
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iterative Compilation on Mobile Devices

Citation for published version:
Mpeis, P, Petoumenos, P & Leather, H 2016, Iterative Compilation on Mobile Devices. in Proceedings of the
6th International Workshop on Adaptive Self-tuning Computing Systems (ADAPT 2016).

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 6th International Workshop on Adaptive Self-tuning Computing Systems (ADAPT 2016)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 12. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/224803898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/iterative-compilation-on-mobile-devices(49c9c7d6-11b6-4eff-82c6-6f0a94c800ca).html


Iterative compilation on mobile devices

Paschalis Mpeis
University of Edinburgh

p.mpeis@ed.ac.uk

Pavlos Petoumenos
University of Edinburgh

ppetoume@inf.ed.ac.uk

Hugh Leather
University of Edinburgh

hleather@inf.ed.ac.uk

ABSTRACT

The abundance of poorly optimized mobile applications cou-
pled with their increasing centrality in our digital lives make
a framework for mobile app optimization an imperative.
While tuning strategies for desktop and server applications
have a long history, it is difficult to adapt them for use on
mobile devices.

Reference inputs which trigger behavior similar to a mo-
bile application’s typical are hard to construct. For many
classes of applications the very concept of typical behavior
is nonexistent, each user interacting with the application
in very different ways. In contexts like this, optimization
strategies need to evaluate their effectiveness against real
user input, but doing so online runs the risk of user dissat-
isfaction when suboptimal optimizations are evaluated.

In this paper we present an iterative compiler which em-
ploys a novel capture and replay technique in order to col-
lect real user test cases and use it later to evaluate different
transformations offline. The proposed mechanism identifies
and stores only the set of memory pages needed to replay
the most heavily used functions of the application. At idle
and charging periods, this minimal state is combined with
different binaries of the application, each one build with dif-
ferent optimizations enabled. Replaying the targeted func-
tions allows us to evaluate the effectiveness of each set of
optimizations for the actual way the user interacts with the
application.

For the BEEBS benchmark suite, our approach was able
to improve performance of hot functions by up to 57%, while
keeping the slowdown experienced by the user on average at
0.8%. By focusing only on heavily used functions, we are
able to conserve storage space by between two and three
orders of magnitude compared to typical capture and replay
implementations.

General Terms

capture and replay, iterative compilation

[Copyright notice will appear here once ’preprint’ option is removed.]

1. INTRODUCTION
The way we use computers has changed. Most of our in-

teraction is not with powerful desktop or laptop computers,
but with mobile devices of limited capabilities. Despite the
centrality of these devices in our lives and the billions of
users relying on them, we are still away from fully exploit-
ing even the limited processing resources they provide. As
an example, the current Android compiler focuses on compi-
lation speed instead of high optimization. This means that
all non-native Android applications are barely optimized,
wasting tremendous amounts of performance potential.

A technique that could be used for improving the user
experience in such an enormous scale is iterative compi-
lation [1, 2]. It is a well established technique that can
readily outperform the standard optimization levels of a
compiler [3]. By intelligently constructing and testing dif-
ferent transformation sets, it quickly identifies sets with a
nearly optimal effect on performance. Exhaustive offline ap-
proaches, successfully applied on embedded devices [4], are
tailored for fixed applications, invariable input, and partic-
ular architectures. This is not the case with mobile ap-
plications, as they are being regularly updated, operate on
diverse architectures, and their behavior is highly depen-
dent on the way the users interact with them [5]. While
online approaches mostly solve the first two issues, they
have to pay the price of evaluating poorly performing trans-
formations. Even self-adaptive algorithms [6, 7, 8, 9] will
inevitably stumble upon transformations that can dramati-
cally degrade a user’s experience during their early learning
stages. And to make things worse, slight differences in the
execution environment from one execution to the next or
interference from co-scheduled applications can drastically
change the apparent effectiveness of the evaluated transfor-
mations. Without means to execute again the exact same
test cases and use statistical methods to remove the mea-
surement noise, we can easily end up selecting suboptimal
transformation sets.

To combine the different benefits of offline and online ap-
proaches, we propose the novel approach of incorporating a
lightweight capture and replay mechanism into our iterative
compilation framework. The capture and replay mechanism
allows us to store the state of a running application just
before the execution of a heavily used function and use it
anytime afterwards to replay that function. We can then
evaluate different binaries generated by the iterative com-
piler using our replay system instead of letting the user in-
teract directly with them.

