
A New Approach to Modelling Centralised
Reputation Systems

Lydia Garms and Elizabeth A. Quaglia

Information Security Group, Royal Holloway University of London
{Lydia.Garms.2015, Elizabeth.Quaglia}@rhul.ac.uk

Abstract. A reputation system assigns a user or item a reputation value
which can be used to evaluate trustworthiness. Blömer, Juhnke and Kolb
in 2015, and Kaafarani, Katsumata and Solomon in 2018, gave formal
models for centralised reputation systems, which rely on a central server
and are widely used by service providers such as AirBnB, Uber and
Amazon. In these models, reputation values are given to items, instead
of users. We advocate a need for shift in how reputation systems are
modelled, whereby reputation values are given to users, instead of items,
and each user has unlinkable items that other users can give feedback on,
contributing to their reputation value. This setting is not captured by
the previous models, and we argue it captures more realistically the func-
tionality and security requirements of a reputation system. We provide
definitions for this new model, and give a construction from standard
primitives, proving it satisfies these security requirements. We show that
there is a low efficiency cost for this new functionality.

1 Introduction

Reputation has always played a fundamental role in how we exchange products
and services. While traditionally we have been used to trusting the reputation of
established brands or companies, we are now facing a new challenge in the online
world: determining the trustworthiness of a wide variety of possible exchanges.
Whether we are selecting a restaurant, buying a product or getting a taxi, we
are increasingly relying on scores and ratings to make our choice. For example,
on Amazon, which in 2015 had over 2 million third party sellers worldwide [1],
each seller is given a rating out of 5. Also Uber, with over 40 million monthly
active users [2], allows drivers and passengers to rate each other.

A reputation system formalises this process of rating a user or service by
associating with them a value representing their trustworthiness. A reputation
is then built as the value gets updated over time, as a consequence of user
interactions and service exchanges. Obviously, to form a reputation value for a
specific user or service, their behaviour across interactions needs to be linked, but
this may have privacy implications. For instance, a user could be deanonymised
by linking all their interactions together in a profiling attack.

Given this, a cryptographic treatment of reputation systems has been con-
sidered necessary, and several models have been proposed in the literature so
far [3,9,19]. Reputation Systems can be generally categorised into distributed or

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/224802753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

centralised systems. Distributed systems [24] have no central server and use lo-
cal reputation values, i.e., reputation values created by users on other users. For
example, a user may generate a reputation value based on feedback from query-
ing other users, and their own interactions. This means a user does not have a
unique reputation value, but many other users hold their own reputation value
for them. For example privacy preserving decentralised reputation systems [26]
are designed to maintain anonymity when answering queries from other nodes.

Centralised systems, on the other hand, have a central server that manages
the network, performing tasks such as controlling communication between users,
receiving feedback and evaluating reputation values. In this paper, we will fo-
cus on centralised systems since the reputation systems used by most service
providers such as Airbnb, Uber and Amazon are of this type. A variety of cen-
tralised reputation system models and instantiations have been proposed in the
literature, as we shall see in Section 2. While their applications and the used
techniques vary greatly amongst them, all of the models have in common that
reputations are assigned to each item or service, the object of the reputation,
rather than each user, the provider of the service. To understand the limitations
of this, let us consider the case of online shopping: in such a scenario, existing
reputation systems would typically allocate a reputation to each product sold
(item), and not to each seller (user), based on all their sold products.

In this paper, we advocate the need for a shift in how reputation systems
are modelled, and we propose a new model for reputation systems in which a
reputation value is given to each user, based on all their user behaviour or items.
This is crucial in ensuring that a user’s previous behaviour will contribute to
their current reputation, instead of having separate reputations for each service
provided. Clearly, if items belonging to a user could be linked together, the
model which has been used so far could be transformed into our new one, by
collating the reviews for each item belonging to a user to form a reputation value.
However, if the user wishes to make their items unlinkable for privacy reasons,
then this becomes more challenging.

1.1 Motivation and contribution

Our contribution is to propose a new model for reputation systems so that
reputation values are given to users instead of items, whilst guaranteeing that
the user’s behaviour is unlinkable, and that the central server does not have to
be involved during every transaction. This means that users can have multiple
unlinkable items, whilst a reputation value still reflects their entire behaviour.
Therefore users can have the benefits of privacy, whilst still being held account-
able for the previous behaviour.

A car pooling app is an example of the reputation systems we are modelling.
A user may not want their trips (or items) to be linked together, as their move-
ments could be tracked. However, a user’s reputation should be based on their
previous trips, so others can judge their reliability. In this context, reputations
based on each journey are not useful, as they cannot be used for future journeys.
This is why it is important to give reputation values to users instead of items.

2

The first challenge when developing such reputation systems, is to provide
a mechanism for generating reputation values, whilst ensuring items cannot be
linked by user. We model this with a ReceiveFB algorithm run by the Central
Server (CS), the central server, which takes feedback, and links it to other feed-
back on items with the same author, updating their reputation. We define the
security requirement, Unlinkability of User Behaviour, which defines the unlinka-
bility of items by the same user achievable while reputations can still be updated
using ReceiveFB. Our approach as described so far gives rise to a possible attack
in which a user produces a valid item which will not contribute to this user’s
reputation, or will even unfairly affect another user ReceiveFB. We introduce the
Traceability security requirement to mitigate against this attack. These security
requirements are reminiscent of those for group signature schemes in [4].

The second challenge is to determine the reputation of a specific user, whose
items are unlinkable. A naive solution could be for the user to simply attach their
reputation to an item, but the user could lie about their reputation. To avoid this,
we introduce the PostItem algorithm, with which the user posts their item, and
proves they were given a reputation at a particular time, using a token generated
by the CS. We further introduce the security requirement of Unforgeability of
Reputation to ensure the user cannot lie about their reputation.

Finally, the standard security requirements of a centralised reputation sys-
tem [9,19], namely Anonymity of Feedback, Soundness of Reputation and Non–
frameability, still need to hold, and we adapt these naturally to our new model.

A reputation system satisfying our security requirements can be built using
two standard primitives: Group Signature Schemes [17] for posting items, under
the condition that they can be modified so that users can prove their reputation
at a particular time with a token generated by the CS, and Direct Anonymous
Attestation (DAA) [13] for sending feedback. In this paper we present a con-
crete construction using a modified version of the group signature scheme given
in [18], which ensures the Unlinkability of User Behaviour, Traceability and
Unforgeability of Reputation requirements described above. Our modification
to [18], similarly to in [25], allows users to prove their reputation at a particular
time. Our construction also makes use of the DAA scheme given in [16], which
ensures anonymity of feedback, whilst multiple feedback on the same item can be
detected, ensuring Soundness of Reputation. This is due to the user controlled
linkability property of the DAA scheme, where only signatures with the same
basenames can be linked, and we use this by setting the basename to be the
item feedback is given on.

