
1 
 

Litter species richness and composition effects on fungal richness and community 1 

structure in decomposing foliar and root litter 2 

Eveli Otsing
a
, Sandra Barantal

b
, Sten Anslan

a
, Julia Koricheva

b
, Leho Tedersoo

a,c
 3 

 4 

a
Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila, 50411 Tartu, 5 

Estonia  6 

b
School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 7 

0EX, UK
  

8 

c
Natural History Museum, University of Tartu, 14A Ravila, 50411 Tartu, Estonia 9 

 10 

Corresponding author: Eveli Otsing; tel: +372 53635864; e-mail: eveli.otsing@gmail.com 11 

12 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/224802747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ees.elsevier.com/sbb/viewRCResults.aspx?pdf=1&docID=27050&rev=1&fileID=590708&msid={2B1058DA-F180-4696-82E2-8AB0B48BC03A}


2 
 

Abstract 13 

Litter species richness influences fungal diversity because of resource heterogeneity. Litter 14 

species composition effects on decomposition have been studied mostly in aboveground litter. 15 

However, little is known about the effects of litter diversity of roots and litter type effect on 16 

fungal diversity in general. We addressed litter species composition and richness effects on 17 

diversity of ectomycorrhizal (EcM), saprotrophic and pathogenic fungi in decomposing foliar 18 

and root litter in the Satakunta forest diversity experiment by varying litter species richness 19 

from one to four species in 560 litter bags incubated under tree canopies. After one year of 20 

decomposition, there were no significant non-additive effects of litter mixtures on mass loss. 21 

Litter species composition was the strongest predictor for saprotroph and plant pathogen 22 

community structure in foliar litter, but its effect on root litter fungal composition was much 23 

weaker. Litter diversity strongly enhanced fungal richness in foliar but not in root substrate. 24 

We found no evidence for host litter preferences in host-specific EcM fungi. Our study 25 

suggests that litter species richness and especially certain litter species may influence 26 

decomposition through modifying fungal community composition both in foliar and root 27 

litter.  28 

 29 
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1. Introduction  33 

Functioning of above- and belowground components of terrestrial ecosystems are influenced 34 

by feedbacks between plants, root associated organisms and decomposers (Wardle et al., 35 

2004). In mixed forest ecosystems, individual trees affect decomposition directly through 36 

species-specific litter quality (McClaugherty et al., 1985; Hobbie, 1992; Silver and Miya, 37 

2001) and indirectly through modified micro-environmental conditions and soil biota 38 

composition (Joly et al., 2017). In particular, Hobbie et al. (2006) showed that tree species 39 

identity affects decomposition via both litter chemistry and effects on soil temperature. The 40 

strength of feedback to plants depends on plant traits and interactions between root- and litter-41 

associated microbes (Cairney and Meharg, 2002; Ke et al., 2015).  42 

Together with environmental variables such as temperature and moisture, plant traits such as 43 

leaf nutrient and lignin concentration are strong predictors of litter decomposition in forest 44 

ecosystems (Hättenschwiler, 2005; Cornwell et al., 2008; Bani et al., 2018). Due to litter 45 

quality effects, broadleaf litter is expected to decompose faster than coniferous litter (Prescott 46 

et al., 2000). Plant litter is often decomposed more rapidly in the vicinity of the mother plant  47 

due to specialized decomposer community, termed as ‘home‐field advantage effect’ (Ayres et 48 

al., 2009; Veen et al., 2015). Home-field advantage has been found to be common in forest 49 

ecosystems and may cause an average 8% faster litter mass loss in ‘home’ than ‘away’ 50 

habitats (Ayres et al., 2009). Home-field advantage in decomposition communities has been 51 

found to be related to chemical similarity in litter quality rather than related to associations 52 

between specific species (Gholz et al., 2000; Veen et al., 2015). Ke et al. (2015) showed that 53 

litter decomposability through soil nitrogen (N) availability may determine the strength of 54 

plant-soil feedback in communities dominated by arbuscular mycorrhizal fungi. 55 
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In forest ecosystems, foliar litter from different plant species becomes usually mixed because 56 

of wind and roughly simultaneous litter fall in the autumn (Staelens et al., 2003; Ťupek et al., 57 

2015). Similarly, root litter is mixed, because roots of plant species commonly intermingle 58 

and their turnover is usually synchronous (Fogel, 1983; Brassard, 2010). Most root systems of 59 

trees in boreal forest ecosystem have been shown to stop activity after leaf-drop in the fall 60 

(Burke and Raynal, 1994). Mixing litter of different plant species may cause shifts in 61 

microbial communities that may affect decomposition rates (Chapman et al., 2013). In 62 

particular, chemically diverse litter mixtures provide decomposers with a varied diet that has 63 

strong effects on microbial communities and functional diversity and hence may increase or 64 

decrease decomposition rates with positive or negative feedbacks to plants (Gartner and 65 

Cardon, 2004; Hättenschwiler et al., 2005). Decomposition patterns of leaf litter mixtures are 66 

usually ‘non-additive’, i.e. not directly predictable based on the biogeochemical processes in 67 

parent litter, whereas ‘additive’ responses in mixtures are predictable from component species 68 

(Gartner and Cardon, 2004). Most studies have revealed that litter species composition has a 69 

stronger effect on decomposition rates than litter richness per se (Wardle et al., 2006; Hoorens 70 

et al., 2010; Cuchietti et al., 2014; Handa et al., 2014; Setiawan et al., 2016).    71 

Litter mixing affects microbial abundance and community structure and tends to result in 72 

synergistic or antagonistic effects where decomposition rates are faster or slower, 73 

respectively, than expected based on decomposition rates of litter of component species 74 

(Gartner and Cardon, 2004). However, linking microbial community changes directly to these 75 

non-additive patterns in litter mixtures has been elusive (Chapman et al., 2013). It has been 76 

shown that litter species composition determines the direction of non-additive effect in the 77 

litter mixture (De Marco et al., 2011). It has been suggested that synergistic effects in litter 78 

mixtures are caused by fungi-driven nutrient transfer from higher quality litter to the poor one, 79 

and antagonistic effects are due to release of inhibitory compounds (Chapman et al., 1988). 80 
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Berglund and Ågren (2012) showed that the litter mixture decomposes faster than parent 81 

litters alone when the litter of the higher quality mineralizes nitrogen fastest. More diverse 82 

and patchy plant litter may promote niche specialists and hence support higher microbial 83 

diversity (Kubartová et al., 2009; Chapman and Newman, 2010; Santonja et al., 2017). Litter 84 

of different tree species develop distinct microbial communities, however, microbial changes 85 

may not translate to predictably altered litter decomposition (Aneja et al., 2006; Chapman and 86 