Despite being an offline search, this process is personalized

1



to the user as it is driven by the captured test cases produced
by the interaction of the user with the device. And because
it is an offline evaluation, poor performing transformations
do not affect the user and we are able to handle noise sta-
tistically. Evaluating transformations through replaying has
the added benefit of only executing the parts of the applica-
tion we want to optimize, resulting in a much faster search
of the transformation space.

Finally, on the capture side, which is the only active com-
ponent while the user interacts with the device, we use novel
ideas to minimize the overhead both in terms of runtime
and storage so that the user experience does not suffer. All
of them translate into an iterative compilation framework
which searches fast, optimizes the application for the way
the user uses it, and has little to no overhead from the user
perspective.

We evaluate our technique using real Android devices.
The results indicate that our capture approach is completely
transparent to the user, with the potential slowdown intro-
duced by our mechanism being on average 0.8%. Using the
captured state to drive iterative compilation results in op-
timal transformation sets which outperform the highest op-
timization level of the compiler by up to 57%. Finally, our
results show that this performance speedup, obtained inside
our replay sandbox, translates into similar speedups when
the application is executed normally.

The main contributions of this paper are:

• a novel and lightweight function capture mechanism,
operating with little runtime or storage overhead

• an efficient, replay-based performance evaluation mech-
anism for different function versions of the same appli-
cation

• a proof of concept offline iterative compilation system
that performs personalized optimization, copes with
architectural diversity, and gracefully handles the in-
herently noisy mobile environment

This paper is organized as follows. The next section de-
scribes the motivation behind our work. It is followed by
Section 3, which describes the design of our lightweight
capture and offline iterative compilation through replaying.
Section 4 describes the experimental setup, and is followed
by an evaluation of our approach, at Section 5. Related work
can be found at Section 6. Finally, our concluding remarks
and future work are at Section 7.

2. MOTIVATION
Transformation sets tested by iterative compilation can

outperform the highest optimization level of a compiler, but
can also dramatically degrade the performance. We see this
double-edged effect in Figure 1, where 2000 points randomly
selected from the massive transformation space were evalu-
ated against the -O3 optimization level. While we find many
sets that outperform -O3 by up to 40%, we also stumble
upon many that unacceptably degrade the performance by
up to 70%. Actually, for more than half of the tested bina-
ries, the mobile device ran unacceptably slow. This prob-
lem is not specific to iterative compilation or the parameters
used in our implementation. Peaking and testing subopti-
mal transformation sets is an integral part of any learning
process for discovering well performing compiler optimiza-
tions. This means that any process which relies on online

evaluation of transformation sets cannot be used in the con-
text of mobile devices.

0.3

0.9

1.0

1.1

1.3

1.4

Different transformation sequences

S
p

e
e

d
u

p

Figure 1: Speedup of 2000 randomly picked trans-
formation sets against Clang’s -O3 optimization
level for the fir filter benchmark.

Using online instead of offline evaluation for an iterative
compilation technique is bundled with additional complica-
tions. Producing binaries for each distinct compiler opti-
mization set is a time consuming process. This can be done
either online, directly affecting the user experience, or in
batch mode during periods of idleness, tying the speed of
iterative compilation to the available storage capacity of the
device. Both options are unsatisfactory. And even if we
managed to overcome this problem, the speed of iterative
compilation would be limited by the frequency of the user
using the application. Dependencies like these would slow
down the evaluation time from minutes to months, even for
the tiny fraction of the space that we visited for the purposes
of Figure 1.

Our approach avoids all these problems by removing the
need for online evaluation, while still optimizing the appli-
cation for real user test cases. A lightweight capture of the
state of the application during the invocation of heavily used
functions allows us to reproduce offline the way the user re-
ally interacts with the application. Then, distinct transfor-
mation sets are used to produce different binaries, prepared
in a way that pointers to data or code in the captured state
will remain valid across all the binaries. The captured func-
tion invocation can then be directly re-executed to evaluate
the transformation’s effectiveness.

Fusing the replay mechanism with iterative compilation,
allows us to push all undesired overheads of the latter at
periods where the user experience is not affected, e.g when
the device is idle and being charged. As a consequence, the
performance noise is both minimal and manageable, and
the transformation evaluation is efficient since only the con-
cerned code is being re-executed. The architectural diver-
sity is inherently addressed as the application is evaluated
on the device itself. Finally the conducted search is person-
alized to the user since their captured test cases are used
to drive each replay. The next section describes in greater
detail our approach.

