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Abstract Multiscale entropy (MSE) has been a prevalent al-
gorithm to quantify the complexity of biomedical time series.
Recent developments in the field have tried to alleviate the
problem of undefined MSE values for short signals.
Moreover, there has been a recent interest in using other sta-
tistical moments than the mean, i.e., variance, in the coarse-
graining step of the MSE. Building on these trends, here we
introduce the so-called refined composite multiscale fuzzy
entropy based on the standard deviation (RCMFEσ) and mean
(RCMFEμ) to quantify the dynamical properties of spread and
mean, respectively, over multiple time scales. We demonstrate
the dependency of the RCMFEσ and RCMFEμ, in comparison
with other multiscale approaches, on several straightforward
signal processing concepts using a set of synthetic signals.
The results evidenced that the RCMFEσ and RCMFEμ values
are more stable and reliable than the classical multiscale en-
tropy ones. We also inspect the ability of using the standard
deviation as well as the mean in the coarse-graining process
using magnetoencephalograms in Alzheimer’s disease and
publicly available electroencephalograms recorded from focal
and non-focal areas in epilepsy. Our results indicated that

when the RCMFEμ cannot distinguish different types of dy-
namics of a particular time series at some scale factors, the
RCMFEσ may do so, and vice versa. The results showed that
RCMFEσ-based features lead to higher classification accura-
cies in comparison with the RCMFEμ-based ones. We also
made freely available all the Matlab codes used in this study
at http://dx.doi.org/10.7488/ds/1477.

Keywords Complexity .Multiscale entropy . Sample
entropy . Fuzzy entropy . Biomedical signal . Statistical
moments

1 Introduction

An important challenge in signal processing is to quantify the
dynamical irregularity of time series [1]. To this end, there are
a number of approaches, such as entropies and fractal dimen-
sions. Entropy is an appealing and powerful tool that has been
widely used in physiological signal analysis [1, 2]. One of the
most popular entropy-based approaches is sample entropy
(SampEn), which is relatively robust to noise [2]. Another
widely used entropy method is fuzzy entropy (FuzEn) [3].
These two entropy approaches have attracted a great deal of
attention recently [4–7]. Although SampEn is slightly faster
than FuzEn, the latter is more consistent and less dependent on
the data length [3, 7].

The traditional methods to quantifying the complexity of
biomedical recordings may fail to account for the multiple
time scales inherent in such time series and may yield contra-
dictory and misleading results. For instance, even though the
SampEn of white Gaussian noise (WGN) time series is higher
than that of 1/f noise, showing that WGN is more irregular
than 1/f noise, the latter has more complex structures than
WGN due to the presence of long-range correlations [8, 9].
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To address this problem, Costa et al. introduced the multiscale
(sample) entropy (MSE), which is based on assessing the en-
tropy of signals at multiple time scales [8]. In the MSE meth-
od, the original signal is first divided into non-overlapping
segments of length τ, termed the scale factor. Next, the mean
of each segment is estimated to derive the coarse-grained sig-
nals. Finally, the entropy measure, using SampEn, is calculat-
ed for each coarse-grained sequence [8].

The complexity evaluation of time series withMSE is root-
ed in the concept that complexity is associated with
Bmeaningful structural richness,^ which may be in contrast
with regularity measures defined from classical entropy algo-
rithms [8, 10]. This is because the output of entropy-based
metrics grows monotonically with the degree of randomness
of the analyzed time series. Therefore, these measures assign
the highest entropy values to uncorrelated random signals like
white noise, which are highly unpredictable but not structur-
ally Bcomplex,^ and, at a global level, permit a very simple
description. Thus, when applied to biomedical signals, tradi-
tional entropy-based methods may lead to misleading outputs.
For instance, they assign high entropy values to certain path-
ologic cardiac rhythms that generate erratic outputs whereas
healthy cardiac rhythms that are exquisitely regulated by mul-
tiple interacting control mechanisms are given low values of
entropy. In this context, the complexity of biomedical signals
reflects their ability to adapt and function in an ever-changing
environment because physiological signals require to operate
across multiple temporal and spatial scales. Thus, substantial
attention has been concentrated on defining a quantitative
measurement of complexity, i.e., MSE, that vanishes for both
deterministic/predictable and uncorrelated random/
unpredictable time series [8, 9]. Extensive analyses have
shown that abnormal and disease states, which decrease the
adaptive capacity of the subject, appear to degrade the
multiscale entropy metrics [8, 9]. A recent review about
multiscale entropy-based methods can be seen in [11].

Costa and Goldberger have very recently introduced a
new MSE approach using the variance, instead of the
mean, in the coarse-graining process of MSE. This was
named MSEσ

2 [12]. Note that, in order to discriminate
MSEσ

2 and basic MSE, we will denote the latter as
MSEμ. MSEσ

2 revealed that the dynamics of the volatility
(variance) of heartbeat signals obtained from healthy
young subjects are highly complex [12].

Nonetheless, since the standard deviation (σ) has the
same dimension as the signal and its mean values
(MSEμ), we propose to use σ in the coarse-graining pro-
cess, as an alternative to MSEμ and MSEσ

2. Furthermore,
one of the most important problems of MSEμ is that,
when applied to short biological signals, the results may
be undefined and inaccurate [13, 14]. To alleviate this
problem, the refined composite MSEμ (RCMSEμ) has
been recently introduced [13] using the average of the

SampEn values of several coarse-grained signals in each
scale factor. Although simulation results showed that the
RCMSEμ had better stability for all temporal scales than
MSEμ, the problem of undefined values for short signal
still exists [13]. We build on these recent developments to
combine their advantages, and propose the refined com-
posite multiscale fuzzy entropy (RCMFE) based on μ and
σ: RCMFEμ and RCMFEσ, respectively. We hypothesize
that these measures will be more accurate, robust, and
stable than previous entropy metrics. Furthermore, we ex-
emplify the behavior of these measures for different kinds
of classical signal concepts (e.g., frequency, non-linearity)
to demonstrate the dependency of RCMFEσ and RCMFEμ

on them. Finally, we illustrate their application to two
clinical datasets: focal and non-focal electroencephalo-
grams (EEGs) and resting-state magnetoencephalogram
(MEG) activity in Alzheimer’s disease (AD).

