
Feature Interaction Problems in Smart Cards with
Dynamic Application Lifecycle and their

Countermeasures

Abstract—Smart cards, in their traditional deployment archi-
tecture referred to as the Issuer Centric Smart Card Ownership
Model (ICOM), have a restricted application lifecycle. In this
model, an application is installed onto a smart card by the
relevant card issuer. In most cases, the card issuer is also the
centralised controlling authority for different lifecycle stages of
the application. The installed application might not be deleted for
the whole duration of the smart card’s operation. The interaction
of the application is controlled and closely monitored by the
card issuer. ICOM-based smart cards have only one application,
in the majority of deployments. Therefore, the likelihood of
Feature Interaction Problems (FIPs) is minimal. By contrast, in
open and dynamic smart card models like the GlobalPlatform
Consumer-Centric Model (GP-CCM), and the User Centric
Smart Card Ownership Model (UCOM) the probability of FIPs
is substantially higher. The nature of these models allows users to
install and delete applications as they require. This change in the
application landscape might create a situation in which features
(functions) of an application do not execute properly due to their
reliance on an application that might be removed by the user or
updated/modified by the Service Provider (SP). In this paper, we
will focus on the problems related to application deletion that
can potentially cause an FIP on the smart card platform. The
paper proposes a framework to minimise such problems so the
users can gain maximum service from their device and “freedom
of choice” without concerns about application interdependencies.

I. INTRODUCTION

On any computing device, individual applications consist of
multiple functions. These functions have intrinsic dependence
on each other in the context of the application, whereas
different applications might rely on each other or on different
services provided by the platform (Operating System: OS
and Hardware). These dependencies are the result of modular
designs that have significantly helped in enabling easy devel-
opment and deployment of various applications to a wide range
of computing devices. However, such dependencies in any
context, including application-to-application, application to
Application Programming Interfaces (APIs), and application-
to-OS, can cause Feature Interaction Problems (FIPs).

The narrow definition of an FIP is where “two or more
features (functions, applications, and/or Application Program-
ming Interfaces: APIs, etc.) in a close coupling (interaction)
reach a stage when change, modification or interruption to
one of the features adversely affect the overall stability and/or
reliable execution of others” [1–4]. In any dynamic environ-
ment, applications are constantly being installed or removed
in addition to being updated and modified. Occurrence of FIPs

in such an environment is a consequence of the openness and
dynamism of that environment.

Traditional smart cards are under centralised control, usually
in the hands of the card issuer who acquires them from the
manufacturer and issues them to individual users [5]. The
card issuer has complete control of the smart card, including
the hardware, Operating System (OS) and application(s). In
this model, also referred to as ICOM [5] applications are
not deleted or installed very often. Furthermore, the card
issuer can vet off-card the compatibilities and dependencies
between applications and the OS. Finally, a substantial number
of smart cards deployed under this model only have one
application, whose lifetime is directly related to the lifetime
of the respective smart card. Therefore, consideration of FIPs
is not necessary; however, this cannot be assumed for future
smart card models [6]. The rationale behind this is based on the
growing trend in the smart card industry towards multitenancy
on multi-application smart cards — multitenancy by different
non-related organisations.

Smart card models like GP-CCM [7] and UCOM [5] allow
users to install and delete applications to varying degrees.
Where applications from varied providers can be installed
there is the potential for compatibility issues. Furthermore, dif-
ferent applications might have off-card relationships between
their providers so that that they share resources with each
other on a smart card. Such a mechanism is referred to as
application sharing [8]. If one of the applications is modified or
updated, it might have an adverse effect on the functioning of
the dependent applications. Similarly, a Smart Card Operating
System (SCOS) or application update might make certain
functions incompatible with each other. Such issues arise
due to the openness and dynamism of the proposed models
and are categorised as FIPs for smart cards. Resolving these
issues would be an important step towards a fully dynamic
multitenancy multi-application smart cards.

A. Contribution of Paper

In this paper, we focus on only one aspect of FIPs for smart
cards: application deletion. The application deletion process
has the potential to introduce interdependency issues that
might create FIPs for the remaining applications on the card.
While other FIP-related scenarios are also valid and require
in-depth analysis, they are beyond the scope of this paper. To
minimise any FIP-based issues related to application deletion,
we propose a potential solution for smart cards (regardless of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/224802725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

their use of ICOM, GP-CCM or UCOM). We also compare our
proposed framework with the existing frameworks that deals
with application deletion.

