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Abstract. A statistical framework applicable to Ring-LWE was out-
lined by Murphy and Player (IACR eprint 2019/452). Its applicability
was demonstrated with an analysis of the decryption failure probability
for degree-1 and degree-2 ciphertexts in the homomorphic encryption
scheme of Lyubashevsky, Peikert and Regev (IACR eprint 2013/293).
In this paper, we clarify and extend results presented by Murphy and
Player. Firstly, we make precise the approximation of the discretisation
of a Normal random variable as a Normal random variable, as used in
the encryption process of Lyubashevsky, Peikert and Regev. Secondly,
we show how to extend the analysis given by Murphy and Player to
degree-k ciphertexts, by precisely characterising the distribution of the
noise in these ciphertexts.
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1 Introduction

The Ring-LWE problem [12, 6] has become a standard hard problem underlying
lattice-based cryptography. In [7], a detailed algebraic background for Ring-LWE
was given, together with a statistical framework based on δ-subgaussian random
variables [9, 10]. Another statistical framework applicable to Ring-LWE, based
on a Central Limit approach, was outlined in [11]. It is argued in [11] that
this is a more natural approach than one using δ-subgaussian arguments, when
considering the important application setting of homomorphic encryption [5].

Ciphertexts in all homomorphic encryption schemes have an inherent noise
which is small in fresh ciphertexts and grows during homomorphic evaluation
operations. If the noise grows too large, decryption will fail. A thorough un-
derstanding of the statistical properties of the noise is therefore essential for
choosing efficient parameters while ensuring correctness. Rather than analysing
the noise directly, we consider the embedding of the noise via the canonical
embedding (see e.g. [7]) in a complex space H.

In this paper, we present results on discretisation and product distributions
applicable to Ring-LWE cryptography, which clarify and extend results presented
in [11]. For concreteness, these results could be applied to the homomorphic
encryption scheme of Section 8.3 of [7], termed SymHom by [11] and analysed
there.
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In a Ring-LWE discretisation, an element of the complex space H is rounded
to some randomly determined nearby element of H in a lattice coset Λ+ c. We
require that all components of the vector expressing this discretisation in an
appropriate basis for H are bounded by an appropriate threshold in order for a
successful decryption to take place. The statistical properties of the discretisa-
tion process are therefore of fundamental importance in determining correctness.
Our results demonstrate how we can obtain a good multivariate Normal approx-
imation for (embedded) noise of a degree-1 (fresh) ciphertext vector expressed
in a decryption basis after a change of basis transformation. This justifies the
approach used in [11, Theorem 1] for bounding the decryption failure probability
of such ciphertexts.

In homomorphic Ring-LWE cryptosystems such as SymHom, for k = k1 + k2,
a degree-k ciphertext cmult is formed as the result of the homomorphic multipli-
cation of two ciphertexts c1 and c2 of degrees k1 and k2 respectively. The noise
in cmult is defined to be the product of the noises in the input ciphertexts c1 and
c2. We show that using the Central Limit Framework of [11], the distribution
of a vector expressing the (embedded) noise in a degree-k SymHom ciphertext
in an appropriate decryption basis can be approximated by a multivariate Nor-
mal distribution. This extends the analysis for degree-2 ciphertexts given in [11,
Theorem 2].

1.1 Contributions

In Section 3 we make precise the approximation of the CRR discretisation (Def-
inition 5) of a Normal random variable as a Normal random variable, so po-
tentially allowing a more direct and powerful approach to CRR discretisation
than a δ-subgaussian approach. Moreover, our techniques are potentially gen-
eralisable to other randomised discretisation methods. Our first main result is
Proposition 1, which describes the distribution of the Balanced Reduction (Def-
inition 4) of a Normal random variable. To obtain Proposition 1, we first show
in Lemma 1 that the Balanced Reduction of a Normal random variable gives a
Triangular distribution, which is itself approximately by a Normal distribution
(Lemma 2).

In Section 4 we extend the analysis of degree-2 ciphertexts given in [11] to
degree-k ciphertexts. Our second main result is Lemma 6, which shows that a

component Z
(k)
j of the k-fold ⊗-product Z(k) has a K distribution (Section 4.1).

2 Background

In this section, we give the relevant background for our discussion. In Section 2.1
we recall the necessary algebraic background to Ring-LWE, following [7]. In
Section 2.2 we recall results on discretisation following [10]. In Section 2.3 we
recall the definition and basic properties of the Meijer G-Function [2–4].
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2.1 Algebraic Background

The mathematical structure underlying Ring-LWE is the polynomial quotient
ring obtained from the mth cyclotomic polynomial of degree n. For simplicity,
we consider the case where m is a large prime, so n = φ(m) = m − 1, and we
let n′ = 1

2n. Our focus is solely on the vector space aspects of Ring-LWE, and
in particular our discussion is based on the complex space H (Definition 1).