2 Methods

2.1 Entropy approaches

2.1.1 Sample entropy

Assume we have a real-valued discrete time series of length N:
y = {y1, y2, ... , yN}. At each time t of y, a vector including
the m-th subsequent values is constructed as Ym

t ¼
yt; ytþ1; :::; ytþm−2; ytþm−1

� �
for t = 1,2,…,N−(m−1), where m,

termed embedding dimension, determines how many samples
are contained in each vector. Define the distance between such
vectors as the maximum difference of their corresponding scalar

components, d Ym
t1 ;Y

m
t2

h i
¼ max Ym

t1þk−Y
m
t2þk

�� �� : 0≤k ≤m‐1 and t1≠t2
n o

.

A match happens when the distance d Ym
t1 ;Y

m
t2

h i
is smaller than

a predefined tolerance r. The probability Bm(r) shows the total
number of m-dimensional matched vectors [2]. Similarly, Bm+

1(r) is defined for embedding dimension of m + 1. Finally, the
SampEn is defined as follows [2]:

SampEn y;m; rð Þ ¼ −ln Bmþ1 rð Þ=Bm rð Þ� � ð1Þ

2.1.2 Fuzzy entropy (FuzEn)

In this case, for the time series y = {y1, y2, ... , yN},
embedding dimension m , and tolerance r, Um

t ¼
yt; ytþ1; :::; ytþm−1

� �
−y0t is formed where y0t ¼ ∑

m−1

j¼0

ytþ j

m .

The distance between each of Um
t1 and Um

t2 is defined as

dt1t2 ¼ d Um
t1 ;U

m
t2

h i
¼ max Um

t1þk−U
m
t2þk

�� �� : 0≤k ≤m−1 and t1≠t2
n o

.

Given FuzEn power n and tolerance r, the similarity degree
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dt1t2 is calculated through a fuzzy function μ dt1t2 ; n; rð Þ as
exp − dt1t2ð Þn=rð Þ: The function ϕm is then defined as

ϕm y; n; rð Þ ¼ 1

N−m
∑

N−m

t1¼1

1

N−m−1
∑

N−m

t2¼1;t1≠t2
exp − dt1t2ð Þn=rð Þ ð2Þ

Finally, the FuzEn of the signal is defined as the negative
natural logarithm of the ratio of ϕm and ϕm+ 1 (computed fol-
lowing the same procedure for embedding dimensionm + 1) [3]:

FuzEn y;m; n; rð Þ ¼ −ln ϕmþ1
.

ϕm

� �
ð3Þ

2.2 Coarse-graining for multiscale entropy

A Bcoarse-graining^ process is applied to a time series {x1,
x2, ... , xb, ... , xC} where C is the length of the signal. Each
element of the coarse-grained time series for MSEμ/MFEμ

is defined as

μyi
τð Þ ¼ 1

τ
∑
iτ

b¼ i−1ð Þτþ1
xb 1≤ i≤

C
τ

	 

¼ N ð4Þ

where τ is the time scale factor [9]. This means that these
coarse-grained sequences are computed as the average of con-
secutive samples. Costa et al. [12] also have recently proposed
to use the variance, instead of the mean value, as follows:

σ2yi
τð Þ ¼ 1

τ
∑
iτ

b¼ i−1ð Þτþ1
xb−μyi

τð Þ
� �2

; 1≤ i≤
C
τ

	 

¼ N ð5Þ

The dimension of variance is not the same as the samples of
the original signal, and the quadratic behavior of variance
causes the differences between the data points and their cor-
responding average to become larger and smaller, respective-
ly, for those differences which are larger and smaller than 1.
To alleviate these shortcomings, we propose to use σ in the
coarse-graining process as a measure of spread via

σyi
τð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

τ
∑
iτ

b¼ i−1ð Þτþ1
xb−μyi

τð Þ
� �2

s
; 1≤ i≤

C
τ

	 

¼ N ð6Þ

2.3 Refined composite multiscale fuzzy entropy

The traditional application of the coarse-graining procedure in
MSEμ leads to two main shortcomings. First, the MSEμ is not
symmetric in its dependency on the samples of the original
time series. For example, in scale 3, we could rationally expect
the measure to behave the same for x3 and x4, in comparison
with x2 and x3. However, at scale 3, x1, x2, and x3 are separated
from x4, x5, and x6. This phenomenon is illustrated in [15]. The
second shortcoming is the variability of the entropy results for

high-scale factors. When the MSEμ is computed, the number
of samples of the resulting coarse-grained sequence is ⌊C/τ⌋ =
N.When the scale factor τ is high, the number of time points in
the coarse-grained sequence decreases. This may yield an un-
stable measure of entropy.

To alleviate these drawbacks, the improved multiscale
permutation entropy and RCMSEμ algorithm were pro-
posed [13, 15]. Here, considering the advantages of
FuzEn over SampEn, and RCMSEμ over MSEμ, we intro-
duce RCMFEσ and RCMFEμ.

