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Tiivistelmä 

Selluloosa on maailman yleisimmin esiintyvä biopolymeeri ja sen rakennetta voidaan hyödyntää 

useissa eri käyttökohteissa, kuten paperi- ja kartonkiteollisuudessa, tekstiiliteollisuudessa sekä sen 

derivaattoina, kuten selluloosa asetaattina, -eettereinä tai -estereinä, esimerkiksi 

lääketeollisuudessa ja pakkausmateriaaliteollisuudessa. Selluloosan hyödyntäminen korkean 

vaatimustason kohteissa kuitenkin vaatii kuidun liuottamisen, jotta rakennetta voidaan uudelleen 

regeneroida. Selluloosan liuotus on haasteellista, koska sen rakenne koostuu vuorottelevista 

kiteytyneistä ja kiteytymättömistä vyöhykkeistä, rakenteessa on vahvoja vetysidoksia 

polymeeriarkkien sisällä ja lisäksi, polymeeri sisältää sekä hydrofiilisiä että -fobisia päitä. Tästä 

syystä selluloosa vaatii joko rakenteen muokkaamista derivoinnin avulla tai muuten kuitujen 

avaamista ja reaktiivisuuden lisäämistä esimerkiksi entsymaattisesti. 

 

Työn tarkoituksena oli verrata eri aktivointimenetelmiä ja raaka-aineita, ja kuinka nämä 

vaikuttavat liuoksen reologiaan ja stabiiliuteen, joka on merkittävä tekijä liuosta prosessoitaessa 

esimerkiksi kuiduiksi tai filmeiksi. 

 

Kirjallisuusosuus käsittelee selluloosan rakennetta, eri aktivointimekanismeja ja liuotusta, sekä 

siihen vaikuttavia tekijöitä. Lisäksi teoriassa on lyhyesti käyty läpi regeneroitavuuteen ja 

reologiaan vaikuttavia tekijöitä. Kokeellinen osuus työssä sisälsi eri tavoilla esikäsiteltyjen 

selluloosamassojen liuotukset, jonka jälkeen tutkittiin näiden käsittelyjen vaikutusta liukoisuuteen 

ja liuoksen stabiiliuteen. 

 

Referenssimateriaalina toiminut viskoosi oli selkeästi parhaiten liuennut liuos ja käyttäytyi 

odotetusti, geeliytyen noin viiden päivän kuluttua. Tärkeimpiä tuloksia työssä oli entsymaattisen 

esikäsittelyn positiivinen vaikutus liuoksen pysyvyyteen, liuoksen pysyessä stabiilina viskoosia 

pidemmän ajan. Lisäksi voitiin todeta, ettei yhteneväisiä olosuhteita voi käyttää eri raaka-aineille 

vaan prosessi tulee optimoida jokaisen selluloosamassalle kullekin erikseen. 
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Abstract 

Cellulose is the most abundant biopolymer on earth and it is a versatile building block for multiple 

purposes, for example in paper, board and textile industries, and as its derivative form, such as 

cellulose acetate, ethers or esters, it can be exploited for example in pharmaceuticals and 

packaging. However, utilization of cellulose in high performance purposes requires its dissolution, 

in order to enable the regeneration of the structure. Cellulose dissolution is challenging due to the 

semi-crystalline structure, tight hydrogen bonds within the polymer sheets and the structure with 

both hydrophilic and hydrophobic heads. For this reason, cellulose structure first needs to be 

altered through derivatization or otherwise increasing its accessibility, for example by means of 

enzyme treatment prior to dissolution. 

 

The aim of the study was to compare different activation mechanisms and raw materials, and 

examine how these factors affect the solution rheology and stability. The latter is a significant 

factor affecting processability of the solution in regeneration of the solution into a form of fibres 

or films. 

 

Literature part covers chapters of cellulose structure, different activation mechanisms and 

dissolution, as well as factors affecting it. Additionally, theory shortly discusses of the features 

affecting regeneration and rheology of solution. Experimental part consists of dissolving cellulose 

pulps with different pretreatments, after which, solutions are examined in means of solubility and 

stability. 

 

As a reference material, viscose performed as expected, exhibiting the highest level of dissolution, 

and gelled after around five days. Most importantly, enzyme-treated cellulose exhibited positive 

effect on solution stability, remaining processable longer that viscose. It was also concluded that 

consisted process conditions cannot be applied for different raw materials without optimizing the 

process for each raw material individually. 

 

 

 

Keywords cellulose, activation, dissolution, sodium hydroxide, solubility, stability, viscosity, 

rheology 
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Symbols and units 

 

G  Gibbs energy [J] 

G’  storage modulus [Pa or mPa] 

G’’  loss modulus [Pa or mPa] 

H  enthalpy 

K constant in Mark-Houwink’s equation, dependent on the 

solvent, polymer and temperature 

N  number of pixels 

S  entropy 

T  temperature [K, °C] 

T%  light transmittance percentage 

c  concentration [wt%] 

α constant in Mark-Houwink’s equation, dependent on the 

solvent, polymer and temperature 

γ strain 

η  viscosity [mPa·s] 

[η]  intrinsic viscosity [mL g-1] 

∆  change 

Σi Σj M  sum of the matrix of pixels  
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Terminology 

 

Alkaline solution a solution with a pH higher than 7 

Allomorph  crystalline mode of cellulose (Iα, Iβ, II or III) 

Amorphous  non-ordered region of cellulose 

Amphiphilic  a molecule having both hydrophilic and hydrophobic heads 

Anhydroglucose the most simple repeating unit of cellulose chain 

Biocelsol technology that applies enzymatic treatment for increasing 

cellulose solubility into aqueous alkali 

Covalent bond a chemical bond that involves the sharing of electron pairs 

between atoms 

Crystalline  ordered region of cellulose 

De-crystallization a breakdown of a solid, crystalline structure 

Degree of polymerization for cellulose, a number of anhydroglucose units 

Degree of substitution average number of substituent groups attached per base unit (e.g. 

carbamate groups in anhydroglucose unit) 

Cellulose derivatization increasing solubility of cellulose by adding functional groups to 

the structure (e.g. xanthation or carbamation) 

Elasticity ability of a matter to resume its normal shape after being stress 

Enthalpy  total heat energy of a system 

Entropy quantity of system’s unavailable thermal energy for conversion 

into mechanical work 

Gelation a solution phenomenon in which polymers start to aggregate into 

a form of network that is trapped within a liquid (usually as a 

function of temperature or time), and most often phenomenon is 

irreversible 

HefCel technology to prepare microcrystalline cellulose with high dry 

matter content 

Hydrophilic  attracted to water molecules 

Hydrophobic  repellent to water molecules  

Hydroxyl group a functional group with oxygen bonded to hydrogen 

Intercellular  occurring between cells 

Intracellular  occurring within a cell or cells 

Intrinsic viscosity measure of a solute’s influence to the viscosity of a solution 

Light transmittance an effectiveness in transmitting radiant energy 
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Mercerisation cellulose activation method through swelling with sodium 

hydroxide 

Morphology arrangement of microfibrils and interstitial spaces in relation to 

the cell wall 

Open time time gap for modifying properties of a solution in a process 

(related to solution stability) 

Polar solvent solvent with large dipole moments, contain bonds between 

atoms with very different electronegativities 

Reactivity  accessibility of chemicals to the cellulose structure 

Recalcitrant an tenaciously uncooperative attitude towards solubility 

Regeneration reshaping crystallinity mode of cellulose structure from native I 

(parallel) to II (antiparallel) 

Rheology  deformation and flow of matter 

Supramolecular crystal and molecular structure and hydrogen bonding -system 

of cellulose 

Thermoplastic material that becomes mouldable at elevated temperature and 

solidifies upon cooling 

Thixotropic time-dependent shear thinning property in which solution 

becomes fluid when agitated but exhibits solid-like behaviour in 

rest 

Twin-screw extruder device used for extensive mixing, compounding, or reacting 

polymeric materials 

Viscose  a man-made cellulose based fibre 

Viscosity a measure of a resistance to deformation when force is applied 

(e.g. syrup has a relatively high viscosity) 
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Abbreviations 

 

AGU  anhydroglucose unit 

AlkOx  Alkali-oxygen treatment 

ASTM  American Society for Testing and Materials 

CCA  cellulose carbamate 

CH4N2O  urea 

CS2  carbon disulphide 

DP  degree of polymerization 

DPv  viscometric average degree of polymerization 

DS  degree of substitution [mol substituent per mol AGU] 

H-bond  hydrogen bond 

H2O2  hydrogen peroxide 

H2SO4  sulphuric acid 

ISO  International Organization for Standardization 

NaOH  sodium hydroxide 

NH4Cl  ammonium chloride 

OH-bond  hydroxide bond 

STD.DEV.  standard deviation 

TCF  totally chlorine-free 

ZnO  zinc oxide 
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1 Introduction 

 

The objective of the study is to compare alkaline cellulose dissolution mechanisms and their 

effects on the solution rheology over time. 

 

Soft cotton fibre around the cotton seed was discovered thousands of years ago and is the most 

used fibre material in modern textile industry. It is one of the cellulosic plant based materials 

that can be spun into a yarn without using any chemical regeneration, which makes it a 

desirable fibre material. (Olsson & Westman 2013; Woodings 2001.) However, cotton 

cultivation requires substantial amounts of irrigation and pesticides to grow profitably 

(Bevilacqua et al. 2014; Olsson & Westman 2013). Whilst cotton has a high water-demand, it 

is also extremely sensitive to both excess rains and humidity. Therefore, most of the cotton 

cultivation is performed in arid lands, where excess moisture is not an issue and irrigation can 

be provided in a controlled manner. (Clay 2004) Using the limited clean water resources of 

dry areas for textile yarn cultivation, instead of food cultivation, can be seen as a socially 

questionable practice, which also leads to further drying of the land. Additionally, high 

amounts of pesticides used in the cultivation can further leach to groundwater and fresh waters 

from the field or through wastewaters, posing a potential risk to the environment and human 

health (Clay 2004). Renouncing pesticides is not that straightforward either, as cultivation of 

organic cotton has even higher water consumption during growth seasons (Clay 2004). 

 

Polyester, acrylic, polyethylene and other materials derived from fossil-based petroleum 

(Woodings 2001; Morgan 2006), have been promising fibre and film material options, because 

of their good thermoplastic properties and durability as well as good moisture and oxygen 

permeability (Lange & Wyser 2003). Nevertheless, the problem of these materials is their 

fossil-based origin, which raises serious environmental concerns. Also, the issue with release 

of micro-plastic particles during the use and washing of clothes (Hernandez et al. 2017) and 

from degradation of disposable plastic films (Klein et al. 2018) has been discussed lately. 

 

In addition to cotton processing and petroleum-based polymers, a typical plant-based fibre and 

film processing technique has been viscose production, which mostly utilizes wood cellulose. 

Viscose process is these days questioned, due to the use of carbon disulphide in the process. 

Carbon disulphide is a hazardous chemical from both occupational and environmental aspects. 

(Liebert 2010; Abadin & Liccione 1996.) Hazards in the use of carbon disulphide could be 
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mitigated with emission control, but most of the viscose plants are located in China (Chen et 

al. 2016), where the environmental regulation and resources are still limited. 

 

Alternative cellulose dissolution processes, without the use of hazardous chemicals, have been 

developed to compete with viscose process. For example, the conversion of cellulose into 

alkali soluble cellulose derivative, cellulose carbamate (CCA), is one route for producing 

regenerated cellulose fibres like viscose, but without the use of hazardous chemicals. The 

structure of cellulose is altered into a form that is soluble in a mild alkali solution with the 

assistance of urea, which is considered as a non-toxic and inexpensive additive. (Woodings 

2001; Liebert 2010.) Another highly promising process is Biocelsol technology, which utilizes 

enzymes and mechanical treatment for increasing active surface area, thus, making it soluble 

in mild alkali solution (Vehviläinen 2015). 

 

The European Commission set a directive ((EU) 2018/851) obligating its Member States to 

organize a selective collection of textile waste by the year 2025 (Ministry of the Environment 

2017). Due to this, recycling of textile materials for varying purposes has also been a research 

field of increasing interest. The versatility of different materials and their origins, ranging from 

natural fibres to petroleum-based and to regenerated fibres, was previously an issue in the 

textile recycling (Sandin & Peters 2018). At present, recirculation of raw materials has been 

made possible, for example, by a selective dissolution, in which the desired particles are 

dissolved into the solution whereas the rest can be filtered for disposal or other purposes 

(Sandin & Peters 2018). There is a high and constantly growing amount of recyclable textile 

material formed annually, but the recycling rate, collection and handling processes are not 

keeping up the pace. Simultaneous development of all value chain processes is required to 

make the ends meet. Nevertheless, even if recycling of textile materials was optimized to its 

full potential, it still might not eliminate the need of virgin raw materials for textile production. 

