

The University of Queensland Surat Deep Aquifer Appraisal Project (UQ-SDAAP)

Scoping study for material carbon abatement via carbon capture and storage

**Supplementary Detailed Report** 

Risk register report

30 April 2019



#### Authors

Dr Vahab Honari, The University of Queensland Prof Andrew Garnett, The University of Queensland Prof Jim Underschultz, The University of Queensland

#### Acknowledgements

This working document was prepared for The University of Queensland Surat Deep Aquifer Appraisal Project (UQ-SDAAP), a 3-year, \$5.5 million project funded by the Australian Government through the Carbon Capture and Storage Research Development and Demonstration (CCS RD&D) programme, by Coal 21, and The University of Queensland.

#### Citation

Honari V, Garnett A & Underschultz J (2019), Risk register report, The University of Queensland Surat Deep Aquifer Appraisal Project – Supplementary Detailed Report, The University of Queensland.

Referenced throughout the UQ-SDAAP reports as Honari et al. 2019e.

#### Publication details

Published by The University of Queensland © 2019 all rights reserved. This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from The University of Queensland.

ISBN: 978-1-74272-277-1

#### Disclaimer

The information, opinions and views expressed in this document do not necessarily represent those of The University of Queensland, the Australian Government or Coal 21. Researchers within or working with the UQ-SDAAP are bound by the same policies and procedures as other researchers within The University of Queensland, which are designed to ensure the integrity of research. The Australian Code for the Responsible Conduct of Research outlines expectations and responsibilities of researchers to further ensure independent and rigorous investigations.









# Contents

| 1.  | Executive summary                          | 4  |
|-----|--------------------------------------------|----|
| 2.  | UQ-SDAAP risk and opportunity register     | 5  |
| 2.1 | Technical risks                            | 5  |
| 2.2 | Non-technical risks                        | 8  |
| 2.3 | Opportunities                              | 11 |
| 3.  | Reference                                  | 13 |
| 4.  | Appendices                                 | 14 |
| 4.1 | Appendix A: UQ-SDAAP forward risk register | 14 |

# Figures

| Figure 1 | Risk matrix score for UQ-SDAAP                       | 5 |
|----------|------------------------------------------------------|---|
| Figure 2 | Technical forward looking risk register              | 6 |
| Figure 3 | Non-technical forward-looking risk register          | 8 |
| Figure 4 | Key opportunities listed in UQ-SDAAP risk register 1 | 1 |



# 1. Executive summary

The University of Queensland Surat Deep Aquifer Appraisal Project (UQ-SDAAP) was formed to conduct an initial scoping study into the feasibility (or otherwise) of establishing an industrial-scale carbon capture and storage (CCS) initiative in Queensland to deliver *material carbon abatement*. An industrial scale CCS project would involve the capture and purification of carbon dioxide (CO<sub>2</sub>) post-combustion, transport of the CO<sub>2</sub> to suitable sites, and injection and storage of CO<sub>2</sub> in a deep geological formation.

This report sets out the first risk register version for the exploration and appraisal (E&A) and nominal field development plan (FDP) project arising out of the UQ-SDAAP project. This is an additional risk assessment not related to delivery of the UQ-SDAAP project itself. The purpose of this risk assessment is to generate actions in terms of further exploration, appraisal, studies or social engagement in order to mature or discount the feasibility of the notional CCS FDP produced through the project.

The UQ-SDAAP study has identified around sixty individual risks and opportunities, including technical, environmental, social, legal and regulatory risks related to a notional commercial-scale CCS project in the Surat Basin. Opportunities such as enhanced water recovery, improved regional groundwater management and greenhouse gas mitigation have been documented. In this report, we record the details of "high" and "medium" risks consisting of risk headlines, descriptions and consequences.



# 2. UQ-SDAAP risk and opportunity register

The risk and opportunity descriptions reported in this document are dynamic in nature and will need updating during the appraisal activities and subsequent life of the project. Thus, these risks can be further expanded to cover more categories and disciplines as required. Similarly, more opportunities may exist that are not captured at this stage, but could be added to the list of opportunities as new information is acquired. This risk/opportunity register was completed as a team exercise (risk identification and assessment) and plans were formulated by risk owners (mitigation/management).

The technical and non-technical risks and opportunities were registered along with their descriptions, consequences, probabilities and possible mitigation actions. The risk matrix described in Figure 1 was used to score the technical and non-technical risks as well as opportunities. The full details of the risk register can be found in Appendix A.

|                                    |                                                                                                                                                                                                                                                                        | NOTIONAL C                                                                                                                                                        | CS (Hub) N                                                                                                                      | OTIONAL F                                                                                                | DP RISK M                                                                                                                          | ATRIX                                                                                                       |                                                                                                         |                                                                                                          |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                    | Tach                                                                                                                                                                                                                                                                   | nical                                                                                                                                                             |                                                                                                                                 |                                                                                                          | PROBABILI                                                                                                                          | TY or LIKELIH                                                                                               | OOD SCALE                                                                                               |                                                                                                          |
|                                    | Containment                                                                                                                                                                                                                                                            | Injectivity                                                                                                                                                       |                                                                                                                                 | L                                                                                                        |                                                                                                                                    |                                                                                                             |                                                                                                         |                                                                                                          |
|                                    |                                                                                                                                                                                                                                                                        |                                                                                                                                                                   |                                                                                                                                 | 1                                                                                                        | 2                                                                                                                                  | 3                                                                                                           | 4                                                                                                       | 5                                                                                                        |
|                                    | Significant loss of containment which<br>causes damages to local environment<br>or other resource users.                                                                                                                                                               | 10 mln tpa can be sustained for 30 years                                                                                                                          |                                                                                                                                 | Highly Unlikely<br>Only in exceptional<br>circumstances or no previous<br>incidence or in direct control | Unlikely<br>Could occur at some time.<br>Rarely has. Checks and<br>balances usually suffice.<br>Early indications promising<br>etc | Likely<br>Material chance, (or out of<br>direct control) treat <u>as if</u> at<br>least 50:50 until reduced | Very Likely<br>More likely than not to occur.<br>Has happened often before.<br>Or not in direct control | Highly Likely<br>Treat as if almost certain to<br>occur. A common or<br>reasonably expected<br>occurance |
|                                    |                                                                                                                                                                                                                                                                        |                                                                                                                                                                   |                                                                                                                                 | 0-5%                                                                                                     | 5-20%                                                                                                                              | 20-50%                                                                                                      | 50-80%                                                                                                  | 80-100%                                                                                                  |
| 5                                  | Catestrophic loss to the environment<br>through external or internal blow-out.<br>Or<br>Cronic low rate loss to the atmosphere<br>which causes the CCS solution to<br>underperform in terms of materiality and<br>unit cost compared with alternative<br>technologies. | Rapid close down in injection rate or rise<br>in pressure causing almost complete loss<br>of investment to date.                                                  | 5<br>Has major implications<br>for achieving project<br>outcomes, finance or<br>UQ reputation                                   |                                                                                                          |                                                                                                                                    |                                                                                                             |                                                                                                         |                                                                                                          |
| M<br>P<br>A<br>C ⁴<br>T            | Loss which causes widespread (in areas<br>for abstraction) acidification of shallower<br>aquifers (or the Precipice aquifer outside<br>the zone of licenced storage) where 3rd<br>party use or allocations exist or are<br>planned or forecast to exist.               | Reduction in injection potential which<br>requires sigificant investment in maturing<br>another location (new wells plus diversion<br>of existing pipelines).     | 4<br>Has important, notifiable)<br>implications for achieving<br>best quality project<br>outcomes (finance or UQ<br>reputation) |                                                                                                          |                                                                                                                                    |                                                                                                             |                                                                                                         |                                                                                                          |
| o<br>r<br>C <sup>3</sup><br>O<br>N | Loss which causes localised acidification<br>of shallower aquifers where 3rd party use<br>or allocations exist.                                                                                                                                                        | Reduction in injection potential which<br>requires re-drill of at least one well in a<br>similar location (no major re-investment in<br>facilities or pipelines). | 3<br>Project outcomes will be<br>achieved but a little<br>compromised                                                           |                                                                                                          |                                                                                                                                    |                                                                                                             |                                                                                                         |                                                                                                          |
| SEQU2<br>ENC                       | Measured loss to subsurface aquifers<br>without measured impact.                                                                                                                                                                                                       | Reduction in injection potential which<br>requires significant investment in work-<br>overs.                                                                      | 2<br>Project outcomes will be<br>sufficient                                                                                     |                                                                                                          |                                                                                                                                    |                                                                                                             |                                                                                                         |                                                                                                          |
| E 1                                | Minor fugitive emissions from plant or<br>equipment.                                                                                                                                                                                                                   | Minor degradation in injection<br>performancer over time which requires<br>little additional investment.                                                          | 1<br>Project outcomes are<br>assured                                                                                            |                                                                                                          |                                                                                                                                    |                                                                                                             |                                                                                                         |                                                                                                          |

Figure 1 Risk matrix score for UQ-SDAAP

# 2.1 Technical risks

This section outlines the 'high' and 'medium' technical risks which are listed in red and orange boxes in Figure 2. The key technical risks are related to the maturing of site specific measurement assessments, containment (faulting and the Ultimate Seal) and injectivity (permeability).



| Technic   | al risks | _                                    |             |                    |                      |                                           |
|-----------|----------|--------------------------------------|-------------|--------------------|----------------------|-------------------------------------------|
|           | 5        |                                      |             |                    |                      | <b>R51</b><br>(maturity of<br>assessment) |
| e,        | 4        | R8, 9, 10,<br>11, 12, 13,<br>15 & 41 | R2, 18 & 43 | R20, 45            | R34<br>(also an opp) |                                           |
| ousequenc | 3        | R22, 23,<br>39, 40 & 42              | R7, 19 & 21 |                    | R3, 50               |                                           |
| Ö         | 2        | R2 & 4                               | R5, 16 & 24 |                    | R17                  |                                           |
|           | 1        | R6                                   |             |                    |                      |                                           |
|           |          | 1                                    | 2           | 3                  | 4                    | 5                                         |
|           |          |                                      | Prob        | ability or Likelil | nood                 |                                           |

## Figure 2 Technical forward looking risk register

## R51: Technical maturity for social acceptance and regulatory approvals

This is an integrated and <u>compounded</u> risk which needs many detailed questions to be addressed so that a complete story can be told before further decisions can be made on actual injections. Thus, detailed, competent and site specific data and tests are required to convince many stakeholder groups. Failure to gather convincing (probably confirmatory) data will prevent any hub deployment project being defined adequately and will be highly consequential in all technical, economic, social and political domains.

The window of opportunity is limited. Thus, it is essential to commence this immediately as there is a time criteria for both climate abatement and for power plant life.

## R34: Legal and regulatory: far-field pressure increase in third party bores

During the  $CO_2$  injection period, there is a risk of pressure increases leading to unwanted flow and or mechanical damage and changes to the water chemistry of third party bores. The likelihood of this risk is considered to be high and it therefore needs local assessments. In addition, the damages from increased water flows or from material damage to third party bores are required to be remedied.

## R20: Injectivity: diagenesis leading to drastically reduced permeabilities at depth

There is currently no deep core data available and, as mentioned in Garnett et al. (2019d), the regional model is parameterised by petrophysical properties estimated based on data available in other areas and extrapolated into the deeper section of the Surat Basin. Also, there is some cuttings evidence of the deepest portions of the Blocky Sandstone Reservoir to be partially cemented. Therefore, some risks have been carried over which may result in the possibility of encountering lower permeability values in the Blocky Sandstone Reservoir than estimated in this study. Thus, actual injection performance may be low due to the significant decrease of permeability values with depth.

## R3: Containment: pre-existing faults

There is currently not enough seismic data in the notional injection sites proposed by this study and, therefore, there is limited information about any existing faults and their distribution. During the CO<sub>2</sub> injection



phase, CO<sub>2</sub> could leak from the Blocky Sandstone Reservoir through the Transition Zone and Ultimate Seal into shallow aquifers, where pre-existing faults provide pathways for CO<sub>2</sub> migration due to sufficiently low capillary forces. Thus, the acquisition of new seismic data will be essential to accurately select the prospective injection site at an adequate distance from faults.

#### R50: Containment: displaced water and Hutton Sandstone water quality

Pressure increase in the Blocky Sandstone Reservoir causes pressure increases in the Transition Zone and Ultimate Seal. This will change the vertical gradient between the Blocky Sandstone Reservoir and Hutton Sandstone which can then alter the water leakage rate across the intervening Evergreen seal. If the salinity of interstitial water in the Ultimate Seal is higher than water in the Hutton Sandstone, lower quality water (not CO<sub>2</sub>) is displaced from the Ultimate Seal into the lower Hutton Sandstone. Depending on the leakage rate, it may degrade Hutton Sandstone water quality therein. The potential water leakage mechanisms may include faults, channels/erosion surfaces, or through simple pressure-matrix phenomenon.

