7-9]. In addition to the use of F-actin during gliding motility, 60 

apicomplexan actin shows unusual properties, forming short and unstable filaments in vitro 

[10,11], as well as highly abundant intracellular monomeric actin (G-actin) as compared with 62 

F-actin in vivo [5,6]. The model of polymerisation proposed for T. gondii actin is based on the 

independence of the nucleation phase [12], in contrast to P. falciparum actin I, which depends 64 

on nucleation to polymerise [13]. 

A limited set of conserved actin-binding proteins (ABPs) is found in apicomplexan 66 

organisms [4, 14] and these proteins interact with actin and regulate its activity. ADF/cofilins 

are ubiquitous ABPs composed of an ADF-homology domain (ADF-H), responsible for 68 

interaction with G- and F-actin [15, 16]. Proteins in this family have a role in regulating actin 

dynamics, mainly favouring F-actin disassembly by depolymerisation and/or severing [17]. 70 

There is no consensus on the manner by which homologous and orthologous ADF/cofilins 
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cause F-actin disassembly. The extent of their effects on actin may vary across different species 72 

[18]. Moreover, the function of yeast cofilin is known to depend on the proportion of actin and 

cofilin [19].  74 

ADF has been characterised in T. gondii [20-23] and Plasmodium [21, 24-26] as one and two 

isoforms, respectively. Apicomplexan ADFs, with the exception of P. falciparum ADF2 76 

(PfADF2), have a smaller F-actin binding site (F-loop) and a truncated C-terminal β-strand as 

compared with other ADF/cofilin family members, which could partly explain its unusual 78 

properties [20, 24, 46]. T. gondii ADF (TgADF), expressed in cytoplasm [20], displays a 

primary function of monomer sequestering, with evidence of relatively weak F-actin severing 80 

[23]. ADF1 from Plasmodium falciparum (PfADF1), cytoplasmic and broadly expressed in 

parasite stages [26], has been shown to have no effect on the polymerisation of homologous or 82 

heterologous actin [26, 27]; however, a monomer-sequestering function was detected [27]. The 

severing activity of PfADF1 was observed in heterologous actin and later confirmed [25, 26]. 84 

PfADF1 can disassemble heterologous actin filaments; nevertheless, this ability is 

comparatively more pronounced in TgADF [21]. The second isoform (PfADF2) is expressed 86 

in sexual forms of Plasmodium [28] and is structurally more conserved than PfADF1, being 

able therefore to bind to heterologous F-actin and sever actin filaments [24]. Here, we identified 88 

and characterised ADF from N. caninum (NcADF) using computational approaches and in vitro 

biochemical assays. NcADF presents a conserved tertiary structure, maintaining the main 90 

singularities of apicomplexan ADFs. The activity of recombinant NcADF on heterologous 

actin was determined using classical biochemistry assays, allowing an overall comparison with 92 

homologous ADF/cofilins and insight into NcADF function.   

 94 

 

 96 
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2. Material and Methods  

2.1 In silico characterisation.  98 

Searches of genes that encode ADF in N. caninum genome were carried out in ToxoDB 7.3 

[29] using the key-word “actin-depolymerising factor”. After selection of a putative candidate, 100 

the presence of expressed isoforms was analysed using BLASTp tool in N. caninum database 

in ToxoDB. Additionally, the analysis for conserved domains were performed by Pfam 30.0 102 

[30]. A multiple sequence alignment with homologous protein sequences was performed in 

MegAlign (DNASTAR, Lasergene) using Clustal W method and visualised in GeneDoc [31] 104 

employing the following sequences (UniProt sequence identification number): Arabidopsis 

thaliana ADF1 (AtADF1; Q39250), Acanthamoeba castellanii actophorin (P37167), 106 

Saccharomyces cerevisiae (ScCofilin; Q03048), Homo sapiens ADF1 (HsADF1; P60981), 

Plasmodium falciparum ADF1 (PfADF1; Q8I467), P. falciparum ADF2 (PfADF2; Q8ID92), 108 

Eimeria tenella ADF (EtADF; A2TEQ1), Toxoplasma gondii ADF (TgADF; O15902) and N. 

caninun ADF (NcADF; F0VCT8). Theoretical pI was calculated by ProtParam 110 

(https://web.expasy.org/protparam/). 

2.2 Homology modelling 112 

The tertiary structure of NcADF (ToxoDB ID NCLIV_012510/GenBank ID 

XP_003881486) was obtained by homology modelling using four structures as a multiple 114 

template. The following templates (with PDB ID numbers:chain) were identified after searches 

of NcADF on Protein Data Bank using  BLASTp [30]: A. castellanii actophorin (1AHQ:A), A. 116 

thaliana ADF1 (1F7S:A), P. falciparum ADF1 (3Q2B:A) and T. gondii ADF (2L72:A). The 

model was built by Modeller 9.12 [32] and refined by ModRefiner [33]. The quality of model 118 

was analysed by PROCHECK [34] through PVSV 1.5 (https://psvs-1_5-dev.nesg.org), 

Verify3D [35] through SAVES 4 (https://services.mbi.ucla.edu/SAVES/) and Molprobity 4.3 120 
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[36]. The structures were visualised and aligned by PyMOL 1.5.0.4 (The PyMOL Molecular 

Graphics System, Schrödinger, LCC). 122 

2.3 N. caninum culture and total RNA isolation 

Tachyzoites of N. caninum Nc-1 isolate were maintained in Vero cells monolayers as 124 

previously described [37]. Purified tachyzoites were obtained by exclusion chromatography 

(Sephadex G-25, GE Healthcare). Total RNA was extracted from 7.5 x 107 tachyzoites using 126 

Trizol (Thermo Fisher Scientific) which was added (1 ml) to the pellet of tachyzoites and 

incubated at room temperature for 5 minutes. Subsequently, 200 µl of chloroform were added 128 

to the tachyzoites and incubated for 3 minutes at room temperature. The tube was centrifuged 

at 9,500 x g for 15 minutes at 4ºC and total RNA was precipitated from the aqueous phase 130 

using isopropanol.  

