
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leveraging MPI RMA to optimise halo-swapping communications
in MONC on Cray machines

Citation for published version:
Brown, N, Bareford, M & Weiland, M 2018, Leveraging MPI RMA to optimise halo-swapping
communications in MONC on Cray machines. in CUG 2018: Stockholm, Sweden, 20-24 May 2018. Cray
User Group (CUG) 2018, Stockholm, Sweden, 20/05/18.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
CUG 2018

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 12. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/224804006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/leveraging-mpi-rma-to-optimise-haloswapping-communications-in-monc-on-cray-machines(ef141dc2-5beb-4fc4-b411-294e1f4e4ff5).html


Leveraging MPI RMA to optimise halo-swapping
communications in MONC on Cray machines

Nick Brown, Michael Bareford, Michèle Weiland
EPCC, University of Edinburgh, Edinburgh, United Kingdom

n.brown@epcc.ed.ac.uk, m.bareford@epcc.ed.ac.uk

Abstract—Remote Memory Access (RMA), also known as sin-
gle sided communications, provides a way for reading and writing
directly into the memory of other processes without having to
issue explicit message passing style communication calls. Previous
studies have concluded that MPI RMA can provide increased
communication performance over traditional MPI Point to Point
(P2P) but these are based on synthetic benchmarks rather than
real world codes. In this work, we replace the existing non-
blocking P2P communication calls in the Met Office NERC
Cloud model, a mature code for modelling the atmosphere, with
MPI RMA. We describe our approach in detail and discuss the
options taken for correctness and performance. Experiments are
performed on ARCHER, a Cray XC30 and Cirrus, an SGI ICE
machine. We demonstrate on ARCHER that by using RMA we
can obtain between a 10-20% reduction in communication time
at each timestep on up to 32768 cores, which over the entirety of
a run (with many timesteps) results in a significant improvement
in performance compared to P2P on the Cray. However, RMA is
not a silver bullet and there are challenges when integrating RMA
calls into existing codes: important optimisations are necessary to
achieve good performance and library support is not universally
mature, as is the case on Cirrus. In this paper we discuss, in
the context of a real world code, the lessons learned converting
P2P to RMA, explore performance and scaling challenges, and
contrast alternative RMA synchronisation approaches in detail.

Index Terms—MPI RMA; One sided communications; MONC;
Cray XC30; SGI ICE; ARCHER; Cirrus

I. INTRODUCTION

The Met Office NERC Cloud model (MONC) [1] is an open
source high resolution modelling framework that employs
large eddy simulations to study the physics of turbulent flows
and further develop and test physical parameterisations and
assumptions used in numerical weather and climate prediction.
Written in Fortran 2003, MONC replaces an existing model
called the Large Eddy Model (LEM) [2] which was an fun-
damental tool, used by the weather and climate communities,
since the 1980s for activities such as development and testing
of the Met Office Unified Model (UM) boundary layer scheme
[3][4], convection scheme [6][5] and cloud microphysics
[7][8].

The current MONC model has been demonstrated up to
32,768 cores [1] but the intention over the next couple
of years is to scale this up to over a hundred thousand
cores which will enable scientists to tackle some of the
grand challenges in atmospheric science. However, going to
this much greater scale will undoubtedly push (and possibly
exceed) the parallelisation and communications technologies
currently utilised by MONC, namely MPI Point to Point (P2P).

A major question therefore is whether other communication
technologies can be leveraged that provide greater scalability.

In this paper, we describe work done replacing the exist-
ing MPI P2P communications with Remote Memory Access
(RMA) for halo-swapping in MONC. RMA is often closer to
the physical hardware representation of communication [9],
which means RMA data can often be put directly on the
wire, whereas P2P requires layers of abstraction on-top of the
hardware which introducing overhead. Whilst there have been
numerous benchmark studies focusing on the benefits of MPI
RMA over P2P [9][10][12][11], there are a lack of real world
applications that have been converted to use MPI RMA. In this
paper, driven by our work on the MONC code, we consider
both the performance benefits of MPI RMA over P2P and also
the approach we have adopted which helps further enhance
community best practice in this area.

The rest of this paper is organised as follows; section
2 discusses the context of MONC and gives an overview
of MPI RMA. Following this, section 3 provides a short
description of the current halo-swapping mechanism in MONC
and specifically the API that other parts of the model interact
with. Section 4 focuses on our replacement of MPI P2P
communication with MPI RMA, here we discuss the approach
taken to leverage all three synchronisation modes of MPI RMA
whilst ensure correctness and targeting performance. Weak and
strong scaling experiments have been run and results of our
RMA implementation using a standard MONC test case on
up to 32,768 cores of a Cray XC30 are compared against the
existing P2P code in section 5. In section 6 we detail reruns
of these experiments on an SGI ICE machine to enable us to
understand whether the observations on the Cray are universal
or machine specific. Finally, we present our conclusions and
discuss further work in Section 7.

II. BACKGROUND

MONC has been shown to scale well up to 16384 cores [1]
but as we reach 32768 cores, the overhead of communication
starts to become more significant. The model works on a num-
ber of prognostic (raw data) fields and common configurations
contain between 20 and 50 fields. The grid is distributed in
two dimensions across processes and each process holds every
field for its own specific part of this grid. Halo-swapping is
the major form of communication, with a box stencil (which
includes the corners) of depth two. Hence for all halo-swaps
each process must communicate with up to eight neighbours



(left, right, up, down and all four corners.) Halo-swapping
occurs at multiple points during a timestep:

• At the start of each timestep all fields must be halo-
swapped before the other activities of the timestep can
proceed. This means that the ability to overlap commu-
nications and compute is fairly limited here as the halo
values must be present for the rest of the computation.
Indeed this aspect accounts for around 95% of the time
spent doing communication per timestep.

• TVD advection [13] is the major way in which values
are moved through the atmosphere due to wind. This
requires a halo-swap in order to process the last column
of the domain for all fields. For this we can overlap
communications and compute as we just need to halo-
swap in one direction by sending appropriate values to the
proceeding neighbour (going left in the domain.) Once
a process has calculated the first column, it send the
values to its proceeding neighbour and registers a receive
for the halo at the other end of the domain from the
succeeding neighbour. Whilst communications are on-
going calculations are performed for the middle of the
domain and we just need to wait for the halo values
when we get to the last column. Hopefully by that point
the communication will have completed and the code can
directly progress onto processing these.