2



3. ITERATIVE COMPILATION THROUGH

CAPTURE AND REPLAY
This section describes the main components of our ap-

proach. Our capture and replay implementation operates
completely at the Linux kernel userspace, and it is source
language agnostic. The capture mechanism, described at
Section 3.1, is transparent to the users. It is designed in a
way that minimizes in runtime and storage overhead. The
collected information can be used by our replay mechanism,
described at Section 3.2, to re-execute at idle-and-charging
periods the captured state of the application. Combined
with appropriate link-time strategies this allows us to re-
play and evaluate different binaries corresponding to differ-
ent compiler transformation sets. We seamlessly integrate it
with a proof of concept iterative compiler, described at Sec-
tion 3.3, to showcase the manifold benefits of our approach.

3.1 Lightweight function capture
Our capture targets hot functions, whose execution fre-

quencies and computational intensities make them worth
optimizing. It occurs on the first invocation of the selected
hot function and its overhead is negligible. Like existing ap-
proaches, it operates completely on the user space, requires
minimal instrumentation, is independent from an applica-
tion’s source language, and requires no kernel or runtime
system modifications.

Since the capture mechanism is the only part of our ap-
proach that is active while the user interacts with the device,
we need it to introduce as little runtime and storage over-
head as possible. To achieve that, we repurpose two kernel
mechanisms, Copy On Write (CoW) and page-level protec-
tion. With the former mechanism we have to copy the state
of the application only when it’s modified and even then all
copying is done efficiently in kernel space. With the latter
mechanism we can identify the pages actually used by the
application and capture only them. Overall, we are able to
significantly reduce the size of the capture while by merging
much of our functionality into existing kernel functionality
we minimize the amount of extra processing needed and the
amount of kernel-userspace communication.

More specifically, right before a hot function’s invocation,
we parse through the /proc filesystem the list of Virtual
Memory Areas (VMAs) used by the application and we call
fork to duplicate the process. The two processes, have sep-
arate address spaces that initially point to the same set of
physical pages. When the parent tries to modify a page,
the efficient CoW mechanism will duplicate it keeping the
original contents in the child’s copy of the page. This way
the initial state that needs to be copied for the capture is
reduced to the bare minimum, i.e. the pages modified by
the parent. As an added benefit, the cost of this copying is
offloaded to the kernel, further reducing the overhead of the
capture. To completely remove competitiveness between the
two processes, we reduce the priority of the child, allow it to
continue execution after the parent’s completion, and put it
in an idle state until further notice.

To pinpoint the set of pages that are used by a hot func-
tion, the parent process installs a fault handler and removes
all the access rights from its pages. Later on, when the par-
ent tries to access a memory location, as shown in Figure 2,
a page fault will be raised. Our handler will process the
fault by saving the address of the faulting page in a shared
memory area. After that the access rights of the page are re-

stored. This mechanism guarantees that all accessed pages
will be marked as such, while the overhead of doing so will
be minimal. For most applications, where a decent amount
of spatial locality is expected, the space covered by the ac-
cessed pages should be in the same order of magnitude as
the space actually used by the application. This keeps the
amount of state that we save close to the minimum that
needs to be saved. For the same reason, the number of page
faults and the associated overhead should be low.

handler

hot 

function

page

address
data

pages

modified original

childparent

shared

CoW

memory

access

page

fault

Figure 2: Identify the set of pages accessed by a hot
function. The kernel’s CoW mechanism efficiently
preserves an original copy in the child process.

The final step is to actually save the state on the device’s
storage. When the parent process is about to complete the
execution of the hot function, it signals the child process to
proceed with the capture. The child then simply reads the
list of accessed pages from the shared memory and stores
into permanent storage the equivalent pages residing in its
memory space.

3.2 Replaying multiple versions of functions
The replaying mechanism itself is rather straightforward.

The application binary and the saved state are read into
memory and a jump is performed just before the invoca-
tion of the hot function. The function is re-executed until
completion, then performance statistics are saved and the
process terminates.