2.4 Cloning, expression and protein purification of NcADF  132 

The synthesis of cDNA was performed using total RNA as template by reverse transcriptase 

(GoScript Reverse Transcription System, Promega). The cDNA was amplified by PCR using 134 

sequence-specific primers: forward (5` TTTGGATCCTCCGGAATGGGTGTT 3`; BamHI site 

underlined) and reverse (5` TTTAAGCTTTGCGAGGGATGC 3`; HindIII site underlined). 136 

The 350 bp fragment was purified, subcloned in pGEM-T-Easy (Promega) and transformed 

into Escherichia coli TOP 10 (Life Sciences). The insert sequence was verified by DNA 138 

sequencing. 

The insert was cloned into pET28a(+). The recombinant protein NcADF_pET28 was 140 

expressed after induction with 0.2 mM IPTG in terrific broth (TB) at 22ºC during 18 hours. 

After expression, cells were harvested and suspended in P-buffer (50 mM Tris, pH 7.0, 300 142 

mM NaCl, 10% glycerol, 0.1% Triton X-100, 20 mM imidazole, 1 mM PMSF, 1 mM 

benzoamidine; or cOmplete mini protease inhibitor, Roche, as protease inhibitor in replacement 144 
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of PMSF and benzoamidine). Five rounds of freeze and thaw followed by sonication (Soniprep 

150, Sanyo) or only sonication (Sonifier SLPe, Branson) were used to lyse the cells. The lysate 146 

was clarified by 4,500 x g centrifugation for 40 minutes and the supernatant was incubated 

with equilibrated Ni+2 resin (His-Pur, Thermo Fisher Scientific) for 30 minutes. The resin was 148 

washed with P-buffer containing 40 mM imidazole and the recombinant NcADF_pET28 was 

eluted in P-buffer containing 250 mM imidazole. Immediately after elution, 1 mM EDTA and 150 

1 mM DTT were added to the solution in order to avoid protein precipitation. The buffer was 

changed by dialysis against storage buffer (20 mM Tris, pH 7.0, 30 mM NaCl, 5% glycerol, 152 

0.5 mM DTT, 0.5 mM NaN3, 1 mM PMSF, 1 mM benzoamidine). The dialysed material was 

stored at -70ºC. The protein in solution was quantified by spectrometry (Ultrospec 2000, 154 

Pharmacia Biochem) at 280 nm using a 1-cm-path quartz cuvette and 13,980 M-1 cm-1 as 

extinction coefficient, calculated by ProtParam (http://web.expasy.org/protparam/). The N-156 

terminal 6X-his tagged NcADF_pET28 recombinant protein was employed for biochemical 

and functional assays.   158 

2.5 Actin preparation 

Lyophilised rabbit skeletal muscle actin and N-(1-pyrene) iodoacetamide-labelled actin (PI-160 

actin) were purchased from Cytoskeleton Inc., reconstituted (10 mg/ml) according to the 

manufacturer’s recommendations, and stored at -70ºC. G-actin was diluted to the appropriate 162 

concentration and centrifuged at 105,000 x g (Optima MAX Ultracentrifuge, Beckman, rotor 

TLS-55) for 20 minutes at 21ºC prior to use, unless different centrifugation conditions are 164 

indicated. 

2.6 Co-sedimentation 166 

Actin was diluted in G-buffer (5 mM Tris pH 8.0, 0.2 mM CaCl2, 0.2 mM ATP, 0.5 mM 

DTT), and the solution was incubated on ice for 1 hour and centrifuged at 53,600 x g for 20 168 
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minutes at 4ºC to remove aggregates. Actin polymerisation was induced for 30 minutes at 22ºC 

by the addition of 10X F-buffer (500 mM KCl, 20 mM MgCl2, 1 mM ATP). Subsequently, 5 170 

µM F-actin was incubated with 0–10 µM NcADF in sedimentation buffer (50 mM KCl, 2 mM 

MgCl2, 0.2 mM ATP, buffered with either 20 mM Tris pH 8.0 or HEPES pH 6.5) for 1 hour at 172 

22ºC. The mixtures were centrifuged for 30 minutes at 105,000 x g, the supernatant was 

removed, and the pellet was washed once with sedimentation buffer. The pellet and supernatant 174 

were mixed in appropriate volumes of 1X and 5X Laemmli buffer, respectively. The equivalent 

amount of pellet and supernatant were resolved by 12% SDS-PAGE and stained with 176 

Coomassie R-250. Gels were imaged using a Fujifilm Finepix S2000HD digital camera and 

the bands were densitometrically quantitated using ImageJ (National Institutes of Health, 178 

USA). The statistical significance among groups was determined by unpaired, equal variance, 

two-tailed Student’s t-tests using GraphPad Prism 5.01 (GraphPad Software, Inc).  180 

2.7 PI-actin polymerisation assay 

Ten percent PI-actin (5 µM in a final volume of 400 µl) was incubated with 0, 1.5, 3, and 6 182 

µM NcADF for 10 minutes prior to the addition of 1:9 (v/v) 10X ME (500 mM MgCl2, 2 mM 

EGTA) for Ca-ATP-actin to Mg-ATP-actin conversion. The ion conversion was incubated for 184 

5 minutes followed by polymerisation induction with 1:9 (v/v) 10X KMEI (500 mM KCl, 10 

mM MgCl2, 10 mM EGTA, 100 mM imidazole pH 7.0). The fluorescence was measured at 186 

room temperature for 3,000 seconds using 365 nm excitation and 407 nm emission parameters 

(LS 50 Perkin-Elmer Luminescence Spectrometer). The time between the addition of KMEI 188 

and the start of the fluorescence measurement was considered. With the exception of 6 µM 

NcADF, which was tested once, the experiments at the remaining concentrations were repeated 190 

twice with similar results.  