The RCMFEσ is calculated in two main steps:

First, z τð Þ
u ¼ yu;1

τð Þ; yu;2
τð Þ; :::

� �
, 1 ≤ u ≤ τ are generated,

where σyu; j
τð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
τ ∑

uþτj−1

b¼uþτ j−1ð Þ
xb−μyu; j

τð Þ
� �2

s
, where

μyu; j
τð Þ ¼

∑
uþτj−1

b¼uþτ j−1ð Þ
xb

τ . In the RCMFEσ algorithm, for each scale

factor τ, we have τ different time series z τð Þ
u j u ¼ 1; :::; τð Þ,

while in the MSE/MFE methods, only z τð Þ
1 is considered [15].

For a defined scale factor τ and embedding dimension m,

ϕτ , k
m|(k = 1, ... , τ) and ϕτ , k

m + 1|(k = 1, ... , τ) for each of z τð Þ
k

j k ¼ 1; :::; τð Þ are separately calculated. Next, the average of
values of ϕτ , k

m and ϕτ , k
m + 1 on 1 ≤ k ≤ τ are computed,

respectively. Finally, the RCMFEσ is computed as follows:

RCMFEσ x; τ ;m; n; rð Þ ¼ −ln ϕτ

mþ1
,

ϕτ

m

0
@

1
A ð7Þ

It should be mentioned that the difference between
RCMFEσ and RCMFEμ is that the latter one uses

μyu; j
τð Þ ¼

∑
uþτj−1

b¼uþτ j−1ð Þ
xb

τ , whereas the first one uses Eq. 6 in their

first step of algorithm. The embedding dimension m, FuzEn
power n, and tolerance r for all of the approaches were respec-
tively chosen as 2, 2, and 0.15 multiplied by the standard
deviation of the original time series [2, 3, 16].

2.4 Evaluation signals

2.4.1 Noise and synthetic signals

In this subsection, the signals used to study the mentioned
multiscale approaches and their interpretability in terms of
classical signal processing concepts are described.

First, we consider the performance of the multiscale entro-
py metrics on WGN and 1/f noise. The number of sample
points of each of the WGN and 1/f noise was 40,000. In
addition, we consider other synthetic signals with a sampling
frequency (fs) of 150 Hz and a length of 100 s (15,000 sample
points). The time plots of these synthetic signals, and their
corresponding spectrograms, and two zooms (for each kind

Med Biol Eng Comput (2017) 55:2037–2052 2039



of signal) on their start and end, to show the changes in their
characteristics, are illustrated in Fig. 1. All of them have been
employed to inspect the Lempel-Ziv complexity measure, im-
proved permutation entropy, or auto-mutual information func-
tion rate of decrease and have been described in [15, 17, 18],
respectively, where additional details can be found.

1. RCMFEσ and RCMFEμ versus noise: The dependen-
cy between the abovementioned multiscale entropy-
based methods and 1/f noise and WGN is considered
in this paper. WGN has a constant power spectral
density as WGN is a signal whose samples are ran-
domly drawn from a Gaussian distribution and uncor-
related [19]. The power spectral density of a stochas-
tic process appropriate to model evolutionary or de-
velopmental systems is characterized by equal energy
per octave as 1/f noise [20].

2. RCMFEσ and RCMFEμ versus frequency: In order to
clarify how the RCMFEσ/RCMFEμ changes when the
frequency of sinusoidal signals varies, a constant ampli-
tude chirp signal whose frequency is swept logarithmical-
ly from 0.1 to 30 Hz in 100 s is considered [15, 17].
RCMFEσ and the other multiscale entropy methods were
applied to this signal using a moving window of 2000
samples (13.33 s) with 90% overlap. Fig. 1a demonstrates
the constant chirp signal.

3. RCMFEσ and RCMFEμ versus spectral content of col-
ored noise: In order to find the relationship between the
RCMFEσ or RCMFEμ and the spectral content of colored
noise, an autoregressive (AR) process of order 1, AR(1),
was generated varying the model parameter, ρ, linearly
from +0.9 to −0.9. Its energy hence moved from low to
high frequencies. In case of ρ = 0, the sequence
corresponded to WGN, in the center of the synthetic time
series. Fig. 1b shows the corresponding spectrogram, time
plot, and zoom views.

4. RCMFEσ and RCMFEμ versus changes from randomness
to orderliness: In order to consider how the RCMFEσ and
RCMFEμ change when a stochastic sequence progres-
sively turns into a periodic deterministic time series, we
created a MIX process employed in [18, 21, 22]. This is
defined as follows:

MIX ¼ 1−zð Þxþ zy ð8Þ
where z denotes a random variable which is equal to 1 with
probability p and is equal to 0 with probability 1 − p, x depicts
a periodic synthetic signal as xk ¼

ffiffiffi
2

p
sin 2πk=12ð Þ, and y is a

uniformly distributed variable on −
ffiffiffi
3

p
;

ffiffiffi
3

p� �
[18, 21]. Thus, the

lower p is selected, the more regular or periodic the time series
is, while higher p leads to more irregular signal. In this sense, to

show the evolution from randomness to orderliness, p is linearly
changed from 0.01 to 0.99. This signal is depicted in Fig. 1c.

5. RCMFEσ and RCMFEμ versus changes from periodicity
to non-periodic non-linearity: In order to clarify the de-
pendence of the multiscale entropies on these changes, the
logistic map is employed. This analysis is dependent on
the model parameter α [18, 21] as follows:

xk ¼ αxk−1 1−xk−1ð Þ ð9Þ

The synthetic signal x was created varying the parameter α
linearly from 3.5 to 3.99. With α = 3.5, the signal oscillated
among four values. For α between 3.5 and 3.57, the signal is
periodic and the number of values doubles progressively. For
3.57 ≤ α ≤ 3.99, the time series is chaotic, although it has
windows of periodic behavior (e.g., α ≈ 3.8, as seen in
Fig. 1d) [23].