Definition 1. The conjugate pair space H is H = T (Rn), where T is the n×n

unitary conjugate pairs matrix given by T = 2−
1
2

(
In′ iJn′

Jn′ −iIn′

)
, where In′ is

the n′ × n′ identity matrix and Jn′ is the n′ × n′ reverse diagonal matrix of 1s.

We note that T−1 = T †, where T † denotes the conjugate transpose of T . We
can represent elements of H as vectors with respect to a basis for H, and two
such bases of H of direct relevance are specified in Definition 2.

Definition 2. The I-basis for H is given by the columns of the n × n identity
matrix In, that is to say by standard basis vectors. The T-basis for H is given
by the columns of the conjugate pair matrix T .

We note that an element of H is expressed as a vector in the I-basis as a vector
of n′ conjugate pairs and by construction in the T -basis as a real-valued vector.
A vector expressing the same element of H in the I-basis has the same norm
as a vector expressing the same element in the T -basis as T is a unitary matrix
(|Tv|2 = |v|2). Furthermore, the complex space H has a natural well-defined
multiplication operation, and Definition 3 specifies this multiplication operation
for vector expressing an element of H in the I-basis and in the T -basis.

Definition 3. If a = (a1 . . . an)T and b = (b1, . . . , bn)T are vectors expressing
elements of H in the I-basis for H, then the �-product a�b = (a1b1, . . . , anbn)T

is their componentwise product. If u and v are (real-valued) vectors expressing
elements of H in the T -basis for H, then the ⊗-product u⊗ v = T † (Tu� Tv).

The ⊗-product of two real-valued vectors can be expressed by considering ap-
propriate pairs of components. The space H can be regarded as H2 × . . .×H2,
where H2 = T (R2). For two real-valued vectors u, v ∈ R2 expressing elements of
H2 in the T -basis for H2, their ⊗-product is given by

u⊗ v =

(
u1
u2

)
⊗
(
v1
v2

)
= 2−

1
2

(
u1v1 − u2v2
u1v2 + u2v1

)
.

2.2 Discretisation Background

The discretisation process in (for example) a homomorphic Ring-LWE cryptosys-
tem “rounds” an element of H to some randomly determined nearby element of
H in a lattice coset Λ + c of some lattice Λ in H. As an illustration of a dis-
cretisation process, we use the coordinate-wise randomised rounding method of
discretisation or CRR discretisation given in the first bullet point of Section 2.4.2
of [7]. We give a formal statistical description of CRR discretisation in terms of
a random Balanced Reduction function following [10].
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Definition 4. The univariate Balanced Reduction function R on R is the ran-

dom function R(a) =

{
1− (dae − a) with probability dae − a
−(dae − a) with probability 1− (dae − a).

The multivariate Balanced Reduction function R on Rl with support on
[−1, 1]l is the random function R = (R1, . . . ,Rl) with component functions
R1, . . . ,Rl that are independent univariate Balanced Reduction functions.

Definition 5. Suppose B is a (column) basis matrix for the n-dimensional lat-
tice Λ in H. If R is the Balanced Reduction function, then the coordinate-wise
randomised rounding discretisation or CRR discretisation bXeBΛ+c of the ran-
dom variable X on H to the lattice coset Λ + c with respect to the basis matrix
B is the random variable

bXeBΛ+c = X +B R
(
B−1(c−X)

)
.

The CRR discretisation bXeBΛ+c of the random variable X with respect to
the basis B of Λ is a random variable on the lattice coset Λ + c, and is a valid
(does not depend on the chosen coset representative c) discretisation [7, 10].

2.3 Meijer G-Functions

Our analysis in Section 4 will be most easily expressed in terms of Meijer G-
functions [2–4], which are specified in general in Definition 6. Definition 7 gives
three classes of Meijer G-functions that are of direct relevance to us.

Definition 6. The Meijer G-Function Gξ νp q

(
a1...ap
b1... bq

∣∣∣x) is defined for x 6= 0 and

integers ξ, ν, p, q with 0 ≤ ξ ≤ q and 0 ≤ ν ≤ p by the line integral

Gξ νp q

(
a1...ap
b1... bq

∣∣∣x) =
1

2πi

∫
L

∏ξ
j=1 Γ (bj − s)

∏ν
j=1 Γ (1− aj + s)∏q

j=ξ+1 Γ (1− bj + s)
∏p
j=ν+1 Γ (aj − s)

xs ds

in the complex plane, where Γ denotes the gamma function and ak−bj 6= 1, 2, . . .
(for j = 1, . . . , ξ and k = 1, . . . , ν). The integral path L runs from −i∞ to i∞
such that all poles of Γ (bj − s) are to the right of the path (for j = 1, . . . , ξ) and
all the poles of Γ (1−ak + s) are to the left of the path (for k = 1, . . . , ν), though
other paths are possible.