2 Related Work

While there exists an abundant literature on centralised reputation systems
[27,3,29,25,20,8] the most relevant work to this paper are [9] and [19], due to
their focus on formal models of reputation systems.

The model proposed in [9] is inspired by the security model for dynamic group
signatures [6], and the authors provide an extra linkability feature to detect users

3

giving multiple feedback on the same subject. In [19], the security requirements
for this model are improved by giving more power to the adversary, (for example,
in the public linkability security requirement the key issuer is no longer assumed
to be honest), and introducing the requirement that an adversary cannot give
feedback that will link to another user, invalidating their feedback. In [19] the
model is also made fully dynamic [12], ie users can join or leave the scheme at
any time, and a lattice-based instantiation satisfying this model is provided. To
reduce complexity, our model is in the static setting, however the model and
constuction could be converted to the dynamic case using [7], and due to the
dynamic setting of our building blocks.

Crucially, in both [9] and [19] reputations are assigned to each item, the
subject of feedback, not each user. By contrast, we propose a new model for
reputation systems in which a reputation value is given to each user, based on
all their user behaviour or items. This ensures a user’s reputation reflects their
entire past behaviour and so ensures they are accountable for their previous
actions, modelling more accurately how such systems truly operate.

3 Defining a Reputation System

We define a reputation system, Π, as consisting of the following probabilis-
tic polynomial time algorithms: Setup, AllocateReputation, PostItem, CheckItem,
SendFB, VerifyFB, LinkFB, ReceiveFB. We illustrate our model in Figure 1.

CSpgpk, isk, osk,usk, r,F,L, IDq
2. For current time t perform pω, r, IDq Ð
AllocateReputationpgpk, isk, i,uskris, t, rris, IDq
6. pr,L,Fq Ð ReceiveFBpgpk, osk, ppI, r, t, Ωq, fb, Φq, r,L,F , IDq

User ipgpk,uskrisq
1. Request reputation at current time,
with req
3. When posting an item I perform
Ω Ð PostItempgpk, I,uskris, r, t, ωq

User i1pgpk,uskri1sq
4. Check CheckItempgpk, I, r, t, Ωq “ 1
5. When giving feedback fb
on item I, perform Φ Ð

SendFBpgpk,uskri1s, pI, r, t, Ωq, fbq

1.
re
q

2.
pω
, r
, t
q

3. pI, r, t, Ωq

5.
ppI, r, t, Ω

q, fb, Φ
q

Fig. 1. Diagram modelling how entities interact in a centralised reputation system.

SendFB, VerifyFB, and LinkFB are equivalent to the Sign, Verify, Link algo-
rithms in [9] and [19]. The additional algorithms, which we introduce in this
paper, represent the key features of our new approach.

The entities involved are a set of users U and a Central Server (CS). The
Central Server has two secret keys, isk and osk. The issuing secret key isk is

4

necessary for allowing users to join the system and allocating them tokens to
prove their reputation, whereas the opening secret key, osk, is necessary for
forming reputations from feedback. For simplicity we give the CS both secret
keys, but to reduce the power of one entity the role of the CS could be distributed.

The CS begins by running Setup. Users post items1, which are the subject
of feedback, while proving their reputation at a certain time using PostItem.
After a request from a user, the CS runs AllocateReputation, which outputs
tokens to allow a user to prove their current reputation at a specific time in
PostItem. And other users verify that an item is a valid output of PostItem by
running CheckItem. This ensures the item was authored by an enrolled user,
the reputation alongside the item is correct for the given time, and the CS can
use feedback on the item to form reputations. SendFB is run by a user when
giving feedback on an item, and its output is sent to the CS. ReceiveFB is run
by the Central Server when receiving the output of SendFB from a user. The
CS updates their stored feedback and reputations, based on this. VerifyFB and
LinkFB are used by ReceiveFB to check the feedback is valid and that there is no
feedback by the same user on this item, otherwise ReceiveFB will abort.

In the car pooling example, whenever a driver wishes to update their repu-
tation, they request the CS run AllocateReputation to obtain a token for their
reputation. They are incentivised to do this by the fact the reputation is dis-
played alongside the time it was allocated. When they wish to give a ride, they
use their most recent token to post an item with PostItem, which can be verified
by passengers with CheckItem. The passenger can then pay using some anony-
mous payment system. After the ride, their passenger can then give feedback on
this item to the CS using SendFB. The CS uses ReceiveFB to update their lists
of feedback, and reputations for each user, if the feedback is valid.

Before describing in detail our new model, we provide, for ease of reading,
an overview of our notation.

R : The set of all possible reputation values.
r̂ : The initial reputation of every user at the system’s setup.
U : The set of all users in the scheme.

Aggr : A function that takes as input the new feedback fb, the user who’s repu-
tation is being updated i, the list of feedback already received F , and the
most recent reputation r, and outputs the new reputation r1.

r : For the user i P U , rris is the user i’s reputation held by the CS.
L : A list of feedback that will contain entries in the form of a 6-tuple ppI, r, t, Ωq,
fb, Φq, where pfb, Φq is feedback/ proof pair, given on item I with reputation
r, and time t, with the proof Ω. L is used by the CS to keep track of all
feedback given, so that multiple feedback on the same item can be detected
in ReceiveFB.

F : A list of feedback that will contain entries of the form pi, fbq where fb is
feedback given to user i. F is used by the CS to keep track of all feedback
given on user i to form reputations in ReceiveFB.

1 A simple example of an item could be a product being sold.

5

ID : A list of identities for all users, this list will allow the CS to store information
on users whilst running AllocateReputation for use in ReceiveFB.

We next formally define a centralised reputation system Π, consisting of the
following probabilistic polynomial time algorithms: Setup, AllocateReputation,
PostItem, CheckItem, SendFB, VerifyFB, LinkFB, ReceiveFB.

– Setuppk,R, r̂,U ,Aggrq takes as input: a security parameter k, a set R of
reputation values, r̂ P R, the initial reputation, a set of users U , and the
aggregation algorithm Aggr. The CS computes a public key gpk, the issuing
secret key isk, which is used to issue new user secret keys, and in AllocateRep-
utation, and the opening secret key osk, which is used in ReceiveFB to trace
the author of an item to form reputations. The CS computes a secret key for
each user, usk “ tuskris : i P Uu, and r, the reputation for all users held by
the CS, where @i P U , rris “ r̂. The CS creates empty lists L,F , ID which
are described above. It outputs pgpk, isk, osk,usk, r,L,F , IDq.

– AllocateReputationpgpk, isk, i,uskris, t, rris, IDq takes as input the public key
gpk, the issuing secret key isk, user i’s secret key uskris, the current time t,
the current reputation of user i held by the CS rris, and the list of identities
for users ID. It updates the list of identities ID, and outputs pω, rris, IDq,
where ω allows user i to prove they have reputation rris.