Newman, 2010). 87 

Root litter represents an important C source for microbial communities (Rasse et al., 2005) 88 

and plays a substantial role in plant-soil feedback (Freschet et al., 2013). Due to lower 89 

nutrient concentration and higher lignin content, roots are considered to be more recalcitrant 90 

than foliar litter and this might have an effect on their microbial degradability (Berg and 91 

McClaugherty, 2014; Jacobs et al., 2018). To date most studies on litter decomposition have 92 

focused on the foliar component and little attention has been given to understanding the 93 

patterns and drivers of the large source of carbon that is found in roots, partly because of the 94 

challenges of studying belowground litter. Little is known about the community composition 95 

of microbial decomposers of dead roots. For example, Herzog (2017) and Kohout et al. (2018) 96 

studied the composition of dead root associated decomposer communities over a two-year 97 

period; Fisk et al. (2011) investigated fungal community development on dead roots in 98 

disturbed rhizosphere conditions. Several studies have been conducted to analyze if fungal 99 

community composition varies between litters of different diversity (Kubartová et al., 2009; 100 

Chapman and Newman, 2010; Chapman et al., 2013). However, the effects of foliar litter 101 

diversity and particularly root litter diversity on fungal functional groups in forest ecosystems 102 

remain largely unknown. 103 

Saprotrophs, endophytes, plant pathogens and EcM fungi are the major fungal guilds 104 

inhabiting foliar and root litter (Lindahl et al., 2007; Voříšková and Baldrian, 2013; Kohout et 105 
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al., 2018). While saprotrophic fungi are the primary decomposers of C-rich biopolymers 106 

(Cooke and Rayner, 1984; Talbot et al., 2013), some plant pathogens (Baker and Bateman, 107 

1978; Osono, 2007) and endophytes (Müller et al., 2001; Korkama-Rajala et al., 2008; 108 

Kohout et al., 2018) are also potentially important in the initial stages of decomposition, as 109 

they often express saprotrophic activity after leaf senescence. EcM fungi take part in organic 110 

matter decomposition through mobilizing organically bound nitrogen (Lindahl and Tunlid, 111 

2015), which may lead to direct competition for resources with saprotrophs and result in an 112 

overall decrease in decomposition rate (Fernandez and Kennedy, 2016).  113 

Host preference has been observed in endophytes, plant pathogens, saprotrophs and 114 

mycorrhizal fungi (Molina et al., 1992; Zhou and Hyde, 2001; Põlme et al., 2018). Of these 115 

four groups, mycorrhizal fungi exhibit a high degree of host specificity which is thought to be 116 

a result of their coevolution with plants (Brundrett, 2002). Thus, the diversity of belowground 117 

organisms who are intimately associated with plant roots (e.g. EcM fungal taxa) are predicted 118 

to create stronger aboveground effects (influence on plant productivity, composition, and 119 

diversity) compared with saprotrophs with low specificity (Wardle et al., 2004). Also, 120 

community composition of EcM fungi might respond strongly to the aboveground 121 

communities through litter chemistry (Conn and Dighton, 2000). Tedersoo et al. (2008) 122 

showed that EcM fungal community composition in dead wood responds to tree species of 123 

woody litter that probably results from chemical differences in substrate. Given the 124 

specialization of many EcM fungal species to certain plant host genera (Kennedy et al., 2015; 125 

Molina and Horton, 2015), we predict that the relative proportion of host-specific EcM fungi 126 

is greater in their host plant’s litter than in other tree species’ litter due to their long 127 

evolutionary history of being exposed to the host plant’s litter. 128 

The aim of this study was to determine the ecological relationships between fungal diversity 129 

and plant diversity via feedbacks to foliar and root litter. We hypothesized that mass loss rate 130 
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increases with increasing litter diversity (H1); litter from a single tree species decomposes 131 

more rapidly under the trees where it originated (H2); composition of saprotrophs, plant 132 

pathogens and EcM fungi is mainly driven by litter species composition (H3); litter species 133 

richness enhances fungal richness (H4); and the relative proportion of host-specific EcM 134 

fungi is greater in the litter of their intimate host plant (H5). 135 

 136 
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2. Materials and Methods 137 

2.1. Study site and experiment set up 138 

To study litter diversity effects on fungal community composition and richness, a litter 139 

decomposition experiment was set up in the Satakunta forest diversity experimental area 140 

(www.sataforestdiversty.org) in Finland (61.714°N, 21.983°E). The forest diversity 141 

experiment was established in 1999 to study the effects of tree species richness and 142 

composition on ecosystem functioning. Experimental plots in three different areas were 143 

planted with monocultures, two-, three- and five-species mixtures of silver birch (Betula 144 

pendula), black alder (Alnus glutinosa), Siberian larch (Larix sibirica), Scots pine (Pinus 145 

sylvestris) and Norway spruce (Picea abies). Each 20 m x 20 m plot contains 13 rows with 13 146 

trees per row planted at 1.5 m intervals. In mixed species plots, all tree species were planted 147 

in equal proportions. In 2013, one replicate of each treatment per area was thinned with tree 148 

density reduced by half. In 2014-2015, the annual precipitation was 567-673 mm and annual 149 

temperature was 6.7-6.9 °C (www. ilmatieteenlaitos.fi – Pori meteorological station).  150 

In order to minimize spatial effects, we selected two five-species mixture plots (plots 18 and 151 

22 in area 1) to test the effects of tree species identity, foliar and root litter species 152 

composition and richness on microbial diversity and litter mass loss. Our block design 153 

included 20 tree individuals per plot with a total of 40 focal trees (blocks). Within each of the 154 

two plots, we randomly selected 5 individual trees of each tree species except the non-native 155 

larch and placed litter bags (see next paragraph) under these trees. Each tree (block) received 156 

eight bags of single-species foliar and root litters, two bags of two-species (the same random 157 

combination for both foliar and root litters) and two four-species foliar and root litter 158 

mixtures. In each block, we used two extra bags of single-species foliar and root litter to 159 

increase the power for ‘home’ versus ‘away’ comparisons.   160 
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Foliar litter was collected by use of litter traps from neighboring monoculture plots and air-161 

dried at room temperature in September, 2014. Roots of the four tree species were excavated 162 

from the edges of the two selected plots in order not to disturb the rest of the plot. We selected 163 

an equal proportion of fine (≤2 mm diam.) and coarse roots (2-3 mm diam.). All roots were 164 

dried at 65 °C for 48 hours to eliminate living EcM fungi, whereas leaves were dried at room 165 

temperature to better mimic natural conditions. Heating may eliminate most fungi (Langley et 166 

al., 2006) and affect nutrient form, distribution and availability in plant litter (Gray and 167 