Definition 7. For a positive integer k and the integral path L of Definition 6,
the functions Gk, Hk and Jk are the Meijer-G functions given by

Gk(x) = Gk 0
0 k ( 00... 0|x) =

1

2πi

∫
L

Γ (−s)kxs ds,

Hk(x) = Gk−1 1
1 k−1

(
1

11...1

∣∣x) =
1

2πi

∫
L

Γ (1− s)k−1Γ (s)xs ds

and Jk(x) = Gk 0
0 k

(
0 1

2 ...
1
2

∣∣∣x) =
1

2πi

∫
L

Γ (−s)Γ ( 1
2 − s)

k−1xs ds.
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For small k, we note that G1(x) = exp(−x) and G2(x) = 2K0

(
2x

1
2

)
, where

K0(x) =

∫ ∞
0

exp(−x cosh t) dt is a modified Bessel function of the second

kind [1]. Similarly, we also have H1(x) = exp(−x−1) and H2(x) =
x

1 + x
, as

well as J1(x) = exp(−x) and J2(x) = π
1
2 exp(−2x

1
2 ).

3 Discretisation Distributions in Ring-LWE

In Section 3.1, we show that the Balanced Reduction of a Gaussian random
variable underlying a degree-1 ciphertext in situations of interest is essentially a
Triangular random variable, which can itself be approximated by a Normal ran-
dom variable. In Section 3.2, we make precise the multivariate Normal approx-
imation of the CRR discretisation of the embedded noise in a degree-1 SymHom

ciphertext.

3.1 The Balanced Reduction of a Normal Random Variable

A Ring-LWE encryption process is based on the discretisation of Normal random
variables in H. We therefore consider the discretisation bXeBΛ+c of a random vari-
able X = TX ′ (in the I-basis) which is the image of some real-valued multivari-
ate Normal random variable X ′ under T . However, B−1(c−X) is a real-valued
multivariate Normal random variable. Thus we must consider the Balanced Re-
duction of R

(
B−1(c−X)

)
of the Normal random variable B−1(c − X), and

Lemma 1 essentially shows that such a Balanced Reduction gives a Triangular
distribution.

Lemma 1. If Y ∼ N(µ, σ2), then its Balanced Reduction R(Y ) → 4 has the
Triangular distribution 4 (density function 1− |z| for |z| < 1 and 0 otherwise)
as its limiting distribution as the standard deviation σ →∞.

Sketch Proof. We can express the density function fR(Y ) of R(Y ) in terms of
the density function fY ′ of Y ′ = Y − bY c, the “modulo 1” reduction of Y . By
considering the Fourier series for fY ′ on [0, 1), we can obtain a Fourier series for
fR(Y ) on (−1, 1) and hence show that fR(Y )(y)→ 1− |y| on (−1, 1) as σ →∞.
A full proof is given in Appendix A. ut

The Fourier form shown in the proof of Lemma 1 (Appendix A) in fact shows
that the Balanced Reduction of a Normal N(µ, σ2) random variable with any
mean µ is very close to a Triangular distribution 4 with mean E(4) = 0 and
variance Var(4) = 1

6 for even a moderate standard deviation σ, as illustrated
in Figure 1 for the small standard deviation σ = 0.50. Ring-LWE applications
typically use a larger standard deviation than 0.5, so giving an even closer ap-
proximation.

The Triangular distribution can obviously itself be approximated by a Nor-
mal N(0, 16 ) distribution with the same mean E(4) = 0 and variance Var(4) = 1

6
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Fig. 1. The density functions of a Triangular (4) random variable (solid line), a Bal-
anced Reduction R(N(0, 0.502)) of a Normal random variable with standard deviation

0.50 (dashed line) and a Normal random variable N(0, 1
6
) with standard deviation ( 1

6
)
1
2

(dotted line).

in the manner outlined in Lemma 2. This closeness of this approximating N(0, 16 )
distribution to a Triangular distribution, and essentially also to a Balanced Re-
duction of an N(0, σ2) Normal random variable for σ > 0.50, is illustrated in
Figure 1.

Lemma 2. Suppose that W ∼ 4 has a Triangular distribution with distribution
function FW (w) = P(W ≤ w) = 1

2

(
w + 2w − sign(w)w2

)
for |w| ≤ 1. If Φ is

the distribution function of a standard Normal N(0, 1) random variable, then the

random variable W ′ = ( 1
6 )

1
2 Φ−1 (FW (W )) ∼ N(0, 16 ) has a Normal distribution

with mean 0 and variance 1
6 .

Proof. If Z ∼ N(0, 16 ), then F−1Z (z) = ( 1
6 )

1
2Φ−1(z) is the inverse distribution

function of Z. Thus the distribution function FW ′ of W ′ is

FW ′(w) = P
(
W ′ = ( 1

6 )
1
2Φ−1 (FW (W )) = F−1Z (FW (W )) ≤ w

)
= P

(
W ≤ F−1W (FZ(w))

)
= FW

(
F−1W (FZ(w))

)
= FZ(w).

Thus W ′ and Z have the same distribution function and so W ′ ∼ N(0, 16 ).