 192 
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2.8 PI-actin fluorescence decay assay 

Twenty or 25% labelled PI-actin (10 µM) was polymerised in the presence of salts by the 194 

addition of 1:9 (v/v) 10X KMEI and incubation for 1 hour at 22ºC. The decrease in fluorescence 

was measured over time using 365 nm excitation and 407 nm emission parameters (LS 50 196 

Perkin-Elmer Luminescence Spectrometer) following either dilution of PI-F-actin to 1 µM in 

the presence of 0–10 µM NcADF in KMEI or dilution of PI-F-actin to 0.1 µM in the presence 198 

of 0–0.4 µM NcADF in G-buffer. Rate constants were calculated by plotting one phase 

exponential decay least-squares fitting using GraphPad Prism 5.01. 200 

2.9 Falling ball assay – low shear viscosity 

The falling ball assay was performed as described previously [38]. Briefly, a final 202 

concentration of 10 µM actin and 0–10 µM NcADF were mixed prior to the addition of 1:9 

(v/v) 10X KMET (500 mM KCl, 10 mM MgCl2, 10 mM EGTA, 100 mM Tris pH 8.0). The 204 

solutions were drawn up into 100 µl capillaries (Pyrex 100 µl, Corning). Following incubation 

for 1 hour at room temperature (~22ºC), the time required for a stainless-steel ball to travel 8 206 

cm through the capillary was recorded manually using a timer. Gelsolin was used as a severing 

control at 2.5 and 5 µM concentrations. Results are expressed as normalised viscosity, 208 

measured as the velocity of the falling ball, to minimise differences between actin preparations. 

2.10 Steady state 210 

Serial dilutions of PI-G-actin (10%; 0.1–5 µM) were mixed with either 0 or 10 µM NcADF 

in G-buffer. Actin polymerisation was immediately induced by the addition of 1:9 (v/v) 10X 212 

KMEI and incubated at 22ºC for 19 hours. Fluorescence was measured using 365 nm excitation 

and 407 nm emission parameters (LS 50 Perkin-Elmer Luminescence Spectrometer). The data 214 

were analysed by linear regression using GraphPad Prism 5.01, and the equilibrium 
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dissociation constant (Kd) was calculated using the following equation as previously described 216 

[39].  

Kd = ([A0] – [AG]) [G] / [AG]; 218 

Where, A0 = total concentration of NcADF, AG = non-polymerisable 1:1 complex of 

NcADF and G-actin, and [G] = critical concentration for polymerisation of actin. 220 

The critical concentration of actin was calculated as the intersection between the fluorescence 

intensity measurements for G-actin and either serially diluted F-actin or NcADF mixed with 222 

F-actin, considering the basal fluorescence of G-actin [40].  

2.11 Protein binding two-dimensional electrophoresis 224 

ATP-G-actin (5 µM) was mixed with 20 µM NcADF in Mg-G-buffer containing 15% 

glycerol and the mixture was incubated for 15 minutes at 22ºC. The reaction was resolved by 226 

7.5% native polyacrylamide gel electrophoresis as described [27], with modifications. The 

acrylamide gels contained 150 mM Tris, pH 8.8, 0.2 mM MgCl2, 0.2 mM ATP, and 0.5 mM 228 

DTT. The gels were run in Tris/glycine buffer containing 25 mM Tris, 192 mM glycine, 0.2 

mM MgCl2, 0.2 mM ATP, and 0.5 mM DTT in a Mighty Small II SE-250 Mini-Vertical 230 

Electrophoresis System (GE Healthcare Life Sciences) at 150 V and the cooling system at 4ºC 

for ~3 hours. At least three wells were run: two of them containing 20 µl reaction mixture and 232 

one containing 70 µl. After protein separation, one strip was cut and subjected to western 

blotting; another strip was stained with Coomassie G-250, and the third strip, containing the 234 

higher volume of reaction mixture, was placed over 12.5% SDS-PAGE, as described 

previously [40]. The strip of native gel was covered with sealing buffer (25 mM Tris, 192 mM 236 

glycine, 1% SDS, 0.5% agarose, traces of bromophenol blue) and ran at 150 V.  

2.12 Cross-linking 238 

Seventy microliters reaction mixture containing 10 µM actin and 10 µM NcADF were 

incubated in interaction buffer (50 mM HEPES, pH 8.2, 50 mM NaCl, 0.1 mM EDTA, 0.2 mM 240 
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ATP) containing either 4% formaldehyde or 2 mM 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) for 30 minutes at 22ºC. EDC (1 mM) was added to 242 

the reaction at time 0 and following 15 minutes of incubation, and the reaction was stopped by 

the addition of 9 mM glycine. The reactions were mixed with 4X Laemmli buffer and visualised 244 

by SDS-PAGE stained with Coomassie G-250. The reactions containing formaldehyde were 

also subjected to western blotting.   246 

2.13 Western blotting 

Western blotting was performed as previously described [37]. The SDS-PAGE gel was 248 

transferred to a PVDF membrane (Immobilon 0.45 µM, Millipore), which was subsequently 

blocked in PBS-GT (0.8% swine gelatin, Sigma-Aldrich, 0.05% (v/v) Tween-20 in PBS). An 250 

anti-NcADF serum was used for protein detection together with a peroxidase-conjugated anti-

mouse IgG secondary antibody (anti-mouse IgG – whole molecule – peroxidase, antibody 252 

produced in rabbit, Sigma-Aldrich).  