Dighton, 2006), which renders foliar and root litter effects incomparable in our study.  168 

Litter bags (10 x 10 cm) were prepared of polyester (500 µm mesh size) that allowed root and 169 

mycelium ingrowth and migration of meiofauna. 1 g of litter was weighed into each bag, with 170 

litter species mixes pooled in equal proportion. Both litter substrates were kept as intact as 171 

possible. Litter bags were installed above soil surface by use of nails and wire. Ground 172 

vegetation and natural litter were cleared to ensure contact with the soil. Litter bags were 173 

placed to one side of the tree (directing to a tree of same species), approximately 0.5 m from 174 

the tree trunk and 5 cm distance between the bags.  175 

For studying the effect of litter richness of one-, two- and four-species mixtures, 400, 80 and 176 

80 litter bags were used, respectively. In October 2014, altogether 560 litter bags were 177 

installed including 280 bags of foliar and 280 bags of root litter. Litter bags were harvested 178 

after 12 months of decomposition in October 2015. We were unable to retrieve four of the 179 

litter bags. The litter bags were carefully freed from the adhering soil particles and air-dried at 180 

room temperature for 48 hours. Then, the decomposed litter was weighted in sterile conditions 181 

and manually crushed in zip-lock plastic bags. 0.20 g of material from each sample was 182 

further powdered in 2-ml Eppendorf tubes using two 3-mm tungsten carbide beads in Mixer 183 

Mill MM400 (Retsch GmbH, Haan, Germany) at 30 Hz for 5 min for molecular analysis. 184 
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Initial C, N and phosphorus (P) concentrations in four foliar and four root litter species 185 

samples were determined according to Tedersoo et al. (2012) to compare the differences in 186 

litter quality between foliar and root litter, and broadleaf and coniferous litter. Litter species 187 

and chemical parameters are given in Supplementary Table S1. 188 

2.2. Molecular analysis 189 

DNA was extracted from litter samples using PowerSoil DNA Isolation Kit (MoBio, 190 

Carlsbad, CA, USA) following the manufacturer’s protocols. PCR was carried out using a 191 

mixture of five forward primers ITS3mix1-5 (CANCGATGAAGAACGYRG) (Tedersoo et 192 

al., 2014) in equimolar concentration and a degenerate reverse primer ITS4ngsUni (Tedersoo 193 

and Lindahl, 2016). The ITS4ngsUni (CCTCCSCTTANTDATATGC) primer was tagged 194 

with one of the 110 identifier barcodes (10–12 bases) (Supplementary Table S2) that were 195 

modified from those recommended by Roche (Basel, Switzerland) to differ by >3 bases, to 196 

start only with adenosine and to comprise similar proportions of adenosine and thymidine 197 

(between 30 and 70%) to equalize their affinities in an adapter ligation step (Tedersoo et al., 198 

2014). The PCR mixture comprised 1 μl DNA, 0.5 μl each of the primers (20 μM), 4 μl 5× 199 

HOT FIREPol Blend Master Mix (Solis Biodyne, Tartu, Estonia) and 14 μl double-distilled 200 

water. PCR was carried out in two replicates in the following thermocycling conditions: an 201 

initial 15 min at 95 °C, followed by 30 cycles of 95 °C for 30 s, 55 °C for 30 s, 72 °C for 1 202 

min, and a final cycle of 10 min at 72 °C. PCR products (typically 350–400 bp) from replicate 203 

samples were pooled and their relative quantity was estimated by running 5 μl DNA on 1% 204 

agarose gel for 15 min. DNA samples with no visible bands were re-amplified with 35 cycles 205 

and DNA samples with strong bands were re-amplified with only 25 cycles. Both negative 206 

(sterile water used for PCR mixture) and positive controls (Australian truffles Reddellomyces 207 

donkii specimen MURU5473 and Dingleya sp. specimen MURU5844) were included in PCR 208 

and sequencing runs. PCR products were pooled at approximately equimolar ratios as 209 
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determined by gel band strength, with the exception of negative controls, from which 5 μl were 210 

added. Samples were combined into six libraries (foliar and root litter were kept separate). 211 

Libraries were purified by FavorPrep™ Gel/PCR Purification Kit (Favorgen-Biotech Corp., 212 

Austria), following the manufacturer’s instructions. DNA from each library was quantified 213 

using Qubit® 2.0 Fluorometer (Invitrogen, Life Technologies, CA, USA) and dsDNA High 214 

Sensitivity assay kit (ThermoFisher Scientific, Waltham, USA). DNA concentrations for each 215 

library ranged from 63 ng μl
-1

 to 231 ng μl
-1

. Amplicons were subjected to adaptor ligation 216 

and Illumina MiSeq sequencing in the Estonian Genome Center (Tartu, Estonia). 217 

2.3. Bioinformatics analysis 218 

Illumina sequencing provided 14,564,313 raw reads. Raw reads were processed using 219 

PipeCraft 1.0 platform (Anslan et al., 2017). Paired-end reads were merged and quality 220 

trimmed using VSEARCH v1.1.11 (Rognes et al., 2016) (trimming options: maximum 221 

expected error rate = 1). The resulting 9,947,496 sequences were re-assigned to samples based 222 

on the tags using mothur v1.36.1 (Schloss et al., 2009). Chimera filtering of the sequences 223 

was performed using VSEARCH based on UNITE v6 reference database (Abarenkov et al., 224 

2010b) and de novo option. To extract the full-length ITS2 subregion for clustering purposes, 225 

reads were processed with ITSx 1.0.9 (Bengtsson-Palme et al., 2013) to remove flanking gene 226 

fragments. Full-length ITS2 reads were assigned to operational taxonomic units (OTUs) by 227 

clustering at 97% similarity threshold with CD-Hit v4.6 (Fu et al., 2012). All OTUs 228 

represented by a single sequence (singletons) were removed. The most abundant sequence of 229 

each cluster was selected as a representative for BLASTn sequence similarity search (word 230 

size=7; gap open=1; gap extension=2; revard=1; penalty=-1) against both INSDc 231 

(International Nucleotide Sequence Databases Collaboration) and UNITE. Also, BLASTn 232 

searches were run against reference sequences of fungi in 99.0% similarity species hypothesis 233 
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(SH) that include third-party taxonomic and metadata updates (Kõljalg et al., 2013; Nilsson et 234 

al., 2014) as implemented in the PlutoF workbench (Abarenkov et al., 2010a).  235 

