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Research highlights 

 An overview of the effects of forage type and season on retention time and the fatty 

acids profile of the rumen fluid of steers grazing a temperate grass, a range of tropical 

and subtropical grasses and a legume/grass mix;  

 The native speargrass Heteropogon contortus in dry season had the lowest crude protein 

and digestibility, which was associated with a low concentration of volatile fatty acids, 

and longer retention time (20 h); 

 The retention time of all wet season grasses, including the C3 ryegrass Lolium perenne, 

was similar, despite some small quantitative significant differences, and similar to 

legume/grass mix in the dry season; 

 Total unsaturated fatty acids in rumen fluid was reduced markedly compared to the 

concentration of the forages with some small differences between forage species; 

 It was concluded that retention time of wet season grasses was similar across all forage 

species (8-11 hrs) and would not result in different times for biohydrogenation within 

the rumen 
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Abstract 

The effects of forage type and season on retention time (RT) and the FA profile of the rumen fluid 

(RF) of steers grazing a range of grasses and a legume/grass mix were evaluated. Four rumen cannulated 

steers (790 ± 17 kg body weight (BW) grazed individual wet season pastures (herbage mass 2600-6200 

kg DM-1) of C3 ryegrass Lolium perenne and C4 grasses pangola Digitaria eriantha, signal grass 

Brachiaria decumbens, star grass Cynodon dactylon, kikuyu Pennisetum clandestinum, and speargrass 

Heteropogon contortus in both seasons, and a mixture of leucaena Leucaena leucocephala and green 

panic Panicum maximum in the dry season. Each grazing period consisted of at least 21d, followed by 

a 3d collection period. On d 22 CrEDTA was used to estimate RT (182mg Cr .100kg BW-1 via cannula) 

and RF samples collected at 0, 4, 8, 12, 16, 24, 28, 32 and 48h after dosing for Cr analysis. Diet crude 

protein (CP) and dry matter digestibility (DMD) were estimated by faecal NIRS. Concentration of 

NH3N and volatile fatty acids (VFA) in RF was determined at 0, 8 and 16h. Dry season speargrass had 

the lowest CP (18 and 39 g/kg DM in plucked sample (PS) and estimated by fecal NIRS, respectively) 
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and DMD (49%), which was associated with a low NH3N (9 mg NH3N /L) and VFA concentration (70 

mM/L), and much longer RT of CrEDTA (20 h) than the other grasses. The RT of CrEDTA of the other 

wet season grasses was similar across all forage species (8-11 hrs). Total VFA was lowest for dry season 

grass, intermediate for grasses in the wet season and highest for animals grazing the legume/grass mix. 

Speargrass had the highest non-glucogenic:glucogenic VFA ratio. Ryegrass had higher CP (190 g/kg 

DM) and DMD (68%), but a similar NH3N to kikuyu and leaucaena/grass mix (above 100 mg NH3N 

/L). . Palmitic and stearic in RF were much higher than in plucked samples, but all grasses had similar 

total saturated FA in RF with a greater degree of saturation for ryegrass. A higher CLA c9,t11 in RF of 

steers grazing ryegrass most likely resulted from the linoleic content in the forage and the higher intake 

of ryegrass resulting in accumulation in RF. Total unsaturated FA (TUFA) content of RF was reduced 

markedly compared to forage samples with some small differences between species indicating an 

extensive biohydrogenation despite the grass type and season. It was concluded that RT of CrEDTA in 

the rumen of cattle grazing wet season grasses was similar across all forage species (8-11 hrs) and would 

not result in different times for biohydrogenation within the rumen.  

 

Keywords: tropical grasses; rumen fluid; retention time; fatty acid; biohydrogenation; CLA 

isomers 

Abbreviations:  RT, retention time; FA, fatty acid; RF, rumen fluid; CP, crude protein; aNDFom, 

neutral detergent fibre; ADFom, acid detergent fibre; DM, dry matter; LW, live weight, LCFA, long 

chain FA; TSFA, total saturated FA; TUFA, total unsaturated FA; CLA, conjugated linoleic acid; 

TOBCFA, total odd branched-chain FA. 

 

1. Introduction 

Products derived from ruminants are of great importance from a human health perspective. The 

fatty acid (FA) content and profile of meat and milk have been extensively studied within temperate 

grazing and housed systems (Givens, 2005). Most forages have approximately 40 g lipid/kg DM 

(Jenkins, 1993), of which about 50% are FAs (Doreau and Ferlay, 1994), with the FA profile most 
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influenced by vegetation stage and wilting or drying (Glasser et al., 2013). Grazing ruminants have 

higher concentrations of C18:3n-3 linolenic acid and CLA isomers in their fat tissues and milk fat than 

animals fed silages or concentrate rations (Chilliard et al., 2001; Noci et al., 2005; Elgersma et al., 

2006). However, most work has been done with temperate grasses (Scollan et al., 2003; Noci et al., 

2005) with few studies conducted on tropical C4 grasses, plants that cycle CO2 into four-carbon sugar 

compounds to enter into the Calvin cycle (Taiz and Zeiger, 2002), such as conducted by O’Kelly and 

Spiers, (1991). The lipolysis by microbes within the rumen and the extent of biohydrogenation may 

vary depending on the retention time (RT) of fluid and particulate phases in the rumen (which are highly 

correlated) and the type of FA being hydrogenised which is a function of the plant species and degree 

of maturity of the plant. . In some cases, various FA isomers are produced as part of this process and 

some (e.g. t10 c12 CLA) can markedly inhibit FA synthesis in the mammary gland and adipose tissue 

in the body (Bauman et al., 2008; Smith et al., 2008). Therefore, gathering information about the FA 

profile and the RT in the rumen of cattle grazing various forages commonly used in the tropics and sub-

tropics is important. We hypothesized that C4 grasses with an expected long RT of rumen fluid (RF) 

(Poppi et al., 1981a; Bowen et al., 2017) would lead to a much more extensive biohydrogenation than 

C3 grasses, plants that utilize the C3 carbon fixation pathway (Taiz and Zeiger, 2002), with the result 

of a greater degree of saturated FA and lower concentrations of CLA isomers.  