B. Structure of Paper

In section II, we briefly discuss different smart card-based
models. Section III then defines the term “FIP” in the context
of this paper, assessing what actions can cause this, and their
relevance to the smart card architecture. In section IV, we
present a short survey of how this problem is dealt with
existing architectures. In section V, we propose a framework
as a potential solution for application deletion in a manner that
avoids FIPs. Furthermore, in the same section, we analyse the
proposal and compare it with existing solutions. Finally, in
section VI we discuss future research directions and conclude
the paper.

II. SMART CARD ECOSYSTEMS

From their inception at the end of the 1970s up to the
creation of multiapplication platforms at the end of the 1990s,
smart cards generally supported only one application, issued
for a specific purpose by the card issuer. However, multiappli-
cation technologies [9], like Java Card [10], Multos [11] and
a few others no longer in use, have enabled the emergence of
new species in the smart card ecosystem, including application
providers (also refered as Service Provider: SP) being able to
develop applications to load onto cards post-issuance. New
ownership models have been proposed ranging from those in
which the smart cards’ issuer can share the smart cards with
partners, to those in which the cardholder is the owner of her
card and as a result administrate it according to her needs and
wishes.

A. Issuer Centric Smart Cards

Issuer Centric Smart Cards [5] are the most commonly
deployed smart cards for historical, branding, business and
technical reasons. As discussed, historically, smart cards sup-
ported only one purpose-specific application issued by the card
issuer.

Smart Card Hardware

Smart Card Multiapplication Technology

Application

C

Card Issuer’s Space

Application

D

Application

E

TSM’s Space

Application

F

Card Applications Management Framework

... ...

Figure 1. Issuer Centric Smart Card Architecture

On the branding side, even if new technologies have enabled
the support of several applications, smart card issuers still
wanted to keep their brands on their cards and did not want to
share this space on the plastic card’s body with other actors.

However, with the development of Near Field Communica-
tion (NFC) technology, cards are now more often embedded

in terminals (e.g. phones) and the branding aspect is less of a
problem since the cards are hidden.

For business reasons, smart card issuers want to keep control
of the markets where smart cards are used. Since they are
looking for new sources of revenue, they sign partnership
agreements with application providers to lease them space on
their smart cards. However, the key expertise of smart card
issuers is not the management of post-issuance deployment of
applications. To leverage the use of multiapplication technolo-
gies, NFC technology has offered a technical solution in the
form of the Trusted Service Manager (TSM) architecture [15].

This model for post-issuance deployment of applications
does not stipulate who must be the TSM and it provides two
main features: security of deployed cards is maintained as long
as the TSM is a trusted party for the smart card issuers; and
smart card issuers can still get revenue according to the terms
of agreement signed with the TSM.

As illustrated in Figure 1, Issuer Centric Smart Cards
are thus owned by an issuer who controls them and may
authorise some partners, through the TSM’s authority, to
install applications. In this context, the cardholder has no say
on the contents of her smart card. The on-card application
management framework depends on the underlying smart
card multiapplication technology; for example, GlobalPlatform
[22].

On these smart cards, the trust relationships are the follow-
ing:

• smart card issuers trust their cards;
• the TSM trusts the smart cards (i.e. it can be sure that

the card is a real card and not a simulation [12]) because
of the agreement they have signed with the smart card
issuers;

• smart card issuers trust the applications installed under
the authority of the TSM because of the agreement they
have signed, since the TSM has also signed an agreement
with the application providers.

B. User Centric Smart Cards

User Centric Smart Cards [5] are not yet commonly de-
ployed but they are very promising, since they empower
cardholders with the ability to control the contents of their
cards whilst still ensuring a high level of security for the TSMs
and application providers installing their applications on these
cards.

As illustrated in Figure 2, the Trusted Environment &
Execution Manager (TEM) [13] is the key component of this
ownership model in coping with the threats associated with a
more open platform and in guaranteeing trust at the cardholder,
TSM and application provider levels.

These cards can be integrated with any models of de-
ployment, although the CO-TSM [14] is one of the most
appropriate in terms of maximal flexibility, scalability and
choices of applications for the user.

In addition the UCOM can accommodate a coopetitive
architecture [15], which can be seen as a compromise between
the desire for control that the users aspire to obtain and that

Smart Card Hardware

Trusted Environment & Execution Manager (TEM)

Smart Card Multiapplication Technology

Application

A

Cardholder’s Space

Application

B

Application

E

TSM’s Space

Application

F

Card Applications Management Framework

... ...

Figure 2. User Centric Smart Card Architecture

the issuers want to keep. Moreover, as illustrated in Figure 3,
compared to the traditional ICOM, the TEM reinforces trust
for each stakeholder; extending the present trust frameworks.