• The pressure calculation requires multiple halo-swaps.
Firstly, source terms are calculated and a halo-swap is
required at this point. Once source terms are computed
the calculation of pressure terms involves solving the
Poisson equation for diffusion via an iterative solver
[14]. This iterative solver requires a halo-swap for each
iteration.

MONC has a modular design where the majority of func-
tionality is contained in a suite of independent components.
These components plug-in to the model, driven by the user’s
configuration, and as the model progresses can be called at
different points (for instance during model initialisation, for
each timestep and model finalisation.) Components provide
the scientific functionality and high level parallelism with a
separate model core providing centralised component manage-
ment, such as component registration and marshalling, as well
as utility functionality to avoid duplication of common code
in components. Example of this utility functionality includes
logging, data format conversions and maths operations.

As described in this section, several components require
halo-swapping. So in order to avoid code duplication the
model core implements the mechanism of halo-swapping and
components call into this providing their own policy (i.e.
which fields to halo-swap.) The idea is that the complexity
involved with halo-swapping is hidden by the mechanism
utility code of the model core, which contains the actual MPI
calls, and components can simply call into this without the
scientific programmer needing a deep understanding of the
underlying nature of communications.

Hence multiple components in MONC provide the policy

of halo-swapping, directing what fields to swap, and the
model core contains the underlying mechanism that actually
implements the communication in an efficient manner.

A major benefit of this approach to our work is that, in
terms of replacing the MPI P2P with RMA for halo-swapping,
there is a single point of truth - utility functionality provided
by the model core. By modifying this one central location
then all parts of the model that perform halo-swapping will be
able to take advantage of the changes. However a challenge is
that the API (the interface to halo-swapping mechanism) has
been designed with P2P communications strongly in mind.
Hence the way in which components provide their policy to
the halo-swapping mechanism in the model core works well
for P2P communications, but we don’t want to modify this API
because it would require considerable changes elsewhere in the
model. Instead we want to keep the API, namely the interface
the mechanism presents to the rest of the world, exactly the
same so that components can transparently take advantage of
MPI RMA.

A. MPI Remote Memory Access (RMA)

MPI Remote Memory Access (RMA) is a way of reading
and writing directly to the memory of other processes without
having to go through the point to point semantics of com-
munication. Commonly known as one-sided communication,
memory is exposed between processes via windows and a
collective call creates a window on each process in the
provided communicator. These windows of memory are then
used as a basis for one-sided RMA communications.

All communication operations in MPI RMA are non-
blocking and these are issued inside epochs. Stopping an epoch
will block for all communication operations issued within it
to complete. These communications (most commonly put to
write data to remote memory and get to read from remote
memory) are issued from an origin process and interact with
the memory of a target process. In MPI RMA epochs drive the
synchronisation of processes and there are three approaches to
synchronisation; fence, Post-Start-Complete-Wait (PSCW) and
passive target synchronisation (locks).

1) Fence: A fence is the simplest form of RMA synchro-
nisation and most closely follows a barrier approach. When
calling MPI Win fence each process will synchronise with
every other process in the window’s communicator and the
call stops the current epoch and starts a new one. The fence
call supports optional assertions, where the programmer may
provide hints to the MPI library about the nature of the epoch
and communications for optimisation purposes, although MPI
is free to ignore these. For instance the MPI MODE NOPUT
assertion informs MPI that the window will not be updated by
any remote write operations in the epoch that is being started.

Whilst a fence is the simplest approach to RMA, the fact
that processes must explicitly synchronise with every other
process in the window’s communicator means that there is
often an overhead associated with this style of synchronisation.

2) Post-Start-Complete-Wait (PSCW): In the fence ap-
proach each epoch is the same, however for optimisation MPI



actually provides two types of epoch; an access epoch and
an exposure epoch. An access epoch is used to access the
remote memory of another process and RMA operations (such
as put and get) can only be issued within an access epoch. An
exposure epoch exposes memory to another process so that this
remote process can then interact with the memory via RMA
operations. This distinction is hidden from the programmer
when using fences, as a fence starts both an access and
exposure epoch.

When using PSCW the programmer must be explicitly
aware of the difference between these two types of epoch and
they also have explicit control over the processes involved
in the epoch, whereas with a fence it is global across the
window’s communicator. The MPI Win post call will start an
exposure epoch and a MPI Win wait then stops this expo-
sure epoch (all remote operations on the memory will have
completed.) A MPI Win start call starts an access epoch and
MPI Win complete stops the access epoch (all issued RMA
operations in this access epoch will have completed.)

The post and wait calls accepts a group of processes,
which defines the processes involved in the epochs. It can be
beneficial for many communication patterns, where a process
need not communicate with all other processes, but instead
a limited subset. This is the case with halo-swapping in
MONC, where communications are nearest neighbour rather
than across all processes and being able to limit the epoch, and
hence synchronisation, to neighbouring processes is useful.

3) Passive target synchronisation (locks): Both fences and
PSCW assume active target synchronisation, where the tar-
get process is explicitly involved in the synchronisation by
creating an exposure epoch. In the active approach only the
origin issues the RMA data transfer operations, but the target is
involved the synchronisation. MPI also provides passive target
synchronisation, where only the origin process is involved in
the synchronisation and there is no interaction required on the
target process whatsoever. In the passive approach, effectively
only access epochs are started and the exposure epochs are im-
plicit. Passive target synchronisation can be especially useful
for irregular and unpredictable communications.

Passive target synchronisation is achieved by using MPI’s
MPI Win lock to start an access epoch and MPI Win unlock
to stop the epoch. Inside the epoch (between lock and unlock)
the programmer can issue RMA communication operations as
normal, these are then completed for both the origin and target
on the corresponding unlock issued by the origin. Locks have
a type associated with them, exclusive or shared. Exclusive
means only one process at a time can hold the lock and hence
access the window of the target process, whereas shared locks
enable multiple processes to hold the lock and hence any
number can access the target window concurrently.