#### R17: Containment: new third party well drilling through injection zones

This is the risk when third party operators plan to drill wells through the "plume" or inflated zone in the Blocky Sandstone Reservoir (e.g. oil and gas wells into Permian plays) during or after the CO<sub>2</sub> injection period. They may encounter increased pore pressure and/or pH reduction (acidic environment). Even though the current simulations show a low chance of drilling into the plume, there would be a higher chance of drilling wells through high pressure zones. This will increase the cost of drilling as well as risks to third party operators and Simultaneous Operations (SIMOPS). The shut-in of injection operations may be required during the drilling and completions of new wells.

#### **R7: Containment: legacy wells**

This is a potential risk of CO<sub>2</sub> leakage from the Blocky Sandstone Reservoir into shallower aquifers through legacy wells (registered and unregistered bores). CO<sub>2</sub> may flow through Transition Zone and Ultimate Seal where sufficiently low capillary pressure exists and lead to acidification of shallower aquifers and pressure increases in overlaying formations in which third party operators have an interest. It may also result in a loss of storage performance, shut down of CO<sub>2</sub> injection operations, or a decrease in water quality such as the potential for release (and/or transport) of metals at levels exceeding water quality guidelines and current in situ concentrations.

#### R2: Containment: the Ultimate Seal eroded by sand channel

There is a risk of CO<sub>2</sub> leakage from the Blocky Sandstone Reservoir through the Transition Zone and Ultimate Seal where the top seal is eroded and down-cut by an overlying permeable (Hutton) sand channel allowing flows into the shallower aquifer. Also, the CO<sub>2</sub> leakage to a shallower aquifer may occur due to an incorrect depositional model, such as if the Transition Zone becomes 'sandier' more quickly to the south. Thus, addressing this risk is essential to the ultimate abatement goal of any deployment. Having said that, the Ultimate Seal is present in all wells in the area and the erosion into it by a Hutton sand channel is purely hypothetical.

The outcome of this risk could be aquifer acidification in areas of potential third party interest, loss of storage performance, risk of shut down, or a decrease in water quality e.g. potential for release (and/or transport) of metals at levels exceeding water quality guidelines and current in situ concentrations.

#### R18: Injectivity: scaling

Near well bore scaling impacts  $CO_2$  injectivity and reduces predicted injection performance. It may result in reduction of  $CO_2$  storage, possible over-investment in  $CO_2$  capture plant and transportation, and the requirement for work-over jobs or the drilling of new wells.

#### R19: Injectivity: compartmentalisation or baffles (faults and channels)

The presence of baffles or barriers in the far-field decreases  $CO_2$  injectivity during injection operations and ultimately reduction of  $CO_2$  storage. It can also increase the risk of fracturing and containment loss to shallower zones.

#### R21: Injectivity: far-field precipitation

There is a risk of far-field precipitation of minerals which may cause pressure build up and loss of CO<sub>2</sub> injection performance over the injection period.



#### R45: Injectivity: poor quality reservoir (depositional)

This risk highlights the possibility of a poor quality Blocky Sandstone Reservoir (i.e. petrophysical properties) to be encountered. It may create a risk of delay in CO<sub>2</sub> injection operations which potentially increase the number of sites and associated costs.

#### R43: Focus groups: managed aquifer recharge

There will be potential risk/opportunity to impact MAR operations. Thus, those in the community will need to become more aware of the principles of MAR and CCS and their co-existence. This may result in community members to either become concerned about interactions with the Great Artesian Basin (GAB) or see the potential opportunities it can bring to landholders and others.

# 2.2 Non-technical risks

Figure 3 shows the list of the key legal, social and regulatory risks that were identified within the UQ-SDAAP project. These risks are mainly related to regulatory pathways and community engagement.

Note that the majority of "high" rated risks belong to non-technical risks. These 'high' and 'medium' non-technical risks are described in more detail below.

| Non-tec   | hnical risk | S        |      |                    |                      |          |
|-----------|-------------|----------|------|--------------------|----------------------|----------|
|           | 5           | R33      | R27  | R25, 26 &<br>49    | R30, 31 &<br>37      | R28 & 32 |
| ø         | 4           | R46      | R29  | R35, 36 &<br>38    | R34<br>(also an opp) | R35      |
| onsequenc | 3           | R47 & 48 |      |                    |                      |          |
| Ŭ         | 2           |          |      |                    |                      |          |
|           | 1           |          |      |                    |                      |          |
|           | •           | 1        | 2    | 3                  | 4                    | 5        |
|           |             |          | Prot | bability or Likeli | hood                 |          |

Figure 3 Non-technical forward-looking risk register

#### R28: Legal and regulatory: Environmental protection regulations prevent injection of waste

Carbon dioxide from power stations looks likely to be classified as waste under the Environmental Protection Act (1994), restricting the ability for injection. There are currently no 'end of waste' codes or approvals which apply to  $CO_2$  and granting approval must consider whether the waste may cause temporary or permanent environmental harm. This risk highlights a significant possible impediment to the project in the current Queensland regulations. Hence, it is considered to be a major risk which will require the clarification of the regulatory roadmap for large-scale CCS investments in Queensland.



Amendments to the regulations or the redefining of  $CO_2$  as an 'end of waste resource' will be required (under the Water Plan (Great Artesian Basin and Other Regional Aquifers) 2017 – 'GABORA'; and the, Waste Reduction and Recycling Act 2011 – 'The Waste Act'). The judgement of environmental harm depends on the definition of values. Also, injecting in a GAB aquifer looks likely to raise major issues as it is likely that the endemic value of potable aquifers might be 'protected' as an initial position.

Without an 'end of waste' approval, an application for an EA may be refused by the Department of Environment and Science (DES). End of waste approval may also be problematical under the Waste Act. Thus, an argument is needed to discuss local 'harm' vs. prevention of wider 'harms' from CO<sub>2</sub> emissions.

## R32: Legal and regulatory: GABORA (nor EPBC) does not yet consider large scale injection impacts

Water resources are a matter of *national* environmental significance. The Commonwealth, Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) is currently "triggered" when coal seam gas and large mining developments impact water resources. The 2013 EPBC Act Amendments which instantiated this trigger are silent on large scale CCS developments.

The GABORA anticipates a draw-down rather than an increase in hydraulic head which may occur during a large-scale CCS project. Thus, this is considered to be a major risk which could cause significant delays (approvals) or costs (upgrading or monitoring third party infrastructure). This risk requires clarification as to the regulatory roadmap for large-scale CCS projects in order to reduce its impact.

It is noteworthy to mention that the current availability of water in the GABORA is in the Precipice Sandstone and it is therefore expected to see growth for future use or requests for allocations. In addition, the Water Act and GABORA seek to protect groundwater resources which appears to be in direct conflict with large scale injection.

## R30: Legal and regulatory: complexity of water allocations impacted under the Water Act

It is noteworthy to mention that GHG licences are not exempt from the Water Act. Since the injection of CO<sub>2</sub> into an aquifer will in effect sterilise an area and allocable volume, a Water Act licence will be required for a large-scale CCS project. Failure to acquire a water licence will prevent any CO<sub>2</sub> injection operations.

## R31: Legal and regulatory: CO2 injection is 'interfering with water'

This is another major legal and regulatory risk which will require clarification of the regulatory roadmap for a large-scale CCS project. As mentioned in R30, injection of CO<sub>2</sub> would likely require a water licence.

The granting of a water licence must take into account the provisions of any water plan. It is also necessary to consider that  $CO_2$  emplaced within an aquifer may not be aligned with the sustainable management principles of the Water Act. Thus, both of these issues are potential impediments to a large-scale CCS investment.

## R37: Social: resistance to ultimate development (local)

A key risk identified is that of local resistance (e.g. landholders) to the development of a large-scale CCS project, driven by concerns surrounding groundwater, emissions and the impact of fossil fuel use. Potentially, it may delay the appraisal program or even lead to the failure to secure the necessary permits or EA. This risk could be further exacerbated by political activism at both local and state levels.

This risk is linked to other legal and regulatory risks R25 to R34. To properly address this risk, local communities need to be adequately consulted and informed regarding decarbonisation and climate objectives.

## R25: Legal and regulatory: coordination agreement: third party operator objections

GHG exploration activities can only be carried out where the relevant overlapping (not adjacent or proximate) tenement rights holder has not objected to the activity (GHG Act s19) or to the safety management plan (s221).



There is a potential risk that third party overlapping rights holders decide to prevent exploration and development of a storage site (this is subject to ministerial override). Thus, applications must comment on the potential of forming a coordination agreement (if there is no reasonable chance of an agreement, the lease may be refused). To address this risk, a regulatory amendment (which is dependent on R28) may be required.

It is noteworthy to mention that GHG activities post-date most other tenements and are "at the end of the queue" with respect to resource rights permissions and consents.

## R26: Legal and regulatory: coordination agreement: third party operator existing activities

GHG exploration activities cannot be undertaken where existing activities on other exploration permits would be adversely affected. Thus, there is a risk that third party overlapping rights holders decide to prevent exploration and development activities related to a CO<sub>2</sub> storage site (this is subject to ministerial override).

As mentioned in R25, GHG activities post-date most other tenements and are "at the end of the queue" with respect to resource rights permissions and consents,

#### R49: Legal and regulatory: compliance

There is a concern about the regulator's view of the subsurface water resources in the Precipice Sandstone, Hutton Sandstone and other aquifers. A potential contamination of the low salinity water (including within the Blocky Sandstone Reservoir of the site) may impact the regulator's action/decision. That is why an appropriate procedure is required to specify/predict any water contamination in the aquifers.

This risk will be mainly covered in 'high' risks R30 to R32 and it would not be an issue for the appraisal program.

#### R35: Social: resistance to further appraisal (local)

This is a risk at the appraisal stage of a large-scale CCS project even though the appraisal activities are low impact and involve no  $CO_2$  in order to progress to the next decision stage. The project may face local resistance (e.g. landholders) to an in-field appraisal program which can be driven by concerns on groundwater emissions and the impacts of fossil fuel use. This may cause delays in appraisal activities or failure to secure the necessary permits or EA.

#### R36: Social: resistance to further appraisal (non-local)

This risk is linked to other legal and regulatory risks (R25 to R34) and considered based on broad social resistance on grounds of groundwater emissions and the impact of fossil fuel use. Even though appraisal activities are low impact and involve no CO<sub>2</sub>, not addressing this risk properly may cause delays in appraisal or failure to secure the necessary permits or EA.

#### R38: Social: resistance to ultimate development (non-local)

The development of a large-scale CCS project may face a broad social resistance on grounds of groundwater emissions and the impact of fossil fuel use. This risk may potentially cause delays in appraisal or failure to secure the necessary permits or EA.

Nevertheless, this is categorised as a low-consequence risk as it requires a wide community acceptance. Currently, broader community attitudes are in line with decarbonisation / climate objectives.

#### R27: Legal and Regulatory: Environmental impact and authority; water abstraction

A GHG 'authority' requires an EA granted by DES which should allow for water abstraction (the provisions under the *Petroleum and Gas (production and safety) Act*, for associated water do not apply). Water take is needed during the appraisal program for the dynamic pumping test of the Blocky Sandstone Reservoir. The inability to do this increases the long term pressure build-up risk, which may adversely impact on the development of a large-scale CCS project. Reinjection licences may also be required depending on volumes and costs of produced water during the dynamic pumping test.



To address this risk, a regulatory amendment (which is dependent on R28) may be required.

# R29: Legal and regulatory: Environmental protection regulations prevent injection of waste - potential for damage to novel fauna

The Queensland Water Quality Guidelines include a cautionary note on the potential to harm novel underground fauna in groundwater systems even though the likelihood of novel fauna is considered low (but local environmental assessments are required). This risk could potentially cause significant delays; specifically the need to establish a lack of deep fauna (which would be unlikely in relatively hot aquifers). This will also impose some costs to investigate the existence of novel fauna and the potential impact of CO<sub>2</sub> injection on them in a deep section of the Surat Basin.

## R33: Legal and regulatory: indirect impacts to surface water courses and springs

Injecting CO<sub>2</sub> into the Blocky Sandstone Reservoir may result in subsequent changes to surface water or springs, as well as changes in water chemistry and pressure. Impacts to water in the Precipice Sandstone may be authorised but this does not authorise impacts to near surface or surface features. Impacts such as increased pressure and flow may cause environmental 'harm,' for which serious breaches may entail regulatory penalties (civil and criminal) on operators. The likelihood of this risk is considered low but local environmental assessments will be required.