Smart Card Hardware

Trusted Environment & Execution Manager (TEM)

Smart Card Multiapplication Technology

Card Applications Management Framework

Application

C

Card Issuer’s Space

Application

D

Application

A

Application

B
Application

E

TSM’s Space

Application

F

Cardholder’s Space

Figure 3. Coopetitive Smart Card Architecture

C. GlobalPlatform Consumer-Centric Smart Cards

Due to the commercial interests involved in empowering
cardholders to choose applications they want on their cards,
GlobalPlatform has produced a white paper [7] to indicate the
main intent of their future Consumer-Centric Model. Based on
this white paper, the architecture of GP-CCM Smart Card is
presented in Figure 4. It can be seen that the cardholder’s space
is under the supervision of the card issuer’s space since there
is some direct communication between Application Providers
(or their TSM) and the card issuer (called the Trusted Token
Provider). In a similar way, installation can be authorised if
there is some pre-established business relationship between the
Application Provider and the card issuer.

Smart Card Hardware

Smart Card Multiapplication Technology

Application

A

Cardholder’s Space

Card Issuer’s Space

Application

B

Application

C

Application

D
Application

E

TSM’s Space

Application

F

Card Applications Management Framework

Figure 4. GP-CCM Smart Card Architecture

III. FEATURE INTERACTION PROBLEM

In this section, we discuss the FIP, and why it has become
a crucial issue for smart cards.

An FIP arises when multiple features in a system depend on
each other. Change or modification to one of these features has

the potential to affect the overall system. Early work on FIPs
can be traced to the telecommunication industry [16] where
services from different providers interacted with each other.

In the early days of computers, these devices were built from
scratch for specific purposes. Therefore, we can assume that
as the entire development of the system was carried out by the
same organisation, the likelihood of FIPs being a crucial issue
would be minimal. However, over time, the modular design
paradigm became the centrepiece of computer architecture.
From hardware to OS to user applications, all of them were
built to be as modular as possible.

This urge for modularity created dependencies between
different features, where each of these features might be
developed and managed by different organisations that might
not even have a relationship between them. As stated by Apel
et al. in [1], an FIP occurs when the behaviour of one feature
is influenced by the presence (or lack) of another feature (or
set of other features). Therefore, on one hand we would like
to build a computer system that has a high level of modularity
to foster innovation and enable a user to gain access to a
wide range of services, but on the other hand such modularity
increases the potential of FIPs in the overall system [17–19].

As discussed previously, early smart card [9, 20, 21] ar-
chitectures were based on direct integration of an application
to the core of the SCOS. The term SCOS is used in a loose
sense as these operating systems on early smart cards were
built to the requirements of the application that was to be
hosted on them [20]. However, this changed with the advent
of SCOSs like Multos [11] and Java Card [10]. These SCOSs
allowed multiple applications on a smart card; however, in
actual deployment such smart cards have been always under
the control of a centralised authority. This authority can
vet individual applications prior to installation and can also
intrinsically resolve any potential FIP concerns.

This changed with the advent of NFC and proposals like
GP-CCM and UCOM that put forward the idea of an open
and dynamic smart card architecture. In such an architecture,
we have the same situation as in general purpose computing,
in which users can download and install applications as they
desire. These applications have a set of their own features;
some depend on the underlying OS, libraries, and potentially
other applications on the respective platform. Changes to any
of these features have the potential to create negative effects
on the overall performance, reliability and security of the
application and/or platform [4].

The smart card industry and its deployment environment
is very sensitive to security, reliability and performance is-
sues. Therefore, to make GP-CCM, UCOM and even ICOM
(with or without TSM) robust solutions, we need to build
an architecture that can withstand any potential concerns in
relation to FIPs. However, this paper is restricted solely to
the FIP due to the application deletion process. To allow a
user to install any application as she desires, she might wish
the same for application deletion. Therefore, a situation in
which a user cannot delete an application because deleting
it might affect other applications might be not prefereable.

For example, application developers might try to restrict users
from deleting their applications by making the applications
they heavily depend on each other. In this situation, existing
architectures discussed in section IV will not delete these
applications.

Both of the proposed models, GP-CCM and UCOM, do
not place on any restriction on user’s choices on the platform
in any way by any application. Therefore, in this proposal
we try to minimise such possibilities. However, this cannot be
assumed for the existing architectures, as discussed in the next
section.

IV. SURVEY OF COUNTERMEASURES TO FEATURE
INTERACTION PROBLEMS

In this section, we will discuss how existing frameworks
like GlobalPlatform, Multos and Java Card propose to resolve
any FIP issues arising due to the application deletion process.