What is unique in our approach is the need to replay dif-
ferent binaries than the one used during the capture, so that
we can evaluate how different compiler transformation sets
affect performance. To achieve that we tinker with the way
that our binaries are built. We see in Figure 3, that an object
code of a hot function is repeatedly transformed and plugged
in into an existing object. Producing a correct executable is
not straightforward. One issue is that transformations might
replace particular generic calls to faster architectural spe-
cific ones. This causes changes in the Procedure Linkage

Table and Global Offset Table sections of the executable
and cascading changes in the following sections. The result
is that global variables and function pointers now have dif-
ferent addresses than the ones in the version used for the
capture. In other words, when we restore the saved state,
we will fail to load all this information in the positions ex-
pected by the new binary. Another similar issue is that
many transformations affect the length of the hot function.
Again, this causes cascading changes in the object code of
following functions, making function pointers in the saved
state invalid.

3



To address the first problem, we used a helper object file at
time of linking. It consists of a function that is never actually
called and has in its body dummy calls to functions that can
be potentially introduced by transformations. However, it is
marked as being called, which tricks the assembler to include
the entries of the function calls to the linkage tables. For the
second problem, we have extended the linker script, so that
empty space is added immediately after the hot function
and the next function always starts from the same offset.
Such tinkering causes each binary to be in a consistent state
with the stored state in spite having a part of its object code
transformed.

application

iterative

compiler

transformation

space

sequence

compile
hot 

function

link

binary

captured

state

performance

statistics

replay

Figure 3: Applying offline iterative compilation
through replaying. The hot function is repeatedly
recompiled for evaluating new transformation sets,
and then linked to a binary. Then, the captured data
are used by the binary to replay the hot function,
before finally storing the performance statistics.

3.3 Replay-based iterative compilation of hot
functions

A proof of concept iterative compiler was implemented to
evaluate our approach. The task of the iterative compiler is
to build replay-capable binaries by applying transformations
solely to the code of particular hot functions, as depicted
in Figure 3. It works with applications written in the C
language. Hot functions are extracted from the rest of the
source code and subsequently translated by the underlying
Clang [10] compiler using randomly picked transformation
sets. The resulting object file is linked against the previously
compiled object files of the rest of the sources in the way
described in Section 3.2.

The compiler evaluates each produced binary through the
replay mechanism. Since we use the input state saved dur-
ing the application’s normal use, our search algorithm is
personalized for each user. Additionally, conducting the
search at idle periods alleviates the user from having to suf-
fer the effects of poorly performing transformations, while

the performance noise is kept to a minimum. By perform-
ing re-compilation and re-execution on the device itself, the
architectural diversity is inherently addressed, and our fo-
cus on hot functions allows the speedup of transformation
evaluations.

4. EXPERIMENTAL SETUP
We have evaluated our approach by running a series of

experiments on an actual mobile device. The device we used
was a Motorola Nexus 6 2014, which ran Android version
5.1; the latest available version for the device as of the time
of writing. The device has a Qualcomm Snapdragon 805
processor, which is powered by four 2.7GHz Krait 450 cores.
To minimize the performance noise, we kept all cores online
and hardwired the processor’s frequency to its highest value.

We have used benchmarks found in the open source BEEBS
benchmark suite [11]. It contains applications written in
C, focused on embedded systems. We preferred this suite
over others, as the source code of most benchmarks was in
a simple format that allowed an easy integration with our
prototype system. With a manual profiling phase, using the
Callgrind [12] profiling tool, the hot functions of an appli-
cation were identified and manually extracted from the rest
of the sources. Due to the differences in computation power
between embedded systems and current mobile devices we
have increased the input in some of the applications, in or-
der to make the hot functions computationally intensive,
and therefore optimize-worthy.

Our iterative compiler runs on the device itself and uses
the Clang driver [10], version 3.6.1. It searches the space of
possible transformations by randomly building transforma-
tion sets of arbitrary length, from a list of 60 transformation
flags. For each flag, we flip a coin to decide whether to in-
clude it or not. If the answer is positive, we flip again to
decide on the parameter of the flag. Most of the flags ac-
cept a boolean parameter, however, some might be more
complex, which can dramatically increase the search space.
Even if we ignore this, such a space consists of 260 distinct
points. In our experiments, we have visited only a tiny frac-
tion of this space, by constructing 2000 random transfor-
mation sets. We have made available online1 the compiler’s
space, the benchmarks, and the inputs, for the reproducibil-
ity of the results.

Our iterative compiler uses statistically rigorous techniques
to deduce to the best performing transformations. Once we
have replayed each binary version 10 times and collected
its runtimes, we perform outlier removal using the the ro-
bust median absolute deviation method. With the two-side
student’s t-test, we compare the results between different
transformation sets. The sets that are found to be best can
then be used to build an optimal executable, by recompiling
once more the hot functions of an application.