Further filtering of the dataset was performed manually. We used BLASTn output (similarity, 236 

e-value and match length/sequence length ratio) for taxonomic assignment as well as positive 237 

and negative controls to remove low quality sequences, tag switching errors and 238 

contaminants. We considered 10 best matching references for each OTU to annotate taxa as 239 

accurately as possible and ran manual BLASTn searches against the INSDC if no reliable 240 

taxonomy was revealed. BLASTn e-values ˂e
−50

 were considered reliable to assign OTUs to 241 

kingdoms, whereas OTUs with e-values >e
−20

 were treated as ‘unknown’ taxa. E-values 242 

between e
−20

 and e
−50

 were manually checked against the 10 best matches for accurate 243 

assignment. We relied on 98%, 90%, 85%, 80%, and 75% sequence identity as a criterion for 244 

assigning OTUs to species, genus, family, order or class level, respectively (Tedersoo et al., 245 

2014). OTUs with sequence length <250 base pairs (over the entire amplicon length) and 246 

match/sequence length <70% were excluded as potential artefacts. Each fungal genus, family 247 

or order was assigned to functional categories based on FUNGuild (Nguyen et al., 2016). All 248 

Glomeromycota were considered to be arbuscular mycorrhizal (AM). Taxa were considered 249 

to be EcM if they matched to any sequences belonging to EcM lineages and exhibited 250 

sequence blast score/sequence length above predetermined lineage-specific thresholds 251 

(Tedersoo and Smith, 2017). Annotated sequence data and detailed metadata are given in 252 

Supplementary Table S3 and Table S4, respectively. In order to evaluate putative host-253 

specific associations in EcM fungi, we used literature-based search for the recovered species 254 

and UNITE database third-party metadata annotations at the level of SH.  255 

2.4. Statistical analysis 256 
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We analyzed species richness and community composition of taxa that belonged to the 257 

kingdom Fungi, focusing on EcM, saprotrophic and plant pathogenic fungi. Endophytes were 258 

not analyzed separately, because they were underrepresented in the OTU matrix (<50 OTUs). 259 

PERMANOVA+ (Anderson et al., 2008) was used to generate community composition 260 

models for individual fungal groups and litter types (foliar and root litter). We tested the 261 

effect of litter species composition, litter species richness, focal tree species identity, plot 262 

(fixed factors) and block (random factor), and mass loss (covariate) on fungal community 263 

composition in foliar and root litter samples. The OTU matrix was subjected to Hellinger 264 

transformation using vegan package (Oksanen et al., 2017) in R prior to community analysis. 265 

We compared the performance of Bray-Curtis distance and Hellinger distance (D17) metric 266 

for the abundance data (including OTUs with frequency > 1) (Tedersoo et al., 2015). We 267 

chose Bray-Curtis metric as models generated based on the resemblance matrices had higher 268 

adjusted coefficients of determination (R
2

adj) values. Euclidean distance was applied to 269 

generate environmental distance matrices. The best community composition model for each 270 

group and litter type was constructed using PERMANOVA function in PERMANOVA+. The 271 

factor block was nested in tree species and plot. Type I test and 999 permutations were used 272 

for the unbalanced sampling design with nested effects. Statistical significance level was at α 273 

= 0.05.  274 

We used the phyloseq package (McMurdie and Holmes, 2013) in R for visualizing taxonomic 275 

assignments at the order level in foliar and root litter. We used the vegan package to construct 276 

Nonmetric Multidimensional Scaling (NMDS) plots for saprotrophs, plant pathogens and 277 

EcM fungal group in foliar and litter samples. NMDS graphs were constructed to assess 278 

differences in fungal community composition among litter species. The function metaMDS 279 

with Procrustes analysis and 200 iterations was used to perform NMDS. In metaMDS, raw 280 
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sequence abundance matrix was square-root-transformed and subjected to Wisconsin double 281 

standardization. Bray-Curtis dissimilarity was used to calculate community matrix. 282 

For richness analyses of foliar and root litter biota, we calculated the standardized residuals of 283 

OTU richness in relation to the square-root of the number of obtained sequences to account 284 

for differences in sequencing depth (Tedersoo et al., 2014). Standardized residuals were 285 

obtained from multiple regression analysis performed in STATISTICA 12 (StatSoft Inc., 286 

Tulsa, OK, USA). We used the vegan package to calculate Shannon diversity index and 287 

evenness. Using the previously described nested design, mixed effects models for fungal 288 

standardized residuals of OTU richness were calculated in STATISTICA. We used type I sum 289 

of squares (SS) to construct the models. To test the non-additivity of decomposition rates in 290 

two- and four-species mixtures, we calculated expected mass losses based on the average of 291 

single species decomposition, and compared with the observed rates. We also tested if mass 292 

loss was described by litter species composition, litter species richness, tree species identity, 293 

plot or block. Using one-way and two-way analysis of variance (ANOVA), we performed 294 

Tukey’s post hoc tests to distinguish among statistically significantly different groups, using 295 

the R package agricolae (De Mendiburu, 2014). To test the host-specific EcM fungal 296 

preferences towards the litter of their host plant litter species, we extracted host-specific 297 

fungal OTU and their sequence abundance as a relative proportion to all EcM fungi. Only 298 

monospecific litter was included in testing the differences between ‘home’ and ‘away’ 299 

treatments. We considered single litter species under the same tree species the ‘home’ 300 

combination. We tested the differences in host specific EcM fungal composition in four 301 

‘home’ combinations and 12 ‘away’ combinations using one-way ANOVA. 302 

2.5. Accession numbers 303 
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The sequence data has been submitted to the SRA database under accession number 304 

SRP133556. 305 

306 
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3. Results  307 

3.1. Mass loss  308 

Within one year of decomposition, the average mass loss of foliar and root litter were 30.4% 309 

(± 8.1%, SD) and 19.2% (± 6.8%), respectively. Litter species richness had no significant 310 

effect on mass loss of foliar litter (F2,272 = 0.38; P = 0.682; Fig. 1a) or root litter (F2,275 = 0.51; 311 

P = 0.599; Fig. 1b). Instead, litter species composition was the best predictor for 312 

decomposition rate of both foliar litter (F10,264 = 6.58; P < 0.001; Fig. 1c) and root litter 313 