6. RCMFEσ and RCMFEμ versus different non-linear re-
gimes: In order to investigate the changes in the behavior
of a non-linear system, the Lorenz attractor is used here as

x ¼ λ y−xð Þ
y ¼ x ρ−zð Þ−y
z ¼ xy−βz

ð10Þ

where λ, β, and ρ denote the system parameters [23, 24]. The
first segment of this time series has a length of 7500 sample
points, and it was created with λ = 10, β = 8/3, and ρ = 28.
Therefore, it has a chaotic behavior. The second segment,
which has 7500 sample points, was generated with λ = 10,
β = 8/3, and ρ = 99.96. It exhibits a torus knot [17, 23]. Both
segments were created by the use of a fixed step-size first-order
integration technique without pre-integration and with the step
size set to 1/fs. It should be noted that these two segments were
normalized with standard deviation (SD) of 1, after these seg-
ments had been generated. The coordinate x, which is the signal
analyzed in this article, appears in Fig. 1e.

2.4.2 Clinical datasets

The ability of the newly proposed RCMFEμ and RCMFEσ to
distinguish different types of physiological activity was tested
on the following clinical datasets: MEG resting state activity in
AD and EEG signals of focal and non-focal origin in epilepsy.

The MEG signals were acquired utilizing a 148-channel
whole-head magnetometer (Magnes 2500 WH, 4D
Neuroimaging) located in a magnetically shielded room at the
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Fig. 1 Spectrograms, time plots, and zoom views on the first and last
time intervals of the synthetic signals used in this study. a Chirp signal
with constant amplitude. b AR(1) process with variable parameter ρ. c
MIX process evolving from randomness to periodic oscillations. d

Logistic map signal. e Lorenz system with two different non-linear dy-
namics. Red corresponds to high power and blue corresponds to low
power (color figure online)
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BCentro deMagnetoencefalografia Dr. Perez-Modrego,” Spain.
Resting-state MEG activity was recorded from 36 patients with
probable AD [25] (24 women; age = 74.06 ± 6.95 years,
mean ± standard deviation; MMSE score = 18.06 ± 3.36) and
26 age-matched controls (17 women; age = 71.77 ± 6.38 years;
MMSE score = 28.88 ± 1.18). The subjects laid on a hospital
bed in a relaxed state with eyes closed. For each participant,
5 min of MEG resting-state activity was recorded at a sampling
frequency (fs) of 169.54 Hz. The signals were divided into
segments of 10s (1695 samples per channel) and visually
inspected using an automated thresholding procedure to discard
segments significantly contaminated with artifacts [26]. The
effect of cardiac artifact was reduced from the recordings using
a constraint blind source separation procedure. Finally, a band-
pass FIR filter with cutoffs at 1.5 and 40 Hz was applied to the
data. For more information about the dataset, please refer to
[27]. For each subject and each channel, we analyzed each
epoch of 10s individually and the average of results is reported.
Note that all control subjects and AD patients’ caregivers gave

informed consent for participation in the study, which was ap-
proved by the local Ethics Committee [27].

The intracranial EEG signals were recorded from five pa-
tients suffering from pharmacoresistant focal-onset epilepsy
leading to two main separate sets of signals. The first one
was recorded from brain regions where the primarily ictal
EEG recording changes were detected as judged by expert
visual inspection (Bfocal signals^). The second set of signals
was recorded from brain regions not involved at seizure onset
(Bnon-focal signals^). Each set includes five patients. Each
patient consists of 750 pair signals, and the length of each of
them was 10,240 sample points or 20 s. The sampling fre-
quency was 512 Hz. Each pair includes two EEG time series
which are recorded from adjacent channels which here we
consider the first time series. They also provided a subset of
the recordings containing the first 50 signals for each set. We
use this subset to evaluate the proposed methods. For more
information about the dataset, please refer to [28]. Before
computing the multiscale entropy approaches, all signals were
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Fig. 1 (continued)
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digitally filtered employing an FIR band-pass filter with cutoff
frequencies at 0.5 and 40Hz. Note that retrospective EEG data
analysis has been approved by the ethics committee of the
Kanton of Bern. Moreover, all patients gave written informed
consent that the obtained signals from long-term EEG might
be utilized for research purposes [28].

3 Results

3.1 Noise signals

First, we consider WGN and 1/f noise as two widely used
signals tested in multiscale entropy methods [8, 13]. The re-
sults for MSEμ, MFEμ, RCMSEμ, RCMFEμ, MSEσ, MSEσ

2,
MFEσ, MFEσ

2, RCMSEσ, RCMSEσ
2, RCMFEσ, and

RCMFEσ
2 are depicted in Fig. 2a–l, respectively. As it can

be observed in Fig. 2, for WGN, the entropy values of all
multiscale approaches, except MSEσ

2 and RCMSEσ
2, de-

crease monotonically with scale factor τ. However, for 1/f
noise, the entropy values become approximately constant over
larger-scale factors. These facts are in agreement with WGN
which only has structure in the shortest temporal scale, where-
as 1/f noise has structure across all scales [8, 13]. Note that
each error bar of each scale factor τ depicts the SD of the
results of 40 signals for each WGN or 1/f noise.

Comparing results obtained by MSEμ (Fig. 2a) and MFEμ
(Fig. 2b) shows, as expected theoretically, that the MFEμ leads
to a smaller variability in the results. Statistical tests confirmed
the smaller variability of the MFEμ results (p value ≤0.05) as
assessed with Levene’s test at τ = 60. In addition, the RCMSEμ/
RCMFEμ profiles have smaller SDs than MSEμ/MFEμ.

