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Abstract. We propose a numerical framework to simulate the Lorentz Force

Electrical Impedance Tomography (LFEIT) measurements on accurate electrode

models and an image reconstruction scheme for which data on two pairs of electrodes

are sufficient. The adopted finite element-based complete electrode model encompasses

the electrode’s geometry and contact impedance, accounting for the power losses at the

contact interface. The results of our simulation study suggest that electrode modelling

has a significant impact on the measurements and electrode model inaccuracies may

be detrimental to the image reconstruction. For image reconstruction, we suggest

an approach based on a modified J-substitution algorithm that requires LFEIT and

impedance measurements on two pairs of sensors, essentially necessitating no more than

three boundary electrodes. This allows for shorter acquisition times, less sonication

noise during the acoustic modulation, a simpler measurement setup, and eventually a

more succinct and efficient image reconstruction process.

Keywords: electrical conductivity, tomography, Lorentz force effect, current density

fitting, contact impedance.
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1. Introduction and contributions

Lorentz Force Electrical Impedance Tomography (LFEIT) [1], also known as Magneto-

Acousto-Electric Tomography [2], or Ultrasonically-induced Lorentz force tomography

[3], [4] has recently emerged as an alternative to Electrical Impedance Tomography

(EIT) that yields, in principle, noise-robust, high-resolution, quantitative conductivity

imaging, aimed in particular for breast screening. The existing literature relies

predominantly on modelling the LFEIT measurements either on simplistic point

electrode, assuming perfect contact with the domain to be imaged or contactless

induction sensing on coils [5], [6], [7]. In this work we go beyond this state of
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development to contribute a more accurate complete electrode model (CEM) for

these measurements on realistic, finitely sized electrodes that dissipate some electric

power, as we investigate numerically the impact of electrode modelling errors on

the data and image reconstruction [8]. In this context we suggest also an image

reconstruction approach that lifts the requirement of having many boundary electrodes

and a homogeneous boundary conductivity profile. We note that a detailed review of

the developments of the modality is outside the scope of this paper, and we refer the

readers to some of the landmark papers, from its inception as a potential bio-imaging

technique [9], the benchmark experiments to measure the Lorentz force induced signals

in biological samples [10], [11], the choice of acoustic modulation methods [12], [4] to the

more recent expositions on computational modelling, analysis and image reconstruction

[3], [2] and [6] and the experimental validation of the modality [1], [5].

Its current state of development raises a number of interesting questions, including

the number of electrodes and measurements necessary for image reconstruction, and

what is the impact of electrode losses and modelling inaccuracies on image errors? As

the signal to noise ratio can be improves either by increasing the magnetic field intensity

or the pressure of the acoustic modulation as far as safety and practicality limits would

allow, here we investigate explicitly how the geometry and contact impedance of the

electrodes influence the measurement. Thereafter we discuss an image reconstruction

strategy suitable LFEIT models that are numerically approximated using the finite

element method (FEM).

2. Complete electrode modelling in LFEIT

At the quasi-static approximation limit, the time-harmonic Maxwell’s equations for a

closed domain Ω ∈ <3 with smooth boundary ∂Ω and bounded, isotropic conductivity

0 < σ <∞, satisfy the irrotational and solenoidal conditions

∇× E = 0, ∇ · J = 0 in Ω, (1)

for an electric field E = −∇u, current density J = σE and u the electric potential field.

With L ≥ 2 disjoint electrodes attached to the boundary, the normal component of the

current density there is

J · n =

{
z−1
` (u− U`) for Γ`

0 for ∂Ω \ ∪L`=1Γ`
, ` = 1, . . . , L, (2)

where n is the outward unit normal on ∂Ω, z` > 0 is the `th electrode’s contact

impedance value, Γ` its surface and U` the electrode potential [13]. When a Lorentz

force current density JL is induced by the ionic motion of the conductivity under the

influence of an acoustic velocity field v(t) and a magnetic field B, an Ohmic current

density JO is generated in response to the electric potential u created by JL. At any

time t for which the acoustic velocity within the domain is not zero, the total current