A. GlobalPlatform’s Approach

The application deletion process in the GlobalPlatform card
specification can be initiated by any entity that has the right to
execute a delete command. An application provider or a card
issuer (TSM) can issue a delete command that is accompanied
by mandatory authorisation parameters to authenticate to the
respective smart card(s). The deletion process is handled by
the OPEN framework of the GlobalPlatform specification
and it performs several checks before proceeding with the
deletion of an application. The checks include verifying the
deletion request (e.g. delete token [22]), confirming whether
the application requested for deletion is referenced by an-
other application, and other optional housekeeping checks.
If these verifications fail, the GlobalPlatform specification
states that the deletion process should be terminated. We
have two concerns with the GlobalPlatform deletion process.
Firstly, how it can determine that an application is referenced,
which is generally part of the application sharing mechanism?
As stated in the GlobalPlatform card specification [22], the
specification relies on the underlying platform implementation
for the application sharing mechanism. Therefore, this test for
the deletion process requires the support of the underlying
platform’s application sharing mechanism [8]. Secondly, if
an application is referenced, then why terminate the deletion
process? Instead, one could resolve the interdependencies and
then proceed with the deletion process. Unfortunately, the
GlobalPlatform card specification does not detail the resolution
of interdependencies among different applications on a smart
card.

B. Multos’ Approach

In Multos, the application deletion process is the same as the
application loading depicted in Figure 5 and described in detail
in [14]. The only differences are that in the deletion process,
there is no application load unit generator, and an application
provider or a card issuer requests the Multos Certification
Authority for the application deletion certificate instead of the
application load certificate [23]. The on-card deletion process

simply deletes the application data and code. As applications
on a Multos card do not have interdependencies, the deletion
process does not need to be concerned about FIPs. In the
application sharing mechanism on Multos cards [8], a client
application may still make a delegation request. However,
because it is just an APDU message, the delegation mechanism
can return an error that should be handled by the client
application.

Card Issuer

Application Load

Unit Generator

Multos Certification

Authority

Application Load

Facility

Application

Provider

Public Key &

Application Header

Signature

Verification Key &

Application Header

Signature Key &

Application

User Personalisation Data
Application Load Unit

Application Load

Certificate

Application Load

Certificate

Cardholder

Smart Card

Card Issued

Application

TSM

Figure 5. Multos Application Loading Framework [14]

C. Java Card’s Approach

The Java Card 2.x and 3.x classic editions have similar
schemes, as detailed in the GlobalPlatform card specification.
The Java Card specification [24] stipulates that the Java Card
Runtime Environment (JCRE) should not attempt to delete
an application if it is being referenced another application.
However, the Java Card 3.x connected edition extends the dele-
tion framework and attempts to resolve the interdependencies
among different applications. The Java Card 3.x connected
edition’s application deletion mechanism is based on events
and associated listeners. The events mechanism enables an
application to register/un-register itself for events generated
by other applications, and also enables it to generate similar
events. The connected edition defines an event for application
deletion as an “application instance deletion request” event
(event:///standard/app/deleted) [10]. By doing
so, a client application can register itself to the deletion events
of a server application. Therefore, when the server application
is requested to be deleted by an authorised entity, the card
manager of a Java Card will instruct the server application
regarding the deletion request that in return can signal the
deletion event. The client application, on receipt of such event,
can perform the tasks needed to remove the dependencies on
the server application. The card manager will then proceed
with checking whether there are any applications that still have
dependencies on the server application. If the dependencies of
such applications cannot be removed, the card manager will
terminate the deletion process. One thing to note is that it is
optional for server and client applications to register, signal
and manage any events.

The deletion mechanism for the Java Card 3.x connected
edition is a positive step towards providing an architecture
where application installation and deletion will be more com-
mon than before. The deletion mechanism for the UCOM

Deletion Request for AppD

Registry

Application

Deletion Handler

Listeners

Notify SP

Dependency

Removable

 Applications

 left

Yes

No

No

Cascade Deletion

Handler

Notify User

Application

Deletion

Remove

Dependencies

Housekeeping b) Authorise Housekeeping

Card Security

Manager

Unresolved

Dependencies

Applications

Left to Delete
Yes

Deletion Completed

Application

Sharing Record

Dependent

Applications List

Dependency Resolver

Yes

Yes

Resolvable

Dependencies

Applications for

Deletion
Mark Application

Record

Irresolvable

Dependencies

Record

Resolvable

Dependencies

Application

Removal

Parent Node

Yes

Last Node
Yes

a) Notify

Authorise

Deletion

Yes

Deletion Terminated

No

No

Check

Dependencies
No

No

c) Housekeeping

Completed

d) Remove Domain

e) Domain Removed

Unresolved

Dependencies

Yes
No

No

Check

Application

Presence

Yes

No

Figure 6. Proposed Application Deletion Process to avoid FIPs in Smart Cards with Dynamic Application Lifecycle (e.g. GP-CCM and UCOM)

architecture is based on the Java Card 3.x connected edition
with compulsory components and includes provision for a
cascade deletion process.

