

Predicting individual stock returns using optimized

neural networks

Master’s Thesis

Jukka Song

Aalto University School of Business

Master of Science in Finance

Spring 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/224802823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University, P.O BOX 11000, 00076 AALTO

www.aalto.fi

Abstract of master’s thesis

Author Jukka Song

Title of thesis Predicting individual stock returns using optimized neural networks

Degree Master of Science

Degree programme Finance

Thesis advisor(s) Matthijs Lof

Year of approval 2019 Number of pages 57 Language English

Abstract

I investigate individual monthly U.S. stock return predictability through a comparative study

on neural networks and ordinary least squares benchmarks, using a predictor set of 102 lagged

firm characteristics and the market return from 1980 to 2018. I find monthly out-of-sample

(OOS) R2 of 0.80% for the best neural network, confirming similar findings of marginal

predictability from existing literature applying machine learning to empirical finance. OOS R2

increases to 7.12% for the best neural network, when considering average market return

predictability using market return predictions constructed bottom-up from equal-weighting

individual stock predictions. I also find significant monthly four-factor alphas of 1.55% and

annualized Sharpe ratios of 2.62 on long-short top-bottom decile portfolios sorted on predicted

returns – not taking into account trading costs. Investigating variable importances within

neural networks reveals that networks using Rectifier as their activation function focus on

momentum and liquidity variables, similar to existing findings, but networks using Maxout

focus on firm fundamentals and risk measures instead – a new observation for the anomalies

literature. Lastly, my findings confirm that return anomalies are stronger in small stocks, and

prediction performance is generally stronger during market turbulence.

Keywords machine learning, neural networks, empirical finance, anomalies

Aalto-yliopisto, PL 11000, 00076 AALTO

www.aalto.fi

Maisterintutkinnon tutkielman tiivistelmä

Tekijä Jukka Song

Työn nimi Predicting individual stock returns using optimized neural networks

Tutkinto Kauppatieteiden maisteri

Koulutusohjelma Rahoitus

Työn ohjaaja(t) Matthijs Lof

Hyväksymisvuosi 2019 Sivumäärä 57 Kieli Englanti

Tiivistelmä

Tutkin Yhdysvaltalaisten yksittäisten osakkeiden kuukausittaisten tuottojen ennustettavuutta

vertaillen neuroverkkoja pienimmän neliösumman menetelmään, käyttäen 102

yritysmuuttujan ja yhden markkinatuoton datasettiä vuosilta 1980-2018. Parhaan neuroverkon

testiotannan R2 on 0.80%, varmistaen samankaltaiset löydökset ennustettavuuden tasosta

tutkimuksissa, jotka soveltavat neuroverkkoja empiiriseen rahoitustieteeseen. Testiotannan R2

nousee 7.12%:iin parhaan neuroverkon tapauksessa, kun on kyseessä keskimääräisen

markkinatuoton ennustettavuus käyttäen markkinatuoton ennustuksia, jotka ovat laskettu

yksittäisten osake-ennustusten keskiarvoista. Osake-ennustusten perusteella järjestetty

portfolio, joka ostaa korkeinta ja myy alinta desiiliä, tuottaa 1.55% merkittäviä kuukausittaisia

neljän tekijän alfaa ja 2.62 Sharpen lukua vuositasolla – huomioimatta

kaupankäyntikustannuksia. Tutkittaessa ennustajien tärkeyttä neuroverkoissa huomataan, että

verkot, jotka käyttävät Rectifier-aktivointifunktiota keskittyvät momentum ja likviditeetti

muuttujiin, kun taas verkot, jotka käyttävät Maxout-aktivointifunktiota keskittyvät yritysten

perustekijöihin ja riskin mittareihin, tuoden uuden löydöksen anomalioiden kirjallisuuteen.

Löydökseni vahvistaa, että tuottoanomaliat esiintyvät vahvempina pienissä osakkeissa, ja

ennustettavuus on yleisesti parempaa markkinoiden ollessa turbulentteja.

Avainsanat koneoppiminen, neuroverkot, empiirinen rahoitustiede, anomaliat

Contents
1. Introduction ... 5

2. Literature review ... 7

 Predictability of stock returns ... 7

 Proliferation of anomaly factors and the curse of dimensionality 8

 Econometric methods to deal with model uncertainty and parameter instability 9

 Machine learning methods suitable for high dimensionality, model uncertainty and

parameter instability ... 9

3. Data ... 11

4. Methodology ... 12

 Constructing training, validation and testing data sets .. 12

 Over-arching function and methods .. 13

 Benchmark ordinary least squares linear regression ... 15

 Neural networks anatomy ... 15

 Neural network hyperparameters .. 17

 Hyperparameter tuning through random grid search .. 20

 Controlling for randomness in model training and results through repetition 21

 Measuring statistical prediction performance using out-of-sample R2, return correlation

and directional accuracy ... 22

 Measuring economic value of predictions: Bottom-up equity premium predictions and

excess returns from machine learning portfolios .. 22

 Measuring relative predictor variable importance .. 23

5. Analysis and results .. 23

 Hyperparameter grid search results ... 23

 Main results: Out-of-sample R2 compared to linear benchmarks 25

 Standard deviations of out-of-sample R2 and correlation between in-sample and out-of-

sample performance .. 27

 Rolling past 12-month out-of-sample R2 over time .. 29

 Correlation between predicted and realized returns and directional accuracy 31

 Market premium perspective: Index return prediction accuracy 32

 Neural network long-short portfolio results .. 36

 Variable importance .. 40

6. Conclusion .. 45

7. References ... 48

8. Appendix ... 52

5

1. Introduction

The asset pricing literature has found significant cross-sectional stock return predictability

(Avramov and Chordia (2006), Rapach and Zhou (2013), Jordan, Vivian and Wohar (2014),

and Dangl and Halling (2012)). In parallel, hundreds of anomaly variables that produce excess

risk-adjusted returns and correlate with firms’ subsequent stock returns have been discovered

(Green, Hand, and Zhang (2013) and Hou, Xue, and Zhang (2017)). As traditional linear

regression methods deal poorly with high-dimensional problems and model uncertainty,

machine learning models that excel in such environments have been applied to enhance stock

return predictability and gain new insights into which factors really provide independent

information on stock returns (e.g. Gu, Kelly, and Xiu (2018)). My paper is largely motivated

by the proliferation of anomaly variables discovered in the asset pricing literature, and the

economic possibilities of understanding that information to predict stock returns with modern

machine learning models.

In this paper, I study the predictability of individual stock returns based on a large set of

fundamental predictor characteristics using neural networks. I use a set of 102 firm

characteristics as Green et al. (2017) and the market return in a panel data to predict one-month-

ahead U.S. returns for the sample period 1980 to 2018. My main focus is comparing various

rigorously optimized neural network models to the baseline OLS regression predictions.

The paper contributes to the empirical asset pricing literature in three ways. First, I

analyze the degree of stock return predictability for individual stocks, comparing machine

learning to traditional methods. I evaluate predictability through statistical measures and

economic profitability. From the statistical perspective, I find one of three chosen neural

networks to consistently outperform OLS benchmarks across the measures with an average

out-of-sample R2 of 0.80%, average correlation between predicted and realized returns of

9.66%, and average directional accuracy of 52.96%. Across the three statistical measures,

neural networks outperform in correlation and directional accuracy, but the results are more

mixed for out-of-sample R2. From the economic perspective, I construct stock portfolios sorted

on predicted returns and evaluate the profitability of a long-short strategy on the top and bottom

deciles. In terms of monthly returns and annualized Sharpe ratio, neural networks greatly

outperform OLS benchmarks, with neural network portfolios returning as much as 1.51% on

average per month, with a Sharpe ratio of 2.62, not accounting for trading costs. I also evaluate

aggregate market return predictability by comparing the predicted and realized equal-weighted

6

average returns of market portfolios constructed from individual stock returns. I find that the

results mirror those of individual stock predictions, where a few neural networks outperform

in R2, and generally outperform in directional accuracy. Notably, the monthly out-of-sample

R2 at a portfolio level increases to an average of 7.12% for the best neural network. Upon

further analysis, most of the predictability stems from the lagged market return predictor and

its nonlinear interactions with firm predictors. Models trained without the market return

predictor generally fail to achieve positive out-of-sample R2. Additionally, upon analyzing

result differences in 500 largest and smallest stocks, I find that all predictability measures

confirm that predictability is stronger in small stock than big stocks (e.g. Green et al (2017)). I

also analyze the time series of rolling out-of-sample R2 and cumulative returns of the neural

network portfolios, which reveal that prediction performance is generally better during times

of market turbulence, aligning with results of Dangl and Halling (2012).

 Second, I identify predictor variables that contribute the most to return prediction in

neural networks, contributing to the return anomalies literature where hundreds of factors have

been found as statistically significant predictors of cross-sectional returns. Since neural

networks learn the relation between predictors and predictions without a priori information

from the researcher and allow for nonlinear complex relations, it may identify predictive power

eluding conventional linear methods. I follow the Gedeon (1997) method of calculating relative

variable importance based on predictor weights in the neural network and find two different

results from two different neural networks: one confirms earlier findings of Gu et al. (2018)

and Messmer (2017), where momentum (e.g. 1-month or 6-month momentum) and liquidity

(e.g. return volatility or zero trading days) variables are most important, the other finds new

evidence of the importance of firm fundamentals (e.g. cash or volatility of cash flow) and risk-

based measures (e.g. beta or idiosyncratic volatility).

 Third, I provide a rigorous neural network comparison, by conducting extensive

random grid searches for optimal model topologies and controlling for inherent randomness of

neural networks by repeating the training of each optimized network 100 times and reporting

summary statistics. I find that there are significant differences in neural network performance

in the noisy data environment of stock returns. Neural networks using the popular Rectifier as

their activation function produced highly varied results when measured by out-of-sample R2,

with standard deviations 0.42% compared to 0.12% of the next best neural network. Rectifiers

also became unstable the most often during random grid search, where the majority of deeper

Rectifier networks failed in training. The other two neural networks using so called Maxout

7

and Tanh activation functions performed more stable, generating results in a denser spread.

Additionally, based on relative variable importance per neural network, Rectifier and Maxout

models prioritize very different data to extract predictive information. Rectifiers use the

momentum and liquidity, while Maxouts use firm fundamentals and risk measures. Thus, this

paper provides researchers looking to apply neural networks to empirical finance with detailed

insights on model optimization choices and resulting performance.

2. Literature review

In the asset pricing literature, results for stock return predictability are mixed. Stock return

predictability has been examined both through cross-sectional regressions that seek to model

differences in expected returns across stocks on firm-level characteristics, and through time-

series regressions on aggregate market returns on macroeconomic variables. There is an

enormous literature (see for example Rapach and Zhou’s (2013) overview paper) documenting

how various variables have predictive power of aggregate stock returns, such as the popular

dividend-price ratio (Fama and French (1988)). However, the evidence for such predictability

is predominantly in-sample. Goyal and Welch (2008) show in their influential paper for

numerous economic variables in the literature that out-of-sample equity premium forecasts fail

to consistently outperform the simple historical average benchmark forecasts in terms of mean

square forecast error (MSFE).

 Predictability of stock returns

Stock returns inherently contain a large unpredictable component, so that even the best

forecasting models can explain only a small part of returns. In addition, market efficiency

requires that when successful forecasting models or factors are discovered, they will also be

adopted by others, which leads to the eventual disappearance of such predictability. On this

point, McLean and Pontiff (2016) document a 58% decrease in post-publication returns based

on a study of 97 variables and their out-of-sample post-publication return predictability. The

maximum level of predictability in terms of monthly R2 is 8%, according to a loose analysis

by Rapach and Zhou (2013) of the typical predictive regression model. In practice, forecasting

results for stock market aggregate returns are generally in the 1% neighborhood for in-sample

tests, and lower out-of-sample: Fama and French (1988) report monthly R2 statistics of 1% or

8

less for predictive regression models based on dividend-price ratios, Zhou (2010) reports 1%

or less for individual predictive regressions based on 10 popular economic variables, and

Jordan et al. (2014) report over 2% out-of-sample for several European countries based on a

combination of fundamental, macroeconomic and technical variables. These papers calculate

R2 statistics comparing predicted returns to the historical average prediction. In comparison, a

study by Gu et al. (2018) using machine learning algorithms to predict individual stock returns

use a R2 statistic that compares predicted returns to a zero-return prediction, because the

historical average comparison underperforms the zero-return prediction when considering

individual stocks. Their study yields monthly R2 values of less than 1% at best. However, the

literature agrees on that even small improvements in prediction accuracy can result in

significant economic benefits (Campbell and Thompson (2008), Rapach and Zhou (2013)).

 Proliferation of anomaly factors and the curse of dimensionality

The proliferation in the number of published anomaly variables that appear significant in

explaining cross-sectional stock returns has led to the questioning of the validity of traditional

methods in evaluating whether new characteristics really provide independent information

about average returns, as asserted by Cochrane’s (2011) presidential address. Since the

establishing of the CAPM of Sharpe (1964) and Lintner (1965), discoveries have been

published on significant factors such as the size (Banz (1981)), value (Rosenberg, Reid, and

Landstein (1985), Fama and French (1992)), and momentum (Jegadeesh and Titman (1993))

that have become mainstays in the widely used Fama and French (1993) three-factor and

Carhart (1997) four-factor models. More recently in the past decades, the discovery of new

anomaly variables has accelerated, resulting in hundreds of anomaly factors being published,

as documented by Green, Hand, and Zhang (2013), where they analyze 333 return predictive

signals, or Hou, Xue, and Zhang (2017), who conduct a replication study on 447 anomaly

variables. However, these aforementioned critical studies are unified in their conclusion that

most of the analyzed predictive signals do not appear significant, or their scale is much lower

than originally published. Thus, there is serious evidence of p-hacking and data snooping in

empirical finance (Chordia, Goyal, and Saretto (2018)).

 To tame the factor zoo, many econometric methods have been applied to deal with the

curse of dimensionality. For example, Giglio and Xiu (2016) and Kelly et al. (2017) use

dimension reduction methods to test and estimate factor pricing models. Kozak et al. (2017)

9

construct a stochastic discount factor that summarizes the joint explanatory power of many

cross-sectional stock return predictors. Freyberger et al. (2017) use the adaptive group LASSO

to select characteristics to approximate a nonlinear function for expected returns. Feng et al.

(2017) propose a model-selection method to systematically evaluate the contribution to asset

pricing of any new factor. Sun (2018) uses a newly developed machine learning tool to

regularize a large set of factors, grouping highly correlated factors while shrinking off the

useless ones simultaneously. Though these attempts have shown promise and a reduction in

the number of significant factors, there appears to be no consensus. This has led to Kozak et

al. (2017) conclusion that the quest to summarize the cross-section of stock returns with sparse

characteristics-based factor models to be ultimately futile, as there is not enough redundancy

among the many return predictors.

