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Abstract. Embedded devices have permeated into our daily lives and signifi-
cant day-to-day mundane tasks involve a number of embedded systems. These
include smart cards, sensors in vehicles and industrial automation systems. Satis-
fying the requirements for trusted, reliable and secure embedded devices is more
vital than ever before. This urgency is also strengthened further by the potential
advent of the Internet of Things and Cyber-Physical Systems. As our reliance
on these devices is increasing, the significance of potential threats should not be
underestimated, especially as a number of embedded devices are built to operate
in malicious environments, where they might be in the possession of an attacker.
The challenge to build secure and trusted embedded devices is paramount. In this
paper, we examine the security threats to embedded devices along with the asso-
ciated prevention mechanisms. We also present a holistic approach to the security
and trust of embedded devices, from the hardware design, reliability and trust of
the runtime environment to the integrity and trustworthiness of the executing ap-
plications. The proposed protection mechanisms provide a high degree of security
at a minimal computational cost. Such an agnostic view on the security and trust
of the embedded devices can be pivotal in their adoption and trust acquisition
from the general public and service providers.

Keywords: Smart Cards, Fault Attacks, Runtime Attacks, Hardware Security,
Runtime Security, Trusted Platform, Trusted Execution, Trojans, Counterfeit Prod-
ucts.

1 Introduction

Embedded devices provide a computing environment that is miniaturised to fit in as part
of a much larger systems. For example, a smart phone, modern car and aircraft might
have number of embedded devices interconnected with each other to perform associated
tasks. The deployment of embedded devices is steadily increasing and the advent of the
Internet of Things (IoTs) and Cyber Physical Systems (CPS) will make them closely
integrated into almost every aspect of our lives.

These embedded devices must provide highly reliable and deterministic services
– some of which might even be crucial to the health and safety of an individual or a
community. Examples of such deployments can be the embedded devices used in the
health sector, vehicles and industrial systems. Therefore, such devices have to not only
provide efficient and reliable services in difficult operational environments but also pro-
vide a degree of security and trustworthiness. The level of security and trustworthiness
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is obviously dictated by the nature of the overall system that the embedded devices are
going to integrate with.

Having computational and in certain cases operational restrictions, embedded de-
vices not only have to protect against software based attacks, but also hardware modifi-
cations and a combination of the both. Furthermore, such devices are mostly deployed
in operational environments where they are easily accessible to the malicious users.
Therefore, being small, less powerful and adhering to very stringent performance and
economical costs — they are still required to be reliable, secure and trusted. These are
the major challenges that embedded devices have to meet.

In addition to the security and reliability of such devices, another important aspect
is the genuineness of the device. The genuineness problem has two aspects, which are
raised due to the increased demand in outsourcing of the chip/device fabrication to
(external/foreign) foundries. These foundries can inject hardware Trojans to the orig-
inal design of the device. In addition, the foundry can also create counterfeit devices.
Therefore, any organisations receiving these devices need to have a high assurance and
capability to validate that these devices are legitimate and not tampered with. We term
this is a problem of genuineness of the embedded devices.

In this paper, we will investigate the state-of-the-art of the threat and security in the
embedded computing field along with examining proposals that cover the embedded
device’s security, trust and genuineness.

2 Embedded Computing’s Security Challenges

In this section, we try to briefly answer two questions, firstly why security and reliability
is essential for the embedded devices, and secondly what security threats are posed to
embedded devices.

2.1 Rationale for Security Considerations

In the last few decades, embedded devices have proliferated into almost every com-
puting and industrial system. A most common example of the embedded device with
which most of the public might be familiar with is “smart cards”. These devices are
issues to individual users by organisations, so the individuals can access the organi-
sation’s services in a secure and reliable manner. Environments these smart cards are
deployed in include mobile telecommunication, banking and access control, to name
a few. We appreciate further that failure to the respective organisations services might
result in potential monetary, reputation and even physical harm in certain cases.

Another example to understand the necessity of the security and reliability of em-
bedded devices can be in automotive industry. Security of the Electronic Control Unit
(ECU) plays a crucial role to ensure the safety and reliability of the car. These ECUs
are embedded devices used to control different (crucial) operations in a car. In modern
cars, there can be 70 ECUs [34] and if any of them can be compromised, the safety of
the car and passengers may be at risk.