2. Materials and methods 

The experiment was conducted at the University of Queensland (Gatton, QLD), “Brian Pastures” 

Research Station (DEEDI; Gayndah, QLD) and Mt. Cotton Farm (Karremans; Mt Cotton, QLD). All 

procedures were conducted in accordance with the guidelines of the Australian Code of Practice for the 

Care and Use of Animals for Scientific Purposes and were reviewed and approved by the University of 

Queensland Animal Ethics Committee (SAS/281/10/MLA).  

2.1. Animals, forages and experimental plan  

Four 5-year-old rumen cannulated Brahman-cross steers [790 ± 17 kg body weight (BW) (mean ± 

SEM)] grazed paddocks that contained one of the following dominant pasture species: Ryegrass 

(Lolium perenne), pangola grass (Digitaria eriantha), signal grass (Brachiaria decumbens), black 

speargrass (Heteropogon contortus), star grass (Cynodon dactylon), kikuyu  (Pennisetum 
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clandestinum), and a paddock of a mixture of leucaena/green panic (Leucaena leucocephala/Panicum 

maximum) (Table 1). Speargrass was grazed at two different occasions, once during the wet season and 

once during the dry season. Each grazing experimental period consisted of a 21 d preliminary period 

followed by a 3 d collection period. Paddocks were grazed sequentially (Table 1).  

Insert Table 1 here 

2.2. Grazing management 

The four steers grazed each forage for a minimum of 21 d prior to the commencement of the 

collection period to adapt to the forage and to avoid any carryover effects from the previous run. 

Sufficient biomass of each forage was available to ensure ad libitum intake by steers during the 

preliminary period and subsequent collection period (Table 1).  

2.3. Sample collection 

Rumen fluid, faeces and hand plucked forage samples were collected on d 22 to 24 of each grazing 

run. The four steers were walked to portable yards installed in each paddock for the collection of RF 

and faeces.  

Samples of RF were collected to determine Cr, NH3N and VFA concentration and the FA profile. 

A single dose of Cr-EDTA (approximately 65 mL/100 kg BW; 2.8 mg Cr/mL) was administered to 

three sites in the rumen (i.e. cranial, ventral and caudal sacs) of all steers via the cannula at 

approximately 0800 h. Rumen fluid samples were collected prior to dosing (0 h) and 4, 8, 12, 16, 24, 

28, 32 and 48 h after dosing with the use of a sampling probe. Rumen fluid samples were stored on ice 

for approximately 15 min before collection of sub-samples for the following analysis: Cr concentration 

(10 mL RF); FA profile (10 mL RF), rumen NH3N (8 mL RF + 1 mL 1 M H2SO4) and rumen VFA (3 

mL RF (1 mL at 0, 8 and 16 h) + 1 mL 20% metaphosphoric acid + internal standard (i.e. 4 methyl n-

valeric acid)). All samples were stored at -20oC until analysis. Samples collected at 0, 4, 8, 12, 16, 24, 

28, 32 and 48 h were analysed for Cr concentration. Samples collected at 0, 8 and 16 h were analysed 

for FA profile and NH3N concentration.  

Faecal grab samples were collected from each steer on d 22 of each run. Samples were dried to a 

constant weight at 60oC prior to grinding and faecal NIRS analysis for estimation of DM digestibility. 

Hand plucked forage samples were collected at more than 20 sites within each paddock, providing a 
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total of 300-500 g of fresh forage. The samples were stored at -20oC prior to processing and subsequent 

chemical analyses. 

2.4. Available pasture dry matter, morphological composition and sward height  

The available pasture DM was estimated for each of the forages on d 22 of each run. Average sward 

height of the dominant forage species was determined by measuring the sward height at more than 40 

sites across two transects spanning the entire paddock. Eight quadrats (0.5 m x 0.5 m), representative 

of the average sward height, were cut to 1 cm above ground level and bulked. Sub-samples were dried 

to a constant weight at 60oC and average DM yield calculated. An additional sub-sample was separated 

into leaf, stem and dead material, with each of the components dried to a constant weight at 60oC and 

DM proportion determined on most samples (Table 1).   

2.5. Analytical procedures 

Plucked samples of all forages and faeces were oven dried to a constant weight at 60oC for chemical 

and NIRS analyses, respectively.  

Dried forage samples were ground through a 1 mm screen (Retsch ZM 200; Haan, Germany) for 

chemical analysis. Residual moisture content of samples during chemical analysis was determined by 

drying samples at 105oC for 24h. Organic matter content of samples was determined after incineration 

at 550oC for 8 h in a muffle furnace (Modutemp Pty. Ltd.; Perth, WA, Australia) (AOAC, 1990).  

Nitrogen content of all feeds was determined by the Kjeldahl method using a N analyser (Kjeltec, 

8400 FOSS; Hillerod, North Zealand, Denmark), according to the manufacturers guidelines. A 

conversion factor of 6.25 was used to convert the total N to CP.  