(Dahlbo et al. 2017.) Furthermore, recycling of fibres often leads to downcycling, which 

means, for example, converting textiles into downgraded products such as industrial rags, low-

grade blankets or insulation materials (Schmidt et al. 2016). Therefore, virgin material is still 

needed to fill the gap in textile demand. 

 

As the level of knowledge on hazardous substances and environmental consciousness has 

increased, there is a need to develop fibre and film processes, which are economically 

profitable, non-polluting, and easily processable. At this moment, viscose is the dominant 

cellulose fibre produced with wet-spinning process. The success is based on reasonably high 
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solubility of applied cellulose xanthate and modifiers improving fibre’s mechanical properties. 

This work compares alternative alkaline processes and different cellulose raw materials in 

respect of their ability to produce high quality solution to be applied in wet-spinning process. 

This is described in terms of rheological properties and related open time of the dope. 

 

In order to optimize cellulose regeneration processes, more information on stability, as in 

means of rheology, is needed. This factor is an important knowhow that affects the 

processability of cellulose both in continuous and batch-based processes. Stability and 

processability of the dissolved dope determine, for example, how long time there is to remove 

or alter disturbance factors of the process in an industrial scale. Therefore, this study focuses 

on the ratio of viscosity and elasticity, and how that ratio changes as a function of time. 



14 

 

I Literature part 

 

2 Cellulose - the most abundant biopolymer on earth 

 

Cellulose is a biobased polymer, appearing in all plants, both in herbaceous and woody, as 

well as in small tunicates living in aquatic environment, and extracellularly in some bacteria 

(Sixta 2006, 23-24). Highest quantities of cellulose are found in secondary walls of higher 

woody plants, where it is tightly bonded with lignin, hemicelluloses and pectins (Sjöström 

1993, 12). Various cellulose resources grow annually to the extent of 1500 milliard tons, which 

makes it, without a doubt, the most abundant biopolymer on earth. Cellulose is a raw material 

for various products in board, paper and textile industries. Its derivative forms, include 

cellulose acetate, ethers and esters, which are used, for example in fields of pharmaceuticals, 

construction, paints and packaging. Cellulose is a versatile building block, which makes it a 

desirable material for both bulky and high performance purposes. (Olsson & Westman 2013, 

143.) 

 

Cellulose has some special characteristics, including that it is amphiphilic (i.e. having both 

hydrophobic and hydrophilic heads), it has a chiral structure and broad chemical modifying 

capacity. Furthermore, it is capable of transforming between different crystalline 

morphologies, which exhibit varying properties (Ciolacu & Popa 2010, 5-28; Olsson & 

Westman 2013, 152). Properties of cellulose depend on the molecular weight distribution, 

length of the polymer chain, purity, as well as its supramolecular and morphological structure. 

Supramolecular structure is used as a term in the discussion of crystal and molecular structure 

and hydrogen bonding -system of cellulose, while morphology refers to the arrangement of 

microfibrils and interstitial spaces in relation to the cell wall. (Wertz et al. 2010, 87.) 

 

2.1 Molecular structure 

Cellulose is a polysaccharide, consisting of carbon, oxygen and hydrogen atoms, and its most 

simple repeating unit is anhydroglucose (AGU), which is more commonly known as D-

glucose. The molecular structure of cellulose is presented in Figure 1. The AGU units are 

linked to each other with β-1,4-glucosidic bonds that rotate 180 degrees in respect to each 

other and this forms cellulose chains. (Sixta 2006, 24.) Lengthwise, 36 of these cellulose 

chains form bundles, which are held together by hydrogen (H) bonds, and these are called the 



15 

 

elementary fibrils (Sjöström 1993, 12.) These fibrils have alternating regions of ordered 

(crystalline) and disordered (amorphous) structures (Ciolacu & Popa 2010.) 

 

 

Figure 1. Molecular structure of celluloses repeating units with its reducing and non-reducing ends, based on 

Olsson & Westman 2013, 149. 

 

Repeating AGU units of cellulose have three hydroxyl (OH) groups attached in them: 

secondary ones on C2 and C3 and the primary group on C6. These may be considered as the 

active sites of the molecule, since they are able to undergo all reactions typical for primary 

and secondary alcohols, provided that energy needed for the reaction is present. Furthermore, 

the longer the polymer chain is, the more recalcitrant it is for reaction. (Sixta 2006, 24.) 

 

The rotational alternation of AGU unit arrangements, C6 set to up or down, impacts on the 

hydrogen (H) bonds, which further determine the crystallinity of the cellulose metastructure 

(Nishiyama et al. 2002). The strong intramolecular H-bonds provide cellulose with its natural 

stiffness and, thus arrange the linear polymers into tight sheet structures. The aforementioned 

sheets connect to each other by hydrophobic interactions (van der Waals bonds) into different 

allomorphs of cellulose polymer: native Iα or Iβ, regenerated II, or IIII or IIIII. (Olsson & 

Westman 2013, 149-150.) The structure model of cellulose polymer, as we know it now, in 

which molecules are attached to each other by covalent bonds, was discovered by Hermann 

Staudinger in 1920s and he received a Nobel prize for this work in 1953 (Olsson & Westman 

2013, 145). 

 

As said, allomorphs Iα and Iβ are native and cellulose chains in these run parallel, and these 

two allomorphs always coexist in the fibre. Allomorph II instead runs antiparallel and is 

irreversibly a result of regeneration or alkaline treatment and thus, the most stable. This 

polymorph is the most desired in textile industry due to its silky texture. Forms IIII and IIIII 
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can be received either from Iα/Iβ or II and are resultants of liquid ammonia or diamine 

treatments. (Langan et al. 2001) 

 

In one end of the cellulose polymer, the anomeric carbon is involved in a glucosidic bond. 

This end is more commonly known as a non-reducing end of a sugar polymer. In the other 

end, the anomeric carbon is free to convert into an aldehyde, and these two states are in 

equilibrium. This end is the reducing end of the sugar. (Olsson & Westman 2013, 149-150.) 

The reducing and non-reducing ends of cellulose chains results as a chemical polarity, which 

makes it especially difficult to dissolve. (Ciolacu & Popa 2010, 2-3) 

 

2.2 Degree of polymerization 

The lengths of cellulose polymer chains vary depending on the source and the treatment it has 

gone through. Molecular weight distribution and branching of cellulose is noticed to have a 

major influence on properties of the polymer, such as solubility. (Olsson & Westman 2013, 

145-146.) For this reason, degree of polymerization is an important factor when planning, for 

example, dissolution experiments. Number of repeating AGU units in a consistent cellulose 

polymer chain, determines the degree of polymerization (DP) (Olsson & Westman 2013, 150). 

 

Elmer O. Kraemer (1938) studied the intrinsic viscosity of celluloses, originating from 

different sources, and cellulose derivatives in relation to their molecular weights. He 

discovered that there lies a simple relation between the two when suitable solvents are used. 

He also observed that there is high variation in molecular weights of different cellulosic 

materials and that the heterogeneity is not discontinuous character as was believed by some 

researchers. Kraemer (1938) found that DP of purified cotton linters (the pure cellulose around 

the cotton seed) varies usually from 1000 to 3000, whereas the native wood cellulose molecule 

is at least 10 000 glucose units (Sjöström 1993, 12). Kraemer (1938) also noticed that chemical 

modification of wood, for example by pulping, lowers the degree to 600-1000 and DP of 

commercial regenerated celluloses, such as viscose fibres, is usually as low as 200-600. 

 

Mark-Houwink equation (1) can be used to determine the DP as it gives a relation between 

intrinsic viscosity value and DP (IUPAC 1997). The viscometric average degree of 

polymerization (DPv) can be calculated according to following: 
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[𝜂] = 𝐾 · 𝐷𝑃𝛼    (1) 

 

where [η] intrinsic viscosity [mL g-1] 

K 1.33, constant (depends on the solvent, polymer and 

temperature) 

 DP molecular weight 

α 0.905, constant (depends on the solvent, polymer and 

temperature) 

 

3 Cellulose pulping 

 

Cellulose pulping is separation of lignocellulosic material into two or three separate streams 

of cellulose, lignin and hemicellulose. Pulping is carried out to result fibrous cellulose mass, 

called pulp. Lignocellulosic material can be processed into pulp by chemical or mechanical 

treatment, or by a combination of the two. Mechanical pulping can be for example temperature 

or pressure accelerated. Traditional chemical pulping is degradation of lignin into cooking 

liquor with assistance of elevated temperature which simultaneously causes some cellulose 

and hemicellulose degradation as well. Bleaching is usually carried out to remove any residual 

lignin. (Sixta 2006, 109-110.) 

 

3.1 Dissolving pulp 

The production of dissolving pulp differs from regular pulping by an additional pre-treatment 

step, such as acidic pre-hydrolysis or cold caustic extraction. The aim in pretreatment is to 

separate hemicellulose from fibres in the early stage, thus reducing the amount of 

hemicellulose as low as possible in resulting pulp. Dissolving grade pulp has a high alpha-

cellulose content, high accessibility, relatively narrow molecular weight distribution, low 

degree of microfibril aggregation and high porosity. These qualities makes it one desirable 

option of wood-based cellulose grades for transforming the cellulose for multiple products, 

such as viscose and cellulose esters and ethers. (Sixta 2006, 1022; Chen et al. 2016.) 
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3.2 Alkali-oxygen treatment (AlkOx) 

A two-stage alkali-oxygen assisted liquid hot water pretreatment, AlkOx in short, is a biomass 

fractionation technology that is used to convert cellulosic raw materials, such as birch chips, 

into separate streams of cellulose, lignin and hemicellulose by a selective removal and 

oxidative modification. The two-stage process is initiated with hot-water extraction, which is 

followed by grinding and alkaline cooking in presence of sodium carbonate. After pulping, 

mass is screened in order to remove unfractionated particles and bleached to remove any 

residual lignin. Bleaching consists of cold alkaline extraction, ozone bleaching, hydrogen 

peroxide bleaching, and lastly, acid washing. (VTT 2014; Siika-aho et al. 2015; Servaes et al. 

2017.) Unlike common pulping processes, such as kraft pulping, AlkOx is not initiated with 

existence of sulphuric compounds. Instead, AlkOx operates by solubilising majority of lignin 

in water-soluble fraction, while the insoluble fraction is left with majority of water-insolubles, 

such as cellulose and hemicellulose. Additionally, AlkOx method is suitable to be applied for 

various cellulose sources, such as birch and spruce (Kallioinen et al. 2013). 

 

3.3 Organosolv cooking 

Organosolv cooking is another efficient way to fractionate cellulose, lignin and hemicellulose 

into each separate stream, and it is more environmentally benign option for traditional pulping 

methods. Organosolv cooking applies mixing lignocellulosic biomass, water and several 

different organic solvents, such as formic acid, and cooking the mixture. As a consequence, 

lignin and hemicelluloses are deconstructed and dissolved in cooking liquor. Separation of 

lignin can be carried out by precipitating it with water. Method usually results three high purity 

streams of cellulose pulp, lignin as a solid precipitate and hemicellulose rich liquid. (Sundquist 

& Poppius-Levlin 1989; Nitsos et al. 2017) 

 

4 Modification of cellulose structure 

 

Cellulose has some desirable characteristics, such as the durable and relatively strong 

structure, but this has a negative effect on plasticity. The issue with cellulose modification is 

that it does not melt but decomposes at elevated temperatures. Therefore, in order to modify 

the shape of cellulose, it should first be transformed from solid state to liquid, by either 

dissolution or other chemical modification. Different methods are provided, but they all have 
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a shared interest to add functionality to the reactive OH-sites and preferably, with a controlled 

degree of substitution. (Olsson & Westman 2013, 144.) 

 

4.1 Activation of cellulose 

Cellulose does not dissolve in water and is extremely recalcitrant to dissolve in any traditional 

polar solvents, due to the semi-crystalline structure, tight H-bonds within the polymer sheets 

and the structure with both hydrophilic and hydrophobic heads. In order to make the 

dissolution possible for further processing, cellulose structure needs to be altered through 

derivatization or activation. (Lindman et al. 2010; Ciolacu & Popa 2010; Wei et al. 2008.) 

 

Cellulose fibres have regions alternating in ordered crystalline and disordered amorphous 

domains. This type of two-phased alternating structure dominates the physical and chemical 

properties of cellulose molecules and especially the accessibility and reactivity are affected by 

this. Most solvents enter only the amorphous regions and set on the surface of crystalline 

regions, thus leaving the crystalline domains undisrupted. Therefore, accessibility of cellulose 

must be increased by either swelling or de-crystallization of the fibre by mechanical, chemical 

or enzymatic modification. (Ciolacu & Popa 2010; Fink et al. 1995.) 

 

Swelling or de-crystallization enlarges the pores, which disrupts the tight interfibrillar H-bonds 

within the cellulosic material by breaking them and thus, appears as an increase in reactivity 

of the surface. The higher reactivity further facilitates, as the number of solvent accessible 

OH-sites increases. The more accessible OH-sites there are in the cellulose polymer chain, the 

more soluble it is towards the solvent in question. (Ciolacu & Popa 2010; Fink et al. 1995.) 