Embedded devices are tiny electronic chips that perform multitude of tasks in high-
tech systems. These devices are present in electronic equipment ranging from mi-
crowave oven to high-speed railway systems, nuclear plants, and aeroplanes etc. A



failure of a single device has the potential to damage the overall system. Such fail-
ures can lead to disastrous consequences, as revealed by the U.S. Senate Committee
on Armed Services that identified suspected components in the CH-46 Sea Knight he-
licopter, C-17 military transport aircraft, P-8A Poseidon sub hunter and F-16 fighter
jet [10]. Multi-million dollar defence equipment reliability might be compromised by
a $2 insecure and counterfeit embedded device. As estimated by the Semiconductor
Industry Association (SIA) in 2013, the cost of counterfeit embedded devices is at US
$7.5 billion per year [11]. The problem is by no means localised only affecting certain
areas but a global issue. There are number of high profile cases [10] that came to light
that identified sub-standard embedded devices in military equipment because of strin-
gent safety testing. In commercial environments, the problem is perceived to be higher
in magnitude than the military.

From the discussion in this section we can conclude that not only the security and
reliability of these embedded devices is crucial but also the genuineness. In subsequent
sections we will discuss different threats posed to the embedded systems.

2.2 Threat Model for Embedded Devices

In this section, we discuss the threat model in relation to the embedded devices. Embed-
ded devices can be in the hands of an adversary; therefore, he or she has the potential to
attack the devices in every conceivable way ranging from hardware intrusions to intro-
ducing malicious applications/code. From an adversary’s point of view, he or she might
target:

1. Hardware platform
2. Permanent data (saved in the devices, which can include cryptographic keys)
3. Runtime data
4. Control flow of the program (i.e. to interfere with the execution of an application)

The above list of potential targets is just a subset of attributes that an adversary
might try to focus on during his or her attack. It is by no means an exhaustive list and
should be taken as an example of potential targets.

2.3 Hardware Attacks

In these types of attacks, an adversary tries to alter the silicon design of an embedded
device. This attack requires a high level of knowledge of the hardware design and spe-
cialised equipment that could be used to change the circuit on the silicon. However,
these attacks are very powerful as it would be extremely challenging for any software
based protection mechanism to provide protection against them.

Furthermore, another facet of the hardware attacks includes the malicious changes
to chip design during the manufacturing stage. In this case, when the manufacturing of
the devices is outsourced, the foundry can potentially introduce malicious designs that
act as hardware Trojans.

As countermeasures to these attacks, the chip designer can include:

1. Smaller circuitry: Reducing the size makes physical attacks more difficult.



2. Hiding the bus: Glue logic and placing bus lines on lower layers of the circuitry of
the chip.

3. Scramble bus lines: Communication buses can be scrambled in static, chip-specific
or session-specific manner. The scrambling of the communication buses is carried
out in order to make the function of individual silicon connections in a communi-
cation bus not apparent to the adversary (hidden).

4. Tamper-resistance: Placing sensors to detect physical perturbation and kill the de-
vice as a result.

2.4 Attacks on Persistent Storage

Data stored in persistent memory can include sensitive information, including pass-
words, Personal Identification Number (PIN), and cryptographic keys. In addition to
data, proprietary application code and/or algorithm might also be stored on the persis-
tent memory. Therefore, the persistent memory is like a treasure trove for an adversary.
There are several potential ways an adversary can read the persistent storage that might
include:

– Reading the memory via directly tapping into the storage locations and/or commu-
nication buses.

– Exploiting a potential bug/vulnerability in the sandboxing mechanism of the run-
time environment, which might lead to a malicious application reading the entire
persistent memory.

– Using side channel leakages to infer the data

As a security designer, to protect against potential attacks on the persistent storage,
set of comprehensive security countermeasures are required that might include:

1. Encrypted storage/communication buses: To avoid data being read from storage or
during transit, the data should be encrypted while in storage and over the commu-
nication bus using a hardware based key.

2. Memory read: Allowing only selected instruction in a given condition to access
such data and then check their conditions.

3. Side channel protection: Implementing side channel protection techniques that hide
the presence of data from the side channel footprint.

2.5 Attacks on Runtime Data

During the execution of an application, several data structures are generated that fa-
cilitate the execution. These might include intermediate computation results, function
call parameters, return addresses and un/conditional statement parameters. These data
structures might contain valuable information for an adversary to compromise the ap-
plication. Modification to the runtime data can change the behavior of the application
execution.

Modification to the runtime data is usually carried out by injecting a fault during the
execution of the application. The aim of an adversary during a fault attack is to disrupt



the correct execution of an application by introducing errors. These errors are usually
introduced by physical perturbation of the hardware platform on which the application
is executing. By introducing errors at a precise instruction, an adversary can circumvent
the security measures implemented by the runtime environment. Possible types of faults
an adversary can produce are described as below:

1. Precise bit error: In this scenario, an adversary has total control over the timing and
locations of bits that needs to be changed

2. Precise byte error: This scenario is similar to the previous one; however, an adver-
sary only has the ability to change the value of a byte rather than a bit.

3. Unknown byte error: An adversary has no control on the timing and byte that it
modifies during the execution of an instruction.