– PostItempgpk, I,uskris, r, t, ωq takes as input the public key gpk, an item I,
user i’s secret key uskris, the last reputation r, time t and token ω received
from the CS (r is not necessarily the reputation rris held by the CS). It
outputs Ω, which proves the author is enrolled and has reputation r at time
t, and is used in ReceiveFB to form a reputation for i.

– CheckItempgpk, I, r, t, Ωq takes as input the public key gpk, an item I, a
reputation r, a time t and Ω. It outputs 1 if Ω is a valid output of PostItem,
given pI, r, tq, and 0 otherwise.

– SendFBpgpk,uskris, pI, r, t, Ωq, fbq takes as input the public key gpk, user i’s
secret key uskris, the subject of their feedback, pI, r, t, Ωq, and the feedback
fb. It outputs Φ which is sent to the CS, to prove the author of Φ is enrolled,
and also for the detection of multiple feedback.

– VerifyFBpgpk, pI, r, t, Ωq, fb, Φq takes as input the public key gpk, an item
pI, r, t, Ωq, and feedback/ proof pair on this item pfb, Φq. It outputs 1 if Φ is
a valid output of SendFB, and 0 otherwise.

– LinkFBpgpk, pI, r, t, Ωq, fb0, Φ0, fb1, Φ1q takes as input the public key gpk,
an item pI, r, t, Ωq, and two feedback/ proof pairs on this item, pfb0, Φ0q,
pfb1, Φ1q. It outputs 1 if Φ0 and Φ1 were generated by the same user with
the same input of pI, r, t, Ωq, and 0 otherwise.

– ReceiveFBpgpk, osk, ppI, r, t, Ωq, fb, Φq, r,L,F , IDq takes as input the public
key gpk, the opening secret key osk, a feedback/ proof pair pfb, Φq on item
pI, r, t, Ωq, the current reputations r held by the CS, the lists of feedback so
far L and F , and the list of user identities ID. If Φ is not valid, or the LinkFB
algorithm finds multiple feedbacks in L then it outputs K. Otherwise, it uses
the aggregation algorithm Aggr, and the list F , to update r, L and F to take
into account the new feedback. It outputs pr,L,Fq.

6

4 Security Requirements

As discussed earlier, we consider reputation systems satisfying the following re-
quirements: Correctness, Unforgeability of Reputation, Traceability, Unlinkabil-
ity of User Behaviour, Soundness of Reputation, Anonymity of Feedback, and
Non–frameability. We begin with an informal discussion explaining the necessity
for our security requirements and then follow up with formal definitions for the
three security requirements original to this work.

We propose Unforgeability of Reputation, a new requirement that ensures a
user cannot prove that they have a reputation for a certain time, which differs
from the one they were allocated by the CS in AllocateReputation. This is nec-
essary because when an item is unlinkable, the author’s reputation cannot be
determined. Therefore the reputation must be included alongside the item. This
requirement ensures that the sender has not lied about their reputation.

Here we introduce Unlinkability of User Behaviour, which formalises our
definition of unlinkable user behaviour, given that ReceiveFB can still form rep-
utations, as well as Traceability, which ensures that all items generated by an
adversary can be traced back to them when computing their reputation. This
is necessary because, due to the Unlinkability of User Behaviour requirement,
an attacker could attempt to subvert ReceiveFB. These requirements are remi-
niscent of the Full-Anonymity and Full-Traceability requirements [4] for group
signature schemes, and have been adapted for reputation systems.

Soundness of Reputation ensures an adversary cannot give multiple feedback
on the same item, undermining the integrity of reputation values. Anonymity
of Feedback ensures that feedback cannot be traced to the user’s identity and
is unlinkable. We have adapted these two requirements from [9] to fit our no-
tation2. Non–frameability, adapted from [19], ensures that an adversary cannot
forge feedback that links to another user’s feedback, so this feedback is unfairly
disregarded. The Traceability requirement from [19] is not carried over, as we
believe opening of feedback would add unnecessary complexity to the model.

We highlight that the issuing secret key is used by the Central Server for
joining users to the scheme, and therefore for the Traceability and Soundness
of Reputation requirements the adversary cannot corrupt the isk as otherwise
they could cheat by creating unregistered users. The opening secret key is used
by the Central Server to trace items, so that reputations can be updated with
new feedback. Therefore in the Unlinkability of User Behaviour requirement the
adversary cannot corrupt the osk as otherwise they could trace signatures. This
means the CS could be split into two separate entities with different secret keys.

In Figure 2, we provide the oracles used in our security requirements: USK,
POSTITEM, SENDFB, RECEIVEFB and ALLOCATEREP. USK allows the adversary to
obtain users’ secret keys. POSTITEM allows the adversary to obtain valid items
of a user, without their secret key. SENDFB allows the adversary to obtain valid
feedbacks of a user, without their secret key, storing outputs in the sets Gi, for

2 Soundness of Reputation is comparable to Public Linkability and Anonymity of
Feedback is comparable to Anonymity.

7

use in the Non–frameability requirement. RECEIVEFB allows the adversary to dis-
cover the output of ReceiveFB, without the opening secret key, osk. ALLOCATEREP
allows the adversary to obtain outputs of the AllocateReputation algorithm, with-
out the issuing secret key, isk.

USK(i):

C Ð C Y tiu; return uskris

POSTITEMpI, i, r, t, ωq:

return PostItempgpk, I,uskris, r, t, ωq

SENDFBpi, fb, pI, r, t, Ωqq:

ΦÐ SendFBpgpk,uskris, pI, r, t, Ωq, fbq,Gi Ð Gi Y tppI, r, t, Ωq, fb, Φqu return Φ

RECEIVEFBppI, r, t, Ωq, fb, Φ, IDq:

return pr,L,Fq Ð ReceiveFBpgpk, osk, ppI, r, t, Ωq, fb, Φq, r,L,F, IDq

ALLOCATEREPpi, t, rq:

return AllocateReputationpgpk, isk, i,uskris, t, r, IDq

Fig. 2. Oracles used in our Security Requirements

We next formally define our requirements. The full correctness conditions
as well Soundness of Reputation Values, Anonymity of Feedback, and Non-
Frameability are given in the full version [21] of this paper due to their sim-
ilarities to existing work.

Correctness: There are five conditions for correctness. Condition 1 ensures
that if AllocateReputation and PostItem are computed honestly then CheckItem
will output 1. Condition 2 ensures that if SendFB is computed honestly then
VerifyFB will output 1. Condition 3 ensures the LinkFB algorithm will output 1,
with input valid outputs of SendFB on the same item of pI, r, t, Ωq, using the
same user secret key. Condition 4 ensures if an item and feedback were generated
honestly in PostItem and SendFB, then ReceiveFB updates r,L,F correctly. Con-
dition 5 ensures that ReceiveFB fails, if the feedback input is not valid according
to VerifyFB, or links to other feedback in L according to LinkFB.

