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Abstract 

I investigate individual monthly U.S. stock return predictability through a comparative study 

on neural networks and ordinary least squares benchmarks, using a predictor set of 102 lagged 

firm characteristics and the market return from 1980 to 2018. I find monthly out-of-sample 

(OOS) R2 of 0.80% for the best neural network, confirming similar findings of marginal 

predictability from existing literature applying machine learning to empirical finance. OOS R2 

increases to 7.12% for the best neural network, when considering average market return 

predictability using market return predictions constructed bottom-up from equal-weighting 

individual stock predictions. I also find significant monthly four-factor alphas of 1.55% and 

annualized Sharpe ratios of 2.62 on long-short top-bottom decile portfolios sorted on predicted 

returns – not taking into account trading costs. Investigating variable importances within 

neural networks reveals that networks using Rectifier as their activation function focus on 

momentum and liquidity variables, similar to existing findings, but networks using Maxout 

focus on firm fundamentals and risk measures instead – a new observation for the anomalies 

literature. Lastly, my findings confirm that return anomalies are stronger in small stocks, and 

prediction performance is generally stronger during market turbulence. 
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Tiivistelmä 

Tutkin Yhdysvaltalaisten yksittäisten osakkeiden kuukausittaisten tuottojen ennustettavuutta 

vertaillen neuroverkkoja pienimmän neliösumman menetelmään, käyttäen 102 

yritysmuuttujan ja yhden markkinatuoton datasettiä vuosilta 1980-2018. Parhaan neuroverkon 

testiotannan R2 on 0.80%, varmistaen samankaltaiset löydökset ennustettavuuden tasosta 

tutkimuksissa, jotka soveltavat neuroverkkoja empiiriseen rahoitustieteeseen. Testiotannan R2 

nousee 7.12%:iin parhaan neuroverkon tapauksessa, kun on kyseessä keskimääräisen 

markkinatuoton ennustettavuus käyttäen markkinatuoton ennustuksia, jotka ovat laskettu 

yksittäisten osake-ennustusten keskiarvoista. Osake-ennustusten perusteella järjestetty 

portfolio, joka ostaa korkeinta ja myy alinta desiiliä, tuottaa 1.55% merkittäviä kuukausittaisia 

neljän tekijän alfaa ja 2.62 Sharpen lukua vuositasolla – huomioimatta 

kaupankäyntikustannuksia. Tutkittaessa ennustajien tärkeyttä neuroverkoissa huomataan, että 

verkot, jotka käyttävät Rectifier-aktivointifunktiota keskittyvät momentum ja likviditeetti 

muuttujiin, kun taas verkot, jotka käyttävät Maxout-aktivointifunktiota keskittyvät yritysten 

perustekijöihin ja riskin mittareihin, tuoden uuden löydöksen anomalioiden kirjallisuuteen. 

Löydökseni vahvistaa, että tuottoanomaliat esiintyvät vahvempina pienissä osakkeissa, ja 

ennustettavuus on yleisesti parempaa markkinoiden ollessa turbulentteja. 
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1. Introduction 

The asset pricing literature has found significant cross-sectional stock return predictability 

(Avramov and Chordia (2006), Rapach and Zhou (2013), Jordan, Vivian and Wohar (2014), 

and Dangl and Halling (2012)). In parallel, hundreds of anomaly variables that produce excess 

risk-adjusted returns and correlate with firms’ subsequent stock returns have been discovered 

(Green, Hand, and Zhang (2013) and Hou, Xue, and Zhang (2017)). As traditional linear 

regression methods deal poorly with high-dimensional problems and model uncertainty, 

machine learning models that excel in such environments have been applied to enhance stock 

return predictability and gain new insights into which factors really provide independent 

information on stock returns (e.g. Gu, Kelly, and Xiu (2018)). My paper is largely motivated 

by the proliferation of anomaly variables discovered in the asset pricing literature, and the 

economic possibilities of understanding that information to predict stock returns with modern 

machine learning models. 

 

In this paper, I study the predictability of individual stock returns based on a large set of 

fundamental predictor characteristics using neural networks. I use a set of 102 firm 

characteristics as Green et al. (2017) and the market return in a panel data to predict one-month-

ahead U.S. returns for the sample period 1980 to 2018. My main focus is comparing various 

rigorously optimized neural network models to the baseline OLS regression predictions. 

The paper contributes to the empirical asset pricing literature in three ways. First, I 

analyze the degree of stock return predictability for individual stocks, comparing machine 

learning to traditional methods. I evaluate predictability through statistical measures and 

economic profitability. From the statistical perspective, I find one of three chosen neural 

networks to consistently outperform OLS benchmarks across the measures with an average 

out-of-sample R2 of 0.80%, average correlation between predicted and realized returns of 

9.66%, and average directional accuracy of 52.96%. Across the three statistical measures, 

neural networks outperform in correlation and directional accuracy, but the results are more 

mixed for out-of-sample R2. From the economic perspective, I construct stock portfolios sorted 

on predicted returns and evaluate the profitability of a long-short strategy on the top and bottom 

deciles. In terms of monthly returns and annualized Sharpe ratio, neural networks greatly 

outperform OLS benchmarks, with neural network portfolios returning as much as 1.51% on 

average per month, with a Sharpe ratio of 2.62, not accounting for trading costs. I also evaluate 

aggregate market return predictability by comparing the predicted and realized equal-weighted 
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average returns of market portfolios constructed from individual stock returns. I find that the 

results mirror those of individual stock predictions, where a few neural networks outperform 

in R2, and generally outperform in directional accuracy. Notably, the monthly out-of-sample 

R2 at a portfolio level increases to an average of 7.12% for the best neural network. Upon 

further analysis, most of the predictability stems from the lagged market return predictor and 

its nonlinear interactions with firm predictors. Models trained without the market return 

predictor generally fail to achieve positive out-of-sample R2. Additionally, upon analyzing 

result differences in 500 largest and smallest stocks, I find that all predictability measures 

confirm that predictability is stronger in small stock than big stocks (e.g. Green et al (2017)). I 

also analyze the time series of rolling out-of-sample R2 and cumulative returns of the neural 

network portfolios, which reveal that prediction performance is generally better during times 

of market turbulence, aligning with results of Dangl and Halling (2012). 

 Second, I identify predictor variables that contribute the most to return prediction in 

neural networks, contributing to the return anomalies literature where hundreds of factors have 

been found as statistically significant predictors of cross-sectional returns. Since neural 

networks learn the relation between predictors and predictions without a priori information 

from the researcher and allow for nonlinear complex relations, it may identify predictive power 

eluding conventional linear methods. I follow the Gedeon (1997) method of calculating relative 

variable importance based on predictor weights in the neural network and find two different 

results from two different neural networks: one confirms earlier findings of Gu et al. (2018) 

and Messmer (2017), where momentum (e.g. 1-month or 6-month momentum) and liquidity 

(e.g. return volatility or zero trading days) variables are most important, the other finds new 

evidence of the importance of firm fundamentals (e.g. cash or volatility of cash flow) and risk-

based measures (e.g. beta or idiosyncratic volatility). 

 Third, I provide a rigorous neural network comparison, by conducting extensive 

random grid searches for optimal model topologies and controlling for inherent randomness of 

neural networks by repeating the training of each optimized network 100 times and reporting 

summary statistics. I find that there are significant differences in neural network performance 

in the noisy data environment of stock returns. Neural networks using the popular Rectifier as 

their activation function produced highly varied results when measured by out-of-sample R2, 

with standard deviations 0.42% compared to 0.12% of the next best neural network. Rectifiers 

also became unstable the most often during random grid search, where the majority of deeper 

Rectifier networks failed in training. The other two neural networks using so called Maxout 
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and Tanh activation functions performed more stable, generating results in a denser spread. 

Additionally, based on relative variable importance per neural network, Rectifier and Maxout 

models prioritize very different data to extract predictive information. Rectifiers use the 

momentum and liquidity, while Maxouts use firm fundamentals and risk measures. Thus, this 

paper provides researchers looking to apply neural networks to empirical finance with detailed 

insights on model optimization choices and resulting performance. 

 

2. Literature review 

In the asset pricing literature, results for stock return predictability are mixed. Stock return 

predictability has been examined both through cross-sectional regressions that seek to model 

differences in expected returns across stocks on firm-level characteristics, and through time-

series regressions on aggregate market returns on macroeconomic variables. There is an 

enormous literature (see for example Rapach and Zhou’s (2013) overview paper) documenting 

how various variables have predictive power of aggregate stock returns, such as the popular 

dividend-price ratio (Fama and French (1988)). However, the evidence for such predictability 

is predominantly in-sample. Goyal and Welch (2008) show in their influential paper for 

numerous economic variables in the literature that out-of-sample equity premium forecasts fail 

to consistently outperform the simple historical average benchmark forecasts in terms of mean 

square forecast error (MSFE). 

 

 Predictability of stock returns 

 

Stock returns inherently contain a large unpredictable component, so that even the best 

forecasting models can explain only a small part of returns. In addition, market efficiency 

requires that when successful forecasting models or factors are discovered, they will also be 

adopted by others, which leads to the eventual disappearance of such predictability. On this 

point, McLean and Pontiff (2016) document a 58% decrease in post-publication returns based 

on a study of 97 variables and their out-of-sample post-publication return predictability. The 

maximum level of predictability in terms of monthly R2 is 8%, according to a loose analysis 

by Rapach and Zhou (2013) of the typical predictive regression model. In practice, forecasting 

results for stock market aggregate returns are generally in the 1% neighborhood for in-sample 

tests, and lower out-of-sample: Fama and French (1988) report monthly R2 statistics of 1% or 
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less for predictive regression models based on dividend-price ratios, Zhou (2010) reports 1% 

or less for individual predictive regressions based on 10 popular economic variables, and 

Jordan et al. (2014) report over 2% out-of-sample for several European countries based on a 

combination of fundamental, macroeconomic and technical variables. These papers calculate 

R2 statistics comparing predicted returns to the historical average prediction. In comparison, a 

study by Gu et al. (2018) using machine learning algorithms to predict individual stock returns 

use a R2 statistic that compares predicted returns to a zero-return prediction, because the 

historical average comparison underperforms the zero-return prediction when considering 

individual stocks. Their study yields monthly R2 values of less than 1% at best. However, the 

literature agrees on that even small improvements in prediction accuracy can result in 

significant economic benefits (Campbell and Thompson (2008), Rapach and Zhou (2013)). 

 

 Proliferation of anomaly factors and the curse of dimensionality 

 

The proliferation in the number of published anomaly variables that appear significant in 

explaining cross-sectional stock returns has led to the questioning of the validity of traditional 

methods in evaluating whether new characteristics really provide independent information 

about average returns, as asserted by Cochrane’s (2011) presidential address. Since the 

establishing of the CAPM of Sharpe (1964) and Lintner (1965), discoveries have been 

published on significant factors such as the size (Banz (1981)), value (Rosenberg, Reid, and 

Landstein (1985), Fama and French (1992)), and momentum (Jegadeesh and Titman (1993)) 

that have become mainstays in the widely used Fama and French (1993) three-factor and 

Carhart (1997) four-factor models. More recently in the past decades, the discovery of new 

anomaly variables has accelerated, resulting in hundreds of anomaly factors being published, 

as documented by Green, Hand, and Zhang (2013), where they analyze 333 return predictive 

signals, or Hou, Xue, and Zhang (2017), who conduct a replication study on 447 anomaly 

variables. However, these aforementioned critical studies are unified in their conclusion that 

most of the analyzed predictive signals do not appear significant, or their scale is much lower 

than originally published. Thus, there is serious evidence of p-hacking and data snooping in 

empirical finance (Chordia, Goyal, and Saretto (2018)). 

 To tame the factor zoo, many econometric methods have been applied to deal with the 

curse of dimensionality. For example, Giglio and Xiu (2016) and Kelly et al. (2017) use 

dimension reduction methods to test and estimate factor pricing models. Kozak et al. (2017) 
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construct a stochastic discount factor that summarizes the joint explanatory power of many 

cross-sectional stock return predictors. Freyberger et al. (2017) use the adaptive group LASSO 

to select characteristics to approximate a nonlinear function for expected returns. Feng et al. 

(2017) propose a model-selection method to systematically evaluate the contribution to asset 

pricing of any new factor. Sun (2018) uses a newly developed machine learning tool to 

regularize a large set of factors, grouping highly correlated factors while shrinking off the 

useless ones simultaneously. Though these attempts have shown promise and a reduction in 

the number of significant factors, there appears to be no consensus. This has led to Kozak et 

al. (2017) conclusion that the quest to summarize the cross-section of stock returns with sparse 

characteristics-based factor models to be ultimately futile, as there is not enough redundancy 

among the many return predictors. 

 

 Econometric methods to deal with model uncertainty and parameter instability 

 

In addition to addressing high dimensionality, more recent strategies have improved forecasts 

by addressing model uncertainty and parameter instability concerns that traditional linear 

regression models ignore. Model uncertainty recognizes that a forecaster does not know the 

optimal model specification or the corresponding parameter values. Parameter instability 

recognizes that the model and its parameters may change over time. Rapach and Zhou (2013) 

describe four strands of forecasting strategies that deliver statistically significant out-of-sample 

gains: economically motivated model restrictions (Campbell and Thompson (2008)), forecast 

combination (Rapach et al. (2010)), diffusion indices (Neely et al. (2014)), and regime shifts 

(Dangl and Halling (2012)). Additionally, parameter instability has been investigated with 

time-varying coefficients, where Dangl and Halling (2012) find that models with time-varying 

coefficients dominate models with constant coefficients. They also find that stock return 

predictions are closely linked to business cycles, where stronger accuracy is achieved during 

recessions.  