# 2.3 **Opportunities**

Figure 4 highlights the opportunities that were identified within the UQ-SDAAP project at this stage. Opportunities that are rated as 'high' are confident and impactful opportunities whereas the opportunities rated 'medium' are generally of less confidence at this immature stage of the project.



**Key opportunities** 



## O1: Enhanced groundwater levels

An opportunity can be created from a large-scale CCS project where CO<sub>2</sub> injection in the basin centre may raise water levels in the far-field and displace basin-centre water. This may support water abstraction from



the Precipice Sandstone in areas well away (distal) from the injection sites for third party users (e.g. agriculture).

This opportunity needs to be addressed in an appraisal plan through the acquisition of more data. The associated social impacts of enhanced groundwater levels may also be addressed through consultation.

#### O2: Enhanced groundwater recovery

Injecting CO<sub>2</sub> in the basin centre may displace basin-centre water to areas where it is more economic to drill and recover water (up dip). This also provides an opportunity to support abstraction from the Precipice Sandstone in areas away from the injection sites for third party users (e.g. agriculture).

Similar to O1, this opportunity requires further investigation during the appraisal activities by acquiring more relevant data. Social impacts of enhanced groundwater recovery may also be addressed through consultation.

## O3: Regional development: Retention / extension of existing regional industry and jobs

Successful reduction of carbon intensity of power generation via a large-scale CCS project could prolong the existence of regional jobs and industry in the region (mining and power generation). This would be a great opportunity to enhance sustainable regional employment, continuation of taxes and state royalties. In other words, regional employment is a direct consequence of deployment and details need to be worked up prior to FID.

#### O4: Regional development: Attraction of new carbon intensive industries to the region

Availability of large CO<sub>2</sub> storage capacity may attract high CO<sub>2</sub> emitters (e.g. cement or gas-fertiliser or gasplastics) into the region which creates new regional employment, increased taxes and state royalties.

It is likely that there is more injection/storage potential than required by the three power plants studied and therefore more carbon intensive industries could be accommodated in the area. Sufficient appraisal data will be required to increase confidence levels.

#### **O5: National survey results**

There is an opportunity to engage the community with the national survey results which in turn builds positive recognition of the project and UQ more widely. Results and methods from UQ-SDAAP show promise in understanding the community response and in better quality engagement.

#### O6: Message testing focus groups and survey

This is an opportunity to enhance or tailor a message based on specific comments thus far. Message testing focus groups and surveys also provide a good understanding of the clear messages that will help in communication of CCS technology in the future. Similar to O5, results and methods from UQ-SDAAP show promise in understanding community responses and in better quality engagement going foward.

#### **O7: Improved regional groundwater management**

The undertaking of appraisal activities and acquisition of data may significantly assist OGIA's regional groundwater efforts. Also, obtaining dynamic data from the deeper portions of the basin (which is not currently available) will improve overall basin groundwater management.

## **O8: Improved NEM system cost modelling**

Total system cost modelling for the NEM decarbonisation is highly dependent on the amount of CCS available. Appraisal work will improve estimates and dynamic data from the deep basin will improve overall NEM system management.



# 3. Reference

Honari V, Gonzalez S & Garnett A (2019), *Site appraisal plan*, The University of Queensland Surat Deep Aquifer Appraisal Project – Supplementary Detailed Report, The University of Queensland.



# 4. Appendices

# 4.1 Appendix A: UQ-SDAAP forward risk register

|                 |                                                                                             |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |       | Pro             | ect Ri            | sk (O            | oport    | unit | ty) R           | legist                                                       | ter v1.9 (01 April 2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                          |                           |                                                                                          |
|-----------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|-----------------|-------------------|------------------|----------|------|-----------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------|
|                 |                                                                                             |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |       |                 | Rati              | ng whe           | n regist | ered |                 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                           |                                                                                          |
| Un<br>qui<br>ID | Headline                                                                                    | Risk or Opportunity<br>(narrative)                                                                                                                                                                                                                                                          | Consequence<br>(narrative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cla<br>T H<br>S E | E O F | Consec<br>(1-5) | . Probab<br>(1-5) | . Resul<br>(CxP) | Ratiny   | g As | .ow 1<br>ligh 5 | Time<br>Frame<br>to<br>address<br>Sh-<br>Med-<br>Lng<br>Term | Mitigating Action / Response<br>(narrative)<br>General form of sub-surface uncertainty and risk management is<br>- AVOID/SELECT riskien/east-risky areas and features by maximising<br>distance from key features<br>- CHARACTERISE the sub-surface pre-FID and injection and select<br>injection sites to minimise nisks<br>- ENGINEER wells and completions to minimise pressure build up<br>- MONITOR post-FID and injection<br>- ENGAGE with key stakeholders<br>- EVELOP messages and programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments (result of group discusisons)                                                                                                   | Responsible<br>Risk Owner | Action<br>Party(s)<br>(plans, dates and<br>deliverables to be<br>addressed<br>elsewhere) |
| R1              | Containment: the<br>Ultimate Seal flow                                                      | Leaks of CO <sub>2</sub> from the Blocky<br>Sandstone Reservoir (BSR) through<br>Transition Zone (TZ) and Uttimate Seal<br>(US) via capillary flow into shallow<br>aquifer.                                                                                                                 | Aquifer acidification in area of potential third party interest<br>(potential for damages).<br>Loss of slorage performance, risk of shut down etc.<br>Decrasse in water quality e_otential for release<br>(and/or transport) of metals at levels exceeding water<br>quality quadiantes and current in situ concentrations<br>(considered less likely than simple acidification).                                                                                                                                                 | Y                 | ¥ Y   | 2               | 1                 | 2                | L        |      | 2               | Short                                                        | R1.1 Select: deeper areas with likely highest entry pressures.<br>R1.2 Select: areas with low rNTG in transition and seal formations.<br>R1.3 Select: areas with low risk of sand directly above main seal.<br>R1.4 Characterise: CEPs for transition zone and seal for CO <sub>2</sub> through core<br>studies.<br>R1.5 Engineer for minimum pressure build up at seal.<br>R1.6 Monitor, pressure above seal in higher risk areas (seismic or monitoring<br>wells).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Addressed in appraisal plan. Essential to the ultimate<br>abatement goal of any deployment                                               | AG                        | ALC, IR, AH (<br>included in res &<br>gaol unc.<br>Analysis)                             |
| Rí              | Containment: the<br>Ultimate Seal<br>eroded by sand<br>channel                              | Leaks of CO <sub>2</sub> from the BSR through TZ<br>and US where top seal is eroded and<br>down-cut by overlying permeable<br>(Hutton) sand channel causing flows<br>into shallower aquifer. OR if<br>depositional model is wrong and TZ<br>becomes "sandier" more quickly to the<br>south. | Note: the ultimate seal is present in ALL wells in the area.<br>The erosion into it by a Hutton sand channel is purely<br>hypothetical. Audier acidification in area of potential third<br>party interest (potential for damages).<br>Loss of storage performance, risk of shut down.<br>Decrease in water quality e.g. potential for release<br>(and/or transport) of metals at levels exceeding water<br>quality guidelines and current in place concentrations).<br>(considered tess likely than simple acidification).       | ı.<br>¥           | ¥ Y   | 4               | 2                 | 8                | м        |      | 2               | Short                                                        | R2 1 = R1.3 Select areas with low risk of sand directly above main seal.<br>R2 2 Characterise: seal and lower Hutton interface with core analysis.<br>R2 3 Characterise: seal and lower Hutton interface with 2D and/or 3D selsmic.<br>R2 4 = R1.5 Engineer. for minimum pressure build up at seal.<br>R2 5 = R1.6 Monitor: pressure and water quality above seal in higher risk area<br>(seismic or monitoring wells).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Addressed in appraisal plan. Essential to the ultimate<br>abatement goal of any deployment                                               | AG                        | ALC, IR, AH (<br>included in res &<br>geol unc.<br>Analysis)                             |
| R               | Containment: pre-<br>existing faults                                                        | Leaks of CO <sub>2</sub> from the BSR through TZ<br>and US via capillary flow through a pre-<br>existing fault into shallow aquifer                                                                                                                                                         | Note: there is only evidence from hydrocarbon shows of<br>leakage around "narif ratils" (e.g. Moonie). The<br>preponderance or of ratils" (e.g. Moonie). The<br>Aquifer additication and pressure increase in area of<br>potential third party interest (potential for damages).<br>Loss of storage performance, hisk of shut down or de-<br>selection. Decrease in water quality e.g. potential for<br>release (and/or transport) of mates at levels exceeding<br>water quality guidelines and current in situ concentrations). | ¥                 | • •   | 3               | 4                 | 12               | м        |      | 1               | Short                                                        | R3.1 Select: areas with low risk of faults and maximise distance.<br>R3.2 Characterise: faults with 2D or 3D seismic (re-process, in-fill 2D &<br>possible site 3D).<br>R3.3 Characterise: faults through core studies on friction angle and cohesion<br>R3.4 Characterise: faults through judaposition and CSP studies.<br>R3.5 = R2.4 = R1.5 Engineer. for minimum pressure build up at seal.<br>R3.6 Monitor: pressure near faults if considered higher risk area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | This is a key play and site specific risk.<br>Addressed in appraisal plan. Essential to the ultimate<br>abatement goal of any deployment | AG                        | ALC, IR, SG &<br>IA (fault<br>analysis)                                                  |
| R4              | Containment:<br>injection<br>operations<br>induced faults<br>and fractures<br>(Stress)      | Leakage of CO <sub>2</sub> from the BSR caused<br>by geomechanically induced faults or<br>fractures caused by induced<br>geomechanical stress differentials<br>from injection operations                                                                                                    | Aquifer acidification and pressure increase in area of<br>potential third party interest (potential for damages),<br>Loss of storage performance, nisk of shut down.<br>Decrease in water quality e.g. potential for release<br>(and/or transport) of metals at levels exceeding water<br>quality guidelines and current in situ concentrations<br>(considered tess likely than simple acidification).                                                                                                                           | Y                 | ¥ 1   | 2               | 1                 | 2                | L        |      | 1               | Long                                                         | R4 1 Select areas which are deep with maximum frac-margin.<br>R4 2 Characterise: frac gradient with pore studies (CS & UCS).<br>R4 3 Characterise: frac gradient with DFT or XLOT.<br>R4 4 Characterise: frac distribution with core and image log studies.<br>R4 5 Characterise: stress with selsmic studies combined with above.<br>R4 5 = R3.5 = R2.4 = R1.5 Engineer for minimum pressure build up at seal.<br>R4 7 Possibly monitor: seismicity in higher tisk area (if considered more than<br>unikely).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Addressed in appraisal plan by data acquisition which will<br>inform engineering design later.                                           | AG                        | IR, SG & IA<br>(fault analyses)                                                          |
| R               | Containment:<br>injection<br>operations<br>induced faults<br>and fractures<br>(Temperature) | Leakage of CO <sub>2</sub> from the BSR caused<br>by geomechanically induced faults or<br>reduced by combination of<br>reduced temperature and induced<br>geomechanical stress differentials<br>from injection operations                                                                   | A<br>quifer acidification and pressure increase in area of<br>potential third party interest (potential for damages).<br>Loss of storage performance, risk of shut down.<br>Decrease in water quality e, optomial for release<br>(and/or transport) of metals at levels exceeding water<br>quality guidelines and current in situ concentrations<br>(considered less likely than simple acidification).                                                                                                                          | Y                 | ¥ 1   | 2               | 2                 | 4                | L        |      | 1               | Long                                                         | $ \begin{array}{l} R5,1 = R4,1 \ Select \ areas which are deep with maximum frac-margin. \\ R5,2 = R4,2 \ Characherise: rec gradient with core studies (CS & UCS). \\ R5,3 \ Characherise: recard fractions to modeling (with real data). \\ \mathsf{R5,5 \ Characherise: thermal effects via coupled modeling (with real data). \\ \mathsf{R5,5 \ R5,6 = R4,6 = R3,5 = R2,4 = R1,5 \ Engineer: for minimum pressure build up at seal. \\ \mathsf{R5,7 \ R5,5 = R4,6 = R3,5 = R2,4 = R1,5 \ Engineer: for minimum pressure build up at seal. \\ \mathsf{R5,7 \ R5,5 \ R5,6 = R4,6 = R3,5 = R2,4 = R1,5 \ Engineer: for minimum pressure build up at seal. \\ \mathsf{R5,7 \ R5,5 \ R4,6 = R5,5 = R2,4 = R1,5 \ R2,4 = R1,5 \ R2,6 = R3,7 \ R3,5 = R4,7 \ R3,5 \ R4,6 = R4,7 \ R3,5 = R4,7 \ R3,5 = R4,7 \ R3,5 = R4,7 \ R4,7 \ R4,5 \ \mathsf{R4,5$ | Addressed in appraisal plan by data acquisition which will<br>inform engineering design later.                                           | AG                        | IR                                                                                       |