In addition to the locking and unlocking of windows there
are a number of other passive target synchronisation opera-
tions supported. For instance one can acquire request handles
from RMA communication operations and then wait on these
without explicitly unlocking the window (stopping the epoch)
and flush all the communications currently issued in the epoch

which blocks for their completion on the target.
4) MPI RMA memory model: A further feature to MPI

RMA is that the standard does not require cache coherence.
The MPI provides the concept of public and private copies
of window data. In the separate memory model these two
areas are distinct and effectively there are two copies of
the window’s data. A version is held in process’s own local
memory (private copy) and another, public, version that other
processes interact with. Thus the data that a process can
interact with is separate from the copy that other processes
can see. These two versions are then made consistent with a
synchronisation call which, for instance, is implicit at the end
of an epoch.

The second MPI RMA memory model, introduced in MPI
version 3.0, is the unified model, where public and private
copies are identical. This relies on a cache coherent machine,
which in reality is pretty much all the machines used for large
scale HPC. It is possible to deduce what type of model a
window follows and based on this specific synchronisations
might be omitted by the programmer for optimisation with
the unified model. However the cost of this is that the code
will not run correctly on the separate model. The work we
describe in this paper does not make assumptions about the
memory model and hence will work equally well either with
the separate or unified memory models.

III. EXISTING MONC P2P HALO-SWAPPING API

As described in section II, MONC is made up of many
loosely coupled components which users combine together via
configuration files for specific runs. The mechanism of halo-
swapping is contained within a module of the model core, this
provides a single API for any component to then leverage for
halo-swapping communications. It is this API and underlying
implementation that we are focusing on in this work. The
idea being that, by making changes to this single underlying
module of the model core, the benefits of MPI RMA are
then provided transparently to all halo-swapping components.
There are four procedures in the halo-swapping API that can
be called by components:

• init halo communication - This will initiate a specific
halo-swapping context. Returned back to the caller via a
Fortran derived type, that can be used time and time again
for the halo-swapping of specific fields. The programmer
provides, via arguments, a description of their fields to be
swapped. The init procedure tends to be called, by each
component requiring halo-swapping, only once when the
model first starts up.

• initiate nonblocking halo swap - Starts a halo-swap
with neighbouring processes as described by the provided
context. This procedure first registers non-blocking re-
ceives from the process’s neighbours, then packs domain
data into communication buffers by copying and sends
these via non-blocking sends. Buffers are required be-
cause the data in the domain is often not contiguous,
hence it is copied into a contiguous area and passed into
the MPI call. This is procedure is non-blocking.



• complete nonblocking halo swap - First waits for all
the communications to complete (both the sends of local
data to and receiving of halos from neighbours.) Then this
procedure unpacks the received data by copying it from
the receive buffers into the appropriate halo locations of
the domain. The completion procedure blocks until all
halo-swapping communication and buffer unpacking, as
directed by the context, has completed.

• finalise halo communication - Cleans up memory,
specifically the communication buffers, required for halo-
swapping. This tends to be called when the model com-
pletes execution.

The main policy of halo-swapping that users provide to
the API are the number of fields to halo-swap and procedure
pointers for packing and un-packing the halo data. The halo-
swapping mechanism of the model core then calls out to these
user provided procedures, with the specific communication
buffers, and the user’s code performs the physical data copy-
ing. The idea of splitting out the initiation of completion of
communication is to be able to follow the familiar pattern of
overlapping communication with computation.

IV. REPLACING MPI P2P WITH MPI RMA

A. Initialisation

Initialisation of halo-swapping is performed in the API’s
init halo communication procedure. As discussed in section
III, the mechanism of halo-swapping relies on internal buffer
space to pack non-contiguous dimensions of data for com-
munication. The natural way of approaching this would be to
create an MPI window for each buffer and then to write into
these directly. However this will result in a large number of
windows which would need to be managed explicitly in the
code, adding to overhead, and it would not be trivial to know
exactly which window a remote process should interact with.
Instead, processes allocate a separate, single, buffer for RMA
and create a window on this one buffer. This new buffer is
large enough to hold all the data that must accessed by every
neighbour and is illustrated in figure 1. It can be seen from
this figure that the specific space allocated to each neighbour
might not be the same, as would be the case for an uneven
grid decomposition. Hence a process can not trivially know the
exact location that it should work with in the remote buffer
memory of a neighbouring, target, process. This is because it
depends on the ordering of those neighbours at the target and
the amount of remote data that the target needs to exchange
with its preceding neighbours.

Therefore, during initialisation each process will calculate,
for its own RMA buffer, the explicit location (offset in the
buffer) that each neighbouring process should interact with.
For each neighbour, a process will then exchange, via non-
blocking P2P, the location in its buffer that that neighbour
should interact with and it receives its own corresponding
location in the neighbour’s buffer (that it will need to interact
with.) On the completion of this communication, each process
knows not only the location in its own buffer for each

Fig. 1. Example buffer to be exposed via RMA

Fig. 2. One sided communications driven by remote reads (MPI Get)

neighbour, but also its own location in the remote buffer of
all of its neighbours.

The MPI Win create call is collective over the window’s
communicator and for this we use a communicator containing
only neighbouring processes. The MPI Alloc mem call is used
to allocate the buffer space which can provide optimised mem-
ory allocation for RMA, such as ensuring memory alignment
[15].

If the user has selected to use PSCW RMA communications
then an MPI group is also created that features the ranks
of all the neighbours; this will be used in future calls to
MPI_Win_post and MPI_Win_start.

B. RMA halo-swapping

As described in section III, actual halo-swapping in the
MONC API is split into two procedures; initialisation of
halo-swapping, which is non-blocking, and completion which
blocks for completion. With P2P halo-swapping each process
sends and receives data. Sending is used to communicate val-
ues at the edge of a process’s domain to the appropriate neigh-
bours and then the corresponding halo values are received from
the same neighbours. RMA is different and communication
is only one way; i.e. appropriate halo data is only remotely
read from neighbours (via MPI Get) OR a process writes their
values into the halos of remote neighbouring processes (via
MPI Put.)

Figure 2 illustrates the approach of remote reading from
neighbouring memory to drive one-sided communications.
Firstly each process must perform local copies to pack the
appropriate domain data, for each neighbour, into the buffer
exposed for RMA by the window. Once local copying is com-
plete then each neighbouring process can perform a remote
read (MPI Get) at the appropriate location of this buffer to
retrieve its corresponding data from each neighbour and place



Fig. 3. One sided communications driven by remote write (MPI Put)

that directly into its specific halo space. For correctness the
target must have completed the local copying of data (step 1)
into the buffer before remote reads (step 2) are issued by other
processes.

