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We introduce quantum hypercube states, a class of continuous-variable quantum states that are generated
as orthographic projections of hypercubes onto the quadrature phase space of a bosonic mode. In addition
to their interesting geometry, hypercube states display phase-space features much smaller than Planck’s
constant, and a large volume of Wigner negativity. We theoretically show that these features make
hypercube states sensitive to displacements at extremely small scales in a way that is surprisingly robust to
initial thermal occupation and to small separation of the superposed state components. In a high-
temperature proof-of-principle optomechanics experiment we observe, and match to theory, the signature
outer-edge vertex structure of hypercube states.

DOI: 10.1103/PhysRevLett.123.020402

Non-Gaussian quantum states are commonly considered
as a valuable resource for quantum-information processing
[1], tests of fundamental of physics [2,3], and sensing and
metrology applications [4,5]. A crucial indicator for how
useful a quantum state will be for these applications is how
distinguishable it becomes from the initial state after a
small displacement. This is closely related to the size of the
smallest features in the state’s phase space representation
[6]. Roughly speaking, two quantum states with smallest
features occupying an area on the order of d can become
maximally distinguishable for displacements on the order
of

ffiffiffi
d

p
. Similarly, the rate of change in distinguishability in

response to a displacement—a measure of the state’s
sensitivity to displacements—is a function of the size of
the state’s phase-space features. Quantum mechanics gen-
erally limits the size of these features to be at least on the
order of ℏ, which is known as the shot noise or standard
quantum limit depending on the area of physics in which it
arises.
Yet, quantum theory also provides a way around this

limit, and states such as the Schrödinger-cat state [7]—and
the more-recently introduced compass state [6,8]—show
features at a scale below ℏ. States with such sub-Planck
features have thus attracted significant theoretical attention
[8–15] for their potential in sensing applications. However,
most of the theory to date has focused on pure states,
leaving open the question of how sensitive sub-Planck
states will be under realistic conditions.
Here we introduce and study in detail a new class of

nonclassical states that we call hypercube states. These
states have an intriguing link to geometry in that they are
obtained as Petrie-polygon orthographic projections of n
cubes [16], see Fig. 1, into phase space, where the polygon

vertices correspond to the location of superposed coherent
states, and interference fringes in the Wigner function are
observed between every pair of vertices, see Fig. 2. This
class of states in particular includes the Schrödinger-cat
state and the compass state as the lowest-order special
cases. All hypercube states exhibit sub-Planck phase-space
features that decrease in size with the order of the state,
making them an attractive candidate for quantum metrol-
ogy. We show that hypercube states indeed become dis-
tinguishable under progressively smaller displacements
with increasing order and, importantly, that this distinguish-
ability is robust to variations in thermal occupation and/or

FIG. 1. Petrie polygon orthographic projections of first four n
cubes. Red dots represent the projection of a single vertex onto a
unique point in phase space, and orange dots the projection of
two vertices onto the same point. n ¼ 1 is the projection of a line
segment; n ¼ 2 of a square; n ¼ 3 of a cube; and n ¼ 4 of a
tesseract.
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the interaction strength of the state for a wide range of
realistic experimental parameters. Finally, building on the
technique introduced in Ref. [17] we discuss how quantum
hypercube states can be prepared in a wide range of
state-of-the-art optomechanical experiments. In a proof-
of-principle demonstration we experimentally observed the
signature of the second-, third-, and fourth-order hypercube
states in the high-temperature regime.
Hypercube states.—Mechanical hypercube states are

engineered by the sequential application of an instrument
or Kraus operator Υ, defined as a superposition of the
identity and a displacement, with intermittent phase-space
rotations R on the initial mechanical state ρi. The overall
Kraus operator is thus given by

Yn ∝
Y
n

ðRðπ=nÞΥÞ: ð1Þ

Here, the rotations are due to the free evolution of
the mechanics for durations of t ¼ T=2n that result in
phase changes of θ ¼ 2πt=T ¼ π=n, with T being the
period of the mechanical resonator and n being the order
of the desired hypercube state. Moreover, ϒ ¼ e−jαj2α
ðDðiμ= ffiffiffi