 Econometric methods to deal with model uncertainty and parameter instability

In addition to addressing high dimensionality, more recent strategies have improved forecasts

by addressing model uncertainty and parameter instability concerns that traditional linear

regression models ignore. Model uncertainty recognizes that a forecaster does not know the

optimal model specification or the corresponding parameter values. Parameter instability

recognizes that the model and its parameters may change over time. Rapach and Zhou (2013)

describe four strands of forecasting strategies that deliver statistically significant out-of-sample

gains: economically motivated model restrictions (Campbell and Thompson (2008)), forecast

combination (Rapach et al. (2010)), diffusion indices (Neely et al. (2014)), and regime shifts

(Dangl and Halling (2012)). Additionally, parameter instability has been investigated with

time-varying coefficients, where Dangl and Halling (2012) find that models with time-varying

coefficients dominate models with constant coefficients. They also find that stock return

predictions are closely linked to business cycles, where stronger accuracy is achieved during

recessions.

 Machine learning methods suitable for high dimensionality, model uncertainty and

parameter instability

Considering the discussed issues of high dimensionality, model uncertainty, and parameter

instability, machine learning techniques provide attractive options. As described by Gu et al.

10

(2018), first, the task in asset pricing, of trying to understand the cross-section of asset returns

or the aggregate market risk premium, is fundamentally about prediction, and machine learning

methods are largely specialized for prediction tasks. Second, with its wide range of methods

from linear models to regression trees and neural networks, machine learning is explicitly

designed to deal with model uncertainty and complex nonlinear functions. Third, in the

problem of high dimensionality due to hundreds of predictor variables, machine learning

algorithms are well-capable of reducing dimensions and condensing redundant variation

among highly correlated predictors.

The best performing machine learning models for stock return prediction have generally

been neural networks and regression trees (Gu et al. (2018), Messmer (2017), Cao et al. (2005)),

and improving on them, ensemble methods that pool and combine predictions from several

different machine learning models (Tsai et al. (2011)).

Gu et al. (2018) conduct a comparative analysis on the performance of various machine

learning algorithms in individual stock return prediction. Included are linear regression,

generalized linear models with penalization, dimension reduction via principal components

regression and partial least squares, regression trees (including boosted trees and random

forests), and neural networks. Their analysis includes a large set of individual stocks over 60

years with a set of roughly 100 predictive variables. They find that allowing for nonlinearities

substantially improves predictions, where trees and neural nets improve return predictions from

a benchmark monthly stock-level R2 of 0.16% to R2’s between 0.27% and 0.39%. The

benchmark is a panel regression of individual stock returns onto the lagged size, book-to-

market, and momentum variables. When they run the analysis for bottom-up portfolio-level

return forecasts of the S&P 500 index from stock-level forecasts, the monthly R2 for trees and

neural networks is 1.39% and 1.80%, compared to the benchmark of -0.11%. The portfolio

level prediction averages out more of the stock-level noise while boosting signal strength.

Messmer (2017) trains deep feedforward neural networks on a set of 68 firm

characteristics to predict the U.S. cross-section of stock returns, finding that neural network

long-short portfolios can generate attractive risk-adjusted returns compared to a linear

benchmark. Cao et al. (2005) find the same result with Chinese stocks, where neural network

models outperformed linear models. Tsai et al. (2011) use classifier ensemble methods to

predict whether quarterly stock returns are positive or negative and find that classifier

ensembles outperform single neural network models, and that the return on investment is better

for all tested machine learning models than the buy and hold strategy. For the reasons, further

11

analysis on neural networks and their performance in stock return prediction is valuable and

interesting. The goal of this paper is to provide a more rigorous examination of neural networks

and analyze the prediction performance of optimized networks and infer information on which

predictors are the most important.

3. Data

I follow Green et al.’s (2017) influential paper in using the dataset from their website1 with 102

firm characteristics and monthly individual stock returns from the time period 1980 to 2018,

totaling 38 years, with an average of around 4000 stocks per month. I also add one-month

lagged market return as a predictor. The firm data is entirely calculable from CRSP, Compustat,

or I/B/E/S data, and begins in 1980 due to most characteristics becoming robustly available

only then. Details of the characteristics including sources, definitions, and percentage missing

of each characteristic is provided in Table A1 in the appendix.

 Green et al. (2017) begin the data creation with all firms with common stock on the

NYSE, AMEX, or NASDAQ that have a month-end market value on CRSP and a nonmissing

value for common equity in their annual financial statements. Data is integrated across

Compustat, I/B/E/S, and CRSP and characteristics are computed and aligned in calendar time.

For each month t’s return they calculate characteristics as they were at the end of month t-1.

Also, annual accounting data is assumed to be available at the end of month t-1 if the firm’s

fiscal year ended at least six months before the end of month t-1, and quarterly accounting data

to be available if the fiscal quarter ended at least four months before the end of month t-1.

Green et al. (2017) also include delisting returns in the monthly stock returns taken from CRSP,

delete 20 observations that have a monthly return less than -100%, and set blank values of

analyst following (nanalyst) to zero. The dependent variable is monthly returns in excess of

the risk-free rate (XRET). Excess return is calculated as a stock’s monthly return minus the

risk-free rate. The market return variable is based on the Wilshire 5000 Total Market Full Cap

Index and the risk-free rate is the “3-Month Treasury Bill: Secondary Market Rate”. Both are

retrieved from the economic research data base at the Federal Reserve Bank at St. Louis.

1 Dataset retrieved using the SAS code on their website:

https://sites.google.com/site/jeremiahrgreenacctg/home

https://sites.google.com/site/jeremiahrgreenacctg/home

12

4. Methodology

The methodology applied in this paper consists of five steps. First, I split the entire data set

into training, validation, and testing data. Second, I find the optimal neural network topologies

used in further analysis through random grid searches. Third, I train three optimized neural

networks 100 times each to produce 300 neural networks models to control for randomness

among different iterations of the model, and compute three linear OLS benchmarks to compare

against. Fourth, I generate predictions using the 300 neural networks and 3 OLS benchmarks

and analyze average neural network prediction performance statistically and economically.

Fifth, I analyze relative variable importance to infer which predictors are most impactful to the

predictions.

 Constructing training, validation and testing data sets

I split the data set into three subsets: training, validation, and testing sets. The training data set

is used for training the model, where the model calculates the optimal parameter coefficients

for the predictor variables. The validation data set is used during training (both in random grid

search and training the optimized models) to enable “early stopping” regularization reducing

overfit. The testing data is a true out-of-sample test of the tuned models, using data that has not

been used for model training or validation.

Before creating the dataset splits, the characteristics are first winsorized at the 1st and

99th percentiles of their monthly distributions. Then, I split the data into a training set with 75%

of all data (1980-2006) and testing set with 25% of all data (2007-2018). I shuffle the order of

the training data set, as shuffling training data is considered best practice for neural networks

to make learning more robust and less susceptible to time-specific outliers (Brownlee (2016)).

Shuffling the training data breaks up the temporal order and enables the model to better learn

information from the entire panel. I standardize the training dataset to zero mean and unit

variance and store the standardization parameters (mean and standard deviation) for each

characteristic. The reason to standardize the variables is both to deal with missing values, and

to make neural network model training faster and reduce the chances of getting stuck in local

optima (Sarle (2002)). Then, the testing set is scaled according to the stored parameters of the

75% training set. Scaling the testing dataset according to stored standardization parameters

from the training set is done to avoid introducing future information of variable distributions

13

into the testing dataset. After standardizing and scaling the data, I set all missing values to the

post-standardized mean of zero as Green et al. (2017).

Lastly, I create the validation dataset with 25% of all data by splitting a portion off from

the training set. The validation dataset is thus also in a randomized order. Choosing a shuffled

validation dataset instead of a time-period specific set (e.g. training using data from 1980 to

1997, then validation from 1998 to 2006) attempts to strike a reasonable compromise between

trying to avoid a “lucky split” and being a representative out-of-sample test. A “lucky split”

would mean, for example, that data in 1998 to 2006 could be unrepresentative of the general

data, which would push the models to overfit to that period and result in poor true out-of-

sample prediction performance later. The randomized validation dataset contains data from

different time periods, so is more representative of general data, but is less “out-of-sample”,

sacrificing some its representativeness as an out-of-sample test. However, none of the

validation data is used during training, so it is still data the model has not seen. Also, since the

feedforward networks I train do not explicitly learn temporal information from the order of the

rows and the data is already in panel form, the order of data is less significant. I consider the

potentially better k-folds cross-validation method but decide not to use it due to high

computational cost and H2O not supporting cross-validation if recursive model refitting is done

(which I do during the true out-of-sample testing).

The result is a shuffled and standardized training dataset with 75% of all data – from

which I split a 50% training set and 25% validation set for hyperparameter tuning – and a

temporally ordered and scaled testing dataset with 25% of all data.

 Over-arching function and methods

We follow Gu et al.’s (2018) description of the over-arching functional form of the models

utilizing panel data. In constructing predictive models for stock returns based on lagged

information, the primary objective of the models is to minimize the mean squared forecast error

(MSFE). Some regularization is imposed on the models through variations of the MSFE

objective, in order to avoid overfitting and to improve out-of-sample predictive performance.

 In its most general form, an asset’s excess returns can be described as:

𝑟𝑖,𝑡+1 = 𝐸𝑡(𝑟𝑖,𝑡+1) + 𝜀𝑖,𝑡+1

where

𝐸𝑡(𝑟𝑖,𝑡+1) = 𝑔∗(𝑧𝑖,𝑡).

14

Stocks are indexed as 𝑖 = 1,… ,𝑁𝑡 and months as 𝑡 = 1,… , 𝑇. The predictive models construct

a representation of 𝐸𝑡(𝑟𝑖,𝑡+1) as a function of predictor variables that minimizes the out-of-

sample MSFE between the predicted return and realized return 𝑟𝑖,𝑡+1. The predictors are

denoted as the P-dimensional vector 𝑧𝑖,𝑡 (lagged information), and the conditional expected

return 𝑔∗(∙) is assumed to be a flexible function of these predictors. Thus, the function

maintains the same form over time and across stocks (doesn’t depend on 𝑖 or 𝑡) and doesn’t

use information from the history prior to 𝑡 or from individual stocks other than the 𝑖𝑡ℎ in

predictions. This means that the previously described shuffling of training data is acceptable,

as the models essentially consider each row of data independent and identically distributed

(iid). A limitation of this functional form may be the lack of year-fixed-effects, where for

example market capitalization is generally lower in the training data than in the testing data

time period. However, annual refitting of the models controls this to an extent.

The neural network models are refitted annually to produce predictions for the next

year. This strikes a reasonable compromise between computational expensiveness of refitting

every month and simulating a real-life modeling process and follows Gu et al. (2018). For

neural networks, model refitting is done using “checkpointing”2, where an existing model’s

training process is resumed using only next year’s data as an input, resulting in the existing

model updating its parameter weights accordingly. The algorithm uses the same validation data

for model regularization during each checkpointing iteration.

For robustness of the results, I will include prediction results from different subsets of

data related to firm size, such as all stocks and top or bottom 500 based on market

capitalization. To evaluate statistical prediction performance, I will use out-of-sample R2,

correlation between predicted and realized returns, and directional accuracy. To evaluate the

economic value of predictions, I will perform bottom-up estimates simulating stock index

predictions, where I predict the all stocks’ and top/bottom 500 largest/smallest stocks’ equal-

weighted average returns and compare them to their actual equal-weighted average return. This

bottom-up approach adds an equity premium prediction aspect to my thesis, demonstrating the

degree of equity premium predictability based on individual stock return predictions.

Additionally, I will compare the return and volatility of stock portfolios sorted on predicted

returns that buys the top decile and shorts the bottom.

2 See description of the implementation of checkpointing in H2O: http://docs.h2o.ai/h2o/latest-stable/h2o-

docs/data-science/algo-params/checkpoint.html

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/checkpoint.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/checkpoint.html

15

 Benchmark ordinary least squares linear regression

As a benchmark to the neural network results, I use three different OLS benchmarks, with

lagged market return (mkt_ret_lag), market capitalization (mve), book-to-market (bm), and 6-

month momentum (mom6m) as predictors. OLS-3 is a linear regression on the full training data

sample that makes predictions on the entire testing data. OLS-3-R is an annually refit linear

regression that annually adds the next year data to its training data, representing the

methodologically closest comparison to the neural networks. OLS-FM follows the procedure

of Fama and French (2006), in which first coefficient estimates are produced using monthly

cross-sectional regressions of firm-level returns on lagged values of predictors (dropping

market return as it is the same across firms in a given month), and then those coefficient

estimates are used to calculate predicted one month ahead returns using current values of

predictors. Notably, OLS-FM models can only utilize information from the previous month

and not the entire panel, unlike the previous two models.

 Neural networks anatomy

In the computer science or machine learning field, neural networks are arguably the most

powerful modeling device, being able to approximate any smooth predictive association.

Neural networks were designed as conceptual models of human brain activity, where input

signals that arrive in neurons are weighted by dendrites according to their relative importance,

processed by the cell body and passed on down the axon to the next neuron through synapses.

The brief description of neural networks follows Krauss et al. (2017). A neural network

has an input layer equal to the predictors, one or more hidden layers of nodes that interact and

nonlinearly transform the predictor signals, and an output layer that aggregates hidden layers

into an outcome prediction. All layers are composed of nodes (𝑥𝑖
(𝐿)

), the basic units of neural

networks. In feedforward networks that I use, each node in a previous layer L is fully connected

to all nodes in a subsequent layer 𝐿 + 1 via directed edges, each representing a certain weight

(𝑤𝑖
(𝐿)

). Also, each non-output layer of the network has a bias unit 𝑏(𝐿), serving as an activation

threshold for the nodes in the subsequent layer. As such, each node of layer 𝐿 + 1 receives a

weighted combination 𝛼(𝐿) of the 𝑛(𝐿) outputs of the neurons that are connected to it from the

previous layer 𝐿 as input:

16

Input layer

𝛼(𝐿) = 𝑏(𝐿) +∑𝑤𝑖
(𝐿)𝑥𝑖

(𝐿)

𝑛(𝐿)

𝑖=1

Using the left example in Figure 0, a neural network with zero hidden layers represents a linear

regression model:

𝑔(𝑥) = 𝑏(0) +∑𝑤𝑖
(0)𝑥𝑖

(0)

4

𝑖=1

Figure 0. Simple neural network visualizations.

 The left figure shows a neural network with no hidden layers, essentially a linear regression. The right

figure shows a neural network with one hidden layer (3 nodes). The arrows represent the weights (𝑤𝑖) between

signals connecting nodes, and W represents the n-dimensional vector of weights, where n is the number of outputs

from the previous layer. In the hidden layer, a nonlinear activation function f transforms the inputs before passing

them on to the output.

What enables neural networks to learn nonlinear relations and interactions between predictors

is the connectedness of all predictors to the hidden layer nodes and the activation function that

is used to transform the aggregated signal before passing it on. Using the right example in

Figure 0, the left-most node in the hidden layer transforms its four inputs into an output as:

𝑥1
(1) = 𝑓(𝑏(0) +∑𝑤𝑖

(0)𝑥𝑖
(0)

4

𝑖=1

)

The output from each node in the hidden layer are then linearly aggregated into the output

prediction:

𝑔(𝑥) = 𝑏(1) +∑𝑤𝑘
(1)𝑥𝑘

(1)

3

𝑘=1

Applying the same logic to deeper and wider models, the functional form becomes a much

more nested function aggregating all weight and bias matrices of each layer and node. This is

Hidden layer

Output layer Output layer

Input layer

f f f

W(0)

W(1)

W(0)

17

if x < 0

otherwise

why neural network models are infamously difficult to interpret, unlike a simple linear

regression. Machine learning is implemented by adapting the entire collection of weight

matrices in order to minimize the error on the training data. The process by which the weights

are adapted is called the training algorithm, discussed in detail in the next section, among other

parameters that control the regularization of neural networks that are prone to overfitting.