in the domain is

J(t) = JL(t)+JO(t), where JL = σB×v(t), and JO = −σ∇u(t).(3)
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Since in LFEIT no currents are directly applied through the electrodes, integrating the

normal component of the current density over the surface of the electrode yields∫
Γ`

ds
1

z`
(u− U`) = 0, (4)

from where we deduce that the electrode potential at a given instant of time is simply

the average of the potential’s profile over the electrode,

U` = |Γ`|−1

∫
Γ`

ds u, ` = 1, . . . , L, (5)

where the potential u depends also on the values of z` for each electrode, and ds

represents a surface measure. The LFEIT signal M between two electrodes, say ` and

m, is thus the time-varying potential

M(t) = U`(t)− Um(t), t ≥ 0. (6)

Due to the reciprocity of the Green’s function in the governing equation ∇ · σ∇u = 0

the LFEIT-CEM measurement is simpler to describe in terms of the adjoint model

that refers to the hypothetical potential induced when the measuring electrodes inject

currents [14]. In this case, and although LFEIT does not entail boundary excitation, we

consider the adjoint currents I` which yield an adjoint potential w and a corresponding

current density Ja(t) = −σ∇w(t), related through the adjoint model

∇ · Ja = 0 in Ω, (7)

Ja · n = 0 on ∂Ω \ ∪L`=1Γ`, (8)∫
Γ`

dsJa · n = I` on Γ` (9)

Ja · n =
1

z`
(w −W`) on Γ`, (10)

that attains a unique solution (w,W ) ∈ H1(Ω)⊕<L subject to the charge conservation

and grounding conditions [13]

L∑
`=1

I` = 0,
L∑
`=1

W` = 0. (11)

From the direct and adjoint LFEIT-CEM equations we can derive an analytic expression

for the measurement M(t). For u,w ∈ C2(Ω) Green’s second identity asserts that∫
Ω

drw∇ · JO = −
∫
∂Ω

ds (uJa · n− wJO · n), (12)

and since ∇ · (JO + JL) = 0 from (1) the divergence theorem reads∫
Ω

drw∇ · JL =

∫
∂Ω

ds uJa · n−
∫
∂Ω

dswJO · n, (13)

As we show in the appendix evaluating the two surface integrals yields our definition

for the LFEIT measurement under the CEM as

M(t) = −
∫

Ω

dr JL(t) · ∇w(t) =

∫
Ω

dr Ja(t) · (B× v(t)) (14)
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When the material density ρ and the speed of sound c within the domain are

approximately constant, assumptions that hold true within the breast tissue, the velocity

satisfies the linearised Euler equation [15]. Then, following [2], we introduce the velocity

potential ϕ from ρv = ∇ϕ, and since p = −∂ϕ
∂t

for p the pressure field one arrives to the

wave equation

∂2ϕ

∂t2
= c2∆ϕ, (15)

where ϕ(r, t) = Re{ξ(r)e−iωt} satisfies ∆ξ + k2ξ = 0 for k = ω/c the wave number.

Combining (14) and (15) yields the MAET-CEM measurement expression

M(t) = −1

ρ

∫
Ω

drB ·
(
ϕ(t)∇× Ja(t)−∇× (ϕ(t)Ja(t))

)
, (16)

where the sought conductivity information is encoded into the curl of the adjoint current

density vector curlJa = −∇σ×∇w. If ϕ ∈ C2(Ω) is a smooth function with continuous

support over Ω both integral terms in (16) are well defined. However, when ϕ is

compactly supported at a focal point as in [1], [7] or a planar surface transecting Ω

as in the synthetic focusing approach [16], [19]; adopted in the study, the integrand

in the second term of (16) becomes singular, leaving an analytic expression for the

measurement as

M(t) =
1

ρ
·
(∫

Ω

drB · ϕ(t)(∇σ ×∇w(t)) +

∫
∂Ω

dsB · ϕ(t)Ja(t)× n
)
,(17)

with the potentially singular component confined within the surface integral. Practically

one can filter out the contribution of the singular component in the LFEIT data

by filtering the frequency components of the measurements outside the ultrasound

modulation band.