V. FEATURE INTERACTION RESOLUTION ARCHITECTURE

In this section, we discuss the proposed architecture to
minimise (if not completely remove) the probability of FIP
due to application deletion processes on GP-CCM, UCOM
and ICOM (with or without TSM) supported smart cards.

A. Proposed Architecture

The deletion process in UCOM [25] is based on the Java
Card 3.x connected edition specification, which is extended
by a cascade deletion mechanism. Cascade deletion enables
a smart card to proceed with the deletion of any dependent
applications if their dependencies cannot be resolved in a
satisfactory manner. A smart card can only proceed with
cascade deletion if the cardholder explicitly sanctions it. The
deletion process for the UCOM is illustrated in Figure 6 and
described below.

In Figure 6, the hard-bordered rectangles represent op-
erations and the rhombus shapes represent the if-then-else
conditional statement that is part of the operation that precedes
it. The quadrilaterals with curved vertical sides represent the
data structures (e.g. files). The dotted lines represent data
read or write operations: if the arrowhead points to the data
structure then it is a write operation; otherwise, it is a read
operation. During the description of the deletion process, we
italicise individual operations (e.g. operation) and refer to
a data structure with double quotes (e.g. “data structure”).

Most of the processes represented in the Figure 6 are part
of the application installation & deletion manager illustrated
in Figure 7.

On receipt of the application deletion request from either the
user or the SP, the application deletion will first check whether
the application is installed on the smart card. For illustration,
we call the application that is requested to be deleted AppD.
If AppD is present on the card, then it will be registered as
an installed application in the “registry” maintained by the
application installation & deletion manager. In this case, when
AppD is present, the request is forwarded to the application
deletion handler, which will retrieve the “application sharing
record” maintained by the smart card firewall and check
whether AppD has any dependent applications.

Smart Card Runtime Environment (SCRT)

Smart Card Firewall

S
m

a
rt

 C
a

rd

F
ir
e

w
a

ll

Smart Card Virtual Machine

System Classes Application Programming Interfaces (APIs)

Cross-Device

Manager

Cardholder’s

Security

Manager Domain

of SPAApplication Installation

& Deletion Manager

Backup &

Restoration Manager

Subscription

Manager

Platform Space Application Space

Domain

of SPB

Domain

of SPB

Trusted Environment & Execution Manager (TEM) Native Code

Smart Card Hardware

Card Security

Manager

Card Services

Manager

Figure 7. UCOM Supported Smart Card Architecture [13–15, 26]

If the application does not have any dependent applications,
the mark application gathers the application-related informa-
tion and records it in the file “applications for deletion”. Next,
it checks that the application is not part of any application-
sharing tree — meaning there are no application dependen-

cies to resolve. In this scenario, it might seem a redundant
check but this step will become necessary when AppD has
dependencies. In the next step, the user is notified that the
smart card is ready to delete the application AppD. If the
user authorises it, first the remove dependencies removes any
dependencies, which is followed by the application removal.
The application removal will first notify the SP (notify SP),
which might perform some housekeeping tasks like deper-
sonalisation of the application or/and transfer of any log
files. Depersonalisation of the application involves removal of
all user-related data along with any cryptographic material.
Furthermore, transfer of the application log files [27] to the
SP. We have to retain this as it might contain the usage
information of the application, which might be necessary for
fraud prevention or detection along with evidence of certain
activities. After the housekeeping is completed, the application
removal requests the card security manager (Figure 7) to
delete the domain credentials and reclaim the memory. After
a successful outcome, the application removal checks whether
there are any more applications to delete. If not, then the
deletion process will terminate.