3. Results 254 

3.1 Computational analysis of NcADF 

One homologous ADF/cofilin sequence was identified in the N. caninum genome following 256 

a BLAST search as ID NCLIV_012510 in ToxoDB. The gene encoding NcADF comprises a 

sequence containing 1,335 bp with one intron. After splicing, the sequence presents 357 bp 258 

encoding a predicted protein of 118 amino acids including the stop codon. A multiple alignment 

of ADF/cofilin protein sequences revealed that N. caninum ADF (NcADF) shared 89% identity 260 

and 94% similarity with T. gondii ADF (TgADF), followed by 62% identity and 77% similarity 

with E. tenella ADF (EtADF), and only 36% identity and 58% similarity with P. falciparum 262 

ADF1 (PfADF1). Non-apicomplexan ADF/cofilins shared 23–31% identity with NcADF 

(Figure 1A). The ADF homology (ADF-H, Pfam ID pf00241) domain, a globular module 264 
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present in ADF/cofilins [15, 16], was predicted to reside between residues 9 and 117 of NcADF 

(Figure 1A, black line). Similar to other apicomplexan ADFs, the described binding sites of G-266 

actin to yeast cofilin were conserved in NcADF (Figure 1A). Conversely, F-actin binding sites 

such as R80 and the C-terminal α-4 F-actin-binding motif were missing from NcADF (Figure 268 

1A). Four F-actin binding residues were described in PfADF1 and two of these were conserved 

in NcADF; D117 and K100 (Figure 1A). The tertiary structure was predicted for NcADF 270 

(Figure 1B) based on multiple templates. The structure presented favourable values in the 

validation analysis (Table S1) and a structural similarity to the templates (Table S2), with a 272 

lower RMSD when aligned with TgADF, as compared with the other templates used in the 

model prediction (Table S2). The predicted NcADF structure observed in Pymol comprised 5 274 

β-strands and 4 α-helices, and shared similarities with the TgADF structure (Figure 1C). In 

contrast, when a multiple alignment was performed considering the secondary structure of 276 

NcADF, the one-turn α-4 was not shown, and an additional β-1 strand (G6-V7) was observed 

(Figure 1B and A, dotted rectangle). Moreover, the β-1 was not shown in the tertiary structure 278 

(Figure 1B). For analysis, the NcADF secondary structural elements observed in the multiple 

alignment and tertiary structure prediction were considered; therefore, NcADF comprised six 280 

β-strands and four α-helices (Figure 1A). Certain differences were observed between the 

NcADF and TgADF secondary structures, encompassing α-1 and β-2 to β-5, which were 282 

smaller in TgADF (Figure 1A). Major structural divergences were present in the β-2 C-terminal 

region (D32 in NcADF and E32 in TgADF) and A55, between α-2 and β-4 (Figure 1A and C; 284 

Figure S1). α-1 and α-3 were conserved between the three apicomplexan ADF secondary 

structures analysed (Figure 1A). Moreover, TgADF was missing the one turn α-4 that is present 286 

in NcADF and PfADF1 (Figure 1A and C, arrow; Figure S1). The region composing the F-

loop (situated between strands β-4 and β-5) was less pronounced in NcADF and TgADF as 288 

compared with actophorin (Figure 1D). 
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 290 

Figure 1. Multiple alignment of NcADF with representative ADF/cofilins and predicted 

tertiary structure of NcADF. A) Primary sequence of ADF/cofilin family members were 292 

aligned with NcADF using Clustal W algotithm. The secondary structure of Toxoplasma gondii 

ADF (TgADF), Plasmodium falciparum ADF1 (PfADF1) and NcADF are exposed bellow the 294 

alignment. Actin binding sites identified in yeast cofilin by site-specific mutagenesis [51] and 

synchrotron protein footprinting [52] are marked with tringles (Δ) and circles (○), respectively. 296 

F-actin binding sites are marked with grey tringles. In asterisks (*), the F-actin binding site 2, 

identified in Plasmodium falciparum ADF1 [25]. The ADF-H domain in NcADF is highlighted 298 

in black line. The α-4 helix, in a dotted rectangle, was observed only in Pymol and manually 

added to secondary structure. The sequences are: Arabidopsis thaliana ADF1 (AtADF1), 300 

Acanthamoeba castellanii actophorin (Actophorin), Saccharomyces cerevisiae (ScCofilin), 

Homo sapiens ADF1 (HsADF1), P. falciparum ADF1 (PfADF1), P. falciparum ADF2 302 
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(PfADF2), Eimeria tenella ADF (EtADF), T. gondii ADF (TgADF) and Neospora caninun 

ADF (NcADF). B) Tertiary structure of NcADF obtained by homology modelling. C) Struc-304 

tural alignment of NcADF and TgADF (2L72). On the arrow, α-4 is present only in NcADF. 

D) Structural alignment of NcADF and actophorin (PDB ID 1AHQ). 306 

3.2 Recombinant NcADF expression 

The tachyzoite-derived cDNA encoding NcADF was amplified, cloned into a pET 308 

expression plasmid, and the recombinant protein with an N-terminal 6X his-tag was expressed 

in E. coli BL21(DE3). The pET28 plasmid was used for the expression of soluble NcADF, 310 

which was purified by affinity chromatography using nondenaturing buffer (Figure 2A). The 

anti-NcADF serum (1:15,000, generated from denatured NcADF_pET32; Figure S2) was able 312 

to detect the recombinant NcADF_pET28 (in the native form) (Figure 2B).  

 314 

Figure 2. Expression of recombinant NcADF in E. coli BL21 (DE3). A) NcADF was 

expressed in pET28 after induction with 0.2 mM IPTG growing in TB for 18 hours at room 316 

temperature (~22ºC) and purified in Ni+2 resin. BL21(DE3) cells were lysed in P buffer (lane 

1). NcADF_pET28 was purified and the flow through was collected (lane 2). The recombinant 318 

protein was eluted and dialysed against the storage buffer (lane 3). The gel was stained with 

Coomassie R-250. B) NcADF_pET28 was detected with anti-NcADF serum 1:15,000.  320 

3.3 Interaction with F-actin, but not actin disassembly, is regulated by pH 

The abilities of NcADF to disassemble actin filaments and interact with F-actin were 322 

characterised using a co-sedimentation assay. Both NcADF concentrations (5 and 10 µM) used 

were able to significantly reduce the amount of actin detected in the pellet as compared with 324 



15 

 

the actin control without NcADF (p < 0.05; t-test; 0 µM NcADF vs. 5 µM NcADF and 0 µM 