The other approach is to drive the single sided communi-
cations by remote writing as depicted by figure 3. Here each
process will remotely write (via MPI Put) its appropriate data
into the buffer of each neighbour at the corresponding location.
Once remote writes have completed a process can read its own
buffer and perform local copies to unpack the data into halos
of the domain. Again, for correctness it is critical that remote
writes (step 1) have completed before the buffer is read and
unpacked (step 2.)

The programmer has a choice, to drive the RMA by remote
reading or remote writing. But due to the one sided nature of
communication, one needs to be careful about data consistency
and this can be a real challenge to correctness. One needs to
carefully consider the synchronisation, especially as we start
to relax this in PSCW and passive target synchronisation. As
we will see in this section, whether MPI Get or MPI Put is
most appropriate can depend, in terms of data consistency, on
the approach to epoch management and synchronisation that
has been adopted.

1) Fences: The simplest, but potentially slowest, approach
for RMA synchronisation is to use fences. A fence can be
placed in the initiate nonblocking halo swap call to start an
epoch. Then, within this same procedure, either MPI Get (to
remote read) or MPI Put (to remote write) RMA operations
can be issued and a fence can be placed at the end of the
procedure to wait for their completion.

With this simple approach both of these fences are synchro-
nisation points, starting and stopping the epoch, and both are
important here for data consistency. As a fence is blocking on
the window communicator, the first fence (creating the epoch)
ensures that every process in the window communicator has
reached this point before processes proceed. If processes then
issue remote memory reads for their halo data from neighbour-
ing processes via MPI Get, we need to ensure that that data
has been packed into the RMA buffer on the target before the
underlying communications can begin. Placing buffer packing
before the fence on each process ensures consistency as
processes will only proceed once all have called the fence
(similar to an MPI barrier.)

The second fence, to stop the epoch, will ensure that all
issued RMA operations inside the epoch have completed. If

we choose to use remote write via MPI Put instead of remote
reads, then it is only after progressing beyond this point that
we can be sure the RMA buffer contains the appropriate data
that can be used for unpacking and copying into the local
domain.

When using fences in this manner it is tempting, for optimi-
sation reasons, to use the MPI MODE NOPRECEDE asser-
tion for the first fence (as there are no locally issued RMA calls
in the epoch proceeding this) and MPI MODE NOSUCCEED
as this new epoch at the end of the procedure is not issuing
any RMA calls. However, crucially for correctness a call
to MPI Win fence that is known not to stop any epoch
(specifically with the MPI MODE NOPRECEDE assertion)
does not necessarily act as a barrier and hence we have
consistency issues if we are driving the communication via
remote reads (MPI Get). When modifying MONC we saw
this issue intermittently in the code, as it is up to the MPI
implementation whether it acknowledges the assertions. This
was solved by driving communications via writing (MPI Put)
in place of remote reading.

For better overlapping of communication and compute, the
second fence (closure of the epoch) can be placed in the
complete nonblocking halo swap such that the non-blocking
RMA operations can then be in progress whilst other compu-
tation work is being perform between these procedures of the
MONC halo-swapping API.

2) Post-Start-Complete-Wait: Post-Start-Complete-Wait
(PSCW) can be thought of as a more efficient version
of fences. Firstly processes have more control over who is
involved in the epoch by the provision of groups, so instead of
having to synchronise with every other process in the window
communicator processes now have a more fine-grained way of
determining who they have to synchronise with. Additionally
this synchronisation can be further specialised by the type of
epochs - an access or exposure epoch as described in section
II-A2.

The MPI Win post call, used to start an exposure epoch
on a window for a group of processes is non-blocking. A
MPI Win start call, used to start an access epoch on a
window for a group of processes, may or may not block for
a corresponding post depending on the implementation, but it
is not a requirement.This creates a challenge: if we were to
drive our halo-swapping by reading remote data (MPI Get)
then there is no guarantee that the corresponding processes
have also reached that specific point in the code and that the
data in the remote RMA buffer is up to date.

The MPI Win complete call, which stops an access epoch,
will block on locally issued RMA operations. Therefore after
this call we can reuse any RMA operation buffer space on
the origin, but it does not guarantee completion on the target.
The MPI Win wait call, which stops the exposure epoch on
the process, will block until all the corresponding access
epochs have been stopped (via MPI Win complete) and all
data from these has arrived. Hence after progressing beyond
MPI Win wait the process can be sure that it has received all
the data remotely written to it in that epoch.



Based on the synchronisation behaviour of PSCW, remote
writing of the halo data via MPI Put is the only way in
which we can guarantee correctness of the data without any
additional synchronisation and-so this was the approach we
adopted in the code.

3) Passive target synchronisation (locks): In passive target
synchronisation only the origin is involved in the synchro-
nisation. The origin still starts an access epoch but unlike
other MPI RMA approaches the target does not need to start
an exposure epoch explicitly. This is a very useful pattern
for numerous algorithms, however for our purposes of halo-
swapping it is less beneficial due to the lack of explicit
synchronisation on the target.

As previously discussed in this section, if the origin is
reading remote data then it needs to ensure that the target
has updated the RMA buffer sufficiently, or if the origin is
writing remote data then the target needs to ensure that this
writing has completed before it reads its own RMA buffer.
Either way, some synchronisation (or at least handshaking)
between the origin and target is required.

Whilst passive target synchronisation is not necessarily most
suited to halo-swapping, we were still keen to support it
for understanding the performance that this approach can
afford. To do this each process issues MPI Win lock all in
the init halo communication procedure when halo-swapping
is first set up. This is done only one for each halo-swapping
context and acquires an access lock on all windows in the
communicator (neighbouring processes) for the entire run.
The MPI Win lock all call acquires a shared lock on the
window, where multiple processes are allowed to hold the
lock on the same window. This is fine for our approach as
each neighbouring process is working with distinct parts of
the target buffer, exposed by the RMA window, so there is no
conflict. The code also supplies the MPI MODE NOCHECK
assertion to the lock all MPI call for potential optimisation as
there is no need to check for conflicting locks here.