 Neural network hyperparameters

Neural network hyperparameters describe the set of topology and regularization technique

parameter choices when initializing a neural network. Hyperparameter value choices are non-

trivial and “more of an art than science” (Zhang, Patuwo, and Hu (1998)). Thus, neural

networks require rigorous optimization through grid search to enable the researcher to find an

optimal set of hyperparameter values that work for the specific data in question. In this section

I describe the most important hyperparameters analyzed in this paper and defer the description

of my grid search process to the next section. The main neural network characteristic choices

are activation function, network topology, training algorithm, learning rate, and loss

function. The main regularization techniques used are early stopping, dropout, and L1/L2

regularization.

First, the activation function transforms a neuron’s net input signal into a single output

signal to be broadcasted further in the network. There are many potential choices for the

activation function (such as sigmoid, tanh, rectifier, etc.) (Lantz (2015)). A simple linear

activation function with no hidden layers would essentially be an OLS linear regression. One

popular example could be the sigmoid function, 𝑓(𝑥) =
1

1+𝑒−𝑥
, where the sum of input signals

𝑥, determines an output value in the range of 0 to 1. However, the sigmoid function has fallen

out in favor of better performing functions in recent literature, such as the rectifier (Gu et al.

(2018)). The R package I use, H2O, offers three popular activation function alternatives:

Rectifier, Tanh, and Maxout. The activation function choice is applied to all hidden layers.

During hyperparameter tuning, among other variables, I compare the performance of the three

activation functions using random grid search, where random combinations of given

hyperparameters are used to build different neural network models.

The Rectifier is defined as the positive part of its argument:

𝑓(𝑥) = {
0
𝑥

18

where x is the input to a neuron. It is the most popular activation function as of 2017

(Ramachandran et al. (2017)), and its advantages include 1) computational efficiency through

only requiring a max(0,x) function and being capable of outputting true zero values unlike tanh

functions, and 2) linear behavior, which makes the network easier to optimize and much less

likely to encounter vanishing gradient problems, making the model more stable.

 The Tanh is defined as:

𝑓(𝑥) = tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

Its benefits include being zero-centered, making it easier to model inputs that may have

strongly negative or positive value. Finally, the most recently developed Maxout activation

function is defined as:

𝑓(𝑥) = max(𝑤1
𝑇𝑥 + 𝑏1, 𝑤2

𝑇𝑥 + 𝑏2)

and is a generalization of the Rectifier. It enjoys the benefits of the Rectifier while fixing the

so-called problem of “dying Rectifiers”, where a “dead” neuron always outputs zero for any

input for the rest of the training process. The trade-off for Maxout is the doubling of parameters

for each neuron, requiring a higher total number of parameters to be trained.

 Second, the network topology refers to the chosen structure of number of layers,

whether information in the network is allowed to travel backwards, and the number of nodes

within each layer. Generally, the larger and more complex networks are capable of identifying

more subtle patterns, but for example Gu et al. (2018) show that a network with three layers

performs better than one with five layers for stock return prediction with a large set of predictor

variables. In my work I use the grid search method that varies the number of layers as well as

nodes within each layer, to find the optimal model based on out-of-sample performance. The

most commonly used feedforward networks only allow information to flow forwards in a

network, and that is the topology I will be using.

Third, the training algorithm refers to the process by which the network is trained

using input data. Training a neural network means how the network’s connection weights are

adjusted to reflect patterns observed from data. Modern training algorithms are variations on a

strategy of back-propagating errors, known simply as backpropagation. In its most general

form, backpropagation iterates through many cycles (known as epochs) of two processes,

forward and backward phases. In the forward phase an output signal is produced based on the

current weights in the network. Then, in the backward phase the error of the output signal

compared to the true realized value is propagated backwards in the network to adjust the

weights between neurons to reduce future errors. There are many different training algorithms

19

to choose from, such as the stochastic gradient descent, conjugate gradient or Newton method

(Quesada (n.d.)). I use the parallelized stochastic gradient descent offered by the H2O R-

package, as it is widely used and fits well with large datasets with many predictor variables.

Parallelization drastically improves training time at the cost of result reproducibility (details

about controlling for randomness described in Section 4.7).

Finally, for the loss function and learning rate, two important hyperparameters of

neural networks, I use the default options that the H2O-package offers: mean squared error

(MSE) loss function objective and the adaptive learning rate ADADELTA (Zeiler (2012)). The

loss function refers to the minimization objective in backpropagation. The MSE loss function

widely used in linear regression is also frequently used in continuous variable predictions in

neural networks, measuring and minimizing the inconsistency between predicted values and

actual values during training. The learning rate in neural networks refers to the amount

parameter weights are updated during training: the higher the learning rate, the faster the model

learns, but at the cost of arriving on sub-optimal final weights. Smaller learning rates may allow

the model to learn a more optimal set of weights but may take significantly longer to train, or

never converge. Various adaptive learning rates have been developed that monitor the model

performance during training and adjust the rate in response, which results in generally better

performance than manually configured rates. There is no consensus on the best adaptive

learning rate to use, but ADADELTA is among the most popular (Goodfellow (2016)). Two

ADADELTA learning rate hyperparameters, the time decay factor (rho) and time smoothing

factor (epsilon), are tuned through grid search of optimal values.

For regularization techniques, first, early stopping is used to evaluate model skill

during training, with user-given stopping rounds n and stopping tolerance p: at regular intervals

during training, a value for a chosen scoring metric is calculated, and if this metric hasn’t

improved by p in n scoring events, model training is stopped. For example, when a separate

validation sample is used, and the stopping metric is R2, the algorithm regularly calculates the

pseudo-out-of-sample R2 of the model using the validation sample and uses early stopping if

R2 doesn’t improve enough. The important consideration is which data to use in scoring the

models during training: in-sample, validation sample (where a specific hold-out sample is

used), or cross-validation. I use the H2O-package’s default stopping metric, deviance (similar

to mean-squared-error (MSE)) and choose to use a separate hold-out validation sample. The

construction of the validation sample was detailed in Section 4.1.

20

Second, dropout is a regularization technique that generally reduces overfit by

randomly dropping out a percentage of nodes in different layers during training. Srinivastava

et al. (2014) describe dropout to enable breaking up situations where network layers co-adapt

to correct errors from other units, where these co-adaptations do not generalize to unseen data.

In my model, different dropout ratios are applied to the input layer and the hidden layers, where

common values are around 0.2 for input layers and 0.5 for hidden layers (Srinivastava (2014)).

I use the H2O-package default of 0.5 for the hidden layer dropout ratio, but tune the input

dropout ratio through grid search.

Third, L1 and L2 regularization prevents neural networks from overfitting by keeping

the values of weights and biases small. Both techniques add a regularization term to the loss

function, resulting in weight values to decrease. L1 regularization penalizes the absolute sum

of weights and can reduce weights to zero, whereas L2 penalizes the squared sum of weights

and decays weights towards zero. A regularization parameter determines the strength of L1/L2

regularization and its value is optimized through grid search. Common values for L1 and L2

regularization parameters are small, around 1e-4 to 1e-5. I search for optimal L1/L2 shrinkage

parameters through grid search.

 Hyperparameter tuning through random grid search

In grid search, the user inputs sets of values for hyperparameters to be considered, and neural

network models will be built for each combination of the given hyperparameter values. Then,

the out-of-sample performance based on the validation data set can be compared, and the best

models selected. Since the hyperparameter set I input is wide (288 combinations), a random

grid search (following Bergstra and Bengio (2012)) over a set number of maximum models

(150) is performed instead of a cartesian search where all possible combinations are iterated

through. To make the results more robust to the randomness caused by parallelized stochastic

gradient descent, I repeat this random grid search 10 times before making model choice

decisions. This is to counter any lucky or unlucky iterations.

For each model, I calculate the R2 based on the validation data and rank the model from

150 to 1 (150 being the best) for each of the 10 iterations. Then, I separate the results based on

the activation function (Rectifier, Maxout, and Tanh). For each hyperparameter value under an

activation function, I calculate the average validation R2 and average rank for models that

include that hyperparameter value. Then, for each activation function I choose the

21

hyperparameter values that have the highest average validation R2, confirmed by the average

rank that diminishes effects of outliers.

The hyperparameters I test for are hidden layer topology, ADADELTA learning rate

time decay factor (rho), ADADELTA learning rate time smoothing factor (epsilon), input

dropout ratio, L1 parameter, and L2 parameter. I initially test for the following sets of

hyperparameter values resulting in 288 different combinations:

• Activation function: Rectifier, Maxout, and Tanh

• Hidden layers: single-layer 64-nodes, two-layer [64, 32] nodes, three-layer [64, 32, 16]

nodes (following the geometric pyramid rule of Masters (1993))

• Rho: 0.9 and 0.99, where 0.99 is the H2O default

• Epsilon: 1e-8 and 1d-9, where 1e-8 is the H2O default

• Input dropout ratio: 0.1 and 0.2, where 0 is the H2O default

• L1: 0 and 1e-4, where 0 is the H2O default

• L2: 0 and 1e-4, where 0 is the H2O default

Based on the results of the above search, I will run a second grid search iteration with

incrementally adjusted hyperparameter values to test for improvement. For example, if models

with Rho = 0.99 have higher average validation R2 and rank than models with Rho = 0.9, which

means a larger Rho seems better, I will adjust the second iteration to test for a larger Rho: Rho

= 0.99 and Rho = 0.999.

 Controlling for randomness in model training and results through repetition

H2O uses the HOGWILD! (Niu et al. (2011)) scheme to parallelize stochastic gradient descent

computation, which drastically speeds up model training, at the cost of reproducibility. As

training times without parallelization were unfeasible for practical reasons, using HOGWILD!

was a necessity.

 Randomness is also an inherent part of machine learning algorithms and particularly

neural networks (Brownlee (2016)). Randomness is introduced through the shuffled order of

training data, inherent randomness in the algorithms (such as initializing neural network

parameter weights with random values), and randomness in data sampling during training (the

model trains on random subsets of data at a time). H2O requires setting a seed before beginning

training for its random number generator that affects the above three sources of randomness.

22

Choosing a single seed and reporting only on results produced by that seed would reveal a

limited image of prediction performance.

 Thus, I repeat hyperparameter grid search 10 times, making model choice decisions

based on average R2s, and repeat the resulting three optimized models 100 times each and

analyze the mean and standard deviation of their prediction accuracy measures. This also

provides an interesting benchmark range of R2 values to compare existing literature on and for

future research.

 Measuring statistical prediction performance using out-of-sample R2, return correlation

and directional accuracy

The main measure of prediction accuracy I use is the out-of-sample 𝑅2. The measure is defined

as:

𝑅𝑜𝑜𝑠
2 = 1 −

∑ (𝑟𝑖,𝑡+1−𝑓𝑖,𝑡+1)
2

(𝑖,𝑡)

∑ (𝑓𝑖,𝑡+1−𝑟�̅�)
2

(𝑖,𝑡)

,

where 𝑟𝑖,𝑡+1 is the realized return of stock 𝑖 at time 𝑡 + 1, 𝑓𝑖,𝑡+1 is the same stock’s predicted

return, and 𝑟�̅� is the historic average return of all stocks in the training sample. Between

different subsets of the training sample (e.g. sample that only contains large stocks), the historic

average return is calculated separately for each subset. The prediction accuracy is only

measured on the testing data set, whose data are not used in model estimation or tuning. In

addition, I examine the prediction performance using correlation between predicted the realized

returns and percentage of times predicted and realized returns have the same sign (directional

accuracy).

 Measuring economic value of predictions: Bottom-up equity premium predictions and

excess returns from machine learning portfolios

I test the predictive performance of my models in forecasting returns of custom equal-weighted

indices of all stocks, largest 500 stocks, and smallest 500 stocks. For this, I construct bottom-

up estimates of the index returns using individual stock return predictions of the respective

stocks each month. The 𝑅𝑜𝑜𝑠
2 metric for this experiment is calculated as the same:

𝑅𝑜𝑜𝑠
2 = 1 −

∑ (𝑟𝑡−𝑓𝑡)
2𝑇

𝑡=1

∑ (𝑟𝑡−�̅�𝑡)2
𝑇
𝑡=1

,

23

where �̅�𝑡 is the historical average return of the index calculated through the training sample

time period. These results can then be compared to both the 𝑅2 metric of individual stock return

predictions, and equity premium prediction results like Campbell and Thomson (2008), who

estimate the out-of-sample predictability of the S&P 500 index based on several valuation

ratios.

Second, I test for the profitability of machine learning long-short portfolios trading all

stocks, top 500 largest stocks, and bottom 500 smallest stocks. The portfolios are built by

sorting stocks of each respective size category each month based on the individual stock return

predictions and buying the top decile stocks and shorting the bottom decile. I then calculate the

average monthly returns, volatilities, Sharpe ratios, and the risk-adjusted alphas compared to

the Carhart (1997) four-factor model. Trading costs are not considered within the scope of this

paper. The results from this test give an idea of the theoretical profitability that could have been

realized by investors using the forecasts.

 Measuring relative predictor variable importance

To gain insight into relative predictive strength of the predictors, I extract variable importance

using the Gedeon (1997) method that H2O has integrated as part of its deep learning functions.

The method utilizes the sum of products of normalized weights to evaluate the weight matrices

connecting the inputs with the first two hidden layers. I note that evaluating trained neural

networks, which are considered “black box” models, is infamously difficult, and many

measures of variable importance have been proposed over the years, all riddled with different

potential shortcomings (see for example Sarle’s (2000) analysis). The Gedeon method is also

applied by Krauss et al. (2017), while Gu et al. (2018) use a simpler measure.

5. Analysis and results

 Hyperparameter grid search results

The first grid search reported in Table 1 reveals a consistent picture of the best-performing

parameter values underlined in the table. Across the three models (Rectifier, Maxout, Tanh),

the same hyperparameter values seem to be the best fit. Overall, the Rectifier models performed

the best in the validation sample with an average R2 of 0.61%, followed by Maxout (0.36%)

24

and Tanh (0.30%). I note that, on average, the grid search R2 results should appear more

positive than in the true out-of-sample test, as the validation sample is a shuffled split from the

training sample containing information from the past (as explained in Section 4.1).

Considering the standard deviations reported in brackets, the most unstable model turns

out to be Maxout, with an overall average standard deviation of 0.62%. However, it seems the

instability is concentrated in models with certain hyperparameter values, such as more than one

hidden layer (standard deviations of 0.73% and 0.74%), input dropout of 0.2 (0.73%), L1 of

1.0E-4 (0.80%), so the instability can be avoided through the optimized parameters. The

Rectifier models seem equally unstable across parameter values, exhibiting standard deviations

of around the average 0.49% against its 0.61% mean R2. The Tanh models display similar

behavior, although with lower R2 and standard deviations overall.

Table 1. Hyperparameter grid search results comparing average validation sample R2 (%) across parameter values.