3. Numerical implementation

We seek to develop a numerical approximation scheme for the solution of the LFEIT-

CEM equations based on the FEM. As the measurement is defined in terms of the adjoint

current density we develop our FEM formulation for the adjoint model equations (7)-

(11). To resolve the curl of the current density we employ linear and quadratic bases

of interpolation functions to approximate the electrical conductivity and the adjoint

potential respectively. Recalling that the measurement model derived above assumes

w ∈ C2(Ω) and σ ∈ S, where S is the set of bounded, positive, square integrable

functions over Ω, then multiplying the governing equation ∇ · Ja = 0 with the test

functions (y, Y ), integrating by parts and substituting the boundary conditions yields

the weak form of the LFEIT-CEM problem for the solution (w,W ) ∈ H1(Ω)⊕<L as∫
Ω

drσ∇w · ∇y +
L∑
`=1

1

z`

∫
Γ`

ds (W` − w)(Y` − y) =
L∑
`=1

I`W`, (18)

for all (y, Y ) ∈ H1(Ω) ⊕ <L, and σ ∈ S. The domain is subsequently discretised

into a finite dimensional grid, encompassing k tetrahedral elements and n nodes, of
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which nv are at the vertices of the elements and the rest at the midpoints of the edges.

If Sh = {χτ : τ = 1, . . . , nv} ⊂ S is a finite dimensional space of linear Lagrange

interpolation functions spanning Ω then we consider a conductivity approximation as

σh(r) =
∑nv

τ=1 στχτ (r). Similarly, with Wh = {φi : i = 1, . . . , n} ⊂ H1(Ω) a basis of

quadratic Lagrange interpolation functions we consider adjoint potentials of the form

wh(r) =
∑n

i=1wiφi(r) and seek to compute wh ∈ Wh and W ∈ <L such that∫
Ω

dr∇wh · (σh∇yh) +
L∑
`=1

1

z`

∫
Γ`

ds (W` − wh)(Y` − yh) =
L∑
`=1

I`W`,

for all Y ∈ RL and yh ∈ Wh [17]. For a discrete model with k elements, n nodes and L

boundary electrodes we write n equations in n+L unknowns {w1, . . . , wn,W1, . . . ,WL}

n∑
i=1

(∫
Ω

dr∇φi · (σh∇φj) +
L∑
`=1

1

z`

∫
Γ`

ds φi φj

)
wi −

L∑
`=1

1

z`

( n∑
i=1

∫
Γ`

ds φi

)
W` = 0,

for j = 1, . . . , n. Using the boundary condition W` = w + z`σ∇w · n and the definition

of the adjoint currents we obtain another set of L equations

− 1

z`

n∑
i=1

wi

∫
Γ`

ds φi +
1

z`
W`

∫
Γ`

ds = I`, for ` = 1, . . . , L,

and assemble the FEM algebraic system S T

T> Q

0 1

( w

W

)
=

 0

I

0

 , (19)

for S = SΩ + SΓ where the matrices S, T and Q have entries

SΩ
i,j =

∫
Ω

dr∇φi · (σh∇φj), SΓ
i,j =

L∑
`=1

1

z`

∫
Γ`

ds φiφj, i, j = 1, . . . , n,

Ti,` = − 1

z`

∫
Γ`

ds φi, and Q`,` =
1

z`

∫
Γ`

ds, i = 1, . . . , n, ` = 1, . . . , L.

where I ∈ RL is the vector of adjoint currents that correspond to the LFEIT-CEM

measurement patterns on the electrodes, while 0 and 1 are respectively zero and ones

vectors that impose the uniqueness condition (11) on w and W in the least squares

sense. The integrals above are evaluated numerically using Gauss quadrature rules

[17] to yield a piecewise quadratic approximation for Ja and a piecewise linear for the

corresponding curlJa. Upon solving for w, the adjoint current density and its curl are

readily available on each element and the LFEIT data are computed by integrating

curlJa on the hyperplane of ϕ as it transects the domain.
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4. Image reconstruction

The image reconstruction assumes that measurements have been collected in three

orthogonal directions of the magnetic field Bη1 , Bη2 and Bη3 , where the unit vectors

(η1,η2,η3) provide a reference frame for reconstructing the vector fields curlJa and Ja

as we explain below. At each direction of the magnetic field we transmit a large number

of planar wavefronts ϕk(t) emanating from many directions, where the subscript k

denotes the corresponding wave vector. The measurements are subsequently fused with

additive Gaussian noise of zero mean.