Nevertheless, solvent does not enter these free OH-sites if it is not chemically compatible with 

cellulose or cellulose derivative polymer, meaning that there has to be a good coordination 

between cellulose polymer and solvent polymer (Olsson & Westman 2013, 148). 

 

Mercerisation of cellulose with NaOH is one way to swell the fibre and it is used to activate 

the OH-groups of cellulose for further modification or dissolution. The method was discovered 

by John Mercer and patented in 1850. The principal in mercerisation is to expose fibres to 

strong alkali conditions, which makes the alkali of the solution act on the cell wall morphology, 

loosening the strong hydrogen bonds between cellulose chains, and change crystalline 

structure of cellulose from native I to allomorph II. The alkali solution penetrates first to 

amorphous regions of the fibre and forces the fibre to swell. After amorphous regions are 
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disrupted, they tend to be mobile and disperse. After interfering with amorphous regions, 

crystalline regions of cellulose structure are disrupted. (Zhang et al. 2012; Friebel et al. 2019.) 

 

4.1.1 Xanthation 

Mercerisation is an essential step of viscose process as an activation method prior to 

xanthation. Mercerisation decreases the crystallinity making cellulose more accessible for 

latter derivatization. (Friebel et al. 2019.) 

 

Prior to dissolution, cellulose is converted to cellulose xanthate by substituting H-atom in one 

or more reactive OH-group, principally in C2 and C3 as these are thermokinetically more 

favourable, with xanthate group (Figure 2). Derivatization is proceeded by using carbon 

disulphide (CS2) in aqueous NaOH. (Liebert 2010) 

 

 

Figure 2. Cellulose xanthate, the derivative formed during the viscose process, from Liebert (2010). 

 

Latter step is to dissolve the cellulose derivative, cellulose xanthate, in aqueous NaOH 

producing a viscous liquid, called viscose (Woodings 2001, 47-48). Viscose dope is used to 

prepare films and fibre filaments by precipitating it in sulphuric acid bath, which alters the 

structure back to pure, regenerated cellulose fibres with crystalline form of cellulose II (Liebert 

2010). 

 

Major disadvantage of viscose process is the use of CS2, which is a hazardous neurotoxin 

causing danger of explosion and high security risks (Abadin & Liccione 1996), in the 

activation of the cellulose. Also, by-products are formed during the process, which require that 

air and water streams must be sufficiently purified to meet today’s regulations. (Liebert 2010; 

Olsson & Westman 2013, 144-145.) 
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4.1.2 Carbamation 

Cellulose carbamation is a commercial alternative for xanthation in viscose production and it 

does not require using any hazardous chemicals, such as CS2. 

 

Cellulose carbamation process relies on utilization of urea as an additive to prepare cellulose 

carbamate derivative, which is soluble in aqueous alkali (Liebert 2010). Cellulose carbamate 

(CCA) was a result of a long development project, aiming to find a solution for the problem 

of hazardous chemicals used in traditional viscose process. CCA is a multifunctional cellulose 

derivate, which can be processed into a form of textile fibres, films, membranes as well as 

foams, by avoiding the utilization of harmful chemicals, such as carbon disulphide. (Woodings 

2001; Liebert 2010.) Some of the advantages in CCA are that it is economically viable for the 

use of urea in derivative step and the processing of CCA can be also applied to an already 

existing viscose production equipment (Olsson & Westman 2013, 144-145). Besides the 

absence of hazardous chemicals in the production, CCA has a major benefit also in the 

storability in its derivative stage. CCA is dry, rather stable material and can be stored for a 

relatively long time, unlike cellulose xanthate, and this is a feature that makes it superior when 

compared to cellulose xanthate. Thus, CCA can be transferred to another deposit prior its 

dissolution step, and for this reason, the operation is not needed to be continuous. (Woodings 

2001; Liebert 2010.) 

 

Production of dissolved cellulose through CCA derivative relies on adding carbamate groups 

into celluloses reactive OH-sites by treating cellulose with urea (CH4N2O). This step is called 

carbamation and it is applied to increase celluloses solubility prior to the dissolution in alkali 

solution. Conversion of molecular structure of cellulose to cellulose carbamate (CCA) is 

presented in Figure 3. (Woodings 2001, 19; Olsson & Westman 2013, 144-145.) 

 

 

Figure 3. Treating cellulose structure with urea (CH4N2O) in aqueous NaOH results cellulose carbamate (CCA), 

in which one or more H-atom is replaced with a carbamate group (CH2NO2), from Liebert (2010). 
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Dissolved cellulose carbamate can be spun into fibres either with assistance of sulphuric acid, 

aqueous sodium carbonate, or alcoholic solution, and it results pure cellulosic fibres similar to 

viscose (Liebert 2010; Olsson & Westman 2013, 144-145). Modification and further 

regeneration of cellulose through CCA derivative is noted to have lower environmental impact 

as well as lower energy consumption, than through cellulose xanthate in viscose process 

(Paunonen et al. 2019). 

 

4.1.3 Biocelsol technology 

Biocelsol technology is another non-hazardous cellulose activation alternative but it is not yet 

commercial. Biocelsol technology is a process in which cellulosic raw material (e.g. dissolving 

grade pulp) is modified by cellulase enzymes and there after dissolved in water-based solvent. 

The solution can be regenerated into fibres by wet-spinning technique. (Vehviläinen 2015.) 

 

In Biocelsol process, moist dissolving pulp is treated with enzymes and grinded mechanically 

in a twin-screw extruder (Grönqvist et al. 2015). The mechanical grinding improves the 

accessibility for enzymes by increasing the porosity of cellulose fibres. The treatment results 

in a controlled decrease in cellulose DP and increased porosity, which benefit the following 

dissolution (Grönqvist et al. 2014; Grönqvist et al. 2015). 

 

4.1.4 HefCel technology 

HefCel treatment is a cost-efficient technology to produce cellulose nanofibrils at high 

consistency (30-40%) and resulting fibrillated material that is not gel-like. The technology is 

based on enzymatic treatment of cellulose with an optimized composition of different 

cellulases enzymes and with the tailored enzyme mixture, extensive hydrolysis is not needed 

to break down the cellulose into nanofibrils. This is the main benefit of HefCel treatment, thus 

resulting nanoparticle sized cellulosic material with high dry matter content. (Kangas & Pere 

2016) The main difference between two enzymatic treatments of Biocelsol and HefCel is that 

in Biocelsol the enzyme used increases the cellulose activity by opening the pores of the fibre, 

thus enhancing the solubility, whereas in HefCel treatment the enzymes target to break down 

the ordered crystalline and non-ordered amorphous regions into microcrystalline cellulose. 

Small size of the particles provides a wider area for the solvent polymers to react with the 

molecule of cellulose, greater surface area means increase in reactivity. 
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4.2 Dissolution and solubility 

Dissolution of cellulose is a prerequisite for cellulose regeneration. In dissolution, the solvent 

disrupts the intra- and intermolecular connections of AGU. This phenomenon results as a 

deconstruction of amorphous and crystalline region network. Dissolution forces the individual 

cellulose chains to separate, which has a gel-like medium. (Ghasemi et al. 2018.) With the 

current level of understanding, it is not fully understood why certain solvents are able to 

dissolve cellulose and others not (Olsson & Westman 2013, 144), but some reports suggest 

that the hierarchical fibre morphology is one key factor determining the solubility of cellulose 

in a certain solvent (Le Moigne & Navard 2010). 

 

Cellulose dissolution mechanism is initiated as the solvent polymer penetrates outer layer of 

the cellulose polymer, which causes cellulose fibre to swell. Fibre swelling can be observed, 

for example by a ballooning phenomenon in microscopic images. (Medronho et al. 2015.) 

Swelling increases the reactive surface area of the fibre, allowing solvent to penetrate the 

amorphous regions of the fibre. As amorphous regions are disrupted, they tend to be mobile 

and disperse. After interfering with amorphous regions, crystalline regions of cellulose 

structure are disrupted. (Zhang et al. 2012; Friebel et al. 2019.) Structure disruption 

disintegrates the fibre into individual cellulose chains, which can be distinguished as a gel-like 

medium (i.e. dissolved cellulose). (Medronho et al. 2015; Ghasemi et al. 2018.) Solubility of 

cellulose is affected by length of cellulose polymer chain, molecular weight distribution 

(interchain forces), crystallinity and number of polar groups of cellulose (Olsson & Westman 

2013, 147). 

 

Gibbs equation of free energy, with entropy (the quantity of system’s unavailable thermal 

energy for conversion into mechanical work) and enthalpy (total heat energy of a system) 

terms, is often used when discussing of the dissolution of cellulose (Gibbs 1873, 400): 

 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆    (2) 

 

where ∆G Gibbs energy 

 ∆H change in enthalpy 

 T temperature 

 ∆S change in entropy 
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Gibbs free energy (G) must be negative for dissolution to occur. If enthalpy (H) is positive, 

polymer and solution are at their lower energy state, whereas with negative enthalpy, polymer 

solution is at its lower energy state. (Gibbs 1873, 400.) 

 

Dissolution requires a good coordination of polymers between cellulose and solvent. This 

means that polymers of the solvent will interact with polymers of cellulose only if the 

interaction between these items is more favourable than the interaction between cellulose 

molecules, and this further results as swelling and later as detanglement of cellulose polymer. 

However, solubility can be enhanced to some extent by heat control or agitation. Agitation 

shortens the diffusion path for all molecules in polymer chain entering the bulk solution, thus, 

all molecules have an access to the solution, not only the ones on the surface of polymer. 

(Olsson & Westman 2013, 148.) 

 

4.2.1 Derivatizing and non-derivatizing solvents 

With the current level of understanding, it is not fully known why some solvents are able to 

dissolve cellulose, whereas some typical ones are not. Nevertheless, some ideas on how to 

group dissolving solvents have arisen. (Liebert 2010)  

 

In 1846, Christian Friedrich Schoenbein first introduced the formation of cellulose nitrate and 

that was noticed to be an organo-soluble cellulose derivate. This finding lead to further studies 

of chemical modification prior to cellulose dissolution, and is nowadays more commonly 

known as derivatization of cellulose before dissolution. In 1857, Eduard Schweizer discovered 

that cuprammonium hydroxide solution can dissolve cellulose. This can be categorized as an 

aqueous system dissolution. In 1934, Charles Graenacher revealed that cellulose is also 

possible to be dissolved additionally with low melting salts, later on known as ionic liquids. 

(Liebert 2010.)  

 

Derivatization of cellulose means simply chemical modification of cellulose before its 

dissolution (Olsson & Westman 2013, 153). Ionic liquids, also known as direct solvents, are 

non-derivatizing and this means that the dissolving polymer does not form covalent bonds 

with the cellulose polymer but instead, acts by physical means. In non-derivatizing solvents, 

the chemical composition of cellulose is not altered but the inter- and intramolecular H-bonds 

are deconstructed. In a favourable situation, this deconstruction results as H-bond formation 

between celluloses OH-groups and components of the solvent system. If dissolution occurs, 
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solvent is able to disturb the self-assembling H-bonding of the AGU unit of cellulose. (Sen et 

al. 2013.) 

 

4.3 Dissolution in alkaline solutions 

Yamashiki et al. (1988) discovered that native cellulose I can be dissolved in mild (app. 7.5 

wt%) aqueous NaOH if the intramolecular H-bonds are broken down prior to dissolution 

attempt. The amount of cellulose theoretically possible to dissolve in aqueous NaOH depends 

on molecular weight of cellulose, mode of crystallinity and especially cellulose concentration 

added into the solution. (Kamide et al. 1984.) Mercerisation is often used as an activation step 

in dissolution of cellulose into aqueous alkali to activate the OH-groups of cellulose for further 

modification or dissolution (Friebel et al. 2019.) 

 

Various additives to enhance the reactivity of cellulose have been studied for decades. The 

research of using aqueous NaOH based solvents in dissolution is desired because these 

processes can be applied on already existing viscose production lines. (Vehviläinen 2015, 27.) 

Spinning trials of NaOH based solutions, without any additives, have been studied but none 

reported with sufficient fibre qualities (Yamashiki et al. 1990; Vehviläinen et al. 1996; 

Yamane et al. 1996). Urea as an additive has been studied for example by Cai et al. (2004), 

Cai et al. (2007), Chen et al. (2007) and Qi et al. (2008). Thiourea has been of high interest for 

research groups of Ruan et al. (2004) and Chen et al. (2006), as well as the combination of 

urea and thiourea by Zhang et al. (2009). Vehviläinen et al. (1996) researched the effect of 

zinc oxide in dissolution and Zhang et al. (2010) the effect of polyethylene glycol (PEG). 

These studied additives have all noticed to increase the solubility of cellulose and fibres 

obtained had improved properties when compared to dissolution in bare NaOH/water solution. 