 The values reported are average R2 (%) based on the validation data for models including the

hyperparameter value defined in the left-most column. Rectifier, Maxout, and Tanh models are compared that

differ by their activation function. The random grid search trains 150 models out of 288 possibilities (3 x 3 x 2 x

2 x 2 x 2 x 2), and grid search is repeated 10 times, producing a maximum of 1500 models. 95 models failed in

training, and I filter out an additional 18 models with in-sample R2 less than -10%, resulting in a total sample size

of 1387 models.

 Rectifier Maxout Tanh

Overall 0.61 (0.49) 0.36 (0.62) 0.30 (0.18)

Hidden layers and units per layer

 [64] 0.89 (0.42) 0.50 (0.23) 0.37 (0.17)

 [64, 32] 0.49 (0.42) 0.36 (0.73) 0.34 (0.13)

 [64, 32, 16] 0.34 (0.47) 0.19 (0.74) 0.19 (0.19)

Input dropout

 0.1 0.65 (0.52) 0.43 (0.46) 0.31 (0.19)

 0.2 0.58 (0.45) 0.29 (0.73) 0.29 (0.18)

L1

 0 0.71 (0.37) 0.55 (0.26) 0.33 (0.16)

 1.00E-04 0.48 (0.60) 0.14 (0.80) 0.26 (0.20)

L2

 0 0.61 (0.46) 0.35 (0.68) 0.29 (0.18)

 1.00E-04 0.62 (0.52) 0.36 (0.56) 0.31 (0.18)

Rho

 0.99 0.84 (0.55) 0.54 (0.49) 0.38 (0.19)

 0.9 0.38 (0.26) 0.17 (0.68) 0.22 (0.14)

Epsilon

 1.00E-08 0.56 (0.55) 0.22 (0.80) 0.24 (0.17)

 1.00E-09 0.67 (0.40) 0.49 (0.32) 0.36 (0.18)

25

I conduct two iterations of the entire grid search process, where I set each grid to

produce 150 models out of the 288 possible combinations, and each iteration to produce 10

grids. The first iteration created 1405 models and the second 1500. The numbers are less than

the theoretical 1500 (150 models each grid with 10 grids), because some models become

unstable during training fail to complete. I additionally filter away models with in-sample R2

less than -10%, as these can be considered computational failures, and filtering based on in-

sample R2 is acceptable prior to engaging in the pseudo out-of-sample validation test. The

hyperparameter values tested in the second iterations were adjusted based on the results from

the first iteration to further optimize hyperparameter choices. The resulting Table A2 for the

second grid search iteration is reported in the Appendix. Overall, changes in activation

function, hidden layer topology, and rho had the most significant effects on model

performance, while L1, L2 and input dropout were less impactful with models generally

working better with smaller regularization parameter values. Based on the second grid search

of Table A2, the best-performing models on average chosen for additional performance-testing

are shown in Table 2.

Table 2. Optimized neural network model topologies based on hyperparameter grid search.

 “Activation” refers to the activation function of the model, “Hidden” refers to the number of hidden

layers and number of nodes within each layer separated by a comma, and “Input dropout” refers to the percentage

of inputs randomly dropped out to improve generalization. L1 and L2 refers to the L1- or L2-regularization

parameter strength, where a higher value equals more respective regularization. Epsilon is the time smoothing

factor and Rho the time decay factor of the ADADELTA adaptive learning rate algorithm used.

Activation Hidden Input

dropout

L1 L2 Epsilon Rho

Rectifier [64] 0 1e-5 1e-5 1e-9 0.999

Maxout [64, 32] 0 0 1e-5 1e-10 0.999

Tanh [64, 32] 0 0 1e-5 1e-10 0.999

 Main results: Out-of-sample R2 compared to linear benchmarks

First, I examine the true out-of-sample monthly prediction performance of the three optimized

models measured by R2 as defined in Section 4.8. As explained in Section 4.7 about the

randomness of separate iterations of the same model, the figures are reported as means

accompanied by their standard deviations to give a better picture of average model

26

performance. Shown in Table 3, the highest out-of-sample statistical prediction performance is

achieved by Maxout models, with an average out-of-sample R2 of 0.80%, followed by Tanh

models with R2 of 0.39% and Rectifiers with 0.17%. The values are in line with existing

literature, such as Gu et al. (2018) who find a monthly out-of-sample R2 of 0.39% on their best-

performing rectifier neural network model trained on an extended version of my dataset. The

highest individual R2 of all models was 1.07% produced by a Rectifier model, followed by

1.03% by a Maxout model.

Table 3. Stock-level monthly prediction performance measured by average out-of-sample R2 (%).

 The table reports the mean out-of-sample R2 (%) and the standard deviations of R2 results (in brackets)

from repeating model training and prediction 100 times for the three neural network models (Rectifier, Maxout,

Tanh), and compares them to the OLS benchmark using lagged market return, firm size, book-to-market, and

momentum (OLS-3), OLS-3 with annual refitting (OLS-3-R), and Fama and French (2006) OLS (OLS-FM) that

uses coefficient estimates from monthly cross-sectional regressions on OLS-3 predictors except market return to

predict next month returns. Results are also reported for subsamples that include only the top 500 (Big) and bottom

500 (Small) stocks by market value (models built on full data, predictions subsampled).

 All Big Small

Maxout 0.80 (0.12) 0.54 (0.18) 1.36 (0.13)

Tanh 0.39 (0.09) 0.06 (0.27) 1.01 (0.06)

Rectifier 0.17 (0.42) -1.47 (0.86) 0.75 (0.54)

OLS-3 0.73 -0.02 0.55

OLS-3-R 0.64 -0.46 0.54

OLS-FM -7.15 -33.53 -1.96

In addition, I analyze prediction performance in the largest and smallest stocks by market value.

This is done by calculating the R2 using returns of only the top 500 and bottom 500 stocks by

market value each month, subset from existing predicted returns produced by models trained

on the full data. Table 3 shows that neural network predictions are generally better in small

stocks and worse in large stocks: all R2 in the “All” category are less than those in “Small” and

greater than those in “Big”. For the linear benchmarks, overall predictions on all stocks

performed the best, followed by small stock predictions. This confirms there are differences in

the return predictability of small versus large stocks and indicates that the neural networks fit

more towards small stocks’ rather than large stocks’ return behavior, which seems reasonable

as a majority of stocks in the U.S. market data belongs to small stocks.

The high small stock performance is in line with existing research that find return

predictability to be the strongest among stocks with the highest levels of arbitrage frictions or

27

high trading costs (Lesmond, Schill, and Zhou (2004), Hou and Moskowitz (2005), Chordia,

Roll, and Subrahmanyam (2008), Li and Zhang (2010), and Lam and Wei (2011)). My findings

also confirm Green et al.’s (2017) observation that anomalies are mostly present in microcap

stocks and not robustly so in all stocks. The result contradicts those of Gu et al. (2018), who

find that predictions by neural networks are the most accurate in the top 1000 stocks (0.72% at

best), then the bottom 1000 stocks (0.46% at best), then all stocks (0.39% at best). The

differences are most likely to stem from data and algorithm differences. Gu et al. train their

models on data from 1957 to 1986, include more macroeconomic predictors, and conduct out-

of-sample testing on data from 1987 to 2016. A deeper investigation into the reasons behind

the result differences is beyond the scope of this paper.

 Comparing the results to the three linear regression benchmarks, neural networks do

not universally outperform the linear benchmarks. The worst-performing OLS-FM, which

cannot use lagged market return as a predictor in its monthly cross-sectional regressions,

underperforms all other models significantly, with an OOS R2 of -7.15%. The other two, OLS-

3 and OLS-3-R, which both include lagged market return as a predictor in their panel

regressions, outperform Tanh and Rectifier models on average. Both the neural networks and

the OLS regressions heavily use the lagged market return as the most important predictor,

shown more evidently in Section 5.8 about variable importances. So, a linear model using a

longer training sample without annual refitting seems to generalize well into the bull-market

period of 2009-2018. The linear benchmarks also perform worse in big stocks. For small stocks,

the results are worse than for all stocks, which could imply that the models fit more towards

average-sized stocks, and that neural networks are better able to learn the anomalies in small

stocks.

 Standard deviations of out-of-sample R2 and correlation between in-sample and out-of-

sample performance

The standard deviations vary between the models and the stock size categories. Overall, the

Rectifier models seem to be the most unstable, with the highest standard deviations across size

categories. For example, the Rectifier has a standard deviation of 0.42% for all stocks, against

a mean of 0.17%, whereas the Maxout has a standard deviation of 0.12% against a mean of

0.80%. Figure 1 presents a visualization of the variance in results, plotting the percentage

frequency distribution of out-of-sample (OOS) R2 results. The graph shows the high variance

28

of Rectifier model results, with R2 values almost uniformly spread across the entire range, and

the relatively more stable performance of the Maxout and Tanh models. Tanh models in

particular center densely around the 0.4% mean, with 38% of R2 results between 0.3% and

0.4%. The variance is further visualized in the scatterplot of Figure 2.

Figure 1. Frequency distribution of out-of-sample R2s of three neural network models iterated 100 times.

 Three neural network models are used to predict monthly excess stock returns. Each model is repeated

100 times with its prediction performance measured by out-of-sample R2 recorded. The graph shows the frequency

distribution of the resulting 100 R2s for each model, distinguished by the three different lines. The x-axis describes

the R2 value ranges, and the y-axis the percentage of results in that value range.

The correlation between in-sample R2 and out-of-sample R2 is -28.9% for all results,

-15.8% for Rectifier model results, -12.6% for Maxout results, and 8.1% for Tanh results. From

Figure 2 we see that the overall negative correlation is driven by the strong in-sample

performance of some rectifier models and their relatively poor out-of-sample performance, as

well as the strong out-of-sample performance of the Maxout models. The Rectifier’s negative

correlation is mainly driven by the models with very strong in-sample but poor out-of-sample

performance, suggesting Rectifiers more easily overfit for the noisy data being unable to

generalize out-of-sample. The Maxout and Tanh models are more stable and produce denser

scatters on the graph. The scatterplot also shows the average outperformance of Maxout

compared to the other two models, with its scatter almost entirely above Tanh results, and on

average above the high-variance Rectifier results.

0%

5%

10%

15%

20%

25%

30%

35%

40%

<-
0

.4
%

-0
.3

%

-0
.2

%

-0
.1

%

0
%

0
.1

%

0
.2

%

0
.3

%

0
.4

%

0
.5

%

0
.6

%

0
.7

%

0
.8

%

0
.9

%

>0
.9

%

Fr
eq

u
en

cy

Out-of-sample R2 range

Rectifier

Maxout

Tanh

29

Figure 2. Scatterplot of in-sample versus out-of-sample R2 for the three optimized models.

 The x-axis is the in-sample R2, and y-axis the out-of-sample R2 from the selected model performance

test where 100 of each model are trained and tested on out-of-sample data.

 Rolling past 12-month out-of-sample R2 over time

Figure 3 plots the rolling 12-month out-of-sample R2 over the testing period (2007-2018). The

graph provides information on the temporal development of the R2 results. Overall, the models

follow the same trends with peaks and troughs at roughly the same time. Maxout and Tanh

models align very closely, while Rectifiers are generally lower. It seems that the accuracy of

predictions measured by R2 varies greatly over time, peaking during 2009-2010 and bottoming

during 2011-2013. At a surface level analysis, there seem to be indications of greater prediction

accuracies during times of higher volatility as measured by the CBOE Volatility Index (VIX).

For example, during the R2 peaks of 2009-2010, 2011-2012, 2015-2016 and end of 2018, the

VIX also displays spikes in its level3 roughly during these times. The findings are somewhat

surprising, considering the models’ reliance on the market return predictor (discussed in

Section 5.8), and the understanding in literature that, for example, momentum strategies

perform poorly during high market volatility (Wang and Xu (2015)). One might expect models

to perform the best during low volatility periods when stocks follow a similar trend, but the

temporal results of Figure 3 reveal that the neural networks perform particularly well during

market turbulence. One explanation could lie in the out-of-sample R2 measure itself, where

3 See VIX levels for example at Yahoo Finance for the time period 2007-2018.

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

O
u

t-
o

f-
sa

m
p

le
 R

2

In-sample R2

Rectifier

Maxout

Tanh

https://finance.yahoo.com/quote/%5EVIX/chart?p=%5EVIX#eyJpbnRlcnZhbCI6Im1vbnRoIiwicGVyaW9kaWNpdHkiOjEsImNhbmRsZVdpZHRoIjo2LjY2NjY2NjY2NjY2NjY2Nywidm9sdW1lVW5kZXJsYXkiOnRydWUsImFkaiI6dHJ1ZSwiY3Jvc3NoYWlyIjp0cnVlLCJjaGFydFR5cGUiOiJsaW5lIiwiZXh0ZW5kZWQiOmZhbHNlLCJtYXJrZXRTZXNzaW9ucyI6e30sImFnZ3JlZ2F0aW9uVHlwZSI6Im9obGMiLCJjaGFydFNjYWxlIjoibGluZWFyIiwicGFuZWxzIjp7ImNoYXJ0Ijp7InBlcmNlbnQiOjEsImRpc3BsYXkiOiJeVklYIiwiY2hhcnROYW1lIjoiY2hhcnQiLCJ0b3AiOjB9fSwibGluZVdpZHRoIjoyLCJzdHJpcGVkQmFja2dyb3VkIjp0cnVlLCJldmVudHMiOnRydWUsImNvbG9yIjoiIzAwODFmMiIsInN5bWJvbHMiOlt7InN5bWJvbCI6Il5WSVgiLCJzeW1ib2xPYmplY3QiOnsic3ltYm9sIjoiXlZJWCJ9LCJwZXJpb2RpY2l0eSI6MSwiaW50ZXJ2YWwiOiJtb250aCJ9XSwiY3VzdG9tUmFuZ2UiOnsic3RhcnQiOjExNjc2ODg4MDAwMDAsImVuZCI6MTU0Mzc4ODAwMDAwMH0sInJhbmdlIjp7InBlcmlvZGljaXR5Ijp7ImludGVydmFsIjoibW9udGgiLCJwZXJpb2QiOjF9LCJkdExlZnQiOiIyMDA3LTAxLTAxVDIyOjAwOjAwLjAwMFoiLCJkdFJpZ2h0IjoiMjAxOC0xMi0wMlQyMjowMDowMC4wMDBaIiwicGFkZGluZyI6MH0sImV2ZW50TWFwIjp7ImNvcnBvcmF0ZSI6eyJkaXZzIjp0cnVlLCJzcGxpdHMiOnRydWV9LCJzaWdEZXYiOnt9fSwic3R1ZGllcyI6eyJ2b2wgdW5kciI6eyJ0eXBlIjoidm9sIHVuZHIiLCJpbnB1dHMiOnsiaWQiOiJ2b2wgdW5kciIsImRpc3BsYXkiOiJ2b2wgdW5kciJ9LCJvdXRwdXRzIjp7IlVwIFZvbHVtZSI6IiMwMGIwNjEiLCJEb3duIFZvbHVtZSI6IiNGRjMzM0EifSwicGFuZWwiOiJjaGFydCIsInBhcmFtZXRlcnMiOnsid2lkdGhGYWN0b3IiOjAuNDUsImNoYXJ0TmFtZSI6ImNoYXJ0In19fX0%3D

30

during turbulent times the historical average becomes a worse predictor, and the neural network

predictions are able to better predict differences. During calmer periods the historical average

serves as a solid predictor, and neural networks may introduce unnecessary variation in

predictions. There may be many other reasons why out-of-sample R2 varies over time, but I

leave a deeper investigation into the temporal development of R2 to future research.