(F10,267 = 57.47; P < 0.001; Fig. 1d). We did not detect any significant non-additive effects of 314 

foliar (Fig. 1c) and root litter (Fig. 1d) mixtures on decomposition rates. Unexpectedly, the 315 

slowest decomposing foliar litter combinations included deciduous litter (treatments: birch 316 

birch–spruce and alder–birch) and the fastest decomposing foliar litter treatments included 317 

coniferous litter (treatments: spruce, pine–spruce and alder–spruce) which is assumed to be 318 

more recalcitrant than deciduous litter and thus expected to decompose slower (Fig. 1c). Of 319 

root litter, coniferous litter (treatments: pine–spruce, pine and spruce) decomposed fastest, 320 

whereas deciduous litter (treatments: birch, alder–birch and alder) decomposed slowest (Fig. 321 

1d). We detected significant differences in decomposition rates of foliar and root litter of 322 

conifers and broadleaf trees. Foliar litter of birch decomposed significantly slower than foliar 323 

litter of pine (F1,95 = 37.18; P < 0.001), spruce (F1,95 = 52.28; P < 0.001) and pine–spruce 324 

treatments (F1,53 = 10.94; P = 0.002). Mass loss of coniferous (treatments: pine–spruce, pine 325 

and spruce) root litter was significantly higher than that of broadleaf root litter (treatments: 326 

birch, alder–birch and alder; F1,210 = 572.11; P < 0.001). 327 

There were no significant overall differences between ‘home’ and ‘away’ treatments in foliar 328 

litter (F1,194 = 0.04; P = 0.851) or root litter (F1,196 = 0.007; P = 0.934). Also, we found no 329 

significant ‘home’ vs ‘away’ effects for root litter species (F3,190 = 0.73; P = 0.535; Fig. 2b). 330 
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However, we detected a weak ‘home’ vs ‘away’ effect for foliar litter species (F3,188 = 2.69; P 331 

= 0.048; Fig. 2a). Foliar litter of birch tended to decompose 4% faster in ‘home’ than ‘away’ 332 

treatment.  333 

3.2. Identification of litter biota 334 

The 8,044,053 high-quality reads were clustered into 14,963 OTUs. Based on sequence 335 

distribution in negative and positive controls, we excluded OTU sequence counts=1 per 336 

sample to remove most of the potential tag-switching errors. After removal of samples with 337 

<500 sequences (three samples) and OTUs with poor BLASTn values, the final data set 338 

comprised of 10,042 OTUs, 7,532,808 sequences and 553 samples. In all, 29.0% of OTUs 339 

occurred only in one sample. Each sample was comprised of 566 to 45,105 reads (median: 340 

12,641 reads) and 45 to 1107 OTUs (median: 421 OTUs).  341 

Altogether 91.1% of OTUs were assigned to Fungi, 5.3% to Viridiplantae (mostly Bryophyta, 342 

Chlorophyta and Magnoliophyta), 1.4% to Metazoa (mostly Nematoda), 0.9% to Alveolata 343 

(mostly Ciliophora), 0.6% to Rhizaria (mostly Cercozoa), 0.6% to Stramenopila (mostly 344 

Chrysophyceae) and 0.1% to Apusozoa. Of the 9,148 fungal OTUs, 48.2% were identified as 345 

Ascomycota, 20.2% as Basidiomycota, 1.3% as Chytridiomycota, 0.7% as Mucoromycota, 346 

0.6% as Mortierellomycota, 0.2% as Glomeromycota, 0.2% as Rozellomycota, whereas 347 

28.5% remained unclassified at phylum level. Helotiales (1,926,859 reads, 1647 OTUs), 348 

Agaricales (616,174 reads, 460 OTUs), and Rhytismatales (429,495 reads, 183 OTUs) were 349 

dominant orders; Lophodermium (404,960 reads, 127 OTUs), Mollisia (325,480 reads, 101 350 

OTUs) and Mycena (226,043 reads, 107 OTUs) were dominant genera. Helotiales was 351 

relatively more abundant in root litter samples, whereas Agaricales and Rhytismatales were 352 

relatively more abundant in foliar litter samples, the latter especially in pine needle samples. 353 
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At fungal order level, the composition of fungal communities was not litter species 354 

composition specific (Fig. 3). 355 

Respectively, saprotrophs, plant pathogens and EcM fungi accounted for 66.1%, 16.8% and 356 

11.0% of OTUs that could be assigned to functional guilds. The average number of EcM 357 

OTUs was 5.5 ± 11.2 (SD) in foliar litter samples and 4.2 ± 3.6 (SD) in root litter samples. 358 

The average number of plant pathogens was 45.1 ± 23.2 (SD) in foliar litter samples and 17.3 359 

± 10.9 (SD) in root litter samples. The average number of saprotrophs was 121.9 ± 64.5 (SD) 360 

in foliar litter samples and 84.7 ± 37.2 (SD) in root litter. In foliar and root litter samples, 361 

altogether 344 and 163 EcM fungal OTUs were recognized. The EcM fungal community 362 

included an estimated 9.7% of host-specific OTUs that corresponded to 33.8% of total EcM 363 

fungal sequences. Among these, alder-specific fungi comprised 16 OTUs (42% of host-364 

specific EcM fungal OTUs) with 20,569 sequences (87% of host-specific fungal sequences).  365 

3.3. Fungal community structure 366 

Community structure of all fungi, saprotrophic and plant pathogenic fungi was best described 367 

by litter species composition and litter species richness in foliar litter (Table 1). Litter species 368 

composition had the strongest effect on the community structure of saprotrophs (Fpseudo = 369 

10.87; R
2
adj = 0.210; P < 0.001; Fig. 4a) and plant pathogens (Fpseudo = 16.64; R

2
adj = 0.292; P 370 

< 0.001; Fig. 4c), but negligible effect on EcM fungi in foliar litter (Fpseudo = 1.47; R
2

adj = 371 

0.003; P < 0.001; Fig. 4e). In root litter, no clear influence of litter species composition was 372 

evident for fungal composition (Table 1). Community composition of all fungi in root litter 373 

was marginally influenced by litter species richness (Fpseudo = 3.18; R
2

adj = 0.011; P < 0.001). 374 

Saprotrophs were weakly affected by litter species composition (Fpseudo = 2.92; R
2

adj = 0.048; 375 

P < 0.001; Fig. 4b), whereas plant pathogens were slightly affected by plot (Fpseudo = 4.51; 376 

R
2

adj = 0.017; P < 0.001; Fig. 4d) and EcM fungi were affected by focal tree species identity 377 
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(Fpseudo = 2.50; R
2
adj = 0.025; P < 0.001; Fig. 4f). Focal tree species identity and interaction 378 

term between tree and litter species composition had a significant but weak effect on  379 

composition of most fungal guilds both in foliar and root litter (Table 1). 380 

3.4. Fungal richness 381 

The mean OTU richness of all fungi in foliar and root litter samples was 426.3 ± 167.0 (SD) 382 

and 345.1 ± 145.7 (SD), respectively. Mixed effects models for standardized residuals of 383 