Although the MSEσ
2 values for WGN are larger than

1/f noise for scale factors 1 to 60, according to Fig. 2f, it
is predicted that this measure for WGN will become
smaller than those of 1/f noise for large enough scale
factors. For MSEσ and for scale factors 1 to 37, the larger
entropy values are assigned to WGN signal in comparison
with 1/f noise, while for scale factors larger than 37, the
SampEn values for 1/f noise are larger than those of
WGN, in agreement with the fact that 1/f noise is consid-
ered more structurally complex across multiple scales [9,
29]. Comparing the results shows that crossing between
WGN and 1/f noise does not happen at short levels of
scale factor for the coarse-graining process based on var-
iance and standard deviation, unlike the mean.

It should be added that the results obtained for parameter r,
used in [12], are similar to our results with r = 0.15 multiplied
by the SD of that time series, employed in [16].

In order to understand the importance of refined composite
technique on the basic multiscale entropy methods, we
employed the coefficient of variation (CV) defined as the
SD divided by the mean [30]. The main purpose to employ
such a measure is that the SDs of data may increase or de-
crease proportionally to the mean. Thus, the CV, as a standard-
ization of the SD, permits comparison of variability estimates
regardless of the magnitude of the variable [30]. We study the
results for 1/f noise and WGN signals at scale factor 20. As
can be seen in Table 1, the refined composite technique de-
creases the CV values of the basic multiscale approaches,
leading to more stable results.

The computation times of the conventional and proposed
multiscale sample and fuzzy entropy approaches with the
maximum scale factor 60 for theWGN signals with the length
of 40,000 sample points are demonstrated in Table 2. The
simulations have been carried out using a PC with Intel®
Xeon® CPU, E5420, 2.5 GHz, and 8-GB RAM by
MATLAB R2010a. The results show that FuzEn-based
methods are slower than SampEn-based ones and the refined
composite technique increases the computation time signifi-
cantly. The running times of the variance-based methods are
similar to those of the standard deviation-based algorithms.
Moreover, since the MSEσ

2, MSEσ MFEσ
2, MFEσ

RCMSEσ
2, RCMSEσ, RCMFEσ

2, and RCMFEσ start from
scale factor 2 and the computation cost of SampEn and
FuzEn is O(N2) [31], the running times of these kinds of al-
gorithms are noticeably smaller than those of the algorithms
based on coarse-graining with regard to the mean.

3.2 Sensitivity of multiscale methods to signal length

To evaluate the sensitivity of multiscale methods to the signal
length, we consider WGN and 1/f noise signals as functions of
sample points size C. Figures 3, 4, 5, and 6 respectively depict
the MSEμ, RCMSEμ, MFEμ, and RCMFEμ values for the

�Fig. 2 Mean value and SD of results of the a MSEμ, b MFEμ, c
RCMSEμ, d RCMFEμ, e MSEσ, f MSEσ

2, g MFEσ, h MFEσ
2, i

RCMSEσ, j RCMSEσ
2, k RCMFEσ, and l RCMFEσ

2 computed from
40 different 1/f noise test signals. Red and blue indicate 1/f noise and
WGN results, respectively

Table 1 The CV values of the proposed and classical multiscale
entropy-based analyses at scale factor 20 for 1/f noise and WGN

Signals MSEμ MFEμ RCMSEμ RCMFEμ

1/f 0.015 0.013 0.011 0.011

WGN 0.019 0.019 0.011 0.010

MSEσ MFEσ RCMSEσ RCMFEσ
1/f 0.023 0.023 0.017 0.016

WGN 0.022 0.020 0.020 0.015

MSEσ
2 MFEσ

2 RCMSEσ
2 RCMFEσ

2

1/f 0.026 0.025 0.017 0.016

WGN 0.015 0.018 0.010 0.010
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signal length 100, 300, 1000, 3000, 10,000, and 30,000 com-
puted from 40 different realizations ofWGN and 1/f noise. The
results show that the greater the value of C, the more robust the
multiscale entropy estimations, as seen from the error bars.

It has been suggested that the number of sample points is at
least 10m, or preferably at least 30m, to robustly estimate ap-
proximate entropy or SampEn in time series [32]. Because the
coarse-graining step reduces the times series length by the
scale factor τ, and here we have τmax = 10 and m = 2, the
original signal should have at least 1000 samples. As men-

tioned before, in SampEn, the number of instances where d

Ym
t1 ;Y

m
t2

h i
is smaller than a predefined tolerance r is counted.

If the length of a time series is too small, this number may be
0, leading to an undefined entropy measure. According to this
fact, the results obtained by MSEμ for C = 100 and 300,
respectively depicted in Fig. 3a, b, are undefined.

For RCMSEμ at scale factor τ, although the length of the
signal decreases τ times, we take into account τ time coarse-

grained signals, instead of only one signal as in conventional
multiscale entropy approaches [13]. Therefore, in refined
composite-based algorithms, we have τ times more number
of instances in comparison with their corresponding basic ver-
sions, leading to more reliable results, especially for short
signals. This fact can be seen in Fig. 4 in comparison with
Fig. 3. Although RCMSEμ outperforms MSEμ in terms of
reliability for short signals, RCMSEμ values for C = 100 and
C = 300 (Fig. 4a, b) are still undefined at some scale factors.

However, the FuzEn-based algorithms do not count
matches, yet consider all possible range of distances between
any two composite vectors. Therefore, MFEμ and RCMFEμ

avoid resulting in undefined entropy values in such situations.
The results obtained by the RCMFEμ (Fig. 6) have consider-
ably smaller SD values, especially for short signals, than those
obtained by MFEμ (Fig. 5).

3.3 Synthetic signals

To understand the effect of frequency on multiscale entropy-
based methods, we employed a sliding windowmoving along
each of the abovementioned synthetic signals. Then, for each
scale factor, the multiscale entropy-based method of that part
of the signal was computed. Because the length of the window
is 2000 sample points, we consider the scale factor from 1 to
15, to ensure the length of the coarse-grained signals is enough
for m = 2 [33].