 

 Machine learning methods suitable for high dimensionality, model uncertainty and 

parameter instability 

 

Considering the discussed issues of high dimensionality, model uncertainty, and parameter 

instability, machine learning techniques provide attractive options. As described by Gu et al. 



10 

 

(2018), first, the task in asset pricing, of trying to understand the cross-section of asset returns 

or the aggregate market risk premium, is fundamentally about prediction, and machine learning 

methods are largely specialized for prediction tasks. Second, with its wide range of methods 

from linear models to regression trees and neural networks, machine learning is explicitly 

designed to deal with model uncertainty and complex nonlinear functions. Third, in the 

problem of high dimensionality due to hundreds of predictor variables, machine learning 

algorithms are well-capable of reducing dimensions and condensing redundant variation 

among highly correlated predictors. 

The best performing machine learning models for stock return prediction have generally 

been neural networks and regression trees (Gu et al. (2018), Messmer (2017), Cao et al. (2005)), 

and improving on them, ensemble methods that pool and combine predictions from several 

different machine learning models (Tsai et al. (2011)).  

Gu et al. (2018) conduct a comparative analysis on the performance of various machine 

learning algorithms in individual stock return prediction. Included are linear regression, 

generalized linear models with penalization, dimension reduction via principal components 

regression and partial least squares, regression trees (including boosted trees and random 

forests), and neural networks. Their analysis includes a large set of individual stocks over 60 

years with a set of roughly 100 predictive variables. They find that allowing for nonlinearities 

substantially improves predictions, where trees and neural nets improve return predictions from 

a benchmark monthly stock-level R2 of 0.16% to R2’s between 0.27% and 0.39%. The 

benchmark is a panel regression of individual stock returns onto the lagged size, book-to-

market, and momentum variables. When they run the analysis for bottom-up portfolio-level 

return forecasts of the S&P 500 index from stock-level forecasts, the monthly R2 for trees and 

neural networks is 1.39% and 1.80%, compared to the benchmark of -0.11%. The portfolio 

level prediction averages out more of the stock-level noise while boosting signal strength.  

Messmer (2017) trains deep feedforward neural networks on a set of 68 firm 

characteristics to predict the U.S. cross-section of stock returns, finding that neural network 

long-short portfolios can generate attractive risk-adjusted returns compared to a linear 

benchmark. Cao et al. (2005) find the same result with Chinese stocks, where neural network 

models outperformed linear models. Tsai et al. (2011) use classifier ensemble methods to 

predict whether quarterly stock returns are positive or negative and find that classifier 

ensembles outperform single neural network models, and that the return on investment is better 

for all tested machine learning models than the buy and hold strategy. For the reasons, further 
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analysis on neural networks and their performance in stock return prediction is valuable and 

interesting. The goal of this paper is to provide a more rigorous examination of neural networks 

and analyze the prediction performance of optimized networks and infer information on which 

predictors are the most important. 

3. Data 

I follow Green et al.’s (2017) influential paper in using the dataset from their website1 with 102 

firm characteristics and monthly individual stock returns from the time period 1980 to 2018, 

totaling 38 years, with an average of around 4000 stocks per month. I also add one-month 

lagged market return as a predictor. The firm data is entirely calculable from CRSP, Compustat, 

or I/B/E/S data, and begins in 1980 due to most characteristics becoming robustly available 

only then. Details of the characteristics including sources, definitions, and percentage missing 

of each characteristic is provided in Table A1 in the appendix. 

 Green et al. (2017) begin the data creation with all firms with common stock on the 

NYSE, AMEX, or NASDAQ that have a month-end market value on CRSP and a nonmissing 

value for common equity in their annual financial statements. Data is integrated across 

Compustat, I/B/E/S, and CRSP and characteristics are computed and aligned in calendar time. 

For each month t’s return they calculate characteristics as they were at the end of month t-1. 

Also, annual accounting data is assumed to be available at the end of month t-1 if the firm’s 

fiscal year ended at least six months before the end of month t-1, and quarterly accounting data 

to be available if the fiscal quarter ended at least four months before the end of month t-1. 

Green et al. (2017) also include delisting returns in the monthly stock returns taken from CRSP, 

delete 20 observations that have a monthly return less than -100%, and set blank values of 

analyst following (nanalyst) to zero. The dependent variable is monthly returns in excess of 

the risk-free rate (XRET). Excess return is calculated as a stock’s monthly return minus the 

risk-free rate. The market return variable is based on the Wilshire 5000 Total Market Full Cap 

Index and the risk-free rate is the “3-Month Treasury Bill: Secondary Market Rate”. Both are 

retrieved from the economic research data base at the Federal Reserve Bank at St. Louis. 

 

                                                 

1 Dataset retrieved using the SAS code on their website: 

https://sites.google.com/site/jeremiahrgreenacctg/home 

https://sites.google.com/site/jeremiahrgreenacctg/home
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4. Methodology 

The methodology applied in this paper consists of five steps. First, I split the entire data set 

into training, validation, and testing data. Second, I find the optimal neural network topologies 

used in further analysis through random grid searches. Third, I train three optimized neural 

networks 100 times each to produce 300 neural networks models to control for randomness 

among different iterations of the model, and compute three linear OLS benchmarks to compare 

against. Fourth, I generate predictions using the 300 neural networks and 3 OLS benchmarks 

and analyze average neural network prediction performance statistically and economically. 

Fifth, I analyze relative variable importance to infer which predictors are most impactful to the 

predictions. 

 

 Constructing training, validation and testing data sets 

 

I split the data set into three subsets: training, validation, and testing sets. The training data set 

is used for training the model, where the model calculates the optimal parameter coefficients 

for the predictor variables. The validation data set is used during training (both in random grid 

search and training the optimized models) to enable “early stopping” regularization reducing 

overfit. The testing data is a true out-of-sample test of the tuned models, using data that has not 

been used for model training or validation.  

Before creating the dataset splits, the characteristics are first winsorized at the 1st and 

99th percentiles of their monthly distributions. Then, I split the data into a training set with 75% 

of all data (1980-2006) and testing set with 25% of all data (2007-2018). I shuffle the order of 

the training data set, as shuffling training data is considered best practice for neural networks 

to make learning more robust and less susceptible to time-specific outliers (Brownlee (2016)). 

Shuffling the training data breaks up the temporal order and enables the model to better learn 

information from the entire panel. I standardize the training dataset to zero mean and unit 

variance and store the standardization parameters (mean and standard deviation) for each 

characteristic. The reason to standardize the variables is both to deal with missing values, and 

to make neural network model training faster and reduce the chances of getting stuck in local 

optima (Sarle (2002)). Then, the testing set is scaled according to the stored parameters of the 

75% training set. Scaling the testing dataset according to stored standardization parameters 

from the training set is done to avoid introducing future information of variable distributions 
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into the testing dataset. After standardizing and scaling the data, I set all missing values to the 

post-standardized mean of zero as Green et al. (2017). 

Lastly, I create the validation dataset with 25% of all data by splitting a portion off from 

the training set. The validation dataset is thus also in a randomized order. Choosing a shuffled 

validation dataset instead of a time-period specific set (e.g. training using data from 1980 to 

1997, then validation from 1998 to 2006) attempts to strike a reasonable compromise between 

trying to avoid a “lucky split” and being a representative out-of-sample test. A “lucky split” 

would mean, for example, that data in 1998 to 2006 could be unrepresentative of the general 

data, which would push the models to overfit to that period and result in poor true out-of-

sample prediction performance later. The randomized validation dataset contains data from 

different time periods, so is more representative of general data, but is less “out-of-sample”, 

sacrificing some its representativeness as an out-of-sample test. However, none of the 

validation data is used during training, so it is still data the model has not seen. Also, since the 

feedforward networks I train do not explicitly learn temporal information from the order of the 

rows and the data is already in panel form, the order of data is less significant. I consider the 

potentially better k-folds cross-validation method but decide not to use it due to high 

computational cost and H2O not supporting cross-validation if recursive model refitting is done 

(which I do during the true out-of-sample testing).  

The result is a shuffled and standardized training dataset with 75% of all data – from 

which I split a 50% training set and 25% validation set for hyperparameter tuning – and a 

temporally ordered and scaled testing dataset with 25% of all data. 

 

 Over-arching function and methods 

 

We follow Gu et al.’s (2018) description of the over-arching functional form of the models 

utilizing panel data. In constructing predictive models for stock returns based on lagged 

information, the primary objective of the models is to minimize the mean squared forecast error 

(MSFE). Some regularization is imposed on the models through variations of the MSFE 

objective, in order to avoid overfitting and to improve out-of-sample predictive performance. 

 In its most general form, an asset’s excess returns can be described as: 

𝑟𝑖,𝑡+1 = 𝐸𝑡(𝑟𝑖,𝑡+1) + 𝜀𝑖,𝑡+1 

where 

𝐸𝑡(𝑟𝑖,𝑡+1) = 𝑔∗(𝑧𝑖,𝑡). 
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Stocks are indexed as 𝑖 = 1,… ,𝑁𝑡 and months as 𝑡 = 1,… , 𝑇. The predictive models construct 

a representation of 𝐸𝑡(𝑟𝑖,𝑡+1) as a function of predictor variables that minimizes the out-of-

sample MSFE between the predicted return and realized return 𝑟𝑖,𝑡+1. The predictors are 

denoted as the P-dimensional vector 𝑧𝑖,𝑡 (lagged information), and the conditional expected 

return 𝑔∗(∙) is assumed to be a flexible function of these predictors. Thus, the function 

maintains the same form over time and across stocks (doesn’t depend on 𝑖 or 𝑡) and doesn’t 

use information from the history prior to 𝑡 or from individual stocks other than the 𝑖𝑡ℎ in 

predictions. This means that the previously described shuffling of training data is acceptable, 

as the models essentially consider each row of data independent and identically distributed 

(iid). A limitation of this functional form may be the lack of year-fixed-effects, where for 

example market capitalization is generally lower in the training data than in the testing data 

time period. However, annual refitting of the models controls this to an extent. 

The neural network models are refitted annually to produce predictions for the next 

year. This strikes a reasonable compromise between computational expensiveness of refitting 

every month and simulating a real-life modeling process and follows Gu et al. (2018). For 

neural networks, model refitting is done using “checkpointing”2, where an existing model’s 

training process is resumed using only next year’s data as an input, resulting in the existing 

model updating its parameter weights accordingly. The algorithm uses the same validation data 

for model regularization during each checkpointing iteration. 

For robustness of the results, I will include prediction results from different subsets of 

data related to firm size, such as all stocks and top or bottom 500 based on market 

capitalization. To evaluate statistical prediction performance, I will use out-of-sample R2, 

correlation between predicted and realized returns, and directional accuracy. To evaluate the 

economic value of predictions, I will perform bottom-up estimates simulating stock index 

predictions, where I predict the all stocks’ and top/bottom 500 largest/smallest stocks’ equal-

weighted average returns and compare them to their actual equal-weighted average return. This 

bottom-up approach adds an equity premium prediction aspect to my thesis, demonstrating the 

degree of equity premium predictability based on individual stock return predictions. 

Additionally, I will compare the return and volatility of stock portfolios sorted on predicted 

returns that buys the top decile and shorts the bottom. 

                                                 

2 See description of the implementation of checkpointing in H2O: http://docs.h2o.ai/h2o/latest-stable/h2o-

docs/data-science/algo-params/checkpoint.html 

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/checkpoint.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/checkpoint.html
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 Benchmark ordinary least squares linear regression 

 

As a benchmark to the neural network results, I use three different OLS benchmarks, with 

lagged market return (mkt_ret_lag), market capitalization (mve), book-to-market (bm), and 6-

month momentum (mom6m) as predictors. OLS-3 is a linear regression on the full training data 

sample that makes predictions on the entire testing data. OLS-3-R is an annually refit linear 

regression that annually adds the next year data to its training data, representing the 

methodologically closest comparison to the neural networks. OLS-FM follows the procedure 

of Fama and French (2006), in which first coefficient estimates are produced using monthly 

cross-sectional regressions of firm-level returns on lagged values of predictors (dropping 

market return as it is the same across firms in a given month), and then those coefficient 

estimates are used to calculate predicted one month ahead returns using current values of 

predictors. Notably, OLS-FM models can only utilize information from the previous month 

and not the entire panel, unlike the previous two models. 

 

 Neural networks anatomy 

 

In the computer science or machine learning field, neural networks are arguably the most 

powerful modeling device, being able to approximate any smooth predictive association. 

Neural networks were designed as conceptual models of human brain activity, where input 

signals that arrive in neurons are weighted by dendrites according to their relative importance, 

processed by the cell body and passed on down the axon to the next neuron through synapses.  

The brief description of neural networks follows Krauss et al. (2017). A neural network 

has an input layer equal to the predictors, one or more hidden layers of nodes that interact and 

nonlinearly transform the predictor signals, and an output layer that aggregates hidden layers 

into an outcome prediction. All layers are composed of nodes (𝑥𝑖
(𝐿)

), the basic units of neural 

networks. In feedforward networks that I use, each node in a previous layer L is fully connected 

to all nodes in a subsequent layer 𝐿 + 1 via directed edges, each representing a certain weight 

(𝑤𝑖
(𝐿)

). Also, each non-output layer of the network has a bias unit 𝑏(𝐿), serving as an activation 

threshold for the nodes in the subsequent layer. As such, each node of layer 𝐿 + 1 receives a 

weighted combination 𝛼(𝐿) of the 𝑛(𝐿) outputs of the neurons that are connected to it from the 

previous layer 𝐿 as input: 
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Input layer 

𝛼(𝐿) = 𝑏(𝐿) +∑𝑤𝑖
(𝐿)𝑥𝑖

(𝐿)

𝑛(𝐿)

𝑖=1

 

Using the left example in Figure 0, a neural network with zero hidden layers represents a linear 

regression model: 

𝑔(𝑥) = 𝑏(0) +∑𝑤𝑖
(0)𝑥𝑖

(0)

4

𝑖=1

 

 

Figure 0. Simple neural network visualizations. 