Similarly to PCSW, remote writing is also used
for passive target synchronisation and these calls are
issued in the initiate nonblocking halo swap procedure.
In the complete nonblocking halo swap procedure an
MPI Win flush all is issued which blocks until completion of
all outstanding RMA operations initiated by the calling
process on the window. The definition of operation
completion here is that the remote memory of the target
has been updated and contains the specific values that
were written. Hence we know that, once this call has
returned, the data has arrived in the (public) memory of
the target process. In the MONC halo-swapping finalisation
procedure (finalise halo communication) the code issues
MPI Win unlock all to release all locks on the window. With
this approach we only have to acquire locks and start the
access epochs once, when a specific halo-swapping context is
set up and initialised. This can then be used as many times
as we when when halo-swapping is being performed from
timestep to timestep.

Synchronisation is a challenge here, specifically ensuring

that the target does not start unpacking RMA buffer data into
its halos before remote values have been fully written. To
guard against this we use P2P communications with an empty
message. Non-blocking receives are issued to all neighbouring
processes and once these processes have flushed their RMA
operations (and the data is guaranteed to be up to date on
the target) then a non-blocking send of an empty message
to that process is issued. A process, once it has flushed
RMA operations and issued appropriate sends can then check
the receive handles and unpack buffers as these operations
complete (via MPI Testany.) Crucially, to support the MPI
separate memory mode, the target must issue MPI Win sync
before it starts unpacking the data to ensure that public and
private copies of the window are up to date. As an optimisation
we obtain, via MPI Win get attr the memory model of the
window and omit this explicit MPI Win sync call if it is
unified.

An alternative to these P2P calls would be to use an
MPI barrier, but that is more coarse grained and will only
complete once all processes in the communicator reach this
point in code. Instead this P2P approach means that the
target can progress unpacking buffers for those neighbours that
have completed even if not all neighbouring processes have
flushed their RMA operations. The disadvantage of passive
target synchronisation here is that manual synchronisation does
add some overhead in the code and puts the burden on the
programmer to handle it correctly.

C. Optimising epoch creation

So far we have assumed that the epoch is started in
initiate nonblocking halo swap procedure and stopped in the
complete nonblocking halo swap procedure of the MONC
halo-swap communication mechanism. Based on the discus-
sions around data consistency in section IV-B, this allowed for
a correct implementation but when profiling the code we found
that excessive time was being spent by processes blocking
in the initiate nonblocking halo swap procedure. This was
during the creation of the epoch and especially significant
when using fences, but also present with PSCW where some
processes were blocking on the MPI Win wait call.

To avoid excessive blocking we moved epoch
creation out of the initiation procedure into
complete nonblocking halo swap. So the last thing that
the completion procedure will do, after closing the existing
epoch and copying RMA buffer data appropriately, is to start
a new epoch that will then be used for the next halo-swap.

Importantly, the epoch is open for much longer here. So
processes reaching the initiate nonblocking halo swap call at
different times, which might very well happen as we aim
to promote loosely coupled behaviour where possible, are
not then sitting idle waiting for other processes to reach the
same point. Instead they can issue their non-blocking RMA
operations and progress as soon as that is done.

The other benefit of moving the creation of the epoch to
the completion procedure, is that it also fits in far better with
the existing, P2P behaviour of the halo-swapping API. This



is important because, with the existing API, it is only the
completion procedure that blocks for data and-so programmers
have developed components with this assumption in mind
to overlap communication and computation as efficiently as
possible. Hence also blocking when initiating the halo-swap
will limit the effectiveness of these communication optimi-
sation patterns. With the change described here, the epoch
must also be started in the init halo communication proce-
dure so that the first call to initiate nonblocking halo swap
already has an epoch started and the last epoch started by
complete nonblocking halo swap must be stopped in the fi-
nalisation procedure.

D. More effectively sharing a memory window

The RMA communications we have described so far have
used a buffer exposed for RMA via a single window as
introduced in section IV-A. However the existing API design,
which we did not want to modify, calls into user provided
procedures (via Fortran procedure pointers) for the packing
and unpacking of halo data. Crucially the buffers provided to
these procedures for unpacking data (copying into the halos in
the complete nonblocking halo swap procedure) are assumed
to be separate, multi-dimensional arrays, and not one single
large buffer. This works well for MPI P2P as the code is
receiving into separate buffers, but does not match so closely
with how our RMA implementation works.

Due to the fact that these are multi-dimensional arrays, pass-
ing in sub-regions of the single buffer exposed for RMA into
the unpacking procedures it resulted in significant overhead.
This is because, instead of just passing a memory reference,
Fortran copied the data by allocating new memory areas for
the unpacking procedure, copied the argument’s input data
into these and then performing a copy back out on procedure
completion.

To get round this overhead we initially copied values from
the single buffer used for RMA to separate individual receive
buffers. These were then passed to the user’s unpacking
procedures. This is illustrated in figure 4. Whilst extra data
copying was required, at-least this way we could explicitly
control what copying was performed, and it was quicker than
passing sub-regions of the array. However the extra copy
still added significant overhead, not to mention the additional
memory requirements of these extra individual receive buffers.

Data that arrives in the single RMA buffer from a specific
neighbour is contiguous and the receive buffers, provided
to the user’s unpacking procedures, are declared as Fortran
pointers. To avoid the need for extra receive buffer space and
copying, but to keep the API unchanged, the receive buffers
were no longer themselves allocated. Instead they pointed to
specific offsets in the single buffer used for RMA and written
to directly by neighbouring processes as portrayed in figure 5.
Hence each of these receive buffers is now effectively just a
chunk of memory within the already allocated far larger single
buffer used for RMA and the specific pieces of the single
RMA window buffer are directly passed to these user provided

Fig. 4. Extra copy needed from the RMA buffer into the separate receive
buffers

Fig. 5. Receive buffers now directly point into the buffer exposed for RMA
to avoid extra copying

unpacking procedures where they appear like separate chunks
of memory.

The complication is that Fortran does not directly support
pointer arithmetic, which is required here, so instead we must
leverage C to point into the different locations of the single
RMA buffer. The ISO C bindings, introduced in Fortran 2003
provide the c ptr derived type which we used to keep track of
the RMA memory buffer address (returned in the code from
the MPI Alloc mem call.) We wrote a simple C function, and
linked this into the Fortran code, to do pointer arithmetic.
This enables us to increment a c ptr pointer by a specific
amount for each separate receive buffer. The c f pointer ISO
C binding procedure then means we can associate the Fortran
pointer of each receive buffer with the C pointer.