In the second case, if the application deletion handler
finds dependencies, then it will generate the “dependent ap-
plication list”. The dependency resolver will take the list
of applications that are dependent and also ones that are
registered as “listeners” to the deletion request for AppD. The
dependency resolver generates the deletion event for AppD
and notifies all applications that are registered to this event.
If the applications can resolve the dependency then it will
record them as “resolvable dependencies”. For this step, we
rely on the dependent application’s response, which might be
malicious. If a dependent application AppC signals that it can
remove the dependency, but does not take any action regarding
this, its aim might be to use the reference to AppD for some
malicious purpose. However, we protect the platform from
such eventualities: the firewall mechanism will also remove
the record that AppC is authorised to access AppD reference
(a memory reference to AppD’s application resource manager:
Figure 8). The firewall mechanism can effectively prevent
the memory access; however, the main aim of dependency
resolution is to avoid any eventualities in which a dependent
application might not be able to execute reliably in the future.

The dependency resolver will keep on iterating through the
“dependent applications list” until it reaches the end of it. It
will then check whether there are any “unresolved dependen-
cies”. If yes, then it moves to the cascade deletion handler;
otherwise, it will check whether it is at the last application in
the “applications for deletion”. The cascade deletion handler
takes the “unresolved dependencies” list and iterates through
it, signalling the deletion of the respective applications. For
each application, a dependency analysis is performed. This
process is iterated until the list of all applications required to be
deleted is generated: “applications for deletion”. At this stage,
the user is notified by the notify user and the “applications
for deletion” is communicated. If the user authorises the card
to go ahead with the deletion of the applications, the remove

ACL: Access Control List. SIO: Shareable Interface Object. ARM: Application Resource Manager

Smart Card Hardware

Runtime Environment

Java Card Virtual Machine (JCVM) Native Methods

System Classes

Application Programming Interface (APIs)

Java Card Firewall

Entry Point Objects

Package A Package B

Applet A1

Applet A2

Applet B1

Applet B2

SIO

S
y
s
te

m
 C

o
n

te
x
t

Context BContext A

ACL

Application Resource Manager (ARM)

A
p

p
lic

a
tio

n

R
e

s
o

u
rc

e
 M

a
n

a
g

e
r ACL

Runtime Resource Manager

Figure 8. UCOM Supported Smart Card Application Architecture and
Application Sharing Framework (for details please see [8])

dependencies will first remove any dependencies. A point to
note is that we leave the dependencies removal process to the
end: if the user does not authorise the deletion, at least we will
not delete any application sharing instances. Therefore, before
the user authorises the deletion, the entire process attempts to
find dependent applications and points out to the user the list of
applications that cannot resolve their dependencies on AppD.
The application removal process will then iterate through the
“applications for deletion” and delete them one at a time.

In cases where the deletion request was initiated by the SP
of AppD, and it requires deletion of other applications that do
not belong to the SP, the user will still be notified. If the user
opts for not deleting it, the SP can then proceed with blocking
AppD. In the blocked state, an application is not accessible to
the user; however, dependent applications can still access it
through the application sharing mechanism.

As discussed before, the UCOM deletion process only
provides dependent applications with an opportunity to grace-
fully resolve their dependencies. If an application does not
have such a mechanism, the UCOM deletion process marks
that application for deletion. Furthermore, during the deletion
process AppD’s resource manager, which maintains access to
the application via the smart card firewall, is removed. Thus, if
a dependent application tries to access AppD’s resources, the
firewall mechanism will reject that request. If the application
does not gracefully proceed after the firewall rejects its request,
the card security manager can either block the application or
mark it for deletion. Therefore, any application that affects
the reliability of the smart card platform will be removed or
at least blocked by the card security manager.

B. Analysis of the Architecture

The basic ethos of the user- or consumer- centric design is
to give the right of decision-making to individual users. This
is the same in both the GP-CCM and UCOM proposals. In
our proposal, the user has complete freedom to choose any
application she wishes to be removed from her smart card.

There can be other applications that might be reliant on the
application selected for deletion. In this situation, the proposed
architecture follows the same ideology, empowering the user
and other applications to make their decisions. By empowering

Table I
COMPARISON BETWEEN EXISTING AND PROPOSED FRAMEWORK.

Features Multos Java Card 3.x GlobalPlatform Proposed Framework
Inter-dependencies No Yes Yes Yes
Application Deletion Yes Yes Yes Yes
Dependencies Discovery No Yes Yes Yes
Dependencies Resolution No No No Yes
Application Deletion with Dependencies No No No Yes
Dependent Application Notification No Yes No Yes
Dependent Application Protection No No No Yes

other applications, we mean informing the dependent applica-
tions that some of their features that might be dependent on
the application selected for deletion may not function properly.
Note that it is the responsibility of the application developers
of the dependent application to have a contingency plan for
such situations. Furthermore, if dependent applications do not
have such a mechanism and inform the SCOS that they cannot
manage this feature change, then the decision is given to the
smart card user. The user can either choose not to delete the
relevant application or to select the deletion of all dependent
applications that have notified the SCOS that they cannot
guarantee their safe and reliable execution.