All other measurements were repeated 30 times. Where
applicable, we calculated the 95% confidence intervals, and
where appropriate, we removed outliers.

5. RESULTS AND ANALYSIS
To test our technique we performed four sets of exper-

iments. The first set examines the performance benefits
produced by our iterative compiler and whether the replay

1Benchmark sources and flags: http://git.io/v4dlD

4



sandbox affects the effectiveness of the evaluated transfor-
mations. The second set explores the overheads introduced
by the capture mechanism and whether they result in no-
ticeable degradation of the user experience. The third set
of experiments compares our approach against traditional
capture-and-replay techniques in terms of storage overhead.
Finally, we examine how the search speed of iterative com-
pilation is affected by being able to replay only the targeted
hot function.

5.1 Optimizing applications with iterative com-
pilation through replaying

This work is not about improving but about enabling it-
erative compilation for a large class of applications. Nev-
ertheless, it is important to show that our approach is able
to optimize these applications and that near optimal sets
of transformation discovered through replay are still near
optimal when the application is executed normally.

1.25 1.28
1.2 1.22

1.57

1.4

1.16

0.0

0.5

1.0

1.5

adpcm blowfish bubblesort dijkstra fft fir huffbench

S
p

e
e

d
u

p

Figure 4: Speedup obtained by iterative compilation
through replaying against the -O3 optimization level
of Clang, after visiting 2000 random points of the
transformation space.

In Figure 4, we see the speedup for the best binary eval-
uated by our iterative compilation system for the hot func-
tions of seven benchmarks of our benchmark suite. All
speedups are calculated against the performance of the hot
functions of a binary that was produced using the -O3 op-
timization level. Despite visiting only a tiny fraction of the
transformation space with a random search, the technique
was still able to increase the performance of all the bench-
marks’ hot functions, and for almost all by at least 20%,
compared to the highest optimization level of the compiler.
The highest speedup obtained was 57% for fft, while the
lowest was 16% for huffbench. A more extensive or intelli-
gent search would produce even higher speedups, but achiev-
ing worthwhile speedups with so little effort is a significant
result on its own.

Figure 5 depicts the differences in execution time for the
hot function of the fir benchmark when executed normally
and when using the replay mechanism. For 300 randomly
picked transformations, the highest difference was less than
10µs, which is within acceptable noise levels. The aver-
age difference in execution time was 2.11µs, which is even
smaller. It is clear that the link-time strategies described

at Section 3.2, that enable replaying of different versions of
the hot function, do not interfere with the effectiveness of
the applied transformations. In other words, transforma-
tions found offline through replaying still produce similar
speedups when the application is executed normally.

0.0

2.5

5.0

7.5

10.0

Different transformation sequences

E
xe

c
u

ti
o

n
 d

if
fe

re
n

c
e

 i
n

 µ
s

Figure 5: Difference in execution time of 300 trans-
formations applied to the hot function of the fir filter
benchmark between replayed and regular execution.

5.2 Transparent capturing
While we can use replay and iterative compilation to even-

tually produce faster running executables, it’s still impor-
tant that the whole process does not affect negatively the
user experience, even temporarily. To achieve that, we need
to make sure that capture, the only part of our system run-
ning while the user interacts with the device, introduces
minimal overheads.

934 936

50.4 51.3

202 203

285 285

130 132
95.7 96.7

419 421

0

250

500

750

adpcm blowfish bubblesort dijkstra fft fir huffbench

E
xe

c
u

ti
o

n
 t

im
e

 (
in

 m
s
)

Include capture
no
yes

Figure 6: Regular execution compared against exe-
cution that were partially captured. The introduced
slowdown does not surpass 2% and is unlikely to af-
fect the user experience.

In Figure 6, we see the runtime of each benchmark under
normal and captured execution. The slowdown introduced
by the capture mechanisms is negligible compared to the
execution time of the tested benchmarks. The highest ob-

5



served slowdown was 1.7% while the average slowdown was
just 0.8%.

Nearly all of our overhead comes from parsing the list of
VMAs and the call to fork at the beginning of the capture
process. The overhead of fault handling is negligible, since
the total number of faults is small even for memory-intensive
applications. In the worse case scenario, it can be as many as
the pages owned by the application. The CoW mechanism
has a similarly small overhead. CoW is used only when
a page is modified and even then all memory management
and copying is done exclusively in kernel space, keeping the
process fast. Overall, slowdowns that small are unlikely to
be noticed by the user, making our capture mechanism fit
for mobile devices used by real users.