4. Unknown error: In this scenario, an adversary generates a fault but has no location
and timing control.

From the above list of fault models, the first model adversary can be considered
the most powerful. However, for a smart card environment the second scenario (i.e.
precise byte error) is the most realistic one. Due to the advances in the smart card
hardware and counter-measures against fault attacks (i.e. especially for cryptographic
algorithms) it is difficult to have total control of timing and locations of bits to flip [47].
Furthermore, fault attacks require knowledge of the underlying platform and application
execution pattern [29]. This is possible to achieve by side-channel analysis [37]. In
most processors runtime data is processed as stack items; therefore their protection also
works around the stack.

Countermeasures to the attacks on the runtime data include but are not limited to:

1. Stack canaries is a method where the processor inserts canary values into the stack
and then check them during operation. If they are changed then there is an attack
otherwise execution continues [28].

2. Separation of data and return address stack in this work the authors propose a
segregation of the stack memory used for return addresses and other stack items.
Then enforce instruction based access to the return addresses [32].

3. Verifying the integrity of an instruction before executing it. A trade-off between the
security and the computational cost that the countermeasure adds.

4. Code signing: Verify it before loading it to the processor. However, this doesnt pro-
tect the program against runtime attacks. One of the solutions proposed to protect
the instructions at runtime is to add an integrated module into the design that hashes
the executed instructions and verifies their signature on the fly.

2.6 Notion of Trust and Trustworthiness

The definition of trust, taken from Merriam Webster’s online dictionary1 states that trust
is a “belief that someone or something is reliable, good, honest, effective, etc.”

Based on this, we generically define digital trust as “a trust based either on past
experience or evidence that an entity has behaved and/or will behave in accordance

1Website: http://www.merriam-webster.com/dictionary/trust



with the self-stated behaviour.” The self-stated purpose of intent is provided by the en-
tity and this may have been verified/attested by a third party. The claim that the entity
satisfies the self-stated behaviour can either be gained through past interactions (experi-
ence) or based on some (hard) evidence like validatable / verifiable properties certified
by a reputable third party (i.e. Common Criteria evaluation for secure hardware [2]).
This definition is not claimed to be a comprehensive definition for digital trust that en-
compasses all of its facets. However, this generic definition will be used as a point of
discussion for the rest of the paper.

In the real world, trust in an entity is based on a feature, property or association that
is entailed in it. In the computing world, establishing trust in a distributed environment
also follows the same assumptions. The concept of trusted platforms is based on the
existence of a trusted and reliable device that provides evidence of the state of a given
system. How this evidence is interpreted is dependent on the requesting entity. Trust
in this context can be defined as an expectation that the state of a system is as it is
considered to be: secure. This definition requires a trusted and reliable entity called a
Trusted Platform Module (TPM) to provide trustworthy evidence regarding the state of
a system. Therefore, a TPM is a reporting agent (witness) not an evaluator or enforcer
of the security policies. It provides a root of trust on which an inquisitor relies for the
validation of the current state of a system.

The TPM specifications are maintained and developed by an international standards
group called the Trusted Computing Group (TCG)1 Today, TCG not only publishes the
TPM specifications but also the Mobile Trusted Module (MTM), Trusted Multi-tenant
Infrastructure, and Trusted Network Connect (TNC). With emerging technologies, ser-
vice architectures, and computing platforms, TCG is adapting to the challenges pre-
sented by them.

2.7 Trust in Execution Environment

In this section we briefly introduce some of the proposals for a secure and trusted ap-
plication execution and data storage.

ARM TrustZone Similar to the MTM, the ARM TrustZone also provides the archi-
tecture for a trusted platform specifically for mobile devices. The underlying concept
is the provision of two virtual processors with hardware-level segregation and access
control [49,7]. This enables the ARM TrustZone to define two execution environments
described as Secure world and Normal world. The Secure world executes the security-
and privacy-sensitive components of applications and normal execution takes place in
the Normal world. The ARM processor manages the switch between the two worlds.
The ARM TrustZone is implemented as a security extension to the ARM processors
(e.g. ARM1176JZ(F)-S, Cortes-A8, and Cortex-A9 MPCore) [7], which a developer
can opt to utilise if required.

1Trusted Computing Group (TCG) is the culmination of industrial efforts that included the
Trusted Computing Platform Association (TCPA), Microsoft’s Palladium, later called Next Gen-
eration Computing Base (NGSCB), and Intel’s LaGrande. All of them proposed how to ascertain
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Fig. 1. Generic architectural view of ARM TrustZone

GlobalPlatform Trusted Execution Environment (TEE) The TEE is GlobalPlat-
form’s initiative [4,6,9] for mobile phones, set-top boxes, utility meters, and payphones.
GlobalPlatform defines a specification for interoperable secure hardware, which is based
on GlobalPlatform’s experience in the smart card industry. It does not define any par-
ticular hardware, which can be based on either a typical secure element or any of the
previously discussed tamper-resistant devices. The rationale for discussing the TEE as
one of the candidate devices is to provide a complete picture. The underlying owner-
ship of the TEE device still predominantly resides with the issuing authority, which is
similar to GlobalPlatform’s specification for the smart card industry [3].