We first present our new security requirements, which are necessary as rep-
utation values are assigned to users instead of their individual unlinkable items.

Unforgeability of Reputation: A user can only prove that they have repu-
tation r at time t, if this was allocated to them by the CS in AllocateReputation.
In the context of car pooling, this security requirement means that a driver
cannot lie about their reputation when requesting a passenger.

In our security game in Figure 3, the adversary is given the opening secret
key osk, the list of user identities ID, the USK, POSTITEM, ALLOCATEREP oracles,
but not isk, as they could run AllocateReputation. The adversary wins if they
output a valid item, for reputation r, time t, tracing to a corrupted user i in
ReceiveFB, without querying pi, r, tq to the ALLOCATEREP oracle, or it does not
trace to any user.

8

Experiment: Expanon-ubA,Π pk,R, r̂,U ,Aggrq

bÐ$ t0, 1u; pgpk, isk, osk,usk, r,L,F, IDq Ð$ Setuppk,R, r̂,U,Aggrq

pSt, i0, i1, I, r, t, IDq Ð$ARECEIVEFB
pchoose, gpk, isk,usk, r,L,F, IDq

@b̃ P t0, 1u pωb̃, IDq Ð AllocateReputationpgpk, isk, i,uskrib̃s, t, r, IDq
Ω Ð PostItempgpk, I,uskribs, r, t, ωbq

dÐ$ARECEIVEFB
pguess, St, Ω, IDq; d

1
Ð$ 0, 1

if ppI, r, t, Ωq, ¨q queried to the RECEIVEFB oracle return dÐ d
1

if d “ b return 1; else return 0

Experiment: ExptraceA,Π pk,R, r̂,U ,Aggrq

pgpk, isk, osk,usk, IDq Ð$ Setuppk,R, r̂,U,Aggrq;C Ð H

pI, r, t, Ω, fb, Φ, r,L,Fq Ð$AUSK,POSTITEM,SENDFB, ALLOCATEREP
pgpk, osk, IDq

if CheckItempgpk, I, r, t, Ωq “ 0 or VerifyFBpgpk, pI, r, t, Ωq, fb, Φq “ 0 return 0

if DppI, r, t, Ωq, fb
1
, Φ
1
q P L with LinkFBpgpk, pI, r, t, Ωq, fb, Φ, fb1, Φ1q “ 1 return 0

@i P U, ID Ð AllocateReputationpgpk, isk, i,uskris, t, r, IDq
if KÐ ReceiveFBpgpk, osk, ppI, r, t, Ωq, fb, Φq, r,L,F, IDq return 1

else pr
˚
,L˚,F˚q Ð ReceiveFBpgpk, osk, ppI, r, t, Ωq, fb, Φq, r,L,F, IDq

if L˚ ‰ ppI, r, t, Ωq, fb, Φq Y L return 1

if F˚ “ pi1, fbq Y F for some i
1
P U i

˚
Ð i

1
else return 1

if r
˚
ri
˚
s ‰ Aggrpfb, i˚,F, rri˚sq, or Dî P Uzti˚u such that r

˚
r̂is ‰ rr̂is return 1

if i
˚
R C and pI, i

˚
, r, t, ¨q was not queried to the POSTITEM oracle return 1

else return 0

Experiment: Expunforge´repA,Π pk,R, r̂,U ,Aggrq

pgpk, isk, osk,usk, r,L,F, IDq Ð$ Setuppk,R, r̂,U,Aggrq

pI, r, t, Ωq Ð$AUSK,POSTITEM,ALLOCATEREP
pgpk, osk, IDq

if Ω returned by POSTITEM or if CheckItempgpk, I, r, t, Ωq “ 0 return 0

j Ð$U, fbÐ 0, ΦÐ SendFBpgpk,uskrjs, pI, r, t, Ωq, fbq

pr
˚
,L˚,F˚q Ð ReceiveFBpgpk, osk, ppI, r, t, Ωq, fb, Φq, r,L,F, IDq

if F˚zF “ ti
1
, fbu for some i

1
P U i

˚
Ð i

1
else return 1

if A queried pi
˚
, t, rq to ALLOCATEREP oracle and i

˚
P C return 0 else return 1

Fig. 3. Experiments capturing our Unlinkability of User Behaviour, Traceability and
Unforgeability of Reputation security requirements

A reputation system Π satisfies Unforgeability of Reputation if for all polyno-
mial time adversaries A, all sets R and U such that |R| and |U | are polynomially
bounded in k, all r̂ P R, all Aggr functions, there exists a negligible function in
k, negl, such that: PrrExpunforge´repA,Π pk,R, r̂,U ,Aggrq “ 1s ď negl.

Traceability of Users: This security requirement ensures that any valid
item an adversary produces will contribute towards their own reputation in Re-

9

ceiveFB. This also guarantees unforgeability. In the context of car pooling, this
security requirement means that feedback on a driver’s rides will always affect
their own reputation and not another’s.

In our security game in Figure 3, the adversary is given the opening secret
key osk, the list of user identities ID, the USK oracle to corrupt users, and
the POSTITEM, SENDFB, ALLOCATEREP oracles for uncorrupted user, but not isk,
because they could cheat by generating the secret key of a new user. They must
output a valid item and feedback, and r,L,F , such that the feedback does not
link to any in L. If ReceiveFB fails, does not correctly update r,L,F , or updates
the reputation of a non corrupted user, then the adversary wins.

A reputation system Π satisfies Traceability if for all polynomial time ad-
versaries A, all sets R and U such that |R| and |U | are polynomially bounded in
k, all r̂ P R, all Aggr functions, there exists a negligible funtion in k, negl, such
that: PrrExptraceA,Π pk,R, r̂,U ,Aggrq “ 1s ď negl.

Unlinkability of User Behaviour: This requirement ensures other users
cannot link together the items authored by a particular user, while the CS can
link items to form reputation values based on a user’s entire behaviour. In the
context of car pooling, this security requirement means that all rides a driver/
user undertakes are unlinkable, so their movements cannot be tracked.

In our security game, given in Figure 3, the adversary is given all user secret
keys, the issuing secret key isk, r, L, F , and ID, but not the opening secret
key osk, because otherwise they could run ReceiveFB, and then check which
user’s reputation changes. They are given the RECEIVEFB oracle, but its use
is restricted so that the challenge signature cannot be queried, to avoid the
attack above. This attack would not be practical in the real world, as reputations
will be updated at intervals so that multiple users’ reputations will change at
once. Future work could consider specific Aggr algorithms that would allow this
security requirement to be strengthened. In our work, to ensure our model is
generic, we define security for all possible Aggr functions.