Total crude lipid (CL) content of samples was determined using an adaptation of the low-toxicity 

solvent method (Hara and Radin, 1978). Approximately 5 g of sample was mixed with 50 mL 

Chloroform:Methanol (2:1) and incubated at room temperature overnight. The sample was then filtered 

into a 100 mL volumetric cylinder through Whatman paper (12.5 cm, No. 1) and rinsed with 

Chloroform:Methanol (2:1) solution (between 10 to 20 mL). The filtered sample was mixed vigorously 

with 0.88% NaCl solution (at 5:1), and incubated at room temperature for 2 h, resulting in the separation 

of two distinct phases. The volume of the chloroform extract in the lower phase was recorded, and the 
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upper phase was discarded. The chloroform extract (15 mL) was then transferred to a pre-weighed vial 

and evaporated to a constant weight at room temperature and CL weight determined.  

Crude lipids (%) = (lipids in 15 mL/10) x (total volume/sample weight) x 100 

Ash-free neutral detergent fibre assayed with a heat stable amylase (aNDFom) and ash-free acid 

detergent fibre (ADFom) were determined using an Ankom fibre digestion unit using procedures 

described by the manufacturer (Method 5 for ADF and Method 13 for NDF; Ankom Technology; 

Macedon, NY, USA). 

The NH3N concentration in RF was determined by titration with 0.01 M HCl using a TIM 840 

Titration workstation manager (Radiometer Analytical SAS; Villeubanne, Cedex, France) after 

distillation (Büchi 321 distillation unit; Flawil, St Gallen, Switzerland) using sodium tetraborate to 

increase the pH. Ammonia concentration was then calculated after titration against a week HCl solution 

of known molarity. 

Chromium concentration was determined in RF diluted (1 in 10) with distilled water, centrifuged at 

4000 g for 5 min and then aspirated directly into the ICP (inductively coupled plasma spectrometer; 

Optima 7300 DV, PerkinElmer; Waltham, MA, USA). To overcome matrix effects, standards were 

prepared for samples in each run (i.e. forage type) by diluting known amounts of Cr with 0 h RF after 

bulking from all animals (i.e. each forage had a separate standard curve); this bulked fluid was also 

diluted (1 in 10) with distilled water and centrifuged at 4000 g for 5 min prior to use. In order to calculate 

RT, forage outflow rate (FOR) and rumen volume, the change in concentration of CrEDTA with time 

was measured. The slope (k) of Ln [Cr] against time is the fractional outflow rate (FOR, h-1) and 1/k is 

the retention time (RT, h) of the marker in the rumen.  The rumen volume, or pool size, was calculated 

by dividing the total amount of Chromium injected at time zero by the predicted concentration at time 

zero by extrapolating the regression of Ln [Cr] to time zero (Binnerts et al., 1968). In this approach, the 

limitations due to non-steady state conditions are recognised.  

Fatty acid profiles were analysed using modifications of the method of Kramer et al. (1997). The RF 

and plucked forage samples were methylated as proposed by Sun and Gibbs (2012). Samples were 

weighed (0.05-0.1 g) into 5 ml tubes with 20 uL internal standard and 2.0 ml of 0.5 N NaOH in methanol 

and vortexed. The tubes were heated for 15min at 50°C on a heat block, and then cooled at ambient 
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temperature. Two ml of 2% H2SO4 in methanol was added, and the tubes heated for 1hr at 50°C, then 

cooled at ambient temperature and vortexed.  Heptane and deionised water were added at 1ml each, and 

the tubes centrifuged at 1500 g for 5 min. The upper heptane layer was transferred to a 2.0 ml micro-

centrifuge tube, and 0.1 g of anhydrous sodium sulphate added to remove any residual water. Activated 

charcoal (0.01 g) was added, and the tubes kept for 1hr at ambient temperature, then centrifuged at 

13000 rpm for 20 min and the upper heptane layer again transferred to a 0.2 ml vial and stored at -20°C 

until analysis. The gas chromatography (GC-HP6890; Hewlett Packard, Wilmington, DE) used a 25 m 

× 0.53 mm ×0.5 m BP21 column (SGE Australia Pty. Ltd., Australia). Initial temperature of the oven 

was 450°C, held for 4 min, ramp rate of 13°C /min to 175°C, held for 27 min, ramp rate of 4°C/min to 

215°C, held for 35 minutes, bake-off at 250°C, for 5 min, with an equilibration time between runs of 5 

min. The inlet split injection ratio was 1:15, the temperature 250°C. The flame ionisation detector was 

set at 250°C, and helium gas pressure on column and linear velocity at 16.7cm/s. The internal standard 

(heneicosanoic acid methyl ester)16:0 and the external standards (ME61, ME93, BR3, CLA c9,t11 and 

CLA t10,c12 methyl esters) used to identify peaks of C18s as described by Sun and Gibbs (2012) were 

all obtained from Larodan Fine Chemicals AB, (Malmo, Sweden). The CLA isomers without external 

standards were identified by order of elution with respect to those FA with external standards and 

interpolation from the peaks reported by Loor et al. (2004). 

The concentration of VFAs present in RF were determined by gas chromatography (GC17, 

Shimadzu; Kyoto, Honshu, Japan) using a polar capillary column (ZB-FFAP, Phenomenex; Lane Cove, 

NSW, Australia) based on the methods of Cottyn and Boucque (1968), Ottenstein and Bartley (1971) 

and Playne (1985). A prepared multi-acid standard was mixed with the protein precipitant/internal 

standard and used to calibrate the gas chromatography. Samples were then analysed using the internal 

standardisation method for calibration.  

Faecal NIRS analysis was conducted by Symbio Pty. Ltd. (Eight Mile Plains, QLD, Australia) on 

individual animal samples for leucaena and wet and dry season speargrass grazing samples, and were 

bulked for all four animals for the other pasture species evaluated. This relies on local regressions 

established in Australia (Coates, 2004). 