C. Comparison with Existing Proposals

In this section, we compare the exiting proposals application
deletion and how to resolve the application inter-dependencies
with our proposal in this paper. The comparison is shown in
the table I.

Except Multos, all other proposals allow applications to
have inter-dependencies with each other. Where application
deletion is permitted in all of the platforms listed in table I.
However, only the proposed framework in this paper facilitates
the discovery and resolution of such dependencies. Java Card
and GlobalPlatform perform the discovery but if an application
has inter-dependencies then such an application is not deleted.
Therefore, there is no dependence resolutions for the success-
ful deletion of the respective application. Except our proposed
framework, no other existing framework provides application
deletion mechanism for inter-dependent applications. Further-
more, the proposal in this paper also notifies the dependent
application about the deletion, so it can adequate manage
its dependencies. If the dependent application cannot manage
its dependencies then it can inform the application deletion
handler, which might proceed with its deletion. However, for
instance if a dependent application informs the application
deletion handler that it can reliably function even after it
deletes the application on which it depends. Then later on
tries to access it (using application sharing mechanism) the
UCOM proposed firewall will prohibit such requests and
also mark it for non-conformation to the platform’s security
policies. Depending upon the security policies the application
might then be deleted from the smart card. The firewall
permissions that overseas the application sharing mechanism
are updated by the application deletion handler while deleting
an application and/or resolving dependencies.

VI. FUTURE RESEARCH DIRECTIONS AND CONCLUSION

In this paper, we looked at the FIP in the context of
smart card technology. Upto now the FIP has not received
substantial attention from either the smart card industry or
academia. There is a valid reason for this and it is entrenched
in the traditional deployment architecture of smart cards:
ICOM. However, with the changes introduced by GP-CCM
and UCOM, concerns in relation to FIPs have the potential to
increase. In this paper, we have only dealt with a particular
aspect of the FIP in connection with the application deletion
process on a smart card. The proposed architecture for applica-
tion deletion tries to resolve all potential feature dependencies
to ensure that after the relevant application is deleted, other
applications and SCOS are not affected, especially in terms
of reliability, and security. In future work, we would like to
explore additional aspects of FIPs in an open and dynamic
environment like GP-CCM and UCOM. This is considered to
be pivotal for the success of these models.

REFERENCES

[1] S. Apel, S. Kolesnikov, N. Siegmund, C. Kästner, and B. Garvin, “Ex-
ploring Feature Interactions in the Wild: The New Feature-interaction
Challenge,” in Proceedings of the 5th International Workshop on
Feature-Oriented Software Development, NY, USA: ACM, 2013.

[2] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Feature
Interaction: A Critical Review and Considered Forecast,” Comput.
Netw., vol. 41, no. 1, pp. 115–141, Jan. 2003.

[3] Q. Zhao, J. Huang, X. Chen, and G. Huang, “Feature Interaction Prob-
lems in Web-based Service Composition - (position paper),” in Feature
Interactions in Software and Communication Systems X,, M. Nakamura
and S. Reiff-Marganiec, Eds. Lisbon, Portugal: IOS Press, June 2009.

[4] R. L. A. Nhlabatsi and B. Nuseibeh, “Feature interaction: The Security
Threat from within Software Systems,” Progress in Informatics, no. 5,
pp. 75–89, 2008.

[5] R. N. Akram, K. Markantonakis, and K. Mayes, “A Paradigm Shift
in Smart Card Ownership Model,” in Proceedings of the 2010 Inter-
national Conference on Computational Science and Its Applications,
Bernady O. Apduhan, Osvaldo Gervasi, Andres Iglesias, D. Taniar, and
M. Gavrilova, Eds. Fukuoka, Japan: IEEE CS, March 2010.

[6] R. N. Akram and K. Markantonakis, “Smart Cards: State-of-the-Art
to Future Directions, Invited Paper,” in IEEE International Symposium
on Signal Processing and Information Technology, C. Douligeris and
D. Serpanos, Eds. Athens, Greece: IEEE CS, December 2013.

[7] “GlobalPlatform A New Model: The Consumer-Centric Model and How
It Applies to the Mobile Ecosystem,” Whitepaper, March 2012.

[8] R. N. Akram, K. Markantonakis, and K. Mayes, “Firewall Mechanism
in a User Centric Smart Card Ownership Model,” in Smart Card
Research and Advanced Application, 9th IFIP WG 8.8/11.2 International
Conference, D. Gollmann, J.-L. Lanet, and J. Iguchi-Cartigny, Eds., vol.
6035/2010. Passau, Germany: Springer, April 2010, pp. 118–132.

