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Abstract—Automated microscopy in the context of tuberculosis 

(TB) screening aims to reduce the workload on technicians, 

especially in countries with a high burden of TB. Focusing is a 

key component of automated microscopy, and the selection of an 

appropriate autofocus algorithm is task-specific. We examined 

autofocusing algorithms for fluorescence microscopy of sputum 

smears for TB screening. Six focus measures, defined in the 

spatial domain, were applied to stacks of images of auramine-

stained sputum smears. A maximum difference of 1.21 µm 

between manually focused and algorithm focused images was 

obtained for the best performing focus measures. 
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I.  INTRODUCTION 

Automation of microscopy for tuberculosis (TB) screening 

aims to speed up the screening process, to improve its 

sensitivity and to reduce its reliance on technicians. 

Algorithms for automated detection of Mycobacterium 

tuberculosis have been published for Ziehl-Neelsen (ZN) and 

for auramine stained sputum smears [1-3]. The recent 

availability of low-cost fluorescence microscopes [4] and the 

higher sensitivity of fluorescence microscopy of auramine-

stained smears [5] motivate the consideration of automated 

fluorescence microscopy for TB detection. 

Autofocusing is an important step in automated microscopy, 

as it determines the success of subsequent steps, namely image 

segmentation and the classification of segmented objects. The 

autofocus algorithm typically establishes a correspondence 

between the z-setting (the level of the microscope stage with 

respect to the objective) and the value of a focus measure, 

which evaluates the local image sharpness, attaining a 

maximum for the sharpest, or most in-focus, image [6,7]. Each 

image in a stack is evaluated to obtain a focus measure which 

is plotted against position in the stack. The optimum of the 

focus curve represents the best focus.  

We evaluate spatial domain focus measures for stacks of 

images acquired using a fluorescence microscope. 

II. METHODS 

A. Image Acquisition 

Image processing of fluorescence microscope images for 

identification of Mycobacterium tuberculosis has been 

reported for 25× objective magnification [1].  

We used a Zeiss Axiovert 200M with a 20× objective lens 

at 0.75 numerical aperture for image acquisition. The 

accompanying Axiovision 4.7 software allows control of the 

motorized z-drive in exact steps, synchronizing it with image 

acquisition. To acquire a z-stack of a field, the position of 

maximum focus as judged by a human observer was recorded, 

the start and end points of the stack were defined on either 

side of the focal position, and images were captured at 1.2 µm 

z-increments. The images were captured using an 

AxioCamHR camera and stored with 1292 × 1014 pixel 

resolution in 8-bit JPEG format. 

Two adjacent z-stacks of 24 images each were captured 
from each of two auramine-stained sputum smear slides, 
confirmed positive for TB. Focus measure curves were 
calculated and analyzed to determine whether the global 
maximum corresponds to the best focused image as judged by 
a human expert. In addition, curves fitted to a reduced number 
of image focus measure values were examined in order to 
determine if speeding up the focusing process in this manner 
yielded acceptable results. 

B. Focus Measures 

No generally applicable autofocusing solution has been 

proposed for microscopy [8]; we therefore examined six focus 

measures which have been effective for a wide range of 

biological and biomedical applications. 

The sum-modified-Laplacian (SML) calculates the sums of 

the absolute values of the convolution of an image with 

modified Laplacian operators [9]: 
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where I is the image intensity at point (i, j). 

The normalized variance (NV) compensates for the 

differences in average image intensity among different images 

by normalizing the gray level variance with the mean intensity 

µ [8,10]: 
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where M and N are the height and width of the image 

respectively. 

The energy of the Laplacian of the image (EOL) uses the 

Laplacian operator to determine high spatial frequencies 

associated with sharp borders in the image [10]: 
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 ���  and ���  are second derivatives of I with respect to i and j. 

Tenenbaum’s algorithm (Tenengrad) is a gradient 

magnitude maximization method that measures the sum of the 

squared responses of the horizontal and vertical Sobel masks 

[10]:  
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where ���	, �� is the Sobel gradient magnitude 

The Brenner gradient (BG) measures the difference between 

a pixel and a neighbour
 
[11]:  
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where m = 2 i.e. a neighbour is two pixels away. 