3 Trust in the Underlying Hardware

In the early days of computing systems security was almost virtually associated with
the software. However, the commercial and economic conditions of late have forced
hardware manufacturers to outsource their production process to countries with cheaper
infrastructure cost. While this significantly reduces the integrated circuit production
cost, it also makes it much easier for an attacker to compromise their supply chain and
replace them with unoriginal or malicious ones. Such items could be counterfeits or
hardware Trojans. This threat to the IC supply chain is already a cause for alarm in
some countries [12, 40]. For this reason, some governments have been subsidising few
high-host local foundries for producing ICs used in military applications [31]. However,
this is not affordable solution for most of the developing countries.

Counterfeits Counterfeiting at a global stage covers almost everything that is made
or manufactured, from spare parts to clothing to prescription drugs. In contrast to other
counterfeit items, the ramifications of a counterfeit IC device failure in an electronic
system are more than just inconvenience or a minor loss of money. According to [27],
the number of counterfeit incidents has increased from 3,868 in 2005 to 9,356 in 2008.
These incidents can have the following ramifications; (a) original IC providers incur an

trust in a device’s state in a distributed environment. These efforts were combined in the TCG
specification that resulted in the proposal of TPM.



irrecoverable loss due to the sale of often cheaper counterfeit components, (b) low per-
formance of counterfeit products (that are often of lower quality and/or cheaper older
generations of a chip family) affects the overall efficiency of the integrated systems that
unintentionally use them; this could in turn harm the reputation of authentic providers,
and (c) unreliability of defective devices could render the integrated systems that un-
knowingly use the parts unreliable; this potentially affects the performance of weapons,
airplanes, cars or other crucial applications that use the fake components [38].

Hardware Trojans Hardware Trojans are malicious circuitry implanted in an IC. The
malicious circuit can be inserted for different reasons, such as stealing sensitive infor-
mation, IP reverse engineering or spying on the user. One way of implanting a Trojan
into an IC is by compromising the supply chain of ICs and adding the Trojan mask into
the original design. Trojan circuits are designed to be very difficult, nearly impossible,
to detect by purely functional testing. They are designed to monitor for specific but rare
trigger conditions; for instance specific bit patterns on received data or the bus. Once
triggered the actions of the Trojan could be leaking secrets, creating glitches to com-
promise the security of larger electronic equipments or simply disabling the circuit. For
example, a simple yet deadly Trojan in RSA [46] could be to inject a fault into the CRT
inversion step during RSA signature computation that could lead to the compromise of
the RSA keys [25].

3.1 Countermeasure

Counterfeit ICs and hardware Trojans could be designed to be hard to detect by purely
functional testing. However, in the real world ICs leak information about their internal
state unintentionally. This leakage comes as a power consumption or electromagnetic
emissions caused by a varying electric current flowing through the IC’s circuitry. This
leakage can be recorded and analysed to adequately detect counterfeits and hardware
Trojans. For instance in [48], a gate-level passive hardware characterisation of an IC was
proposed to identify defective ICs. However, the gate-level characteristics are dependent
on ageing, temperature and supply voltage instability. The authors use the negative bias
temperature instability model proposed in [26] to calculate the original characteristics
of aged ICs. In another proposal [13], power consumption of a device was proposed
for detecting hardware Trojans implanted in ICs. In this paper process variation noise
modelling (constructed using genuine ICs) is used for detecting ICs with Trojan circuits
through statistical analysis. In this section we discuss how same leakage can be used
to verify the integrity of control flow jumps and instructions integrity before the IC is
integrated into a security critical environments.

We implemented these techniques on the ATMega164 processor. This processor has
130 instructions used for transferring data, performing arithmetic and logic operations.
To simplify the experiment we removed redundant instructions. The processor is pow-
ered up by a +5V power supply and running at a 4MHz clock speed. Leroy WaveRunner
6100A [39] is used to measure the power traces.

Control Flow Verification An application is a combination of basic blocks. A basic
block is a linear sequence of executable instructions with only one entry point and one



exit point [23]. After executing one basic block the processor jumps into another basic
block based on the branching instruction executed at the end of the current basic block.
In this paper we refer to basic blocks as states.