 The left figure shows a neural network with no hidden layers, essentially a linear regression. The right 

figure shows a neural network with one hidden layer (3 nodes). The arrows represent the weights (𝑤𝑖) between 

signals connecting nodes, and W represents the n-dimensional vector of weights, where n is the number of outputs 

from the previous layer. In the hidden layer, a nonlinear activation function f transforms the inputs before passing 

them on to the output.  

 

 

 

 

 

 

 

 

What enables neural networks to learn nonlinear relations and interactions between predictors 

is the connectedness of all predictors to the hidden layer nodes and the activation function that 

is used to transform the aggregated signal before passing it on. Using the right example in 

Figure 0, the left-most node in the hidden layer transforms its four inputs into an output as: 

𝑥1
(1) = 𝑓(𝑏(0) +∑𝑤𝑖

(0)𝑥𝑖
(0)

4

𝑖=1

) 

The output from each node in the hidden layer are then linearly aggregated into the output 

prediction: 

𝑔(𝑥) = 𝑏(1) +∑𝑤𝑘
(1)𝑥𝑘

(1)

3

𝑘=1

 

Applying the same logic to deeper and wider models, the functional form becomes a much 

more nested function aggregating all weight and bias matrices of each layer and node. This is 

Hidden layer 

Output layer Output layer 

Input layer 

f f f 

W(0) 

W(1) 

W(0) 
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if x < 0 

otherwise 

why neural network models are infamously difficult to interpret, unlike a simple linear 

regression. Machine learning is implemented by adapting the entire collection of weight 

matrices in order to minimize the error on the training data. The process by which the weights 

are adapted is called the training algorithm, discussed in detail in the next section, among other 

parameters that control the regularization of neural networks that are prone to overfitting. 

 

 Neural network hyperparameters 

 

Neural network hyperparameters describe the set of topology and regularization technique 

parameter choices when initializing a neural network. Hyperparameter value choices are non-

trivial and “more of an art than science” (Zhang, Patuwo, and Hu (1998)). Thus, neural 

networks require rigorous optimization through grid search to enable the researcher to find an 

optimal set of hyperparameter values that work for the specific data in question. In this section 

I describe the most important hyperparameters analyzed in this paper and defer the description 

of my grid search process to the next section. The main neural network characteristic choices 

are activation function, network topology, training algorithm, learning rate, and loss 

function. The main regularization techniques used are early stopping, dropout, and L1/L2 

regularization. 

First, the activation function transforms a neuron’s net input signal into a single output 

signal to be broadcasted further in the network. There are many potential choices for the 

activation function (such as sigmoid, tanh, rectifier, etc.) (Lantz (2015)). A simple linear 

activation function with no hidden layers would essentially be an OLS linear regression. One 

popular example could be the sigmoid function, 𝑓(𝑥) =
1

1+𝑒−𝑥
, where the sum of input signals 

𝑥, determines an output value in the range of 0 to 1. However, the sigmoid function has fallen 

out in favor of better performing functions in recent literature, such as the rectifier (Gu et al. 

(2018)). The R package I use, H2O, offers three popular activation function alternatives: 

Rectifier, Tanh, and Maxout. The activation function choice is applied to all hidden layers. 

During hyperparameter tuning, among other variables, I compare the performance of the three 

activation functions using random grid search, where random combinations of given 

hyperparameters are used to build different neural network models.  

The Rectifier is defined as the positive part of its argument: 

𝑓(𝑥) = {
0
𝑥
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where x is the input to a neuron. It is the most popular activation function as of 2017 

(Ramachandran et al. (2017)), and its advantages include 1) computational efficiency through 

only requiring a max(0,x) function and being capable of outputting true zero values unlike tanh 

functions, and 2) linear behavior, which makes the network easier to optimize and much less 

likely to encounter vanishing gradient problems, making the model more stable. 

 The Tanh is defined as: 

𝑓(𝑥) = tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

Its benefits include being zero-centered, making it easier to model inputs that may have 

strongly negative or positive value. Finally, the most recently developed Maxout activation 

function is defined as: 

𝑓(𝑥) = max(𝑤1
𝑇𝑥 + 𝑏1, 𝑤2

𝑇𝑥 + 𝑏2) 

and is a generalization of the Rectifier. It enjoys the benefits of the Rectifier while fixing the 

so-called problem of “dying Rectifiers”, where a “dead” neuron always outputs zero for any 

input for the rest of the training process. The trade-off for Maxout is the doubling of parameters 

for each neuron, requiring a higher total number of parameters to be trained. 

 Second, the network topology refers to the chosen structure of number of layers, 

whether information in the network is allowed to travel backwards, and the number of nodes 

within each layer. Generally, the larger and more complex networks are capable of identifying 

more subtle patterns, but for example Gu et al. (2018) show that a network with three layers 

performs better than one with five layers for stock return prediction with a large set of predictor 

variables. In my work I use the grid search method that varies the number of layers as well as 

nodes within each layer, to find the optimal model based on out-of-sample performance. The 

most commonly used feedforward networks only allow information to flow forwards in a 

network, and that is the topology I will be using. 

Third, the training algorithm refers to the process by which the network is trained 

using input data. Training a neural network means how the network’s connection weights are 

adjusted to reflect patterns observed from data. Modern training algorithms are variations on a 

strategy of back-propagating errors, known simply as backpropagation. In its most general 

form, backpropagation iterates through many cycles (known as epochs) of two processes, 

forward and backward phases. In the forward phase an output signal is produced based on the 

current weights in the network. Then, in the backward phase the error of the output signal 

compared to the true realized value is propagated backwards in the network to adjust the 

weights between neurons to reduce future errors. There are many different training algorithms 
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to choose from, such as the stochastic gradient descent, conjugate gradient or Newton method 

(Quesada (n.d.)). I use the parallelized stochastic gradient descent offered by the H2O R-

package, as it is widely used and fits well with large datasets with many predictor variables. 

Parallelization drastically improves training time at the cost of result reproducibility (details 

about controlling for randomness described in Section 4.7). 

Finally, for the loss function and learning rate, two important hyperparameters of 

neural networks, I use the default options that the H2O-package offers: mean squared error 

(MSE) loss function objective and the adaptive learning rate ADADELTA (Zeiler (2012)). The 

loss function refers to the minimization objective in backpropagation. The MSE loss function 

widely used in linear regression is also frequently used in continuous variable predictions in 

neural networks, measuring and minimizing the inconsistency between predicted values and 

actual values during training. The learning rate in neural networks refers to the amount 

parameter weights are updated during training: the higher the learning rate, the faster the model 

learns, but at the cost of arriving on sub-optimal final weights. Smaller learning rates may allow 

the model to learn a more optimal set of weights but may take significantly longer to train, or 

never converge. Various adaptive learning rates have been developed that monitor the model 

performance during training and adjust the rate in response, which results in generally better 

performance than manually configured rates. There is no consensus on the best adaptive 

learning rate to use, but ADADELTA is among the most popular (Goodfellow (2016)). Two 

ADADELTA learning rate hyperparameters, the time decay factor (rho) and time smoothing 

factor (epsilon), are tuned through grid search of optimal values. 

 

For regularization techniques, first, early stopping is used to evaluate model skill 

during training, with user-given stopping rounds n and stopping tolerance p: at regular intervals 

during training, a value for a chosen scoring metric is calculated, and if this metric hasn’t 

improved by p in n scoring events, model training is stopped. For example, when a separate 

validation sample is used, and the stopping metric is R2, the algorithm regularly calculates the 

pseudo-out-of-sample R2 of the model using the validation sample and uses early stopping if 

R2 doesn’t improve enough. The important consideration is which data to use in scoring the 

models during training: in-sample, validation sample (where a specific hold-out sample is 

used), or cross-validation. I use the H2O-package’s default stopping metric, deviance (similar 

to mean-squared-error (MSE)) and choose to use a separate hold-out validation sample. The 

construction of the validation sample was detailed in Section 4.1. 
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Second, dropout is a regularization technique that generally reduces overfit by 

randomly dropping out a percentage of nodes in different layers during training. Srinivastava 

et al. (2014) describe dropout to enable breaking up situations where network layers co-adapt 

to correct errors from other units, where these co-adaptations do not generalize to unseen data. 

In my model, different dropout ratios are applied to the input layer and the hidden layers, where 

common values are around 0.2 for input layers and 0.5 for hidden layers (Srinivastava (2014)). 

I use the H2O-package default of 0.5 for the hidden layer dropout ratio, but tune the input 

dropout ratio through grid search.  

Third, L1 and L2 regularization prevents neural networks from overfitting by keeping 

the values of weights and biases small. Both techniques add a regularization term to the loss 

function, resulting in weight values to decrease. L1 regularization penalizes the absolute sum 

of weights and can reduce weights to zero, whereas L2 penalizes the squared sum of weights 

and decays weights towards zero. A regularization parameter determines the strength of L1/L2 

regularization and its value is optimized through grid search. Common values for L1 and L2 

regularization parameters are small, around 1e-4 to 1e-5. I search for optimal L1/L2 shrinkage 

parameters through grid search. 

 

 Hyperparameter tuning through random grid search 

 

In grid search, the user inputs sets of values for hyperparameters to be considered, and neural 

network models will be built for each combination of the given hyperparameter values. Then, 

the out-of-sample performance based on the validation data set can be compared, and the best 

models selected. Since the hyperparameter set I input is wide (288 combinations), a random 

grid search (following Bergstra and Bengio (2012)) over a set number of maximum models 

(150) is performed instead of a cartesian search where all possible combinations are iterated 

through. To make the results more robust to the randomness caused by parallelized stochastic 

gradient descent, I repeat this random grid search 10 times before making model choice 

decisions. This is to counter any lucky or unlucky iterations. 

For each model, I calculate the R2 based on the validation data and rank the model from 

150 to 1 (150 being the best) for each of the 10 iterations. Then, I separate the results based on 

the activation function (Rectifier, Maxout, and Tanh). For each hyperparameter value under an 

activation function, I calculate the average validation R2 and average rank for models that 

include that hyperparameter value. Then, for each activation function I choose the 
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hyperparameter values that have the highest average validation R2, confirmed by the average 

rank that diminishes effects of outliers. 

The hyperparameters I test for are hidden layer topology, ADADELTA learning rate 

time decay factor (rho), ADADELTA learning rate time smoothing factor (epsilon), input 

dropout ratio, L1 parameter, and L2 parameter. I initially test for the following sets of 

hyperparameter values resulting in 288 different combinations: 

• Activation function: Rectifier, Maxout, and Tanh 

• Hidden layers: single-layer 64-nodes, two-layer [64, 32] nodes, three-layer [64, 32, 16] 

nodes (following the geometric pyramid rule of Masters (1993)) 

• Rho: 0.9 and 0.99, where 0.99 is the H2O default 

• Epsilon: 1e-8 and 1d-9, where 1e-8 is the H2O default 

• Input dropout ratio: 0.1 and 0.2, where 0 is the H2O default 

• L1: 0 and 1e-4, where 0 is the H2O default 

• L2: 0 and 1e-4, where 0 is the H2O default 

Based on the results of the above search, I will run a second grid search iteration with 

incrementally adjusted hyperparameter values to test for improvement. For example, if models 

with Rho = 0.99 have higher average validation R2 and rank than models with Rho = 0.9, which 

means a larger Rho seems better, I will adjust the second iteration to test for a larger Rho: Rho 

= 0.99 and Rho = 0.999. 

 

 Controlling for randomness in model training and results through repetition 

 

H2O uses the HOGWILD! (Niu et al. (2011)) scheme to parallelize stochastic gradient descent 

computation, which drastically speeds up model training, at the cost of reproducibility. As 

training times without parallelization were unfeasible for practical reasons, using HOGWILD! 

was a necessity.  

 Randomness is also an inherent part of machine learning algorithms and particularly 

neural networks (Brownlee (2016)). Randomness is introduced through the shuffled order of 

training data, inherent randomness in the algorithms (such as initializing neural network 

parameter weights with random values), and randomness in data sampling during training (the 

model trains on random subsets of data at a time). H2O requires setting a seed before beginning 

training for its random number generator that affects the above three sources of randomness. 
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Choosing a single seed and reporting only on results produced by that seed would reveal a 

limited image of prediction performance. 

 Thus, I repeat hyperparameter grid search 10 times, making model choice decisions 

based on average R2s, and repeat the resulting three optimized models 100 times each and 

analyze the mean and standard deviation of their prediction accuracy measures. This also 

provides an interesting benchmark range of R2 values to compare existing literature on and for 

future research. 

 

 Measuring statistical prediction performance using out-of-sample R2, return correlation 

and directional accuracy 

 

The main measure of prediction accuracy I use is the out-of-sample 𝑅2. The measure is defined 

as: 

𝑅𝑜𝑜𝑠
2 = 1 −

∑ (𝑟𝑖,𝑡+1−𝑓𝑖,𝑡+1)
2

(𝑖,𝑡)

∑ (𝑓𝑖,𝑡+1−𝑟�̅�)
2

(𝑖,𝑡)

, 

where 𝑟𝑖,𝑡+1 is the realized return of stock 𝑖 at time 𝑡 + 1, 𝑓𝑖,𝑡+1 is the same stock’s predicted 

return, and 𝑟�̅� is the historic average return of all stocks in the training sample. Between 

different subsets of the training sample (e.g. sample that only contains large stocks), the historic 

average return is calculated separately for each subset. The prediction accuracy is only 

measured on the testing data set, whose data are not used in model estimation or tuning. In 

addition, I examine the prediction performance using correlation between predicted the realized 

returns and percentage of times predicted and realized returns have the same sign (directional 

accuracy). 