2.6. Statistical analysis 
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Because different animals grazed different pastures at different times it is not possible to estimate 

an animal effect for the whole experiment. Therefore, a one way model was used and analyses were 

carried out using the General Linear Model (GLM) procedure in the SAS statistical system (SAS® 

version 9.2©, 2008), adopting a 5% level to assess statistical significance in all cases. With this model 

any animal variance is included in the experimental error which will lead to any statistical test being 

conservative. This limitation in statistical analysis is recognised but provides a means of identifying 

major differences in the parameters between pasture types. Pastures needed to be grazed when they 

were at the right physiological stage of growth and so pastures were grazed and sampled according to 

that requirement. 

The statistical analyses for FAs were carried out using the repeated measures procedure in General 

Linear Model of SPSS (SPSS for Windows, Version 17.0, SPSS Inc, Chicago, IL, USA), with time 

considered the “within subject factor”, levels were n=5, and diet treatment (forage types) considered 

the “between subject factor”, and SNK was used for treatment multiple comparisons. 

3. Results  

3.1. Forage quality 

Leucaena had the highest CP concentration, followed by ryegrass, which was ten-fold higher than 

the value observed for the dry season speargrass (Table 2). Wet season speargrass had a higher CP 

concentration than the dry season speargrass but was still much lower than ryegrass and the other 

tropical forages. Ryegrass had the highest lipid concentration and green panic and dry season speargrass 

had the lowest lipid concentration and the highest ADFom concentration.  

Insert Table 2 here 

3.2. Fatty acid profile 

Total odd and branched-chain FAs concentrations were low for all forages (Table 3). Ryegrass had 

the highest concentration of total unsaturated FAs (TUFA) and the sum of FAs with 18 C chains 

(TC18s), and the lowest concentration of total saturated FA (TSFA). The concentrations of TUFA in 

pangola and speargrass were the lowest (i.e. approximately 60% of total FA) and signal grass, star grass 

and kikuyu had intermediate values closer to 70%. Linolenic acid (C18:3n-3) was the most abundant 

FA in all forage types with the highest concentration in ryegrass and the lowest concentration in pangola 
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grass. Palmitic (C16:0) and linoleic (C18:2n-6) acids were the second and third most abundant FA, with 

little difference between the forages. 

Insert Table 3 here 

3.3. Faecal near-infrared reflectance spectroscopy 

Dietary CP in the diet, predicted using faecal NIRS, was highest for steers grazing ryegrass, followed 

by kikuyu, and lowest for dry season speargrass (Table 4). The dry matter digestibility (DMD) values 

predicted from faecal NIRS were approximately 60%, or higher, for all species except dry season 

speargrass which was less than 50%, which would account for the low metabolizable energy intake 

(MEI) prediction for steers grazing dry season speargrass (9.8 MJ/100 kg BW) compared with ryegrass 

(23.3 MJ/100 kg BW).  

Insert Table 4 here 

3.4. Rumen parameters 

Steers grazing star grass had the greatest concentration of rumen NH3N compared to all other forage 

treatments. There was no difference for rumen NH3N between the wet and dry season speargrass and 

signal grass treatments.  Wet and dry season speargrass and signal grass treatments had the lowest 

rumen NH3N concentrations of the forage treatments at 29, 9 and 31 mg NH3N /L, respectively and 

were significantly different to the ryegrass, pangola, kikuyu and the dry season leucaena/green panic 

treatments.  Rumen NH3N in the kikuyu and the dry season leucaena/green panic treatments were 

greater than the pangola grass, but were not different to the ryegrass treatment. In addition, there was 

no difference between the ryegrass and pangola grass treatments for rumen NH3N concentrations (Table 

5). 

The analysis of VFAs in the RF of steers grazing signal grass and star grass generated abnormal 

peaks not easily described and so the results were discarded. Total VFA concentration in the RF was 

greater for the leuceana/green panic treatment compared to all other treatments. There was no difference 

between ryegrass, pangola, kikuyu and wet season speargrass for total VFA concentration.  However, 

ryegrass, pangola, kikuyu and wet season speargrass had greater total VFA concentration in the rumen 

than the dry season spear grass treatment (Table 5). The proportion of acetic acid was higher in the RF 

of steers grazing speargrass in both wet and dry seasons, followed by pangola and leucaena with an 
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intermediate value, with the exception of kikuyu, which resulted in a greater proportion of propionic 

and lower proportion of butyric acid in the RF. Speargrass, irrespective of season, had the highest non-

glucogenic:glucogenic ratio of VFAs. Steers grazing ryegrass had greater proportions of the branched-

chain VFAs isobutyric, isovaleric and valeric. Retention time of CrEDTA in the liquid phase in the RF 

of steers more than doubled for steers grazing the dry season speargrass when compared to most wet 

season grasses which were low and similar (20 hrs vs 8-11 hrs, Table 5). The retention time of CrEDTA 

for animals grazing leucaena was intermediate between those grazing dry season speargrass and the wet 

season grasses, but only significantly greater than ryegrass and pangola. 

Insert Table 5 here 

3.5. Fatty acids profile of rumen fluid 

Steers grazing speargrass in the wet season had lower concentrations of total odd-branched FA 

(TOBCFA) in the RF, compared only to dry season forages. There were also lower concentrations of 

TSFA in the RF of steers grazing speargrass compared to the RF of steers grazing pangola grass, signal 

grass and star grass. The same trend was observed for TUFA in comparison with the fluid of steers 

grazing ryegrass, signal grass and kikuyu. The concentration of TC18s in the RF of steers grazing 

speargrass was significantly lower than in the RF of steers grazing ryegrass, pangola and signal grasses. 