4.1. Reconstructing the curl of the adjoint current density

Following the approach of [2], for ϕk(t) an infinitely long plane in 3D space, moving in the

direction k, the non-singular part of the measurement in (17) take the form of 3D Radon

data for curlJa, provided that k spans the range (θazi, θpol) ∈ [0, π]× [0, π
2
] in azimuthal

and polar angles [18]. To reconstruct the curl from this data, the filtered back projection

algorithm or the analytic formulas in [19] can be used, however this requires regular and

structured grids. On the other hand, most mesh generators and FEM solvers for partial

differential equations rely on unstructured meshes comprising tetrahedral elements of

different size, orientation and volume. To cope with this complication, an appropriate

approach would be to formulate a linear least squares problem to estimate approximately

the required curl in an element-wise constant basis. Suppose µ = {M(t1), . . . ,M(tnt)}
is a time series of nt measurements in the direction η1 over a period when a particular

ϕ(t) was propagating through Ω. Discretising the volume integral in equation (17) in

the direction η1 and accounting for all nk wave directions yields an overdetermined,

well-posed system

µ = Φkc, where Φk = [Φk1 , . . . ,Φknk
]>, µ = [µ1, . . . , µnk

]>, (20)

and c is the approximated component of∇×Ja aligned to η1, while the rows Φki
∈ <nt×k

are weighted integrals of the area of the intersection of the plane ϕki
(t) with each element

in the mesh of Ω, leading to a definition for the element of this matrix as

Φki
(p, q) =

1

ρ

∫
Ωq

dr |Bη1|ϕki
(tp). (21)

A least squares estimator of the curl component can thus be obtained by ĉ = Φ†kµ,

where Φ† is the pseudo-inverse of Φ, with an error proportional to the magnitude of the

noise content in the discrete data µ. The process is then repeated for the measurements

in the directions η2 and η3 to recover the remaining two components of the ∇× Ja.

4.2. Reconstructing the adjoint current density

The reconstruction of the adjoint current density from its curl follows closely the

approach in [2], with some necessary modifications due to the dependance of Ja to

the CEM equations. Our contribution here is on the methodology for computing the
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singular integrals involved in the reconstruction of the current density within the FEM

setting, that are not addressed elsewhere. Our knowledge of the model (7)-(11) asserts

that Ja is a smooth, continuous and at least twice differentiable vector field, of which we

have some noisy samples of its curl. In the adopted finite element framework the curl

field is linear on elements, but our reconstruction approach resolves it in an element-

wise constant basis. One may assume that constant value to be the integral of the linear

approximation over the element. According to the Helmholtz decomposition theorem,

as Ja has continuous support over the finite domain, it can be reconstructed as a sum

of a solenoidal and an irrotational field as

Ĵa = ∇×K−∇ψ, where Kηi(r) =

∫
Ω

dr′
ĉηi(r′)

4π|r′ − r|
, i = 1, 2, 3, (22)

and (cη1 , cη2 , cη3) ∈ <k×3 is the reconstructed curl. Suppose further that we seek to

estimate Ĵa at the centroids of the mesh elements. In the discrete domain this gives

Kηi(r) =
k∑
j=1

ĉ
ηi
j

∫
Ωj

dr′
1

4π|r′ − r|
,

where cηi taken as constant over each element, and the integral exhibits the so-called

‘one-over-distance’ singularity. To rectify this we use Gauss’s divergence theorem to

recast the singular volume integrals in terms of four regular surface integrals, one for

each face of the tetrahedron alleviating the singularity for all points r ∈ int(Ωj) [20].