The discrepancy between the Triangular random variable W ∼ 4 and the
approximating Normal random variable W ′ ∼ N(0, 16 ), and hence between the
Balanced Reduction of an appropriate Normal distribution and an N(0, 16 ) distri-
bution, is a very small distribution. This small distribution is formally specified
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Fig. 2. The density function of a Ghost random variable.

in Definition 8 and illustrated in Figure 2, and we term this distribution the
Ghost distribution because of its shape and elusive nature. Lemma 3 gives
the statistical properties of the Ghost distribution. Proposition 1 summarises
the distribution of the Balanced Reduction of a Normal random variable, using
the notation ∼.. to denote “is approximately distributed as”.

Definition 8. Suppose that W ∼ 4 has a Triangular distribution with distribu-
tion function FW (w) = P(W ≤ w) = 1

2

(
w + 2w − sign(w)w2

)
for |w| ≤ 1. If Φ

is the distribution function of a standard Normal N(0, 1) random variable, then

the random variable W ′′ = W −W ′ = W − ( 1
6 )

1
2 Φ−1 (FW (W )) has a Ghost

distribution. Such a random variable W ′′ is denoted W ′′ ∼ .

Lemma 3. A Ghost random variable W ′′ ∼ has mean E (W ′′) = 0 and
variance Var(W ′′) = 0.0012, so has standard deviation St Dev(W ′′) = 0.035.
Furthermore, the tail probabilities of W ′′ are given by the following Table.

θ 0.03 0.15 0.37 0.62 0.84
P(|W ′′| > θ) 10−1 10−2 10−3 10−4 10−5

Proof. The results can be obtained by numerical integration and so on.

Proposition 1. The distribution of the Balanced Reduction R(N(µ, σ2)) of a
univariate Normal distribution for standard deviations σ of interest in Ring-
LWE can essentially be approximated (with a slight abuse of notation) as

R(N(µ, σ2)) ∼.. N(0, 16 ) + .

7



3.2 The Distribution of a CRR Discretisation

We consider the CRR discretisation bXeBΛ+c of a complex-valued random vector
X = TX ′ that is the image under T of a spherically symmetric real-valued
Normal random variable X ′ ∼ N(0; ρ2In) with component standard deviation ρ.
This component standard deviation ρ is typically larger than the length of the
basis vectors, that is to say the column lengths of B or equivalently of the real
matrix T †B. We can express this CRR discretisation as either a complex-valued
random vector bXeBΛ+c in the I-basis for H or as a real-valued random vector

T †bXeBΛ+c in the T -basis for H. Following Proposition 1, the distributions of
these vectors are essentially given by

bXeBΛ+c ∼.
. T (N(0; ρ2In)) +B(N(0; 1

6In)) +B( n)
and T †(bXeBΛ+c) ∼.

. N(0; ρ2In) + T †B(N(0; 1
6In)) + T †B( n).

We observe that the first of these three distributions is typically the dominat-
ing distribution. For example, the real-valued distribution of T †(bXeBΛ+c) differs

from a Normal distribution by T †B( n). The distribution T †B( n) is usually
negligible for the lattice basis matrices B in Ring-LWE. Similarly, the variance
matrix of T †B(N(0; 1

6In)) is usually negligible in comparison with ρ2In. For
practical purposes we can therefore consider that T †(bXeBΛ+c) has an N(0; ρ2In)
distribution or equivalently that bXeBΛ+c has a T (N(0; ρ2In)) distribution.

In the decryption of a degree-1 ciphertext, such a discretisation (that is, the
noise in the ciphertext embedded in H) is considered as a real-valued vector in a
“decryption basis”. An appropriate change of basis matrix C to such a decryption
basis can be expressed as C = C ′T † for a real matrix C ′. We therefore consider
the real-valued vector C(bXeBΛ+c) which can be expressed as

C(bXeBΛ+c) ∼.. C ′(N(0; ρ2In)) + CB(N(0; 1
6In)) + CB( n) ,

where C ′ = CT and CB are real matrices. The decryption is successful if every
component of C(bXeBΛ+c) is less than an appropriate threshold.

In summary, this discussion justifies the approach used in [11, Theorem 1] for
obtaining a bound for a decryption failure probability for C(bXeBΛ+c) by using
the distributional approximation

C(bXeBΛ+c) ∼.. N
(
0; ρ2CC ′T

)
.

4 Product Distributions in Ring-LWE

The noise in a degree-k ciphertext in SymHom can be seen as the k-fold �-product
of the noises of k degree-1 ciphertexts in the I-basis for H. We are interested in
the k-fold �-product of the form bX1eBΛ+c � . . .� bXkeBΛ+c of the discretisation
vectors bX1eBΛ+c, . . . , bXkeBΛ+c given by degree-1 ciphertexts. The discussion of
Section 3.2 shows that this distribution can be approximated as

bX1eBΛ+c � . . .� bXkeBΛ+c ∼.. T (N(0; ρ21In))� . . .� T (N(0; ρ2kIn)) .
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We consider the equivalent ⊗-product T †(bX1eBΛ+c) ⊗ . . . ⊗ T †(bXkeBΛ+c) ex-
pressing the embedded noises as real vectors in the T -basis, with approximate
distribution

T †(bX1eBΛ+c)⊗ . . .⊗ T †(bXkeBΛ+c) ∼.. N(0; ρ21In)⊗ . . .⊗N(0; ρ2kIn).