| Project Risk (Opportunity) Register v1.9 (01 April 2019) |                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                |                |              |                     |               |         |             |                     |                                | er v1.9 (01 April 2019)                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                           |             |                                                                    |
|----------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|----------------|--------------|---------------------|---------------|---------|-------------|---------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------|
|                                                          |                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                |                |              | Rating              | when          | registe | red         |                     |                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                           |             |                                                                    |
|                                                          |                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cla              | ssifica<br>ion | t              |              |                     |               | Rating  | Ass<br>Mat  | smnt<br>turity<br>a | Time<br>Frame<br>to<br>iddress | Mitigating Action / Response<br>(narrative)<br>General form of sub-surface uncertainty and risk management is<br>- AVOID/SELECT risker/least-risky areas and features by maximising                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           | Basnansible | Action<br>Party(s)                                                 |
| que                                                      | Headline                                                                           | Risk or Opportunity<br>(narrative)                                                                                                                                                           | Consequence<br>(narrative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T<br>H<br>I<br>E | 0              | Conse<br>(1-5) | q. Pro<br>(1 | obab. R/<br>1-5) (( | esult<br>CxP) | LMI     | H LO<br>Hig | ow 1<br>gh 5        | Sh-<br>Med-<br>Lng<br>Term     | austance from key features<br>- OHRACTERISE the sub-surface pre-FID and injection and select<br>injection sites to minimes risks<br>- ENGINEER wells and completions to minimise pressure build up<br>- MONITOR post-FID and injection<br>- ENGAGE with key stakeholders<br>- DEVELOP messages and programs                                                                             | Comments (result of group discusisons)                                                                                                                                                                                                                    | Risk Owner  | (plans, dates and<br>deliverables to be<br>addressed<br>elsewhere) |
| R6                                                       | Containment:<br>extraction or CSG<br>operations<br>induced faults<br>and fractures | Leakage of CO <sub>2</sub> from the BSR caused<br>by geomechanically induced faults or<br>fractures caused by induced<br>geomechanical stress differentials<br>from CSG extraction operation | Aquifer acidification and pressure increase in area of<br>potential third party interest (potential for damages).<br>Contamination of economic gas asset by leaked CO <sub>2</sub> .<br>Loss of storage performance, risk of shut down.<br>Decrease in water quality e_potential for release<br>(and/or transport) of metals at levels exceeding water<br>quality guidelines and current in situ concentrations.<br>(considered less likely than simple acidification).                                     | ¥.               | ,              | 1              |              | 1                   | 1             | L       |             | 3                   | Long                           | R6.1 Select. siles well away from areas of extreme and differential draw-down<br>(CSG production areas)<br>R6.2 Estimate areas of future CSG expansion.<br>R6.3 If considered a high risk, monitor. stresses and pressures in intermediate<br>formations at edges of injection areas of influence.<br>R6.4 = 5.8 = R4.7 If considered at high risk, monitor, regional micro-seismicity. | Addressed in appraisal plan by data acquisition which will<br>inform engineering design later.                                                                                                                                                            | AG          | IR, MS, ASR, IA                                                    |
| R7                                                       | Containment:<br>legacy wells                                                       | Leakage of CO <sub>2</sub> from the BSR through<br>T2 and US via capillary flow through<br>legacy wells (registered and<br>unregistered bores) into shallow<br>aquifer.                      | Aquifer acidification and pressure increase in area of<br>potential third park interest (potential for damages).<br>Leaks to atmosphere or vadose zone.<br>Loss of storage performance, risk of shut down.<br>Decrease in water quality e.g. potential for release<br>(and/or transport) of metals at levels exceeding water<br>quality guidelines and current in situ concentrations.<br>(considered less likely than simple acidification).                                                               | ¥                | · ·            | r 3            |              | 2                   | 6             | м       | :           | 3                   | Med                            | R7.1 Select. sile to avoid (max distance) from legacy wells through or TD in the<br>BSR.<br>R7.2 Model credible worse case of legacy well leakage or displacement of<br>water between aquifer.<br>R7.3 Characterise legacy wells for evidence of leakage (if high risk from 7.2)<br>e.g. through Radon or methane sampling.                                                             | This is a play and site specific risk. The main approach has<br>been to avoid any sites. Legacy well characterisation may<br>form part of appraisal program<br>Addressed in appraisal plan. Essential to the ultimate<br>abatement goal of any deployment | AG          | JU<br>(PhD review- no<br>evidence of poor<br>P&A)                  |
| R8                                                       | Containment:<br>injection wells<br>cement                                          | Leakage of CO <sub>2</sub> from the BSR through<br>TZ and US via capillary flow through<br>poorly cemented and isolated injection<br>wells into shallow aquifer                              | Aquifer acidification and pressure increase in area of<br>potential third partly interest (potential for damages).<br>Leaks to atmosphere or vadose zone.<br>Loss of injection pressure and outflow into storage zone<br>Loss of storage performance, tisk of shut down.<br>Decrease in water quality e.g. potential for release<br>(and/or transport) of metals at levels exceeding water<br>quality guidelines and current in situ concentrations.<br>(considered less likely than simple acidification). | , y              | , .            | 4              |              | 1                   | 4             | L       |             | 3                   | Long                           | R8.1 Engineer: Drill hole to ensure in-gauge sections.<br>R8.2 Engineer: Cement selection to ensure minimum risk of CO <sub>2</sub> leakage<br>(rheology).<br>R8.3 Engineer: Rotate casing while cementing.<br>R8.4 Engineer: Set cement shoe in silitest section of "Evergreen".<br>R8.5 Characterise: Pressure test and USIT the cement.                                              | Addressed in appraisal plan by data acquisition which will<br>inform engineering design later.                                                                                                                                                            | JU          | JU<br>(PhD review- no<br>evidence of poor<br>P&A)                  |
| R9                                                       | Containment:<br>injection wells<br>materials                                       | Leakage or loss of well integrity occurs<br>through corrosion which causes leak of<br>CO <sub>2</sub> to aquifers or atmosphere.                                                             | Aquifer acidification.<br>Loss of injection potential.<br>Possible shut down or failure to licence the project.<br>Decrease in water quality e.g. potential for release<br>(and/or transport) of metalas at levels exceeding water<br>quality guidelines and current in situ concentrations<br>(considered less likely than simple acidification).                                                                                                                                                          | ¥                | ,              | 4              |              | 1                   | 4             | L       | :           | 2                   | Long                           | R9.1 Engineer: select CRA tubing, well heads (and casing) for exposure in<br>Evergreen and "Precipice".<br>R9.2 Monitor consider (risk assessment) to periodically for mechanical<br>integrity (MIT? - but could make it worse).<br>R9.3 Engineer: for minimum intervention completion.                                                                                                 | Addressed in appraisal plan. Essential to the ultimate<br>abatement goal of any deployment                                                                                                                                                                | postpone    |                                                                    |
| R10                                                      | Containment: in-<br>field facilities                                               | Leakage of CO <sub>2</sub> from in-field pipelines,<br>compressors or well-head equipment<br>to atmosphere.                                                                                  | Loss of storage/abatement potential.<br>Potential ponding of CO <sub>2</sub> in "lows" and consequent safety<br>hazard.<br>Loss of storage performance, risk of shut down, failure or<br>loss of licence.                                                                                                                                                                                                                                                                                                   | r Y              | <b>,</b> ,     | 4              |              | 1                   | 4             | L       | :           | 2                   | Long                           | R10.1 Engineer: select CRA or coated steel.<br>R10.2 Monitor. for fugitive emissions.<br>R10.3 Monitor. for confined spaces.                                                                                                                                                                                                                                                            | Addressed in appraisal plan. Essential to the ultimate<br>abatement goal of any deployment                                                                                                                                                                | postpone    |                                                                    |
| <b>R</b> 11                                              | Containment:<br>pipeline fugitives                                                 | Leakage of CO <sub>2</sub> from pipeline at<br>booster or LBV positions.                                                                                                                     | Loss of storage/abatement potential.<br>Potential ponding of CO <sub>2</sub> in "lows" and consequent safety<br>hazard.<br>Loss of storage performance, risk of shut down, Loss of<br>storage performance, risk of shut down, failure or loss of<br>licence.                                                                                                                                                                                                                                                | Y                | ,              | 4              |              | 1                   | 4             | L       | :           | 2                   | Long                           | R11.1 Engineer limit H <sub>2</sub> , metals and H <sub>2</sub> content in CO <sub>2</sub> .<br>R11.2 Engineer gotimal LEV spcing.<br>R11.3 Engineer avoid topographic lows.<br>R11.4 Montor: for foughte emissions at high risk points.<br>R11.5 Monitor: for confined spaces.                                                                                                         | Addressed in appraisal plan or early prefeasibility study.<br>Essential to the ultimate abatement goal of any deployment                                                                                                                                  | postpone    |                                                                    |