Effectively, as we show in the appendices,

Kηi(r) =
k∑
j=1

ĉ
ηi
j

4∑
i=1

∮
∂Ωi

j

ds′
r′ − r

8π|r′ − r|
· ni, (23)

where ∂Ωi
j denotes the ith face of Ωj and the surface integrals can be evaluated using

standard numerical quadrature, since r is in the interior and r′ are restricted to the faces

of the element. The reconstruction of the curl of K from that of Ja is unique subject

to the solenoidal condition ∇ · Ja = 0 which governs the adjoint model. To compute

the required curl we approximate the derivatives in the curl with finite differences, and

evaluate Kηi(r+ δr) for small perturbations δr along the three orthogonal directions in

consideration.

In order to reconstruct the gradient component of Ja, we take the divergence on

both sides of the decomposition (22), leading to a Laplacian equation with CEM-derived

boundary conditions

∇2ψ = 0, in Ω, (24)

I` =

∫
Γ`

ds∇ψ · n +

∫
Γ`

ds∇×K · n, on Γ` (25)

∇ψ · n = −∇×K · n, on ∂Ω \ ∪L`=1Γ` (26)

Ψ` = ψ + z`∇ψ · n, on Γ`, (27)

and the constraint
∑L

`=1 Ψ` = 0 which imposes uniqueness. Note that our methodology

relies on reconstructing the curl of the adjoint current density at the boundary of the
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domain, while in the setting of [2] the curl vanishes on and near the boundary by

virtue of the homogeneous conductivity assumption there. The Laplacian problem (24)-

(27) lends itself readily available for a FEM formulation in the context of the previous

section, with a coefficients matrix evaluated as in (19) for σh = 1 and a load vector with

entries
∫

Γ`
ds∇×K · n or −

∫
∂Ω

ds∇×K · nφi, over the electrode faces and otherwise

respectively. This yields an expansion of ψ in the adopted quadratic basis, from where

the computation of the gradient can be directly obtained.

4.3. Reconstructing the conductivity

From the estimated Ĵa ∈ <k×3 the final step of the imaging process is to reconstruct

the conductivity from the model Ja = −σ∇w, a task that fits into the so-called current

density impedance imaging [21], [22], from where we deduce that Ja or |Ja| resolve

the conductivity up to a scaling constant. As shown in [22] the knowledge of two

linearly independent currents Ja1 and Ja2 suffices to reconstruct the gradient of the

logarithm of a 3D conductivity in a basis aligned to the vectors (Ja1 ,Ja2 ,Ja1 × Ja2),

after which one can compute the conductivity image by spatial integration. A similar

approach is also followed in [2], where the interior conductivity is reconstructed from its

gradient through a Poisson equation with σ = 1 boundary condition. However, since we

make no explicit assumptions about the boundary conductivity we choose to propose a

modified J-substitution algorithm [21], suitable for vector field data {Ja1 ,Ja2} instead

of magnitude {|Ja1 |, |Ja2|}. Exploiting the parameterisation of the conductivity image

in linear interpolating bases we formulate an overdetermined least squares problem for

the conductivity coefficients. Moreover, with a small overhead on the data acquisition

process, we measure independently, EIT data on the LFEIT electrodes signals under

known current patterns Ia1 and Ia2 , which we denote as ∆Ua1 and ∆Ua2 . In the assumed

conductivity bases we evaluate the linear approximation

Ĵai(rc) = −σh(rc)∇wi0(rc), i = 1, 2, (28)

where wi0 is the adjoint LFEIT-CEM solution based on a prior guess σ0 and rc is the

centroid of the mesh element. If ja1 , ja2 ∈ <3k are concatenated column versions of

Ĵa1 and Ĵa2 , taken constant on elements, we can form two linear systems, for the mth

conductivity iterative estimate

jai = A{m,ai}στ , for i ∈ {1, 2} and m = 1, 2, 3, . . . , (29)

where the sparse coefficient matrices A{m,ai} ∈ <3k×nv with nv � k have definitions as

A{m,ai} = −χ(rc)∇wim(rc), (30)

where wim is the adjoint solution for the measurement pattern Iai based on a conductivity

estimate σm. Starting from an initial guess σ0, the conductivity resolving iteration

proceeds as

σm+1 =

{
κmA

†
{m,a1}j

a1 when m odd

κmA
†
{m,a2}j

a2 otherwise
, for m = 0, 1, 2, 3, . . . , (31)
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and scaling constants κm = ∆Ua1(σm)/∆Ua1 or κm = ∆Ua2(σm)/∆Ua2 at odd and even

iteration indices respectively, where ∆Ua1(σm) is the electrode potential difference for a

model σm computed from (7)-(11) for a current pattern Ia1 .