NcADF vs. 10 µM NcADF; Figure 3).  326 

The pH-dependence [41] of NcADF activity was analysed using 5 µM F-actin in buffered 

sedimentation solution, with either a higher or lower pH (8.0 or 6.5, respectively) (Figure 3A 328 

and B). The decrease in actin concentration in the pellet was more pronounced in the presence 

of 10 µM NcADF as compared with 5 µM NcADF, indicating a dose-dependent F-actin 330 

disassembly (Figure 3C; p < 0.05; t-test; 5 µM NcADF vs. 10 µM NcADF). Although present 

in a two-fold molar excess, NcADF could only disassemble a limited amount of F-actin, with 332 

~75% of total actin remaining in the pellet (Figure 3C). Under neither tested condition was the 

effect of NcADF on F-actin sedimentation sensitive to pH, demonstrating that pH is not a 334 

regulating factor for NcADF activity in F-actin disassembly (Figure 3C; p > 0.05; t-test; % of 

actin in the pellet at pH 6.5 vs. pH 8.0). However, the presence of NcADF in the pellet (8.5 ± 336 

0.7%) was observed only at pH 6.5 and with a two-fold molar excess of NcADF (Figure 3B, 

arrow). The presence of NcADF in the pellet at the lower concentration of pH 6.5 was not 338 

observed for two possible reasons: either NcADF did not associate with F-actin at this 

concentration or the gel staining was not sufficiently sensitive to detect the level of pelleted 340 

NcADF (Figure 3B). The possibility of NcADF precipitation at pH 6.5 was ignored due to the 

absence of NcADF in the control pellet without the addition of actin (Figure 3B). The predicted 342 

pI for NcADF is 6.5; however, the 6X-his-tag increased the predicted pI to 8.3, limiting the 

possibility of precipitation due to pH. Moreover, NcADF was not detected in the pellet at pH 344 

8.0 (Figure 3A). Taken together, these data show that the pH variations did not regulate the 

activity of NcADF for disassembly of filaments, although the association of NcADF with actin 346 

was observed only at pH 6.5, indicating that a stable interaction between NcADF and actin is 

not required for F-actin disassembly.  348 
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 350 

Figure 3. Actin disassembly was analysed in the presence of NcADF in different pH 

conditions. Rabbit actin (5 µM) was incubated with NcADF (0, 5 or 10 µM) and centrifuged 352 

at 105,000 x g. Pellet and supernatant were resolved by 12% SDS-PAGE. The gels were stained 

with Coomassie R-250 and the band densities were quantified. A) Representative SDS-PAGE 354 

from assay performed at pH 8.0 with pellet (P) and supernatant (S). B) Representative gel from 

assay performed at pH 6.5. The arrow indicates NcADF co-sedimented with F-actin in the 356 

pellet. C) Effect of pH on the quantity of actin in pellet at pH 6.5 (open black square □) or 8.0 

(grey filled square ■) after incubation of 5 µM actin with 5 or 10 µM NcADF. Results were 358 

obtained from two independent experiments (mean ± S.E.).     

3.4 NcADF increases the polymerisation rate of actin 360 

The effect of NcADF on the kinetics of actin assembly was assessed using PI-actin (10-25%), 

since the fluorescence of PI-F-actin is approximately 20–25-fold higher than monomeric PI-362 

G-actin [42]. To investigate the effect of NcADF on PI-actin polymerisation, 1, 1.5, 3, or 6 µM 

NcADF were incubated with PI-actin and the fluorescence was recorded over time. All tested 364 

concentrations of NcADF accelerated the initial rate of PI-actin polymerisation (Figure 4A), 

suggesting a weak severing of filaments by NcADF and the formation of new nuclei for 366 
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elongation. When NcADF was present at 6 µM, an overshoot, i.e. a peak in the fluorescence of 

the polymerised actin followed by a pronounced drop [43], was observed.  368 

 

Figure 4. NcADF activity on PI-actin polymerization was investigated. The fluorescence 370 

intensity during polymerization of 5 µM rabbit actin (10% PI-actin) was monitored over time 

(365 nm excitation and 407 nm emission) in the presence of NcADF. A) Fluorescence of PI-372 

actin over time after incubation with 0, 1.5, 3 or 6 µM NcADF. B) and C) PI-actin fluorescence 

over time with (gray line) or without (black line) 25 mM phosphate buffer (Pi). The data from 374 

one experiment were normalised. The experiment was performed without NcADF (- NcADF) 

(B) and with 10 µM NcADF (+ NcADF) (C). Two assays were performed with similar obser-376 

vations. 

3.5 Inorganic phosphate inhibits the actin overshoot 378 

To evaluate the effect of inorganic phosphate on PI-actin polymerisation with NcADF, actin 

was polymerised by the addition of buffer containing 25 mM sodium phosphate pH 8.0. The 380 

addition of inorganic phosphate had little effect on PI-actin polymerisation in the control 

samples (Figure 4B); however, it completely inhibited the overshoot effect of NcADF on the 382 

late stage of actin polymerisation (Figure 4B).  
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3.6 NcADF reduces the fluorescence of PI-F-actin 384 

To investigate the effect of NcADF on PI-F-actin, the fluorescence was measured over time 

following the addition of various concentrations of NcADF. Initially, the reaction was 386 

performed with 1 µM PI-F-actin under ideal polymerisation conditions (50 mM KCl, 2 mM 

MgCl2, 0.1 mM ATP) and a molar excess of NcADF. The presence of NcADF decreased the 388 

fluorescence in a time-dependent manner (Figure 5A). Under these conditions, the control 

reaction resulted in a relatively small decay in PI-actin fluorescence, and the decrease in 390 

fluorescence was dependent on NcADF concentration (Figure 5A). Additionally, NcADF 

caused a drop in the initial fluorescence, followed by an exponential decay, which was more 392 

pronounced at 10 µM NcADF, decreasing the fluorescence to the level of the PI-actin monomer 