Figure 3. Rolling past 12-month out-of-sample R2 over the testing period.

 The figure plots the rolling past 12-month out-of-sample R2 over the testing period 2007-2018, with the

first value being January 2008 and its out-of-sample R2 based on the past 12-months of predictions. The three

different lines represent the three neural networks, Maxout, Rectifier, and Tanh. The x-axis represents the date,

and the y-axis the R2.

31

 Correlation between predicted and realized returns and directional accuracy

To give more perspective to the statistical performance of the models, Table 4 reports the

average correlation between predicted and realized returns, and Table 5 the average directional

accuracy for the same three stock size groupings (all, big, small) as earlier. Surprisingly, the

correlation results differ from the R2 results, where Rectifier performs the best with an average

correlation of 10.08%, followed by Maxout (9.66%) and Tanh (6.97%), despite Rectifier

performing the worst when measured by R2. Both Rectifier and Maxout outperform all linear

benchmarks, whereas the Tanh models underperform. The underperformance of big stock

predictions compared to small stock and all stock predictions persists in neural networks. With

big stocks, the significantly negative R2 results by Rectifiers persists, where the average

correlation is only 5.58%. Both Tanh and Rectifier underperform linear benchmarks in big

stocks (except OLS-FM). For small stocks, neural networks have generally higher return

correlations, suggesting the models are better able to learn predictive information in the

smallest stocks, outperforming the linear benchmarks.

Table 4. Stock-level monthly prediction performance measured by average correlation (%) between predicted and

realized returns.

 The table reports the mean correlation between predicted and realized returns and the standard deviations

(in brackets) of the correlation results from repeating model training and prediction 100 times for the three neural

network models (Rectifier, Maxout, Tanh), and compares them to the OLS benchmark using lagged market return,

firm size, book-to-market, and momentum (OLS-3), OLS-3 with annual refitting (OLS-3-R), and Fama and

French (2006) OLS (OLS-FM) that uses coefficient estimates from monthly cross-sectional regressions on OLS-

3 predictors except market return to predict next month returns. Results are also reported for subsamples that

include only the top 500 (Big) and bottom 500 (Small) stocks by market value (models built on full data,

predictions subsampled).

 All Big Small

Maxout 9.66 (0.26) 8.19 (0.64) 10.30 (0.35)

Tanh 6.97 (0.30) 6.81 (0.41) 8.20 (0.18)

Rectifier 10.08 (0.55) 5.58 (1.10) 10.39 (0.82)

OLS-3 8.34 8.09 8.47

OLS-3-R 7.80 7.15 8.14

OLS-FM 7.26 4.87 7.78

In directional accuracy, neural network models come out with a slight edge over the

linear benchmarks, shown in Table 5. In all stocks, where 50.75% of realized returns were

32

positive, all models outperform a constant positive guess, with Maxout having the highest

average performance at 52.96% (maximum single result was 53.46%). Surprisingly, OLS-FM

outperforms the other two OLS models here, with a directional accuracy of 51.50%. This might

be explained by cross-sectional monthly regressions being able to identify cross-sectional

winners and losers better than the other two panel-regression OLS models, which weigh their

market return variable much more. An additional explanation could be sizeable outlier realized

returns that are in the same direction as predicted returns. These would cause poor statistical

prediction accuracy (measured by R2 and correlation) but good directional accuracy. In OLS-

FM’s case, the cross-sectional regression coefficients are understandably unable to fit for

potential outlier realized returns, but the cross-sectional differences in predictors still seem to

effectively capture differences between winners and losers, resulting in good directional

accuracy.

In big stocks, 55.73% of realized returns were positive, providing a harder baseline to

beat. None of the models exceed this baseline, with Maxout coming closest at 55.13%. Thus,

the relative underperformance of big stock predictions persists, as the models are trained on

data skewed towards small stocks. In small stocks, only 44.01% of realized returns were

positive, so although the directional accuracy results are lower overall in small stocks, they

beat the baseline much more convincingly in this size category, with OLS-FM delivering the

highest accuracy at 52.51%, and Rectifier the best average for neural networks at 51.32%

(maximum single result was 53.12% by a Rectifier model).

 Market premium perspective: Index return prediction accuracy

To gain insight into the extent of predictability of the market premium, I examine return

predictions for three equal-weighted portfolios, essentially constructed from the same data used

for firm size categories earlier in this paper: 1) a market index portfolio constituting all

tradeable stocks each month, 2) a portfolio consisting of the 500 largest stocks each month by

market capitalization, and 3) a portfolio consisting of the 500 smallest stocks each month by

market capitalization. The portfolio return predictions are constructed bottom-up, from

individual stock predictions of the stocks forming the portfolio each month. Table 6 reports the

results.

33

Table 5. Stock-level monthly prediction performance measured by average directional accuracy (%).

 The table reports the mean directional accuracy and the standard deviations (in brackets) of the

directional accuracy results from repeating model training and prediction 100 times for the three neural network

models (Rectifier, Maxout, Tanh), and compares them to the three linear ordinary least squares (OLS)

benchmarks. Directional accuracy is calculated as the percentage of predicted returns having the same sign as

realized returns. In the entire testing data, big stocks subsample, and small stocks subsample, 50.75%, 55.73%,

and 44.01% of realized returns were greater than zero, respectively (reported in brackets after size category titles).

OLS-3 is a linear regression using lagged market return, firm size, book-to-market, and momentum as predictors.

OLS-3-R is the same as OLS-3, adding annual refitting. OLS-FM uses coefficient estimates from monthly cross-

sectional regressions on OLS-3 predictors except market return to predict next month returns. Results are also

reported for subsamples that include only the top 500 (Big) and bottom 500 (Small) stocks by market value

(models built on full data, predictions subsampled).

 All (50.75) Big (55.73) Small (44.01)

Maxout 52.96 (0.21) 55.13 (0.70) 50.61 (0.76)

Tanh 51.96 (0.47) 52.88 (1.58) 50.55 (0.81)

Rectifier 52.68 (0.33) 54.68 (1.30) 51.32 (0.77)

OLS-3 50.85 51.67 48.45

OLS-3-R 50.84 51.76 48.60

OLS-FM 51.50 51.54 52.51

 From Table 6, I observe that R2 results increase dramatically across the board.

Particularly in All stocks and Small stocks, the model predictions of the respective portfolio

returns clearly outperform their respective historical average return-based predictions. Notably,

the historical average return was around 0.85% for all stocks, 0.73% for big stocks, and 2.5%

for small stocks: the large and highly volatile nature of small-stock returns causes the historical

average to be a particularly poor predictor for the Small portfolio, which amplifies the R2 results

in their category. However, for All stocks and Big stocks, the historical average serves as a fine

benchmark, and choosing a zero-return prediction like Gu et al. (2018) would artificially

increase the results in those two size categories. The overall trend is consistent with results of

earlier Table 3, where small-stock predictions outperform big-stock and all-stock, and neural

networks barely outperform their linear benchmarks. Out of the neural networks, surprisingly,

Rectifiers performs the best, with an average R2 of 7.12% in all stocks, compared to Maxout

with 6.29%, which contradicts Table 3 results where Rectifiers were performing the worst on

average. This indicates that averaging the return predictions at a portfolio-level seems to

alleviate effects of noisy individual predictions and distill predictive information about the

portfolio as a whole effectively.

34

Table 6. Portfolio-level monthly prediction performance measured by out-of-sample R2 and directional accuracy

(%).

 The table reports the out-of-sample R2 (𝑅𝑂𝑂𝑆
2) and percentage of predicted returns that have the same

sign as realized returns (Directional accuracy) for three neural network models (Maxout, Tanh, Rectifier) and

three OLS benchmarks, when predicting monthly returns of three equal-weighted portfolios: “All” is a market

index constituting all tradeable stocks on the market each month, “Big” constitutes the 500 largest stocks each

month by market capitalization, and “Small” constitutes the 500 smallest stocks each month by market

capitalization. In the Directional accuracy panel, the numbers within brackets after the size category subtitles are

the percentage of realized portfolio returns that are positive – the baseline against which the results should be

compared.

 𝑹𝑶𝑶𝑺
𝟐 (%)

 All Big Small

Maxout 6.29 2.57 17.87

Tanh 4.74 1.57 13.77

Rectifier 7.12 0.29 20.81

OLS-3 6.26 0.31 16.48

OLS-3-R 5.41 -1.23 16.41

OLS-FM -52.32 -114.49 -12.88

 Directional accuracy (%)

 All (59.7) Big (62.5) Small (50.0)

Maxout 60.49 62.12 55.47

Tanh 58.07 57.64 55.68

Rectifier 60.55 61.29 56.70

OLS-3 56.94 55.56 55.56

OLS-3-R 56.94 56.25 54.17

OLS-FM 56.94 56.25 57.64

 Taking a closer look at prediction performance in the All-stocks category, Rectifiers

and Maxout models, with average R2s of 6.29% and 7.12%, narrowly outperform the best linear

benchmark, OLS-3 with an R2 of 6.26%. This is consistent with Table 3 results where OLS-3

came close to the best neural network results. However, the Directional accuracy panel reveals

a new picture, where OLS benchmarks underperform the neural networks: in All stocks, they

fail to even exceed the 59.7% baseline (percentage of portfolio realized returns that were

positive). All three linear benchmarks happen to have a directional accuracy of 56.94%,

predicting 82/144 monthly returns of the All-stock portfolio correctly, whereas Maxout and

Rectifiers achieve a directional accuracy of 60.49% and 60.55%, respectively.

 In the Big-stocks category, overall performance is much lower, consistent with Table

3, where predictions are clearly weaker in the biggest stocks. Maxout performs the best with

an R2 of 2.57%, with Rectifiers now underperforming with an R2 of 0.29%. The poor

performance of predicting a portfolio of the 500 largest stocks each month is surprising, given

the importance of the lagged market return predictor. However, this is also encouraging as

35

indications of cross-sectional predictive power even in small stocks with overall higher

idiosyncratic risks. Directional accuracy mirrors earlier results, where none of the models

exceed the baseline (62.5%) and neural networks outperform OLS models. The R2 results are

in line with existing literature such as Gu et al. (2018), who find an R2 of 1.8% for neural

network predictions on the S&P 500 index portfolio. The results also show surprisingly

powerful out-of-sample performance compared to traditional literature, such as Welch and

Goyal (2008) who fail to produce positive out-of-sample R2 using macroeconomic predictors

to predict the market return, or Kelly and Pruitt (2013) who find monthly out-of-sample R2’s

of around 1% for the market index delivered by PLS. It seems neural networks are able to

capture significant stock-level predictability that increases even further when averaged together

in portfolio return predictions.

 In Small stocks, I observe abnormally high R2 results – puzzling considering the few

benchmark values from comparable literature mentioned earlier. Rectifier models achieve the

highest average R2s of 20.81%, followed by Maxouts with 17.87%. The Rectifier models’

outperformance despite low R2 in Table 3 could be explained by the models generating highly

varying individual predictions, but when averaged in a portfolio, the overall predictive result

becomes less noisy and grants a much better prediction than the historical average of the

portfolio. Again, I note that microstocks have very volatile returns and using their historical

returns (around 2.5%) may serve as a poor predictor, as it ends up inflating R2 results by around

5 percentage points compared to using a zero-return prediction as Gu et al. (2018). The opposite

would be true for All and Big stocks, where a zero-return prediction amplifies R2 results by a

few percentage points, which is why to keep the methodology consistent across size categories,

I keep the conventional historical mean as the benchmark for R2 calculations. The linear

benchmarks also perform almost on par with the neural networks, with OLS-3 having R2 of

16.48%. This is encouraging since if there were some model or data construction error

particularly in the market return variable, the predictions should be better in large stocks

instead, as they follow the market movements more closely. The downside is that stronger

predictability in microstocks has less economic significance as utilizing the information is more

expensive in illiquid microstocks for investors. Directional accuracy follows the trend in Table

5, where all models exceed the baseline (50%) and surprisingly OLS-FM has the highest

accuracy (57.64%), considering its very poor R2.

 Finally, as a robustness test, I run autoregressive regressions (AR(1)) predicting the

market return using one-month lagged market returns (Wilshire 5000 Total Market Full Cap

36

Index) and calculate its out-of-sample R2. The resulting monthly R2 is 1.15% for the AR(1)

model, which, compared to the R2 of 6.26% of OLS-3 or 7.12% of Rectifiers, shows that

combining firm characteristics with the market return in a panel data form increases return

prediction accuracy at the market return level.

 Neural network long-short portfolio results

To examine the practical economic significance of neural network forecasts, I build long-short

portfolios on the three stock size subsamples (All, Big, Small), where each month out-of-

sample predicted returns are used to sort the stocks in the sample, and the top decile is bought

while the bottom decile sold short. In addition, I regress the monthly returns against the Fama-

French three-factor model (Fama and French (1996)) augmented with the momentum factor of

Carhart (1997), to analyze the exposure of returns to common sources of systematic risk. Same

as for all neural network results of this paper, all calculations are done for the 100 different

repeated model iterations of each of the three neural network models, so the reported measures

are averages. The results are reported in Table 7.

 Overall, the neural networks now unquestionably beat the OLS benchmarks in average

monthly returns and Sharpe ratio, with advantages stemming from both higher returns and

lower standard deviations. The neural network models also exhibit high levels of alpha, which

are highly statistically significant. Performance trends observed in earlier tables across size

categories still roughly hold, with big stocks underperforming small stocks. This confirms

observations in the anomalies literature, where anomalies are concentrated in small and

microcap stocks and are less robustly present in large stocks (Green et al. (2017)). Table 7 is

the clearest demonstration of the predictive power of the neural networks over the linear

benchmarks, where earlier statistical measures did not necessarily show clear winners. The

results suggest neural networks are able to learn cross-panel return predictive signals to identify

stock picks producing returns significantly above the market averages. However, I note that

trading costs are not taken into account, so the actual realizable returns are most likely much

lower than stated due to high portfolio turnover.

37

Table 7. Monthly profitability of long-short top-bottom decile portfolios using neural network predictions.

 This table reports the average monthly return (Ret), standard deviation of returns (Std), Sharpe ratio (SR),

and alpha with its t-stat (𝛼 (t-stat)), based on Fama-French three-factor model augmented with momentum, of a

long-short top-bottom decile portfolio sorted on predicted returns. The values are in percentages except for SR

and t-stats. The results are reported for three size categories, where “All stocks” includes all stocks, “Big stocks”

only the 500 largest stocks each month, and “Small stocks” the 500 smallest stocks each month by market

capitalization. The values reported for the three neural network models (Maxout, Tanh, Rectifier) are averages of

100 separately-trained models each, compared to the singular results of their three OLS benchmarks.