The ⊗-product in Rn decomposes into n′ = 1
2n independent ⊗-products in

R2. Thus we consider the distribution on R2 given by the k-fold ⊗-product of
spherical bivariate Normal random variables

N(0; ρ21I2)⊗ . . .⊗N(0; ρ2kI2) .

In particular, we consider the distribution of a 1-dimensional component of this
2-dimensional distribution. This approach allows us to construct an approximate
multivariate distribution for the vector expressing the embedded noise in an
appropriate decryption basis.

4.1 The K Distribution

We use the K distribution, which we now introduce, to analyse the component
distribution of a k-fold ⊗-product.

Definition 9. A symmetric continuous univariate random variable X has a K
distribution with shape k (positive integer) and variance ν2 > 0 if it has density

function fX(x) = (2πν2)−
1
2Jk( 1

2ν
−2x2), where Jk is the Meijer G-function of

Definition 7. We write X ∼ K(k, ν2) to denote that X has such a distribution.

We note that an K(1, 1) distribution is a standard Normal N(0, 1) distribution
and that K(2, 1) is a univariate Laplace distribution. The density functions of
the K(1, 1), K(2, 1) and K(4, 1) distributions are shown in Figure 3, and tail
probabilities are tabulated in Figure 4 for the K(k, 1) distributions for shape
k = 1, . . . , 6. The tail probability functions for the K(1, 1), K(2, 1) and K(4, 1)
distributions are illustrated in Figure 5 in Appendix B. It can be seen that
K(k, 1) is far more highly weighted around 0 and in the tails for shape k > 1
than the comparable standard Normal distribution N(0, 1) = K(1, 1) with the
same mean 0 and variance 1.

4.2 The ⊗-product of Spherical Bivariate Normal Distributions

We now establish the distribution of a component Z
(k)
j of the k-fold ⊗-product

Z(k) of spherical bivariate Normal distributions. Lemma 4 gives the density
function fZ(k) of the bivariate random variable Z(k). Lemma 5 then gives the
associated characteristic function φZ(k) of Z(k). Finally, Lemma 6 shows that a

component Z
(k)
j of the k-fold ⊗-product Z(k) has the K distribution with shape

k. Full proofs of these results are provided in Appendix C.
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Fig. 3. The density function of a K(1, 1) = N(0, 1) distribution (solid line), the density
function of a K(2, 1) distribution (dashed line) and the density function of a K(4, 1)
distribution (dotted line).

Lemma 4. Suppose that Z1 ∼ N(0; ρ21I2), . . . , Zk ∼ N(0; ρ2kI2) are independent
spherical bivariate Normal random variables and that Gk is the Meijer G-function
of Definition 7. Their k-fold ⊗-product Z(k) = Z1⊗ . . .⊗Zk has density function
fZ(k) on R2 given by fZ(k)(z) = (2πρ2)−1 Gk

(
1
2ρ
−2|z|2

)
, where ρ2 = ρ21 . . . ρ

2
k.

Sketch Proof. The proof establishes the density function f|Z(k)| of |Z(k)| by an
inductive argument based on the multiplicative convolution of particular Meijer
G-functions. The final form of the density function fZ(k) of Z(k) then follows
from a polar transformation. ut

Lemma 5. Suppose that Z1 ∼ N(0; ρ21I2), . . . , Zk ∼ N(0; ρ2kI2) are indepen-
dent spherical bivariate Normal random variables and that Hk is the Meijer
G-function of Definition 7. Their k-fold ⊗ product Z(k) = Z1 ⊗ . . . ⊗ Zk has
characteristic function φZ(k) on R2 given by φZ(k)(t) = Hk

(
2ρ2|t|−2

)
, where

ρ2 = ρ21 . . . ρ
2
k.

Sketch Proof. The characteristic function φZ(k) is evaluated by means of polar
co-ordinates to give a multiplicative convolution of Meijer G-functions. ut

Lemma 6. Suppose that Z1 ∼ N(0; ρ21I2), . . . , Zk ∼ N(0; ρ2kI2) are independent
spherical bivariate Normal random variables, and let Z(k) = Z1 ⊗ . . . ⊗ Zk be

their k-fold ⊗-product. A component Z
(k)
j of Z(k) has a K(k, ρ2) distribution

(Definition 9) with shape k and variance ρ2 = ρ21 . . . ρ
2
k.
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θ 2.0 3.0 4.0 5.0 6.0 7.0

P(|K(1, 1)| > θ) 0.0455 0.0027 0.0001 0.0000 0.0000 0.0000
P(|K(2, 1)| > θ) 0.0591 0.0144 0.0035 0.0008 0.0002 0.0001
P(|K(3, 1)| > θ) 0.0578 0.0201 0.0077 0.0031 0.0013 0.0006
P(|K(4, 1)| > θ) 0.0530 0.0217 0.0100 0.0050 0.0026 0.0015
P(|K(5, 1)| > θ) 0.0473 0.0213 0.0109 0.0061 0.0036 0.0022
P(|K(6, 1)| > θ) 0.0417 0.0201 0.0110 0.0065 0.0041 0.0027

Fig. 4. The tail probabilities for a K(k, 1) distribution with shape k = 1, . . . , 6.