2
p Þ − 1Þ= ffiffiffi

2
p

, where λ is the wavelength and
α ≪ 1 is the amplitude of the mediating coherent light
field, DðβÞ (β ∈ C) is the mechanical displacement oper-
ator, and μ ¼ 4πx0=λ is the interaction strength (equivalent
to the optomechanical coupling strength in an optome-
chanical setting) in which x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω

p
is the mechanical

zero-point fluctuation. We note that ϒ (and hence Yn) is
obtained by conditioning on the outcome of a photon-
counting measurement of the optical field after the radiation
pressure interaction, and is thus nonunitary as detailed in
the Supplemental Material [18]. The Wigner function

phase-space representation [7] of the four lowest order
hypercube states when the mechanics starts off from the
vacuum are shown in Fig. 2.
l1-norm sensitivity analysis.—In order to quantify how

quickly a displaced quantum state ρσ becomes distinguish-
able from the initial state ρ for small displacements σ,
we use the l1 distance between the corresponding Wigner
functions Wρ and Wρσ ,

l1 ≔ kWρσ −Wρk1 ¼
Z

∞

−∞
dxdpjWρσðx; pÞ −Wρðx; pÞj;

and consider the rate of change dl1=dσ of this distance at
the point σ ¼ 0. Importantly, this measure, denoted as l1

sensitivity, can easily be applied in the thermal regime
which is a crucial element of this work.
Different regimes of operation can be parametrized by

the interaction strength μ and the temperature of the
mechanical mode as measured by the average phonon
number n̄. We are particularly interested in the l1 sensi-
tivity of hypercube states in three limiting cases: (i) cold,
large-coupling: mechanical resonator in the ground state,
n̄ ¼ 0, and μ ¼ 6, 8, and 12, for the second-, third-, and
fourth-order hypercube states, respectively; (ii) cold, small-
coupling: mechanical resonator in the ground state, n̄ ¼ 0,
and μ ¼ 8 × 10−9; and lastly (iii) hot, small-coupling:
mechanical resonator in a thermal state with n̄ ∼ 1015,
and small interaction, μ ¼ 8 × 10−9, motivated by the
proof-of-principle experiment presented at the end of the
Letter. The fourth limiting regime of hot-large coupling is
less experimentally relevant, because experiments that
achieve large coupling between the optical field and
resonator can typically cool the resonator very efficiently
using laser cooling methods. Nevertheless we do consider
how the l1 sensitivity changes as a strongly coupled
resonator warms up, effectively moving from the cold-
large towards the hot-large coupled regime, see bottom
row of Fig. 3.
Our theoretical analysis of the l1 sensitivity of a second-

order hypercube state transitioning between the above
described regimes is summarized in Fig. 3. In the top
row of Fig. 3 we show how increasing the interaction
strength μ to transition from the small- to the large-coupling
regime at low temperature leads to smaller phase-space
features and an l1 sensitivity that increases quadratically
with μ for μ ≲ 3 and linearly for larger μ; see Supplemental
Material for details [18]. Note, however, that for any value
of μ hypercube states are more sensitive to displacements
than a coherent state and maintain significant Wigner
negativity (see Fig. S4 [18]). Interestingly, for very small
interaction strengths the symmetry around the position
axis breaks, meaning that at some values the state is more
sensitive to displacements in momentum than in position,
or vice versa; see Supplemental Material for details [18].

FIG. 2. Density plots of the Wigner functions of the first four
hypercube states. All axes are in terms of the ground state width.
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The middle row of Fig. 3 shows the transition between
the small-coupling regimes and that as the temperature
increases Wigner negativity and smaller scale features
disappear and the outer-edge vertex structure becomes
the dominant feature. As a result, the l1 sensitivity of
the states decreases exponentially with temperature, see
Supplemental Material for details [18]. Interestingly, how-
ever, hypercube states show an l1 sensitivity at least as
high as 3 dB-squeezed coherent states of the same average
phonon number even in the regime where μ ≪ 1. For low
temperatures of n̄≲ 0.25, hypercube states are more
sensitive than the corresponding squeezed states.