 All stocks

 Ret Std SR 𝛼 (t-stat)

Maxout 1.32 1.84 2.49 1.39 (9.80)

Tanh 0.84 1.58 1.85 0.92 (7.48)

Rectifier 1.51 1.99 2.62 1.55 (10.46)

OLS-3 -0.09 2.28 -0.14 0.04 (0.26)

OLS-3-R -0.13 2.22 -0.20 0.01 (0.08)

OLS-FM 0.17 2.89 0.21 0.16 (0.64)

 Big stocks

 Ret Std SR 𝛼 (t-stat)

Maxout 0.43 1.57 0.96 0.52 (4.52)

Tanh 0.28 1.45 0.66 0.35 (3.12)

Rectifier 0.33 1.52 0.76 0.37 (3.13)

OLS-3 -0.25 1.90 -0.45 -0.18 (-2.23)

OLS-3-R -0.27 1.90 -0.50 -0.21 (-2.31)

OLS-FM 0.15 2.64 0.19 0.18 (0.84)

 Small stocks

 Ret Std SR 𝛼 (t-stat)

Maxout 3.03 4.41 2.39 3.02 (8.40)

Tanh 2.11 3.59 2.04 2.12 (7.15)

Rectifier 3.33 4.87 2.38 3.36 (8.47)

OLS-3 0.85 3.68 0.80 0.97 (3.16)

OLS-3-R 0.81 3.70 0.76 0.91 (2.95)

OLS-FM -0.11 4.85 -0.08 -0.30 (-0.75)

 In All stocks, Rectifiers perform the best with average monthly average returns of

1.51% with an average annualized Sharpe ratio of 2.62, followed by Maxouts with average

returns of 1.32% and a Sharpe ratio of 2.49. The highest individual neural network result was

by a Rectifier model iteration that achieved average returns of 1.67% with a Sharpe ratio of

2.88. Over the test period (2007-2018), the comparable Wilshire 5000 Total Market Full Cap

Index returned 0.7% (3.9% standard deviation), with an annualized Sharpe ratio of 0.60. The

OLS benchmarks underperform, with only OLS-FM achieving slightly positive returns, and all

three having higher standard deviations than the neural networks. The highly significant

Maxout and Rectifier model average alphas of 1.39% and 1.55 (t-stats of 9.80 and 10.46),

respectively, indicate there is a large portion of returns unexplained by the three Fama-French

factors and momentum, and the neural networks are able to produce sizeable abnormal excess

38

returns. Compared to literature, Gu et al. (2018) find higher monthly average returns of 3.19%

with 4.77% standard deviation, with similar Sharpe ratios 2.32, using the three-layered neural

networks and the same long-short portfolio. They also find higher, significant Fama-French 5-

factor (+ momentum) alphas of 2.98%. Notably, the size of the alpha is similar to the average

return (alpha of 2.98% versus returns of 3.19%) – a finding my results echo (e.g. alphas of

1.55% versus returns of 1.51%).

 In Big stocks, overall performance decreases, but neural networks still outperform their

linear benchmarks. Maxout models perform the best, with average monthly returns of 0.43%

and Sharpe ratios of 0.96, compared to a maximum of 0.15% return and Sharpe of 0.19 by the

OLS-FM. Over the test period (2007-2018), the comparable S&P 500 Index returned on

average 0.5% each month (4.2% standard deviation), with an annualized Sharpe ratio of 0.40.

Thus, most of the Sharpe ratio improvement by the neural networks stems from lower standard

deviations. The results suggest that neural networks are able to consistently identify some

winners and losers despite market fluctuations, resulting in a less volatile portfolio than the

market. Krauss et al. (2017) find drastically larger returns of 0.33% per day (roughly 7% per

month) on a portfolio long-shorting the top/bottom 10 stocks ranked daily by predicted

probability to outperform the market, using neural networks trained on lagged returns of S&P

500 index constituents. They find comparable-sized annualized Sharpe ratios of 2.44. However,

after transaction costs the average daily returns and annual Sharpe ratio decrease to 0.13% and

0.55, respectively.

 In Small stocks, overall performance increases with neural networks maintaining a

decisive margin over the OLS benchmarks. The Rectifiers perform the best, with average

monthly returns of 3.33% and Sharpe ratios of 2.38, compared to the maximum of 0.85% return

and Sharpe of 0.80 by the OLS-3. Although the average monthly returns achieved by the neural

networks in small stocks are double those in all stocks, the standard deviations also end up

higher, resulting in slightly lower Sharpe ratios.

Figure 4 plots the average monthly returns of the neural network portfolios against the

out-of-sample R2s for each of the 300 separate model iterations. The plot would look almost

identical when plotting Sharpe ratios instead of returns. The scatterplot visually displays the

somewhat curious return outperformance of the Rectifier models despite their volatile and

lower-on-average out-of-sample R2, where the Rectifier points place consistently higher than

the other models on the y-axis, but have a much wider scatter on the x-axis. On the other hand,

39

Maxout and Tanh models display a more linear result, where higher out-of-sample R2 results

in higher return performance, both with relatively dense scatters.

Figure 4. Scatterplot of average monthly returns against out-of-sample R2s of neural network portfolios.

 The figure plots the average monthly returns (y-axis) achieved by neural network long-short top-bottom

decile portfolios against the out-of-sample R2s (x-axis) of the models. Each model is repeated 100 times, resulting

in the 300 points plotted.

Figure 5 plots the time series of cumulative returns of the neural network portfolios compared

to the S&P 500 index, starting from value 100. The graph shows that the neural network

portfolios are able to perform consistently well across the whole time period, and particularly

well during market turbulence. For example, during 2008-2009, the S&P 500 decreases

significantly, while all three machine learning portfolios gain at a fast pace. Also, during mid

2015 to 2016, the S&P 500 faces some turbulence, but Maxout and Rectifier models only

accelerate their gains. The findings support the earlier discovery from Figure 3 that R2

performance seems to be better during times of higher market volatility measured by the VIX:

returns gained from the predictions also seem to improve during market turbulence. This is in

line with Dangl and Halling (2012) who find evidence of stronger S&P 500 return predictability

during recessions.

0.0 %

0.2 %

0.4 %

0.6 %

0.8 %

1.0 %

1.2 %

1.4 %

1.6 %

1.8 %

-1.5 % -1.0 % -0.5 % 0.0 % 0.5 % 1.0 % 1.5 %

A
ve

ra
ge

 m
o

n
th

ly
 r

et
u

rn

Out-of-sample R2

Rectifier

Maxout

Tanh

40

Figure 5. Cumulative returns on neural network portfolios compared to the S&P 500 index (2007-2018).

 The figure plots the development of the value of the three neural network portfolios (Maxout, Rectifier,

Tanh) compared to the S&P 500 index, with 100 as their starting value, from 2007 to 2018. The effects of trading

costs are not included.

 Variable importance

Using the Gedeon (1997) method to extract information on relative predictor strength, I

calculate the average of average variable importance for the three neural network models

separately for their 100 iterations. The results are reported in Figure 6, where relative variable

importance is measured on a standardized scale from 0 to 1. I note that, as pointed out by Sarle

(2000), particularly drawing conclusions from evaluating relative importances of the same size

from the Gedeon (1997) method is problematic, as relative importance of the same size through

the method does not necessarily mean the variables are equally important. Thus, I focus my

analysis on variables that have a significant importance difference.

41

Common to the three models, lagged market return is the single most important

predictor, with all except Maxout having an average importance of 1 for the predictor across

the 100 model iterations each. For example, when training Maxout models with a dataset

excluding lagged market return, the average out-of-sample R2 for 80 model iterations was

-0.17%, return correlation 3.44%, and directional accuracy 50.50%, far lower than values

reported in earlier tables. One explanation for the dominance of the market return is the

structure of the panel data set: market return is the same for all stocks in monthly cross-sections,

thus providing powerful information on the general level of the market last month. Also, since

market return is the only macroeconomic predictor in my data set, it is reasonable that the

models learn most of the systematic variation in stock prices through the variable. In essence,

it is likely that the market return is used to predict the overall level of return, while the other

firm variables are used to predict cross-sectional differences. Arguably, then, macroeconomic

variables in conjunction with firm variables should be very important in generating individual

stock return predictions.

Examining Figure 6 one model at a time, Rectifiers have nine variables with relative

importance above 0.4 aside from market return: Four of the nine are related to momentum: 6-

month stock momentum (mom6m), 1-month stock momentum (mom1m), industry momentum

(indmom), and change in 6-month momentum (chmom). Three of the nine are related to

liquidity: volatility of dollar trading volume (std_dolvol), zero trading days (zerotrade), and

dollar trading volume (dolvol). One is related to analysts (number of analysts covering the stock

(nanalyst), and the last is the market capitalization of the firm. The last 10 variables of the top

10 fall below relative importance of 0.4, and are more similar in scale, so inferences are less

reliable in that range. Nevertheless, I observe that of the last 10, one is momentum-related

(mom12m), three are liquidity related (turn, std_turn, ill), three are risk measures (retvol,

idiovol, beta), two are firm fundamentals (cash, lev), and one is analyst forecasts (fgr5yr).

Based on the top 10 variables, and supported by the bottom 10, it seems that Rectifiers focus

on momentum and liquidity-based measures to generate forecasts.

The findings are very similar to those of Gu et al. (2018) and Messmer (2017), who

both use Rectifier neural networks, and find momentum, liquidity and risk-based measures to

be the most prominent. Also, Green et al. (2017) find 12 multivariately identified independent

characteristics that provide information about average stock returns, out of which 7 are found

in the top 20 of Rectifiers: cash, one-month momentum, change in 6-month momentum, return

volatility (retvol), share turnover (turn), volatility of share turnover (std_turn), and zero trading

42

days. The reliance on momentum and liquidity signals may explain the outperformance of

Rectifiers in portfolio returns, where momentum is likely a key variable in identifying price

trends, and especially in small stocks, where liquidity is likely to signal more about future

returns. Notably, the inclusion of market capitalization (mve) in the top 10 would suggest

Rectifiers learn and apply differences between big and small stocks.

 For Maxout models, nine variables (aside from market return) have variable importance

over 0.4, although much less distinctively than the Rectifier top 10. Two of the nine are risk

measures: idiosyncratic return volatility (idiovol), return volatility (retvol). Four of the nine are

firm fundamentals: cash, cash flow volatility (stdcf), % change in sales - % change in SG&A

(pchsale_pchxsga), % change in gross margin - % change in sales (pchgm_pchsale). Three of

the nine are related to market participants and analyst forecasts: earnings announcement returns

(ear), dispersion in analyst forecasted EPS (disp), and change in forecasted EPS (chfeps). The

bottom 10 are very similar in size compared to each other, so inferences are less robust, but we

note anyhow that seven of the ten are firm fundamentals (chtx, ms, hire, gma, pchsale_pchinvt,

sgr, rdsale), two of the ten are risk measures (maxret, betasq), and one is a valuation ratio

(roaq). Based on the top 10, and supported by the bottom 10, it seems that Maxout models

focus particularly on firm fundamentals and risk measures to generate forecasts – a very

different picture from the momentum/liquidity-focused Rectifiers.

Interestingly, Maxout models seem to align more closely with the univariately

significant independent characteristics that Green et al. (2017) find, instead of the

multivariately significant characteristics such as Rectifiers. 10 of the 12 univariately significant

characteristics are firm fundamental signals. This suggests Maxout models focus more on long-

term predictors compared to the short-term focused Rectifiers. Overall, Maxouts use all

predictors more, with the smallest relative importance being 0.2, compared to 0.08 for

Rectifiers and 0.06 for Tanhs. This suggests that Maxout models are able to take advantage of

more diverse predictive information, which may explain their outperformance in out-of-sample

R2, being less prone to overfit on a few types of predictors. It is also interesting that Maxout

models do not have momentum variables at all in the top 20, which contradicts findings of Gu

et al. (2018). The first momentum variable appears at rank 21, the 3-year momentum, followed

by 1-year momentum at rank 23. The momentum variable importances in Maxout models are

also in reverse order compared to the other two models, where Maxouts prefer longer time-

frame momentum and other models short-term signals.

43

Lastly, Tanh models focus on a very narrow range of variables, with only one variable

(1-month momentum) with relative importance above 0.4 in addition to market return. The

other 18 in the top 20 have importances of roughly 0.2. Two of the 18 are fundamental signals:

asset growth (agr) and cash. Six of the 18 are valuation ratios: book-to-market (bm), market

cap (mve), return on equity (roeq), R&D to market cap (rd_mve), earnings to price (ep), return

on assets (roaq). Four of the 18 are related to liquidity: zero trading days (zerotrade), share

turnover (turn), volatility of dollar trading volume (std_dolvol) and volatility of share turnover

(std_turn). Five of the 18 are analyst forecasts: dispersion of analyst forecasted EPS (disp),

change in forecasted EPS (chfeps), scaled analyst earnings forecast (sfe), forecasted 5-year

growth (fgr5yr), and unexpected quarterly earnings (sue). One of 18 is related to momentum:

industry momentum (indmom). There is no clear category the 18 variables in Tanh models

focus on, with the most important being valuation ratios, liquidity, and analyst forecasts. It is

a much more mixed picture than the previous two. The underperformance of the Tanh models

compared to the other two neural networks may be explained by its likelihood to overfit due to

only using 1-month momentum in addition to market return. It seems the Tanh models are

unable to fully learn predictive information from a more diverse set of predictors like the

Maxout models.

Taken as a whole, it seems that macroeconomic variables can be powerful predictors of

the systematic variation in individual stock returns through panel data, when used in

conjunction with firm characteristics, shown by the high relative importance of the market

return variable across the three neural networks. Interestingly, depending on the activation

function chosen for the neural network, the models use different types of data for predictions:

Rectifiers lean towards market trends with momentum and liquidity variables, Maxout towards

firm fundamentals and risk measures, and Tanh lies somewhere in between. My findings

confirm those of Gu et al. (2018), who also find momentum and liquidity variables to be the

most important with neural networks using Rectifier activation functions. My findings also

echo some of Green et al.’s (2017) findings, where many of the variables they identify to be

significant providers of independent information on stock returns are also found in the top lists

of my neural network predictors. The variable importance findings for Maxout models presents

a challenge to the prevalent usage of Rectifiers as activation functions among researchers

applying neural networks to finance. The findings are the first of its kind to my knowledge and

emphasize the significant impact the choice of activation function can have on the entire model

and how it learns. For the anomalies literature, I confirm the importance of momentum and

44

liquidity variables, but also many firm fundamentals that Maxout models were able to widely

use to successfully predict out-of-sample returns.

Figure 6. Variable importance by model (top 20 variables).