OTU richness indicated that the best predictors differed among functional groups of fungi 384 

depending on litter type (Table 2). Litter species richness was one of the two strongest 385 

predictors for total fungal (positive effect; F2,195 = 83.38; R
2

adj = 0.229; P < 0.001; Fig. 5a), 386 

saprotroph (positive effect; F2,195 = 22.27; R
2

adj = 0.099; P < 0.001) and plant pathogen 387 

richness (F2,195 = 87.99; R
2

adj = 0.251; P < 0.001) in foliar litter, but none of the tested factors 388 

affected richness of EcM fungi. In foliar litter, litter species composition had a significant 389 

additional effect on richness of all fungi (positive effect; F8,195 = 16.82; R
2

adj = 0.209; P < 390 

0.001), plant pathogens (positive effect; F8,195 = 24.68; R
2

adj = 0.284; P < 0.001) and 391 

saprotrophs (positive effect; F8,195 = 6.96; R
2

adj = 0.118; P < 0.001). Shannon diversity index 392 

of all fungi was significantly affected by litter species composition (F10,264 = 15.31; P < 0.001) 393 

and litter species richness (F2,272 = 14.62; P < 0.001) in foliar litter. The Shannon diversity 394 

index showed that fungal diversity increased with increasing number of litter species in a 395 

mixture. In foliar litter, the evenness values were similar at the three levels of litter richness 396 

(F2,272 = 0.60; P = 0.549), but differed by litter species composition (F10,264 = 8.12; P < 0.001). 397 

We detected significant non-additive effects of foliar litter mixtures on fungal richness (Fig. 398 

5c). Three out of the seven foliar litter mixtures showed significant synergistic effects: two-399 

species mixtures alder–birch (t = 2.11; P = 0.037) and birch–spruce (t = 2.61; P = 0.011) and 400 

the four-species mixture alder–birch–pine–spruce (t = 9.36; P < 0.001). 401 
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Richness of root litter had weaker effects on fungal OTU richness than richness of foliar litter 402 

(Fig. 5b). Richness of root litter increased OTU richness of saprotrophs (F2,233 = 11.15; R
2

adj = 403 

0.058; P < 0.001), plant pathogens (F2,233 = 7.71; R
2

adj = 0.039; P < 0.001) and EcM fungi 404 

(F2,198 = 5.42; R
2
adj = 0.024; P = 0.005). Litter species composition had a significant positive 405 

effect on richness of EcM fungi (F8,198 = 2.25; R
2

adj = 0.023; P = 0.026), plant pathogens 406 

(F8,233 = 2.62; R
2

adj = 0.035; P = 0.009) and saprotrophs (F8,233 = 2.15; R
2

adj = 0.022; P = 407 

0.032) in root litter. In root litter, the Shannon diversity index of all fungi was significantly 408 

affected by litter species composition (F10,267 = 2.89; P = 0.002), but remained unaffected by 409 

litter species richness (F2,275 = 1.55; P = 0.213). The evenness was influenced by litter species 410 

richness (F2,275 = 6.50; P = 0.002) and litter species composition (F10,267 = 6.22; P < 0.001) in 411 

root litter. We detected significant non-additive effects of root litter mixtures on fungal 412 

richness (Fig. 5d). Two out of the seven root litter mixtures showed significant synergistic 413 

effects: the two-species mixtures alder–birch (t = 2.24; P = 0.028) and birch–spruce (t = 2.37; 414 

P = 0.020). 415 

3.5. EcM specificity analysis 416 

We assigned OTUs of EcM fungi into host-specific and promiscuous taxa to test preferences 417 

of fungi for the litter of their intimate hosts. Relative sequence abundance and OTU 418 

abundance of host-specific EcM fungi in ‘home’ combinations were similar to ‘away’ 419 

combinations in both foliar (F1,145 = 0.00004; P = 0.995 and F1,145 = 0.42; P = 0.518, 420 

respectively) and root litter (F1,118 = 0.86; P = 0.355 and F1,118 = 1.34; P = 0.249, 421 

respectively). Taken separately, the four ‘home’ and 12 ‘away’ combinations had no 422 

significant effect on relative sequence abundance of host-specific EcM fungi in either foliar 423 

litter (F15,131 = 1.56; R
2 

= 0.12; P = 0.093; Supplementary Fig. S1a) or root litter (F15,104 = 424 

0.63; R
2 

= 0.07; P = 0.842; Supplementary Fig. S1b). By contrast, these combinations had a 425 

weak but significant effect on relative host-specific EcM fungal OTU abundance in foliar 426 
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litter (F15,131 = 2.50; R
2 

= 0.14; P = 0.003; Supplementary Fig. S1c) but not in root litter 427 

(F15,104 = 1.23; R
2 

= 0.11; P = 0.264; Supplementary Fig. S1d). Alder-specific fungal taxa 428 

contributed most to the relative OTU and sequence abundance both in foliar and in root litter, 429 

but these taxa showed no evidence for preference of alder litter. 430 

431 
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4. Discussion 432 

4.1. Litter mass loss 433 

Decomposition rates of both foliar and root litter remained unaffected by litter species 434 

richness, providing no support to the first hypothesis. Non-additive patterns of mass loss are 435 

common (Gartner and Cardon, 2004; Lecerf et al., 2011; Cuchietti et al., 2014; Santonja et al., 436 

2015), by contrast this finding is in agreement with studies that have reported additive 437 

decomposition rates (Prescott et al., 2000; Hoorens et al., 2010; Guerrero-Ramírez et al., 438 

2016), suggesting that mass loss dynamics of monospecific treatments can be used to predict 439 

the dynamics of mixed species treatments. Mass loss of foliar and root litter was most 440 

strongly affected by litter species composition, supporting the view that litter quality may play 441 

a strong role in decomposition (Hoorens et al., 2010; Coq et al., 2011; Cuchietti et al., 2014; 442 

Handa et al., 2014; Setiawan et al., 2016; Dawud et al., 2017). Broadleaf litter usually 443 

decomposes faster than coniferous litter (Prescott et al., 2000; Silver and Miya, 2001), but this 444 

may strongly depend on studied species (Cornelissen et al., 2001; Hobbie et al., 2010, 2006). 445 