Sketch Proof. The characteristic function corresponding to the density function
fY is the appropriate marginal characteristic function derived from Lemma 5.

ut

4.3 Application to Homomorphic Multiplication Noise Growth

By considering repeated multiplication of degree-1 ciphertexts we can see that
the (embedded) noise in a degree-k ciphertext is an element of H that can be

expressed as a real valued random vector W (k) = (W
(k)
1 , . . . ,W

(k)
n )T in the T -

basis formed by a k-fold ⊗-product. The discussion of Section 4.2 shows that

the distribution of a component W
(k)
j ∼.. K(k, ρ2) can be approximated by a

K distribution with shape k and some variance ρ2 obtained as the product of

individual variances. Furthermore, a component W
(k)
j is independent of every

other component, except its complex conjugate “twin” component to which it is
uncorrelated.

For decryption, we consider the embedded noise of a degree-k ciphertext
expressed as the real random vector C ′W (k) in an appropriate decryption basis.
We can use a Central Limit framework [11] to approximate the distribution of
C ′W (k) as a multivariate Normal distribution under mild conditions on C ′ for
“product variance” ρ2 as

C ′W (k) ∼.. N(0; ρ2C ′C ′T ) .

This Normal approximation can then be used to obtain information about the
probability of decryption failure, as was done for k = 2 in [11, Theorem 2].

The quality of the approximation will decrease as the degree k increases due
to the heavier tails of K(k, ρ2) as k increases. In the case of a somewhat ho-
momorphic encryption scheme, requiring to support only a few multiplications,
this may not be problematic. Moreover, the quality of this approximation can
be checked empirically if required.
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A Proof of a Result of Section 3 about a Normal
Balanced Reduction

Lemma 1.
If Y ∼ N(µ, σ2), then its Balanced Reduction R(Y ) → 4 has the Triangular
distribution4 (density function 1−|z| for |z| < 1 and 0 otherwise) as its limiting
distribution as the standard deviation σ →∞.

Proof. Let fY denote the density function of Y ∼ N(µ, σ2), and let fY ′(y) =
∞∑

k=−∞

fY (y + k) denote the density function of Y ′ = Y − bY c, the “modulo 1”

reduction of Y to [0, 1). By construction, R(Y ) = R(Y ′), so the distribution
function FR(Y ) of R(Y ) is given by

FR(Y )(y) = P(R(Y ) = R(Y ′) ≤ y) =

∫ 1

0

P(R(Y ′) ≤ y|Y ′ = z)fY ′(z)dz

=

∫ 1

0

P (R(z) ≤ y) fY ′(z) dz =

∫ 1

0

FR(z)(y)fY ′(z) dz.
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The distribution function FR(z)(y) = P(R(z) ≤ y) of R(z) takes the value 0 for
y < −(dze − z), the value 1− (dze − z) for −(dze − z) ≤ y < 1− (dze − z) and
the value 1 for y ≥ 1 − (dze − z). Thus this distribution function FR(z)(y) can
be expressed for −1 ≤ y < 1 as

FR(z)(y) =

{
z [0 ≤ z < y + 1]
0 [y + 1 < z ≤ 1]

for −1 ≤ y < 0

and FR(z)(y) =

{
1 [0 ≤ z < y]
z [y < z ≤ 1]

for 0 ≤ y < 1.

For −1 ≤ y < 0 this distribution function FR(Y ) of R(Y ) therefore evaluates as

FR(Y )(y) =

∫ y+1

0

zfY ′(z) dz =

∫ y

−1
(1 + z)fY ′(1 + z) dz,

whereas, for 0 ≤ y < 1 and noting that E(Y ′) =

∫ 1

0

yfY ′(y) dy, we have

FR(Y )(y) =

∫ y

0

fY ′(z) dz +

∫ 1

y

zfY ′(z) dz = E(Y ′) +

∫ y

0

(1− z)fY ′(z) dz.

Thus the density function fR(Y ) of R(Y ) is given by

fR(Y )(y) = F ′R(Y )(y) =

{
(1 + y)fY ′(1 + y) [−1 ≤ y < 0]

(1− y)fY ′(y) [0 ≤ y < 1].