V. CRAY XC30 PERFORMANCE RESULTS

Performance experiments were performed on ARCHER, a
Cray XC30 with 12-core (2.7 GHz) E5-2697 v2 (Ivy Bridge)
series processors. The ARCHER compute nodes contain two
Intel processors and 64 GB of memory. The MONC model was
compiled using the Cray Fortran compiler v8.4.1. The MPI
library used was Cray MPICH v7.5.5. Unless explicitly stated,
results on ARCHER run MPI RMA over DMAPP. A standard
MONC test-case for stratus cloud was used which contains 25
Q (moisture) fields, as well as temperature, pressure and wind
fields. All of these need to be halo-swapped at least once per
timestep. For all experiments we execute one MPI process per
core.

Figure 6 illustrates weak scaling with a local problem size
of 65 thousand grid points per process (this size is a common



128 256 512 1024 2048 4096 8192 16384 32768
Processes

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Av

er
ag
e 
co
m
m
un
ica

tio
n 
tim

e 
pe
r t
im
es
te
p 
(s
)

ARCHER: weak scaling comparison
p2p
fence
pscw
lock

Fig. 6. Weak scaling (65k grid points per process) on ARCHER. Average
communication time per timestep for P2P and RMA communications.

choice in scientific runs), for MPI P2P and all three RMA
synchronisation modes. The local grid size is x=16, y=16,
z=256. The z dimension is the vertical and the grid is not
decomposed in this dimension, whereas global decomposition
occurs on the other, x and y dimensions. Therefore processes
hold a number of columns of grid points, in this case 16 × 16
(256) columns of size 256. Based on this set up, per timestep,
there are 16 × 256 × 2 (as the stencil depth is 2) grid points
being exchanged with each left, right, up and down neighbour
per field. There are also 256 × 2 grid points to exchange
with cornering neighbours per field. The fields themselves are
double precision floating point numbers, so halo swapping
faces results in message sizes of 64 KB and corners are 4
KB in size.

The metric reported is the average communication time
per timestep and typical runs execute tens of thousands of
timesteps, and hundreds of thousands or even millions of
timesteps is not uncommon. At 32768 cores there is a global
domain size of 2.1 billion grid points and over 768GB of data
is being halo-swapped each timestep (approximately 23MB
per process.)

It can be seen, in all configurations, that PSCW RMA
out performs the existing P2P communications. Even though
the differences between the numbers is fairly small, this is
significant over a real world run (for example going from
P2P communications to PSCW saves over 1700 seconds with
50,000 iterations on 1024 cores and over 1000 seconds with
50,000 iterations on 32768 cores.) Interesting, at smaller core
counts passive target synchronisation (locks) and fences are
fairly competitive with PSCW and perform better than P2P.
However at larger core counts P2P out performs fences and
locks. We believe that his is due to the extra synchronisation
involved with fences and the fact that we are having to
manually implement synchronisation ourselves with passive
target synchronisation.

Figure 7 illustrates strong scaling on ARCHER with a
global problem size of 536 million grid points (global grid
dimensions of x=2048, y=2048, z=128.) This experiment is

2048 4096 8192 16384 32768
Processes

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er
ag
e 
co
m
m
un
ica

tio
n 
tim

e 
pe
r t
im
es
te
p 
(s
)

ARCHER: strong scaling comparison
p2p
fence
pscw
lock

Fig. 7. Strong scaling (536 million global grid points) on ARCHER. Average
communication time per timestep for P2P and RMA communications.

Processes Local problem size Data comm/timestep
2048 262144 92 MB
4096 131072 46 MB
8192 65536 23 MB

16384 32768 11.5 MB
32768 16384 5.75 MB

Fig. 8. Local domain size and data communicated for each process per
timestep when strong scaling (536 million global grid points) on ARCHER.

worthwhile because we can study the impact of message size
on the performance of halo-swapping and figure 8 shows
the number of local grid points and overall amount of data
communicated by a process per timestep at different core
counts. Figure 9 denotes the size of each halo that must
be communicated (dimension 1 corresponds to faces com-
municated with left and right neighbours, dimension 2 faces
to up and down neighbours and corner to the 4 cornering
neighbours) at different core counts. This is useful because
it is the message size associated with the RMA operations,
where the code issues MPI Put operations to remote memory
with data of this size.

It can be seen that, as the local grid size becomes smaller
(32 thousand points/process at 16768 cores and 16 thousand
grid points/process at 32768 cores), then P2P communication
becomes more competitive and is the fastest configuration
at 16768 cores and very competitive with PSCW at 32768.
We found these strong scaling results noteworthy because the
assumption is often that the latency of RMA is lower than P2P
due to being closer to the interconnect hardware and fewer
levels of abstraction. However this result seems to argue that
RMA is in-fact more beneficial with larger message sizes in
our case (PSCW is 18% faster than P2P at 2048 cores, 9%
faster at 4096 cores and 14% faster at 8192 cores.)

Whilst it is known from benchmarks that PSCW is more
efficient than fences, we were still slightly surprised here
by the magnitude of performance difference, especially when
weak scaling over larger core counts. The reason for our
surprise is that theoretically the synchronisation and epoch



Processes Halo size dim 1 Halo size dim 2 Corner size
2048 128 KB 64 KB 2 KB
4096 64 KB 64 KB 2 KB
8192 64 KB 32 KB 2 KB

16384 32 KB 32 KB 2 KB
32768 32 KB 16 KB 2 KB

Fig. 9. RMA operation message size associated with halos when strong
scaling (536 million global grid points) on ARCHER.

creation behaviour is not so different between these two RMA
synchronisation mechanisms in MONC. As we have already
mentioned, a fence generally synchronises with all processes
in the window’s communicator (in our case the neighbouring
processes) although our use of MPI MODE NOPRECEDE
might avoid the first synchronisation depending on the li-
brary implementation. A fence also starts both an access and
exposure epoch on each process. But our PSCW version is
doing the same, again it works on just the communicator
of neighbouring processes and needs to start an access and
exposure epoch on each process, and the issuing of start may
or may not block, whereas the complete and wait calls to stop
the epoch will block. So theoretically there shouldn’t be too
much difference, but from the results we can see that PSCW is
far more efficient. One reason might be that the MPI library is
ignoring the assertions provided to the fence calls, which are
designed for optimisation and a conforming implementation is
allowed to disregard them. Additionally the more generalised
nature of PSCW might enable the MPI library to more
efficiently implement the underlying synchronisations and data
movements in contrast to fences.