In line with Heim and Frey (2004), we found that decomposition of coniferous root litter was 446 

more rapid than decomposition of broadleaf root litter. This may indicate some home-field 447 

advantage in these plantations as much of the litter on the forest floor is dominated by needle 448 

litter of the three conifers from previous years (personal observations). However, we detected 449 

no clear home-field advantage effects, with no support to the second hypothesis. Although 450 

tree effects are found to be largest close to the trunk (Saetre and Bååth, 2000), all five tree 451 

species, growing together for 15 years, may have had effects on soil properties and microbial 452 

community and may not have allowed ‘away’ to distinguish from ‘home’ in this study system.  453 

4.2. Fungal richness and composition 454 
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We found that saprotrophs and putative plant pathogens dominated both foliar and root litter, 455 

which is consistent with previous findings in Pinaceae-dominated forests (Herzog, 2017; 456 

Kyaschenko et al., 2017). Within one year of decomposition, many of the typical leaf 457 

pathogenic fungi were evident, indicating that part of the decomposer community most 458 

probably originated from the living tissue. Plant pathogens have strong preferences for litter 459 

species, with particularly strong patterns between coniferous and broadleaf foliage (Zhou and 460 

Hyde, 2001; Arnold, 2007; Prescott and Grayston, 2013). 461 

Consistent with the third hypothesis, foliar litter species composition affected the composition 462 

of associated fungal communities. We detected that the effect was stronger on communities of 463 

saprotrophic and plant pathogenic fungi compared with EcM fungi. Plant pathogens and 464 

especially saprotrophs exhibit higher specialization for acquisition of nutrients from 465 

recalcitrant plant-derived biopolymers (Zhou and Hyde, 2001; Baldrian, 2016). In root litter, 466 

species composition effect was much weaker, which could be related to our heating treatment, 467 

more similar root chemistry or lower specificity of soil-borne root decomposers. In root litter, 468 

broadleaved trees differed from conifers in their fungal composition that may be explained by 469 

different chemistry or its confounding phylogeny effect (Betulaceae vs. Pinaceae).  470 

Litter species richness and litter species composition were two major predictors for explaining 471 

species richness of saprotrophs and plant pathogens in foliar litter. In foliar litter, we detected 472 

non-additive effects of two and four litter species mixtures on fungal richness, whereas in root 473 

litter, litter species mixtures had non-additive effect on fungal diversity only in two-species 474 

mixture, which is only partly consistent with our fourth hypothesis. Several authors have 475 

reported enhanced fungal diversity with increasing foliar litter diversity (Kubartová et al., 476 

2009; Chapman and Newman, 2010; Santonja et al., 2017). This can be explained by higher 477 

niche and resource availability or fine-scale resource heterogeneity (Chapman and Newman, 478 

2010). The lack of positive root litter richness effect can be partly explained by the initial 479 
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heating treatment for endophytes and pathogens, or the paucity of specialist fungi for fine root 480 

decomposition, because roots naturally decompose in the soil matrix (Štursová et al., 2012). 481 

Our fifth hypothesis predicted that host-specific EcM fungi are more litter species-specific 482 

than generalists, preferring the litter of their host plant. Based on high host-specificity and 483 

restricted EcM fungal community of alders (Tedersoo et al., 2009; Põlme et al., 2013), we 484 

expected that alder-specific fungi, in particular, occur in relatively greater abundance in alder 485 

litter. Although the preference of EcM fungi to certain litter species has been previously 486 

demonstrated (Conn and Dighton, 2000), we found no support to this hypothesis. No 487 

differences in litter species preference in EcM fungi in general or preference for intimate 488 

host’s litter in particular was detected. However, it cannot be excluded that fresh litter is 489 

unsuitable substrate for EcM fungi or the scale of our study is too small. 490 

491 
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5. Conclusions 492 

Our results showed that litter species composition was the main driver of decomposition rate 493 

and saprotroph and pathogen community composition in foliar litter. However, EcM fungal 494 

communities both in foliar and root litter were only marginally affected by litter species 495 

composition. Also, we found no evidence for the positive feedback of host litter on 496 

performance of EcM fungi specific to particular hosts. These results collectively suggest that 497 

growth of EcM fungal hyphae into fresh litter is rather opportunistic and unspecific. Litter 498 

species composition and litter species richness were two major factors underlying fungal 499 

richness in foliar litter. In particular, we detected strong synergistic effect of four-species 500 

foliar litter mixture on fungal richness. This study demonstrates that the fungal community in 501 

both foliar and root litter is affected by litter species richness and composition. 502 
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Fig. 1. Litter mass loss (%) of (a, c) foliar and (b, d) root litter described by (a, b) litter species 854 

richness (1, monospecific; 2, two-species mixtures; 4, four-species mixture), and (c, d) 855 

observed and expected decomposition rates (%) for litter species composition (A, alder; B, 856 

birch; P, pine; S, spruce; AB, alder–birch; AP, alder–pine; AS, alder–spruce; BP, birch–pine; 857 

BS, birch–spruce; PS, pine–spruce; ABPS, alder–birch–pine–spruce). Data represents the 858 

means of all samples with standard errors. Different letters denote significant differences 859 

among factor levels. Expected litter mass loss rates are displayed with white and observed 860 

with black. 861 

Fig. 2. ‘Home’ versus ‘away’ treatment effect on mass loss (%) in (a) foliar and (b) root litter 862 

described by litter species identity. Data represents the means of all samples with standard 863 

errors. Different letters denote significant differences among factor levels. ‘Away’ treatments 864 

are displayed with white and ‘home’ treatments with black. 865 

Fig. 3. Abundances of major fungal orders in (a) foliar and (b) root litter. The data represents 866 

the mean values of the relative abundances of ITS2 amplicons expressed as percentages. A, 867 

alder; B, birch; P, pine; S, spruce; AB, alder–birch; AP, alder–pine; AS, alder–spruce; BP, 868 

birch–pine; BS, birch–spruce; PS, pine–spruce; ABPS, alder–birch–pine–spruce. 869 

Fig. 4. NMDS ordination plots describing the relative importance of litter species composition 870 

in explaining the community structure of (a, b) saprotrophs, (c, d) plant pathogens and (e, f) 871 

EcM fungi in (a, c, e) foliar and (b, d, f) root litter. Ellipses denote 95% confidence intervals 872 

around the mean values of litter species composition. Circles, monospecific litters; stars, 873 

alder–birch mixture; diamonds, alder–pine mixture; upward triangles, alder–spruce mixture; 874 

crosses, birch–pine mixture; pluses, birch–spruce mixture; downward triangles, pine–spruce 875 

mixture; red squares, alder–birch–pine–spruce mixture. Blue, alder; green, birch; pink, pine; 876 

yellow, spruce. 877 
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Fig. 5. Variation in standardized residual richness of all fungi in (a, c) foliar and (b, d) root 878 

litter described by (a, b) litter species richness (1, monospecific; 2, two-species mixtures; 4, 879 

four-species mixture) and (c, d) litter species composition (A, alder; B, birch; P, pine; S, 880 

spruce; AB, alder–birch; AP, alder–pine; AS, alder–spruce; BP, birch–pine; BS, birch–spruce; 881 