No statistical differences in concentration of TOBCFAs were observed between steers grazing kikuyu, 

star grass, signal grass, pangola and ryegrass, but these were significantly different to the concentration 

in the RF of steers grazing speargrass. Similarly, no statistical differences in concentration of TUFA 

were observed between steers grazing kikuyu, signal grass and ryegrass, but these were significantly 

different to the concentration in the RF of steers grazing speargrass. The highest concentration of TUFA, 

found in the RF of steers grazing kikuyu, was also significantly higher than in the RF of steers grazing 

star grass. The concentration of TSFA in the RF of steers grazing kikuyu, speargrass and ryegrass were 

not different, but were significantly lower than the concentration in the RF of steers grazing pangola, 

signal and star grass. No statistical differences in concentration of TC18s were observed in the RF of 

steers grazing ryegrass, pangola and signal grass. The concentration of TC18s in the RF of steers grazing 

ryegrass was significantly greater than in the RF of steers grazing kikuyu and speargrass. Steers grazing 

speargrass had decreased concentrations of linolenic acid (C18:3n-3) in RF when compared to ryegrass, 
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star grass and kikuyu grass treatments. However, there was no difference in the concentration of 

linolenic acid in the RF of steers grazing speargrass, signal grass or pangola grass pastures. In addition, 

there was no difference between the ryegrass, pangola grass, signal grass, star grass or kikuyu grass 

treatments for linolenic acid concentration in RF. Steers grazing ryegrass had lower concentrations of 

linoleic acid (C18:2n-6) in the RF compared to all C4 grass treatments. There was no difference between 

the C4 grass treatments for linoleic concentrations in the RF of steers.  

Insert Table 6 here 

The effect of sampling time was statistically significant (Table 7). However, no significant 

interactions were observed for pasture x sample time. 

Insert Table 7 here 

4. Discussion 

Wet season C4 grasses had similar RT (8-11 hrs) to that of a temperate ryegrass (8 hrs) in cattle and 

the differences in biohydrogenation were minimal with little difference in the proportion of saturated 

FA and concentration of CLA isomers. Dry season C4 grass (speargrass) had a very long RT (20 hrs) 

and this was reflected in the FA profile and proportion of acetate within the rumen. The addition of a 

legume in the pasture had no major changes and the RT were similar to wet season grass. These results 

measure for the first time the RT of CrEDTA in the rumen when animals graze a variety of tropical 

grasses and may be compared to the only other study, that of Bowen et al (2017), who found RT of 9-

10 h for C4 wet season tropical grasses typical of southern Queensland in Australia (black speargrass 

and forest bluegrass (Bothriochloa bladhii) in a native pasture, and the introduced pasture, creeping 

bluegrass (Bothriochloa insculpta)), and RT ranging from 8.5-12 h for tropical legumes Lablab 

purpureus and Clitoria ternatea, and 22 h for RT of the liquid phase (as measured by CrEDTA) in RF 

of cattle grazing the dry season tropical grass. These RTs are not much greater numerically to that found 

with ryegrass (10.8 h) (Bowen et al., 2017). The important parameter is the actual RTs, which are lower 

than those suggested from pen studies with tropical grass hays (16-19 h) (Poppi et al., 1981a). The 

statements made by Glasser et al (2013) that differences in FA profile between grass and legume species 

are lower than those induced by vegetation stage and wilting or drying apply to the results found here. 

The very low RT values recorded for the C4 pastures, which were similar to ryegrass suggested that the 
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differences between temperate grasses and well managed C4 grasses are not as great as expected from 

pen studies using hays (Poppi et al., 1981a,b).   

The FAs present in the diet of grazing cattle are usually derived from the FA present in a small 

fraction of lipids of the forages being grazed, or within protein supplements added to their diets. These 

FAs will undergo biohydrogenation within the rumen, affecting to some extent fat composition, 

excretion in milk or deposition in meat thereof. However, the effects of the FAs of the forages are 

usually disregarded (Chilliard et al., 2001). It is known that there are differences between the FA profile 

of grass fed animals and animals fed silage or concentrate-based diets (Bas and Morand-Fehr, 2000; 

Poulson et al., 2004; Noci et al., 2005), but there is little information in the literature, such as the work 

of O’Kelly and  Spiers (1991), regarding differences in FA profile between animals fed different tropical 

grasses.. The present experiment was conducted to characterize the RT and FA profile in the RF of 

steers grazing a range of tropical and sub-tropical forages, and to compare these with a temperate forage 

(i.e. ryegrass) and a tropical legume and grass mixture.  

Despite the difference in CP concentration and DMD between ryegrass and the tropical forages 

evaluated in this study, there was little difference in rumen NH3N, VFA or RT, which was relatively 

similar between forage types. The tropical forages were all grazed in a growing vegetative state 

representative of wet season pastures when quality is highest and when animals deposit most weight 

and presumably fat. The exception to this was the grazing of dry season speargrass which resulted in 

significantly lower total VFA concentration and longer RT of liquid phase marker in the rumen and 

represents the lowest quality pasture in a seasonal grazing cycle, such as found in tropical regions of 

Australia (Winter et al., 1991). Bowen et al. (2017) found low efficiency of microbial synthesis in the 

rumen (i.e. <130 g per kg of digestible OM) in cattle grazing tropical pastures, but have emphasized 

that those were unfertilized grasses. There was a significantly higher rumen NH3N concentration 

measured in RF of steers grazing star grass, compared to all the other forages partly a function of the 

CP content of the grass. The crude protein in tropical pastures fertilized with N during the rainy season 

increases (Johnson et al., 2001) above levels that are adequate for the rumen microbes.  