Vollath’s F4 is based on the autocorrelation function [12]. 
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C. Curve Fitting 

Reducing the number of images used to bring the sample 

into focus will speed up the autofocusing process. To this end, 

a curve may be fitted to the focus measures of a few images 

selected at different positions along the z-axis [11]. The peak 

of the fitted curve is an estimate of the focal position. The 

distribution of the focus measures is expected to be Gaussian 

and therefore a Gaussian function can be fitted to the focus 

measures; a quadratic function fitted to the logarithm of the 

data will produce a similar result [13]. Fitting a polynomial of 

order n requires at least n+1 images; we therefore need 3 

images to find the position of optimal focus. The images have 

to be located on either side of the focal position, which 

requires a rough estimate of the focal position. Curves were 

fitted to two images captured one step on either side of the 

focal position and a third at two steps away on any side. 

III. RESULTS 

A comparison of typical curves for stacks of 24 images and 
for only three images, with a fitted curve, is shown in Figure 1. 
The focus measure values were normalized by their maximum 
and the fitted logarithms of the values obtained from three 
images were normalized by their maximum for positive values 
and by their minimum for negative values. Table I gives the 
magnitude of the difference between the focal position as 
determined by an expert (FA) and the estimated focal position 
(FE) from the plotted curve, as well as the processing times 
(using MATLAB) – these would be system-dependent, and are 
given to allow comparison across methods. 

 

IV. DISCUSSION 

All six focus measures performed well, producing curves 

in which the average position of the peaks is within a step (1.2 

µm) of the focal position as determined by an expert. 

Tenegrad, Brenner gradient, Vollath’s F4 produced focal 

positions closest to those of a human observer, while 

Tenengrad had the slowest execution time. With curve fitting, 

good focal position estimates were obtained when two images 

captured one step on either side of the focal position and the 

third image at two steps on any side, were used; capturing 

these images further from the focal position increased the 

deviation from FA. In practice, such curve fitting would reduce 

autofocus time after the first field in a slide has been focused 

using a complete image stack, as the position of optimal focus 

for a field may be regarded as an estimate of that of an 

adjacent field. The differences in FE (calculated using the full 

image stack) for adjacent fields were 0.5 µm and 0.6 µm, 

respectively, for the two slides we used. This difference in 

adjacent focal positions is less than a step size, while the 

maximum difference between expert and estimated focal 

positions for the best performing focus measures is close to a 

step size. Thus selection of images of a new field for curve 

fitting around the focal position of the previous field in a 

sequence on the same slide would allow acceptable estimation 

of the new focal position. Figure 2 shows an in-focus 

fluorescence image. 

In real-time autofocusing applications, the time taken for 
the mechanical motion of the objective with respect to the 
sample to view different fields is the greatest source of delay 
[14]. The execution times presented therefore do not reflect 
those of a practical autofocusing implementation. 

V. CONCLUSION 

 The Tenengrad, Brenner gradient and Vollath’s F4 focus 
measures hold promise for autofocusing in fluorescence 
microscopy for TB screening. At 20× objective magnification, 
the focal position of a field may be used as an estimate of that 
of an adjacent field, in order to reduce focusing time. 

 



 

 

 

Figure. 1.  Focus functions extracted from the full stack of 24 images (solid curve) and from only 3 images (dashed curve – logarithm of the focus measures). The 
dark circles represent the position at which the three images used for fitting were captured. The vertical dashed line represents the position of the optimum of the 24 
z-stack values, and the vertical solid line, the optimum of the fitted curve. The difference in orientation of the 3-image curves is due to the difference in sign of the 

logarithms of corresponding focus function values. 
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TABLE I.  COMPARISON OF FOCUS MEASURE PERFORMANCE; FA=FOCAL POSITION SELECTED BY MICROSCOPE USER AND FE=ESTIMATED FOCAL POSITION 

Focus function 

Original Curve (24 images) Fitted Curve (3 images) 

 234 � 352 (µm)  234 � 352 (µm) 

Time (s) Minimum  

 

Maximum  

 

Mean 

 

Time (s) Minimum  

 

Maximum  

 

Mean 

SML 5.72 0.51 1.45 0.91 0.75 0.39 1.25 0.73 

NV 4.48 0.45 1.39 0.97 0.60 0.69 2.35 1.29 

EOL 7.28 0.51 1.45 0.87 0.93 0.51 1.25 0.77 

TENENGRAD 12.12 0.09 1.21 0.81 1.65 0.05 0.85 0.37 

BG 4.61 0.15 1.21 0.79 0.64 0.05 0.85 0.35 

VOLLATH’S F4 4.98 0.03 1.21 0.72 0.77 0.03 0.85 0.31 

 

 

Figure 2. Example of an in-focus image of an auramine-stained sputum smear under a fluorescence microscope. 
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