To reconstruct the state sequence that a device followed during the execution of a
program from its side channel leakage we modelled the device as a Hidden Markov
Model (HMM) [30, 44]. A Markov Model is a memoryless system with a finite number
of hidden states. It is called memoryless because the next state depends only on the cur-
rent state. In such a model the states are not directly observable. However, there has to
be (at least) one observable output of the process that reveals partial information about
the state sequence that the device has followed. Fig. 2, illustrates a Markov Process with
five hidden states (i.e A to E).
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Fig. 2. A Markov model representing a device executing a program with five states (A, B, C, D
and E). The power consumption is the observable output that reveals partial information about
the state sequence of the device.

To build the HMM of our test program we collected 1000 traces for each state and
computed all the necessary parameters. We have also pre-computed the possible valid
control flow jumps of the program. At runtime we collected the power consumption of
the program without any prior information which path the device followed to execute
the program. From the trace we recovered the control flow jumps using the HMM and
Viterbi algorithm [35]. We repeated this experiment multiple times and successfully
verified the control flow jumps. Details of the technique and experiment results are
presented in [42].

Verifying Integrity of Executed Instructions The first step in our verification is the
construction of instruction-level side channel templates using few identical processors.
During verification, the verifying device records the processor’s power consumption



waveform while executing the application and extracts the executed instructions by
matching it against the pre-constructed templates. The extracted information together
with the pre-computed signatures are then used to verify the integrity of the software
component using RSA signature screening algorithm [24].
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Fig. 3. Software integrity verification block diagram

As shown in the diagram (Fig. 3), the embedded system has the embedded parame-
ter calculator (EP-C), embedded processor and the application package which includes
the application executable and the basic block signatures. The EP-C is a special module
that calculates the product of two large numbers. It can be implemented in hardware or
software; although, hardware would be preferable for performance reasons. The embed-
ded processor is the core that executes the software component of the embedded system
(application executable). After the execution of every basic block the EP-C updates its
parameter (EP) by multiplying it with the basic block’s signature.

The verifying device has the templates, the instruction classifier, the verifier param-
eter calculator (VP-C) and the software integrity verifier. The templates are constructed
ahead of time using identical processors and then installed into the verifying device’s
non-volatile memory. How these templates are installed into the verifying device is
beyond the scope of this paper. The instruction classifier uses these templates to ex-
tract the executed instructions from the processor’s power consumption waveform (W ).



The power consumption waveform is measured as a voltage drop across a shunt re-
sistor connecting the embedded processor’s ground and the verifying device’s ground
voltage. The VP-C uses the output of the classifier to compute the verifying device’s
parameter. Finally, the software integrity verifier uses the output of the EP-C and VP-C
to verify the software using RSA signature screening algorithm. Details of the template
construction, instruction classification and software integrity verification processes are
discussed [43].

The templates of selected instructions are created from 2500 traces collected by
executing the instructions using different conditions; such as data processed, memory
locations and registers. Finally, using these templates we successfully verified the in-
tegrity of executed instructions of a sample PIN verification program. Full detail of the
verification techniques and experimental results are presented in [43].

4 Trusted Platform and Execution for Embedded Devices

The Trusted Computing Group is currently looking into the concept of trusted platform
for embedded devices. Although, there is no specification made public at the time of
writing this paper. However, we have proposed a similar trusted platform for smart
cards and we will be discussing it in subsequent sections.

4.1 Trusted Environment & Execution Manager (TEM)

This section discusses the architecture of a Trusted Environment & Execution Manager
(TEM) specifically for smart cards, and highlights how the TEM differs from a typical
TPM not only in architectural but also in operational context.

4.2 Architecture

The TEM is illustrated as a layer between the smart card hardware and the runtime
environment. This illustration provides a semantic view of the architecture and does not
imply that all communication between the runtime environment and the hardware goes
through the TEM.

Smart Card Runtime Environment (SCRT)

Smart Card Firewall

Platform Space Application Space

Native Code

Smart Card Hardware

Trusted Environment & Execution Manager (TEM)

Fig. 4. Smart Card Architecture in with TEM

If general TPM requirements are analysed [5], the basic building blocks in the hard-
ware required to build a TPM chip are already available on smart cards. Therefore, most



of the functionality of the TEM would be implemented in software and it would not
impose any additional hardware requirement on the host platform. The detailed TEM
architecture is shown in Figure 5.

Figure 5 depicts native code and smart card hardware as complementary compo-
nents of the TEM. This is because the TEM does not need separate hardware for its
operations. It will utilise the existing services provided by the smart card hardware. To
avoid duplicating the code, the TEM uses the native code implementation of crypto-
graphic services like encryption/decryption, digital signature and random number gen-
eration.