5.3 Conserving space
We saw in the previous subsection that parsing the list

of VMAs is responsible for a significant part of the overall
overhead of our capture and replay mechanism. The reason
we need to pay this cost is because parsing the VMAs and
removing the access rights from all the pages are necessary
for identifying the pages used by the hot function. With
this information, we can drastically cut down the size of the
state that we need to capture and store.

● ●●

●

● ● ●

100KB

200KB

10MB

200MB

adpcm blowfish bubblesort dijkstra fft fir huffbench

S
iz

e

Granularity
● Everything

Pages

Figure 7: Comparing full captures against page-
granularity captures, relevant to a hot function.
There were at least two orders of magnitude storage
space savings for all benchmarks.

In Figure 7, we see the space savings by capturing only the
pages that are used by the hot function, instead of saving
all the state of the process. For all benchmarks, less than
200KB of information were found to be necessary. For full
captures that amount was at least two orders of magnitude
greater. An extreme example is the fft benchmark, where
more than 200MB were stored during the full capture, with
our space savings reaching three orders of magnitude. Re-
ducing the storage requirements of our approach, without
imposing a performance penalty, is particularly important.
With all data easily fitting in the device’s internal storage,
the available capacity of the device is hardly affected from
the perspective of the user and there is no need for storing
potentially private data in external storage.

5.4 Speeding up the evaluation of transforma-
tions

Using a replay mechanism for iterative compilation creates
another potential benefit. In typical iterative compilation
techniques, each binary version is executed and evaluated as
a whole, even if only a small part of the program is targeted
by iterative compilation. Using replay instead, we directly
jump at the point where the evaluation of the hot function
starts and we terminate immediately afterwards.

Figure 8 shows how many replays can be performed in the
runtime of a single full execution of the benchmark or equiv-
alently how much iterative compilation is accelerated when
using replay. Apart from bubblesort, where all processing
is done by a single invocation of the hot function, all other
benchmarks can be sped up hundreds to tens of thousands
of times. The average number of replays fitting in a single
execution of the benchmark are 10000. As far as iterative
compilation is concerned, each set of replays will be a sta-
tistically sound evaluation of a transformation. Having the
ability to test more transformations during the same time
slot, can potentially lead to significant time and energy sav-
ings for the technique, as the only code that is executed is
the one that is being optimized.

40949

3245

1

19278

8304

902

99
100

1K

3K

10K

20K

40K

adpcm blowfish bubblesort dijkstra fft fir huffbench

N
u

m
b

e
r 

o
f 

re
p

la
y
s

Figure 8: The number of times a hot function can
be replayed, in the time that is required for a single
full execution. Many replays can fit in that time slot
for almost all of the benchmarks.

6. RELATED WORK
Iterative compilation is a well studied technique [13], used

for around two decades. Early applications of the tech-
nique were successfully applied for particular embedded de-
vices [14, 15]. An exhaustive offline search was performed
once and then the discovered transformations were being
used to optimize once and for all the device. The frequently
updating mobile applications, their variable input, and the
underlying architectural peculiarities render this approach
impracticable on mobile devices.

Fursin et al [16] presented a method that exploits on-
line performance stability to evaluate multiple evaluations
during the same run. Our approach offers a similar capa-
bility, without having to perform an online assessment of
a transformation that can be detrimental to performance.
Moreover, our approach has no dependency to the number
of times a particular block of code is being executed during

6



the normal execution.
Cooper et al [17] have used a genetic algorithm to search

for transformations that would reduce the code size. The
algorithm was able to evolve over time, by avoiding non
beneficial transformations. Many other techniques based on
machine learning have been proposed since then [7, 8, 9,
18], however, none of which can work transparently on mo-
bile devices. The algorithms’ learning curve is to blame, as
it is their need to also learn poor transformations, trans-
formations which when evaluated will degrade the user’s
experience. Collective mind [?] is a framework that pro-
vides an abstraction layer for auto-tuning. It tackles the
chaos between different hardware, operating systems, soft-
ware tools, search algorithms, and compilers versions, by
allowing researchers to crowdsource information and cross-
validate their findings.