|     |                                                                           |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                          | er v1.9 (01 April 2019) |                |                 |                  |                 |                |      |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |             |                                                                    |
|-----|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|-----------------|------------------|-----------------|----------------|------|--------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------|
|     |                                                                           |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                          |                         |                |                 | Rat              | ting whe        | n regis        | tere | d                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |             |                                                                    |
|     |                                                                           |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                          | Cla                     | ssifica<br>ion | ıt              |                  |                 | Ratir          | ng   | Assmnt<br>Maturity | Time<br>Frame<br>to<br>address | Mitigating Action / Response<br>(narrative)<br>General form of sub-surface uncertainty and risk management is<br>- AVOD/SELECT riskier/least-risky areas and features by maximising                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                        | Pesnensible | Action<br>Party(s)                                                 |
| que | Headline                                                                  | Risk or Opportunity<br>(narrative)                                                                                                                    | Consequence<br>(narrative)                                                                                                                                                                                                                                                                                                                                                               | T<br>H E<br>S C<br>E    | 0              | Consec<br>(1-5) | . Proba<br>(1-5) | b. Resu<br>(CxF | It<br>)<br>L M | н    | Low 1<br>High 5    | Sh-<br>Med-<br>Lng<br>Term     | austance from key reaures<br>- OHRACTERISE the sub-surface pre-FID and injection and select<br>injection sites to minimise risks<br>- ENGINEER wells and completions to minimise pressure build up<br>- MONITOR post-FID and injection<br>- ENGAGE with key stakeholders<br>- DEVELOP messages and programs                                                                                                                                                                                                                                                                                          | Comments (result of group discusisons)                                                                                                                                                                                                                                                                                 | Risk Owner  | (plans, dates and<br>deliverables to be<br>addressed<br>elsewhere) |
| R12 | Containment:<br>pipeline damage                                           | Leakage of CO <sub>2</sub> from pipeline caused<br>by physical damage or breach.                                                                      | Major loss of storage/abatement potential.<br>Local hazard from high velocity and "freezing" escape.<br>Potential ponding of $CO_2$ in "lows" and consequent safety<br>hazard.<br>Loss of storage performance, risk of shut down, failure or<br>loss of licence.                                                                                                                         | , <b>,</b>              | , <b>.</b>     | Y 4             | 1                | 4               | L              |      | 2                  | Long                           | R12.1 Select: Prioritise existing easements (and SOPS).<br>R12.2 Engineer: Pipeline design and burials and LBV spacing (inventory<br>control).<br>R12.3 Monitor: Permits to work, 3rd party interactions.                                                                                                                                                                                                                                                                                                                                                                                            | Addressed in appraisal plan or early prefeasibility study.<br>Essential to the ultimate abatement goal of any deployment                                                                                                                                                                                               | postpone    |                                                                    |
| R13 | Containment;<br>natural migration<br>out of block                         | Physical migration of CO <sub>2</sub> under<br>injection drive or buoyancy drive<br>outside the "tenement" area.                                      | Breach of licence conditions.<br>Possible consequential risk increases in other leakage<br>forms. Decrease in water quality e.g. potential for release<br>(and/or transport) of metals at levels exceeding water<br>quality guidelines and current in situ concentrations<br>(considered less likely than simple acidification).                                                         | · .                     |                | r 4             | 1                | 4               | L              |      | 2                  | Short                          | R13.1 Select site to maximise distance to permit boundary. R13.2 Select - neopolate boundaries with State quot ominimise risk. R13.2 Select - neopolate boundaries with State quot ominimise risk. R13.4 Select injection depth in deeper parts of injection zone. R13.4 Select injection depth in deeper parts of injection zone. R13.5 Characterise: far field permeability structure to better characterise risk and range of myrations oceanios. R13.6 Nontor: pressure vs time and far field plume (or absence of plume) to better history models.                                              | Addressed in appraisal plan. Essential to the ultimate<br>abatement goal of any deployment                                                                                                                                                                                                                             | AG          | IR (included in<br>res scenarios)                                  |
| R15 | Containment;<br>extraction "push"<br>"pull" migration<br>out of block     | Physical migration of CO <sub>2</sub> under<br>injection drive or buoyancy drive <u>plus</u><br>addition extraction "pull" from other<br>users.       | Breach of licence conditions.<br>Potential acidification of 3rd party water resource.<br>Possible consequential risk increases in other leakage<br>forms. Decrease in water quality e.g. potential for release<br>(and/or transport) of metals at levels exceeding water<br>quality guidemises and current in situ concentrations<br>(considered less likely than simple acidification). | Y,                      | · ·            | Y 4             | 1                | 4               | L              |      | 2                  | Short                          | R15.2 Coharacterise: legal position and recourse re consequential losses.<br>Carlly GHC permit Seniority with luture abstraction possibilities.<br>R15.3: Characterise: model credible worse case with current abstraction<br>impacts.<br>R15.4: Characterise: model to set 'exclusion boundaries' for future allowable<br>areas of the BSR abstraction.<br>R15.5: Engineer scope of simultaneous operations or cooperation<br>agreements<br>R15.6: Monitor. Impact from and to 3rd party operators of abstraction.                                                                                  | Neads to be included in regulatory action theme - how to govern<br>where others drill and pump.<br>Refer to specific scenario testing this - minor or no plume<br>movement even if hypothetical 'Teedlot' bore is within 5km of<br>plume.                                                                              | PH          | MS (included in<br>res scenarios) &<br>IR                          |
| R16 | Containment:<br>migration through<br>the BSR "pinch-<br>out"              | Physical migration of CO <sub>2</sub> under<br>injection drive or buoyancy drive<br>outside the "play" area to the west (and<br>into others' assets). | Possible breach of licence conditions.<br>Additication of overlying aquifers.<br>Contamination of gas assets up-dip.                                                                                                                                                                                                                                                                     | y .                     |                | Y 2             | 2                | 4               | L              |      | 1                  | Med                            | R16.1: Select maximise distance from known and likely compeling injection<br>points.<br>R16.2: Characterise: legal position and recourse re consequential losses.<br>Clarify GHG permit Seniority with thure large scale injection possibilities.<br>R16.3: Characterise: model to selve scale current injection impads.<br>R16.4: Characterise: model to selve visculsion boundaries' for future allowable<br>areas of the BSR injection.<br>R16.5: Engineer scope of simultaneous operations or cooperation<br>agreements.<br>R16.6: Monitor. Impact from and to 3rd party operators of injection. | Require a condition in the licence agreement for others/3P's not<br>to drill in area.<br>Include discussions in regulator action theme.                                                                                                                                                                                | РН          | IR (included in<br>res scenarios) &<br>ASR                         |
| R17 | Containment: new<br>3rd party well<br>drilling through<br>injection zones | Third party operator drilling through<br>"plume" or inflated zone see increased<br>pore pressure and/or pH (e.g. O&G<br>well into Permian plays).     | Increase in cost and risk to third party operator.<br>Need for sim-ops during drilling, possible loss, shut-in of<br>injection operations.<br>Need for coordination agreement.                                                                                                                                                                                                           | ſ,                      | r ¥ '          | r 2             | 4                | 8               | м              |      | 2                  | Long                           | R17.1 Select maximise distance from known or likely O&G "dnll though" areas.<br>R172 (as for 15.2 & 16.2) legal positions or plan- and seniority of rights wrtto<br>future O&G dnling plans.<br>R17.3 Characterise: pressure and pH impacts and scope engineering and cost<br>impacts for 3rd part O&G operators.<br>R17.4 Characterise: preferred "no drll" areas or exclusion zone away from the<br>injection well.<br>R17.5 (as for 15.5 & 16.5) consider scope of a sim-ops or cooperation<br>agreement.                                                                                         | May need an regulatory solution<br>Chance of drilling plume is small.<br>Chance of drilling high pressure zone is high.<br>Review model like conditions.                                                                                                                                                               | AG          | AG (to be<br>included in<br>regulatory action<br>theme)            |
| R18 | Injectivity: scaling                                                      | Predicted injection performance is<br>reduced due to near well bore scaling.                                                                          | Reduction in CO <sub>2</sub> storage, possible venting.<br>Possible over-investment in capture and transport<br>Need for work-over or new well.<br>Site de-selected as unquitable.                                                                                                                                                                                                       | ,                       |                | r 4             | 2                | 8               | м              |      | 1                  | Short                          | R18.1 Select site with minimal scaling risk.<br>R18.2 Characteries: site and geochemical reactivity through extensive lab test<br>under representative fluid TAP conditions.<br>R18.3 Engineer: (if a risk) for possible well intervention or for chemical<br>inhibition.<br>R18.4. Consider a contingency plan.                                                                                                                                                                                                                                                                                     | Past work done on the West Wandoan 1 Precipice Sandstone<br>by FEI Digicore showed kaolinite movement, however, changes<br>to permeability through fines migration were not measured.<br>In any case, this again would depend on the nature of the BSR<br>and clays in the deep section to be determined in new cores. | AG          | JU, JP                                                             |



| Project Risk (Opportunity) Register v1.9 (01 April 2019) |                                                                                         |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                |                 |                    |                 |         |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                                    |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|-----------------|--------------------|-----------------|---------|----------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------|
|                                                          |                                                                                         |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                |                 | Rati               | ng wher         | registe | red            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                                    |
|                                                          |                                                                                         |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 | Cla                 | ssifica<br>ion | ıt              |                    |                 | Rating  | Assm<br>Maturi | ty to addre                   | Mitigating Action / Response     (narrative)     General form of sub-surface uncertainty and risk management is     ss - AVOID/SELECT riskier/least-risky areas and features by maximising                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | Action<br>Party(s)                                                 |
| que<br>ID                                                | Headline                                                                                | Risk or Opportunity<br>(narrative)                                                                                                                                                                                                                                            | Consequence<br>(narrative)                                                                                                                                                                                                                                                                                                                                                                      | T<br>He<br>S C<br>E |                | Consec<br>(1-5) | . Probab.<br>(1-5) | Result<br>(CxP) | LM      | Low<br>High    | Sh-<br>1 Med<br>5 Lng<br>Terr | distance from Key features     refeatures       - OHAPACTERISE the sub-surface pre-FID and injection and select<br>injection sites to minimise risks     Comments (result of group discusisons)       - ENGINEER wells and completions to minimise pressure build up       - MONITOR post-FID and injection       - ENGINEER wells and completions to minimise pressure build up       - MONITOR post-FID and injection       - NONITOR post-FID and injection       - NONITOR post-FID and injection       - DEVELOP messages and programs                                                                                                                                         | esponsible<br>Risk Owner | (plans, dates and<br>deliverables to be<br>addressed<br>elsewhere) |
| R19                                                      | Injectivity:<br>compartmentalisa<br>tion or baffles<br>(faults &<br>channels)           | Predicted injection performance is<br>reduced over time due to presence of<br>baffles or barriers in the far-field.                                                                                                                                                           | Reduction in CO <sub>2</sub> injection rate storage, possible venting.<br>Possible over-investment in capture and transport.<br>Need for new well in location away from barriers.<br>Increased risk of fracturing and containment loss to<br>shallow zones.                                                                                                                                     | ¥ ,                 | , ,            | r 3             | 2                  | 6               | м       | 2              | Sho                           | R19 1 Select site with maximum distance from known or suspeded<br>boundaries or baffles.     There is no evidence in any LT test on the BSR that there are<br>material baffles and barfles except the major fault system west<br>of tests.       R19 2 Characterise: far-field flow structure through seismic and dynamic well<br>tests.     There is no evidence in any LT test on the BSR that there are<br>material baffles and barfles except the major fault system west<br>of the APLING Mark trail.       R19 3 Monitor: pressure build up at injection site and in far-field to better histori<br>match impact of baffles and boundaries.     Impact the APLING Mark trail. | AG                       | PH, IR, ASR                                                        |
| R20                                                      | Injectivity:<br>diagenesis<br>drastically<br>reduced<br>permeabilities at<br>depth      | Actual injection performance is LOW<br>due to significant permeability<br>decrease with depth, worse than pre-<br>injection predictions. (There is no deep<br>core data available and there is 'some'<br>cuttings evidence of deepest Precipice<br>being partially cemented). | Possible unsuitability of site for multi-megatonne<br>storage.<br>Over-investment in capture & transport.<br>Site de-selected as unquitable                                                                                                                                                                                                                                                     | ¥,                  | , ,            | r 4             | 3                  | 12              | м       | 1              | Sho                           | R20.1 Characterise: acquired core, wireline DFITMDT and well test data over<br>intended injection zones:<br>R20.2 Monitor. (If risky) flow zones and the proportion of fluid they accept. Solution to existing modelling<br>carries the risk that assumptions could be considered to be<br>poorly constructed.                                                                                                                                                                                                                                                                                                                                                                      | AG                       | IR (included in<br>res scenarios)                                  |
| R21                                                      | Injectivity: far-field<br>precipitation                                                 | Injection performance is reduced over<br>time due to far-field precipitation of<br>minerals causing pressure build up.                                                                                                                                                        | Reduction in CO <sub>2</sub> injection rate storage, possible venting.<br>Possible over-investment in capture and transport.<br>Need for new well in location away from barriers.<br>Increased risk of fracturing and containment loss to<br>shallow zones.                                                                                                                                     | ¥,                  | , ,            | r 3             | 2                  | 6               | м       | 1              | Sho                           | R211 Characterise: far field flow paths (modelling).         No data at this depth.           R212 Characterise: reactivity of formations likely in the flow path.         Evidence of water properties also needed.           R213 Characterise: fracture pressures (including thermal adjustments).         Bringing data from other areas down to existing modelling carries the risk that assumptions could be considered to be prody constructed.           R215 Monitor near field and Field pressures (near any at risk features).         poorty constructed.                                                                                                               | AG                       | JU, JP                                                             |
| R22                                                      | Injectivity: loss of well availability                                                  | Injection wells require work-over or are<br>otherwise impaired or reduced in their<br>injection performance.                                                                                                                                                                  | Reduction in CO <sub>2</sub> injection rate storage, possible venting.<br>Possible over-investment in capture and transport.<br>Need for new well in location away from barriers.<br>Increased risk of fracturing and containment loss to<br>shallow zones.                                                                                                                                     | ¥,                  | , ,            | r 3             | 1                  | 3               | L       | 2              | Lon                           | R22.1 Characterise: formations to assess risks of borehole stability of fines effects (rocks and fuids).       Addressed in appraisal plan or early prefeasibility study.         R22.2 Engineer: wells operational windows (pressure and flow) to minimise work-over risk.       Addressed in appraisal plan or early prefeasibility study.         R22.2 Engineer: wells operational windows (pressure and flow) to minimise work-over risk.       Essential to the ultimate abatement goal of any deployment work-over risk.                                                                                                                                                     | AG                       | will be covered in<br>a post-appraisal<br>FDP revision             |
| R23                                                      | Injectivity: high<br>skin                                                               | Injection performance reduced due to<br>high completion or formation damage<br>skin                                                                                                                                                                                           | Reduction in CO <sub>2</sub> storage, possible venting.<br>Possible over-investment in capture and transport.<br>Need for work-over or new well.<br>Site de-selected as unquitable.                                                                                                                                                                                                             | Y,                  | ,              | r 3             | 1                  | 3               | L       | 2              | Lon                           | g Actions as for R22 Addressed in appraisal plan or early prefeasibility study.<br>Essential to the ultimate abatement goal of any deployment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AG                       | will be covered in<br>a post-appraisal<br>FDP revision             |
| R24                                                      | Injectivity: MAR<br>pressures cause<br>reduction in<br>margin                           | Injection performance reduced due to<br>increase in far-field pore pressures<br>from MAR (or simular) operations.                                                                                                                                                             | Possible need for coordination agreement.<br>Reduction in CO <sub>2</sub> injection rate storage, possible venting,<br>Possible over-investment in capture and transport.<br>Need for new well in location away from MAR pressures.<br>Increased risk of fracturing and containment loss to<br>shallow zones.                                                                                   | Y                   | · • •          | r 2             | 2                  | 4               | L       | 2              | Lon                           | R24.1 Select site to maximise distance from MAR sites.<br>R24.2 Characterise: far-field flow properties.<br>R24.3 Monitor: far-field pressures for early signs or issues arising.<br>R24.4 Engage: early with MAR operator on site selection and operating window.                                                                                                                                                                                                                                                                                                                                                                                                                  | PH                       | PH, IR, MS                                                         |
| R25                                                      | Legal & Reg:<br>Coordination<br>agreement: 3rd<br>party operator<br>objections          | GHG exploration activities can only be<br>carried out where the relevant<br><u>overlapping</u> (Not adjacent or proximate)<br>tenement rights holder has not<br>objected to the activity (GHG Act s19) or<br>to the safety management plan (s221).                            | Third party overlapping rights holders can prevent<br>exploration and development of a storage site (this is<br>subject to ministerial override).<br>Note that GHC activities post date most other tenements<br>are "atthe end of the queue".<br>Applications must comment on potential to form a<br>coordination agreement (if no reasonable chance of an<br>agreement, lease may be refused). |                     | ¥              | r 5             | 3                  | 15              | м       | 1              | Sho                           | R25.1 Select sites without overlapping rights if possible.<br>R25.2 Characterises additional information and modelling needed to evaluate<br>the linkey effect (s197).<br>R25.3 Engage: early with possible applications - provide and co-develop with<br>experiment overlapping rights holders to enable them to make submissions.<br>R25.4 Engage: early with regulator and 3rd part operators - applications must<br>comply with P&G Safety Act.<br>R25.5 Engage: early on the putchinal to form a coordination agreement.                                                                                                                                                       | AG                       | AG (to be<br>included in<br>regulatory action<br>theme)            |
| R26                                                      | Legal & Reg:<br>Coordination<br>agreement: 3rd<br>party operator<br>existing activities | GHG exploration activities cannot be<br>undertaken where existing activities on<br>other exploration permits would be<br>adversely effected.                                                                                                                                  | Third party overlapping rights holders can prevent<br>exploration and development of a storage site (this is<br>subject to ministerial override).<br>Note that GHG activities post date most other tenements<br>are "at the end of the queue".                                                                                                                                                  |                     | ¥,             | r 5             | 3                  | 15              | м       | 1              | Sho                           | rt Actions as for R25 May need regulatory change - is dependent on R28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AG                       | AG (to be<br>included in<br>regulatory action<br>theme)            |