For chirp signal with constant amplitude, the RCMFEσ,
RCMFEμ, MSEσ

2, and MSEμ results are respectively

Table 2 Computation time of the classical and proposed multiscale
sample and fuzzy entropy methods

MSEμ MFEμ RCMSEμ RCMFEμ
49.08 s 73.21 s 253.61 s 364.73 s

MSEσ
2 MFEσ

2 RCMSEσ
2 RCMFEσ

2

23.08 35.79 s 186.99 s 299.03 s

MSEσ MFEσ RCMSEσ RCMFEσ
22.94 s 34.92 s 189.24 s 282.62 s
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Fig. 3 MSEμ as a function of data length C, a C = 100, b C = 300, c
C = 1000, d C = 3000, e C = 10,000, and f C = 30,000 computed from 40
differentWGN and 1/f noise signals. The entropy values are undefined for

noise signals with the length of 100 and 300 at all and large-scale factors,
respectively. Red and blue demonstrate 1/f noise and WGN results, re-
spectively (color figure online)
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shown in Fig. 7a–d. When the time window is occupied at
the beginning of the signal, which has smaller frequency,
the FuzEn and SampEn values are low across all τ. As
expected theoretically, all the RCMFEσ, RCMFEμ,
MSEσ

2, and MSEμ values increase with higher frequen-
cies, which happens in later temporal windows (TWs). It
is worth noting that since the SD/variance, unlike the
mean value, of one single number is 0, the entropy

measure in the first scale factor is undefined. This fact
can be seen in Fig. 7a, c in comparison with Fig. 7b, d.

In Fig. 7e–h, it can be observed generally, using an AR(1)
process with variable parameter, that the entropy measures of
RCMFEσ, MFEσ

2, and MFEσ, unlike RCMFEμ, increase in
higher TWs in every scale factor.

Figure 7i–l respectively shows the results obtained by
RCMFEσ , RCMFEμ , MFEσ , and MFEμ using the
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Fig. 4 RCMSEμ as a function of data length C, a C = 100, b C = 300, c
C = 1000, d C = 3000, e C = 10,000, and f C = 30,000 computed from 40
differentWGN and 1/f noise signals. The entropy values are undefined for

noise signals with the length of 100 and 300 at all and large-scale factors,
respectively. Red and blue demonstrate 1/f noise and WGN results, re-
spectively (color figure online)
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Fig. 5 MFEμ as a function of data length C, a C = 100, b C = 300, c C = 1000, d C = 3000, e C = 10,000, and f C = 30,000 computed from 40 different
WGN and 1/f noise signals. Red and blue demonstrate 1/f noise and WGN results, respectively (color figure online)
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abovementioned MIX process. The entropy measures of all of
them decrease in higher TWs in every scale factor, showing
the evolution from randomness to periodic oscillations.

Figure 7m–p illustrates the results obtained by RCMFEσ,
RCMFEμ, MSEσ, and MSEμ, respectively, using the logistic
map which the parameter α changes linearly from 3.5 to 3.99.
The entropy measures, obtained by all of them, generally in-
crease along the signal, at each scale factor, except for the
downward spikes in the windows of periodic behavior. This
fact is in agreement with Fig. 4.10 (page 87 in [23]). It is also
supported by Fig. 1d which shows that the frequency of the
signal for t = 70–75 s is lower than for its adjacent time sam-
ples. In case of increasing scale factor, the RCMFEσ and
MSEσ results decrease, whereas the RCMFEμ and MSEμ re-
sults first increase respectively until τ = 2 and τ = 4 then
decrease. It shows that mean- and standard deviation-based
multiscale approaches, extracting different kinds of dynamical
properties of, respectively, mean and spread over multiple
time scales, lead to different kinds of features.

Using the Lorentz system, we find that RCMFEσ,
RCMFEμ, MSEμ, and RCMSEμ respectively shown in
Fig. 7q–t can distinguish two different non-linear dynamics.

3.4 Clinical datasets

We also assess the suitability of the RCMFEμ and RCMFEσ
methods to characterize AD in MEG signals. The profiles are
shown in Fig. 8. The average of RCMFEσ values for AD
patients is smaller than that for controls at all scale factors.
This is in agreement with [5, 34]. In contrast, the average of

RCMFEμ values for AD patients is smaller than that for con-
trols for only 1 ≤ τ ≤ 3.

False discovery rate (FDR)-adjusted [35] p values of a
Student t test assuming unequal variances for each MEG
channel and temporal scale factor to evaluate the differences
between the values of entropy for AD patients and controls are
shown in Fig. 8 in a logarithmic scale. The FDR-adjusted p-
values obtained by RCMFEμ, unlike those of RCMFEσ, ini-
tially increase and then decrease along the temporal scale fac-
tor for almost all channels.

We also classify the AD subjects and controls using a naive
Bayes classifier [36]. For each individual, 15 and 14 features
(temporal scale factors) are extracted by averaging the
RCMFEμ and RCMFEσ results across all channels, respec-
tively. We ran 200 repetitions of a tenfold cross-validation.
The average classification accuracies were 72.81 and
78.22%, respectively, for RCMFEμ and RCMFEσ. This
shows that, in this case, RCMFEσ features lead to higher clas-
sification accuracy than RCMFEμ ones. The classification
was done with the WEKA data mining software [37].

We also study the behavior of RCMFEμ and RCMFEσ in
focal and non-focal EEG time series. The error bars illustrat-
ing the distributions of the RCMFEμ and RCMFEσ values
computed from focal and non-focal EEG signals are shown
in Fig. 9a, b until scale factor 30. For each scale factor, the
average of entropy values of focal EEG signals is smaller than
that of non-focal ones. It illustrates that the non-focal EEG
recordings are generally more complex than the focal ones,
and it is in agreement with [28] and [38].