5. Numerical results and discussion

5.1. On the adjoint forward problem

To quantify the impact of electrode modelling on the LFEIT data and demonstrate

the image reconstruction algorithm, we consider a simulation study involving an

inhomogeneous half-ellipsoid domain bounded in [−0.05, 0.05] × [−0.05, 0.05] × [0, 0.1]

m, similar in shape and dimensions to the human breast, as shown in figure 1. Based

on this geometry we develop: a finite element model with two circular electrodes of

diameter d = 12.5 mm, discretised to 3808 tetrahedral elements, another model with

3587 elements and two electrodes of diameter 2d, and a third model encompassing point

electrodes, positioned at the centre of the finite ones [23]. In the simulations we consider

an arbitrary, non-smooth conductivity function

σ∗ =

{
1.7 + cos(30πr · η3) sin(30πr · η2) if r · η1 > −0.03 m

1 otherwise
(32)

in S/m, while the medium was assumed to be acoustically homogeneous at a density of

ρ = 700 Kg/m3. The pressure of the wavefront was calibrated so that initially (t = 0)

the magnitude of the acoustic potential is |ϕ| = 10−3 for all 990 k wave vectors, while a

homogeneous 0.3 T magnetic field magnitude was assumed at each orthogonal direction

(η1,η2,η3), those taken aligned to the Cartesian frame (x,y, z).

The finite element modelling was performed with two contact impedance values

at z`1 = 10−3 Ω/m2 and z`2 = 10−1 Ω/m2, equal on both electrodes and all three

models to yield the noiseless data in figure 2, indicating that electrode geometry has

a significant but local effect on the measurements. Treating the simulated data from

the model with electrode diameter d as “ground truth”, we observe that the magnitude

of the measurement signal reduces as the electrode area increases, and that the point

electrode approximation appears to overestimate the data (locally) by as much as 30%.

The larger electrode size in conjunction with the electrode’s contact impedance yields

a power loss at the interface, hence the lower amplitude of the recorded signal. Similar

conclusions can be drawn by comparing the two sets of graphs in figure 3. On the other

hand, the sensitivity of the measurement to contact impedance variations remains far

less by comparison. The results in figure 3 illustrate that an increase in the contact

impedance from z`1 = 10−3 to z`2 = 10−1 Ω/m2 is largely suppressed in the data with

only marginal changes in the measurements, almost irrespectively of the electrode size.

The graphs in figures 2 and 3 illustrate also that for the chosen conductivity the LFEIT

data are not smooth. As these are essentially weighted 3D Radon transform integrals of

the curlJ = −∇σ∗ ×∇w over the hyperplanes of the support of ϕ(t), despite w being

smooth, ∇σ∗ causes curlJ to be discontinuous.
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Figure 1. Left, a surface profile of the conductivity σ∗ with two circular electrodes of

diameter d = 12.5 mm, and to the right, a partial view of the magnitude of the gradient

of the conductivity |∇σ∗|, illustrating also the two circular electrodes of diameter 2d,

centred at the same positions as the smaller ones. A third model with the same

geometry and point electrodes at the centre of the circular ones is also considered in

the simulation.
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Figure 2. The effect of electrode size and shape based on a model with σ∗. Left, 500

samples of the three model measurements in magnetic field direction η1 and north-

south acoustic field direction (k aligned to η1). Right, the measurements in the η3

magnetic field orientation, and k aligned to η3 in east-west direction. The discrepancies

between the data waveforms affect the LFEIT signal locally with the magnitude of the

measurement scaling inversely proportional with the area of the electrode surface.