 

5 Regeneration of cellulose 

 

Dissolution of cellulose and further the regeneration of the dissolved solution are both research 

fields of growing interests. Purpose of the regeneration of cellulose polymer is to stabilize 

cellulose solution in a desired physical form and yet redeem its original chemical composition 

(Olsson & Westman 2013, 167). Regeneration of cellulose is a prerequisite to produce films, 

membranes and fibres (Olsson & Westman 2013, 155). Cellulose has a uniquely strong 

structure that is beneficial to use as a building block for multiple purposes (Servaes 2017). 
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Regeneration of cellulose starts with additional pretreatment and derivatization steps and is 

followed by dissolution. Once cellulose is dissolved into a liquid state, it can be stretched to a 

desired shape and size, usually films or filaments. (Olsson & Westman 2013, 155.) For 

producing fibres of dissolved cellulose solutions, there are two typical procedures for the 

spinning of solution into long strands: wet and dry-jet wet spinning. Wet-spinning is applied 

when the solvent in the solution cannot be evaporated and requires it to be removed by 

chemical means. Some solutions do not properly coagulate when spinning is guided directly 

to coagulation bath, in that case, dry-jet wet spinning is applied, in which filaments are first 

provided with an air gap before entering the coagulation bath. (Lundahl et al. 2017.) 

 

Requirements for spinnability are discussed in multiple papers (Vehviläinen et al. 2008; 

Vehviläinen 15, 27-29; Lundahl et al. 2017), but one of the highly known factors is the 

viscosity of the solution. Prior to the spinning, solution must be filtrated and deaerated in order 

to remove impurities and air bubbles, and these steps are highly hindered with excessive 

viscosity. Filtration is important because undissolved fragments and gel particles distract the 

spinning by clogging the spinneret orifices. Deaeration also is a prerequisite because if air gaps 

enter the spinneret orifices, it breaks the continuous filament and this causes coagulation of 

the dope prematurely and this further clogs the orifices as well. (Vehviläinen 2015, 28.) 

 

DP of cellulose is crucial in spinning activity in order to estimate a proper cellulose 

concentration in dope, which further affects the solution viscosity and other properties 

(Vehviläinen 2015, 42). DP is also proved to affect the tenacity of prepared regenerated fibres 

and already a small addition of cellulose with high DP increases the viscosity substantially and 

hinders the solubility in a water-based solvent  (Vehviläinen 2015, 27). DP of the cellulose is 

an important indicator to produce dope with sufficiently high cellulose content and low 

viscosity for processability and for achieving desired mechanical properties. Additionally to 

viscosity of the solution and DP of cellulose, also molecular weight distribution affects the 

solution properties and spinning behaviour as well as the obtained fibre properties. 

(Vehviläinen 2015, 28.) 
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6 Rheology 

 

Rheology is a science that studies, whether a material deforms or flows when an external force 

is applied on it as a function of time. The deformation or flow of a material is determined by 

its internal properties, such as viscosity and elasticity. Less fluidic material with higher 

viscosity has a higher resistance to pouring, whereas highly liquid material with low viscosity 

acquires only a light force for it to flow. Whether the system, on which the force is applied, 

deforms, it has elastic behaviour properties. Whereas, when the system flows by an external 

force, it has viscous behaviour properties. (Van Vliet & Lyklema 2005) 

 

6.1 Stability of alkaline cellulose solutions 

Stability of cellulose solution is an important factor, because it determines the time to alter the 

processing conditions or to remove disturbing factors, such as solid content or bubbles, from 

the solution. It is preferable that solution is stable for some period of time so that all the 

essential actions can be carried out. 

 

Gelation of a solution is a phenomenon in which polymers start to aggregate into a form of 

network that is trapped within a liquid, usually either as a function of temperature or time, and 

most often this phenomenon is irreversible. (Cai & Zhang 2006) Gelation is a phenomenon 

induced by factors, such as polymer concentration, molecular weight of the polymer, 

temperature or storage time, and it can be reversible or in some cases, irreversible (Luo & 

Zhang 2013). Gelation is observed by the changes in solution rheology and the ratio of 

viscosity and elasticity, and in its critical point, solutions viscosity is high and it starts to 

exhibit elastic behaviour (Gooch 2011, 339). Gels are divided in physical or chemical gels by 

the interactions of the polymer and formation method: physical gels have stable intermolecular 

regions formed through physical interactions, for example H-bonds, and chemical gels are 

covalently-linked polymer chains. (Williams & Phillips 2009, 16; Cai & Zhang 2006.) 

 

Cellulose dissolved in NaOH-based solutions have a tendency to gel due to passing of time or 

when it is induced to too high or low temperature, different from its optimum (Vehviläinen 

2015, 19). Nevertheless, stability of alkaline cellulose solutions can be enhanced with a use of 

additives (Kihlman et al. 2013) and also by optimum dissolution conditions.  
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II Experimental part 

 

7 Structure and objectives of the experimental work 

 

The scope of the experimental part of this thesis was outlined to study, whether defined pre-

treatment and activation methods (derivatization/control of DP) of different raw materials 

affect the solubility and rheology of alkaline solutions prepared from the modified cellulosic 

raw materials. The time dependency of solution rheology based on cellulose type and 

activation method was examined by the viscosity change over time. The undissolved material 

content in each process and raw material combination was determined by means of microscopy 

and sample filtering. The study aimed to examine following research questions: 

 

PART I 

 How does the defined activation (derivatization/control of DP) and dissolution 

conditions affect the solution viscosity and rheology over time? 

 

 How does the defined activation (derivatization/control of DP) and dissolution 

conditions affect the amount of undissolved material? 

 

PART II 

 What is the time dependency of solution rheology based on cellulose source? 

 

 How does the defined cellulose material source affect the amount of undissolved 

material? 

 

The focus in the rheology measurements was on dope’s viscoelastic behaviour and especially, 

determination of the moment of time when the solution starts to exhibit more elastic properties 

typical for gel-like structures and loose its viscous properties. This moment, the gelling point, 

is important because after that, the solution’s stability changes and it is less processable, for 

example, for filtering. The general rheological behaviours of the samples prepared in defined 

activation and dissolution procedures were studied by measuring viscosities as a function of 

strain with gradually increasing frequency at certain moments of time. When evaluating the 

processability of a solution, it is not sufficient to determine only the viscosity, because elastic 

deformation behaviour effects may occur and it highly influences the processability. Due to 
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this, rheology measurements (ratio of G’ and G’’) were conducted along with ball-drop 

viscosity measurements. 

 

The study was divided into two test parts: first one reviewing the effect of the activation 

procedure on the solution quality and stability, and the second studying the variance in 

solubilities of defined raw materials, as well as their effects on solution quality and stability. 

In the first part, different cellulose activation methods (xanthation, enzyme-aided extrusion, 

carbamation, peroxide-aided extrusion and HefCel treatment) were evaluated with a pre-

defined reference material (commercial dissolving grade softwood total chlorine-free (TCF) 

sulphite pulp). Different activation steps were evaluated in respect to their ability to activate 

cellulose structure and capability to increase solubility as well as the changes in solution 

rheology over time. 

 

The second part followed with uniform dissolutions of cotton, AlkOx cooked birch pulp, and 

organosolv cooked birch pulp. Cotton and AlkOx went through an enzyme-aided extrusion 

activation prior to dissolution, in which the aim was to adjust the conditions for each material 

to yield cellulose with an equal, comparable intrinsic viscosity value for a consistent 

comparison. Aim was to alter raw material and keep the preparation procedure conditioned. 

Dissolution of organosolv cooked birch pulp was completed without any activation, despite 

the former plan. The enzyme-aided extrusion of organosolv cooked birch was not done 

because the intrinsic viscosity was too low for that. The research plan was adjusted to examine 

the effect of low DP on dissolution hindrance for this material in question. Treatment route of 

examined samples is presented in Figure 4. 
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Figure 4. Process scheme of the examined cellulose solution samples. 

 

8 Materials and methods 

 

In the following sections, the examined raw materials, dissolution procedure, as well as 

characterization methods for determining the solution qualities and stabilities are presented. 

 

8.1 Raw materials 

The raw materials and their characteristics are presented in Table 1. The intrinsic viscosities 

of the starting materials varied from 430 to 540 mL g-1. Test materials went through different 

additional chemi-mechanical treatments (such as alkali-acid treatment of cotton or varying 

cooking conditions), which are not discussed separately as they were considered as a part of 

properties of each specific material. 
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Table 1. Raw materials examined in this study, their initial intrinsic viscosity values as well as activation conditions 

and latter intrinsic viscosity values. Dissolution conditions can be seen in the last column. 

Pulp 

SCAN-visco* 

before 

activation 

Activation 

SCAN-visco* 

after 

activation 

Dissolution 

conditions 

Commercial 

dissolving grade 

softwood sulphite 
pulp (TCF). 
Delivered by Domsjö 
Fabriker AB 

~ 540 mL g-1 Xanthation 
(32 wt% CS2 / abs. dry 
cellulose) 

230 mL g-1 Performed by 
Scitech-Service Oy 
(18°C/120min; 
5.6wt% NaOH) 

~ 430 mL g-1 Enzyme-extrusion (0.4 mg 
FiberCare R (protein 14.6 
mg/mL) / g abs. dry 
cellulose) 

250 mL g-1 -5°C/15min; 
Two batches: 
8wt% NaOH, 1.6wt% 
ZnO 

 
and 
 
8.5wt%NaOH, 
1.1wt% ZnO 

Carbamation (0.36% H2O2 / 
g abs. dry cellulose; 17.7% 
urea / total mass) 

210 mL g-1 

Peroxide-extrusion (3 wt% 
H2O2 (conc. 127.49 g/L) / g 
abs. dry cellulose) 

240 mL g-1 

Hefcel treatment (enzymatic) 240 mL g-1 -5°C/15min; 

8wt% NaOH, 1.6wt% 
ZnO 

Short fibered, excess 
cotton. Alkali-treated 
and acid-washed to 
remove heavy metals 
and impurities 

~ 430 mL g-1 Enzyme-extrusion (0.6 mg 
FiberCare R (protein 14.6 
mg/mL) / g abs. dry 
cellulose) 

260 mL g-1 -5°C/15min; 
8wt% NaOH, 1.6wt% 
ZnO 

AlkOx cooked birch 

dissolving pulp 
(bleached) 

~ 410 mL g-1 Enzyme-extrusion (0.5 mg 
FiberCare R (protein 14.6 
mg/mL) / g abs. dry 
cellulose) 

300 mL g-1 -5°C/15min; 
8wt% NaOH, 1.6wt% 
ZnO 

Organosolv cooked 

birch dissolving 

pulp (bleached) 

~ 190 mL g-1 ** - -5°C/15min; 
8wt% NaOH, 1.6wt% 

ZnO 

* intrinsic viscosity of the pulp according to ISO 5351_2010 test method. 

** no activation due to low intrinsic viscosity. 

 

Commercial dissolving grade softwood TCF sulphite pulp, delivered by Domsjö Fabriker AB, 

was used as a standard material due to its consistent quality and a highly studied background. 

Other defined raw materials were chosen based on availability, and outlined to three different 

materials: cotton, AlkOx cooked dissolving pulp (origin from birch wood chips) and 

organosolv cooked dissolving pulp (origin from birch wood chips). Cotton fibres were 

chemically purified prior to enzymatic treatment with hot alkaline extraction, that was used to 

remove impurities, such as silica, and acid washed for which the aim was to reduce the intrinsic 

viscosity value of fibres and also, remove disturbing heavy metals. The variation between 

different viscosity values was aligned during the activation procedures in which the viscosities 

of all raw materials were adjusted as close as possible to target level of 250 mL g-1. 
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8.1.1 Cellulose concentration 

Aimed cellulose content for the dopes with intrinsic viscosity of 250 mL g-1 was set to 6 wt% 

according to Vehviläinen et al. (2015). Cellulose content in viscose dope was 8.9 wt% to 

imitate a typical viscose production. Because the intrinsic viscosities of all different raw 

materials was difficult to set to a certain desired level with varying activation methods and 

starting materials acting differently, the cellulose contents of the raw materials in dissolutions 

altered according to activated raw materials’ intrinsic viscosity values. Aimed cellulose 

contents in dissolutions were determined according to Figure 5, which was prepared as an 

educated guess to imitate similar end-solutions prepared of raw materials with varying 

viscosities (Vehviläinen 2010). Viscosity values of raw materials differentiated between 187 

and 300 mL g-1 and solubility was estimated to be higher with lower DP values. 

 

 

Figure 5. Scheme to select targeted cellulose content of dope based on intrinsic viscosity of raw material. 

 

8.2 Preparation of the cellulose solutions 

Viscose preparation process through xanthation was performed by Scitech-Service Oy 

(subcontractor) to ensure a typical, consistent procedure for the comparison. Viscose sample 

was frozen (-20 °C) immediately after preparation. Nevertheless, stability and quality analyses 

of viscose solution were performed by the undersigned. 