The studied grass types had different lipid concentration and most likely a different lipid profile, 

with different proportions of galactolipids, phospholipids and triglycerides. Jenkins et al. (2008) 
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reviewed the effects of plant lipases on breaking down of those lipids and stated that despite being 

important, most of the lipolysis preceding biohydrogenation can be done by microbial lipases. The latter 

authors emphasized the need for more research to further understand the interplay of different lipid 

fractions. Either way, the effects of biohydrogenation on FA profile in the rumen of steers grazing a 

range of forages in this study was relatively similar and indicated an extensive lipolysis preceding the 

saturation of FAs. 

The FA profile in the rumen of steers grazing a range of forages in this study was relatively similar. 

Some differences were observed and these were generally associated with the speargrass diet in the wet 

and dry seasons, which had the lowest rumen NH3N concentration and greater molar proportion of 

acetic acid, with little difference in total VFA and RT of liquid in the rumen in the wet season compared 

with the other forages from which rumen FA profiles were determined. 

The TOBCFA concentration in the rumen of steers grazing speargrass was similar to that in RF of 

steers grazing dry season forages, and lower than in the rumen of steers grazing kikuyu in the wet season 

(with no differences between the other forages grazed). The odd and branched-chain FAs are almost 

exclusively microbial in origin (O’Kelly and Spears, 1991; Kim et al., 2005; Vlaeminck et al., 2006). 

A higher concentration of C15:0 anteiso was found in RF of steers grazing kikuyu. Vlaeminck et al. 

(2004) reported higher concentrations of the latter FA for acetate-producing bacteria which seems to be 

in contrast with the current experiment where C15:0 anteiso concentration was lower in RF of steers 

that had a higher proportion of acetic acid (i.e. steers grazing speargrass had a higher molar proportion 

of acetic acid in the rumen than steers grazing kikuyu) when total VFA concentration was relatively 

similar. Speargrass, irrespective of season, had the highest non-glucogenic:glucogenic ratio of VFA 

related to the high acetate concentration. The concentrations of the VFAs, isobutyric and isovaleric 

acids, were higher in the RF of steers grazing kikuyu and these short branched-chain acids are known 

precursors of branched-chain FAs (Kaneda, 1991), of which C15:0 anteiso is an example. Therefore, 

other factors resulted in different TOBCFA and based on the current data the difference in C15:0 anteiso 

between the two forages alone is not enough to speculate on bacterial species contribution. Kim et al, 

(2005) conducted two in situ experiments to examine the use of odd-chain FA profiles to study 

microbial colonization. The results observed in this experiment suggest that the use of individual odd 

ACCEPTED M
ANUSCRIP

T



and branched-chain FA or TOBCFA as microbial flow marker may lead to misinterpretations and false 

results.  

The concentrations of TUFA in the RF of steers grazing ryegrass was amongst the highest during 

the wet season, whilst the lowest concentrations were observed in steers grazing speargrass, which 

reflects the differences observed between the forages themselves. Ryegrass has a very high 

concentration of linolenic acid compared to speargrass and this would have a marked effect on the 

concentration of FA in the RF.  The estimated rumen volume was similar between these forage types in 

the wet and much lower for steers grazing speargrass in the dry season. The TUFA concentration in the 

RF of steers grazing speargrass in the dry season was higher than in RF of steers grazing the same grass 

in the wet season, which can be speculated to be because of a lower microbial activity and/or less 

biohydrogenation. The FA content of lipid from ruminants has a much higher participation of the 

geometric and positional isomers of linoleic acid, within the group of FAs called conjugated linoleic 

acid (CLA) (Schmid et al., 2006). The CLA represents the majority of the 18 C chain FAs, and the 

TC18s was highest in the rumen of steers grazing ryegrass and lowest in the rumen of steers grazing 

speargrass in the wet. The concentration of TC18s in RF was much lower than that measured in the 

forage material itself but a similar trend was evident, indicating that the FA profile of the basal forage 

will partially translate to FA of the milk and meat thereof. Linolenic acid (C18:3n-3) was the most 

abundant FA in all forages and that is in agreement with the literature for both temperate (Kalac and 

Samkova, 2010) and tropical grasses (O’Kelly and Reich, 1976), although a much higher concentration 

of C18:3n-3 was observed in ryegrass compared to the C4 grasses examined in this experiment, 

suggesting inherent differences between forages for this FA. Interestingly, the concentration of C18:2n-

6 in RF from the forages was relatively consistent in RF of steers grazing all forages, suggesting that 

changes in the TC18s were due mostly to changes in C18:3n-3, with the exception of the dry season 

speargrass, which presented higher content of C18:2n-6 in the forage samples. A greater extent of 

biohydrogenation of C18:3n-3 in comparison to C18:2n-6 has been reported elsewhere (Doreau and 

Ferlay, 1994; Vlaeminck et al., 2006) and interestingly, the concentration of C18:2n-6 was higher in 

RF of steers grazing the dry season speargrass. Two other interesting findings, which could be linked, 

were the highest concentration of butyric acid coupled with reductions in linoleic concentration and a 
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massive reduction in linolenic acid concentration in RF of steers grazing ryegrass. Linoleic acid 

hydrogenation leads to rumenic acid and Butyrivibrio bacteria are amongst the most important in this 

role whilst also producing butyric acid. However, not all butyrate producers formed rumenic acid 

(Jenkins et al., 2008).  They observed a conversion of C18:3n-3 to 18:2 and 18:1 intermediates, and 

then to 18:0, stearic acid. Some of the microbes involved in those processes could potentially be butyrate 

producers, explaining the higher concentrations of butyrate in RF of steers grazing ryegrass, since other 

grass types had higher concentrations of linoleic acid.  