 

 Measuring economic value of predictions: Bottom-up equity premium predictions and 

excess returns from machine learning portfolios 

 

I test the predictive performance of my models in forecasting returns of custom equal-weighted 

indices of all stocks, largest 500 stocks, and smallest 500 stocks. For this, I construct bottom-

up estimates of the index returns using individual stock return predictions of the respective 

stocks each month. The 𝑅𝑜𝑜𝑠
2  metric for this experiment is calculated as the same: 

𝑅𝑜𝑜𝑠
2 = 1 −

∑ (𝑟𝑡−𝑓𝑡)
2𝑇

𝑡=1

∑ (𝑟𝑡−�̅�𝑡)2
𝑇
𝑡=1

, 



23 

 

where �̅�𝑡 is the historical average return of the index calculated through the training sample 

time period. These results can then be compared to both the 𝑅2 metric of individual stock return 

predictions, and equity premium prediction results like Campbell and Thomson (2008), who 

estimate the out-of-sample predictability of the S&P 500 index based on several valuation 

ratios. 

Second, I test for the profitability of machine learning long-short portfolios trading all 

stocks, top 500 largest stocks, and bottom 500 smallest stocks. The portfolios are built by 

sorting stocks of each respective size category each month based on the individual stock return 

predictions and buying the top decile stocks and shorting the bottom decile. I then calculate the 

average monthly returns, volatilities, Sharpe ratios, and the risk-adjusted alphas compared to 

the Carhart (1997) four-factor model. Trading costs are not considered within the scope of this 

paper. The results from this test give an idea of the theoretical profitability that could have been 

realized by investors using the forecasts. 

 

 Measuring relative predictor variable importance 

 

To gain insight into relative predictive strength of the predictors, I extract variable importance 

using the Gedeon (1997) method that H2O has integrated as part of its deep learning functions. 

The method utilizes the sum of products of normalized weights to evaluate the weight matrices 

connecting the inputs with the first two hidden layers. I note that evaluating trained neural 

networks, which are considered “black box” models, is infamously difficult, and many 

measures of variable importance have been proposed over the years, all riddled with different 

potential shortcomings (see for example Sarle’s (2000) analysis). The Gedeon method is also 

applied by Krauss et al. (2017), while Gu et al. (2018) use a simpler measure. 

 

5. Analysis and results 

 Hyperparameter grid search results 

 

The first grid search reported in Table 1 reveals a consistent picture of the best-performing 

parameter values underlined in the table. Across the three models (Rectifier, Maxout, Tanh), 

the same hyperparameter values seem to be the best fit. Overall, the Rectifier models performed 

the best in the validation sample with an average R2 of 0.61%, followed by Maxout (0.36%) 



24 

 

and Tanh (0.30%). I note that, on average, the grid search R2 results should appear more 

positive than in the true out-of-sample test, as the validation sample is a shuffled split from the 

training sample containing information from the past (as explained in Section 4.1).  

Considering the standard deviations reported in brackets, the most unstable model turns 

out to be Maxout, with an overall average standard deviation of 0.62%. However, it seems the 

instability is concentrated in models with certain hyperparameter values, such as more than one 

hidden layer (standard deviations of 0.73% and 0.74%), input dropout of 0.2 (0.73%), L1 of 

1.0E-4 (0.80%), so the instability can be avoided through the optimized parameters. The 

Rectifier models seem equally unstable across parameter values, exhibiting standard deviations 

of around the average 0.49% against its 0.61% mean R2. The Tanh models display similar 

behavior, although with lower R2 and standard deviations overall. 

 

Table 1. Hyperparameter grid search results comparing average validation sample R2 (%) across parameter values. 

 The values reported are average R2 (%) based on the validation data for models including the 

hyperparameter value defined in the left-most column. Rectifier, Maxout, and Tanh models are compared that 

differ by their activation function. The random grid search trains 150 models out of 288 possibilities (3 x 3 x 2 x 

2 x 2 x 2 x 2), and grid search is repeated 10 times, producing a maximum of 1500 models. 95 models failed in 

training, and I filter out an additional 18 models with in-sample R2 less than -10%, resulting in a total sample size 

of 1387 models. 

 Rectifier Maxout Tanh 

Overall 0.61 (0.49) 0.36 (0.62) 0.30 (0.18) 

Hidden layers and units per layer 

     [64] 0.89 (0.42) 0.50 (0.23) 0.37 (0.17) 

     [64, 32] 0.49 (0.42) 0.36 (0.73) 0.34 (0.13) 

     [64, 32, 16] 0.34 (0.47) 0.19 (0.74) 0.19 (0.19) 

Input dropout   

     0.1 0.65 (0.52) 0.43 (0.46) 0.31 (0.19) 

     0.2 0.58 (0.45) 0.29 (0.73) 0.29 (0.18) 

L1    

     0 0.71 (0.37) 0.55 (0.26) 0.33 (0.16) 

     1.00E-04 0.48 (0.60) 0.14 (0.80) 0.26 (0.20) 

L2    

     0 0.61 (0.46) 0.35 (0.68) 0.29 (0.18) 

     1.00E-04 0.62 (0.52) 0.36 (0.56) 0.31 (0.18) 

Rho    

     0.99 0.84 (0.55) 0.54 (0.49) 0.38 (0.19) 

     0.9 0.38 (0.26) 0.17 (0.68) 0.22 (0.14) 

Epsilon    

     1.00E-08 0.56 (0.55) 0.22 (0.80) 0.24 (0.17) 

     1.00E-09 0.67 (0.40) 0.49 (0.32) 0.36 (0.18) 
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I conduct two iterations of the entire grid search process, where I set each grid to 

produce 150 models out of the 288 possible combinations, and each iteration to produce 10 

grids. The first iteration created 1405 models and the second 1500. The numbers are less than 

the theoretical 1500 (150 models each grid with 10 grids), because some models become 

unstable during training fail to complete. I additionally filter away models with in-sample R2 

less than -10%, as these can be considered computational failures, and filtering based on in-

sample R2 is acceptable prior to engaging in the pseudo out-of-sample validation test. The 

hyperparameter values tested in the second iterations were adjusted based on the results from 

the first iteration to further optimize hyperparameter choices. The resulting Table A2 for the 

second grid search iteration is reported in the Appendix. Overall, changes in activation 

function, hidden layer topology, and rho had the most significant effects on model 

performance, while L1, L2 and input dropout were less impactful with models generally 

working better with smaller regularization parameter values. Based on the second grid search 

of Table A2, the best-performing models on average chosen for additional performance-testing 

are shown in Table 2. 

 

Table 2. Optimized neural network model topologies based on hyperparameter grid search. 

 “Activation” refers to the activation function of the model, “Hidden” refers to the number of hidden 

layers and number of nodes within each layer separated by a comma, and “Input dropout” refers to the percentage 

of inputs randomly dropped out to improve generalization. L1 and L2 refers to the L1- or L2-regularization 

parameter strength, where a higher value equals more respective regularization. Epsilon is the time smoothing 

factor and Rho the time decay factor of the ADADELTA adaptive learning rate algorithm used. 

Activation Hidden Input 

dropout 

L1 L2 Epsilon Rho 

Rectifier [64] 0 1e-5 1e-5 1e-9 0.999 

Maxout [64, 32] 0 0 1e-5 1e-10 0.999 

Tanh [64, 32] 0 0 1e-5 1e-10 0.999 

 

 

 Main results: Out-of-sample R2 compared to linear benchmarks 

 

First, I examine the true out-of-sample monthly prediction performance of the three optimized 

models measured by R2 as defined in Section 4.8. As explained in Section 4.7 about the 

randomness of separate iterations of the same model, the figures are reported as means 

accompanied by their standard deviations to give a better picture of average model 
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performance. Shown in Table 3, the highest out-of-sample statistical prediction performance is 

achieved by Maxout models, with an average out-of-sample R2 of 0.80%, followed by Tanh 

models with R2 of 0.39% and Rectifiers with 0.17%. The values are in line with existing 

literature, such as Gu et al. (2018) who find a monthly out-of-sample R2 of 0.39% on their best-

performing rectifier neural network model trained on an extended version of my dataset. The 

highest individual R2 of all models was 1.07% produced by a Rectifier model, followed by 

1.03% by a Maxout model. 

 

Table 3. Stock-level monthly prediction performance measured by average out-of-sample R2 (%). 

 The table reports the mean out-of-sample R2 (%) and the standard deviations of R2 results (in brackets) 

from repeating model training and prediction 100 times for the three neural network models (Rectifier, Maxout, 

Tanh), and compares them to the OLS benchmark using lagged market return, firm size, book-to-market, and 

momentum (OLS-3), OLS-3 with annual refitting (OLS-3-R), and Fama and French (2006) OLS (OLS-FM) that 

uses coefficient estimates from monthly cross-sectional regressions on OLS-3 predictors except market return to 

predict next month returns. Results are also reported for subsamples that include only the top 500 (Big) and bottom 

500 (Small) stocks by market value (models built on full data, predictions subsampled). 

 All Big Small 

Maxout 0.80 (0.12) 0.54 (0.18) 1.36 (0.13) 

Tanh 0.39 (0.09) 0.06 (0.27) 1.01 (0.06) 

Rectifier 0.17 (0.42) -1.47 (0.86) 0.75 (0.54) 

OLS-3 0.73 -0.02 0.55 

OLS-3-R 0.64 -0.46 0.54 

OLS-FM -7.15 -33.53 -1.96 

 

 

In addition, I analyze prediction performance in the largest and smallest stocks by market value. 

This is done by calculating the R2 using returns of only the top 500 and bottom 500 stocks by 

market value each month, subset from existing predicted returns produced by models trained 

on the full data. Table 3 shows that neural network predictions are generally better in small 

stocks and worse in large stocks: all R2 in the “All” category are less than those in “Small” and 

greater than those in “Big”. For the linear benchmarks, overall predictions on all stocks 

performed the best, followed by small stock predictions. This confirms there are differences in 

the return predictability of small versus large stocks and indicates that the neural networks fit 

more towards small stocks’ rather than large stocks’ return behavior, which seems reasonable 

as a majority of stocks in the U.S. market data belongs to small stocks.  

The high small stock performance is in line with existing research that find return 

predictability to be the strongest among stocks with the highest levels of arbitrage frictions or 
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high trading costs (Lesmond, Schill, and Zhou (2004), Hou and Moskowitz (2005), Chordia, 

Roll, and Subrahmanyam (2008), Li and Zhang (2010), and Lam and Wei (2011)). My findings 

also confirm Green et al.’s (2017) observation that anomalies are mostly present in microcap 

stocks and not robustly so in all stocks. The result contradicts those of Gu et al. (2018), who 

find that predictions by neural networks are the most accurate in the top 1000 stocks (0.72% at 

best), then the bottom 1000 stocks (0.46% at best), then all stocks (0.39% at best). The 

differences are most likely to stem from data and algorithm differences. Gu et al. train their 

models on data from 1957 to 1986, include more macroeconomic predictors, and conduct out-

of-sample testing on data from 1987 to 2016. A deeper investigation into the reasons behind 

the result differences is beyond the scope of this paper. 

 Comparing the results to the three linear regression benchmarks, neural networks do 

not universally outperform the linear benchmarks. The worst-performing OLS-FM, which 

cannot use lagged market return as a predictor in its monthly cross-sectional regressions, 

underperforms all other models significantly, with an OOS R2 of -7.15%. The other two, OLS-

3 and OLS-3-R, which both include lagged market return as a predictor in their panel 

regressions, outperform Tanh and Rectifier models on average. Both the neural networks and 

the OLS regressions heavily use the lagged market return as the most important predictor, 

shown more evidently in Section 5.8 about variable importances. So, a linear model using a 

longer training sample without annual refitting seems to generalize well into the bull-market 

period of 2009-2018. The linear benchmarks also perform worse in big stocks. For small stocks, 

the results are worse than for all stocks, which could imply that the models fit more towards 

average-sized stocks, and that neural networks are better able to learn the anomalies in small 

stocks. 

 

 Standard deviations of out-of-sample R2 and correlation between in-sample and out-of-

sample performance 

 

The standard deviations vary between the models and the stock size categories. Overall, the 

Rectifier models seem to be the most unstable, with the highest standard deviations across size 

categories. For example, the Rectifier has a standard deviation of 0.42% for all stocks, against 

a mean of 0.17%, whereas the Maxout has a standard deviation of 0.12% against a mean of 

0.80%. Figure 1 presents a visualization of the variance in results, plotting the percentage 

frequency distribution of out-of-sample (OOS) R2 results. The graph shows the high variance 
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of Rectifier model results, with R2 values almost uniformly spread across the entire range, and 

the relatively more stable performance of the Maxout and Tanh models. Tanh models in 

particular center densely around the 0.4% mean, with 38% of R2 results between 0.3% and 

0.4%. The variance is further visualized in the scatterplot of Figure 2. 

 

Figure 1. Frequency distribution of out-of-sample R2s of three neural network models iterated 100 times. 

 Three neural network models are used to predict monthly excess stock returns. Each model is repeated 

100 times with its prediction performance measured by out-of-sample R2 recorded. The graph shows the frequency 

distribution of the resulting 100 R2s for each model, distinguished by the three different lines. The x-axis describes 

the R2 value ranges, and the y-axis the percentage of results in that value range. 