 

The cellulose solutions, hereinafter referred to as dope samples, of all process and raw material 

combinations was prepared in a standard procedure according to US 8066903. In the first part, 

two different stock solutions A and B with varying ZnO/NaOH ratios were used, the other one 
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complementing enzyme-treated samples (ZnO/NaOH=5), while the other one carbamated 

(ZnO/NaOH=8). 

 

Stock solution A was a commercial solution provided by Algol Oy. Stock solution B was 

prepared by weighing solid NaOH (1800 g) and ZnO (360 g) reagents and dissolving them in 

deionized water, overall solution amount being 10 litres. Results and the final NaOH 

concentrations of solutions are presented in Table 2. 

 

Table 2. NaOH and ZnO concentrations of stock solutions and dissolution conditions with solution used. 

  NaOH ZnO 
NaOH/ZnO 

ratio 
Dissolution conditions 

Stock solution A 17.66 wt% 2.20 wt% 8.03 8.0 wt% NaOH / 1.6 wt% ZnO 

Stock solution B 17.43 wt% 3.43 wt% 5.08 8.5 wt% NaOH / 1.1 wt% ZnO 

 

 

Prior to the dissolution, the reactor vessel was precooled to -7 °C, ZnO/NaOH stock solution 

was stored overnight in -20 °C and deionized water was cooled as cold as possible but yet 

above its freezing point. First, entire water and portion of overall stock amount was added to 

the reactor, forming NaOH concentration of approximately 3.5 wt%. Moist cellulosic material 

(5.2-7 wt%) was added into the reactor and mixture was heavily mixed for 2 minutes for 

homogenizing the alkaline pulp. The moisture and purity content of cellulose material was 

taken into consideration when weighing the mass, thus the cellulose concentration indicated 

the absolute dry cellulose concentration in the mixture. The homogenization step is vital 

because it allows cellulosic fibres to swell and, thus, induces a wider bath for the more 

concentrated ZnO/NaOH-solution to penetrate into the pores in the latter stage. After 

homogenization, the speed was lowered to medium and rest of the stock solution was poured 

into the reactor, increasing the total NaOH concentration to 8 or 8.5 wt% (depending on 

dissolution conditions based on the stock solution used). After pouring rest of the stock 

solution, speed was dropped to low and solution was mixed for 15 minutes to dissolve the 

cellulose. Temperature of the mixture was -3 °C during dissolution. 

 

8.3 Characterization 

The dopes were characterised by determining their solubility and stability. All prepared dopes 

went through a similar protocol of the following characterization methods and analyses. The 
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analyses were chosen to investigate the effects of the defined activation procedures and raw 

materials. 

 

The laboratory tests used for the evaluation of quality, solubility, stability, and gelling 

phenomenon are presented in Table 3. The quality of the solution was evaluated by means of 

image analysis of polarized microscopic pictures. Processability and stability of the solutions 

were studied based on changes in viscosities and monitored by means of ball-drop viscosity 

measurements. Gelation point of the dissolved material is determined through the cross point 

of G’ and G’’ obtained from the rheometer. 

 

Table 3. Laboratory tests performed for the dopes to evaluate the solubility and stability. 

Measure Characterization method Timing 

Cellulose content Cellulose determination by precipitation Immediately after 

dissolution 

Solubility of the solution 

Image analysis with light microscopy, analyzed by a 

quantitative Python-based program 

Immediately after 

dissolution 

Cellulose determination of filtered sample by precipitation Immediately after 

dissolution 

Transmittance of films After dissolution, 

before gelling 

Processability, stability, 

gelling phenomenon 

Ball-drop viscosity as a function of temperature Immediately after 

dissolution 

Ball-drop viscosity as a function of time Once a day until the 

solution sets 

Cross-point of G'/G'' as a function of time, measured with 

rheometer 

After 6, 24 and 52 

hours of ageing 

 

 

8.3.1 Cellulose content 

Total amount of cellulose in the dopes was determined in order to verify the actual cellulose 

content compared to the aimed content. Cellulose contents of dopes were determined by 

spreading 2-3 g (the exact weight was recorded) of dope between two glass plates. The glass 

plates were first squeezed to spread the solution evenly and then pulled apart by carefully 

sliding and then placed into 10% sulphuric acid bath. Coagulated films were first washed with 

cold tap water for 10 minutes to remove the acid and washing was finished with boiled de-

ionized water to remove any salts resulting from washing with tap water. Washed films were 
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dried overnight at 105 °C to a constant weight. The results were calculated as cellulose 

percentage as a total weight of the dry sample. Three parallel films were prepared per dope 

sample to verify the reproducibility. 

 

8.3.2 Image analysis 

Quality of the prepared sample dopes and the amount of undissolved fibre residual was 

determined by monitoring the microscopic images with GWB Olympus BH-2 microscope 

equipped with HDMI camera with high sensitivity CMOS sensor and computer interface 

(program: ToupTek ToupView version *64, 3.7.7892). Images were furthermore analysed in 

a quantitative matter with a Python-based algorithm. 

 

Glass slides and cover slips were washed with soap and deionized water prior to the sample 

placement to remove disturbance of the background. Sample size was kept constant and cover 

slips were gently pressed onto specimen prior to the imaging with a non-dusting paper tissue. 

Images were taken by using 10x 160/0.17 objective with phase contrast mode and at least 15 

images of each sample was taken for image analysis for quality assurance. Images taken were 

aimed to cover the entire sample on the glass slide, excluding the border districts as well as 

possible dirt that were not considered as part of the sample. 

 

Quantitative analysis of images was based on counting the pixels of the image. Each pixel is 

a combination of three numbers from 0 to 255 (values of these three numbers meaning the 

intensity of blue, green and red). A threshold was applied in order to distinguish a clear 

difference in colours (e.g. light grey versus dark grey) by replacing every shade having a value 

lower than the value of threshold (e.g. 50) to 0 (black) and each value higher than the threshold, 

was replaced by 255 (white). These numeric values transformed the image form completely 

of only black and white pixels. Pixels were calculated providing a dissolution rate according 

to the equation (3): 

 

𝑑𝑖𝑠𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(%) = 100 · (
1−𝛴𝑖𝛴𝑗 𝑀

255 𝑁
)   (3) 

 

where Σi Σi M sum of the matrix of pixels  

 N number of pixels 
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In addition to quantitative method, visual classification of images was performed. 

Classification of the dopes remotely followed the protocol designed by Navard’s research 

group (Navard & Cuissinat 2006; Sainila 2015, 42-43). Visual evaluation of the images was 

followed by categorizing the quality of the dope into one of five different classes, 1-2 meaning 

sufficient solubility, class 3 meaning moderate and classes 4-5 presenting insufficient 

solubility of the fibres. Evaluation was done based on the number of undissolved fibre 

residuals and other solvent impurities instead of concentrating on the mechanism of the 

dissolution. 

 

8.3.3 Cellulose content of filtered samples 

Amongst microscopic images, solubility of the solutions was evaluated by filtering the 

solution through a membrane. The solution was diluted in 8 wt% aqueous NaOH with a factor 

from two to three (by weighing), factor depending on the solution filterability. Diluted solution 

was then pressed through a membrane of 5 µm pore size. 2-3 g of filtered sample was then 

spread on a round glass plate and the film was precipitated in 10% sulphuric acid bath, washed, 

and dried overnight in 105 °C to a constant weight. The results were calculated as cellulose 

percentage as a total weight of the dry sample. Three parallel films were prepared per dope 

sample to verify the reproducibility. The amount of filtered content was compared to non-

filtered content and the difference between results indicated the amount of non-dissolved 

fibres. 

 

8.3.4 Films and their light transmittance 

Films were prepared to demonstrate the performance in coating activity. The films were 

prepared as a coating on a glass plate and the equipment used was Erichsen Film Application 

coater. Even thickness of the prepared films was ensured by using Erichsen Film Applicator 

system (Wasag model 288) with 400 µm slot for all samples and a coating speed of 10 m s-1. 

Films were precipitated in mild sulphuric acid bath (10% H2SO4). Coagulated films were let 

to wash in cold tap water for 10 minutes and thereafter in hot tap water (app. 60 °C) to remove 

any residual acid. Washed films were left to air-dry between blotting papers that were replaced 

with new, dry ones once a day, until the samples were fully dried. 

 

Light transmittance of the films was measured with assistance of ultraviolet-visible 

spectroscopy (UV/VIS/NIR Spectrometer, Lambda 900 by Perkin Elmer). Wide spectrum of 
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wavelengths 200-800 nm was used to determine the transmittance of the film at visible light 

wavelength (400-800 nm). Device was set to measure the transmittance every 10 nm. 

 

8.3.5 Ball-drop viscosity 

The stability and fluidity (processability) of the prepared solutions were monitored with ball-

drop viscosity measurements. The method was used to measure kinematic viscosities of the 

solutions in a simple but precise matter. The measurement was performed according to the 

modified standard procedure ASTM D1343-95. A measuring glass with a total volume of 100 

mL and a height of 25 cm was filled with a sample solution. A stainless-steel ball (diameter 

1/8”, weight 130 mg) was dropped to the solution and the elapsed time for the ball to drop a 

20 cm fall was recorded with an accuracy of seconds. To minimize the effect of oxygen drying 

the sample, the solution was covered with Parafilm between each measurement having more 

than a 10 minutes break. 

 

Measurements were first taken every 5-10 minutes until the solutions reached room 

temperature (20±1°C). These measurements were recorded in a function of temperature. After 

that, viscosities of the solutions were measured daily until the solutions reached their gelling 

points (balls were no longer moving in the solutions). Ball-drop measurements were not 

proceeded after three days of ageing with samples that were considered as insufficiently 

dissolved (classes 4-5 in microscopy image evaluation, see 8.3.2 Image analysis). 

Temperatures of the solutions were monitored prior to each measurement. 

 

8.3.6 Rheology tests 

The viscoelastic properties of the dope were studied by using a specific rotational oscillation 

test. The equipment used was Anton Paar Physica MCR 301 with measuring cone CP50-2/TG. 

The sample was applied on the plate and let to rest before each measurement for 5 minutes. 

Gap between cone and plate was set to 1 mm and Peltier hood was used to minimize the effect 

of evaporation of the sample and additionally, to reduce the effect of airflow nearby affecting 

the results. Temperature of the device was set to 20 ºC because according to Vehviläinen 

(2015, 64), the dissolved solution of cellulose gone through an enzyme-aided extrusion is 

thermally the most stable between 18 - 21 ºC. When the temperature exceeds 22 ºC the 

enzyme-treated cellulose molecules in ZnO/NaOH-solution start to aggregate increasing the 

viscosity of the solution (Vehviläinen 2015, 64). Additionally, in Sainila’s (2015, 65) work, 
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the gelation temperature, of carbamated cellulose solutions with varying ZnO/NaOH-

concentrations, was observed approximately at 21 ºC and elevated temperatures. 

 

Oscillatory tests with increasing frequency and amplitude were performed to evaluate time-

dependent viscoelastic behaviour of the dopes. The storage (G’) and the loss moduli (G’’) were 

measured as a function of strain (γ). Frequency was gradually increased from 0.1 Hz to 100 

Hz. Low frequency measurements serve the purpose of describing the time-dependent 

behaviour of a sample in a non-destructive deformation range, thus, there was no shearing of 

the solution compromising the test result. Higher frequencies were used to determine the shear 

stress stage at which the sample starts to solidify, thus indicating the force level limiting, for 

example, for filtering. Amplitude increased gradually from 0 to 100% at each frequency level 

and 5 minutes of rest was allowed for the sample between the measurements of each level. 

Examination was carried out overall three times for each sample, after 6, 24 and 52 hours of 

ageing (counting from the ending time of dissolution mixing) with an automated program. 

Fresh sample was applied for each measurement and between each measurement, sample was 

stored in room temperature. 

 

Additionally, extremely high frequency (ramp in from 0 to 9000 Hz in 20 steps with interval 

time 120 seconds) was applied to simulate fast motion in short timescales as in terms of a 

sweep test. Sweep tests were applied in both increasing and decreasing directions and two 

sequential measurements were carried out to evaluate the effect of high shear stress on the 

sample. 

 

9 Results 

 

9.1 Cellulose solution samples 

Prepared solution sample compositions are presented in Table 4. Part I consisted of comparing 

different activation methods with two different stock solutions having varying NaOH/ZnO 

ratios (5.08 or 8.03). Whereas, part II followed with comparing different raw materials and 

having enzyme-aided extrusion as an activation (conditions optimized for each material 

separately to reach intrinsic viscosity close to 250 mL g-1) and consistent dissolution 

procedure. As said, organosolv cooked birch pulp was not activated with enzymes due to its 

low initial intrinsic viscosity (187 mL g-1), however the dissolution procedure followed the 
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same path as for the other samples. Targeted cellulose content of each sample was determined 

according to their intrinsic viscosity values (see Figure 5). 

 

Table 4. Prepared samples with their cellulose, NaOH and ZnO contents. Standard deviation was determined based 

on three sequential replicates. 