(Figure 5A). As a result of the delay between mixing the proteins and the start of the 394 

fluorescence measurement (25 seconds on average), the initial phase was lost. Despite the 

initial drop, the observed rate constants (kobs) were calculated and plotted against the NcADF 396 

concentration, suggesting a non-linear dependence on NcADF concentration (Figure 5A, 

inset). To avoid the initial drop in fluorescence, the assay was repeated using PI-actin below 398 

the critical concentration in low salt buffer, i.e. conditions favouring spontaneous disassembly 

of filaments, and a lower molar ratio of NcADF and actin. Under these conditions, the initial 400 

drop was less pronounced (Figure 5B), indicating that at saturating concentrations, NcADF 

bound faster to PI-F-actin and quenched the fluorescence. The decay in the initial phase of 402 

fluorescence following the addition of 50 and 100 nM NcADF was less pronounced than 

following the addition of 200 and 400 nM NcADF (Figure 5B). At a 4-fold molar concentration 404 

as compared with PI-actin (400 nM), a slow recovery of fluorescence was observed after the 

initial phase of decay (Figure 5B). 406 
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Figure 5. NcADF activity was analysed over PI-F-actin disassembly. PI-actin filaments 408 

were diluted to 1 µM (20% PI-actin) in KMEI (A) or 0.1 µM (25% PI-actin) in G-buffer (B) 

and incubated with NcADF. The fluorescence was monitored over time (365 nm excitation and 410 

407 nm emission). A) Time course of PI-F-actin fluorescence change upon addition of molar 

excess of NcADF (0, 1.5, 2.5, 5 and 10 µM). In the inset, dependence of kobs on the 412 

concentration of NcADF. The solid line is an illustrative manual fit to the data. B) Time course 

of PI-F-actin fluorescence change upon addition of NcADF (0, 50, 100, 200 and 400 nM 414 

NcADF). A) and B) are the results obtained from a single experiment. 

3.7 NcADF reduces the relative viscosity of F-actin 416 

To investigate the effect of NcADF on the low-shear viscosity of actin, the falling ball assay 

was employed [44]. The actin polymerisation was induced in mixtures of actin and various 418 

concentrations of NcADF. The presence of NcADF reduced the solution’s viscosity in a 

concentration-dependent manner (Figure 6A). At 10 µM, NcADF caused a reduction in 420 

viscosity of almost 90% (Figure 6A), evidence that NcADF disassembled actin filaments. The 
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concentrations of gelsolin used in parallel drastically reduced the viscosity and it was not 422 

possible to record the time of the falling ball.  

 424 

Figure 6. Viscosity and critical concentration were analysed in the presence of NcADF.  
A) 10 µM actin was polymerised for 1 h in the presence of 0, 2.5, 5 and 10 µM NcADF by 426 

addition of KMET. Viscosity was measured as the velocity of the falling ball. The normalised 

data shown are resulted from two independent experiments (mean ± SEM). B) Actin (10% PI-428 

actin) was serially diluted and aliquots were mixed to either 0 or 10 µM NcADF and the 

polymerisation was induced by addition of KMEI. After reaching the steady state, the fluores-430 

cence was measured. In closed circles (●), non-polymerised PI-actin; in open circles (○), actin 

polymerised without NcADF; in open triangles (Δ), PI-actin polymerised with 10 µM NaADF. 432 

The critical concentration was calculated by the intersection between F-actin with or without 

NcADF lines and G-actin line. Results from a single experiment. 434 

3.8 NcADF increases the critical concentration of actin 

To evaluate the effect of NcADF on steady state actin polymerisation, the PI-actin 436 

fluorescence was measured following overnight incubation. At 10 µM, NcADF reduced the 
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pyrene signal at steady state at all the concentrations of PI-actin tested above the line of PI-G-438 

actin (Figure 6B). The decrease in PI-actin fluorescence by NcADF at steady state is indicative 

of monomer sequestration. The critical concentration (Cc) of PI-actin was 0.3 ± 0.083 µM and 440 

the Cc of PI-actin in the presence of 10 µM NcADF was 1.1 µM (Figure 6B). The dissociation 

constant, calculated assuming a 1:1 interaction between NcADF and G-actin, was 4.4 µM. The 442 

assay was also performed using lower concentrations of NcADF (1, 2, and 4 µM) mixed with 

0–4 µM PI-actin. Under these conditions, NcADF reduced the fluorescence and improved the 444 

Cc at all the tested concentrations (Figure S3). 

3.9 NcADF interacts weakly with ATP-G-actin 446 

To investigate the binding of NcADF to G-actin, two approaches were used: a protein binding 

two-dimensional assay and chemical cross-linking by the addition of formaldehyde and EDC. 448 

In 2D SDS-PAGE, a vertical coincidence of bands composed of NcADF (Figure 7A, lower 

molecular mass on arrow) and G-actin (Figure 7A, higher molecular mass on arrow) suggests 450 

a weak interaction between the two proteins. Although NcADF and a portion of actin did not 

completely enter the 1D PAGE gel (Figure 7A, left portion), the trace of NcADF that moved 452 

into the 1D PAGE gel was apparently pulled by its binding to actin (Figure 7A, arrows). The 

smear formed by NcADF at the top of the 1D PAGE gel was observed only when actin was 454 

present in the reaction (Figure 7B). A 1D PAGE gel, identical the one used over the 2D SDS-

PAGE, was stained and three bands were visualised; a band with higher mobility, an 456 

intermediate band, and a band that moved slowly. The same stained gel is shown horizontally 

over the SDS gel (Figure 7A) and vertically in Figure 7B. The coincidence of proteins in the 458 

2D SDS-PAGE gel was compatible with the intermediate band formed in the 1D PAGE gel 

(Figure 7A and B, asterisk). NcADF on top of the gel and in the intermediate band was detected 460 

by the anti-NcADF serum (Figure 7B), confirming the presence of NcADF.  
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Two chemical cross-linking agents were used to visualise the binding of NcADF to G-actin. 462 

Initially, 4% formaldehyde was added to the interaction buffer with NcADF in the presence of 