 

  

The correlation between in-sample R2 and out-of-sample R2 is -28.9% for all results, 

-15.8% for Rectifier model results, -12.6% for Maxout results, and 8.1% for Tanh results. From 

Figure 2 we see that the overall negative correlation is driven by the strong in-sample 

performance of some rectifier models and their relatively poor out-of-sample performance, as 

well as the strong out-of-sample performance of the Maxout models. The Rectifier’s negative 

correlation is mainly driven by the models with very strong in-sample but poor out-of-sample 

performance, suggesting Rectifiers more easily overfit for the noisy data being unable to 

generalize out-of-sample.  The Maxout and Tanh models are more stable and produce denser 

scatters on the graph. The scatterplot also shows the average outperformance of Maxout 

compared to the other two models, with its scatter almost entirely above Tanh results, and on 

average above the high-variance Rectifier results. 
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Figure 2. Scatterplot of in-sample versus out-of-sample R2 for the three optimized models. 

 The x-axis is the in-sample R2, and y-axis the out-of-sample R2 from the selected model performance 

test where 100 of each model are trained and tested on out-of-sample data. 

 

 

 Rolling past 12-month out-of-sample R2 over time 

 

Figure 3 plots the rolling 12-month out-of-sample R2 over the testing period (2007-2018). The 

graph provides information on the temporal development of the R2 results. Overall, the models 

follow the same trends with peaks and troughs at roughly the same time. Maxout and Tanh 

models align very closely, while Rectifiers are generally lower. It seems that the accuracy of 

predictions measured by R2 varies greatly over time, peaking during 2009-2010 and bottoming 

during 2011-2013. At a surface level analysis, there seem to be indications of greater prediction 

accuracies during times of higher volatility as measured by the CBOE Volatility Index (VIX). 

For example, during the R2 peaks of 2009-2010, 2011-2012, 2015-2016 and end of 2018, the 

VIX also displays spikes in its level3 roughly during these times. The findings are somewhat 

surprising, considering the models’ reliance on the market return predictor (discussed in 

Section 5.8), and the understanding in literature that, for example, momentum strategies 

perform poorly during high market volatility (Wang and Xu (2015)). One might expect models 

to perform the best during low volatility periods when stocks follow a similar trend, but the 

temporal results of Figure 3 reveal that the neural networks perform particularly well during 

market turbulence. One explanation could lie in the out-of-sample R2 measure itself, where 

                                                 

3 See VIX levels for example at Yahoo Finance for the time period 2007-2018. 
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during turbulent times the historical average becomes a worse predictor, and the neural network 

predictions are able to better predict differences. During calmer periods the historical average 

serves as a solid predictor, and neural networks may introduce unnecessary variation in 

predictions. There may be many other reasons why out-of-sample R2 varies over time, but I 

leave a deeper investigation into the temporal development of R2 to future research. 

 

Figure 3. Rolling past 12-month out-of-sample R2 over the testing period. 

 The figure plots the rolling past 12-month out-of-sample R2 over the testing period 2007-2018, with the 

first value being January 2008 and its out-of-sample R2 based on the past 12-months of predictions. The three 

different lines represent the three neural networks, Maxout, Rectifier, and Tanh. The x-axis represents the date, 

and the y-axis the R2. 
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 Correlation between predicted and realized returns and directional accuracy 

 

To give more perspective to the statistical performance of the models, Table 4 reports the 

average correlation between predicted and realized returns, and Table 5 the average directional 

accuracy for the same three stock size groupings (all, big, small) as earlier. Surprisingly, the 

correlation results differ from the R2 results, where Rectifier performs the best with an average 

correlation of 10.08%, followed by Maxout (9.66%) and Tanh (6.97%), despite Rectifier 

performing the worst when measured by R2. Both Rectifier and Maxout outperform all linear 

benchmarks, whereas the Tanh models underperform. The underperformance of big stock 

predictions compared to small stock and all stock predictions persists in neural networks. With 

big stocks, the significantly negative R2 results by Rectifiers persists, where the average 

correlation is only 5.58%. Both Tanh and Rectifier underperform linear benchmarks in big 

stocks (except OLS-FM). For small stocks, neural networks have generally higher return 

correlations, suggesting the models are better able to learn predictive information in the 

smallest stocks, outperforming the linear benchmarks. 

 

Table 4. Stock-level monthly prediction performance measured by average correlation (%) between predicted and 

realized returns. 

 The table reports the mean correlation between predicted and realized returns and the standard deviations 

(in brackets) of the correlation results from repeating model training and prediction 100 times for the three neural 

network models (Rectifier, Maxout, Tanh), and compares them to the OLS benchmark using lagged market return, 

firm size, book-to-market, and momentum (OLS-3), OLS-3 with annual refitting (OLS-3-R), and Fama and 

French (2006) OLS (OLS-FM) that uses coefficient estimates from monthly cross-sectional regressions on OLS-

3 predictors except market return to predict next month returns. Results are also reported for subsamples that 

include only the top 500 (Big) and bottom 500 (Small) stocks by market value (models built on full data, 

predictions subsampled). 

 All Big Small 

Maxout 9.66 (0.26) 8.19 (0.64) 10.30 (0.35) 

Tanh 6.97 (0.30) 6.81 (0.41) 8.20 (0.18) 

Rectifier 10.08 (0.55) 5.58 (1.10) 10.39 (0.82) 

OLS-3 8.34 8.09 8.47 

OLS-3-R 7.80 7.15 8.14 

OLS-FM 7.26 4.87 7.78 

 

 

In directional accuracy, neural network models come out with a slight edge over the 

linear benchmarks, shown in Table 5. In all stocks, where 50.75% of realized returns were 
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positive, all models outperform a constant positive guess, with Maxout having the highest 

average performance at 52.96% (maximum single result was 53.46%). Surprisingly, OLS-FM 

outperforms the other two OLS models here, with a directional accuracy of 51.50%. This might 

be explained by cross-sectional monthly regressions being able to identify cross-sectional 

winners and losers better than the other two panel-regression OLS models, which weigh their 

market return variable much more. An additional explanation could be sizeable outlier realized 

returns that are in the same direction as predicted returns. These would cause poor statistical 

prediction accuracy (measured by R2 and correlation) but good directional accuracy. In OLS-

FM’s case, the cross-sectional regression coefficients are understandably unable to fit for 

potential outlier realized returns, but the cross-sectional differences in predictors still seem to 

effectively capture differences between winners and losers, resulting in good directional 

accuracy. 

In big stocks, 55.73% of realized returns were positive, providing a harder baseline to 

beat. None of the models exceed this baseline, with Maxout coming closest at 55.13%. Thus, 

the relative underperformance of big stock predictions persists, as the models are trained on 

data skewed towards small stocks. In small stocks, only 44.01% of realized returns were 

positive, so although the directional accuracy results are lower overall in small stocks, they 

beat the baseline much more convincingly in this size category, with OLS-FM delivering the 

highest accuracy at 52.51%, and Rectifier the best average for neural networks at 51.32% 

(maximum single result was 53.12% by a Rectifier model).  

 

 Market premium perspective: Index return prediction accuracy 

 

To gain insight into the extent of predictability of the market premium, I examine return 

predictions for three equal-weighted portfolios, essentially constructed from the same data used 

for firm size categories earlier in this paper: 1) a market index portfolio constituting all 

tradeable stocks each month, 2) a portfolio consisting of the 500 largest stocks each month by 

market capitalization, and 3) a portfolio consisting of the 500 smallest stocks each month by 

market capitalization. The portfolio return predictions are constructed bottom-up, from 

individual stock predictions of the stocks forming the portfolio each month. Table 6 reports the 

results. 
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Table 5. Stock-level monthly prediction performance measured by average directional accuracy (%). 

 The table reports the mean directional accuracy and the standard deviations (in brackets) of the 

directional accuracy results from repeating model training and prediction 100 times for the three neural network 

models (Rectifier, Maxout, Tanh), and compares them to the three linear ordinary least squares (OLS) 

benchmarks. Directional accuracy is calculated as the percentage of predicted returns having the same sign as 

realized returns. In the entire testing data, big stocks subsample, and small stocks subsample, 50.75%, 55.73%, 

and 44.01% of realized returns were greater than zero, respectively (reported in brackets after size category titles). 

OLS-3 is a linear regression using lagged market return, firm size, book-to-market, and momentum as predictors. 

OLS-3-R is the same as OLS-3, adding annual refitting. OLS-FM uses coefficient estimates from monthly cross-

sectional regressions on OLS-3 predictors except market return to predict next month returns. Results are also 

reported for subsamples that include only the top 500 (Big) and bottom 500 (Small) stocks by market value 

(models built on full data, predictions subsampled).  

 All (50.75) Big (55.73) Small (44.01) 

Maxout 52.96 (0.21) 55.13 (0.70) 50.61 (0.76) 

Tanh 51.96 (0.47) 52.88 (1.58) 50.55 (0.81) 

Rectifier 52.68 (0.33) 54.68 (1.30) 51.32 (0.77) 

OLS-3 50.85 51.67 48.45 

OLS-3-R 50.84 51.76 48.60 

OLS-FM 51.50 51.54 52.51 

 

 From Table 6, I observe that R2 results increase dramatically across the board. 

Particularly in All stocks and Small stocks, the model predictions of the respective portfolio 

returns clearly outperform their respective historical average return-based predictions. Notably, 

the historical average return was around 0.85% for all stocks, 0.73% for big stocks, and 2.5% 

for small stocks: the large and highly volatile nature of small-stock returns causes the historical 

average to be a particularly poor predictor for the Small portfolio, which amplifies the R2 results 

in their category. However, for All stocks and Big stocks, the historical average serves as a fine 

benchmark, and choosing a zero-return prediction like Gu et al. (2018) would artificially 

increase the results in those two size categories. The overall trend is consistent with results of 

earlier Table 3, where small-stock predictions outperform big-stock and all-stock, and neural 

networks barely outperform their linear benchmarks. Out of the neural networks, surprisingly, 

Rectifiers performs the best, with an average R2 of 7.12% in all stocks, compared to Maxout 

with 6.29%, which contradicts Table 3 results where Rectifiers were performing the worst on 

average. This indicates that averaging the return predictions at a portfolio-level seems to 

alleviate effects of noisy individual predictions and distill predictive information about the 

portfolio as a whole effectively.  
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Table 6. Portfolio-level monthly prediction performance measured by out-of-sample R2 and directional accuracy 

(%). 

 The table reports the out-of-sample R2 (𝑅𝑂𝑂𝑆
2 ) and percentage of predicted returns that have the same 

sign as realized returns (Directional accuracy) for three neural network models (Maxout, Tanh, Rectifier) and 

three OLS benchmarks, when predicting monthly returns of three equal-weighted portfolios: “All” is a market 

index constituting all tradeable stocks on the market each month, “Big” constitutes the 500 largest stocks each 

month by market capitalization, and “Small” constitutes the 500 smallest stocks each month by market 

capitalization. In the Directional accuracy panel, the numbers within brackets after the size category subtitles are 

the percentage of realized portfolio returns that are positive – the baseline against which the results should be 

compared. 

  𝑹𝑶𝑶𝑺
𝟐  (%)  

 All Big Small 

Maxout 6.29 2.57 17.87 

Tanh 4.74 1.57 13.77 

Rectifier 7.12 0.29 20.81 

OLS-3 6.26 0.31 16.48 

OLS-3-R 5.41 -1.23 16.41 

OLS-FM -52.32 -114.49 -12.88 

  Directional accuracy (%)  

 All (59.7) Big (62.5) Small (50.0) 

Maxout 60.49 62.12 55.47 

Tanh 58.07 57.64 55.68 

Rectifier 60.55 61.29 56.70 

OLS-3 56.94 55.56 55.56 

OLS-3-R 56.94 56.25 54.17 

OLS-FM 56.94 56.25 57.64 

 

 Taking a closer look at prediction performance in the All-stocks category, Rectifiers 

and Maxout models, with average R2s of 6.29% and 7.12%, narrowly outperform the best linear 

benchmark, OLS-3 with an R2 of 6.26%. This is consistent with Table 3 results where OLS-3 

came close to the best neural network results. However, the Directional accuracy panel reveals 

a new picture, where OLS benchmarks underperform the neural networks: in All stocks, they 

fail to even exceed the 59.7% baseline (percentage of portfolio realized returns that were 

positive). All three linear benchmarks happen to have a directional accuracy of 56.94%, 

predicting 82/144 monthly returns of the All-stock portfolio correctly, whereas Maxout and 

Rectifiers achieve a directional accuracy of 60.49% and 60.55%, respectively. 

 In the Big-stocks category, overall performance is much lower, consistent with Table 

3, where predictions are clearly weaker in the biggest stocks. Maxout performs the best with 

an R2 of 2.57%, with Rectifiers now underperforming with an R2 of 0.29%. The poor 

performance of predicting a portfolio of the 500 largest stocks each month is surprising, given 

the importance of the lagged market return predictor. However, this is also encouraging as 



35 

 

indications of cross-sectional predictive power even in small stocks with overall higher 

idiosyncratic risks. Directional accuracy mirrors earlier results, where none of the models 

exceed the baseline (62.5%) and neural networks outperform OLS models. The R2 results are 

in line with existing literature such as Gu et al. (2018), who find an R2 of 1.8% for neural 

network predictions on the S&P 500 index portfolio. The results also show surprisingly 

powerful out-of-sample performance compared to traditional literature, such as Welch and 

Goyal (2008) who fail to produce positive out-of-sample R2 using macroeconomic predictors 

to predict the market return, or Kelly and Pruitt (2013) who find monthly out-of-sample R2’s 

of around 1% for the market index delivered by PLS. It seems neural networks are able to 

capture significant stock-level predictability that increases even further when averaged together 

in portfolio return predictions. 