In the bottom row of Fig. 3 we increase temperature in
the cold large-coupling regime. Here we see that periodic
and symmetric sub-Planck features are visible for 0 <
n̄ ≤ 6. In fact, they exist even at much higher temperatures.
The l1-sensitivity plot on the right side of the row high-
lights both that, in this regime, the l1 sensitivity is robust
to temperature increases, and that it increases substantially
with the order of the hypercube. These results apply equally
to displacements along the position or momentum axis.
Experimental method and results.—Our experimental

method utilizes a series of n interactions between an optical
field and mechanical resonator [17], followed by single

FIG. 3. n ¼ 2 hypercube state for a mechanical resonator as produced by our scheme. Left-hand side: Theoretical density plots of the
Wigner function in position-momentum (X − P) phase space. The color bar on the bottom shows the value of the Wigner function where
blue and green indicate areas of negative quasiprobability. All axes are in terms of the ground state width. Right-hand side:
Corresponding l1 sensitivity, dl1=dσ, vs position or momentum displacement plots (position, pink horizontal triangles) or (momentum,
black vertical triangles). The blue dotted line indicates l1 sensitivity of a coherent state at zero temperature. Top row: Cold temperature:
small → large coupling (n̄ ¼ 0; μ ¼ 6 → μ ¼ 8 × 10−9). Middle row: small coupling: cold → hot temperature (μ ¼ 8 × 10−9;
n̄ ¼ 0 → n̄ ¼ 1015; the colors in the last panel are scaled by 108 in accordance with the axis scaling). The l1 sensitivity plot shows that
even hypercube states with vanishing separation of coherent states are more sensitive than thermal states (red-shaded region) and at least
as sensitive as squeezed (3 dB) thermal states (blue shaded region) with the same mean phonon number and more sensitive than a ground
state coherent state for n̄≲ 0.5. Bottom row: Large coupling: cold → warm temperature (μ ¼ 6; n̄ ¼ 0 → n̄ ¼ 6). n ¼ 2 hypercube
states are shown by blue triangles; for comparison, n ¼ 3 and n ¼ 4 hypercube states are shown, respectively, by purple squares and red
circles. Note that in the right plot μ ¼ 12 was used to ensure clear separation of coherent states across all the orders of the hypercube
state.
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photon detection to create an nth order hypercube state
within the mechanical resonator. Prior to the interaction,
each single photon is in a quantum superposition of being
incident, and not incident, on a mechanical resonator.
Interaction of the mechanical resonator and a photon
thereby puts the mechanical resonator in a quantum super-
position of receiving, and not receiving, a momentum kick
due to the radiation pressure applied by the photon incident
on the resonator. This interaction effectively applies ϒ
and hence a series of photons prepared this way, with time
t ¼ T=2n between successive photons acts to apply Eq. (1)
to the state of mechanical resonator. A schematic of the
setup, with further details in the caption is shown in Fig. 4.
We now introduce the experimental results from imple-

menting our method in the hot small-coupling regime with
a 100 ng (≃1016 atoms) mechanical resonator. To ensure a
large physical displacement that can be easily measured,
the resonator is driven with a piezo (in order to create a
Gaussian state in phase space the piezo drive voltage is
Chi-distributed due to the drive voltage coupling toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ P2

p
). This gives the resonator an effective thermal

occupation of n̄ ¼ 1015. The mechanical resonator was
coupled to 795 nm light, with the application of the
measurement operator Yn heralded by n sequential single-
photon detections. Detection of photons separated by
T=2n was accomplished by splitting the electronic signal
from the photon detector into multiple paths of varying
lengths and then looking for coincidences between the
paths, see Supplemental Material for details [18].