Interface The interface manages communication with external entities that can either
be on-card or off-card entities. Any request that the interface receives is interpreted: if it
is a well-formed request and the requesting entity is authorised to do so, then the inter-
face will redirect the request to the intended module in the TEM. The interface during
the interpretation of the request will enforce the access policy of the TEM as defined
by the access control module (discussed in section 4.2). To manage these relationships
with the authorised entities, the TEM should have a mechanism to establish the relation-
ship in the first place. Therefore, at the time of installation of an application, a binding
(symmetric key) is generated between the downloaded application and the TEM. For
all subsequent communications, the application would use this key when requesting the
TEM [16]. The protocol that establishes this binding is managed by the interface and
the binding is stored in the key/certificate manager and corresponding access privilege
in access control module.

Attestation Handler During the application installation process, both an application
and a smart card platform would need to verify each other’s current state to gain as-
surance of their trustworthiness. An application can only request attestation for either
itself or the respective platform. It cannot request attestation for other applications on
the smart card concerned. However, to facilitate the application sharing mechanism [14]
an application can issue an authorisation token. The attestation handler will then pro-
vide the attestation of the token-issuing application to the requesting application [15].
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Access Control At the time of application installation, the Service Provider (SP) in-
volved would request attestation of the card platform. However, no information regard-
ing any of the other applications installed on the card would be provided to the SP at
this stage. Once the application is installed, it can request attestation only for itself and
not for any other applications. These restrictions are required to avoid privacy issues
like application scanning attacks [15].

Key & Certificate Manager The key & certificate manager manages the keys and
certificates that a TEM stores in the non-volatile memory (EEPROM [45]). Contrary to
the general TPM architecture, there are no migratable keys in the TEM. The TEM sig-
nature key pair and certificate is the permanent key and certificate (it can be considered
as the endorsement key in the general TPM architecture). Besides managing the keys
and certificates, it also generates them. Therefore, it is a combination of key generation
and non-volatile memory components of the general TPM.

The key & certificate manager stores the evaluation certificates which are provided
by the respective applications. Therefore, when an application requests attestation, the
TEM does not return the hash value of the application. In fact, it returns an evaluation of
whether the current state complies with the state for which the evaluation certificate was
issued. Therefore, the decision whether an application is trustworthy or not is actually
made by the TEM. If the evaluation fails, then depending upon the application or plat-
form policy it might either block the application or delete it (and inform the cardholder
and respective SP).

Ownership Manager This component manages the ownership of a smart card. When
a smart card is acquired by a user either from a card manufacturer or a card supplier, it
is under the default ownership of the card manufacturer/supplier. The user then initiates
the ownership acquisition process that requires the user to provide personal information
(i.e. name and date of birth) and their Card Management Personal Identification Number
(CM-PIN). The TEM will then generate a signature key pair specific to the cardholder
along with a certificate that will also include the user information. Although this key is
assigned to the cardholder, it will be protected by the TEM.

TSM Scheme Registration Manager This module is optional and it facilitates Com-
petitive Architecture for Smart Cards. For further details please refer to [17].

Lease & Contract Manager An SP would lease its application to a smart card (card-
holder) and the card would assure that it would abide by the SP’s Application Lease
Policy (ALP) The lease contract is signed by the TEM with the user’s signature key and
as these keys are stored/restrict access only to the TEM, the signing and storage of the
contracts are on the TEM. The cardholder can retrieve these contracts after providing
the CM-PIN if he/she needs to. Similarly, individual applications can also retrieve their
own contracts from the TEM repository.



Backup/Restoration Manager A cardholder may download multiple applications onto
her smart card. If she loses her smart card, she will lose access to all of the applications
(and related services). One possible approach can be to acquire a new card and then
manually install all the applications again. However, another approach could be that
a user creates a backup of the installed applications and restores the backup to a new
smart card, if required. This backup mechanism is credential-based (a token issued by
the SPs and not the actual application) and it is stored securely at a remote location [20].
When users lose their smart cards, they only need to get a new smart card and then initi-
ate the restoration process, which will take each credential from the backup and initiate
the application download process with respective SPs. The restoration process can also
request the respective SPs to block (revoke the lease) their application(s) installed on
the stolen/lost device.

Self-test Manager For security validation, the TEM implements a validation mech-
anism that is divided into two parts: tamper-evidence and reliability assurance. Smart
cards are required to be tamper-resistant devices [45] and for this purpose card manu-
facturers implement hardware-based tamper protections. The tamper-evidence process
verifies whether the implemented tamper-resistant mechanisms are still in place and ef-
fective. The reliability assurance process, on the other hand, verifies that the software
part of the smart card that is crucial for its security and reliability has not been tampered
with.