The adversary chooses an item I, a reputation r and a time t, an updated
list of identities ID, and two users i0, i1, they are then given Ω and must decide
whether it was authored by i0 or i1.

A reputation system Π satisfies Unlinkability of User Behaviour if for all
polynomial time adversaries A, all sets R and U such that |R| and |U | are
polynomially bounded in k, and all r̂ P R, all Aggr functions, there exists a
negligible funtion in k, negl, such that: PrrExpanon´ubA,Π pk,R, r̂,U ,Aggrq “ 1s ´
1{2 ď negl.

We now give an overview of the existing security requirements.

Soundness of Reputation Values: Users who are not enrolled should
not be able to give feedback. Reputation values should be based on only one
piece of feedback per item per user. In the context of car pooling, this security
requirement would mitigate against an attack where a passenger repeatedly gives
feedback on one ride, unfairly negatively influencing the driver’s reputation.

In the security game, adapted from [9], given in the full version [21], the
adversary is able to corrupt users with the USK oracle, and is given the opening

10

secret key osk, but not the issuing key isk, as they could use this to cheat by
generating a secret key for a new user. They can use the SENDFB, ALLOCATEREP
and POSTITEM oracles for uncorrupted users. The adversary outputs a list of
feedback on the same item. They win if they can output more valid unlinkable
feedback than the number of corrupted users, without using the SENDFB oracle.

Anonymity of Feedback: Anonymity of Feedback captures the anonymity
of feedback senders against the Central Server, and up to all but two colluding
users. Unfortunately it is not possible for a reputation system to have anonymity
against all colluding users, whilst still satisfying Soundness of Reputation. This
is because an adversary could discover whether a user i authored some feedback
ppI, r, t, Ωq, fb, Φq by running Φ1 Ð SendFBpgpk,uskris, pI, r, t, Ωq, fb1q, then
running LinkFBpgpk, pI, r, t, Ωq, fb, Φ, fb1, Φ1q. If this outputs 1, then
ppI, r, t, Ωq, fb, Φq must be authored by i. In the context of car pooling, this se-
curity requirement means that provided passengers never give multiple feedback
on the same ride, their feedback will be unlinkable.

In the security game, adapted from [9], and given in the full version [21],
the adversary is given isk, osk, and must choose two users i0 and i1, an item
pI, r, t, Ωq, and feedback fb. They then must decide which of these users authored
the Φ returned to them. The adversary can corrupt users with USK, and use
SENDFB, POSTITEM and ALLOCATEREP for uncorrupted users. We do not allow the
adversary to query i0 or i1 to the USK oracle, or to query SENDFB with either i0
or i1 and pI, r, t, Ωq, so that they cannot perform the above attack.

Non–frameability: This requirement, adapted from [19], ensures that an
adversary, who has corrupted the Central Server and all users, cannot forge feed-
back that links to feedback of another user, meaning ReceiveFB detects multiple
feedback by this user, and unfairly outputs K. In the context of car pooling, this
security requirement means that a passenger cannot feedback on their own ride,
linking to the driver involved, invalidating any feedback they give.

In the security game, given in the full version [21], the adversary is given
isk, osk and can corrupt users using the USK oracle, and use the POSTITEM,
SENDFB, ALLOCATEREP oracles for uncorrupted users. To win, they must output
valid feedback not output by the SENDFB oracle, which links to feedback output
by the SENDFB oracle, authored by an uncorrupted user.

5 A Centralised Reputation System with Unlinkable
User Behaviour

We now give a construction for Π, a reputation system as defined in Section 3,
satisfying the security requirements we defined in Section 4. Our construction
makes use of two existing primitives: a Group Signature scheme [17], and Direct
Anonymous Attestation (DAA) [13].

More specifically, we modify the group signature scheme XS [18], in XS*,
similarly to what was done in [25,20], for posting items in PostItem, CheckItem,
and AllocateReputation. The XS scheme satisfies Unlinkability of User Behaviour,
whilst still allowing reputations to be formed in ReceiveFB, using the opening

11

key ensuring Traceability. Furthermore our modification allows a user to prove
they were allocated a reputation at a certain time by AllocateReputation.

We then adopt the DAA scheme in [16] for the feedback component of the
reputation system in SendFB, VerifyFB, LinkFB. This perfectly fits our require-
ments, because of the user controlled linkability of the DAA scheme. Signatures
are signed with respect to a basename, and are linkable only when they have
the same author and basename. Therefore in the context of reputation systems,
by setting the basename to be the subject of the feedback, multiple feedback on
the same item can be detected, whilst still ensuring Anonymity of Feedback.

5.1 Binding Reputation to the XS Group Signature Scheme

Group Signatures [17] prove a user is a member of a group without revealing
their identity, except to those with an opening key. Security requirements were
defined for static groups [4], partially dynamic groups [6], and fully dynamic
groups [12]. The XS scheme [18] satisfies the security requirements for partially
dynamic groups [6], of Anonymity, Traceability and Non-Frameability, under the
q-SDH [10] assumption and in the random oracle model [5].

q-Strong Diffie Hellman Assumption (q-SDH) There are two versions of the q-
Strong Diffie Hellman Assumption. The first version, given by Boneh and Boyen
in [10], is defined in a type-1 or type-2 pairing setting. We use their second
version of that definition that supports type-3 pairings and was stated in the
journal version of their paper [11].

Given pg1, g
χ
1 , g

pχq2

1 , ..., g
pχqq

1 , g2, g
χ
2 q such that g1 P G1, g2 P G2, output

pg
1

χ`x

1 , xq P G1 ˆ Zpzt´χu.

We present XS*, a modification of the XS scheme [18], to allow users to
prove their reputation in PostItem. In this modification, we introduce an addi-
tional algorithm XSUpdate*, used in AllocateReputation, which outputs a token
allowing a user to update their secret key, depending on their reputation r at
time t. PostItem uses XSSign* to sign as in the original group signature scheme,
but with this updated secret key as input. CheckItem uses XSVerify*, which is
modified so that it takes pr, tq as input, and only outputs 1 if the secret key used
to generate this signature has been updated correctly with pr, tq.

The XS* signature scheme consists of the algorithms given in Figure 4, and
the group public parameters gpp1 chosen as follows. Let G1,G2,G3 be multiplica-
tive cyclic groups with large prime order p, with |p| “ k, and with generators
G1 and G2 respectively. Let t̂ : G1 ˆ G2 Ñ G3, be a bilinear map. The q-SDH
assumption must hold in pG1,G2q. Select two hash functions: H1 : t0, 1u˚ Ñ G1

and H2 : t0, 1u˚ Ñ Z˚p . The group public parameters for XS* are: gpp1 “

pG1,G2,G3, p, t̂, G1, G2,H1,H2q.