G-actin. A band of 60 kDa was formed (Figure 7C, arrow and asterisk), corresponding to the 464 

sum of the molecular masses of NcADF (18 kDa) and actin (42 kDa). NcADF was detected by 

the anti-NcADF serum in the two bands of 18 kDa (Figure 7D) and 60 kDa (Figure 7D, arrow), 466 

strongly indicative of NcADF binding to G-actin. The presence of a band at 60 kDa was also 

observed when formaldehyde was replaced with EDC and the gel was stained (Figure 7E).  468 
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Figure 7. The ability of NcADF to bind to rabbit G-actin was evaluated. A) Two-470 

dimensional electrophoresis using actin (5 µM) and NcADF (20µM). Horizontally, a 7,5% 

PAGE strip containing the reaction. Above the strip, the 12.5% SDS-PAGE. The larger arrows 472 

indicate the direction of the run and the smaller arrows show the region where NcADF and 

actin overlap in PAGE. B) The same PAGE gel strip shown in A and respective western 474 

blotting detection of NcADF with anti-NcADF serum (1:15,000). In the asterisk (*), the band 

containing NcADF and actin. In the inset inside rectangle, the control reaction, containing 476 

either actin or NcADF. C) 12.5% SDS-PAGE. Mixture of actin (10 µM) and NcADF (10 µM) 

incubated with (lane 2) or without (lane 1) 4% formaldehyde. C = control; F = formaldehyde. 478 

In arrow, the 60-kDa band. In the inset inside rectangle, a zoomed image of lane 2 with bright 

and contrast adjusted to visualise the 60-kDa band (in asterisk). D) Western blotting using the 480 
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same reaction shown in C, lane 2. NcADF was detected by anti-NcADF serum (1:10,000). The 

arrow, NcADF detected with 60-kDa. E)  12.5% SDS-PAGE. Actin (5 µM) was incubated with 482 

NcADF (5 µM) with (lane 2) or without (lane 1) 2 mM EDC. C = control. The arrow indicates 

the 60-kDa band. 484 

4. Discussion  

Here, we studied N. caninum actin-depolymerisation factor (NcADF), a ubiquitous protein 486 

that belongs to the ADF/cofilin family and is important for regulation of actin functions in 

eukaryotes [45]. To investigate the role of NcADF in actin dynamics, we used a recombinant 488 

N-terminally 6X-his-tagged NcADF and rabbit skeletal actin. Mammalian skeletal muscle 

actin has been widely employed for the investigation of ADF/cofilins from different species 490 

[46-50], including apicomplexan ADFs [23, 26, 27] due to its use in well-established protocols 

and its convenience. These studies allow the potential comparative analysis of ADF/cofilin 492 

functions among species. Computational analysis was performed in parallel to biochemical 

approaches to give structural and functional insight into NcADF. Important residues for actin 494 

binding have been identified in yeast cofilin by site-specific mutagenesis [51] and synchrotron 

protein footprinting [52]. The amino acids identified in yeast cofilin responsible for G-actin 496 

binding are conserved among the ADF/cofilins; however, crucial differences were found in 

NcADF when F-actin binding sites were considered. The F-loop, located between β-4 and β-5 498 

and typically protruding out of the structure in canonical ADF/cofilins, is shorter in NcADF, 

consistent with observations of other apicomplexan ADFs [24, 25]. Additionally, the C-500 

terminal charged residues, identified to be important for F-actin binding, which is usually 

folded in an α-4 helix in other ADF/cofilins, are truncated in NcADF and other apicomplexan 502 

ADFs [26, 53], with the exception of PfADF2 [24]. In NcADF, these differences within the F-

actin binding sites were expected given the similarity to TgADF; however, the C-terminal α-4 504 

helix, present in PfADF1 and predicted to be one turn in NcADF, is absent in TgADF. The 

G112 in TgADF (which corresponds to S112 in NcADF and Q115 in PfADF1) may be 506 

responsible for the absence of the α-4 helix, due to the low propensity of glycine to form α-
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helices [54]. In the alignment (Figure 1), S112 in NcADF corresponds to E126 in yeast cofilin, 508 

which has been identified as a G-actin binding site [6]. However, there is no evidence that these 

residues are involved in the functional differences among these proteins.  510 

Despite the absence of canonical F-actin binding sites, NcADF bound stably to F-actin. The 

relatively low binding affinity of NcADF for F-actin was observed in a co-sedimentation assay 512 

only at pH 6.5. Certain ADF/cofilins, especially from higher vertebrates, exhibit pH-dependent 

activity, regulating F-actin binding and F-actin disassembly [18]. In coccidians, pH may 514 

regulate only F-actin binding to ADFs as observed with NcADF and TgADF [23]. PfADF1, in 

contrast, did not co-sediment with actin by ultracentrifugation at either pH 6.5 or 8.5 [27]. The 516 

ability to disassemble actin filaments was not changed upon pH variation with NcADF, 

TgADF, or PfADF1 [23, 27]. The pH-dependence only for stable F-actin binding, but not for 518 

F-actin disassembly may be a consequence of a mechanism other than severing or 

depolymerisation, indicating monomer sequestration as observed in C. elegans (UNC60A) 520 

[55], depactin from starfish oocysts [56], and TgADF [23]. The ability of NcADF to 

disassemble filaments was weak as compared with TgADF [23]. In a 1:1 molar ratio with actin, 522 

NcADF caused a smaller decrease in actin in the pellet as compared with TgADF [23]. The 

high sequence identity between the two coccidian ADFs may not be indicative of an identical 524 

function and requires a specific investigation of non-conserved regions to determine eventual 

functional differences. Other possibilities are either an influence of the ADF’s N-terminal his-526 

tag on the interaction with actin or variations in co-sedimentation protocols and gel staining 

used in both studies. The cleavage of the tag would have avoided a possible ambiguity in the 528 

interpretation of data. However, several studies used His-tagged ADF/cofilins which 

apparently did not affect the activity of protein [20, 23, 46, 49]. 530 

Affinity of NcADF for F-actin, as assessed by a co-sedimentation assay, was also observed 

as the quenching of PI-actin fluorescence. The pyrene fluorescence is higher when the 532 
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fluorophore is associated with filaments as compared with monomers [42], but the signal is not 

linearly proportional to the incorporation of monomers into filaments [57]. The interaction of 534 

ADF/cofilins and PI-F-actin has been determined to quench the pyrene fluorescence [58-60]. 