Capture and replay is also a well studied technique. Ap-
proaches with similar emphasis on minimizing the amount
of captured state have used instrumentation [19, 20, 21] for
logging and later replaying application events, such as mem-
ory accesses. This allows them to store state at granularity
of a variable, which reduces the amount of stored state to
the minimum possible. On the other hand, this approach
incurs significant overheads as all memory accesses are in-
tercepted by the logging mechanism. Another disadvantage
of such an approach is the dependency to the source lan-
guage due to instrumentation. jRapture [22] has avoided
instrumentation, by modifying the Java API. While this is
more transparent to the application, it still has the disad-
vantages of the previous approaches. CRIU [23] is a capture
and replay implementation that exploits the Linux kernel ca-
pabilities to avoid instrumentation or dependencies on the
source language. Its drawback, from our perspective, is that
it is designed for live process migration in data centers. This
means that full state captures are required, an extremely
wasteful tactic in the context of mobile devices.

7. CONCLUSIONS AND FUTURE WORK
In this paper we investigated whether iterative compila-

tion can be applied for optimizing applications in the context
of mobile devices. Typical iterative compilation techniques
when used online are associated with prohibitively high over-
heads, intolerable by the users of such devices. Even al-
gorithms that progressively reduce that overhead will slow-
down the application significantly during their early learning
stages. Still, online iterative compilation offers the oppor-
tunity to evaluate transformations on real user test cases,
which is hard to accurately emulate offline.

Our solution for using the benefits of online iterative com-
pilation without the drawbacks is to combine iterative com-
pilation with a novel capture and replay mechanism. This
mechanism is designed with the limitations of mobile de-
vices in mind: limited processing power, limited storage,
low latency interaction between the user and the device.
Specifically, we target only heavily used functions of the ap-
plication and we only capture the state needed for replaying
them. This way, most of the state of the application is ig-
nored, reducing the needed storage by at least two orders of
magnitude. To identify the state needed for replaying and
to copy it efficiently, we take advantage of existing kernel
mechanisms, keeping the performance overhead of our ap-
proach low. A custom replay mechanism can then re-execute
such hot functions, even in the presence of code transforma-

tions. We integrate the capture and replay mechanism with
an iterative compiler. It takes the application state captured
online, while the user was interacting with the application,
and uses it to replay and evaluate alternative binary version
of the application. Evaluations take place when the device
is not in use and being charged, so they have no negative
effect on the user experience.

We showed that iterative compilation through replay is
able to outperform the highest optimization level of a com-
piler by up to 57%. Our replay mechanism does not alter
the impact of compiler transformations, as the difference be-
tween the regular runtime and the runtime during replay is
on average only 2.11µs. Moreover, our approach allows mul-
tiple transformation evaluations in the time slot of a single
full execution. The overhead introduced by the initial cap-
ture is not noticeable to the users, being on average 0.8%.
Comparing it with full capture alternatives, we are able to
conserve storage space by between 2 and 3 orders of magni-
tude.

The ability to perform personalized optimization is an as-
pect of our proposed mechanism that deserves more atten-
tion. The way a user interacts with a device might change
over time requiring us to recalibrate the selected set of trans-
formations. Multiple users might have similar usage pat-
terns, which could be used to enhance the transformation
search. We are currently evolving our approach to work
with user-interactive mobile applications, which would al-
low us to further explore this territory.

8. ACKNOWLEDGMENTS
This work was supported by the UK Engineering and

Physical Sciences Research Council under grants EP/H044752/1
(ALEA) and EP/M015793/1 (DIVIDEND).

9. REFERENCES
[1] S. Coleman and K. S. McKinley, “Tile size selection

using cache organization and data layout,” in ACM
SIGPLAN Notices, vol. 30, pp. 279–290, ACM, 1995.

[2] B. Aarts, M. Barreteau, F. Bodin, P. Brinkhaus,
Z. Chamski, H.-P. Charles, C. Eisenbeis, J. Gurd,
J. Hoogerbrugge, P. Hu, et al., “Oceans: Optimizing
compilers for embedded applications,” in Euro-Par’97
Parallel Processing, pp. 1351–1356, Springer, 1997.

[3] G. G. Fursin, M. F. P. O. Boyle, and P. M. W.
Knijnenburg, “Evaluating Iterative Compilation,”
LCPC, pp. 362–376, 2005.

[4] T. Kisuki and P. Knijnenburg, “Iterative compilation
in program optimization,” Proc. CPC’10 (Compilers
. . . , 2000.