 In Small stocks, I observe abnormally high R2 results – puzzling considering the few 

benchmark values from comparable literature mentioned earlier. Rectifier models achieve the 

highest average R2s of 20.81%, followed by Maxouts with 17.87%. The Rectifier models’ 

outperformance despite low R2 in Table 3 could be explained by the models generating highly 

varying individual predictions, but when averaged in a portfolio, the overall predictive result 

becomes less noisy and grants a much better prediction than the historical average of the 

portfolio. Again, I note that microstocks have very volatile returns and using their historical 

returns (around 2.5%) may serve as a poor predictor, as it ends up inflating R2 results by around 

5 percentage points compared to using a zero-return prediction as Gu et al. (2018). The opposite 

would be true for All and Big stocks, where a zero-return prediction amplifies R2 results by a 

few percentage points, which is why to keep the methodology consistent across size categories, 

I keep the conventional historical mean as the benchmark for R2 calculations. The linear 

benchmarks also perform almost on par with the neural networks, with OLS-3 having R2 of 

16.48%. This is encouraging since if there were some model or data construction error 

particularly in the market return variable, the predictions should be better in large stocks 

instead, as they follow the market movements more closely. The downside is that stronger 

predictability in microstocks has less economic significance as utilizing the information is more 

expensive in illiquid microstocks for investors. Directional accuracy follows the trend in Table 

5, where all models exceed the baseline (50%) and surprisingly OLS-FM has the highest 

accuracy (57.64%), considering its very poor R2. 

 Finally, as a robustness test, I run autoregressive regressions (AR(1)) predicting the 

market return using one-month lagged market returns (Wilshire 5000 Total Market Full Cap 
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Index) and calculate its out-of-sample R2. The resulting monthly R2 is 1.15% for the AR(1) 

model, which, compared to the R2 of 6.26% of OLS-3 or 7.12% of Rectifiers, shows that 

combining firm characteristics with the market return in a panel data form increases return 

prediction accuracy at the market return level. 

  

 Neural network long-short portfolio results 

 

To examine the practical economic significance of neural network forecasts, I build long-short 

portfolios on the three stock size subsamples (All, Big, Small), where each month out-of-

sample predicted returns are used to sort the stocks in the sample, and the top decile is bought 

while the bottom decile sold short. In addition, I regress the monthly returns against the Fama-

French three-factor model (Fama and French (1996)) augmented with the momentum factor of 

Carhart (1997), to analyze the exposure of returns to common sources of systematic risk. Same 

as for all neural network results of this paper, all calculations are done for the 100 different 

repeated model iterations of each of the three neural network models, so the reported measures 

are averages. The results are reported in Table 7. 

 Overall, the neural networks now unquestionably beat the OLS benchmarks in average 

monthly returns and Sharpe ratio, with advantages stemming from both higher returns and 

lower standard deviations. The neural network models also exhibit high levels of alpha, which 

are highly statistically significant. Performance trends observed in earlier tables across size 

categories still roughly hold, with big stocks underperforming small stocks. This confirms 

observations in the anomalies literature, where anomalies are concentrated in small and 

microcap stocks and are less robustly present in large stocks (Green et al. (2017)). Table 7 is 

the clearest demonstration of the predictive power of the neural networks over the linear 

benchmarks, where earlier statistical measures did not necessarily show clear winners. The 

results suggest neural networks are able to learn cross-panel return predictive signals to identify 

stock picks producing returns significantly above the market averages. However, I note that 

trading costs are not taken into account, so the actual realizable returns are most likely much 

lower than stated due to high portfolio turnover. 
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Table 7. Monthly profitability of long-short top-bottom decile portfolios using neural network predictions. 

 This table reports the average monthly return (Ret), standard deviation of returns (Std), Sharpe ratio (SR), 

and alpha with its t-stat (𝛼 (t-stat)), based on Fama-French three-factor model augmented with momentum, of a 

long-short top-bottom decile portfolio sorted on predicted returns. The values are in percentages except for SR 

and t-stats. The results are reported for three size categories, where “All stocks” includes all stocks, “Big stocks” 

only the 500 largest stocks each month, and “Small stocks” the 500 smallest stocks each month by market 

capitalization. The values reported for the three neural network models (Maxout, Tanh, Rectifier) are averages of 

100 separately-trained models each, compared to the singular results of their three OLS benchmarks. 

  All stocks   

 Ret Std SR 𝛼 (t-stat) 

Maxout 1.32 1.84 2.49 1.39 (9.80) 

Tanh 0.84 1.58 1.85 0.92 (7.48) 

Rectifier 1.51 1.99 2.62 1.55 (10.46) 

OLS-3 -0.09 2.28 -0.14 0.04 (0.26) 

OLS-3-R -0.13 2.22 -0.20 0.01 (0.08) 

OLS-FM 0.17 2.89 0.21 0.16 (0.64) 

  Big stocks   

 Ret Std SR 𝛼 (t-stat) 

Maxout 0.43 1.57 0.96 0.52 (4.52) 

Tanh 0.28 1.45 0.66 0.35 (3.12) 

Rectifier 0.33 1.52 0.76 0.37 (3.13) 

OLS-3 -0.25 1.90 -0.45 -0.18 (-2.23) 

OLS-3-R -0.27 1.90 -0.50 -0.21 (-2.31) 

OLS-FM 0.15 2.64 0.19 0.18 (0.84) 

  Small stocks   

 Ret Std SR 𝛼 (t-stat) 

Maxout 3.03 4.41 2.39 3.02 (8.40) 

Tanh 2.11 3.59 2.04 2.12 (7.15) 

Rectifier 3.33 4.87 2.38 3.36 (8.47) 

OLS-3 0.85 3.68 0.80 0.97 (3.16) 

OLS-3-R 0.81 3.70 0.76 0.91 (2.95) 

OLS-FM -0.11 4.85 -0.08 -0.30 (-0.75) 

 

 In All stocks, Rectifiers perform the best with average monthly average returns of 

1.51% with an average annualized Sharpe ratio of 2.62, followed by Maxouts with average 

returns of 1.32% and a Sharpe ratio of 2.49. The highest individual neural network result was 

by a Rectifier model iteration that achieved average returns of 1.67% with a Sharpe ratio of 

2.88. Over the test period (2007-2018), the comparable Wilshire 5000 Total Market Full Cap 

Index returned 0.7% (3.9% standard deviation), with an annualized Sharpe ratio of 0.60. The 

OLS benchmarks underperform, with only OLS-FM achieving slightly positive returns, and all 

three having higher standard deviations than the neural networks. The highly significant 

Maxout and Rectifier model average alphas of 1.39% and 1.55 (t-stats of 9.80 and 10.46), 

respectively, indicate there is a large portion of returns unexplained by the three Fama-French 

factors and momentum, and the neural networks are able to produce sizeable abnormal excess 
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returns. Compared to literature, Gu et al. (2018) find higher monthly average returns of 3.19% 

with 4.77% standard deviation, with similar Sharpe ratios 2.32, using the three-layered neural 

networks and the same long-short portfolio. They also find higher, significant Fama-French 5-

factor (+ momentum) alphas of 2.98%. Notably, the size of the alpha is similar to the average 

return (alpha of 2.98% versus returns of 3.19%) – a finding my results echo (e.g. alphas of 

1.55% versus returns of 1.51%). 

 In Big stocks, overall performance decreases, but neural networks still outperform their 

linear benchmarks. Maxout models perform the best, with average monthly returns of 0.43% 

and Sharpe ratios of 0.96, compared to a maximum of 0.15% return and Sharpe of 0.19 by the 

OLS-FM. Over the test period (2007-2018), the comparable S&P 500 Index returned on 

average 0.5% each month (4.2% standard deviation), with an annualized Sharpe ratio of 0.40. 

Thus, most of the Sharpe ratio improvement by the neural networks stems from lower standard 

deviations. The results suggest that neural networks are able to consistently identify some 

winners and losers despite market fluctuations, resulting in a less volatile portfolio than the 

market. Krauss et al. (2017) find drastically larger returns of 0.33% per day (roughly 7% per 

month) on a portfolio long-shorting the top/bottom 10 stocks ranked daily by predicted 

probability to outperform the market, using neural networks trained on lagged returns of S&P 

500 index constituents. They find comparable-sized annualized Sharpe ratios of 2.44. However, 

after transaction costs the average daily returns and annual Sharpe ratio decrease to 0.13% and 

0.55, respectively. 

 In Small stocks, overall performance increases with neural networks maintaining a 

decisive margin over the OLS benchmarks. The Rectifiers perform the best, with average 

monthly returns of 3.33% and Sharpe ratios of 2.38, compared to the maximum of 0.85% return 

and Sharpe of 0.80 by the OLS-3. Although the average monthly returns achieved by the neural 

networks in small stocks are double those in all stocks, the standard deviations also end up 

higher, resulting in slightly lower Sharpe ratios.  

Figure 4 plots the average monthly returns of the neural network portfolios against the 

out-of-sample R2s for each of the 300 separate model iterations. The plot would look almost 

identical when plotting Sharpe ratios instead of returns. The scatterplot visually displays the 

somewhat curious return outperformance of the Rectifier models despite their volatile and 

lower-on-average out-of-sample R2, where the Rectifier points place consistently higher than 

the other models on the y-axis, but have a much wider scatter on the x-axis. On the other hand, 
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Maxout and Tanh models display a more linear result, where higher out-of-sample R2 results 

in higher return performance, both with relatively dense scatters.  

 

Figure 4. Scatterplot of average monthly returns against out-of-sample R2s of neural network portfolios. 

 The figure plots the average monthly returns (y-axis) achieved by neural network long-short top-bottom 

decile portfolios against the out-of-sample R2s (x-axis) of the models. Each model is repeated 100 times, resulting 

in the 300 points plotted.  

 

 

Figure 5 plots the time series of cumulative returns of the neural network portfolios compared 

to the S&P 500 index, starting from value 100. The graph shows that the neural network 

portfolios are able to perform consistently well across the whole time period, and particularly 

well during market turbulence. For example, during 2008-2009, the S&P 500 decreases 

significantly, while all three machine learning portfolios gain at a fast pace. Also, during mid 

2015 to 2016, the S&P 500 faces some turbulence, but Maxout and Rectifier models only 

accelerate their gains. The findings support the earlier discovery from Figure 3 that R2 

performance seems to be better during times of higher market volatility measured by the VIX: 

returns gained from the predictions also seem to improve during market turbulence. This is in 

line with Dangl and Halling (2012) who find evidence of stronger S&P 500 return predictability 

during recessions.  
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Figure 5. Cumulative returns on neural network portfolios compared to the S&P 500 index (2007-2018). 

 The figure plots the development of the value of the three neural network portfolios (Maxout, Rectifier, 

Tanh) compared to the S&P 500 index, with 100 as their starting value, from 2007 to 2018. The effects of trading 

costs are not included. 

 

 

 Variable importance 

 

Using the Gedeon (1997) method to extract information on relative predictor strength, I 

calculate the average of average variable importance for the three neural network models 

separately for their 100 iterations. The results are reported in Figure 6, where relative variable 

importance is measured on a standardized scale from 0 to 1. I note that, as pointed out by Sarle 

(2000), particularly drawing conclusions from evaluating relative importances of the same size 

from the Gedeon (1997) method is problematic, as relative importance of the same size through 

the method does not necessarily mean the variables are equally important. Thus, I focus my 

analysis on variables that have a significant importance difference. 



41 

 

Common to the three models, lagged market return is the single most important 

predictor, with all except Maxout having an average importance of 1 for the predictor across 

the 100 model iterations each. For example, when training Maxout models with a dataset 

excluding lagged market return, the average out-of-sample R2 for 80 model iterations was  

-0.17%, return correlation 3.44%, and directional accuracy 50.50%, far lower than values 

reported in earlier tables. One explanation for the dominance of the market return is the 

structure of the panel data set: market return is the same for all stocks in monthly cross-sections, 

thus providing powerful information on the general level of the market last month. Also, since 

market return is the only macroeconomic predictor in my data set, it is reasonable that the 

models learn most of the systematic variation in stock prices through the variable. In essence, 

it is likely that the market return is used to predict the overall level of return, while the other 

firm variables are used to predict cross-sectional differences. Arguably, then, macroeconomic 

variables in conjunction with firm variables should be very important in generating individual 

stock return predictions. 

Examining Figure 6 one model at a time, Rectifiers have nine variables with relative 

importance above 0.4 aside from market return: Four of the nine are related to momentum: 6-

month stock momentum (mom6m), 1-month stock momentum (mom1m), industry momentum 

(indmom), and change in 6-month momentum (chmom). Three of the nine are related to 

liquidity: volatility of dollar trading volume (std_dolvol), zero trading days (zerotrade), and 

dollar trading volume (dolvol). One is related to analysts (number of analysts covering the stock 

(nanalyst), and the last is the market capitalization of the firm. The last 10 variables of the top 

10 fall below relative importance of 0.4, and are more similar in scale, so inferences are less 

reliable in that range. Nevertheless, I observe that of the last 10, one is momentum-related 

(mom12m), three are liquidity related (turn, std_turn, ill), three are risk measures (retvol, 

idiovol, beta), two are firm fundamentals (cash, lev), and one is analyst forecasts (fgr5yr). 

Based on the top 10 variables, and supported by the bottom 10, it seems that Rectifiers focus 

on momentum and liquidity-based measures to generate forecasts. 

The findings are very similar to those of Gu et al. (2018) and Messmer (2017), who 

both use Rectifier neural networks, and find momentum, liquidity and risk-based measures to 

be the most prominent. Also, Green et al. (2017) find 12 multivariately identified independent 

characteristics that provide information about average stock returns, out of which 7 are found 

in the top 20 of Rectifiers: cash, one-month momentum, change in 6-month momentum, return 

volatility (retvol), share turnover (turn), volatility of share turnover (std_turn), and zero trading 
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days. The reliance on momentum and liquidity signals may explain the outperformance of 

Rectifiers in portfolio returns, where momentum is likely a key variable in identifying price 

trends, and especially in small stocks, where liquidity is likely to signal more about future 

returns. Notably, the inclusion of market capitalization (mve) in the top 10 would suggest 

Rectifiers learn and apply differences between big and small stocks. 