[9] D. Sauveron, “Multiapplication Smart Card: Towards an Open Smart
Card?” Inf. Secur. Tech. Rep., vol. 14, no. 2, pp. 70–78, 2009.

[10] Java Card Platform Specifications, Oracle Std. V3.0.1, May 2009.

[11] Multos: The Multos Specification,, Online, Std.
[12] R. N. Akram, K. Markantonakis, and K. Mayes, “Simulator Problem

in User Centric Smart Card Ownership Model,” in 6th IEEE/IFIP
International Symposium on Trusted Computing and Communications,
H. Y. Tang and X. Fu, Eds. HK, China: IEEE CS, December 2010.

[13] ——, “Trusted Platform Module for Smart Cards,” in 6th IFIP Interna-
tional Conference on New Technologies, Mobility and Security (NTMS),
O. Alfandi, Ed. Dubai, UAE: IEEE CS, March 2014.

[14] R. N. Akram, K. Markantonakis, and D. Sauveron, “Collaborative and
Ubiquitous Consumer Oriented Trusted Service Manager,” in 13th IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications, Y. Liu, Ed. IEEE CS, September 2014.

[15] R. N. Akram, K. Markantonakis, and K. Mayes, “Coopetitive Architec-
ture to Support a Dynamic and Scalable NFC based Mobile Services
Architecture,” in 2012 Inter. Conf. on Information and Communications
Security, K. Chow and L. C. Hui, Eds. China: Springer, Oct 2012.

[16] T. F. Bowen, F. Dworack, C.-H. Chow, N. Griffeth, G. E. Herman,
and Y.-J. Lin, “The Feature Interaction Problem in Telecommunications
Systems,” in Software Engineering for Telecommunication Switching
Systems, Seventh International Conference on. IET, 1989, pp. 59–62.

[17] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Feature
Interaction: A Critical Review and Considered Forecast,” Computer
Networks, vol. 41, no. 1, pp. 115–141, 2003.

[18] P. Zave, “Faq Sheet on Feature Interaction,” Link: http://www. research.
att. com/˜ pamela/faq. html, 1999.

[19] S. Apel, W. Scholz, C. Lengauer, and C. Kastner, “Detecting De-
pendences and Interactions in Feature-Oriented Design,” in Software

Reliability Engineering, IEEE 21st International Symposium on, Nov
2010.

[20] K. Markantonakis, “The Case for a Secure Multi-Application Smart
Card Operating System,” in the First International Workshop on
Information Security. London, UK: Springer, 1998, pp. 188–197.

[21] P. Girard, “Which Security Policy for Multiplication Smart Cards?” in
Proceedings of the USENIX Workshop on Smartcard Technology on
USENIX Workshop on Smartcard Technology. Berkeley, CA, USA:
USENIX Association, 1999, pp. 3–3.

[22] GlobalPlatform: GlobalPlatform Card Specification, Version 2.2,,
GlobalPlatform Std., March 2006.

[23] “Multos: Guide to Loading and Deleting Applications,” MAOSCO,
Tech. Rep. MAO-DOC-TEC-008 v2.21, 2006.

[24] Java Card Platform Specification, Sun Microsystem Inc Std. V2.2.2,
March 2006.

[25] R. N. Akram, K. Markantonakis, and K. Mayes, “Application Manage-
ment Framework in User Centric Smart Card Ownership Model,” in
The 10th International Workshop on Information Security Applications,
H. Y. YOUM and M. Yung, Eds., Korea: Springer, August 2009.

[26] ——, “A Secure and Trusted Channel Protocol for the User Centric
Smart Card Ownership Model,” in 12th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications.
Melbourne, Australia: IEEE CS, July 2013.

[27] K. Markantonakis, “Secure Logging Mechanisms for Smart Cards,”
Ph.D. dissertation, Royal Holloway, University of London, Egham,

United Kingdom, December 1999.

	Introduction
	Contribution of Paper
	Structure of Paper

	Smart Card Ecosystems
	Issuer Centric Smart Cards
	User Centric Smart Cards
	GlobalPlatform Consumer-Centric Smart Cards

	Feature Interaction Problem
	Survey of Countermeasures to Feature Interaction Problems
	GlobalPlatform's Approach
	Multos' Approach
	Java Card's Approach

	Feature Interaction Resolution Architecture
	Proposed Architecture
	Analysis of the Architecture
	Comparison with Existing Proposals

	Future Research Directions and Conclusion
	References