We adjusted the FDR independently for each of RCMFEμ

and RCMFEσ. The adjusted p values are depicted in Fig. 9c, d
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Fig. 6 RCMFEμ as a function of data length C, a C = 100, b C = 300, c C = 1000, d C = 3000, e C = 10,000, and f C = 30,000 computed from 40
different WGN and 1/f noise signals. Red and blue demonstrate 1/f noise and WGN results, respectively (color figure online)
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for RCMFEμ and RCMFEσ, respectively. The results show
that the RCMFEμ method achieves smaller adjusted p values

at scale factors 1–9, whereas the RCMFEσ algorithm leads to
smaller adjusted p values at scale factors 10–30,
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Fig. 7 Results of the tests performed to understand better diverse
multiscale entropy approaches and their interpretation. Relationships
between chirp signal with constant amplitude and a RCMFEσ, b
RCMFEμ, c MSEσ

2, and d MSEμ. Relationships between AR(1)
process with variable parameter and e RCMFEσ, f RCMFEμ, g MFEσ

2,

and h MFEσ. Relationships between the abovementioned MIX process
and iRCMFEσ, jRCMFEμ, kMFEσ, and lMFEμ. Relationships between
the logistic map and m RCMFEσ, n RCMFEμ, o MSEσ, and p MSEμ.
Relationships between Lorenz system with two different non-linear dy-
namics and q RCMFEσ, r RCMFEμ, s MSEμ, and t RCMSEμ
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demonstrating that when (RC)MFEμ at specific scale factors
cannot distinguish different kinds of dynamics, the
(RC)MFEσ may do so and vice versa.

We also applied the same classification scheme to distin-
guish the focal and non-focal signals. The average classifica-
tion accuracies were 71.58 and 79.62%, respectively, for
RCMFEμ and RCMFEσ. It again shows that the RCMFEσ

may lead to different or sometimes more useful information
for characterization of signals.

To compare the existing and proposed univariate
multiscale methods, we use FDR-adjusted p values for
focal versus non-focal signals as well as AD patients’

versus controls’ recordings. The results for scale factor
10 are shown in Table 3. The results demonstrate that
standard deviation-based methods discriminate two
groups for both the datasets better than variance- and
mean-based multiscale algorithms. The adjusted p values
show that for clinical filtered data, unlike noisy time se-
ries, the refined composite technique does not improve the
performance of the basic multiscale approaches notice-
ably. As the refined composite algorithm significantly in-
creases the computation times for these two clinical
datasets, the basic versions of multiscale methods are
preferable in this case.
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Fig. 9 Plots illustrating the mean ± SD (with error bars) of the a
RCMFEμ and b RCMFEσ values computed from focal and non-focal
EEG signals. Base-10 logarithm of the FDR-adjusted p values for the

differences in cRCMFEμ and dRCMFEσ at each temporal scale between
focal and non-focal signals
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Fig. 8 Plots illustrating the
mean ± SD (as error bars) of the a
RCMFEμ and b RCMFEσ values
for AD subjects and control
subjects. Base-10 logarithm of the
FDR-adjusted p values for the
differences in c RCMFEμ and d
RCMFEσ at each channel and
temporal scale between AD pa-
tients and controls
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4 Discussions

In this section, we discuss the results obtained by the existing
and proposed multiscale methods for noise and synthetic sig-
nals and clinical datasets.

4.1 Noise signals

The patterns for MFEσ and MFEσ
2 are similar to MSEσ and

MSEσ
2, respectively. However, as expected theoretically, the

SD ofMFEσ andMFEσ
2 values for each scale is comparative-

ly smaller than that of MSEσ and MSEσ
2 measures, respec-

tively. The FuzEn and SampEn for 1/f noise are larger than
those of WGN when 33 < τ and 42 < τ, respectively. It shows
another relative advantage ofMFEσ overMSEσ. Although the
curves for RCMSEσ and RCMSEσ

2 have smaller SDs than
MSEσ and MSEσ

2, respectively, for each scale factor, these
have larger SDs in comparison with RCMFEσ and RCMFEσ

2.
This fact confirms our theoretical expectation about RCMFEσ
and RCMFEμ producing the most stable results among these
12 multiscale entropy methods. In brief, FuzEn-based
multiscale methods are more stable than SampEn-based algo-
rithms. Furthermore, the refined composite coarse-graining
techniques improve the stability of MSE or MFE. In addition,
for 1/f noise and WGN time series, the multiscale methods
based on standard deviation may have better performance in
shorter temporal scales than those based on variance.

4.2 Sensitivity of multiscale methods to signal length

Using the fuzzy membership function and/or refined compos-
ite technique causes the RCMFEμ to become more reliable
and stable for short signals in comparison with the other
mean-basedmultiscale methods. Note that the results obtained
by variance- and standard deviation-complexity measures are
similar to Figs. 3, 4, 5, and 6, although like Fig. 2, the crossing
points are different. That is, we have similar advantages of

RCMFE methods based on standard deviation or variance
over their MSE, MFE, and RCMSE counterparts.

4.3 Synthetic signals

For the chirp signal with constant amplitude, the refined com-
posite multiscale entropy-based approaches, i.e., RCMFEσ

and RCMFEμ, are more stable than their basic counterparts
(MSEσ

2 and MSEμ). For the abovementioned AR(1) process,
results obtained by MFEσ and MFEσ

2 have similar patterns,
although MFEσ

2 is relatively more variable than MFEσ. As
expected theoretically, refined composite technique reduces
the variability of the results. For the aforementioned MIX
process, when the TW moves from a stochastic signal to pe-
riodic deterministic sequence, the entropy measures for all
these methods decrease. In addition, moving from τ = 2 to
τ = 15, the entropy measures decrease. Although all these
approaches generally demonstrate the same behavior, the
RCMFEσ and RCMFEμ results are more stable than their
corresponding basic counterparts.