A TEM tamper-evidence process should provide the properties listed below:

1. Robustness: On input of certain data, it always produces the associated output.
2. Independence: When the same data is input to a tamper-evidence process on two

different devices, it outputs different values.
3. Pseudo-randomness: The generated output should be computationally difficult to

distinguish from a pseudo-random function.
4. Tamper-evidence: An invasive attack to access the function should cause irreversible

changes, which render the device unusable.
5. Assurance: The function can provide assurance (either implicitly or explicitly) to

independent (non-related) verifiers. It should not require an active connection with
the device manufacturer to provide the assurance. The assurance refers to the cur-
rent hardware and software state as it was at the time of third party evaluation.

For the TEM tamper-evidence process there are several candidates including: active
(intelligent) shield/mesh [45]; Known Answer Test (KAT) [1], hard-wired HMAC key,
attestation based on PRNG [36]; and Physically Unclonable Function (PUF) [33]. Two
algorithms that provide tamper-evidence and reliability based upon PUF and PRNG
based validation mechanisms are discussed in [22] and [21], respectively.

Runtime Security Manager The purpose of the runtime security manager is to en-
force the security counter-measures defined by the respective platform. To enforce the
security counter-measures, the runtime security manager has access to the heap area
(e.g. method area, Java stacks) and can be implemented as either a serial or a parallel
mode.



A serial runtime security manager will rely on the execution engine of the Java Card
Virtual Machine (JCVM) [8] to perform the required tasks. This means that when an
execution engine encounters instructions that require an enforcement of the security
policy, it will invoke the runtime security manager that will then perform the checks.
If successful the execution engine continues with execution, otherwise, it will termi-
nate. A parallel runtime security manager will have its own dedicated hardware (i.e.
processor) support that enables it to perform checks simultaneously while the execu-
tion engine is executing an application. Having multiple processors on a smart card is
technically possible [45]. The main question regarding the choice is not the hardware,
but the balance between performance and latency.
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Performance, as the name suggests, is concerned with computational speed, whereas
latency deals with the number of instructions executed between an injected error and
the point at which it is detected. For example, if during the execution of an application
‘A’, at instruction A4 a malicious user injects an error, which is detected by the platform
security mechanism at instruction A7 of the application, the latency is three (i.e. 7-4=3).
A point to note is that the lower the latency value the better the protection mechanism,
as it will catch the error quickly. Therefore, theoretically we can assume that a serial
runtime security manager will have low performance but also a low latency value, while
a parallel runtime security manager will have a good performance measure but a higher
latency value.

It is obvious that the implementation of additional components like runtime security
managers will also incur additional economic costs (i.e. increase in the price of a smart
card. The security measures that could be enforced are:



1. Operand Stack Integrity: In this we XOR the value pushed on to the operand stack
with the top value of the integrity stack and the results are pushed back on to the
integrity stack. When a value is popped from the operand stack, we will XOR the
popped value from the top value in the integrity stack (where n is the top value of
the stack). If the result is same as the value n-1 in the integrity stack, the execution
continues, if not, then it is interrupted by the runtime security manager.

2. Control Flow Analysis: Authorised execution flows are generated oncard at the time
of application installation. Later when application is executing, only the authorised
execution flow is allowed to go ahead. Any violation would render the application
blocked and may lead of it being deleted from the device.

3. Bytecode Integrity: Each basic block of an application code has an associated in-
tegrity value. When the basic block is fetched to the runtime memory, the integrity
value is verified.

Preliminary Results For evaluation of proposed counter-measures, we have selected
four sample applications. Two of the applications selected are part of the Java Card de-
velopment kit distribution: Wallet and Java Purse. The other two applications are the
implementation of our proposed mechanisms that include the offline attestation algo-
rithm [21] and STCPSP protocol [18].

4.3 Latency Analysis

As discussed before, latency is the number of instructions executed after an adversary
mounts an attack and the system becomes aware of it. Therefore, in this section we anal-
yse the latency of proposed counter-measures under the concept of serial and parallel
runtime security managers that are listed in Table 1 and discussed subsequently.

Table 1. Latency measurement of individual countermeasure

Counter-measures Serial RSM Parallel RSM
Operand Stack Integrity 0 + i 3 + i
Permitted Execution Path Analysis 0 3(Cn)
Bytecode Integrity 0 0

In case of the operand stack integrity, the serial runtime security manager finds the
occurrence of an error (e.g. fault injection) with latency “0+i”, where ‘i’ is the number
of instructions executed before the manipulated value reaches the top of the operand
stack. For example, consider an operand stack with values V1, V2, V3, V4, and V5,
where V5 is the value on the top. If an adversary changes the value of V3 by physical
perturbation, then the runtime security manager will not find out about his change until
the value is popped out of the stack. Therefore, the value of ‘i’ depends upon the number
of instructions that will execute until the V3 reaches the top of the operand stack and
JCVM pops it out. Similarly, the latency value in case of the operand stack integrity for
the parallel runtime security manager is “3+i”, where ‘3’ is the number of instructions
required to perform a comparison on a pop operation. The latency value of the parallel



runtime security manager is higher than the serial. This has to do with the fact that while
parallel runtime security manager is applying the security checks the JCVM does not
need to stop the execution of subsequent instructions.