| Project Risk (Opportunity) Register v1.9 (01 April 2019) |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |               |               |                   |                 |                 |         |        |                   | ter v1.9 (01 April 2019)       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |                                                                    |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|---------------|-------------------|-----------------|-----------------|---------|--------|-------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------|
|                                                          |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |               |               |                   | Rating          | when            | registe | ered   |                   |                                |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |                                                                    |
|                                                          |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clas<br>i            | sifica<br>ion | it            |                   |                 |                 | Rating  | A<br>M | ssmnt<br>laturity | Time<br>Frame<br>to<br>address | Mitigrating Action / Response<br>(narrative)<br>General form of sub-surface uncertainty and risk management is<br>- AVOID/SELECT riskier/least-risky areas and features by maximising                                                                                                                                                                                                                        |                                                                                          | Beenewikle | Action                                                             |
| qui<br>ID                                                | e Headline                                                                                                                                    | Risk or Opportunity<br>(narrative)                                                                                                                                                                                                                                                                                       | Consequence<br>(narrative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T<br>H E<br>S C<br>E | 0             | Con:<br>s (1· | seq. Pro<br>5) (1 | obab. I<br>1-5) | Result<br>(CxP) | LMI     | нЦ     | .ow 1<br>ligh 5   | Sh-<br>Med-<br>Lng<br>Term     | distance from key features<br>- CHARACFERISE the sub-surface pre-FID and injection and select<br>injection sites to minimise risks<br>- ENGINEER wells and completions to minimise pressure build up<br>- MONITOR post-FID and injection<br>- ENGAGE with key stakeholders<br>- DEVELOP messages and programs                                                                                                | Comments (result of group discusisons)                                                   | Risk Owner | (plans, dates and<br>deliverables to be<br>addressed<br>elsewhere) |
| R2                                                       | Legal & Reg:<br>Environmental<br>Impact &<br>Authority; Water<br>Abstraction                                                                  | The GHG authority requires an EA<br>granted by DES which should allow for<br>water abstraction (PAG provisions for<br>associated water do not apply).                                                                                                                                                                    | Water take is needed for dynamic testing. Inability to do<br>this increases the long term pressure build-up risk.<br>Reinjection licences may also be needed depending on<br>volumes and costs of produced water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y                    |               | Y (           | 5                 | 2               | 10              | м       | Ī      | 1                 | Short                          | R27.1 Select: sites not covered by water abstraction allocations in the<br>Precipice.<br>R27.2 Select: sites (deep) not likely covered by future allocations due to high<br>costs.<br>R27.3 Characterise: plume and pressure spreads - evaluate impact in any<br>known allocation areas.<br>R27.4 Engage: early with regulator on Water Licence requirements for<br>appraisal and for utilimate development. | May need regulatory change - is dependent on R28                                         | AG         | AG (to be<br>included in<br>regulatory action<br>theme)            |
| R2                                                       | Legal & Reg:<br>Environmental<br>Protection<br>Regulations<br>prevent injection<br>of Waste                                                   | CO <sub>2</sub> from a power station looks likely to<br>be classed as waste under the EP Act<br>and cannot be injected. There are no<br>"end of waste" codes or approvals<br>which apply to CO <sub>2</sub> . Granting approval<br>must consider whether the waste will<br>have temp or permanent environmental<br>harm. | Significant possible flaw in current Queensland<br>regulations. Rege need changing or Co <sub>2</sub> redefining as<br>end of waste resources' (under Wasts Reduction and<br>Recycling Act). The judgement of environmental harm<br>depends on the definition of values and injecting in a<br>GAB aquifer looks likely to raise major issues as it lis<br>invelve that the endemic value of potable aquifers might be<br>"protected" as an initial position.<br>Without an end of waste approval, an application of an EA<br>would be refused by DES. End of waste approval may be<br>protected as an under the Waste Act.<br>An argument is needed to discuss local "harm" vs.<br>prevention dfwider Tharms" form CO <sub>2</sub> emissions. | Y                    |               | Y I           | 5                 | 5               | 25              |         | н      | 2                 | Short                          | R28.1 Select: sites least attractive (deep) for future use or allocation.<br>R28.2 Engage: early with regulator on classification of CO <sub>2</sub> as "end of waste"<br>resource.<br>R28.3 Engage: early with regulator on local 'harm' vs far-field pressure<br>'benefits'.<br>R28.4 Engage: early with regulator on local 'harm' vs. global CO <sub>2</sub> reductions.                                  | Major risk - clarification of regulatory roadmap for large-scale<br>CCS                  | AG         | AG (to be<br>included in<br>regulatory action<br>theme)            |
| R2                                                       | Legal & Reg:<br>Environmental<br>Protection<br>Regulations<br>prevent injection<br>of waste -<br>potential for<br>damage to "novel<br>fauna". | The Queensland Water Quality<br>Guidelines include a cautionary note<br>on the potential to harm novel<br>underground fauna in groundwater<br>systems.                                                                                                                                                                   | Significant delays or need to establish lack of deep fauna<br>(unlikely in relatively hot aquifers, though). Some cost<br>impact likely.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y                    |               | Y 4           | 1                 | 2               | 8               | м       |        | 1                 | Med                            | Actions as for R28<br>R29.1 Select: site with low likelihood or maximum separation from ecosystems<br>(deep).<br>R29.2 Characterise: site for deep faunal potential.<br>R29.3 Characterise: sites of special interest (springs, faults).                                                                                                                                                                     | Likelihood of "novel fauna" considered low but local<br>environmental assessments needed | AG         | AG (to be<br>included in<br>regulatory action<br>theme)            |
| R3                                                       | Legal & Reg:<br>Complexity of<br>water allocations<br>impacted under<br>Water Act                                                             | GHG licences are not exempt from the Water Act. The injection of $CO_2$ in the aquifer sterilises an area and allocable volume. A Water Act licence will be required.                                                                                                                                                    | Failure to acquire a water licence to interfere will prevent<br>any injection operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y                    |               | Y (           | 5                 | 4               | 20              |         | н      | 1                 | Short                          | R30.1 = 28.1 Select: areas with no and no likely future allocation.<br>R30.2 = R27.4 Engage: early for a Water Licence.                                                                                                                                                                                                                                                                                      | Major risk - clarification of regulatory roadmap for large-scale CCS                     | AG         | AG (to be<br>included in<br>regulatory action<br>theme)            |
| R3                                                       | Legal & Reg: CO;<br>injection is<br>"interfering with<br>water"                                                                               | 2<br>Injection of CO <sub>2</sub> would likely require a<br>water licence.                                                                                                                                                                                                                                               | The granting of a water licence must take into account the<br>provisions of any water plan - $CO_2$ emplaced within an<br>aquifer may not be aligned with the sustainable<br>management principles of the water act. Either issue<br>might prevent a development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y                    |               | r i           | 5                 | 4               | 20              |         | н      | 1                 | Short                          | R31.1 Characterise: local area water plans.<br>R31.2 Select: area without water plan restrictions or allocations.<br>R31.3 Engage: early with regulator on paradox between GHG & Water Acts.                                                                                                                                                                                                                 | Major risk - clarification of regulatory roadmap for large-scale CCS                     | AG         | AG (to be<br>included in<br>regulatory action<br>theme)            |