The longer chain FAs C20:4n-6 (arachidonic) and C22:6n-3 (docosahexaenoic) and their precursors, 

C18:2n-6 (linoleic) and C18:3n-3 (linolenic) are physiologically important for humans (Koletzko et al., 

1989). The levels of these in meat (Schmid et al., 2006) and milk (Scollan et al., 2003) have been used 

to denote a positive functional food end result. 

Conjugated linoleic acid c9, t11 (i.e.C18:2n2) is the main isomer in forage based ruminant products 

(Kay et al., 2004; Schmid et al., 2006), including the adipose tissue of ruminants (where it accounts for 

75-90% of the CLA isomers) (Bauman et al., 2008). The concentration of this isomer was significantly 

higher in the RF of steers grazing ryegrass, followed by pangola and lowest for other treatments. There 

are obvious differences in concentration of FAs in different forage species. The higher linolenic acid 

C18:3n-3 content of ryegrass would lead to an increased C18:1 t11 as observed in Noci et al, (2005), 

but in this study, the concentration of C18:1 t11 in the RF of steers grazing ryegrass was not significantly 

different to pangola, signal grass or kikuyu, being only higher than in the RF of steers grazing wet 

season speargrass and star grass. That difference is most likely related to the originally higher 

concentration of linolenic acid C18:3n-3 in the FA profile of ryegrass, only similar to the legume, in 

comparison to the latter grasses. The concentration of CLA c9, t11 ranged between approximately 0.2% 

of total FA for the majority of C4 grasses up to 0.6% of total FA for ryegrass. The levels of CLAs found 

here, mostly influenced by the basal diet, would contribute to the higher level expected in the meat of 

cattle grazing pastures (Schmid et al., 2006). A higher CLA c9,t11 in RF of steers grazing ryegrass most 

likely resulted from the linoleic content in the forage, considering the pathway to form this isomer 

(Jenkins et al., 2008), and the expected higher intake of ryegrass resulting in an accumulation in RF. 
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A range of positive characteristics have been attributed to CLA isomers which can be related to 

human health. In the last decade, studies have focused on the role of specific isomers, in particular t10 

c12 CLA, on lipid metabolism in the mammary gland and subcutaneous and intramuscular fat depots 

(Bauman et al., 2011; Smith et al., 2008) by a depression in de novo synthesis. The dose of t10 c12 CLA 

required to achieve 25% reduction in milk fat was 2.5 g/d (Bauman et al., 2008). The authors reported 

that doses 20 times greater would be required to inhibit fat synthesis in tissues. The extent of formation 

of this specific isomer within the rumen of steers in the current experiment was not identified due to the 

method utilized but at the concentration of CLA isomers present in the RF it is not expected that these 

levels would be reached to inhibit de novo synthesis.  

Palmitic acid (C16:0) was the saturated FA present in the highest concentration in the forage material 

or in RF, for all the forages examined. This is in agreement with McDonald et al. (2002), who reported 

that palmitic acid was the most common saturated FA in plants. The concentration of palmitic acid was 

higher in the RF of steers compared with the forage material, and was reasonably consistent between 

forages, both in the plant material and in the rumen, although steers grazing speargrass did have 

significantly lower concentrations in the rumen than steers grazing signal grass and star grass, but no 

different to steers grazing ryegrass. The increased concentration of palmitic acid in the RF is due to 

hydrogenation of unsaturated hexadecanoic isomers and also due to microbial elongation of shorter 

chain FAs, such as butyric acid (Emmanuel, 1974). Bacteria seem to incorporate palmitic acid into their 

own FAs, whilst protozoa utilize butyric and acetic acid, which could be the reason why Or-Rashid et 

al. (2007) found higher concentrations of this FA in the lipids of protozoa and lower concentrations in 

bacteria. The concentration of the long chain FA (LCFA) identified, C20 up to C26, were relatively low 

for all forages and also in the RF of steers. The concentration of individual LCFA tended to be highest 

in the rumen of steers grazing pangola grass and lowest for steers grazing ryegrass, with the exception 

of C22:4 which was highest for ryegrass. The differences between forage types were small and are 

unlikely to be of little biological significance. 

There was not a significant relationship with sampling time for all FAs, but in spite of that, it is 

evident that the adoption of an adequate sampling regimen is necessary in order to avoid 

misinterpretation of results. Sun and Gibbs (2012) observed extensive biohydrogenation of unsaturated 
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FA over the grazing cycle for cattle grazing ryegrass pastures. The latter authors indicated that the most 

dramatic changes occurred in the evening and overnight, especially for odd- and branched-chain and 

TC18s FAs. In the current study, the concentrations of linolenic C18:3n-3 and linoleic C18:2n-6 acids 

responded quadratically, which is probably related to the feeding regimen of the animals (i.e. graze in 

the morning – high concentrations; lower throughout the day because of biohydrogenation and then 

higher again in the afternoon when animals return to graze). A quadratic relationship was also observed 

for TSFA, and most likely it would be due to a lower concentration when animals are grazing, but as 

biohydrogenation takes place, the concentration of saturated FAs increases and once again with grazing 

in the afternoon the total concentration decreases due to intake of grass containing high concentrations 

of unsaturated FAs. The important outcome of these relationships is that the differences found between 

some FAs demonstrate the necessity for adoption of an adequate sampling regimen which properly 

represents the whole day, instead of the use of a single sample randomly collected.      

In summary, the extent of biohydrogenation of FA is significant in both tropical and temperate 

grasses. Small differences in FA present in the meat or milk could be expected due to the original FA 

profile of the basal forage. Most work found in the literature report the FA profile of milk fat and fat in 

the tissues of pasture fed animals, which had grazed temperate forages, to be a rich source of linolenic 

acid. In this work the concentration of linolenic acid in the RF of steers grazing ryegrass was 

significantly higher than in the rumen of steers grazing speargrass, but not significantly different when 

compared to other tropical forages during the wet season.  