Regarding the control flow analysis, the serial runtime security manager has a la-
tency of zero where the parallel runtime security manager has latency value of “3(Cn)”,
where the value Cn represents the number of legal jumps in the respective execution flow
set. The value ‘3’ represents the number of instructions required to execute individual
comparison.

A notable point to mention here is that all latency measurements listed in the Ta-
ble 2 are based on the worst-case conditions. Furthermore, it is apparent that it might
be difficult to implement a complete parallel runtime security manager. To explain our
point, consider two consecutive jump instructions in which the parallel runtime secu-
rity manager has to perform control flow analysis. In such situation, there might be a
possibility that while the runtime security manager is still evaluating the first jump, the
JCVM might initiate the second jump instruction. Therefore, this might create a dead-
lock between the JCVM and parallel runtime security manager - we consider that either
JCVM should wait for the runtime security manager to complete the verification, or for
the sake of performance the runtime security manager might skip certain verifications.
We opt for the parallel runtime security manager that will switch to the serial runtime
security manager mode - restricting the JCVM to proceed with next instruction until the
runtime security manager can apply the security checks. This situation will be further
explained during the discussion on the performance measurements in the next section.

4.4 Performance Analysis

To evaluate the performance impact of the proposed counter-measures we developed
an abstract virtual machine that takes the bytecode of each Java Card applet and then
computes the computational overhead for individual countermeasure. When a Java ap-
plication is compiled the java compiler (javac) produces a class file. The class file is
Java bytecode representation, and there are two possible ways to read class files. We
can either use a hex editor (an editor that shows a file in hexadecimal format) to read
the Java bytecodes or better utilise the javap tool that comes with Java Development
Kit (JDK). In our practical implementation, we opted for javap as it produces the
bytecode representation of a class file in human-readable mnemonics as represented in
the JVM specification [41]. We used javap to produce the mnemonic bytecode rep-
resentation; the abstract virtual machine takes the mnemonic bytecode representation
of an application and searches for push, pop, and jump (e.g. method invokes) opcodes.
Subsequently, we calculated the number of extra instructions required to be executed in
order to implement the counter-measures discussed in previous sections.

To compute the performance overhead, we counted the number of instructions an
application has and how long the application takes to execute on our test Java Cards
(e.g. C1 and C3). After this measurement, we have associated costs based on additional
instructions executed for each JCVM instruction and calculated as an (approximate)
increase in the percentage of computational overhead and listed in Table 2.

For each application, the counter-measures have different computational overhead
values because they depend upon how many times certain instructions that invoke the



Table 2. Performance measurement (percentage increase in computational cost)

Applications Serial RSM Parallel RSM
Wallet +29% +22%
Java Purse +30% +26%
Offline Attestation [22] +27% +23%
STCPSP [19] +39% +33%

counter-measures are executed. Therefore, the computational overhead measurements
in Table 2 can only give us a measure of how the performance is affected in individual
cases - without generalising for other applications.

In this section we discussed the smart card runtime environment by taking the Java
Card as a running example. The JCRE was described with its different data structures
that it uses during the execution of an application. Subsequently, we discussed various
attacks that target the smart card runtime environment and most of these attacks based
on perturbation of the values stored by the runtime environment. These perturbations
are called fault injection, which was defined and mapped to an adversary’s capability in
this chapter. Based on these recent attacks on the smart card runtime environment, we
proposed an architecture that includes the provision of a runtime security manager. We
also proposed various counter-measures and provided the computational cost imposed
by these counter-measures. No doubt, counter-measures that do not change the core
architecture of the Java virtual machine, will almost always incur extra computational
cost. Therefore, we concluded in this chapter that a better way forward would be to
change the architecture of the Java virtual machine. However, in the context of this
paper we showed that current architecture can be hardened at the cost of a computational
penalty.

5 Conclusions

In this paper, we have briefly highlighted the security, trust and genuineness require-
ments for the embedded devices. These devices are becoming ever present in our daily
life and reliance on them is going to increase in coming years. Therefore, utmost efforts
have to be invested into their security and reliability in order to provide a safe and ef-
ficient service to the users. In this paper, we discussed some of the threat vectors that
an adversary can use to compromise these devices. Furthermore, we also discussed the
associated countermeasures along with some state-of-the-art protection mechanism. In
this paper, we have also detailed a few of our proposal to provide security, reliability,
trust and genuineness. The field of embedded computing still faces a number of chal-
lenges, effectively making it an exciting domain for security research to investigate and
be innovative.
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