|            |                                                                                                  | Project Risk (Opportunity) Register v1.9 (01 April 2019)                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                   |                      |               |        |           |         |         |          |                   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  |                           |                                                                      |
|------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|--------|-----------|---------|---------|----------|-------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------|
|            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                   |                      |               |        | Rati      | ng when | registe | ered     |                   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  |                           |                                                                      |
| Uni<br>que | Headline                                                                                         | Risk or Opportunity<br>(narrative)                                                                                                                                                                                                                                                                                                                                          | Consequence<br>(narrative)                                                                                                                                                                                                                                                                        | Class                | sificat<br>on | Conseq | . Probab. | Result  | Rating  | As<br>Ma | ssmnt<br>laturity | Time<br>Frame<br>to<br>address | Mitigating Action / Response<br>(narrative)<br>General form of sub-surface uncertainty and risk management is<br>- AVOID/SELECT riskien/east-risky areas and features by maximising<br>distance from key features<br>- CHARACTERISE the sub-surface pre-FID and injection and select                                                                                                                                                                                               | Comments (result of group discusisons)                                                                                                           | Responsible<br>Risk Owner | Action<br>Party(s)<br>(plans, dates and<br>deliverables to be        |
| ID         |                                                                                                  | (                                                                                                                                                                                                                                                                                                                                                                           | (                                                                                                                                                                                                                                                                                                 | T<br>H E<br>S C<br>E | S<br>O P<br>L | (1-5)  | (1-5)     | (CxP)   | с м     | H Hi     | .ow 1<br>ligh 5   | Sh-<br>Med-<br>Lng<br>Term     | injection sites to minimise noks<br>= KGINEER wells and completions to minimise pressure build up<br>= MONITOR post-FID and injection<br>= ENGAGE with key stakeholders<br>= DEVELOP messages and programs                                                                                                                                                                                                                                                                         |                                                                                                                                                  |                           | addressed<br>elsewhere)                                              |
| R32        | Legal & Reg:<br>GABORA (no<br>EPBC) does not<br>yet consider large<br>scale injection<br>impacts | GABORA limits anticipate draw-down<br>rather than increases in hydraulic head<br>which might occur. The possibility<br>could cause major delays (approvals)<br>or costs (upgrading or monitoring 3rd<br>party infrastructure).<br>The current availability of water in the<br>GABORA is in the Precipice - future use<br>or requests for allocations are likely to<br>grow. | Water Act and GABORA seek to protect groundwater<br>resources - this seems in direct conflict with large scale<br>injection.<br>Bore separation distances may be imposed with<br>reducing the area available for injection.                                                                       | Y                    | Y             | . 5    | 5         | 25      |         | н        | 1                 | Short                          | R32.1 Engage: early with regulator on a 'road map' to permitting / licensing.<br>R32.2 Characterise: GABORA conditions in possible areas for injection and<br>avoid those with most constrains.                                                                                                                                                                                                                                                                                    | Major risk - clarification of regulatory roadmap for large-scale<br>CCS                                                                          | AG                        | AG (to be<br>included in<br>regulatory action<br>theme)              |
| R33        | Legal & Reg:<br>Indirect impacts to<br>surface water<br>courses and<br>springs                   | Injection in zone results in subsequent<br>changes to surface water or springs,<br>AP their chemistry and pressure                                                                                                                                                                                                                                                          | Impacts to the Precipice may be authorised but this does<br>not authorise impacts to near surface or surface features.<br>Impact such as increased pressure and flow may cause<br>environmental "harm".<br>There are regulatory penalties (Costs / prison) as well as<br>risks of divil remedies. | Y Y                  | Y             | 5      | 1         | 5       | м       |          | 2                 | Med                            | R33.1 Select: site away from known springs or faults to surface.<br>R33.2 Characterise: springs for signs of deep connectivity.<br>R33.3 Characterise: flow and quality of water over time (baseline variability).                                                                                                                                                                                                                                                                 | Likelihood considered low but local environmental<br>assessments needed                                                                          | AG                        | AG (to be<br>included in<br>regulatory action<br>theme)              |
| R34        | Legal & Reg: Far-<br>field pressure<br>increase in 3rd<br>party bores                            | Pressure rises cause unwanted flow<br>and or mechanical damage, AP<br>changes to water chemistry to third<br>party bores                                                                                                                                                                                                                                                    | Damages from increased water flows or from material<br>damage of bores need to be remedied.                                                                                                                                                                                                       | Y Y                  | Ŷ             | 4      | 4         | 16      | м       |          | 2                 | Med                            | R34.1 Select: site removed (distance) from Precipice bores.<br>R34.2 Characterise: ranges of far-field impacts (pressure).<br>R34.3 Monitor: 3rd party bores (water levels).                                                                                                                                                                                                                                                                                                       | Likelihood considered high (not damaging) but local<br>assessments needed                                                                        | AG                        | AG (to be<br>included in<br>regulatory action<br>theme)              |
| R35        | Social: resistance<br>to further<br>appraisal (local)                                            | Local resistance (e.g. landholders) to<br>in-field appraisal driven by concerns on<br>groundwater, emissions and impact<br>on fossil fuel use.                                                                                                                                                                                                                              | Delays in appraisal or failure to secure the necessary<br>permits or EA (note links to legal and reg risks R25 to<br>R34).                                                                                                                                                                        |                      | Y             | 4      | 3         | 12      | м       |          | 2                 | Short                          | R35.1 Develop a local stakeholder value proposition.         R35.2 Characterise: local views (in context).         R35.3 Engage: in local outreach activities.         R35.4 Consider whether current land access codes and CCAs properly cover         GHG advities.         R35.6 Develop communicate impacts with legal risks         R35.6 Develop comms plan of appraisal on context of possible outcomes which would be subject to future additional conditions of approval. | Appraisal activities are low impact and involve no CO2 to get to the next decision.                                                              | PA                        | PA (to be<br>included in<br>community<br>engagement<br>action theme) |
| R36        | Social: resistance<br>to further<br>appraisal (non-<br>local)                                    | Broad social resistance on grounds of<br>groundwater emissions and impact on<br>fossil fuel use.                                                                                                                                                                                                                                                                            | Delays in appraisal or failure to secure the necessary<br>permits or EA (note links to legal and reg risks R25 to R34).                                                                                                                                                                           |                      | Y             | 4      | 3         | 12      | м       |          | 2                 | Short                          | R36.1 Develop a wider stakeholder value proposition.<br>R36.2 Characterise: wider views (in context).<br>R36.3 Engage: in wider outreach activities.                                                                                                                                                                                                                                                                                                                               | Appraisal activities are low impact and involve no CO2 to get to the next decision.                                                              | PA                        | PA (to be<br>included in<br>community<br>engagement<br>action theme) |
| R37        | Social: resistance<br>to ultimate<br>development<br>(local)                                      | Local resistance (e.g. landholders) to<br>large scale driven by concerns on<br>groundwater, emissions and impact on<br>fossil fuel use.                                                                                                                                                                                                                                     | Delays in appraisal or failure to secure the necessary<br>permits or EA (note links to legal and reg risks R25 to<br>R34). Worse case is cross-over influence on politicians<br>(State and Local) - or                                                                                            |                      | Y             | 5      | 4         | 20      |         | н        | 2                 | Short                          | Actions as for R35                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Major risk - local community acceptance in line with<br>decarbonisation / climate objectives                                                     | PA                        | PA (to be<br>included in<br>community<br>engagement<br>action theme) |
| R38        | Social: resistance<br>to ultimate<br>development (non<br>local)                                  | Broad social resistance on grounds of<br>groundwater emissions and impact on<br>fossil fuel use.                                                                                                                                                                                                                                                                            | Delays in appraisal or failure to secure the necessary<br>permits or EA (note links to legal and reg risks R25 to<br>R34). Worse case is cross-over influence on politicians<br>(State and Local)                                                                                                 |                      | Y             | · 4    | 3         | 12      | м       |          | 2                 | Med                            | Actions as for R36                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wide community acceptance considered lower consequence<br>(breader community attitudes are in line with decarbonisation /<br>climate objectives) | PA                        | PA (to be<br>included in<br>community<br>engagement<br>action theme) |



| Project Risk (Opportunity) Register v1.9 (01 April 2019 |                                                                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |     |             |                  |                  |                 |                    |      |                                        | ter v1.9 (01 April 2019)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                          |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----|-------------|------------------|------------------|-----------------|--------------------|------|----------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------|
|                                                         |                                                                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |     |             |                  | Ratir            | ig wher         | n registe          | ered | 1                                      |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                          |
| Uni<br>que<br>ID                                        | Headline                                                                                             | Risk or Opportunity<br>(narrative)                                                                                   | Consequence<br>(narrative)                                                                                                                                                                                                                                                                                                                                                                                                             | Cla<br>T<br>H<br>S<br>E | E O | s<br>S<br>L | Conseq.<br>(1-5) | Probab.<br>(1-5) | Result<br>(CxP) | Rating<br>:<br>L M | H H  | lassmnt<br>laturity<br>Low 1<br>ligh 5 | Time<br>Frame<br>to<br>address<br>Sh-<br>Med-<br>Lng<br>Term | Mitigating Action / Response<br>(narrative)         (General form of sub-surface uncertainty and risk management is<br>s - AVOID/SELECT riskienfeast-risky areas and features by maximising<br>distance from key features<br>- CHARACTERISE the sub-surface pre-FID and injection and select<br>ripecton sites to minimise risks<br>- ENGINEER wells and completions to minimise pressure build up<br>- MONITOR post-FID and injection       Comments (result of group discusisons)<br>miscens risks<br>- ENGINEER wells and completions to minimise pressure build up<br>- MONITOR post-FID and injection         • ENGAGE with key stakeholders<br>- DEVELOP messages and programs | Responsible<br>Risk Owner | Action<br>Party(s)<br>(plans, dates and<br>deliverables to be<br>addressed<br>elsewhere) |
| R35                                                     | Containment:<br>overpressure                                                                         | Aquifer contamination and pressure<br>increase in area of potential third party<br>interest (potential for damages). | Leakage of higher salinity groundwater and potentially<br>dissolved metals to overlying aquifers (Hutton) from<br>underlying formations (Evergreen) owing to overpressure<br>Consequences of R1-R5. Decrease in water quality e.g.<br>potential for relases (and/or transport) of metalis at levels<br>exceeding water quality guidelines and current in situ<br>concentrations (considered less likely than simple<br>acidification). | Y                       | Y   | Y           | 3                | 1                | 3               | L                  |      | 2                                      | Short                                                        | R39.1 Select: deeper areas with likely highest entry pressures.<br>R39.2 Select: areas with lower NTG in TZ and US.<br>R39.3 Characterise, permeabilities for TZ and US for water/brine through core<br>studies.<br>R39.4 Engineer. for minimum pressure build up at US.<br>R39.5 Monitor: pressure above US in higher risk areas (seismic or monitoring<br>wells?).                                                                                                                                                                                                                                                                                                                 | РН                        | PH (to be<br>studied further<br>post-appraisal)                                          |
| R40                                                     | Containment:<br>migration of<br>saline<br>groundwater out<br>of tenement                             | Displacement of higher salinity basin-<br>centre groundwater and potentially<br>dissolved metals out of tenement.    | Contamination or decrease in water quality in areas of<br>third party interest (e.g. up dip). Decrease in water quality<br>e.g. potential for release (and/or transport) of metals at<br>levels exceeding water quality guidelines and current in<br>situ concentrations (considered less likely than simple<br>acidification).                                                                                                        | ¥                       | ¥   | Y           | 3                | 1                | 3               | L                  |      | 2                                      | Short                                                        | R40.1 Sample and Characterise: deep basin-cantered groundwater<br>salinity/chemistry during drilling.     Addressed by new data acquisition in appraisal program (and<br>R40.2 Model displacement area scenarios.       R40.3 Model high/low salinity water mixing if needed.     Inter by suitable M&V program iF sites found suitable)                                                                                                                                                                                                                                                                                                                                             | РН                        | PH (to be<br>studied further<br>post-appraisal)                                          |
| R41                                                     | Containment/soci<br>al: natural or CSG<br>etc. CO <sub>2</sub> or CH <sub>4</sub><br>leak to surface | Risk of shut down or delays if $CO_2$ or $CH_4$ source unknown.                                                      | Leakage of CO <sub>2</sub> or CH <sub>4</sub> from natural or CSG or other<br>source to surface or shallow aquifer (e.g. Hutton). Third<br>party/ social blame placed on CCS storage operation.                                                                                                                                                                                                                                        | ¥                       | Y   | ¥           | 4                | 1                | 4               | L                  |      | 2                                      | Short                                                        | R41.1 Characterise: any natural occurrences of CO <sub>2</sub> or leakage near site.<br>R41.2 Employ potential CO <sub>2</sub> tracer or natural tracer etc.<br>R41.3 Avoid CSG production areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AG                        | AG (to be<br>included in<br>regulatory action<br>theme)                                  |
| R42                                                     | Injectivity: pore throat blockage                                                                    | Blockage of pore throats via clay<br>swelling or fines migration.                                                    | Acidification could induce clay or fines migration blocking<br>pore throats. movement of water and changes in salinity<br>can induce clay swelling. Reduction in CO <sub>2</sub> injection rate<br>storage, possible venting.<br>Possible overlinestment in capture and transport.<br>Need for new well in location away from barriers.<br>Increased risk of fracturing and containment loss to<br>shallow zones.                      | Y                       | Y   | ¥           | 3                | 1                | 3               | L                  |      | 2                                      | Short                                                        | R42.1 Characterise: reservoir clay types - swelling/non swelling, core<br>characterisation and lab tests.<br>R42.2 Characterise: reachivity of formations likely in the flow path.<br>R42.3 Monitor: near field and far-field pressures (near at any risk features).                                                                                                                                                                                                                                                                                                                                                                                                                 | AG                        | JP (fines tests<br>after appraisal)                                                      |
| R43                                                     | Focus Groups:<br>Managed Aquifer<br>Recharge                                                         | Potential Risk/Opportunity to impact<br>MAR                                                                          | Those in community become more aware of the<br>principles of MAR and CCS. Community members either<br>become concerned about interactions with GAB or see<br>the opportunities it presents for landholders and others.                                                                                                                                                                                                                 | Y                       | ¥   | Y           | 4                | 2                | 8               | м                  |      | 1                                      | Short                                                        | R43.1 Engage Focus Groups are being planned and research protocols will Closely linked to "High" risk scores R37 and all risks R35 to R38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PA                        | PA (to be<br>included in<br>community<br>engagement<br>action theme)                     |
| R45                                                     | Injectivity: poor<br>quality reservoir<br>(depositional)                                             | Poor Quality Reservoir<br>(Porosity/Permeability, Petrophysics)                                                      | Risk of delay in injection which may increase number of<br>sites and costings.                                                                                                                                                                                                                                                                                                                                                         | Y                       | Y   |             | 4                | 3                | 12              | м                  |      | 2                                      | Short                                                        | R45.1 Characterise: through core sampling, logging and long term injection<br>tests. R45.2 Characterise: Reprocessing of seismic data / collection of new<br>seismic data. R46.3 Characterise: Collect core from proposed well location<br>and full suite of wireline logs. (refer to consequences R 20)                                                                                                                                                                                                                                                                                                                                                                             | AG                        | ALC & IR<br>(covered in<br>scenarios -<br>needs data)                                    |
| R46                                                     | Indigenous Land<br>Use Agreement                                                                     | Resistance to entering into an<br>Indigenous Land Use Agreement                                                      | Leading to delays in negotiating and obtaining necessary<br>agreements with Native Title Claimants over the land for<br>the injection site and /pipelines.                                                                                                                                                                                                                                                                             | (                       | Y   | Y           | 4                | 1                | 4               | L                  |      | 1                                      | Short                                                        | 46.1 Avoid: areas over which a Native Title Claim has been registered.<br>46.2 Engage: in negotiation early, obtaining an experience law firm to help<br>conduct negotiations. This has been taken into account in the site selection<br>(more of an issue with pipelines).                                                                                                                                                                                                                                                                                                                                                                                                          | AG                        | PA (to be<br>included in<br>community<br>engagement<br>action theme)                     |
| R47                                                     | Legal & Reg:<br>Areal Migration                                                                      | Unplanned migration into another<br>jurisdiction (containment), in particular<br>aquifers.                           | If CO <sub>2</sub> migrates into NSW, out of expected reservoir<br>footprint, then relevant NSW legal and regulatory<br>requirement regarding environment and water may be<br>breached. Complexities in engaging with two different<br>regulator and regulatory systems causing delays.                                                                                                                                                |                         |     | ¥           | 3                | 1                | 3               | L                  |      | 2                                      | Long                                                         | 47.1 Engage: Mitigating action may be to seek compliance with NSW<br>requirements as well as OLD and drill pressure monitoring bores at the border<br>of NSW (OLD. Engage in Negotiations early.       Considered very low likelihood - include for completeness only.         47.2 Select location up-dip to QLD.       M&V plan to the south would cover this.                                                                                                                                                                                                                                                                                                                     | AG                        | AG (to be<br>included in<br>regulatory action<br>theme)                                  |