Sample number and ID 
Dissolution 

conditions 
SCAN-visco* 

Targeted 

cellulose 

content 

Determined 

cellulose 

content 

Std. dev. 

P
a
rt

 I
 

1 Viscose 5.6 wt% 

NaOH 

230 mL g-1 - 8.77% 1.42% 

2 Enzyme-extruded 

softwood dissolving 

pulp 

A 250 mL g-1 6.0% 5.90% 0.59% 

3 Enzyme-extruded 

softwood dissolving 

pulp 

B 250 mL g-1 6.0% 5.94% 0.71% 

4 Carbamated softwood 

dissolving pulp ** 

A 210 mL g-1 6.6% 6.63% 0.5% 

5 Carbamated softwood 

dissolving pulp ** 

B 210 mL g-1 6.6% 6.64% 2.51% 

6 Peroxide-extruded 

softwood dissolving 

pulp 

A 240 mL g-1 6.2% 6.24% 0.09% 

7 Peroxide-extruded 

softwood dissolving 

pulp 

B 240 mL g-1 6.2% - - 

8 HefCel-treated 

softwood dissolving 

pulp 

A 230 mL g-1 6.3% 6.28% 0.56% 

P
a
rt

 I
I 

9 Enzyme-extruded cotton A 255 mL g-1 5.9% 5.88% 0.22% 

10 Enzyme-extruded 

AlkOx cooked birch 

A 300 mL g-1 5.2% 5.11% 0.46% 

11 Organosolv cooked 

birch 

A 190 mL g-1 7.0% 5.21% 0.18% 

* intrinsic viscosity of the pulp according to ISO 5351_2010 test method. 

** degree of substitution: 1 

A = 8.0 wt% NaOH / 1.6 wt% ZnO 

B =  8.5 wt% NaOH / 1.1 wt% ZnO 

 

Viscose sample (prepared by Scitech-Service Oy) was defrost in 20 °C water bath for one hour 

and sample was considered as fully molten when solution was clear and viscous. Stage of 
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viscose maturation was determined by titration (20 g of sample and 30 mL of deionized water 

was added into a glass, and titration was carried out with NH4Cl until the solution started to 

solidify). Consumption of ammonium chloride (NH4Cl) was 8.4 mL indicating a fresh sample 

for spinning activity. 

 

Solution samples 2-5 were transparent and clear once the dissolution time (15 minutes) had 

passed. Sample 6 was observed as a semi-clear solution. Sample 7 formed immediately a gel 

after dissolution and it was discarded as an improper solution, and no analyses were performed 

for the sample in question. Samples 8-11 were all more or less non-transparent, samples 9 and 

10 being extremely non-transparent. Sample 8 had a milky colour and high amount of 

perceivable non-soluble cellulose matter. 

 

9.2 Solubility of the samples 

Microscopic images presented in Figure 6 and Figure 7 were used to evaluate the solubility of 

the prepared dopes. 
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Figure 6. Microscopic images of dopes. Graph numbering corresponds to the sample names in Table 4: 1) viscose, 

2-3) enzyme-extruded softwood dissolving pulp with ZnO/NaOH=5 and 8, 4-5) carbamated softwood dissolving 

pulp with ZnO/NaOH=5 and 8, and 6-7) peroxide-extruded softwood dissolving pulp with ZnO/NaOH=5 and 8. 
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Figure 7. Microscopic images of dopes. Graph numbering corresponds to the sample names in Table 4: 8) HefCel-

treated softwood dissolving pulp, 9) enzyme-extruded cotton, 10) enzyme-treated AlkOx birch pulp, and 11) 

organosolv birch pulp. 

 

Based on the microscopic images (Figure 6 and Figure 7), the solubilities of solutions were 

classified remotely according to Navard & Cuissinat (2006) and Sainila (2015, 42) into five 

different solubility classes, classes 1-2 indicating sufficient solubility, class 3 for moderate, 

and classes 4-5 indicating insufficient solubility. Variation in solubilities is illustrated in 

Figure 8. 

 

 

Figure 8. Solubility classes of samples 1-6 and 8-11. Graph numbering corresponds to the sample names in Table 

4. 
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In addition to visual estimation, solubility of the dopes was analysed with a Python based 

method to quantify the extent of dissolution as well as by filtering the dopes and analysing the 

cellulose contents of the filtered samples. Results of both these methods are presented in Table 

5. 

 

Table 5. Solubility results analysed with a Python based method to quantify the extent of dissolution and by filtering 

the dopes and then comparing cellulose contents of filtered and non-filtered samples. Graph numbering 

corresponds to the sample names in Table 4. 

Sample 

Microscopy Filtered* vs. non-filtered 

Level of 

dissolution 
Std. dev. 

Number of 

images 
Threshold 

Level of 

dissolution 
Std. dev.** 

1 99.8% 0.2% 18 180 99.5% 2.1% 

2 96.8% 1.5% 31 165 100.2% 1.2% 

3 94.5% 1.9% 17 180 101.0% 4.9% 

4 97.0% 1.7% 17 165 99.8% 3.3% 

5 98.7% 0.5% 16 180 100.5% 8.9% 

6 95.4% 1.8% 17 165 100.0% 1.2% 

8 95.7% 0.9% 18 175 100.3% 1.1% 

9 75.4% 1.7% 18 165 100.2% 0.6% 

10 81.5% 1.7% 18 165 103.% 25.7% 

11 84.4% 5.5% 15 165 98.4% 2.8% 

* pore size of the filter membrane was 5 µm. Samples were diluted with a factor from two to three, depending on the solution 

filterability. 

** standard deviation determined based on three sequential replicates. 

 

9.3 Light transmittance of the films 

Light transmittance curves of the prepared films are presented in Figure 9. 
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Figure 9. Light transmittance curves of the prepared films at wavelengths 200-800 nm. Graph numbering 

corresponds to the sample names in Table 4. 

 

9.4 Stability of the dopes 

Gelation and open-times were evaluated in terms of ball-drop viscosity measurements. Initial 

ball-drop values in seconds (measured at the moment of time, when solutions reached room 

temperature) of all samples are presented in Table 6. 

 

Table 6. Initial ball-drop times the moment of time when solutions reached room temperature (20 °C). Graph 

numbering corresponds to the sample names in Table 4. 

Sample composition 

Ball-drop 

time, 

s 20 cm-1 

P
a
rt

 I
 

1 Viscose, 8.8 wt% cellulose / 5.6 wt% NaOH 38 

2 Enzyme-extruded softwood dissolving pulp, 5.9 wt% cellulose / A 56 

3 Enzyme-extruded softwood dissolving pulp, 5.9 wt% cellulose / B 853 

4 Carbamated softwood dissolving pulp, 6.6 wt% cellulose / A 29 

5 Carbamated softwood dissolving pulp, 6.6 wt% cellulose / B 24 

6 Peroxide-extruded softwood dissolving pulp, 6.2 wt% cellulose / A 48 

7 Peroxide-extruded softwood dissolving pulp, 6.2 wt% cellulose / B - 

8 Hefcel-treated softwood dissolving pulp, 6.3 wt% cellulose / A 439 

P
a
rt

 I
I 9 Enzyme-extruded cotton, 5.9 wt% cellulose / A 492 

10 Enzyme-extruded AlkOx cooked birch, 5.1 wt% cellulose / A 311 

11 Organosolv cooked birch, 5.2 wt% cellulose / A 16 
A = 8.0 wt% NaOH / 1.6 wt% ZnO 

B =  8.5 wt% NaOH / 1.1 wt% ZnO 
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Figure 10 represents the slow gelling phenomenon of the samples at room temperature as a 

function of time. Lightest colour (30%) represents the samples closest to their initial states at 

room temperature and, thus, samples are most processable before their increasing aggregation 

towards their individual gel points. Decrease in processability is illustrated as an increase in 

colour thickness. White illustrates how many days sample stayed stable before its viscosity 

changed 30% compared to its initial viscosity at room temperature. 50% represents the time 

taken by the sample for the viscosity to change from 30% to 50%. 100% bar represents the 

time how long it took for the viscosity to be doubled compared to initial viscosity of the 

sample. Viscous illustrates the time when the sample was still liquid but viscosity had doubled 

compared to initial. Black colour represents the sample in its elastic gelling state. 

 

 

Figure 10. Changes in solution viscosities based on ball-drop measurement results. Graph numbering corresponds 

to the sample names in Table 4. 

 

9.5 Dynamic viscosity of dopes 

Results of rheology tests with constant low frequency (0.1 Hz) and strain amplitude (10%) are 

presented in Figure 11 as a function of time. 
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Figure 11. Rheology tests results with constant low frequency (0.1 Hz) and strain amplitude 10%. Dash line 

presents the change in storage modulus as a function of time, whereas the solid line the change in loss modulus as 

a function of time. Graph numbering corresponds to the sample names in Table 4. 

 

Results of sweep tests for evaluation of maximum possible shear stress are presented in 

Figure 12. 
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Figure 12. Sweep test results for determination of maximum shear stress. Dash line with round symbol presents the 

change in viscosity with increasing shear rate, whereas the solid line with triangle symbol the change in viscosity 

with decreasing shear rate. Graph numbering corresponds to the sample names in Table 4. 
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10 Discussion 

 

Enzymatic treatment and carbamation prior to dissolution in aqueous NaOH were examined 

to determine the effect of activation method on solution solubility and stability. These methods 

were compared to viscose process, which is the most utilized dissolution process applying wet-

spinning, but is also dependent on hazardous chemicals. 

 

Hydrogen peroxide is commonly used in bleaching for removing residual lignin (PPG 

Industries Inc. 1965; Zeronian & Inglesby 1995; Ziaie-Shirkolaee 2008), but it is also an 

effective chemical for lowering DP of cellulose pulp even in small concentrations (Veness & 

Evans 1989; Su et al. 2016). Research group of Li et al. (2018) studied the chemical and 

microstructural changes of alkaline hydrogen peroxide pretreated corn stover and discovered 

that H2O2 treatment increased the accessibility of cellulose through a six-fold increase of the 

pore volume and doubling of the surface area of cellulose. For this reason, H2O2 treated 

cellulose was examined here as an alternative for cellulose activation. Peroxide treatment was 

compared to enzymatic activation because both were carried out with assistance of twin-screw 

extruder. 

 

Cotton was chosen for the examination due to its nearly pure cellulose consistency, thus, no 

lignin or hemicellulose would exist in the material to compromise the results. Birch was 

examined both as in AlkOx cooked and organosolv cooked to study the effect of the wood 

source. Organosolv cooked birch was aimed to play as a reference material for AlkOx cooked 

birch enabling the comparison of the different cooking methods, but due to unfortunately low 

intrinsic viscosity value, organosolv cooked was examined to study the effect of low DP. 

 

Prepared samples were successful in means of achieving cellulose contents close to the 

targeted contents. For samples 2-6 and 8-10 the difference between determined cellulose 

contents and target was maximum of 0.1 wt%. Difference between target and determined 

cellulose content for sample 7 was 1.79 wt% (Table 4). 

 

10.1 Solubility of the samples 

Based on microscopic images, sample 1 was evaluated as completely dissolved, thus, 

representing solubility class 1 of sufficient solubility. Samples 2, 4 and 5 had small amounts 

of undissolved particles and were rated into class 2, also reflecting sufficient solubility. 
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Solutions 6 and 8 had slightly higher amounts of insoluble particles for which they were rated 

to class 3 of moderate solubility. Samples 3, 7, 9, 10, and 11 were adjudicated to classes 4 and 

5, both indicating insufficient solubility. 

 

Enzyme-treated softwood dissolving pulp dissolved better in 1.6 wt% ZnO / 8.0 wt% NaOH, 

than in 1.1 wt% ZnO / 8.5 wt% NaOH, indicating that higher ZnO content is needed to dissolve 

enzyme-treated cellulose efficiently, simultaneously enabling lower NaOH content in 

dissolution. However, carbamated softwood dissolved sufficiently in both ZnO/NaOH 

concentrations, suggesting that carbamation activates cellulose structure more efficiently than 

enzyme-treatment. 

 

Peroxide-treated softwood with 1.1 wt% ZnO / 8.5 wt% NaOH resulted as an immediate 

gelling of the sample, whereas peroxide-treated softwood with 1.6 wt% ZnO / 8.0 wt% NaOH 

was sufficiently dissolved and maintained its viscous state. The result was surprising and may 

indicate that with optimized conditions, cellulose could be fully dissolved in aqueous NaOH 

if it is first treated with H2O2 to increase the accessible surface area. This also may indicate 

that ratio of ZnO/NaOH is crucial in order to maintain a proper stability of solution with low 

NaOH content whilst achieving sufficient solubility with correct amount of ZnO. 