5.2 Direct Anonymous Attestation

Direct Anonymous Attestation (DAA) [13] allows users to prove they are mem-
bers of a group. There is no opening key but there is user controlled linkability,

12

XSKeyGen*pgpp1q

ξ1, ξ2 Ð$Zp;K Ð$G1zt1G1
u, H Ð K

ξ1 , GÐ K
ξ2 , γ Ð$Zp,W Ð G

γ
2

return gpk1 “ pG1, K,H,G,G2,W q, isk1 “ γ, osk “ pξ1, ξ2q

XSJoin*(isk1, i, gpk1)

x, y Ð$Zp; Z Ð pG1H
y
q

1
γ`x

return usk1ris “ pZ, x, yq

XSUpdate*pt, r, isk1, pZ, x, yq, gpk1q

QÐ H1pr, tq

return pω Ð Q
1

γ`x , Z ¨ ωq

XSSign*pI, pZ̃, x, yq, gpk1, r, tq

ρ1, ρ2 Ð$Zp, T1 Ð K
ρ1 , T2 Ð Z̃H

ρ1 , T3 Ð K
ρ2 , T4 Ð Z̃G

ρ2 , rρ1 , rρ2 , rx, rz Ð$Zp

R1 Ð K
rρ1 , R3 Ð K

rρ2 , R4 Ð H
rρ1G

´rρ2 , R2 Ð t̂pT2, G2q
rx t̂pH,W q

´rρ1 t̂pH,G2q
´rz

cÐ H2pI, T1, T2, T3, T4, R1, R2, R3, R4, r, tq, z Ð xρ1 ` y, sρ1 “ rρ1 ` cρ1, sρ2 “ rρ2 ` cρ2

sx “ rx ` cx, sz “ rz ` cz return Ω “ pT1, T2, T3, T4, c, sρ1 , sρ2 , sx, szq

XSVerify*pI, r, t, Ω, gpk1q

Let Ω “ pT1, T2, T3, T4, c, sρ1 , sρ2 , sx, szq, G̃1 “ G1 ¨H1pr, tq

R̃1 Ð K
sρ1 T

´c
1 , R̃3 Ð K

sρ2 T
´c
3 , R̃4 “ H

sρ1G
´sρ2 T

c
4 T

´c
2

R̃2 “ t̂pT2, G2q
sx t̂pH,W q

´sρ1 t̂pH,G2q
´sz

˜

t̂pT2,W q

t̂pG̃1, G2q

¸c

if c “ H2pI, T1, T2, T3, T4, R̃1, R̃2, R̃3, R̃4, r, tq return 1 else return 0

XSOpen*pI, r, t, Ω, osk, gpk1q

if XSVerify*pI, r, t, Ω, gpk1q “ 0 return K return Z̃ Ð T2T
´ξ1
1

Fig. 4. The algorithms of XS*, our modification to [18]

as defined at the beginning of this section. In DAA, a signer consists of two
separate entities: a trusted TPM and a host with higher computational power.
A DAA scheme is secure if it is indistinguishable from the ideal functionality,
given in [14]. The CDL scheme [16], is proved secure, assuming the LSRW [23],
Discrete Logarithm (DL), and DDH assumptions. We use the CDL DAA scheme
in particular, because as shown in Table 1 of [15], it has the lowest estimated
running time for signing out of the schemes proved secure under the more recent
models. We prioritise efficiency of signing over verification, because in reputation
systems verification is performed by a server with more computational power.

The CDL scheme, with the TPM and host merged, consists of the algorithms
in Figure 5, and the group public parameters gpp2. Let G1,G2,G3 be multiplica-
tive cyclic groups with large prime order p, with |p| “ k, and with generators
G1 and G2. Let t̂ : G1 ˆG2 Ñ G3, be a bilinear map. The DDH and DL prob-
lem must be hard in G1, and the bilinear LRSW [23] problem must be hard in
pG1,G2q. Select two hash functions: H1 : t0, 1u˚ Ñ G1, H2 : t0, 1u˚ Ñ Z˚p . The

group public parameters for CDL are: gpp2 “ pG1,G2,G3, p, t̂, G1, G2,H1,H2q.

13

CDLKeyGenpgpp2q

α, β Ð$Z˚p , X Ð G2
α
P G2, Y “ G2

β
P G2

return gpk2 “ ppX,Y q, isk2 “ pα, βqq

CDLJoinpi, isk2, gpk2q

f Ð$Zp;F Ð G1
f
, r Ð$Zp

AÐ G1
r
, B Ð A

β
;C Ð pA

α
F
rαβ

q, D Ð pF q
rβ

creÐ pA,B,C,Dq return usk2ris Ð pf, creq

CDLSignpmsg, fb, pf, pA,B,C,Dqq, gpk2q

aÐ$Zp, A1 Ð A
a
, B
1
Ð B

a
, C
1
Ð C

a
, D

1
Ð D

a
, z Ð$Zp, J Ð H1pmsgq

f
,M Ð B

1z
, N Ð H1pmsgq

z

cÐ H2pB
1
||D

1
||J||M ||N ||msg||fbq, sÐ z ´ c ¨ fpmod pq return Φ “ pA

1
, B
1
, C
1
, D

1
, J, c, sq

CDLVerifypmsg, fb, Φ, gpk2q

Let Φ “ pA
1
, B
1
, C
1
, D

1
, J, c, sq, M̃ Ð B

1s
D
1c
, Ñ Ð H1pmsgq

s
J
c

if c ‰ H2pB
1
||D

1
||J||M̃ ||Ñ ||msg||fbq or A

1
“ 1 return 0

if t̂pA
1
, Y q ‰ t̂pB

1
, G2q or t̂pA

1
D
1
, Xq ‰ t̂pC

1
, G2q return 0 else return 1

CDLLinkpmsg, pfb0, Φ0q, pfb1, Φ1q, gpk2q

if Dι P t0, 1u with CDLVerifypmsgι, fbι, Φι, gpk2q “ 0 return 0

For ι P t0, 1u, let Φι “ pA
1
ι, B

1
ι, C

1
ι, D

1
ι, Jι, cι, sιq

if J0 “ J1 return 1 else return 0

Fig. 5. The algorithms of CDL [16]

5.3 Our Construction

In Figure 6 we give our construction for a reputation system Π, as defined in
Section 3, derived from the XS* scheme and the CDL scheme. We prove in the
full paper that this satisfies the security requirements from Section 4.

6 Evaluation of our Construction

We first analyse the security of our construction, and then evaluate the efficiency.
We prove Theorems 1–6 and correctness in the full version of this paper [21].