 For Maxout models, nine variables (aside from market return) have variable importance 

over 0.4, although much less distinctively than the Rectifier top 10. Two of the nine are risk 

measures: idiosyncratic return volatility (idiovol), return volatility (retvol). Four of the nine are 

firm fundamentals: cash, cash flow volatility (stdcf), % change in sales - % change in SG&A 

(pchsale_pchxsga), % change in gross margin - % change in sales (pchgm_pchsale). Three of 

the nine are related to market participants and analyst forecasts: earnings announcement returns 

(ear), dispersion in analyst forecasted EPS (disp), and change in forecasted EPS (chfeps). The 

bottom 10 are very similar in size compared to each other, so inferences are less robust, but we 

note anyhow that seven of the ten are firm fundamentals (chtx, ms, hire, gma, pchsale_pchinvt, 

sgr, rdsale), two of the ten are risk measures (maxret, betasq), and one is a valuation ratio 

(roaq). Based on the top 10, and supported by the bottom 10, it seems that Maxout models 

focus particularly on firm fundamentals and risk measures to generate forecasts – a very 

different picture from the momentum/liquidity-focused Rectifiers.  

Interestingly, Maxout models seem to align more closely with the univariately 

significant independent characteristics that Green et al. (2017) find, instead of the 

multivariately significant characteristics such as Rectifiers. 10 of the 12 univariately significant 

characteristics are firm fundamental signals. This suggests Maxout models focus more on long-

term predictors compared to the short-term focused Rectifiers. Overall, Maxouts use all 

predictors more, with the smallest relative importance being 0.2, compared to 0.08 for 

Rectifiers and 0.06 for Tanhs. This suggests that Maxout models are able to take advantage of 

more diverse predictive information, which may explain their outperformance in out-of-sample 

R2, being less prone to overfit on a few types of predictors. It is also interesting that Maxout 

models do not have momentum variables at all in the top 20, which contradicts findings of Gu 

et al. (2018). The first momentum variable appears at rank 21, the 3-year momentum, followed 

by 1-year momentum at rank 23. The momentum variable importances in Maxout models are 

also in reverse order compared to the other two models, where Maxouts prefer longer time-

frame momentum and other models short-term signals.  



43 

 

Lastly, Tanh models focus on a very narrow range of variables, with only one variable 

(1-month momentum) with relative importance above 0.4 in addition to market return. The 

other 18 in the top 20 have importances of roughly 0.2. Two of the 18 are fundamental signals: 

asset growth (agr) and cash. Six of the 18 are valuation ratios: book-to-market (bm), market 

cap (mve), return on equity (roeq), R&D to market cap (rd_mve), earnings to price (ep), return 

on assets (roaq). Four of the 18 are related to liquidity: zero trading days (zerotrade), share 

turnover (turn), volatility of dollar trading volume (std_dolvol) and volatility of share turnover 

(std_turn). Five of the 18 are analyst forecasts: dispersion of analyst forecasted EPS (disp), 

change in forecasted EPS (chfeps), scaled analyst earnings forecast (sfe), forecasted 5-year 

growth (fgr5yr), and unexpected quarterly earnings (sue). One of 18 is related to momentum: 

industry momentum (indmom). There is no clear category the 18 variables in Tanh models 

focus on, with the most important being valuation ratios, liquidity, and analyst forecasts. It is 

a much more mixed picture than the previous two. The underperformance of the Tanh models 

compared to the other two neural networks may be explained by its likelihood to overfit due to 

only using 1-month momentum in addition to market return. It seems the Tanh models are 

unable to fully learn predictive information from a more diverse set of predictors like the 

Maxout models. 

Taken as a whole, it seems that macroeconomic variables can be powerful predictors of 

the systematic variation in individual stock returns through panel data, when used in 

conjunction with firm characteristics, shown by the high relative importance of the market 

return variable across the three neural networks. Interestingly, depending on the activation 

function chosen for the neural network, the models use different types of data for predictions: 

Rectifiers lean towards market trends with momentum and liquidity variables, Maxout towards 

firm fundamentals and risk measures, and Tanh lies somewhere in between. My findings 

confirm those of Gu et al. (2018), who also find momentum and liquidity variables to be the 

most important with neural networks using Rectifier activation functions. My findings also 

echo some of Green et al.’s (2017) findings, where many of the variables they identify to be 

significant providers of independent information on stock returns are also found in the top lists 

of my neural network predictors. The variable importance findings for Maxout models presents 

a challenge to the prevalent usage of Rectifiers as activation functions among researchers 

applying neural networks to finance. The findings are the first of its kind to my knowledge and 

emphasize the significant impact the choice of activation function can have on the entire model 

and how it learns. For the anomalies literature, I confirm the importance of momentum and 
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liquidity variables, but also many firm fundamentals that Maxout models were able to widely 

use to successfully predict out-of-sample returns. 

 

Figure 6. Variable importance by model (top 20 variables). 

 The figures display the top 20 most important variables in each model. 
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6. Conclusion 

The analysis of neural network predictions contributes to the anomalies, return predictability, 

and machine learning literatures. For the anomalies literature, the analysis on variable 

importances confirms particularly the significance of momentum (e.g. 1-month momentum) 

and liquidity (e.g. standard deviation of dollar trading volume) variables, but also firm 

fundamentals (e.g. cash or standard deviation of cash flow) and risk measures (e.g. 

idiosyncratic volatility). Two neural network models provide contrasting pictures of which 

variables are the most important, with the popular Rectifier models focusing on momentum 

and liquidity, and Maxout models on firm fundamentals and risk measures. My findings are in 

line with Messmer (2017) and Gu et al. (2018), who also find momentum and liquidity 

variables to be the most important for Rectifier neural networks. Many of the top variables 

from both models also match with predictors Green et al. (2017) identify using conventional 

linear methods as informative of cross-sectional returns. Contradicting previous findings that 

posit only a very narrow set of predictors contain significant return predictive information, the 

Maxout models in this paper appear to use the entire predictor set of 103 predictors more evenly 

than other models. This suggests that depending on the model, a high-dimensional predictor 

set can still be valuable. Since neural networks that allow complex nonlinearities between 

inputs can find varying interpretations of predictor importance, traditional linear methods may 

be limited to certain views as well. 

 This study finds notable predictability of individual stock returns both measured by out-

of-sample R2 and profitability of a long-short decile portfolio. The results are supported by 

analysis on the correlation between predicted and realized returns as well as the directional 

accuracy of the predictions. The best neural networks outperformed linear benchmarks, but 

some more unstable neural networks underperformed in terms of R2. However, all neural 

networks outperformed OLS models in portfolio profitability on long-short top-bottom decile 

portfolios sorted on predicted returns. Statistical performance and economic value of 

predictions are found to be higher during times of market turbulence, aligning with findings of 

Dangl and Halling (2012). A large portion of the predictability stems from the only 

macroeconomic variable available in the data, the lagged market return. This suggests 

individual stock return predictability benefits greatly from macroeconomic variables that are 

more explanatory of the systematic portion of return variation. This predictability is highlighted 

when aggregating individual stock returns into average monthly market return predictions, 

where abnormally large out-of-sample R2s were documented. The results of this paper that 
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compare predictability between all stocks, top 500 largest stocks, and bottom 500 smallest 

stocks confirm earlier findings in literature (e.g. Chordia, Roll, and Subrahmanyam (2008) or 

Green et al. (2017)) that return predictability and anomalies are stronger in illiquid small stocks, 

and sometimes completely absent from large stocks. 

 The profitability results found for the neural network long-short portfolios should be 

interpreted more as a theoretical economic perspective to the value of neural network 

predictions rather than actual realizable profits, as transaction costs are not taken into account. 

For example, for Rectifier models that lean on momentum and liquidity predictors, their trading 

activity is likely to be similar to momentum strategies. Portfolio turnover is likely to be high, 

as in the All stocks portfolio the top and bottom deciles together contain on average almost 800 

stocks each month, ranging from large caps to microcaps. Lesmond, Schill, and Zhou (2004) 

show that theoretical momentum trading strategy profits all but disappear after accounting for 

transaction costs, and that stocks that generate large momentum returns are precisely those 

stocks with high trading costs, such as small stocks. As my results show that predictability and 

profitability is strongest among small stocks, it is likely that a large proportion of profits is 

generated from smaller, more illiquid stocks. Thus, realizable profits after trading costs is 

significantly lower than the theoretical profits reported.  

 For the machine learning literature, this paper contributes by providing an overview of 

how varying neural network topologies perform in learning from highly noisy data, and the 

effects of randomness. Based on the results, neural network topology plays a key role in the 

stability, general level of predictions, as well as how the model learns from predictors. First, 

the results of hyperparameter tuning through grid search show that optimizing hyperparameters 

has a sizeable impact on the model performance. Second, the analysis on variable importance 

findings reveals that Maxout models are better at using the entire predictor set rather than 

narrowly focus on few, like the Rectifier and Tanh models. Models using the popular Rectifier 

activation function were highly unstable in our dataset, similarly observed by Messmer (2017), 

producing highly varied predictions on different iterations. Deeper than one-layer topologies 

effectively did not work for Rectifiers, as most deeper iterations failed in training during 

random grid search. While the prediction performance of Rectifiers had high variance 

measured by out-of-sample R2, the spread was much smaller with the other two activation 

functions studied, Maxout and Tanh, showing denser scatters around mean results. On the other 

hand, despite the Rectifiers’ unstable statistical prediction performance, they still outperformed 

all other models in profitability measures – a somewhat surprising finding. Even Rectifiers 
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with very poor out-of-sample R2 could achieve better profitability results than the other models. 

Combining the inherent randomness of neural network iterations and the difficulty of 

evaluating prediction performance based on statistical measures such as out-of-sample R2, I 

caution future research on drawing conclusions from naïve model compositions without 

rigorous hyperparameter optimization, sufficient re-iteration to investigate variance, and 

critical evaluation of a diverse set of performance measures. Specifically, the choice of 

activation function seems to be particularly influential on not only performance, but the entire 

way the model learns from the data. 
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8. Appendix 

Table A1. Information about the predictor variables used in predicting stock returns. 

 The dataset consists of 2,075,872 rows of data and a total of 102 firm characteristic columns and one 

lagged market return column. The firm characteristic data is retrieved using the SAS code from Jeremiah Green’s 

website, and the lagged market return is calculated based on the Wilshire 5000 Total Market Full Cap Index 

retrieved from the economic research data base at the Federal Reserve Bank at St. Louis. 

Acronym Author Date, Journal Definition % 

missing 

absacc Bandyopadhyay

, Huang, and 

Wirjanto 

2010, WP Absolute value of acc 13.3 

acc Sloan 1996, TAR Annual income before extraordinary items (ib) minus operating cash 

flows (oancf) divided by average total assets (at); if oancf is missing 

then set to change in act – change in che – change in lct + change in dlc 

+ change in txp-dp 

13.3 

aeavol Lerman, Livnat, 

and Mendenhall 

2008, WP Average daily trading volume (vol) for 3 days around earnings 

announcement minus average daily volume for 1-month ending 2 weeks 

before earnings announcement divided by1-month average daily 

volume. Earnings announcement day from Compustat quarterly (rdq) 

10.8 

age Jiang, Lee, and 

Zhang 

2005, RAS Number of years since first Compustat coverage 0 

agr Cooper, Gulen, 

and Schill 

2008, JF Annual percentage change in total assets (at) 6.6 

baspread Amihud and 

Mendelson 

1989, JF Monthly average of daily bid-ask spread divided by average of daily 

spread 

0 

beta Fama and 

Macbeth 

1973, JPE Estimated market beta from weekly returns and equal weighted market 

returns for 3 years ending month t-1 with at least 52 weeks of returns 

1.0 

betasq Fama and 

Macbeth 

1973, JPE Market beta squared 1.0 

bm Rosenberg, 

Reid, and 

Lanstein 

1985, JPM Book value of equity (cep) divided by end of fiscal year-end market 

capitalization 

0 

bm_ia Asness, Porter, 

and Stevens 

2000, WP Industry-adjusted book-to-market ratio 0 

cash Palazzo 2012, JFE Cash and cash equivalents divided by average total assets 10.7 

cashdebt Ou and Penman 1989, JAE Earnings before depreciation and extraordinary items (ib+dp) divided 

by avg. total liabilities (lt) 

3.5 

cashpr Chandrashekar 

and Rao 

2009, WP Fiscal year-end market capitalization plus long-term debt (dltt) minus 

total assets (at) divided by cash and equivalents (che) 

1.0 

cfp Desai, 

Rajgopal, and 

Venkatachalam 

2004, TAR Operating cash flows divided by fiscal-year-end market capitalization 7.7 

cfp_ia Asness, Porter 

and Stevens 

2000, WP Industry-adjusted cfp 7.7 

chatoia Soliman 2008, TAR 2-digit SIC.fiscal-year mean-adjusted change in sales (sale) divided by 

average total assets (at) 

13.9 



53 

 

chcsho Pontiff and 

Woodgate 

2008, JF Annual percent change in shares outstanding (csho) 6.6 

chempia Asness, Porter, 

and Stevens 

1994, WP Industry-adjusted change in number of employees 6.8 

chfeps Hawkins, 

Chamberlin, 

and Daniel 

1984, FAJ Mean analyst forecast in month prior to fiscal period end date from 

I/B/E/S summary file minus same mean forecast for prior fiscal period 

using annual earnings forecasts 

46.4 

chinv Thomas and 

Zhang 

2002, RAS Change in inventory (inv) scaled by average total assets (at) 9.0 

chmom Gettleman and 

Marks 

2006, WP Cumulative returns from months t-6 to t-1 minus months t-12 to t-7 7.1 

chanalyst Scherbina 2008, RF Change in nanalyst from month t-3 to month t 23.1 

chpmia Soliman 2008, TAR 2-digit SIC-fiscal-year mean adjusted change in income before 

extraordinary items (ib) divided by sales (sale) 