|                  | Project Risk (Opportunity) Register v1.9 (01 April 2019)                    |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                      |                |                              |        |                      |                 |       |   |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                          |
|------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|------------------------------|--------|----------------------|-----------------|-------|---|--------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------|
| Uni<br>que<br>ID |                                                                             | Risk or Opportunity<br>(narrative)                                                                                                                                                                                                                                                   | Consequence<br>(narrative)                                                                                                                                                                                                    | Classific:<br>ion    |                |                              |        | Rating when regist   |                 |       |   | d                  |                                |                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                          |
|                  |                                                                             |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                      | ssifica<br>ion | t                            |        |                      | Result<br>(CxP) | Ratin | g | Assmnt<br>Maturity | Time<br>Frame<br>to<br>address | Mitigating Action / Response<br>(narrative)<br>General form of sub-surface uncertainty and risk management is<br>s - AVOID/SELECT riskier/least-risky areas and features by maximising                                                                                                                                                                                                       | Beenewikle | Action<br>Party(s)<br>(plans, dales and<br>deliverables to be<br>addressed<br>elsewhere) |
|                  | Headline                                                                    |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               | T<br>H E<br>S C<br>E | 0              | Conseq.<br>s (1-5)<br>P<br>L | eq. Pr | Probab. R<br>(1-5) ( |                 | LM    | н | Low 1<br>High 5    | Sh-<br>Med-<br>Lng<br>Term     | assance from Key realities<br>- CHARACTERISE the sub-surface pre-FID and injection and select<br>injection sites to minimise risks<br>- ENGINEER wells and completions to minimise pressure build up<br>- MONITOR post-FID and injection<br>- ENGAGE with key stakeholders<br>- DEVELOP messages and programs                                                                                | Risk Owner |                                                                                          |
| R48              | Legal & Reg:<br>Compliance                                                  | Compliance with multiple jurisdictions'<br>regulations for environmental impact                                                                                                                                                                                                      | Complexities involved in engaging with two different<br>regulators & regulatory systems causing delay.                                                                                                                        | Y                    |                | / 3                          |        | 1                    | 3               | L     |   | 2                  | Med                            | 48.1 Engage: Mitigating actions would include engaging in negotiations early. Considered Tow likelihood - revision of EPBC Act to include CCS would change this risk                                                                                                                                                                                                                         | AG         | AG (to be<br>included in<br>regulatory action<br>theme)                                  |
| R49              | Legal & Reg:<br>Compliance                                                  | Regulator's view of the subsurface<br>water resources of the Precipice and<br>Hutton, etc.                                                                                                                                                                                           | Potential contamination of the low salinity water<br>(including within BSR of the site) as needing to be<br>specified/predicted.                                                                                              | ¥ 1                  | Y Y .          | r 5                          |        | 3                    | 15              | м     |   | 2                  | Med                            | 49.1 While a lowered pH in the plume may be ok, the unlikely scenario of<br>releasing metals above stock or agriculture guidelines, or the current in situ<br>concentrations in the water, may or may not be ok.<br>This also relates to R28. Further work on understanding the deep formation<br>water composition, and new rock core (including Hutton) would decrease the<br>uncertainty. | AG         | AG (to be<br>included in<br>regulatory action<br>theme)                                  |
| R50              | Containment:<br>Displaced water<br>and Hutton water<br>quality              | Pressure in the BSR causes pressure<br>rises in TZ and US. Lower quality water<br>(not CO <sub>2</sub> ) is displaced from US into the<br>lower Hutton, changing water quality<br>therein. Mechanism could also be<br>faults, channels/erosion or simple<br>pressure through matrix. | Increased salinity in lowermost Hutton (modelling shows<br>relatively low volumes; geology suggests Hutton poorly<br>connected- little long range effects).                                                                   | ۰<br>۲               | , ·            | r 3                          |        | 4                    | 12              | м     |   | 2                  | Short                          | Refer to mitigation actions and data requirements for other "Containment"<br>dassified risks.                                                                                                                                                                                                                                                                                                | PH         | PH (to be<br>studied further<br>post-appraisal)                                          |
| R51              | Technical<br>Maturity for Social<br>Acceptance &<br>Regulatory<br>Approvals | Detailed, competent and site specific<br>data and tests are required to convince<br>many stakeholder groups (to address<br>the maturity of this risk assessment).                                                                                                                    | Many detailed questions need to be addressed so that a<br>complete story can be told before further decisions on<br>actual injections. Failure to gather convincing (probably<br>confirmatory) data will prevent any progress | ¥,                   | , .            | r 5                          |        | 5                    | 25              |       | н | 3                  | Short                          | Refer to all technical risks and to UQ-SDAAP Supplementary Detailed Report describing the appraisal plan.                                                                                                                                                                                                                                                                                    | AG         | AG                                                                                       |



|                  | Project Risk (Opportunity) Register v1.9 (01 April 2019)                                         |                                                                                                                                                                         |                                                                                                                                     |                  |                 |                      |       |                    |                 |        |           |                   |                                |                                                                                                                                                                                                                                                                                                              |                                        |                                                                          |
|------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|----------------------|-------|--------------------|-----------------|--------|-----------|-------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|
|                  |                                                                                                  | Risk or Opportunity<br>(narrative)                                                                                                                                      | Consequence<br>(narrative)                                                                                                          |                  |                 |                      |       | Ratin              | g when          | regist | ered      | red               |                                |                                                                                                                                                                                                                                                                                                              |                                        | 1                                                                        |
| Uni<br>que<br>ID | i<br>Headline                                                                                    |                                                                                                                                                                         |                                                                                                                                     | Cla              | assifica<br>ion | at                   |       |                    | Result<br>(CxP) | Ratin  | g A:<br>M | ssmnt<br>laturity | Time<br>Frame<br>to<br>address | Mitigating Action / Response<br>(narrative)<br>General form of sub-surface uncertainty and risk management is<br>- AV/OID/SELECT insiden/east-risky areas and features by maximising                                                                                                                         | Responsible<br>Risk Owner<br>eise<br>e | Action<br>Party(s)                                                       |
|                  |                                                                                                  |                                                                                                                                                                         |                                                                                                                                     | T<br>H<br>S<br>E | e o             | Conse<br>S (1-5<br>P | eq. F | Probab. (<br>(1-5) |                 | LM     | нL        | .ow 1<br>ligh 5   | Sh-<br>Med-<br>Lng<br>Term     | Distance from Key reaures<br>- CHARACTERISE the sub-surface pre-FiD and injection and select<br>injection sites to minimise risks<br>- EWGINEER wells and completions to minimise pressure build up<br>- MONITOR post-FID and injection<br>- EWGAGE with Key stakeholders<br>- DEVELOP messages and programs |                                        | (plans, dates and<br>deliverables to be<br>addressed<br>elsewhere)       |
| 01               | Enhanced<br>groundwater<br>levels                                                                | Injecting in the basin centre may raise<br>water levels in the far-field and<br>displace basin-centre water                                                             | This may support Precipice abstraction in areas well<br>removed from the injection sites for 3rd party users (e.g.<br>agriculture). |                  | Y               | ¥ 4                  |       | 5                  | 20              |        | н         | 2                 | Short                          | Further discussions with community and regulator required (as well as more detailed post-appraisal plan through more data acquisition. Social impacts also addressed through consultation.                                                                                                                   | PH-PA                                  | PH & PA (to be<br>further quantified<br>and discussed<br>with community) |
| 02               | Enhanced<br>groundwater<br>recovery                                                              | Injecting in the basin centre may<br>displace basin-centre water to areas<br>where it is more economic to drill and<br>recover (up dip)                                 | This may support Precipice abstraction in areas well<br>removed from the injection sites for 3rd party users (e.g.<br>agriculture). |                  | Y               | Y 4                  |       | 5                  | 20              |        | н         | 2                 | Short                          | Further discussions with community and regulator required (as well as more detailed post-appraisal plan through more data acquisition. Social impacts also addressed through consultation.                                                                                                                   | PH-PA                                  | PH & PA (to be<br>further quantified<br>and discussed<br>with community) |
| 03               | Regional<br>development:<br>Retention /<br>extension of<br>existing regional<br>industry & jobs  | Successful reduction of carbon<br>intensity of power generation could<br>prolong the existence of regional jobs<br>and industry in the region (mining and<br>powergen). | Sustained regional employment, continuation of taxes<br>and State royalties                                                         | Ī                | Y               | ¥ 4                  |       | 5                  | 20              |        | н         | 2                 | Med                            | Further modelling and interaction with DNRME & DSD required Regional employment is a direct consequence of deployment. Details need to be worked up prior to FID                                                                                                                                             | AG-PA                                  | AG & PA<br>(to be in<br>regulatory and<br>community<br>engagement)       |
| 04               | Regional<br>development:<br>Attraction of new<br>carbon intensive<br>industries to the<br>region | Availability of storage may attract high<br>Co2 emitters (e.g. cement or gas-<br>fertiliser or gas-plastics) into the regior                                            | New regional employment, increased taxes and State<br>royalties                                                                     |                  | Y               | ¥ 4                  |       | 3                  | 12              | м      |           | 1                 | Med                            | Further modelling and interaction with DNRME & DSD required<br>Further modelling and interaction with DNRME & DSD required                                                                                                                                                                                   | AG                                     | AG (to be<br>included in<br>regulatory action<br>theme)                  |
| 05               | National Survey<br>Results                                                                       | Engage Community with the National<br>Survey Results                                                                                                                    | Builds positive recognition of the project and UQ more<br>widely                                                                    |                  | * ¥             | Y 4                  |       | 3                  | 12              | м      |           | 2                 | Short                          | 05.1-Ongoing communication strategy to share the results more widely. These Results and methods from UQ-SDAAP show promise in results can be circulated widely across all levels of Government and industry (Local, State, National & International)                                                         | PA                                     | PA (to be<br>included in<br>community<br>engagement<br>theme)            |
| 06               | Message Testing<br>Focus Groups &<br>Survey                                                      | Opportunity to enhance or tailor<br>message to specific comments                                                                                                        | An understanding of the clear messages that will help in<br>communication of CCS technology                                         |                  | ¥ ¥             | ¥ 4                  |       | 4                  | 16              | м      |           | 2                 | Short                          | 06.1-Ongoing communication strategy to share the results more widely. These results will synthesise findings of ways to inform the community and other stakeholders about the role that CCS may play in decarbonising our energy supply                                                                      | PA                                     | PA (to be<br>included in<br>community<br>engagement<br>theme)            |
| 07               | Improved regional<br>GW management                                                               | Data from an appraisal program may<br>significantly assist OGIA's regional GW<br>efforts                                                                                | Dynamic data from the deep basin will improve overall<br>basin ground water management                                              | Y                | Y               | Y 3                  |       | 5                  | 15              | м      |           | 2                 | Short                          | 07-1- Ensure ongoing collaboration with OGIA and with other sub-surface<br>users                                                                                                                                                                                                                             |                                        |                                                                          |
| 08               | Improved NEM<br>System cost<br>modelling                                                         | Total system cost modelling for NEM<br>decarbonisation is highly dependent<br>on the amount of CCS available.<br>Appraisal work will improve estimates                  | Dynamic data from the deep basin will improve overall<br>NEM system management                                                      | Y                | Y               | Y 3                  |       | 5                  | 15              | м      |           | 2                 | Med                            | Report complimentary to (but not part of) UO-SDAAP clearly shows that minimal<br>TCS requires substantial CCS. More confidence in CCS rates will improve<br>optionality for NEI future generation                                                                                                            |                                        |                                                                          |



CRICOS Provider Number 00025B