For the abovementioned logistic map, the results again
demonstrate that mean- and standard deviation-based
multiscale approaches, extracting different kinds of dynamical
properties of, respectively, mean and spread over multiple
time scales, lead to different kinds of features.

The results obtained using the Lorentz system show that
although at smaller-scale factors the entropy measures for
RCMFEσ, RCMFEμ, MSEμ, and RCMSEμ are very low,
two different segments are distinguishable in larger-scale fac-
tors. This fact depicts the importance of multiscale entropy
methods and temporal scales, in comparison with basic entro-
py approaches having only scale factor 1, in signal processing.
As can be seen in Fig. 7q, t, the results obtained by the
RCMFEμ are more stable than RCMSEμ, and RCMSEμ re-
sults are more stable than MSEμ ones. It demonstrates the
importance of fuzzy entropy and refined composite algorithm
to improve the stability of the results.

4.4 Clinical datasets

For MEG dataset, the adjusted p values illustrate that the most
significant differences are seen around temporal scales 7–14
and 3–9 using RCMFEμ and RCMFEσ, respectively. It shows
that if a mean-based multiscale entropy cannot discriminate
two groups at specific scale factors, its corresponding standard
deviation-based one may be able to do so, and vice versa.

The profiles in Fig. 8 show increases in entropy for
RCMFEμ and RCMFEσ at scales 1–3 and 2–6, respectively.
This emphasizes the suitability of multiscale evaluations for
the assessment of biomedical data as these approaches man-
aged to reveal different dynamics associated with pathology
(AD in this case), despite previous claims by some authors
that the coarse-graining procedure in MSE had the

Table 3 The FDR-adjusted p values for focal versus non-focal EEG
signals and AD patients’ versus controls’ MEG recordings of the pro-
posed and classical multiscale entropy-based analyses at scale factor 10

Dataset MSEμ MFEμ RCMSEμ RCMFEμ

EEG data 2.33∙10−8 1.18∙10−8 2.21∙10−8 1.10∙10−8

MEG data 0.6601 0.1321 0.6464 0.1208

MSEσ MFEσ RCMSEσ RCMFEσ
EEG data 2.33∙10−10 1.70∙10−10 1.99∙10−10 1.38∙10−10

MEG data 0.0037 0.0035 0.0036 0.0028

MSEσ
2 MFEσ

2 RCMSEσ
2 RCMFEσ

2

EEG data 2.24∙10−9 1.07∙10−9 1.39∙10−9 1.77∙10−9

MEG data 0.0045 0.0052 0.0045 0.0051
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shortcoming that it tended to artificially decrease the entropy
values as a function of the time scale [39].

For focal and non-focal EEG dataset, since all EEG signals
were band-pass filtered between 0.5 and 40 Hz, there is no
relevant information left for analysis of frequencies higher
than 40 Hz. However, the frequency that corresponds to the
analysis of scale 1 is 512/2 Hz. This may be the reason why
SampEn is so low for short time scales.

It should be added that the entropy parameters used for
biomedical signals are exactly similar to those mentioned for
synthetic time series. We tested different r values from 0.05 to
0.2 for this kind of signals, and for all of them, the results had
similar patterns and the conclusions do not change when the
parameters are varied.

Note that in the MSE algorithm, we kept the value of r
fixed across temporal scales. Other authors suggested
recalculating the tolerance r at each scale factor separately
[14]. Using several physiological datasets, they found that
recalculating r produced similar results to those obtained by
not recomputing r, as in the original description of MSE pro-
posed by Costa et al. [9]. Considering that there was no evi-
dence of the fact that recomputing r for each scale improved
the results, we decided to keep r fixed so that we retained the
advantages of the original formulation of multiscale entropy
by which the entropy of WGN decreases with τ. (Note that
renormalizing r for each scale will lead to flatter MSE curves
for WGN, contrary to theoretical expectations.)

5 Conclusions

In this paper, we introduced the RCMFEσ and RCMFEμ,
extracting different kinds of dynamical properties (or features)
of spread and mean, respectively, over multiple time scales.
We illustrated the behavior of these multiscale entropy-based
approaches versus WGN, 1/f noise, several straightforward
concepts in signal processing, and two clinical datasets. The
results showed that MSEσ and MFEσ had better performance
to show the concept of complexity than, respectively, MSEσ

2

and MFEσ
2 for 1/f noise and WGN time series. The FuzEn-

based multiscale methods were more stable than SampEn-
based algorithms, and furthermore, the refined composite
technique noticeably improved the stability of the basic
MSE and MFE methods. The proposed methods alleviated
the problem of undefined MSE and RCMSE values for short
signals. The classification results, obtained using simple clas-
sification methods, showed that RCMFEσ-based features lead
to higher classification accuracies in comparison with the
RCMFEμ-based ones. The results also illustrated that when
the (RC)MFEμ, as a signal-dependent method, cannot distin-
guish different types of dynamics of a particular signal, the
(RC)MFEσ may do so, and vice versa. We expect that our

developments will find applications in physiologic and non-
physiologic studies to distinguish different kinds of dynamics.
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Appendix

The codes for our analysis, including SampEn, FuzEn,MSEμ,
MFEμ, RCMSEμ, RCMFEμ, MSEσ

2, MFEσ
2, RCMSEσ

2,
RCMFEσ

2, MSEσ, MFEσ, RCMSEσ, and RCMFEσ, are
available at http://dx.doi.org/10.7488/ds/1477.
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