In the proof of Theorem 1, we show that if an adversary A can break the
Unforgeability of Reputation experiment for our construction then we can build
an adversary A1 that breaks the q-SDH assumption. A1 uses the q-SDH instance
input to simulate gpk, osk,usk for A so that they are identically distributed to in
the experiment, but γ in the isk is also the secret value in the problem instance.
A1 also simulates responses the AllocateRep oracle to A using the problem
instance and by programming the random oracle. A1 then uses the signature
pI, r, t, Σq output by A to output a valid solution to the q-SDH problem.

Theorem 1 (Unforgeability of Reputation). Assuming the random oracle
model, and the q-SDH assumption, our reputation system Π satisfies Unforge-
ability of Reputation.

The proofs of the following Theorems 2 and 3, are similar to the proofs of
Traceability/ Non-Frameability and Anonymity for the XS scheme [18]. We have

14

Setuppk,R, r̂,U ,Aggrq

Generate pgpp1, gpp2q as above , pgpk1, isk1, oskq Ð XSKeyGen*pgpp1q, pgpk2, isk2q Ð CDLKeyGenpgpp2q

gpk Ð pgpk1, gpk2q, isk Ð pisk1, isk2q

@i P U usk1ris Ð XSJoin*pisk1, i, gpk1q,usk2ris Ð CDLJoinpi, isk2, gpk2q,uskris Ð pusk1ris,usk2risq

LÐ H,F Ð H, ID Ð H, @i P U, rris Ð r̂ return pgpk, isk, osk,usk, r,L,F, IDq

AllocateReputationpgpk, isk, i,uskris, t, rris, IDq

pω, Z̃q Ð XSUpdate*pt, rris,usk1ris, isk1, gpk1q

ID Ð ID Y pi, rris, t, Z̃q return pω, rris, IDq

PostItempgpk, I, pZ, x, yq, r, t, ωq

if t̂pω,WG
x
2 q ‰ t̂pH1pr, tq, G2q return K

Z̃ Ð Z ¨ ω, ˜usk Ð pZ̃, x, yq

return Ω Ð XSSign*pI, ˜usk, gpk1, r, tq

CheckItempgpk, I, r, t, Ωq

return bÐ XSVerify*pI, r, t, Ω, gpk1q

SendFBpgpk,uskris, pI, r, t, Ωq, fbq

return ΦÐ CDLSignppI, r, t, Ωq, fb,usk2ris, gpk2q

VerifyFBpgpk, pI, r, t, Ωq, fb, Φq

return bÐ CDLVerifyppI, r, t, Ωq, fb, Φ, gpk2q

LinkFBpgpk, pI, r, t, Ωq, fb0, Φ0, fb1, Φ1q

return bÐ CDLLinkppI, r, t, Ωq, pfb0, Φ0q, pfb1, Φ1q, gpk2q

ReceiveFBpgpk, osk, ppI, r, t, Ωq, fb, Φq, r,L,F , IDq

if VerifyFBpgpk, pI, r, t, Ωq, fb, Φq “ 0 return K

if DpI, r, t, Ωq, fb
1
, Φ
1
q P L s.t. LinkFBpgpk, pI, r, t, Ωq, fb, Φ, fb1, Φ1q “ 1 return K

Z̃ Ð XSOpen*pI, r, t, Ω, osk, gpk1q,Find pi, r, t, Z̃q P ID, otherwise return K

rris Ð Aggrpfb, i,F, rrisq,LÐ ppI, r, t, Ωq, fb, Φq Y L,F Ð pi, fbq Y F return pr,Lq

Fig. 6. Our Reputation System, Π

adapted these proofs due to the modification in XS*, and as our model is static
(users do not join or leave after the scheme begins). The proofs of Theorems
4, 5, 6 are similar to the simulation based proof of security of CDL [16]. It is
clear due to the similarity of the security requirements for DAA schemes [16] and
the security requirements of Soundness of Reputation, Anonymity of Feedback
and Non-Frameability, that a reputation system that uses the CDL scheme will
satisfy these requirements.

Theorem 2 (Traceability). Assuming the random oracle model, and the joc
q-SDH assumption, our reputation system Π satisfies Traceability.

Theorem 3 (Unlinkability of User Behaviour). Assuming the random or-
acle model, and the q-sdh assumption, our reputation system Π satisfies Unlink-
ability of User Behaviour.

Theorem 4 (Soundness of Reputation). Assuming the bilinear LRSW prob-
lem is hard in pG1,G2q, and the random oracle model, our reputation system Π
satisfies Soundness of Reputation.

Theorem 5 (Anonymity of Feedback). Assuming the DDH assumption in
G1, and the random oracle model, our reputation system Π satisfies Anonymity
of Feedback.

Theorem 6 (Non–frameability). Assuming the DL assumption in G1, and
the random oracle model, our reputation system Π satisfies Non–frameability.

15

6.1 Efficiency

Computational cost. We focus on PostItem, CheckItem, and SendFB, because
these are performed by users with less computational power. We note that Re-
ceiveFeedback only needs to check all feedback for the same item, to ensure
Soundness of Reputation, not all feedback. SendFB requires 7 exponentiations
in G1, and 2 hash computations which is a low computational cost.

There is an extra cost, compared to [9,19], required to achieve Unlinkability
of user behaviour, in PostItem and CheckItem. We note that in [9,19] whenever a
user posts an item they must receive a new secret key from the managing author-
ity, which is not required by our reputation system. Assuming pre–computation,
PostItem requires 8 exponentiations in G1, 3 exponentiations in G3, and 1 hash
computation. CheckItem requires 2 computations of t̂, 10 exponentiations in G1,
2 exponentiations in G2, 2 exponentiations in G3, 2 hash computations.

Communication Overhead. Using updated parameters for curves that
give 128 bit security [28] and point compression, the XS* signature Ω has length
432 bytes and the CDL signature Φ has length 336 bytes. Therefore the com-
munication overhead when sending feedback with our construction is 768 bytes,
compared to 624 bytes in [9] using the same curves. This is a relatively small in-
crease given the additional security of Unlinkability for user behaviour achieved.
Our communication overhead compares well to [19] where signatures have length
Opk logpnqq, as shown in [22], compared to our signatures of length Opkq.

6.2 Conventional Attacks on Reputation Systems

There are several attacks outside the scope of this work such as: On-Off attacks,
where adversaries behave honestly/dishonestly alternatively, Whitewashing at-
tacks, where adversaries leave and rejoin to shed a bad reputation, Sybil attacks,
where users give dishonest feedback, and Self Rating attacks, where adversaries
positively rate a large number of their own items.

Sybil attacks are partly mitigated by the Soundness of Reputation require-
ment. A solution for Whitewashing and Sybil attacks could be to make joining
a scheme expensive. Self Rating attacks could be mitigated by making all users
give the feedback “*” on their own items that could be used to link to self rat-
ings, or be punished by the CS. The Central Server can also punish authors of
items that do not represent a valid transaction.