 

HefCel was only moderately dissolved in 1.6 wt% ZnO / 8.0 wt% NaOH despite that its 

deconstructed structure lacks amorphous regions. Nevertheless, the remaining undissolved 

particles that were visible in the microscopic images were relatively small (compared to other 

samples) because of microcrystalline structure. Lower level of dissolution might indicate that 

enzymes used in HefCel treatment are not as effective in means of activation as the enzymes 

used in Biocelsol process, but it is difficult to draw conclusions because dissolution conditions 

were not fully optimized for the material in question. Further research is needed, because one 

of the preliminary tests gave promising results in means of dissolution rate but cellulose 

content in solution was only 5.2 wt%, due to false dry matter content, and no further 

examination was conducted. HefCel may require an additional mercerisation step for a 

complete dissolution. 

 

Surprisingly, cotton did not dissolve in 1.6 wt% ZnO / 8.0 wt% NaOH sufficiently despite the 

successful enzymatic treatment that set the intrinsic viscosity to the target level, and nearly 

pure cellulose composition. Additionally, cotton and softwood dissolving pulp had 

comparable initial viscosity values before activation (see Table 1), yet, cotton required greater 
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enzyme dosage to decrease its intrinsic viscosity to the target level. Reluctance of cotton 

towards modification may be due to its four-layered cell wall structure (Flint 1950), whereas 

usual wood-based cells consist of only three-layered structures (Sixta 2006, 41). This 

demonstrates that despite the intrinsic viscosity value of pulp, varying cellulose raw materials 

behave differently both in enzymatic activation and the following dissolution. The dissolution 

conditions need to be optimized for each raw material individually for a consistent comparison. 

 

AlkOx pulp was even more resistant towards enzyme-treatment, although it had lower initial 

intrinsic viscosity value (compared to both softwood and cotton). Enzyme dosage was higher 

than for softwood pulp and yet, it resulted higher intrinsic viscosity after activation. The 

reasoning for low effect might be because of the hardwood source (birch) or because of the 

differing pulping method. Also, low DP value (190 mL g-1) for birch pulp does not lower the 

diffusion hindrance enough for enabling sufficient dissolution (organosolv cooked birch) and 

this is most probably due to hardwood source. 

 

Rough conclusion could be that softwood dissolving pulp has the best reacting ability towards 

enzyme-treatment (when compared to cotton and birch based AlkOx pulp). The birch based 

AlkOx pulp has the lowest reactivity towards enzyme-treatment (when compared to cotton 

and softwood dissolving pulp). Structures with higher dissolution hindrances, such as cotton 

and birch, may be beneficial to treat with H2O2 prior to enzyme-treatment (Li et al. 2018) to 

open the cell wall structures and increase the accessible surface area for enzymes to enter. 

 

10.1.1 Comparison of methods determining solubility 

Solubility results of three evaluation methods (solubility from microscopic images by 

qualitative evaluation, solubility from microscopic images by quantitative evaluation, and 

cellulose content of filtered samples) do not fully correlate. Both quantitative analyses (by 

microscopy and via filtering) gave high solubilities for all samples (81.5 - 99.8% and 98.4 - 

103.1%, respectively), but these results cannot be considered reliable and representing the 

overall levels of dissolution. For example, quantitative method shows higher level of 

dissolution for peroxide-treated softwood than for enzyme-treated softwood, in contrast to the 

qualitative evaluation. Also, method via filtering shows highest level of dissolution for AlkOx 

cooked birch, despite that it was one of the most insufficiently dissolved samples according to 

qualitative evaluation. Low correlation between the results of the three separate analyses can 

be observed (Figure 8 and Table 5). 
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Standard deviations in quantitative determination were low (< 2%), except for organosolv 

cooked birch pulp (5.5%). Based on this, the replicability of the imaging method of a specific 

sub-sample was good, but it does not necessarily represent the overall sample. Standard 

deviation of the cellulose content of filtered samples was large, up to 8.9 % (and 25.7 % for 

AlkOX cooked birch). This indicates of low reproducibility rate of the method. 

 

One of the reasons for low correlations could be the sample amount used for determination. 

Sample amount in both quantitative analyses for determining solubility is small (one drop for 

microscopy and 2-3 g of diluted sample for filtering with three replicates) and may not be 

representative for 2-3 litres of overall amount of dope, in neither of the analyses. In 

microscopy, fifteen or more images were taken of each sample, but these were all imaged from 

one drop of the dope. To increase the reproducibility of the method, the number of samples 

used for imaging should be increased, but this may not be feasible due to the increased 

processing time. 

 

For the filtered samples, the dope had to be diluted with a factor of two or three, depending on 

the filterability. This additional factor could have influenced the viability of the results gained 

via filtering. Also, the time taken for the sample to be filtered varied greatly. Varying time 

consumption under vacuum causes differences in amounts of sample evaporation when 

analysing water-based solutions, which is difficult or even impossible to be prevented. 

Filtering time should be harmonized in order to increase reliability of the method. Addition of 

multiple steps with differing membrane pore sizes could be an option to speed up the filtering 

step but it might simultaneously reduce reliability of the method by increasing number of steps.  

 

One promising option for determination of solution’s level of dissolution might be via reject 

amount determination. In such method, a recorded amount of sample is filtered but instead of 

determining the cellulose content of filtered sample, option would include determining the 

amount of reject. However, weakness of such method might be that the reject needs to be fully 

washed and dried, yet redeem all the solid content without further dissolution of degradation 

of the sample. 
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10.1.2 Light transmittance of the films 

As expected, samples 1, 2, 4, 5 and 6 (viscose, enzyme-treated softwood in 1.6 wt% ZnO / 8.0 

wt% NaOH, both carbamated softwoods and peroxide-treated softwood in 1.6 wt% ZnO / 8.0 

wt% NaOH) showed the highest transmittance, varying between 72.8-83.3% at 600 nm (Figure 

9). Surprisingly, viscose did not exhibit the highest transmittance, but this might be due to 

non-optimized precipitation conditions. Drop in transmittance curve of viscose at around 300 

nm is most probably due to a bubble occurring in the film. Samples 8 and 3 (HefCel treated 

softwood and enzyme-treated softwood in 1.1 wt% ZnO / 8.5 wt% NaOH) set at the middle of 

the curve, which was due to moderate and insufficient solubilities (Figure 8). Samples 9, 10 

and 11 (cotton, AlkOx and organosolv cooked birch) exhibited the lowest transmittances 

(15.5-27.8%), as was expected due to insufficient solubility (Figure 8). 

 

10.2 Rheology of the samples 

Stability and gelling phenomenon of the dope samples was examined in terms of ball-drop 

viscosity measurements and storage, and loss moduli analyses. 

 

10.2.1 Initial viscosity of the dopes 

Initial ball-drop times of the samples varied greatly which may indicate that not all samples 

had the optimum amount of cellulose to be dissolved in them. For example, cellulose 

carbamate samples most probably could have tolerated higher cellulose concentration in the 

solution due to low initial ball-drop time (see Table 6) with cellulose content of 6.6 wt% (with 

intrinsic viscosity of 210 mL g-1 and DP of 267). Sainila (2015, 56) discovered in her work 

that carbamated cellulose (with DP of 227 and degree of substitution of 0.19) can be dissolved 

in 1.1 wt% ZnO / 8.0 wt% NaOH to the extent of 10 wt% of cellulose. However, some initial 

ball-drop times may have been high because of aggregation. For example, the large difference 

in ball-drop time between samples 2 and 3 (enzyme-treated softwoods) is more likely to be 

due to gelation instead of cellulose content, as the latter was the same but the ZnO/NaOH 

contents differed. Variance in initial ball-drop times increases uncertainty to the stability 

comparison and, for example, differences in stabilities of enzyme-treated and carbamated 

softwoods should be evaluated with caution. 
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10.2.2 Stability of the dopes 

Analysis (ball-drop) performed for the examination of sample stabilities can be assessed to be 

reliable due to good correlation of gelation point of viscose (reference material) compared to 

the result in literature. Irklei et al. (1986) performed a similar stability measurement for viscose 

with similar specifications, and determined the gelation point to occur after 5.8 days of ageing. 

Viscose sample in this study performed as was expected (Irklei et al. 1986; Strunk et al. 2012) 

and reached its final gelatine state after around 5 days of ageing (Figure 10). Nevertheless, 

viscosity of viscose increased 30% already after 92 hours of ageing which may be a crucial 

increase for spinning activity (Vehviläinen 2015, 28.). After this, viscosity of the solution 

increased rapidly and 50% or 100% changes in viscosity were not registered. 

 

Enzyme-treated softwood reached its gelatine state between 556 and 623 hours of ageing. 

However, although enzyme-treated and carbamated softwoods with lower NaOH contents 

showed similar results with final gelling points (app. 25 days and 30 days, respectively), 

enzyme-treated softwood stayed the longest at its initial state (app. 7 days). Figure 10 clearly 

indicates that enzyme-treated softwood dissolving pulp, with defined activation/dissolution 

conditions, performed the best stability for further processing as a function of time. Also worth 

mentioning is that stabilities were tested in normal room temperature. Lower temperature is 

noticed to have a positive effect on cellulose-NaOH solution stabilities (Roy et al. 2003), thus, 

decreased temperature for the experiment set-up may have been able to prolong the stability 

times. 

 

Surprisingly, carbamated samples did not exhibit gelling, on the contrary, they became less 

viscous as a function of time. This may be if carbamate groups hydrolysed in aqueous NaOH 

and degraded into sodium carbonate and amines, and celluloses were left with only hydroxyl 

groups (Moidoveanu & David 2002; Harlin 2019). The smell of ammonia releasing from the 

sample was also distinguished as it aged, which may support the conclusion. Another possible 

reasoning may also be the early stage of gelation, in which only few molecules are first 

attached to each other (increasing viscosity) before the increased networking (gelling). This 

could be supported by the other carbamated cellulose sample with higher NaOH content 

(sample 5), which first exhibited decreasing viscosity prior to sudden gelling. Interestingly, 

the same viscosity decrease phenomenon was not reported for solutions in Sainila’s (2015, 67) 

work. However, this may be due to many reasons, for example, different cellulose 

concentration, degree of substitution or other differing conditions. However, it may be 

concluded that in this work, enzyme-treatment prolonged the stability of cellulose in aqueous 



54 

 

NaOH when stored in room temperature, probably because it works by increasing the 

accessible surface area, not by substituting functional groups in the structure. Carbamated 

sample 4 (6.6 wt% cellulose / 1.1 wt% ZnO / 8.0 wt% NaOH) never reached a gelatine state 

and actually, it was the only sample for which the viscosity decreased instead of increasing, 

but 30% decrease in viscosity was noticed already after 33 hours of ageing, which may be 

crucial for spinning activity (Figure 10). 

 

All samples with higher NaOH contents, samples 3, 5 and 7 (enzyme-treated, carbamated and 

peroxide-treated softwoods), aggregated rapidly (in less than five days, see Figure 10). Shorter 

stability time occurred as expected and is most likely due to higher NaOH contents, a 

conclusion that is supported by the literature (Roy et al. 2003; Cai & Zhang 2006). Peroxide-

aided softwood (in 1.1 wt% ZnO / 8.0 wt% NaOH) performed well in means of stability 

(gelling between 12-17 days of ageing) but did not outperform enzyme-treated or carbamated 

softwoods. 

 

HefCel (in 1.1 wt% ZnO / 8.0 wt% NaOH) showed aggregation activity with the extent of 

50% already after 24 hours and became fully solid at some point between 50 and 124 hours. 

Reasoning for this may be if microcrystalline cellulose has a higher self-tendency to aggregate 

(according to Ghasemi et al. (2018) nanocellulose usually has a gel-like medium). This strong 

aggregation may have been prevented with lower cellulose content but further studies should 

be conducted. 

 

Stabilities of samples 9, 10 and 11 (cotton, AlkOx and organosolv cooked birch pulps) are not 

considered interesting due to insufficient solubilities. And for example, organosolv cooked 

birch (with low DP) did not aggregate to the extent of gelling within this study framework but 

this was due to low solubility. 

 

10.2.3 Dynamic viscosity of the samples 

Relations between G’/G’’ results and ball-drop viscosity measurements were only somewhat 

accurate. Some papers in literature suggest that gelling point of a solution can be identified by 

the cross-over point of storage and loss moduli (Tung & Dynes 1982). However, some papers 

question this (Winter 1987) and the results have been slightly contradictory regarding this 

matter. 
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Storage and loss moduli curves (Figure 11) of samples 2, 5 and 6 (enzyme-treated softwood 

with lower NaOH content, carbamated higher NaOH content and peroxide-treated softwood 

with lower NaOH content) exhibit the solutions to be in their viscous state at least for 54 hours 

after dissolution, as their loss moduli are greater than the storage moduli. Ball-drop analyses 

support the results as their gelling points were not determined to occur before 54 hours of 

ageing in any of these samples. Also for sample 3 (enzyme-treated softwood with higher 

NaOH content), the G’/G’’ curve exhibits gelling point to set at 16 hours of ageing, which can 

be supported by ball drop measurement (indicating gelation between 0.3-1.05 days). 