5.2. On the image reconstruction problem

For image reconstruction we introduce a third electrode at the top of the ellipsoid,

having the shape, size d and contact impedance z`1 of the other two. From these three

electrodes we collect two sets of LFEIT measurements on electrode pairs, and then

two EIT measurements on the same electrodes. The LFEIT measurements are then

infused with a noise signal from a Gaussian distribution N (0, C), where C > 0 is a
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Figure 3. Effect of electrode contact impedance based on a model with σ∗. Left, the

model measurements for electrode of diameter d and z`1 = 10−3 Ω/m (solid lines) and

z`2 = 10−1 Ω/m2 (dashed lines). Measurements in all magnetic field orientations are

illustrated for an arbitrary acoustic wave direction k = −(0.66η1 + 0.20η2 + 0.72η3).

To the right the equivalent data for the model with electrode diameter 2d.

positive diagonal matrix whose ith element is set Ci = 0.05|M(ti)| for i = 1, . . . , 500,

where |M(t)| is the magnitude of the exact measurement. Reconstructing the image of

the conductivity in (32) using the same model based on which the measurements were

calculated, i.e. without any electrode modelling errors, the algorithm in (31) converged

to a solution after 8 iterations starting from a homogenous profile guess, and the relative

error in the reconstructed conductivity was found at 3%, as shown at the convergence

graph at the top left of the figure 4. To reconstruct the curl of the current density

from the noisy LFEIT data we have simulated a total of 990 k wavevectors for each

orthogonal magnetic field direction, yielding 500 measurement samples per k direction.

Based on the nonzero section of the resulting M data, we have assembled the algebraic

system in (20) leading to a least squares problem with 22100 equations in 3808 curl

coefficients. The relative error in the reconstructed curl was at found at 6%, however,

we observed that this grows higher when using fewer directions (angles) and a coarser

time discretisation.

In repeating the image reconstruction process using the measurements computed

above from the model with electrode diameter d as a “ground truth”, but running

the image reconstruction process using the point electrode model for the same levels

of additive noise, led to a significantly compromised performance, with the algorithm

ending abruptly at 80% relative error. However, to mitigate the data discrepancies

due to electrode modelling errors we modify the target conductivity σ∗ → σ̃ so that it

attains a constant value within a thin layer near the boundary. This modified target

yields LFEIT-CEM data with relative discrepancies between the d diameter and point

electrode models that are about 6% in norm. Repeating the computations with the

point electrode model and additive Gaussian noise at the previous levels, the image

reconstruction algorithm started to converge after 5 iterations as shown at the top right
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Figure 4. Convergence of the modified J-substitution-based scheme in (31). At

the top left the case with no electrode modelling errors, and LFEIT measurements

contaminated with zero mean Gaussian noise, and to its right, the corresponding

convergence curve with fitting based on a different electrode model, but with a thin

uniform conductivity layer at the boundary. At the bottom row, the convergence when

additive noise levels where raised from 5%, to 7% (left) and 10% (right) respectively.

plot of figure 4, and algorithm was terminated at the eighth iteration to a relative

data misfit error of about 6%, yielding the reconstructed images illustrated in figure 5.

Despite the good resemblance between the target and reconstructed images, the relative

conductivity reconstruction error was computed at about 10%, significantly higher than

the case with no electrode modelling errors. This is in agreement with the good results

obtained by non-contact measurements in [5] and [7].

6. Conclusions

We present a FEM-based framework for simulation and image reconstruction in LFEIT,

using the complete electrode model that is suitable to measurements on realistic

electrodes with finite size and lossy contacts. This model was used to analyse the

sensitivity of the LFEIT measurements to the electrode characteristics, with our

simulation suggesting that the electrode interface area has a bigger impact than its
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Figure 5. To the left, parallel parallel cross sections of the targeted conductivity σ̃,

and to the right the corresponding sections from the image reconstruction. Notice that

the good quality in the spatial resolution is due to the uniform conductivity near the

three electrodes, which suppresses the electrode-modelling imperfections.

contact impedance, while showing that electrode modelling errors become negligible in

domains with homogeneous boundary conductivity. For image reconstruction we suggest

a modification on Kunyansky’s approach [2] that is appropriate to the adopted numerical

framework, and can yield images using LFEIT and EIT measurements only on two pairs

of electrodes. This approach to the inverse problem, which includes a modified version

of the J-substitution algorithm was found to be robust to measurement and electrode

modelling error, when the conductivity in the vicinity of the measuring electrodes has

small or zero gradient.