8.1 

chtx Thomas and 

Zhang 

2011, JAR Percent change in total taxes (txtq) from quarter t-4 to t 11.9 

cinvest Titman, Wei, 

and Xie 

2004, JFQA Change over one quarter in net PP&E (ppentq) divided by sales (saleq) 

– average of this variable for prior 3 quarters; if saleq = 0, then scale by 

0.01 

12.2 

convind Valta 2016, JFQA An indicator equal to 1 if company has convertible debt obligations 0 

currat Ou and Penman 1989, JAE Current assets / current liabilities 3.3 

depr Holthausen and 

Larcker 

1992, JAE Depreciation divided by PP&E 4.3 

disp Diether, 

Malloy, and 

Scherbina 

2002, JF Standard deviation of analyst forecasts in month prior to fiscal period 

end date divided by the absolute value of the mean forecast; if meanest 

= 0, then scalar set to 1. Forecast data from I/B/E/S summary files 

55.4 

divi Michaely, 

Thaler, and 

Womac 

1995, JF An indicator variable equal to 1 if company pays dividends but did not 

in prior year 

6.6 

divo Michaely, 

Thaler, and 

Womack 

1995, JF An indicator variable equal to 1 if company does not pay dividend but 

did in prior year 

6.6 

dolvol Chordia, 

Subrahmanyam, 

and Anshuman 

2001, JFE Natural log of trading volume times price per share from month t-2 3.6 

dy Litzenberger 

and 

Ramaswamy 

1982, JF Total dividends (dvt) divided by market capitalization at fiscal year-end 0.3 

ear Kishore et al. 2008, WP Sum of daily returns in three days around earnings announcement. 

Earnings announcement from Compustat quarterly file (rdq) 

10.2 

egr Richardson et 

al. 

2005, JAE Annual percent change in book value of equity (ceq) 6.6 

ep Basu 1977, JF Annual income before extraordinary items (ib) divided by end of fiscal 

year market cap 

0 

fgr5yr Bauman and 

Dowen 

1988, FAJ Most recently available analyst forecasted 5-year growth 60.2 

gma Novy-Marx 2013, JFE Revenues (revt) minus cost of goods sold (cogs) divided by lagged total 

assets (at) 

6.8 
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grcapx Anderson and 

Garcia-Feijoo 

2006, JF Percent change in capex from year t-2 to year t 16.1 

grltnoa Fairfiel, 

Whisenant, and 

Yohn 

2003, TAR Growth in long-term net operating assets 29.6 

herf Hou and 

Robinson 

2006, JF 2-digit SIC-fiscal-year sales concentration (sum of squared percent of 

sales in industry for each company) 

0 

hire Bazdresch, 

Belo, and Lin 

2014, JPE Percent change in number of employees (emp) 6.8 

idiovol Ali, Hwang, 

and Trombley 

2003, JFE Standard deviation of residuals of weekly returns on weekly equal 

weighted market returns for 3 years prior to month end 

1.0 

ill Amihud 2002, JFM Average of daily (absolute return / dollar volume) 3.0 

indmom Moskowitz and 

Grinblatt 

1999, JF Equal-weighted average industry 12-month returns 0 

invest Chen and 

Zhang 

2010, JF Annual change in gross property, plant, and equipment (ppegt) + annual 

change in inventories (invt) all scaled by lagged total assets (at) 

9.7 

IPO Loughran and 

Ritter 

1995, JF An indicator variable equal to 1 if first year available on CRSP monthly 

stock file 

0 

lev Bhandari 1988, JF Total liabilities (lt) divided by fiscal year-end market capitalization 0.3 

lgr Richardson et 

al. 

2005, JAE Annual percent change in total liabilities (lt) 6.9 

maxret Bali, Cakici, 

and Whitelaw 

2011, JFE Maximum daily return from returns during calendar month t-1 0 

mom12m Jegadeesh 1990, JF 11-month cumulative returns ending one month before month end 7.1 

mom1m Jegadeesh and 

Titman 

1993, JF 1-month cumulative return 0 

mom36m Jegadeesh and 

Titman 

1993, JF Cumulative returns from months t-36 to t-13 21.8 

mom6m Jegadeesh and 

Titman 

1993, JF 5-month cumulative returns ending one month before month end 2.9 

ms Mohanram 2005, RAS Sum of 8 indicator variables for fundamental performance 10.1 

mve Banz 1981, JFE Natural log of market capitalization at end of month t-1 0 

mve_ia Asness, Porter, 

and Stevens 

2000, WP 2-digit SIC industry-adjusted fiscal year-end market capitalization 0 

nanalyst Elgers, Lo, and 

Pfeiffer 

2001, TAR Number of analyst forecasts from most recently available I/B/E/S 

summary files in month prior to month of portfolio formation. nanalyst 

set to zero if not covered in I/B/E/S summary file 

21.8 

nincr Barth, Elliott, 

and Finn 

1999, JAR Number of consecutive quarters (up to eight quarters) with an increase 

in earnings (ibq) over same quarter in the prior year 

10.1 

operprof Fama and 

French 

2015, JFE Revenue minus cost of goods sold minus SG&A expense minutes 

interest expense divided by lagged common shareholders’ equity 

6.8 

orgcap Eisfeldt and 

Papanikolaou 

2013, JFE Capitalized SG&A expenses 26.5 

pchcapx_ia Abarbanell and 

Bushee 

1998, TAR 2-digit SIC-fiscal-year mean-adjusted percent change in capital 

expenditures (capx) 

9.2 

pchcurrat Ou and Penman 1989, JAE Percent change in currat 10.0 

pchdepr Holthausen and 

Larcker 

1992, JAE Percent change in depr 11.0 
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pchgm_pchs

ale 

Abarnell and 

Bushee 

1998, TAR Percent change in gross margin (sale-cogs) minus percent change in 

sales (sale) 

7.9 

pchquick Ou and Penman 1989, JAE Percent change in quick 10.6 

pchsale_pchi

nvt 

Abarbanell and 

Bushee 

1998, TAR Annual percent change in sales (sale) minus annual percent change in 

receivables (rect) 

26.5 

pchsale_pchr

ect 

Abarbanell and 

Bushee 

1998, TAR Annual percent change in sales (sale) minus annual percent change in 

receivables (rect) 

10.5 

pchsale_pch

xsga 

Abarbanell and 

Bushee 

1998, TAR Annual percent change in sales (sale) minus annual percent change in 

SG&A (xsga) 

22.4 

pchsaleinv Ou and Penman 1989, JAE Percent change in saleinv 27.4 

pctacc Hafzalla, 

Lundholm, and 

Van Winkle 

2011, TAR Same as acc except that the numerator is divided by the absolute value 

of ib; if ib = 0 then ib set to 0.01 for denominator 

13.3 

pricedelay Hou & 

Moskowitz 

2005, RFS The proportion of variation in weekly returns for 36 months ending in 

month t explained by 4 lags of weekly market returns incremental to 

contemporaneous market return 

1.0 

ps Piotroski 2000, JAR Sum of 9 indicator variables to form fundamental health score 6.6 

quick Ou and Penman 1989, JAE (current assets – inventory) / current liabilities 3.8 

rd Eberhart, 

Maxwell, and 

Siddique 

2004, JF An indicator variable equal to 1 if R&D expense as a percentage of total 

assets has an increase greater than 5% 

6.6 

rd_mve Guo, Lev, and 

Shi 

2006, JBFA R&D expense divided by end-of-fiscal-year market capitalization 51.4 

rd_sale Guo, Lev, and 

Shi 

2006, JBFA R&D expense divided by sales (xrd/sale) 52.3 

realestate Tuzel 2010, RFS Buildings and capitalized leases divided by gross PP&E 57.7 

retvol Ang et al. 2006, JF Standard deviation of daily returns from month t-1 0 

roaq Balakrishnan, 

Bartov, and 

Faurel 

2010, JAE Income before extraordinary items (ibq) divided by one quarter lagged 

total assets (atq) 

10.3 

roavol Francis et al. 2004, TAR Standard deviation for 16 quarters of income before extraordinary items 

(ibq) divided by average total assets (atq) 

23.7 

roeq Hou, Xue, and 

Zhang 

2015, RFS Earnings before extraordinary items divided by lagged common 

shareholders’ equity 

10.3 

roic Brown and 

Rowe 

2007, WP Annual earnings before interest and taxes (ebit) minus non-operating 

income (nopi) divided by non-cash enterprise value (ceq + lt – che) 

4.1 

rsup Kama 2009, JBFA Sales from quarter t minus sales from quarter t-4 (saleq) divided by 

fiscal-quarter-end market capitalization (cshoq * prccq) 

10.8 

salecash Ou and Penman 1989, JAE Annual sales divided by cash and cash equivalents 0.8 

saleinv Ou and Penman 1989, JAE Annual sales divided by total inventory 21.6 

salerec Ou and Penman 1989, JAE Annual sales divided by accounts receivable 3.6 

secured Valta 2016, JFQA Total liability scaled secured debt 41.2 

securedind Valta 2016, JFQA An indicator equal to 1 if company has secured debt obligations 0 

sfe Elgers, Lo, and 

Pfeiffer 

2001, TAR Analysts mean annual earnings forecast for nearest upcoming fiscal 

year from most recent month available prior to month of portfolio 

formation from I/B/E/S summary files scaled by price per share at fiscal 

quarter end 

46.9 
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sgr Lakonishok, 

Shleifer, and 

Vishny 

1994, JF Annual percent change in sales (sale) 7.9 

sin Hong & 

Kacperczyk 

2009, JFE An indicator variable equal to 1 if a company’s primary industry 

classification is in smoke or tobacco, beer or alcohol, or gaming 

0 

sp Barbee, 

Mukherji, and 

Raines 

1996, FAJ Annual revenue (sale) divided by fiscal year-end market capitalization 0.3 

std_dolvol Chordia, 

Subrahmanyam, 

and Anshuman 

2001, JFE Monthly standard deviation of daily dollar trading volume 3.2 

std_turn Chordia, 

Subrahmanyam, 

and Anshuman 

2001, JFE Monthly standard deviation of daily share turnover 2.9 

stdacc Bandyopadhyay

, Huang, and 

Wirjanto 

2010, WP Standard deviation for 16 quarters of accruals (acc measured with 

quarterly Compustat) scaled by sales; if saleq = 0, then scale by 0.01 

36.5 

stdcf Huang 2009, JEF Standard deviation for 16 quarters of cash flows divided by sales 

(saleq); if saleq = 0, then scale by 0.01. Cash flows defined as ibq minus 

quarterly accruals 

36.5 

sue Rendelman, 

Jones, and 

Latane 

1982, JFE Unexpected quarterly earnings divided by fiscal-quarter-end market 

cap. Unexpected earnings is I/B/E/S actual earnings minus media 

forecasted earnings if available, else it is the seasonally differenced 

quarterly earnings before extraordinary items from Compustat quarterly 

file 

10.7 

tang Almeida and 

Campello 

2007, RFS Cash holdings + 0.715 * receivables + 0.547 * inventory + 0.535 * 

PPE/total assets 

4.1 

tb Lev and Nissim 2004, TAR Tax income, calculated from current tax expense divided by maximum 

federal tax rate, divided by income before extraordinary items 

11.9 

turn Data, Naik, and 

Radcliffe 

1998, JFM Average monthly trading volume for most recent 3 months scaled by 

number of shares outstanding current month 

3.5 

zerotrade Liu 2006, JFE Turnover weighted number of zero trading days for most recent month 3.0 
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Table A2. Second hyperparameter grid search results comparing average validation sample R2 (%) across 

parameter values. 

 The values reported are average R2 (%) based on the validation data for models including the 

hyperparameter value defined in the left-most column. Rectifier, Maxout, and Tanh models are compared that 

differ by their activation function. The random grid search trains 150 models out of 288 possibilities (3 x 3 x 2 x 

2 x 2 x 2 x 2), and grid search is repeated 10 times, producing a total of 1500 models.  

 Rectifier Maxout Tanh 

Overall 1.75 (0.57) 1.27 (0.31) 0.71 (0.12) 

Hidden layers and units per layer 

     [64] 2.00 (0.63) 1.20 (0.24) 0.69 (0.12) 

     [64, 32] 1.49 (0.34) 1.35 (0.34) 0.73 (0.12) 

Input dropout   

     0 1.79 (0.56) 1.31 (0.31) 0.72 (0.12) 

     0.1 1.71 (0.57) 1.24 (0.30) 0.70 (0.12) 

L1    

     0 1.73 (0.61) 1.28 (0.33) 0.71 (0.13) 

     1.00E-05 1.78 (0.52) 1.27 (0.28) 0.71 (0.12) 

L2    

     1.00E-04 1.75 (0.51) 1.24 (0.28) 0.71 (0.12) 

     1.00E-05 1.76 (0.63) 1.30 (0.32) 0.72 (0.12) 

Rho    

     0.99 1.30 (0.17) 1.01 (0.09) 0.65 (0.07) 

     0.999 2.21 (0.45) 1.53 (0.21) 0.78 (0.13) 

Epsilon    

     1.00E-09 1.76 (0.54) 1.22 (0.27) 0.67 (0.12) 

     1.00E-10 1.75 (0.60) 1.32 (0.33) 0.76 (0.10) 

 