[5] A. Orso, T. Apiwattanapong, and M. J. Harrold,
“Leveraging field data for impact analysis and
regression testing,” Proceedings of the 9th European
software engineering conference held jointly with 10th
ACM SIGSOFT international symposium on
Foundations of software engineering - ESEC/FSE ’03,
vol. 28, no. 5, p. 128, 2003.

[6] E. Park, S. Kulkarni, and J. Cavazos, “An Evaluation
of Different Modeling Techniques for Iterative
Compilation Categories and Subject Descriptors,”
CASES, pp. 65–74, 2011.

[7] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey,
S. W. Reeves, D. Subramanian, L. Torczon, and

7



T. Waterman, “Finding effective compilation
sequences,” ACM SIGPLAN Notices, vol. 39, p. 231,
July 2004.

[8] F. Agakov, E. Bonilla, J. Cavazos, B. Franke,
G. Fursin, M. O’Boyle, J. Thomson, M. Toussaint,
and C. Williams, “Using Machine Learning to Focus
Iterative Optimization,” International Symposium on
Code Generation and Optimization (CGO’06),
pp. 295–305.

[9] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P.
O’Boyle, and O. Temam, “Rapidly selecting good
compiler optimizations using performance counters,”
International Symposium on Code Generation and
Optimization, CGO 2007, pp. 185–197, 2007.

[10] “Clang: C Language Family Frontend for LLVM.”
http://clang.llvm.org/, 2015. [Online; accessed
01-October-2015].

[11] “The BEEBS Benchmark Suite.” http:

//www.cs.bris.ac.uk/Research/Micro/beebs.jsp,
2015. [Online; accessed 01-October-2015].

[12] “Callgrind: Profiling tool, part of Valgrind project.”
http://valgrind.org, 2015. [Online; accessed
18-November-2015].

[13] T. Kisuki, P. M. Knijnenburg, M. F. O’Boyle,
F. Bodin, and H. A. Wijshoff, “A feasibility study in
iterative compilation,” in High Performance
Computing, pp. 121–132, Springer, 1999.

[14] B. Aarts, M. Barreteau, and F. Bodin, “OCEANS:
Optimizing compilers for embedded applications,”
Euro-Par’97 Parallel . . . , no. 22729, 1997.

[15] F. Bodin, T. Kisuki, and P. Knijnenburg, “Iterative
compilation in a non-linear optimisation space,”
Workshop on Profile . . . , 1998.

[16] G. Fursin, A. Cohen, M. O. Boyle, and O. Temam, “A
Practical Method for Quickly Evaluating Program
Optimizations,” HiPEAC, pp. 29–46, 2005.

[17] K. D. Cooper, P. J. Schielke, and D. Subramanian,
“Optimizing for reduced code space using genetic
algorithms,” ACM SIGPLAN Notices, vol. 34, no. 7,
pp. 1–9, 1999.

[18] G. Fursin, C. Miranda, O. Temam, M. Namolaru,
E. Yom-Tov, A. Zaks, B. Mendelson, E. Bonilla,
J. Thomson, H. Leather, et al., “Milepost gcc:
machine learning based research compiler,” in GCC
Summit, 2008.

[19] A. Orso and B. Kennedy, “Selective capture and
replay of program executions,” WODA, vol. 30, p. 1,
July 2005.

[20] G. Xu, A. Rountev, Y. Tang, and F. Qin, “Efficient
checkpointing of java software using context-sensitive
capture and replay,” Proceedings of the the 6th joint
meeting of the European software engineering
conference and the ACM SIGSOFT symposium on
The foundations of software engineering - ESEC-FSE
’07, p. 85, 2007.

[21] A. K. Jha and W. J. Lee, “Capture and Replay
Technique for Reproducing Crash in Android
Applications,” Artificial Intelligence and Applications
/ 794: Modelling, Identification and Control / 795:
Parallel and Distributed Computing and Networks /
796: Software Engineering / 792: Web-based
Education, no. Se, pp. 783–790, 2013.

[22] J. Steven, P. Chandra, B. Fleck, and A. Podgurski,
“jRapture: A Capture Replay Tool for
Observation-Based Testing,” Proc. ISSTA,
pp. 158–167, 2000.

[23] “CRIU: Checkpoint/Restore In Userspace.”
http://criu.org/, 2015. [Online; accessed
01-October-2015].

8