 The figures display the top 20 most important variables in each model.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

sue

fgr5yr

sfe

cash

chfeps

roaq
disp

std_turn

std_dolvol

ep

roeq

agr

mve

indmom

bm

turn

zerotrade

rd_mve

mom1m

mkt_ret_lag

Tanh

0.0 0.2 0.4 0.6 0.8 1.0 1.2

rd_sale
sgr

betasq
maxret

pchsale_pchinvt
gma
hire
ms

chtx
roaq
disp
ear

retvol
chfeps

pchgm_pchsale
pchsale_pchxsga

cash
stdcf

idiovol
mkt_ret_lag

Maxout

0.0 0.2 0.4 0.6 0.8 1.0 1.2

beta
fgr5yr

lev
ill

std_turn
cash

mom12m
idiovol
retvol

turn
nanalyst

dolvol
mve

chmom
indmom

zerotrade
std_dolvol

mom1m
mom6m

mkt_ret_lag

Rectifier

45

6. Conclusion

The analysis of neural network predictions contributes to the anomalies, return predictability,

and machine learning literatures. For the anomalies literature, the analysis on variable

importances confirms particularly the significance of momentum (e.g. 1-month momentum)

and liquidity (e.g. standard deviation of dollar trading volume) variables, but also firm

fundamentals (e.g. cash or standard deviation of cash flow) and risk measures (e.g.

idiosyncratic volatility). Two neural network models provide contrasting pictures of which

variables are the most important, with the popular Rectifier models focusing on momentum

and liquidity, and Maxout models on firm fundamentals and risk measures. My findings are in

line with Messmer (2017) and Gu et al. (2018), who also find momentum and liquidity

variables to be the most important for Rectifier neural networks. Many of the top variables

from both models also match with predictors Green et al. (2017) identify using conventional

linear methods as informative of cross-sectional returns. Contradicting previous findings that

posit only a very narrow set of predictors contain significant return predictive information, the

Maxout models in this paper appear to use the entire predictor set of 103 predictors more evenly

than other models. This suggests that depending on the model, a high-dimensional predictor

set can still be valuable. Since neural networks that allow complex nonlinearities between

inputs can find varying interpretations of predictor importance, traditional linear methods may

be limited to certain views as well.

 This study finds notable predictability of individual stock returns both measured by out-

of-sample R2 and profitability of a long-short decile portfolio. The results are supported by

analysis on the correlation between predicted and realized returns as well as the directional

accuracy of the predictions. The best neural networks outperformed linear benchmarks, but

some more unstable neural networks underperformed in terms of R2. However, all neural

networks outperformed OLS models in portfolio profitability on long-short top-bottom decile

portfolios sorted on predicted returns. Statistical performance and economic value of

predictions are found to be higher during times of market turbulence, aligning with findings of

Dangl and Halling (2012). A large portion of the predictability stems from the only

macroeconomic variable available in the data, the lagged market return. This suggests

individual stock return predictability benefits greatly from macroeconomic variables that are

more explanatory of the systematic portion of return variation. This predictability is highlighted

when aggregating individual stock returns into average monthly market return predictions,

where abnormally large out-of-sample R2s were documented. The results of this paper that

46

compare predictability between all stocks, top 500 largest stocks, and bottom 500 smallest

stocks confirm earlier findings in literature (e.g. Chordia, Roll, and Subrahmanyam (2008) or

Green et al. (2017)) that return predictability and anomalies are stronger in illiquid small stocks,

and sometimes completely absent from large stocks.

 The profitability results found for the neural network long-short portfolios should be

interpreted more as a theoretical economic perspective to the value of neural network

predictions rather than actual realizable profits, as transaction costs are not taken into account.

For example, for Rectifier models that lean on momentum and liquidity predictors, their trading

activity is likely to be similar to momentum strategies. Portfolio turnover is likely to be high,

as in the All stocks portfolio the top and bottom deciles together contain on average almost 800

stocks each month, ranging from large caps to microcaps. Lesmond, Schill, and Zhou (2004)

show that theoretical momentum trading strategy profits all but disappear after accounting for

transaction costs, and that stocks that generate large momentum returns are precisely those

stocks with high trading costs, such as small stocks. As my results show that predictability and

profitability is strongest among small stocks, it is likely that a large proportion of profits is

generated from smaller, more illiquid stocks. Thus, realizable profits after trading costs is

significantly lower than the theoretical profits reported.

 For the machine learning literature, this paper contributes by providing an overview of

how varying neural network topologies perform in learning from highly noisy data, and the

effects of randomness. Based on the results, neural network topology plays a key role in the

stability, general level of predictions, as well as how the model learns from predictors. First,

the results of hyperparameter tuning through grid search show that optimizing hyperparameters

has a sizeable impact on the model performance. Second, the analysis on variable importance

findings reveals that Maxout models are better at using the entire predictor set rather than

narrowly focus on few, like the Rectifier and Tanh models. Models using the popular Rectifier

activation function were highly unstable in our dataset, similarly observed by Messmer (2017),

producing highly varied predictions on different iterations. Deeper than one-layer topologies

effectively did not work for Rectifiers, as most deeper iterations failed in training during

random grid search. While the prediction performance of Rectifiers had high variance

measured by out-of-sample R2, the spread was much smaller with the other two activation

functions studied, Maxout and Tanh, showing denser scatters around mean results. On the other

hand, despite the Rectifiers’ unstable statistical prediction performance, they still outperformed

all other models in profitability measures – a somewhat surprising finding. Even Rectifiers

47

with very poor out-of-sample R2 could achieve better profitability results than the other models.

Combining the inherent randomness of neural network iterations and the difficulty of

evaluating prediction performance based on statistical measures such as out-of-sample R2, I

caution future research on drawing conclusions from naïve model compositions without

rigorous hyperparameter optimization, sufficient re-iteration to investigate variance, and

critical evaluation of a diverse set of performance measures. Specifically, the choice of

activation function seems to be particularly influential on not only performance, but the entire

way the model learns from the data.

48

7. References

Avramov, D. and Chordia, T. (2006). Predicting stock returns. Journal of Financial Economics,

82, 387-415.

Banz, R. W. (1981). The relationship between return and market value of common stocks.

Journal of Financial Economics, 9(1), 3-18.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal

of Machine Learning Research, 13(2), 281-305.

Bossaerts, P. and Hillion, P. (1999). Implementing statistical criteria to select return forecasting

models: What do we learn? Review of Financial Studies, 12(2), 405-428.

Brownlee, J. (2016). Embrace randomness in machine learning. Retrieved from:

https://machinelearningmastery.com/randomness-in-machine-learning/

Campbell, J. and Thompson, S. (2008). Predicting excess stock returns out of sample: Can

anything beat the historical average? Review of Financial Studies, 21(4), 1509-1531.

Carhart, M. M. (1997). On Persistence in mutual fund performance. Journal of Finance, 52(1),

57-82.

Cao, Q., Leggio, K. B., and Schniederjans, M. J. (2005). A comparison between Fama and

French’s model and artificial neural networks in predicting the Chinese stock market.

Computers and Operations Research, 35(10), 2499-2512.

Chen, Y-M., Lin, Y-C., Tsai, C-F., and Yen, D. (2011). Predicting stock returns by classifier

ensembles. Applied Soft Computing, 11, 2452-2459.

Chordia, T., Roll, R., and Subrahmanyam, A. (2008). Liquidity and market efficiency. Journal

of Financial Economics, 87, 249-268.

Chordia, T., Goyal, A., and Saretto, A. (2018). P-Hacking: Evidence from two million trading

strategies. Swiss Finance Institute Research Paper No. 17-37.

Cochrane, J. H. (2011). Presidential address: Discount rates. Journal of Finance, 66(4), 1047-

1108.

Dangl, T. and Halling, M. (2012). Predictive regressions with time-varying coefficients.

Journal of Financial Economics, 106, 157-181.

Fama, E. F., and French, K. R. (1988). Dividend yields and expected stock returns. Journal of

Financial Economics, 22(1), 3-25.

Fama, E. F., and French, K. R. (1992). The cross-section of expected stock returns. Journal of

Finance, 47(2), 427-465

Fama, E. F., and French, K. R. (1993). Common risk factors in the returns on stocks and bonds.

Journal of Financial Economics, 33(1), 3-56.

Fama, E.f., and French, K. R. (1996). Multifactor explanations of asset pricing anomalies.

Journal of Finance, 51(1), 55-84.

Fama, E. F., and French, K. R. (2006). Profitability, investment and average returns. Journal

of Financial Economics, 82, 491-518.

Feng, G., Giglio, S., and Xiu, D. (2017). Taming the factor zoo. Chicago Booth Research Paper

No. 17-04.

https://machinelearningmastery.com/randomness-in-machine-learning/

49

Ferreira, M. A., and Santa-Clara, P. (2011). Forecasting stock market returns: The sum of the

parts is more than the whole. Journal of Financial Economics, 100(3), 514-537

Freyberger, J., Neuhierl, A., and Weber, M. (2017). Dissecting characteristics

nonparametrically. NBER Working paper.

Gedeon, T. D. (1997). Data mining of inputs: Analysing magnitude and functional measures.

International Journal of Neural Systems, 8(2), 209-218.

Giglio, S., and Xiu, D. (2017). Inference on risk premia in the presence of omitted factors.

NBER Working paper.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Green, J., Hand, J. RM, and Zhang, X. F (2013). The supraview of return predictive signals.

Review of Accounting Studies, 18, 692-730.

Green, J., Hand, J., and Zhang, X. F. (2017). The characteristics that provide independent

information about average US monthly stock returns. Review of Financial Studies, 30,

4389-4436

Goyal, A., and Welch, I. (2008). A comprehensive look at the empirical performance of equity

premium prediction. Review of Financial Studies, 21, 1455-1508.

Gu, S., Kelly, B. T., and Xiu, D. (2018). Empirical asset pricing via machine learning. Chicago

Booth Research Paper.

Henkel, S. J., Martin, J. S., and Nardari, F. (2011). Time-varying short-horizon predictability.

Journal of Financial Economics, 99(3), 560-580.

Hou, K., and Moskowitz, T. J. (2005). Market frictions, price delay, and the cross section of

expected returns. Review of Financial Studies, 18, 981-1020.

Hou, K., Xue, C., and Zhang, L. (2017). Replicating anomalies. NBER Working Paper 23394.

Jegadeesh, N. and Titman, S. (1993). Returns to buying winners and selling losers: Implications

for stock market efficiency. Journal of Finance, 48(1), 65-91.

Jordan, S. J., Vivian, A. J., and Wohar, M. E. (2014). Forecasting returns: New European

evidence. Journal of Empirical Finance, 26, 76-95.

Kelly, B., and Pruitt, S. (2013). Market expectations in the cross-section of present values.

Journal of Finance, 68(5), 1721-1756.

Kelly, B., Pruitt, S., and Su, Y. (2018). Characteristics are covariances: A unified model of risk

and return. SSRN Working paper.

Kozak, S., Nagel, S., and Santosh, S. (2017). Shrinking the cross section. NBER Working

paper.

Krauss, C., Do, X. A., and Huck, N. (2017). Deep neural networks, gradient-boosted trees,

random forests: Statistical arbitrage on the S&P 500. European Journal of Operational

Research, 259(2), 689-702.

Lam, F. Y. E. C., and Wei, K. C. J. (2011). Limits-to-arbitrage, investment frictions, and the

asset growth anomaly. Journal of Financial Economics, 102, 127-149.

Lantz, B. (2015). Machine Learning with R. Packt Publishing Ltd

Lesmond, D. A., Schill, M. J., and Zhou, C. (2004). The illusory nature of momentum profits.

Journal of Financial Economics, 71, 349-380.

50

Li, D., and Zhang, L. (2010). Does q-theory with investment frictions explain anomalies in the

cross section of returns? Journal of Financial Economics, 98, 297-314.

Lintner, J. (1965). Security prices, risk, and maximal gains from diversification. Journal of

Finance, 20(4), 587-615.

Masters, T. (1993). Practical Neural Network Recipes in C++. Academic Press.

McLean, R. D., and Pontiff, J. (2016). Does academic research destroy stock return

predictability? Journal of Finance, 71(1), 5-32.

Messmer, M. (2017). Deep learning and the cross-section of expected returns. University of St.

Gallen SSRN Working paper.

Neely, C. J., Rapach, D., and Zhou, G. (2014). Forecasting the equity risk premium: The role

of technical indicators. Management Science, 60(7), 1617-1859.

Niu, F., Recht, B., Re, C., and Wright, S. J. (2011). HOGWILD!: A lock-free approach to

parallelizing stochastic gradient descent. Advances in Neural Information processing

Systems, pp. 693-701, arXiv:1106.5730

Pesaran, M. H. and Timmermann, A. (1995). Predictability of stock returns: Robustness and

economic significance. Journal of Finance, 50(4), 1201-1228.

Quesada, A. (n.d.). 5 algorithms to train a neural network [Web blog post]. Retrieved from

https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network

Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for activation functions. arXiv:

170.05941, Cornell University.

Rapach, D., Strauss, J., and Zhou, G. (2010). Out-of-sample equity premium prediction:

Combination forecasts and links to the real economy. Review of Financial Studies,

23(2), 821-862.

Rapach, D. and Zhou, G. (2013). Chapter 6 – Forecasting stock returns. Handbook of Economic

Forecasting, Volume 2 Part A, 328-383.

Rosenberg, B., Reid, K., and Lanstein, R. (1985). Persuasive evidence of market inefficiency.

Journal of Portfolio Management, 11, 9-17.

Sarle, W. S. (2000). How to measure importance of inputs? SAS Institute, retrieved from:

ftp://ftp.sas.com/pub/neural/importance.html

Sarle, W. S. (2002). Comp.ai.neural-nets FAQ. Retrieved from http://www.faqs.org/faqs/ai-

faq/neural-nets/part2/

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of

risk. Journal of Finance, 19(3), 425-442.

Sun, C. (2018). Regularising the factor zoo with OWL. Working Paper.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I, and Salakhutdinov, R. (2014).

Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15, 1929-1958.

Tsai, C. F., Lin, Y. C., Yen, D. C., and Chen, Y. M. (2011). Predicting stock returns by classifier

ensembles. Applied Soft Computing, 11(2), 2452-2459.

Wang, Q. K. and Xu, J. (2015). Market volatility and momentum. Journal of Empirical

Finance, 30, 79-91.

https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network
ftp://ftp.sas.com/pub/neural/importance.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/

51

Welch, I. and Goyal, A. (2008). A comprehensive look at the empirical performance of equity

premium prediction. Review of Financial Studies, 21(4), 1455-1508.

Xu, Y. (2004). Small levels of predictability and large economic gains. Journal of Empirical

Finance, 11, 247-275.

Zhang, G., Patuwo, B. E., and Hu, M. Y. (1998). Forecasting with artificial neural networks:

The state of the art. International Journal of Forecasting, 14(1), 35-62.

Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. arXiv: 1212.5701, New

York University.

Zhou, G. (2010). How much stock return predictability can we expect from an asset pricing

model? Economics Letters, 108, 184-186.

Zygmunt, Z. (2016). What is better: gradient-boosted trees, or a random forest? Retrieved

from http://fastml.com/what-is-better-gradient-boosted-trees-or-random-forest/

http://fastml.com/what-is-better-gradient-boosted-trees-or-random-forest/

52

8. Appendix

Table A1. Information about the predictor variables used in predicting stock returns.

 The dataset consists of 2,075,872 rows of data and a total of 102 firm characteristic columns and one

lagged market return column. The firm characteristic data is retrieved using the SAS code from Jeremiah Green’s

website, and the lagged market return is calculated based on the Wilshire 5000 Total Market Full Cap Index

retrieved from the economic research data base at the Federal Reserve Bank at St. Louis.