 

G’/G’’ curve of the sample 4 (carbamated softwood with lower NaOH content) exhibit a 

change in the solution rheology (as the storage modulus crosses over loss modulus) at around 

24 hours, whereas ball-drop measurement indicated decrease in viscosity as a function of time. 

The reasoning for the contradiction is unclear, but may be due to an error in rheology 

measurement at 54 hours measurement point (Figure 11). 

 

In case of HefCel, the drop in storage modulus may indicate that cellulose in the sample 

continued dissolving (Figure 11). However, storage modulus was restored and ball-drop 

viscosity results support that the sample did not form a gel before at least 50 hours of ageing. 

 

For the viscose the G’/G’’ curve exhibits the sample to be in its gel state already after 5 hours 

of ageing (storage modulus is greater than loss modulus), but in reality, this was not the case 

and it also is not supported by the ball-drop measurement. The reasoning for this phenomenon 

is unclear but one possible explanation might be, if the temperature of the water bath, that was 

used to defrost the sample, was too high. Too high temperature may have accelerated the 

gelling of the viscose. 

 

Samples 9, 10 and 11 (cotton, AlkOx and organosolv cooked birch) exhibited non-correlative 

G’/G’’ curves, as was expected due to their insufficient solubilities (Figure 8). For example, 

cotton had a 30% increase in its viscosity after 0.35 days (based on ball-drop measurement), 

but G’/G’’ curve exhibits the sample to be in its gelation state already after 5 hours of ageing. 

Thus, these results may not be considered reliable due to insufficient solubilities of the 

samples. 

 

Shear thinning can be observed to happen before 4000 Pas viscosity (Figure 12) for all samples 

as the viscosities decrease by increasing shear rate. Also, shear rates between 2000-3000 s-1 
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may be correlated to fast pressure increase, for example in filtering, and high viscosity (e.g. > 

1 Pas) at this shear rate stage may be challenging to work with. For example, enzyme-treated 

and carbamated softwoods (in 1.1 wt% ZnO / 8.0 wt% NaOH) may be difficult to filter, 

whereas viscose probably will not be that difficult. Hysteresis loop can also be observed in for 

samples 1, 2, 4, 5, 6 and 8 (Figure 12). This loop indicates a thixotropic behaviour of the 

solution. Thixotropy is a phenomenon related to solution gelling and means that solution 

becomes fluid when agitated but exhibits solid-like behaviour in rest (Barnes 1997). 

 

As can be seen with a wide variety of samples prepared in the study in question, cross-over of 

loss and storage moduli does not unquestionably define materials’ gelling point, with the 

method used in this study and results should be assessed with caution or verified with another 

analysis. 

 

10.2.4 Other uncertainties 

Deaeration of the dope prior to rheology measurements was not performed, because the 

bubbles generated while mixing had mostly broken down by the beginning of initial rheology 

measurement (after six hours ageing). Additionally, despite the former plan, deaeration of 

variable samples with SpeedMixer DAC 1100.1 VAC-P (speed set to 1600 rpm and the 

vacuum to 100 %) resulted differently between the variable samples, some of them being 

sensitive towards gelling in speed mixing while some not. Therefore, deaeration of the samples 

was considered to possibly alter the rheology results in an inconsequential way. 

 

Deaeration of the samples was practiced in preliminary tests, but was decided to be undone in 

case of the actual test samples. Optimization of deaeration conditions, which would be 

consistent for all versatile samples, was not considered as a viable task in this study and would 

have required an extreme amount of more testing. Thus, smaller microbubbles might have a 

disturbing effect on some rheology results. 

 

10.3 Research questions 

Research frame of the study aimed to examine whether defined pre-treatment and activation 

methods (derivatization/control of DP) of different raw materials affect the solubility and 

rheology of alkaline solutions prepared from the modified cellulosic raw materials. The 

solubility was examined in means of microscopy imaging and cellulose content determination 
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and viscosity change of the prepared solutions was studied over time. This chapter discusses 

whether explanations for the predefined research questions were found. 

 

How does the defined activation (derivatization/control of DP) and dissolution conditions 

affect the solution viscosity and rheology over time? 

Activation method applied prior to dissolution has a great impact on cellulose stability, as do 

the dissolution conditions. In order to produce a solution with a sufficient solubility, yet 

maintaining the prolonged stability and processability, balancing between delicate changes in 

dissolution conditions needs to be carried out. Increased sodium hydroxide content increases 

cellulose dissolution, but simultaneously decreases the solution stability. Additionally 

dissolution conditions, such as agitation and temperature control influences solution rheology 

highly. 

 

How does the defined activation (derivatization/control of DP) and dissolution conditions 

affect the amount of undissolved material? 

All examined activation methods (xanthation, enzyme-aided extrusion, carbamation and 

peroxide-aided extrusion) with a consistent dissolution conditions did result solutions of 

sufficient solubilities, when processes were applied for softwood dissolving pulp. However, 

in order to do so, process needs to be an optimized composition of additional pretreatments, 

activation method and dissolution, all with material-specific conditions. 

 

What is the time dependency of solution rheology based on cellulose source? 

Aim in part II was to examine whether the raw material has an effect on the solubility and 

stability, when the intrinsic viscosities of all material are set on a predetermined level which 

is equal to all material alternatives. However, intrinsic viscosities of all cellulosic raw 

materials were not managed to be set on the exact level, and some of the materials had a rather 

high difference between their intrinsic viscosity values, for example the difference between 

enzyme-treated softwood dissolving pulp and AlkOx cooked birch dissolving pulp was as high 

as 50 mL g-1 (Table 1). For this reason, the raw material comparison cannot be oversimplified 

and correlation between raw material source and solution stability has to be evaluated with 

caution. 

 

Experimental solution combinations with activation and dissolution procedures that were not 

optimized for other raw materials than softwood dissolving pulp, such as enzyme-treatment 

for cotton, were not sufficiently dissolved. This unfortunate event indicates that it might be 
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safe to state that the raw material source used for the dissolution, cannot be altered without 

optimizing conditions for that specific cellulosic raw material, despite the known optimal 

activation and dissolution conditions for another source of raw material. Though, for example 

in case of cotton, which is nearly pure cellulose with no hemicelluloses or lignin disturbing 

the dissolution, and the activation step proceeded as planned in terms of receiving cellulose 

with the closest to the desired intrinsic viscosity value (255 mL g-1 vs. 250 mL g-1), yet it 

dissolved imperfectly and resulted a solution with high amount of undissolved particles. 

 

How does the defined cellulose material source affect the amount of undissolved material? 

Varying raw materials were studied because the structure and properties of different raw 

materials vary and they have different diffusion hindrances, which affect the solubility of 

cellulose. However, each of the defined raw material had different preliminary structures and 

properties, which determine how the material alters in enzymatic modification. Some of the 

materials also required additional chemi-mechanical treatments (such as alkali-acid treatment 

of cotton), and these pretreatments also might have an effect on the material solubility as well 

as on diffusion hindrance. Thus, cellulose material source affects how it behaves in the 

activation step prior to dissolution, and what additional pretreatments it may need for a 

sufficient dissolution. 

 

10.4 Recommendations for further research 

Highest possible achievable cellulose content also was not in the scope of this study. 

Nevertheless, possibility to increase cellulose content of the solution, without jeopardizing 

spinning quality or solution stability, decreases the economic cost of the overall processing. 

This should also be further looked into and to determine the highest achievable cellulose 

content for the dissolution. 

 

HefCel solution exhibited fast aggregation but due to rheology measurements and previous 

research conclusion of Hagman et al. (2017), dissolution of fibres into the solution is expected 

to have happened to some extent. A study of Hagman et al. (2017) showed that 1 wt% of 

microcrystalline cellulose is able to be dissolved in NaOH-solution but the concentration in 

paper was greatly less than in this study with 6.3 wt%. Further examination towards HefCel 

dissolution could be a promising alternative to invest in. 
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Lastly, due to low reliability of solubility results via filtering, it would be highly necessary to 

invent a method to determine the amount of undissolved cellulose in solution for in-situ 

purposes that is time and cost-efficient to perform on site. 
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11 Conclusions 

 

It was assumed that clear differences between raw materials in enzymatic treatment and alkali 

dissolution processes could be observed. Differences are because of fibre wall structure, for 

example, cotton has multiple fibril layers and efficiency of different pulping methods differs. 

The formed alkali solutions have different tendencies to form gels and several means are 

needed to stabilize the system. Preliminary hypotheses for the study were that dissolution in 

sodium zincate, produces as good or better solutions for wet-spinning as their improved 

stability properties over the viscose process. 

 

Our reference material viscose method through cellulose xanthate derivative exhibits solution 

with the highest solubility rate. Nevertheless, images of enzyme-treated and carbamated 

softwoods illustrated almost as good results in solubility. Despite the higher solubility of 

viscose, process applies the use of strongly hazardous chemicals that should be kept in mind. 

In addition to use of hazardous chemicals in the processing, performance of viscose in means 

of stability fell behind when compared to stability results of enzyme-treated softwood. 

 

Reason for xanthates low stability should be related to lack of stabilization. With carbamate 

and enzyme-treated solutions zinc shows very efficient stabilization due complexity with 

hydrophobic site in cellulose. Carbamate improves solubility even if it starts to decay 

immediately with alkaline contact. Poor solubility causes unexpected anomalies on rheological 

behaviour. Good solution tolerates high shear without shock gelation. 

 

At first glance, results indicate similar stability performance of both enzyme-treated and 

carbamated cellulose in aqueous NaOH/ZnO, but unpredictably, cellulose carbamate does not 

outperform enzyme-treated cellulose in means of solution stability due to carbamate solution’s 

rapid decrease in viscosity. Results of the study designate that enzyme-treated cellulose 

solution is the most stable in its maturation time before its viscosity starts to increase to the 

extent of hindering spinning activity or other processing. Additionally, peroxide-treatment 

exhibited a surprisingly positive effect on dissolution level of cellulose, resulting a sample of 

sufficient solubility. 

 

It can be stated that cellulose solutions exhibited different properties when activation and 

dissolution conditions are altered, and so does the source of cellulosic material affect solution 

solubility. In addition to cellulose source of option, degree of polymerization affects greatly 
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solution solubility and stability as well. Thus, further research of different cellulose solubilities 

is required for a consistent comparison of cellulose hindrance factors. Rheological studies 

revealed that in alkali system the build-up of elasticity over viscosity was not pronounced. The 

reason might be that the consistency of solutions are only modest, below 8%. 
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Appendix 1. Specification table of the raw materials used. 

 

 

Softwood 

dissolving 

pulp for 

viscose (from 

Domsjö)

Softwood 

dissolving 

pulp (from 

Domsjö)

Cotton before 

acid-alkali 

washes

Cotton after 

acid-alkali 

washes

Birch before 

treatments

(for AlkOx)

Birch 

dissolving 

pulp 

(organosolv 

cooked)

Cleanliness Num/kg 90 - - - - -

Brightness (ISO 2470) % ISO 92,1 - - - - -

R18, insoluble fraction in 18% NaOH (ISO 692) % >94 - - - - -

R10, insoluble fraction in 10% NaOH  (ISO 692) % 88 - - - - -

Viscosity (ISO 5351) ml/g 545 - - - - -

Visco 388 kg/t 1 - - - - -

Viscosity cP 18 - - - - -

Degree of polymerization 780 - - 430 - -

Dry matter content % 93,07 - 96,2 23,2 35,2 17

Ash (525 °C; ISO 1762) % 0,08 - 0,24 0,05 < 0,01 < 0,01

SiO2 (SCAN-C) mg/kg 45 - - - - -

Ca (SCAN-CM) mg/kg                                   35 28,5 153 1,5 4,2 20,5

Co mg/kg                                   - < 0,5 < 0,5 < 0,5 < 0,5 < 0,5

Cu mg/kg                                   - 0,58 < 0,5 < 0,5 < 0,5 < 0,5

Fe (SCAN-CM) mg/kg                                   1,5 3,4 23,4 2,0 16,2 27,7

Mg (SCAN-CM) mg/kg                                   220 175 42,9 < 1 2,4 42,7

Mn (SCAN-CM) mg/kg                                   0,2 < 0,3 < 0,3 < 0,3 0,4 0,31

Si mg/kg                                   - < 10 42,6 11,7 19,3 < 10

Acetone extractives (SCAN-CM) % - - - - < 0,05 0,2

Total lignin % - - - - < 0,5 0,14

Klason lignin % - - - - < 0,4 -

Dissolving lignin % - - - - 0,2 0,14

Arabinose % - - - - < 0,3 -

Galaktose % - - - - < 0,3 -

Glucose % - - - - 97,0 98,3

Xylose - - - - 2,1 1,72

Mannose % - - - - 0,9 < 0,5

Total carbohydrates mg/100mg - - - - 103 105

Xylan % - - - - - 1,7

Glucomannan % - - - - - 0

Alpha cellulose (TAPPI 203) % - - - - - 98

Sample