Appendix A. Proof of the CEM-LFEIT measurement model

Let the surface integrals in (14) be expressed as

S1 =

∫
∂Ω

ds uJa · n, and S2 = −
∫
∂Ω

dswJO · n.

Expanding the surface integral S1, considering separately the electrode surfaces and the

inter-electrode gap yields

S1 =
L∑
`=1

∫
Γ`

ds uJa · n +

∫
∂Ω\∪L`=1Γ`

ds uJa · n =
L∑
`=1

∫
Γ`

ds uJa · n,
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as Ja · n is zero everywhere on the boundary apart from the electrodes. Substituting

u = U` + z`J · n from the direct model we obtain

S1 =
L∑
`=1

∫
Γ`

ds uJa · n =
L∑
`=1

∫
Γ`

ds (U` + z`J · n)Ja · n

=
L∑
`=1

U`

∫
Γ`

dsJa · n +
L∑
`=1

z`

∫
Γ`

ds (J · n) (Ja · n)

Noticing that the first integral in the last equation is equal to the adjoint currents I`
then importing the definition of the measurement M we have

S1 = M +
L∑
`=1

z`

∫
Γ`

ds(u− U`) (Ja · n).

Similarly, splitting the surface integral over
⋃L
`=1 Γ` and the rest of the boundary, and

then introducing the impedance boundary condition, yields

S2 =

∫
∂Ω

dswJL · n−
L∑
`=1

1

z`

∫
Γ`

dsw(u− U`).

Through the divergence theorem, the volume integral in (13) becomes∫
Ω

drw∇ · JL =

∫
∂Ω

dswJL · n−
∫

Ω

drJL · ∇w,

and the first integral term on the right cancels out with the first integral in S2, hence

(13) becomes

−
∫

Ω

dr JL · ∇w = M +
L∑
`=1

∫
Γ`

ds (u− U`)(Ja · n)−
L∑
`=1

1

z`

∫
Γ`

dsw(u− U`),

and the two sums above can be shown to vanish. In particular, grouping them together

and appealing to the boundary condition for Ja · n over
⋃L
`=1 Γ` we get

L∑
`=1

∫
Γ`

ds (u− U`)(JI · n−
1

z`
w) =

L∑
`=1

∫
Γ`

ds (u− U`)(−
1

z`
W`)

=
L∑
`=1

W`

z`

(∫
Γ`

dsU` −
∫

Γ`

ds u
)

= 0,

and the last equality is due to the definition of the electrode potential (5). Substituting

for S1 and S2 in (13) yields the definition of M(t).

Appendix B. Singular integral regularisation

For a continuous, twice differentiable vector field F supported in a closed domain

Ω, Gauss’ divergence theorem asserts that the flux of the vector field (outward) the
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boundary is equal to the volume integral of the divergence of the field∫
Ω

dr divF =

∮
∂S

dsF · n,

on which we rely to express the singular volume integrals in (22) into sums of regular

surface integrals as in (23). It thus remains to express the scalar singular integral we

seek to evaluate into a divergence of some smooth vector field F∫
Ω

dr′
1

4π|δr|
=

∫
Ω

dr′ div ′F(δr),

where the integration and the divergence are with respect to the primed coordinates,

and δr = r′− r. To prove the surface integral in (23) we need to show that F = 1
8π|δr|δr.

Following the approach in [20] (eq. (3)), let a scalar test function

g(|δr|) =
1

4π|δr|
= divF(δr),

then

F(δr) = δr

∫ 1

0

dt t2 g(t|δr|) = δr

∫ 1

0

dt t g(|δr|) =
1

8π|δr|
δr,

which can easily be verified by computing its divergence.
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