The results reported in figures 6 and 7 rely on Cray’s
Distributed Memory Application API (DMAPP) [16] tech-
nology which is a is a communication library that can call
straight through to the underlying Aries networking ASIC
on the Cray and implements many of the RMA operations
directly in hardware. It has previously been shown [17] that
the DMAPP interface outperforms the regular, default, MPI
RMA approach. DMAPP is enabled by both linking against the
DMAPP library and setting an environment variable. Figure
10 illustrates a similar weak scaling experiment as figure 6
but contrasting P2P communications against PSCW with and
without DMAPP. It can be seen that DMAPP is certainly faster
than non-DMAPP, but not by as much as we had expected and
certainly not as much as benchmarks in [17] would have led us
to expect. Even without running MPI RMA on top of DMAPP,
PSCW still outperforms P2P communications. Having said
that, DMAPP is faster and as it requires no code changes
to take advantage of is a no-brainer in obtaining the optimal
performance on Cray machines in our opinion.

VI. SGI ICE PERFORMANCE RESULTS

A similar experiment to those carried out in section V was
run on Cirrus, an SGI ICE machine with Intel 18-core (2.1
GHz) Intel Xeon E5-2695 (Broadwell) series processors. Each
node contains two processors with 256 GB of memory and

128 256 512 1024 2048 4096 8192 16384 32768
Processes

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er
ag
e 
co
m
m
un
ica

tio
n 
tim

e 
pe
r t
im
es
te
p 
(s
)

ARCHER: weak scaling comparison
p2p
pscw, dmapp on
pscw, dmapp off

Fig. 10. Weak scaling (65k grid points per process) on ARCHER without
DMAPP.

128 256 512 1024 2048 4096
Processes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Av
er
ag
e 
co
m
m
un
ica

tio
n 
tim

e 
pe
r t
im
es
te
p 
(s
)

Cirrus: weak scaling comparison
p2p
fence
pscw

Fig. 11. Weak scaling (65k grid points per process) on Cirrus. Average
communication time per timestep for P2P and RMA communications.

Infiniband interconnect. For this platform the MONC code
was compiled with GCC v6.2.0 and the MPI implementation
was SGI Message Passing Toolkit v2.14, otherwise known
as MPT. Unfortunately, this MPI implementation does not
support passive target synchronisation (locks) hence we can
only report fence and PSCW runs for Cirrus in this section.
Again for all experiments we execute one MPI process per
core.

Figure 11 depicts weak scaling with 65 thousand local
grid points per core and the average time for halo-swapping
communication per timestep. The local grid dimensions are
x=16, y=16, z=256. Whilst a direct comparison of the actual
numbers between Cirrus and ARCHER is inappropriate due
to different processor technology and software stack, we
can make some interesting observations about the relative
performance of the different configurations. Most interestingly
here is that MPI RMA (PSCW) does not provide better halo-
swapping performance than P2P at all core counts and at best
the performance between PSCW and P2P is comparable (e.g.
512 and 4096 cores) and at worst PSCW is slower than P2P
(2048 cores.)

Figure 12 illustrates strong scaling, 536 million global grid



256 512 2048 4096
Processes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Av
er
ag

e 
co

m
m
un

ica
tio

n 
tim

e 
pe

r t
im

es
te
p 
(s
)

Cirrus: strong scaling comparison
p2p
fence
pscw

Fig. 12. Strong scaling (536 million global grid points) on Cirrus. Average
communication time per timestep for P2P and RMA communications.

points, on Cirrus (global grid dimensions of x=2048, y=2048,
z=128.). Similarly to the weak scaling experiment, at best P2P
and PSCW are competitive and at worst (again 2048 cores)
PSCW is significantly slower than P2P.

These results indicate that support in the SGI MPI library
(MPT) and Infiniband interconnect for RMA is less mature
than Cray’s implementation. Even without DMAPP enabled
on ARCHER, PCSW outperformed P2P on ARCHER with
the Cray MPI library. This is certainly not the case on Cirrus
and the fact that passive target synchronisation is not supported
illustrates the general immaturity of MPT for RMA.

VII. CONCLUSIONS AND FURTHER WORK

In this paper we have described replacing the existing P2P
communications in the real world atmospheric model, MONC,
with MPI RMA. Designed around the concepts of compo-
nents, multiple MONC components perform halo-swapping
by calling into a central module of the model core which
abstracts them from the complex underlying mechanism of
communication. For compatibility it was important that the
halo-swapping API provided by the model core, designed with
P2P in mind, was not modified. We replaced P2P with MPI
RMA levering all three synchronisation modes; fences, PCSW
and passive target synchronisation. We have described our
approach for retrofitting MPI RMA, the considerations we had
to bear in mind for correctness and modifications required for
optimisation.

We have considered performance and scalability on up
to 32768 cores of ARCHER, a Cray XC30 and observed
- especially with DMAPP enabled but even without, there
is a benefit of replacing the existing P2P communications
with MPI RMA, specifically PSCW. Other modes of RMA
synchronisation; fences and passive target synchronisation, do
not outperform MPI P2P communications however. In contrast
to the Cray MPI RMA implementation (both with and without
DMAPP enabled), the SGI MPI Toolkit (MPT) support for
RMA is less mature and on Cirrus, an SGI ICE machine
with Infiniband interconnect, MPI P2P outperformed all RMA
configurations. We therefore conclude that MPI RMA is not

a communication panacea, but PSCW especially does exhibit
some benefits in a real world application as long as library
and hardware support is sufficiently mature, as is the case
with Cray, and code modifications are done appropriately.

In terms of evaluating MPI RMA we have focused on
the performance and scalability, but another consideration
is the programmability. MPI RMA is less well known than
P2P communications and arguably such concepts as multiple
memory models can confuse programmers. For this work we
found that the enhancements to MPI RMA in version 3.0 of the
standard, ones that we especially rely on for our passive target
synchronisation implementation, are welcome and improve
support. We also found a number of excellent resources for
learning MPI RMA at [18] and [19]. In our opinion, once
the programmer works through these resources and learns the
basic concepts, MPI RMA is not much more complex than
MPI P2P. But crucially P2P and RMA are very different and
need to be approached with that understanding in mind. The
programmer must embrace the fact that RMA is built upon
different concepts which they should understand separately,
rather than trying to understand MPI RMA in the context of
their existing P2P knowledge.