7 Conclusion

We have introduced and formally defined a new security model for centralised
reputation systems, where user behaviour is and unlinkable. This represents a
shift from previous models which aims at more accurately capturing the real-
world requirements of reputation systems, used by many on a daily basis.

We have provided a concrete construction which satisfies the new security
requirements with a low additional efficiency cost. As a next step, we are consid-
ering the extension of our model to allow for dynamic join of users, similarly to

16

[7], as well as a concrete implementation of the system to be used, for instance,
by a car-pooling app.

References

1. Amazons third-party sellers ship record-breaking 2 billion items in 2014, but mer-
chant numbers stay flat. https://techcrunch.com/2015/01/05/amazon-third-

party-sellers-2014/. [Online; accessed 1st-April-2019].
2. Travis kalanick says uber has 40 million monthly active riders. https:

//techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-million-

monthly-active-riders/. [Online; accessed 1st-April-2019].
3. Elli Androulaki, Seung Geol Choi, Steven M. Bellovin, and Tal Malkin. Repu-

tation systems for anonymous networks. In International Symposium on Privacy
Enhancing Technologies, pages 202–218. Springer, 2008.

4. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of LNCS, pages 614–629, Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg,
Germany.

5. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73,
Fairfax, Virginia, USA, November 3–5, 1993. ACM Press.

6. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The
case of dynamic groups. In Cryptographers Track at the RSA Conference, pages
136–153. Springer, 2005.

7. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The
case of dynamic groups. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of
LNCS, pages 136–153, San Francisco, CA, USA, February 14–18, 2005. Springer,
Heidelberg, Germany.

8. John Bethencourt, Elaine Shi, and Dawn Song. Signatures of reputation. In Radu
Sion, editor, FC 2010, volume 6052 of LNCS, pages 400–407, Tenerife, Canary
Islands, Spain, January 25–28, 2010. Springer, Heidelberg, Germany.

9. Johannes Blömer, Jakob Juhnke, and Christina Kolb. Anonymous and publicly
linkable reputation systems. In Rainer Böhme and Tatsuaki Okamoto, editors, FC
2015, volume 8975 of LNCS, pages 478–488, San Juan, Puerto Rico, January 26–30,
2015. Springer, Heidelberg, Germany.

10. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Chris-
tian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of
LNCS, pages 56–73, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg,
Germany.

11. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, April
2008.

12. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens Groth.
Foundations of fully dynamic group signatures. In Mark Manulis, Ahmad-Reza
Sadeghi, and Steve Schneider, editors, ACNS 16, volume 9696 of LNCS, pages
117–136, Guildford, UK, June 19–22, 2016. Springer, Heidelberg, Germany.

13. Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation.
In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick McDaniel, editors, ACM
CCS 04, pages 132–145, Washington D.C., USA, October 25–29, 2004. ACM Press.

17

https://techcrunch.com/2015/01/05/amazon-third-party-sellers-2014/
https://techcrunch.com/2015/01/05/amazon-third-party-sellers-2014/
https://techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-million-monthly-active-riders/
https://techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-million-monthly-active-riders/
https://techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-million-monthly-active-riders/

14. Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann, David Novick, and
Rainer Urian. One TPM to bind them all: Fixing TPM 2.0 for provably secure
anonymous attestation. In 2017 IEEE Symposium on Security and Privacy, SP,
pages 901–920. IEEE, 2017.

15. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attestation using
the strong diffie hellman assumption revisited. In International Conference on
Trust and Trustworthy Computing, pages 1–20. Springer, 2016.

16. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Universally composable direct
anonymous attestation. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano,
and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages 234–
264, Taipei, Taiwan, March 6–9, 2016. Springer, Heidelberg, Germany.

17. David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies,
editor, EUROCRYPT’91, volume 547 of LNCS, pages 257–265, Brighton, UK,
April 8–11, 1991. Springer, Heidelberg, Germany.

18. Cécile Delerablée and David Pointcheval. Dynamic fully anonymous short group
signatures. In Progress in Cryptology-VIETCRYPT 2006, pages 193–210. Springer,
2006.

19. Ali El Kaafarani, Shuichi Katsumata, and Ravital Solomon. Anonymous reputation
systems achieving full dynamicity from lattices. In Twenty-Second International
Conference on Financial Cryptography and Data Security, forthcoming.

20. Lydia Garms, Keith Martin, and Siaw-Lynn Ng. Reputation schemes for perva-
sive social networks with anonymity. In Proceedings of the fifteenth International
Conference on Privacy, Security and Trust (PST 2017), IEEE, 2017.

21. Lydia Garms and Elizabeth A. Quaglia. A new approach to modelling centralised
reputation systems. Cryptology ePrint Archive, Report 2019/453, 2019. https:

//eprint.iacr.org/2019/453.
22. San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Lattice-based group

signatures: Achieving full dynamicity with ease. In International Conference on
Applied Cryptography and Network Security, pages 293–312. Springer, 2017.

23. Anna Lysyanskaya, Ronald L Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. In International Workshop on Selected Areas in Cryptography, pages 184–
199. Springer, 1999.

24. Félix Gómez Mármol and Gregorio Mart́ınez Pérez. Security threats scenarios
in trust and reputation models for distributed systems. Computers & Security,
28(7):545–556, 2009.

25. Siaw-Lynn Ng, Keith Martin, Liqun Chen, and Qin Li. Private reputation retrieval
in public - a privacy-aware announcement scheme for vanets. IET Information
Security, DOI: 10.1049/iet-ifs.2014.0316, 2016.

26. Elan Pavlov, Jeffrey S Rosenschein, and Zvi Topol. Supporting privacy in de-
centralized additive reputation systems. In International Conference on Trust
Management, pages 108–119. Springer, 2004.

27. Ronald Petrlic, Sascha Lutters, and Christoph Sorge. Privacy-preserving reputa-
tion management. In Proceedings of the 29th Annual ACM Symposium on Applied
Computing, SAC ’14, pages 1712–1718, New York, NY, USA, 2014. ACM.

28. Michael Scott. Pairing implementation revisited. Cryptology ePrint Archive, Re-
port 2019/077, 2019. https://eprint.iacr.org/2019/077.

29. Ennan Zhai, David Isaac Wolinsky, Ruichuan Chen, Ewa Syta, Chao Teng, and
Bryan Ford. Anonrep: towards tracking-resistant anonymous reputation. In 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
16), pages 583–596. USENIX Association, 2016.

18

https://eprint.iacr.org/2019/453
https://eprint.iacr.org/2019/453
https://eprint.iacr.org/2019/077

	A New Approach to Modelling Centralised Reputation Systems