The density function fY ′(y) =

∞∑
k=−∞

ck exp(i2πk(y − µ)) of Y ′ on [0, 1) can

be expressed as a Fourier series in (y − µ) (of period 1) with coefficients

ck =

∫ 1

0

fY ′(z + µ) exp(−i2πkz) dz

=

∫ 1

0

∞∑
l=−∞

fY (z + l + µ) exp(−i2πkz) dz

=

∞∑
l=−∞

∫ l+1

l

fY (z + µ) exp(−i2πkz)dz

=

∫ ∞
−∞

exp(−i2πk(z − µ))fY (z) dz

= E(−i2πk(Y − µ)) = φY−µ(−2πk) = exp(−2π2σ2k2),

where φY−µ(t) = exp(− 1
2σ

2t2) is the characteristic function of Y −µ ∼ N(0, σ2).
The density function fR(Y ) of R(Y ) on (−1, 1) is therefore given by

fR(Y )(y) = (1− |y|)

(
1 + 2

∞∑
k=1

exp(−2π2σ2)k
2

cos(2kπ(y − µ))

)
.

Thus fR(Y )(y)→ (1− |y|) on (−1, 1) as σ →∞, so R(Y )→4 as σ →∞.
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Fig. 5. The tail probability functions P(|K(1, 1)| > x) of a K(1, 1) = N(0, 1) distribu-
tion (solid line), P(|K(2, 1)| > x) of a K(2, 1) distribution (dashed line) P(|K(4, 1)| > x)
of a K(4, 1) distribution (dotted line).

B Illustration of tail probability functions of K
distributions

The tail probability functions for the K(1, 1), K(2, 1) and K(4, 1) distributions
are illustrated in Figure 5.

C Proofs of Results of Section 4 about the ⊗-product

Lemma 4.
Suppose that Z1 ∼ N(0; ρ21I2), . . . , Zk ∼ N(0; ρ2kI2) are independent spherical
bivariate Normal random variables and that Gk is the Meijer G-function of Defi-
nition 7. Their k-fold ⊗-product Z(k) = Z1⊗ . . .⊗Zk has density function fZ(k)

on R2 given by fZ(k)(z) = (2πρ2)−1 Gk
(
1
2ρ
−2|z|2

)
, where ρ2 = ρ21 . . . ρ

2
k.

Proof. For simplicity, we suppose ρ21 = . . . = ρ2k = 1 as this gives a direct re-
scaling of the stated result. We first show that the density function f|Z(k)| for

the length |Z(k)| of this k-fold ⊗-product Z(k) is f|Z(k)|(r) = rGk( 1
2r

2) for r ≥ 0,

which we demonstrate by induction. When k = 1, the length |Z(1)| = |Z1| has
the distribution of the length |N(0; I2)| = χ2 of a χ-distribution with 2 degrees
of freedom. Thus the density function f|Z(1)|(r) = r exp(− 1

2r
2) = rG1( 1

2r
2) is

given by the appropriate Meijer G-function.
We now assume inductively that the length |Z(k−1)| of the (k − 1)-fold ⊗-

product Z(k−1) = Z1⊗. . .⊗Zk−1 has density function f|Z(k−1)|(r) = rGk−1( 1
2r

2).
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Direct calculation shows that |Z(k)| = 2−
1
2 |Z(k−1)||Zk|, so |Z(k)| has density

function

f|Z(k)|(r) = f
2−

1
2 |Z(k−1)||Zk|

(r) = 2
1
2 f|Z(k−1)||Zk|

(
2

1
2 r
)

= 2
1
2

∫ ∞
0

z−1 f|Z(k−1)|

(
2

1
2 rz−1

)
f|Zk|(z) dz

= 2
1
2

∫ ∞
0

z−1 2
1
2 rz−1Gk−1

(
r2z−2

)
zG1

(
1
2z

2
)
dz

= 2r

∫ ∞
0

z−1 Gk−1
(
r2z−2

)
G1
(
1
2z

2
)
dz

= r

∫ ∞
0

y−1 Gk−1
(
1
2r

2y−1
)
G1 (y) dy

However, y−1G1(y) = y−1G1 0
0 1 ( 0| y) = G1 0

0 1 (−1| y) in the Meijer G-function
notation of Definition 7, so

f|Z(k)|(r) = r

∫ ∞
0

Gk−1 0
0 k−1

(
00...0| 12y

−1r2
)
G1 0

0 1 (−1| y) dy

= r Gk 0
0 k

(
00...0| 12r

2
)

= r Gk
(
1
2r

2
)
,

as the final integral is a multiplicative convolution of Meijer G-functions. Thus
f|Z(k)| has the appropriate form and the inductive demonstration is complete.

The result for the density function fZ(k) of the spherically symmetric Z(k)

then follows immediately from the polar transformation linking fZ(k) and f|Z(k)|.

Lemma 5.
Suppose that Z1 ∼ N(0; ρ21I2), . . . , Zk ∼ N(0; ρ2kI2) are independent spherical
bivariate Normal random variables and that Hk is the Meijer G-function of
Definition 7. Their k-fold ⊗ product Z(k) = Z1 ⊗ . . . ⊗ Zk has characteristic
function φZ(k) on R2 given by φZ(k)(t) = Hk

(
2ρ2|t|−2

)
, where ρ2 = ρ21 . . . ρ

2
k.