PS, pine–spruce; ABPS, alder–birch–pine–spruce). Data represents the means of all samples 882 

with standard errors. Different letters denote significant differences among factor levels. 883 

Expected standardized residual richness of all fungi is displayed with white and observed with 884 

black. 885 
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Table 1. Multivariate models for community composition of all fungi, EcM, plant pathogen 886 

and saprotroph group in foliar and root litter  887 

Foliar litter 
 

Root litter 

variable R2 adj Pseudo-F P-value   variable R2 adj Pseudo-F P-value 

1 Fungi (total) 
  

Litter composition 0.209 11.00 <0.001 
 

Litter richness 0.011 3.18 <0.001 

Litter richness 0.020 5.45 <0.001 
 

Litter composition 0.050 3.06 <0.001 

Plot 0.006 2.21 <0.001 
 

Plot 0.013 2.98 <0.001 

Tree 0.014 2.04 <0.001 
 

Tree 0.032 2.64 <0.001 

Block (Tree*Plot) 0.016 1.66 <0.001 
 

Block (Tree*Plot) 0.063 1.85 <0.001 

Mass loss  0.000 1.31 0.010  Mass loss 0.001 1.27 0.015 

Tree*Litter composition -0.026 1.17 <0.001 
 

Tree*Litter composition -0.019 1.05 0.015 

1.1 EcM fungi 
  

Plot 0.027 3.37 <0.001 
 

Tree  0.025 2.50 <0.001 

Block (Tree*Plot) 0.184 3.12 <0.001 
 

Plot 0.004 1.64 0.027 

Litter richness 0.001 1.58 <0.001 
 

Block (Tree*Plot) 0.023 1.20 <0.001 

Tree  0.029 1.47 <0.001 
 

Litter composition -0.004 0.93 0.803 

Litter composition 0.003 1.47 <0.001 
 

Litter richness -0.003 0.71 0.975 

Tree*Litter composition -0.030 1.05 0.161  Tree*Litter composition -0.017 0.92 0.965 

1.2 Plant pathogens 
  

Litter composition 0.292 16.64 <0.001 
 

Plot 0.017 4.51 <0.001 

Litter richness 0.024 6.92 <0.001 
 

Litter composition 0.050 3.01 <0.001 

Tree 0.006 1.76 <0.001 
 

Tree  0.025 2.72 <0.001 

Block (Tree*Plot) -0.018 1.40 <0.001 
 

Litter richness 0.008 2.52 <0.001 

Plot 0.001 1.38 0.049 
 

Block (Tree*Plot) 0.028 1.44 <0.001 

Tree*Litter composition -0.025 1.28 <0.001  Tree*Litter composition -0.012 1.07 0.043 

1.3 Saprotrophs 
  

Litter composition 0.210 10.87 <0.001 
 

Litter composition 0.048 2.92 <0.001 

Litter richness 0.019 5.19 <0.001 
 

Plot 0.009 2.49 <0.001 

Tree  0.010 1.78 <0.001 
 

Litter richness 0.007 2.34 <0.001 

Plot 0.003 1.76 0.002 
 

Tree  0.023 2.23 <0.001 

Block (Tree*Plot) 0.011 1.57 <0.001 
 

Block (Tree*Plot) 0.057 1.73 <0.001 

Mass loss  0.000 1.37 0.004   Mass loss 0.001 1.36 0.008 

Tree*Litter composition -0.027 1.12 <0.001  Tree*Litter composition -0.018 1.02 0.247 
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Table 2. The best predictors for standardized residuals of OTU richness of all fungi, EcM, 890 

plant pathogen and saprotroph group 891 

Foliar litter 
 

Root litter 

variable R2 adj F-value P-value   variable R2 adj F-value P-value 

1 Fungi (total) 

Litter richness 0.229 83.38 <0.001 
 

Plot 0.072 15.94 <0.001 

Litter composition 0.209 16.82 <0.001 
 

Litter richness 0.005 2.09 0.127 

Plot 0.017 4.51 0.040 
 

Block (Tree*Plot) 0.050 1.61 0.020 

Block (Tree*Plot) 0.037 3.19 <0.001  Tree*Litter composition 0.015 1.38 0.103 

Tree*Litter composition -0.046 1.63 0.027  Litter composition -0.000 1.22 0.288 

1.1 EcM fungi  

Litter composition -0.013 0.50 0.855 
 

Litter richness 0.024 5.42 0.005 

Litter richness -0.007 0.09 0.913 
 

Block (Tree*Plot) 0.148 2.43 <0.001 

Tree*Litter composition -0.094 0.28 1.000  Litter composition 0.023 2.25 0.026 

     
Tree*Litter composition -0.020 1.06 0.385 

1.2 Plant pathogens 

Litter richness 0.251 87.99 <0.001 
 

Mass loss 0.037 13.44 <0.001 

Litter composition 0.284 24.68 <0.001 
 

Litter richness 0.039 7.71 <0.001 

Tree  0.014 3.60 0.022 
 

Litter composition 0.035 2.62 0.009 

Block (Tree*Plot) -0.056 1.58 0.028 
 

Tree*Litter composition 0.046 1.51 0.045 

Tree*Litter composition -0.069 1.11 0.330      

1.3 Saprotrophs 

Litter richness 0.099 22.27 <0.001 
 

Litter richness 0.058 11.15 <0.001 

Litter composition 0.118 6.96 <0.001 
 

Mass loss 0.027 10.47 0.001 

Block (Tree*Plot) 0.038 1.91 0.002   Litter composition 0.022 2.15 0.032 

Tree*Litter composition 0.008 1.64 0.025  Tree*Litter composition 0.060 1.78 0.008 

 892 

 893 



44 
 

Supplementary Information 894 

Fig. S1. Host-specific EcM fungal preferences towards foliar and root litter species. 895 

Table S1. Initial chemical composition of foliar and root litter species 896 

Table S2. Primers used in this study 897 

Table S3. OTU table of all taxa associated with foliar and root litter 898 

Table S4. Detailed metadata for foliar and root litter samples 899 
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Figure 3
Click here to download high resolution image

http://ees.elsevier.com/sbb/download.aspx?id=590711&guid=40d9fe42-61e8-4f45-94b8-3fa667f51ba1&scheme=1
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