Acronym Author Date, Journal Definition %

missing

absacc Bandyopadhyay

, Huang, and

Wirjanto

2010, WP Absolute value of acc 13.3

acc Sloan 1996, TAR Annual income before extraordinary items (ib) minus operating cash

flows (oancf) divided by average total assets (at); if oancf is missing

then set to change in act – change in che – change in lct + change in dlc

+ change in txp-dp

13.3

aeavol Lerman, Livnat,

and Mendenhall

2008, WP Average daily trading volume (vol) for 3 days around earnings

announcement minus average daily volume for 1-month ending 2 weeks

before earnings announcement divided by1-month average daily

volume. Earnings announcement day from Compustat quarterly (rdq)

10.8

age Jiang, Lee, and

Zhang

2005, RAS Number of years since first Compustat coverage 0

agr Cooper, Gulen,

and Schill

2008, JF Annual percentage change in total assets (at) 6.6

baspread Amihud and

Mendelson

1989, JF Monthly average of daily bid-ask spread divided by average of daily

spread

0

beta Fama and

Macbeth

1973, JPE Estimated market beta from weekly returns and equal weighted market

returns for 3 years ending month t-1 with at least 52 weeks of returns

1.0

betasq Fama and

Macbeth

1973, JPE Market beta squared 1.0

bm Rosenberg,

Reid, and

Lanstein

1985, JPM Book value of equity (cep) divided by end of fiscal year-end market

capitalization

0

bm_ia Asness, Porter,

and Stevens

2000, WP Industry-adjusted book-to-market ratio 0

cash Palazzo 2012, JFE Cash and cash equivalents divided by average total assets 10.7

cashdebt Ou and Penman 1989, JAE Earnings before depreciation and extraordinary items (ib+dp) divided

by avg. total liabilities (lt)

3.5

cashpr Chandrashekar

and Rao

2009, WP Fiscal year-end market capitalization plus long-term debt (dltt) minus

total assets (at) divided by cash and equivalents (che)

1.0

cfp Desai,

Rajgopal, and

Venkatachalam

2004, TAR Operating cash flows divided by fiscal-year-end market capitalization 7.7

cfp_ia Asness, Porter

and Stevens

2000, WP Industry-adjusted cfp 7.7

chatoia Soliman 2008, TAR 2-digit SIC.fiscal-year mean-adjusted change in sales (sale) divided by

average total assets (at)

13.9

53

chcsho Pontiff and

Woodgate

2008, JF Annual percent change in shares outstanding (csho) 6.6

chempia Asness, Porter,

and Stevens

1994, WP Industry-adjusted change in number of employees 6.8

chfeps Hawkins,

Chamberlin,

and Daniel

1984, FAJ Mean analyst forecast in month prior to fiscal period end date from

I/B/E/S summary file minus same mean forecast for prior fiscal period

using annual earnings forecasts

46.4

chinv Thomas and

Zhang

2002, RAS Change in inventory (inv) scaled by average total assets (at) 9.0

chmom Gettleman and

Marks

2006, WP Cumulative returns from months t-6 to t-1 minus months t-12 to t-7 7.1

chanalyst Scherbina 2008, RF Change in nanalyst from month t-3 to month t 23.1

chpmia Soliman 2008, TAR 2-digit SIC-fiscal-year mean adjusted change in income before

extraordinary items (ib) divided by sales (sale)

8.1

chtx Thomas and

Zhang

2011, JAR Percent change in total taxes (txtq) from quarter t-4 to t 11.9

cinvest Titman, Wei,

and Xie

2004, JFQA Change over one quarter in net PP&E (ppentq) divided by sales (saleq)

– average of this variable for prior 3 quarters; if saleq = 0, then scale by

0.01

12.2

convind Valta 2016, JFQA An indicator equal to 1 if company has convertible debt obligations 0

currat Ou and Penman 1989, JAE Current assets / current liabilities 3.3

depr Holthausen and

Larcker

1992, JAE Depreciation divided by PP&E 4.3

disp Diether,

Malloy, and

Scherbina

2002, JF Standard deviation of analyst forecasts in month prior to fiscal period

end date divided by the absolute value of the mean forecast; if meanest

= 0, then scalar set to 1. Forecast data from I/B/E/S summary files

55.4

divi Michaely,

Thaler, and

Womac

1995, JF An indicator variable equal to 1 if company pays dividends but did not

in prior year

6.6

divo Michaely,

Thaler, and

Womack

1995, JF An indicator variable equal to 1 if company does not pay dividend but

did in prior year

6.6

dolvol Chordia,

Subrahmanyam,

and Anshuman

2001, JFE Natural log of trading volume times price per share from month t-2 3.6

dy Litzenberger

and

Ramaswamy

1982, JF Total dividends (dvt) divided by market capitalization at fiscal year-end 0.3

ear Kishore et al. 2008, WP Sum of daily returns in three days around earnings announcement.

Earnings announcement from Compustat quarterly file (rdq)

10.2

egr Richardson et

al.

2005, JAE Annual percent change in book value of equity (ceq) 6.6

ep Basu 1977, JF Annual income before extraordinary items (ib) divided by end of fiscal

year market cap

0

fgr5yr Bauman and

Dowen

1988, FAJ Most recently available analyst forecasted 5-year growth 60.2

gma Novy-Marx 2013, JFE Revenues (revt) minus cost of goods sold (cogs) divided by lagged total

assets (at)

6.8

54

grcapx Anderson and

Garcia-Feijoo

2006, JF Percent change in capex from year t-2 to year t 16.1

grltnoa Fairfiel,

Whisenant, and

Yohn

2003, TAR Growth in long-term net operating assets 29.6

herf Hou and

Robinson

2006, JF 2-digit SIC-fiscal-year sales concentration (sum of squared percent of

sales in industry for each company)

0

hire Bazdresch,

Belo, and Lin

2014, JPE Percent change in number of employees (emp) 6.8

idiovol Ali, Hwang,

and Trombley

2003, JFE Standard deviation of residuals of weekly returns on weekly equal

weighted market returns for 3 years prior to month end

1.0

ill Amihud 2002, JFM Average of daily (absolute return / dollar volume) 3.0

indmom Moskowitz and

Grinblatt

1999, JF Equal-weighted average industry 12-month returns 0

invest Chen and

Zhang

2010, JF Annual change in gross property, plant, and equipment (ppegt) + annual

change in inventories (invt) all scaled by lagged total assets (at)

9.7

IPO Loughran and

Ritter

1995, JF An indicator variable equal to 1 if first year available on CRSP monthly

stock file

0

lev Bhandari 1988, JF Total liabilities (lt) divided by fiscal year-end market capitalization 0.3

lgr Richardson et

al.

2005, JAE Annual percent change in total liabilities (lt) 6.9

maxret Bali, Cakici,

and Whitelaw

2011, JFE Maximum daily return from returns during calendar month t-1 0

mom12m Jegadeesh 1990, JF 11-month cumulative returns ending one month before month end 7.1

mom1m Jegadeesh and

Titman

1993, JF 1-month cumulative return 0

mom36m Jegadeesh and

Titman

1993, JF Cumulative returns from months t-36 to t-13 21.8

mom6m Jegadeesh and

Titman

1993, JF 5-month cumulative returns ending one month before month end 2.9

ms Mohanram 2005, RAS Sum of 8 indicator variables for fundamental performance 10.1

mve Banz 1981, JFE Natural log of market capitalization at end of month t-1 0

mve_ia Asness, Porter,

and Stevens

2000, WP 2-digit SIC industry-adjusted fiscal year-end market capitalization 0

nanalyst Elgers, Lo, and

Pfeiffer

2001, TAR Number of analyst forecasts from most recently available I/B/E/S

summary files in month prior to month of portfolio formation. nanalyst

set to zero if not covered in I/B/E/S summary file

21.8

nincr Barth, Elliott,

and Finn

1999, JAR Number of consecutive quarters (up to eight quarters) with an increase

in earnings (ibq) over same quarter in the prior year

10.1

operprof Fama and

French

2015, JFE Revenue minus cost of goods sold minus SG&A expense minutes

interest expense divided by lagged common shareholders’ equity

6.8

orgcap Eisfeldt and

Papanikolaou

2013, JFE Capitalized SG&A expenses 26.5

pchcapx_ia Abarbanell and

Bushee

1998, TAR 2-digit SIC-fiscal-year mean-adjusted percent change in capital

expenditures (capx)

9.2

pchcurrat Ou and Penman 1989, JAE Percent change in currat 10.0

pchdepr Holthausen and

Larcker

1992, JAE Percent change in depr 11.0

55

pchgm_pchs

ale

Abarnell and

Bushee

1998, TAR Percent change in gross margin (sale-cogs) minus percent change in

sales (sale)

7.9

pchquick Ou and Penman 1989, JAE Percent change in quick 10.6

pchsale_pchi

nvt

Abarbanell and

Bushee

1998, TAR Annual percent change in sales (sale) minus annual percent change in

receivables (rect)

26.5

pchsale_pchr

ect

Abarbanell and

Bushee

1998, TAR Annual percent change in sales (sale) minus annual percent change in

receivables (rect)

10.5

pchsale_pch

xsga

Abarbanell and

Bushee

1998, TAR Annual percent change in sales (sale) minus annual percent change in

SG&A (xsga)

22.4

pchsaleinv Ou and Penman 1989, JAE Percent change in saleinv 27.4

pctacc Hafzalla,

Lundholm, and

Van Winkle

2011, TAR Same as acc except that the numerator is divided by the absolute value

of ib; if ib = 0 then ib set to 0.01 for denominator

13.3

pricedelay Hou &

Moskowitz

2005, RFS The proportion of variation in weekly returns for 36 months ending in

month t explained by 4 lags of weekly market returns incremental to

contemporaneous market return

1.0

ps Piotroski 2000, JAR Sum of 9 indicator variables to form fundamental health score 6.6

quick Ou and Penman 1989, JAE (current assets – inventory) / current liabilities 3.8

rd Eberhart,

Maxwell, and

Siddique

2004, JF An indicator variable equal to 1 if R&D expense as a percentage of total

assets has an increase greater than 5%

6.6

rd_mve Guo, Lev, and

Shi

2006, JBFA R&D expense divided by end-of-fiscal-year market capitalization 51.4

rd_sale Guo, Lev, and

Shi

2006, JBFA R&D expense divided by sales (xrd/sale) 52.3

realestate Tuzel 2010, RFS Buildings and capitalized leases divided by gross PP&E 57.7

retvol Ang et al. 2006, JF Standard deviation of daily returns from month t-1 0

roaq Balakrishnan,

Bartov, and

Faurel

2010, JAE Income before extraordinary items (ibq) divided by one quarter lagged

total assets (atq)

10.3

roavol Francis et al. 2004, TAR Standard deviation for 16 quarters of income before extraordinary items

(ibq) divided by average total assets (atq)

23.7

roeq Hou, Xue, and

Zhang

2015, RFS Earnings before extraordinary items divided by lagged common

shareholders’ equity

10.3

roic Brown and

Rowe

2007, WP Annual earnings before interest and taxes (ebit) minus non-operating

income (nopi) divided by non-cash enterprise value (ceq + lt – che)

4.1

rsup Kama 2009, JBFA Sales from quarter t minus sales from quarter t-4 (saleq) divided by

fiscal-quarter-end market capitalization (cshoq * prccq)

10.8

salecash Ou and Penman 1989, JAE Annual sales divided by cash and cash equivalents 0.8

saleinv Ou and Penman 1989, JAE Annual sales divided by total inventory 21.6

salerec Ou and Penman 1989, JAE Annual sales divided by accounts receivable 3.6

secured Valta 2016, JFQA Total liability scaled secured debt 41.2

securedind Valta 2016, JFQA An indicator equal to 1 if company has secured debt obligations 0

sfe Elgers, Lo, and

Pfeiffer

2001, TAR Analysts mean annual earnings forecast for nearest upcoming fiscal

year from most recent month available prior to month of portfolio

formation from I/B/E/S summary files scaled by price per share at fiscal

quarter end

46.9

56

sgr Lakonishok,

Shleifer, and

Vishny

1994, JF Annual percent change in sales (sale) 7.9

sin Hong &

Kacperczyk

2009, JFE An indicator variable equal to 1 if a company’s primary industry

classification is in smoke or tobacco, beer or alcohol, or gaming

0

sp Barbee,

Mukherji, and

Raines

1996, FAJ Annual revenue (sale) divided by fiscal year-end market capitalization 0.3

std_dolvol Chordia,

Subrahmanyam,

and Anshuman

2001, JFE Monthly standard deviation of daily dollar trading volume 3.2

std_turn Chordia,

Subrahmanyam,

and Anshuman

2001, JFE Monthly standard deviation of daily share turnover 2.9

stdacc Bandyopadhyay

, Huang, and

Wirjanto

2010, WP Standard deviation for 16 quarters of accruals (acc measured with

quarterly Compustat) scaled by sales; if saleq = 0, then scale by 0.01

36.5

stdcf Huang 2009, JEF Standard deviation for 16 quarters of cash flows divided by sales

(saleq); if saleq = 0, then scale by 0.01. Cash flows defined as ibq minus

quarterly accruals

36.5

sue Rendelman,

Jones, and

Latane

1982, JFE Unexpected quarterly earnings divided by fiscal-quarter-end market

cap. Unexpected earnings is I/B/E/S actual earnings minus media

forecasted earnings if available, else it is the seasonally differenced

quarterly earnings before extraordinary items from Compustat quarterly

file

10.7

tang Almeida and

Campello

2007, RFS Cash holdings + 0.715 * receivables + 0.547 * inventory + 0.535 *

PPE/total assets

4.1

tb Lev and Nissim 2004, TAR Tax income, calculated from current tax expense divided by maximum

federal tax rate, divided by income before extraordinary items

11.9

turn Data, Naik, and

Radcliffe

1998, JFM Average monthly trading volume for most recent 3 months scaled by

number of shares outstanding current month

3.5

zerotrade Liu 2006, JFE Turnover weighted number of zero trading days for most recent month 3.0

57

Table A2. Second hyperparameter grid search results comparing average validation sample R2 (%) across

parameter values.

 The values reported are average R2 (%) based on the validation data for models including the

hyperparameter value defined in the left-most column. Rectifier, Maxout, and Tanh models are compared that

differ by their activation function. The random grid search trains 150 models out of 288 possibilities (3 x 3 x 2 x

2 x 2 x 2 x 2), and grid search is repeated 10 times, producing a total of 1500 models.

 Rectifier Maxout Tanh

Overall 1.75 (0.57) 1.27 (0.31) 0.71 (0.12)

Hidden layers and units per layer

 [64] 2.00 (0.63) 1.20 (0.24) 0.69 (0.12)

 [64, 32] 1.49 (0.34) 1.35 (0.34) 0.73 (0.12)

Input dropout

 0 1.79 (0.56) 1.31 (0.31) 0.72 (0.12)

 0.1 1.71 (0.57) 1.24 (0.30) 0.70 (0.12)

L1

 0 1.73 (0.61) 1.28 (0.33) 0.71 (0.13)

 1.00E-05 1.78 (0.52) 1.27 (0.28) 0.71 (0.12)

L2

 1.00E-04 1.75 (0.51) 1.24 (0.28) 0.71 (0.12)

 1.00E-05 1.76 (0.63) 1.30 (0.32) 0.72 (0.12)

Rho

 0.99 1.30 (0.17) 1.01 (0.09) 0.65 (0.07)

 0.999 2.21 (0.45) 1.53 (0.21) 0.78 (0.13)

Epsilon

 1.00E-09 1.76 (0.54) 1.22 (0.27) 0.67 (0.12)

 1.00E-10 1.75 (0.60) 1.32 (0.33) 0.76 (0.10)