Proof. For simplicity, we set ρ21 = . . . = ρ2k = 1, so ρ2 = 1. The density function
fZ(k) of Z(k) is fZ(k)(z) = (2π)−1Gk( 1

2 |z|
2), so the characteristic function φZ(k)

of Z(k) is given by

φZ(k)(t) = E
(

exp
(
itTZ(k)

))
=

1

2π

∫
R2

exp
(
itT z

)
Gk
(
1
2 |z|

2
)
dz

We can write t = r(cos θ, sin θ)T and z = s(cosα, sinα)T for t and z in polar
co-ordinates, so tT z = rs cos(α − θ). In terms of these polar co-ordinates, the
characteristic function φZ(k)(r, θ) = φZ(k)(t) of Z(k) can be expressed as

φZ(k)(r, θ) =
1

2π

∫ ∞
0

∫ 2π

0

exp(irs cos(α− θ)) rGk
(
1
2r

2
)
dα ds

=
1

2π

∫ ∞
0

∫ 2π

0

cos(rs cos(α− θ)) rGk
(
1
2r

2
)
dα ds

+ i
1

2π

∫ ∞
0

∫ 2π

0

sin(rs cos(α− θ)) rGk
(
1
2r

2
)
dα ds

=

∫ ∞
0

J0(rs) sGk
(
1
2s

2
)
ds,
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where J0(x) =
1

π

∫ π

0

cos(−x cos τ) dτ is a Bessel function of the first kind [1].

However, both terms J0(rs) = J0(|t|s)G1 0
0 2

(
00| 14r

2s2
)

= G1 0
0 2

(
00| 14 |t|

2s2
)

and

Gk( 1
2s

2) = Gk 0
0 k

(
00| 12s

2
)

making up the integrand are Meijer G-functions. Thus

the characteristic function φZ(k)(t) = φZ(k)(r, θ) of Z(k) can be evaluated as a
multiplicative convolution to give

φZ(k)(t) =

∫ ∞
0

G1 0
0 2

(
00| 14 |t|

2s2
)
r Gk 0

0 k

(
00... 0| 12s

2
)
ds

=

∫ ∞
0

G1 0
0 2

(
00| 12 |t|

2u
)
Gk 0

0 k ( 00... 0|u) du

=

∫ ∞
0

G0 1
2 0

(
11
∣∣ 2|t|−2u−1) Gk 0

0 k ( 00...0|u) du

= Gk−1 1
1 k−1

(
1

11...1

∣∣ 2|t|−2) = Hk
(
2|t|−2

)
.

Lemma 6.

Suppose that Z1 ∼ N(0; ρ21I2), . . . , Zk ∼ N(0; ρ2kI2) are independent spherical
bivariate Normal random variables, and let Z(k) = Z1 ⊗ . . .⊗Zk be their k-fold

⊗-product. A component Z
(k)
j of Z(k) has a K(k, ρ2) distribution (Definition 9)

with shape k and variance ρ2 = ρ21 . . . ρ
2
k.

Proof. For simplicity, we set ρ21 = . . . = ρ2k = 1, so ρ2 = 1. Suppose Z(k) has

orthogonal components Z
(k)
1 and Z

(k)
2 , so we can write Z =

(
Z

(k)
1 , Z

(k)
2

)T
. Thus

the joint characteristic function φ
Z

(k)
1 ,Z

(k)
2

(t1, t2) = φZ(k)(t), where t = (t1, t2),

so Lemma 5 shows that

φ
Z

(k)
1 ,Z

(k)
2

(t1, t2) = E
(

exp
(
i
(
t1Z

(k)
1 + t2Z

(k)
2

)))
= Hk(2(t21 + t22)−2).

The characteristic function φ
Z

(k)
1

of a component Z
(k)
1 say of Z(k) is therefore

given by φ
Z

(k)
1

(t1) = E(exp(it1Z
(k)
1 )) = φ

Z
(k)
1 ,Z

(k)
2

(t1, 0) = Hk(2t−21 ).

Suppose X ∼ K(k, 1), so X has density function fX(x) = (2π)−
1
2 Jk

(
1
2x

2
)
.

The characteristic function φX of X is given by

φX(u) = E(exp(iuX)) = (2π)−
1
2

∫ ∞
−∞

cos(ux)Jk( 1
2x

2) dx

= (2π)−
1
2

∫ ∞
−∞

cos(ux) Gk 0
0 k

(
0 1

2 ...
1
2

∣∣∣ 12x2) dx

= 2
1
2u−1Gk−1 1

1 k−1

(
1
2

1
2

1
2 ...

1
2

∣∣∣ 2

u2

)
= Gk−1 1

1 k−1
(

1
11...1

∣∣ 2u−2) = Hk(2u−2).

Thus φ
Z

(k)
j

(u) = φX(u) = Hk(2u−2) are the same characteristic function, and

Z
(k)
j therefore has the same distribution as X ∼ K(k, 1).
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