Moreover, the quenching may be a consequence of different mechanisms such as binding, 536 

depolymerisation, or conformational changes [58]. Additionally, this decrease in pyrene 

fluorescence has been previously used to measure the binding of a molar excess of actophorin 538 

to F-actin [58]. Under filament-stabilisation conditions and a molar excess of NcADF, a drop 

in the initial fluorescence as compared with the control without NcADF is indicative of 540 

filament binding. It is likely that the subsequent exponential decline is the consequence of PI-

F-actin binding to NcADF associated with disassembly. The non-linearity of the plot of 542 

observed rate constants versus NcADF concentrations may reflect different mechanisms of 

action. The use of actin depolymerisation conditions and a lower molar ratio of NcADF and 544 

PI-F-actin still showed an initial drop in fluorescence, indicating binding and/or filament 

disassembly.  Despite the challenging data interpretation due to the quenching of the pyrene 546 

fluorescence, the NcADF concentration-dependent reduction in low-shear viscosity of the F-

actin solution confirms that actin net filament was disassembled. The reduction in viscosity is 548 

strong evidence for a decrease in the extent of net filament and has previously been associated 

with filament severing [38, 47]. Relative to actophorin and human ADF (HsADF), NcADF has 550 

a weak effect on actin filaments, since 10 µM NcADF was necessary to reduce the viscosity 

by the same amount as 1 µM actophorin and 8 µM human ADF [47]. The weak actin 552 

disassembly by NcADF observed by viscometry is consistent with co-sedimentation findings.   

In the polymerisation kinetics assay, NcADF may sever the generated filaments, stimulating 554 

PI-actin polymerisation under all conditions. Similar observations were obtained with 

actophorin [61], Arabidopsis thaliana ADF1[59], and cofilin [60]. Other apicomplexan ADFs 556 

exhibit different effects on actin polymerisation kinetics. TgADF improves the polymerisation 
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rate at lower concentrations and inhibits mammal actin nucleation and polymerisation at two-558 

fold molar excess [23]. PfADF1 has no effect on actin polymerisation [24, 27], while PfADF2 

inhibits polymerisation at a 1:1 molar ratio with actin [27]. At higher concentrations, NcADF 560 

caused the known effect of ADF/cofilins on the polymerisation curve; the overshoot. This 

effect is not likely to be an artefact of pyrene fluorescence [43] and has been attributed to the 562 

severing of F-actin by homologous ADF/cofilins [38, 55, 60, 62, 63]. The overshoot was 

completely inhibited in the presence of inorganic phosphate (Pi). It has been previously shown 564 

that Pi is antagonistic of ADF/cofilins in the binding of F-actin [58, 64] by cooperative binding 

of Pi to actin [64]. Thus, the inhibition of the overshoot by Pi may be a result of the inhibition 566 

of NcADF binding to F-actin, preventing filament severing. This mechanism is suggestive of 

ADF/cofilin activity regulation by Pi in cells. 568 

Certain ADF/cofilins can interfere with the steady state of actin, when the dissociation and 

association rates of the monomers at both ends of the actin filament are balanced, enhancing 570 

actin turnover [65]. NcADF increased the critical concentration of actin at steady state and 

reduced the PI-F-actin fluorescence, indicating inhibition of actin polymerisation and the 572 

binding to monomers. Typical monomer sequestering substances and proteins such as 

latrunculin A [66] and β-tymosins [59, 67], respectively, show similar results. Actophorin, 574 

HsADF, and A. thaliana ADF1 (AtADF1) are ADF/cofilin homologous that inhibit 

polymerisation and reduce actin critical concentration [27, 38, 41]. Unlike PfADF1, which does 576 

not affect the fluorescence of PI-actin at steady state [27], TgADF inhibits actin polymerisation 

at a 2.5-fold molar excess [23]. Another explanation for the observed decrease in fluorescence 578 

is that NcADF may bind to PI-F-actin and quench the fluorescence.  

The PAGE and chemical cross-linking assays demonstrated a low affinity of NcADF for G-580 

actin. The band formed by the NcADF-G-actin complex has been observed in previous cross-

linking assays [25, 38, 68, 69], being compatible with the sum of their molecular weights. The 582 
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use of formaldehyde as a cross-linker also confirmed the presence of an NcADF-G-actin 

complex. NcADF was detected in two bands (18 kDa and the 60-kDa complex), even though 584 

formaldehyde may interfere with protein migration and western blotting transfer efficiency. 

The anti-NcADF serum also detected the endogenous protein in cell extract of N. caninum by 586 

western blot and extracellular tachyzoites by immunofluorescence (not shown; to be published 

elsewhere). 588 

Collectively, the present results show that the 6X his-tagged NcADF displays a relatively 

weak activity in the disassembly of rabbit muscle F-actin, which is not regulated by pH. The 590 

low affinity for F-actin indicates that actin disassembly may occur by transient interaction of 

NcADF and F-actin via a yet undescribed mechanism. In addition, the low affinity between 592 

NcADF and G-actin suggests that, although present, monomer sequestration is not the main 

mechanism of F-actin disassembly by NcADF under the tested conditions. The F-actin 594 

disassembly may be primarily caused by severing. The characterisation of NcADF extends our 

understanding of ADF/cofilin conservation and their function across the phylum Apicomplexa. 596 

Furthermore, it represents a contribution towards the understanding of actin dynamics 

modulation, and in the future, may provide information regarding important mechanisms of 598 

dissemination and survival of the parasite in its wide range of hosts. 
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