Figure 5 displays, and compares to theory, our exper-
imental measurements of hypercube states of orders n ¼ 2,
n ¼ 3, and n ¼ 4 in the hot small-coupling regime. The top
row of Fig. 5 shows the theoretical expectation in the ideal
case of no experimental limitations: probability densities
that reproduce the outer-ring of vertices of the Petrie
projections in Fig. 1, and that do not contain quantum
features, or sub-Planck structure—as expected due to the
high temperature. These plots are generated by applying Yn
of Eq. (1). The middle row of Fig. 5 adds modeling of the
major experimental limitations present; namely, drift in the
interferometer setting ϕ, experimental timing uncertainties
when applying Rðπ=2nÞ, and variations from the mean due
to counting statistics and displays notable variations in the
height, width, and shape of the peaks in the probability

FIG. 4. A weak coherent state jαi is inserted and split using a
half wave plate (HWP) and a beam displacer (BD) into two arms
of a folded interferometric setup. The optical field in the top arm
interacts with a membrane mechanical resonator via radiation

pressure, described by eiμa
†
1
a1XM. Here a and a† are the annihi-

lation and creation operators, μ is the optomechanical coupling
strength, and XM is the mechanical position operator. The bottom
arm interacts with the static frame of the membrane, obtaining a
controllable phase shift eiϕ, which we set to ϕ ¼ π. Post these
interactions, the optical fields in both arms are interfered, split
into the polarization components, and detected in an avalanche
photon detector (APD). The detector signal is then split into two,
three, or four paths depending on whether detection of a second-,
third-, or fourth-order hypercube is being made; with each path
past the first adding a time delay of T=2n. Coincidence counting
between the paths is made at Cn, and upon detection of a
coincidence event an oscilloscope is triggered to record a trace of
the membrane’s position from the back (not shown).

FIG. 5. Normalized probability densities of hypercube states;
left to right columns correspond to second-, third- and fourth-
order hypercube states. Top row: Ideal densities, from Eq. (1):
Populations match the outer ring of vertices of the Petrie
projections in Fig. 1; quantum features such as sub-Planck
structure are absent due to high temperature. Middle row:
Densities predicted from a model that accounts for experimental
drift, timing uncertainties, and counting statistics; see Supple-
mental Material [18]. Note the predicted variations in peak
height, width, and shape. Bottom row: Measured probability
densities, the Bhattacharyya coefficient (a classical analogue
of the fidelity) between the middle row of density plots and
the experimentally measured density plots are 0.95� 0.02,
0.90� 0.02, and 0.82� 0.02 for the second-, third-, and
fourth-order hypercube states, respectively. The uncertainties
represent 1 standard deviation obtained from the statistical
uncertainties in determining the values of X and P. The signature
of hypercube states in the thermal regime—the ring of outer-
edge-vertices—is clearly visible in all plots. All axes are in units
of λR=4 ¼ 158.2 nm, where λR is the readout wavelength used to
measure the mechanical resonators’ phase-space position.
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densities; see the Supplemental Material for details [18].
The bottom row shows our measured results which
show the same features—there is excellent agreement
between the model predictions and our experiments (see
the caption of Fig. 5 quantification of agreement).
Hypercube states establish a strong connection to geom-

etry for continuous-variable quantum states, as well as
providing an avenue for sub-Planck sensing over a surpris-
ingly large range of experimental parameters. Given their
potential, and the pivotal role geometry has played in the
field of discrete-variable quantum information processing
for problems such as measurement-based quantum com-
puting and quantum error correction; we expect hypercube
states will inspire diverse applications in fields such as
quantum sensing, quantum information theory and quan-
tum foundations [3,22,23]. To achieve these applications
will require an amalgamation of current technologies for
precision quadrature measurements at the sub-Planck scale
[24–26], and cooling a mechanical resonator to close to the
ground state [27].
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