In terms of future work, in this paper we have concentrated
on MPI but there are other single sided technologies such
as GASPI [20]. Research has shown that there are potential
performance benefits to be gained by using GASPI rather
than MPI [21] and GASPI’s notify mechanism could be a
very useful and optimal way of informing the target when
data has been remotely written and hence can be used. A
challenge with this would be the inevitable interoperability
issues between MPI and GASPI that would need to be faced,
as other parts of the MONC code rely on MPI (e.g. parallel
IO [23].) However work is being done on interoperability
between these technologies [22] which might ease such an
investigation.

ACKNOWLEDGMENTS

This work was funded under the embedded CSE programme
of the ARCHER UK National Supercomputing Service
(http://www.archer.ac.uk) This work used the ARCHER UK
National Supercomputing Service (http://www.archer.ac.uk)
and the Cirrus UK National Tier-2 HPC Service at EPCC
(http://www.cirrus.ac.uk).

REFERENCES

[1] Brown N, Weiland M, Hill AA, Shipway BJ, Maynard C, Allen T, Rezny
M. A highly scalable met office nerc cloud model. In In Proceedings of
the 3rd International Conference on Exascale Applications and Software
(EASC ’15). EASC 2015, 132-137.

[2] Brown AR, Gray MEB, MacVean MK. Large-eddy simulation on a
parallel computer. Turbulence and diffusion, 1997, (240).

[3] Lock AP. The parametrization of entrainment in cloudy boundary layers.
Quarterly Journal of the Royal Meteorological Society, 1998, 124(552),
2729-2753. DOI: 10.1002/qj.49712455210

[4] Lock AP, Brown AR, Bush MR, Martin GM, Smith RNB. A new
boundary layer mixing scheme. part i. scheme description and single-
column model tests. part ii. tests in climate and mesoscale models.
Monthly Weather Review, 2000, 128(9), 3200-3217. DOI: 10.1175/1520-
0493



[5] Petch JC. Sensitivity studies of developing convection in a cloud-
resolving model. Quarterly Journal of the Royal Meteorological Society,
2006, 132(615), 345-358. DOI: 10.1256/qj.05.71

[6] Petch JC, Gray MEB. Sensitivity studies using a cloud-resolving
model simulation of the tropical west pacific. Quarterly Journal of
the Royal Meteorological Society, 2001, 127(557), 2287-2306. DOI:
10.1002/qj.49712757705

[7] Abel SJ, Shipway BJ. A comparison of cloud-resolving model simulations
of trade wind cumulus with aircraft observations taken during rico.
Quarterly Journal of the Royal Meteorological Society, 2007, 133(624).
DOI: 10.1002/qj.55

[8] Hill AA, Field PR, Furtado K, Korolev A, Shipway BJ. Mixed-
phase clouds in a turbulent environment. part 1. large-eddy simulation
experiments. Quarterly Journal of the Royal Meteorological Society,
2014, 140(680), 855-869. DOI: 10.1002/qj.2177

[9] Gropp WD, Thakur R. Revealing the performance of MPI RMA
implementations. In European Parallel Virtual Machine/Message Passing
Interface Users Group Meeting, 2007, pp. 272-280. Springer, Berlin,
Heidelberg.

[10] Dosanjh MG, Groves T, Grant RE, Brightwell R, Bridges PG. RMA-MT:
A benchmark suite for assessing mpi multi-threaded RMA performance.
In Cluster, Cloud and Grid Computing (CCGrid), 2016 16th IEEE/ACM
International Symposium on 2016 May 16 (pp. 550-559). IEEE.

[11] Szpindler M. Scalable Remote Memory Access Halo Exchange with
Reduced Synchronization Cost. Proceedings of Cray User Group (CUG)
Conference, 2016

[12] Dinan J, Balaji P, Buntinas D, Goodell D, Gropp W, Thakur R. An
implementation and evaluation of the MPI 3.0 onesided communication
interface. In Concurrency and Computation: Practice and Experience,
2016 Dec 10;28(17):4385-404.

[13] B. P. Leonard, M. K. MacVean, and A. P. Lock. Positivity preserving
numerical schemes of multidimensional advection. NASA Technical
Memorandum, 1993.

[14] Brown, N. A Comparison of Techniques for Solving the Poisson
Equation in CFD. Journal of Civil Aircraft Design and Research, 2017,
3, p.018.

[15] MPI Forum, Message Passing Interface (MPI) Forum Home Page. At
http://www.mpi-forum.org/, [14 April 2018].

[16] Monika TB, Roweth D. DMAPP -An API for One-sided Program
Models on Baker Systems. Proceedings of Cray User Group (CUG)
Conference, 2010

[17] Kandalla K, Mendygral P, Radcliffe N, Cernohous B, Knaak D, McMa-
hon K, Pagel M. Optimizing Cray MPI and SHMEM Software Stacks for
Cray-XC Supercomputers based on Intel KNL Processors. Proceedings
of Cray User Group (CUG) Conference, 2016

[18] ARCHER and the INTERTWinE project. Advanced MPI training cource
At http://www.archer.ac.uk/training/course-material/2017/09/advmpi-
camb/index.php, [14 April 2018].

[19] Cornell University Center for Advanced Computing
MPI One-Sided Communication virtual workshop At
https://cvw.cac.cornell.edu/MPIoneSided, [14 April 2018].

[20] GASPI Forum GASPI: Global Address Space Programming In-
terface, Specification of a PGAS API for communication At
http://www.gaspi.de/gaspi/, [14 April 2018].

[21] Simmendinger C, Rahn M, Gruenewald D. The GASPI API: A
failure tolerant PGAS API for asynchronous dataflow on heterogeneous
architectures. In Sustained Simulation Performance, 2015 (pp. 17-32).
Springer, Cham.

[22] INTERTWinE project, Best practice guide for writing GASPI - MPI in-
teroperable programs At https://www.intertwine-project.eu/best-practice-
guides, [14 April 2018].

[23] Brown N, Weiland M, Hill A, Shipway B. In situ data analytics for
highly scalable cloud modelling on Cray machines. In Concurrency and
Computation: Practice and Experience. 2018 Jan 10;30(1).