 The concentration of rumen ammonia reflected the CP of the diet selected with the exception of 

signal grass. The rumen volumes estimated here have potentially large errors given the non-steady state 

conditions under which the CrEDTA marker is used but nevertheless they provide a comparative 

relative estimate. The values are comparable to the values derived by Poppi et al. (1981a) under steady 

state conditions and Bowen et al., (2017) under grazing conditions using a similar procedure. Visual 

observations, obtained when the cannula was opened for sampling, indicated that the rumens were quite 

full except for the dry season speargrass, which was also seen in the estimate by marker dilution. Thus, 

when tropical forages were grazed in a growing vegetative state, representative of high quality 

characteristic of the wet season, there were little differences in rumen NH3N, VFA or RT between 
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forage types. Furthermore, we can infer that during the wet season, a moment when animals deposit 

most weight and presumably fat, one could expect little differences in biohydrogenation between the 

different forages, considering that RT of liquid phase marker did not change much, as originally 

hypothesized. 

5. Conclusions 

Changes in retention time and fatty acid profile of RF are more likely to be influenced by major 

changes in forage quality rather than forage species per se. As long as tropical forages are managed to 

provide a similar quantity and quality of material for grazing, there are unlikely to be major shifts in 

retention time of material in the rumen. The majority of the differences in fatty acid profile measured 

during the wet season were minor and were between speargrass and the temperate C3 ryegrass, which 

were the most different in quality of the forages evaluated, with little difference between ryegrass and 

the other wet season C4 forages grazed in this experiment.  
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Table 1. Common and scientific names of pasture species grazed, average steer live weight (LW), estimated forage dry matter (DM) yield, canopy 

morphological composition (L:S:D)1 and sward height (SH) when grazing was conducted and average rainfall for that month of the year 

Common Scientific LW DM  

on offer 

L:S:D1 SH2 Time 

grazed 

Rain3 

name name (kg) (t/ha) (% DM) (cm)  (mm) 

Ryegrass Lolium perenne 791 ± 30 2.6 26:25:49 27 September 2010 72.6 

Pangola grass Digitaria eriantha 791 ± 26 5.3 20:23:57 29 October 2010 291.6 

Signal grass Brachiaria decumbens nm4 2.9 23:21:56 21 November 2010 21.4 

Speargrass 

(wet season) 
Heteropogon contortus 815 ± 27 3.8 nm4 80 January 2011 230.6 

Star grass Cynodon dactylon 766 ± 13 11.6 33:25:42 40 February 2011 47.8 

Kikuyu Pennisetum clandestinum 799 ± 18 6.2 24:59:18 26 March 2011 106.8 

Speargrass 

(dry season) 
Heteropogon contortus nm4 5.5 0:0:100 91 July 2011 87.6 

Leucaena/ 

Green panic5 

Leucaena leucocephala/ 

 Panicum maximum 
811 ± 29 5.26 nm4 1557 September 2011 10.2 

1L:S:D = Leaf:Stem:Dead material ratio; 2SH = sward height; 3Rain = rainfall;  4nm = not measured; 5Green panic was the dominant forage present 

between leucaena rows; 6Measurement of grass + legume; 7Average height of leucaena shrubs. 
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Table 2. Chemical composition of bulked plucked samples of various grass types and 

leucaena leaves 

Forage 
Chemical composition (g/kg DM) 

OM1 CP2 CL3 aNDFom4 ADFom5 

Ryegrass 867 186 53 536 261 

Pangola grass 923 102 33 680 340 

Signal grass 906 83 42 597 248 

Star grass 903 161 38 678 290 

Kikuyu 889 147 34 637 297 

Speargrass 

(wet season) 
912 53 26 712 394 

Speargrass 

(dry season) 
882 18 16 752 455 

Leucaena6 906 272 28 298 143 

Green panic 

(dry season) 
852 65 16 699 443 

1Organic matter (OM); 2crude protein (CP); 3crude lipid (CL); 4ash-free neutral detergent fibre 

assayed with a heat stable amylase (aNDFom); 5ash-free acid detergent fibre (ADFom); 6leucaena 

only leaves collected 
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Table 3. Fatty acids in bulked plucked samples of ryegrass (Rye), pangola grass (Pang), signal grass (Sign), star grass (Star), kikuyu (Kik), speargrass (SG) in wet 

season and SG, leucaena leaves (Leu) and green panic (GP) in dry season1 

Fatty acid 
Rye Pang Sign Star Kik 

SG 

wet 

SG 

 dry 

Leu GP SEM 

% of total FA2  

C12:0 0.15 0.64 0.76 0.38 0.30 0.55 2.07 0.10 0.83 0.19 

C14:0 0.28 0.00 0.77 0.44 0.40 0.67 2.22 0.33 0.93 0.20 

C16:0 15.3 23.3 19.6 21.2 22.0 21.0 20.92 23.23 19.41 0.76 

C16:1c9 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.43 0.83 0.10 

C18:0 1.17 4.55 1.35 1.63 1.89 1.81 3.25 4.69 3.63 0.43 

C18:1c9 2.02 9.18 2.09 1.51 2.36 3.80 9.43 1.85 6.35 1.01 

C18:1c11 0.00 0.12 0.00 0.00 0.00 0.00 0.82 0.53 1.85 0.20 

C18:2n-6 10.3 17.0 17.5 13.4 16.4 17.8 19.01 15.14 23.05 1.12 

C18:3n-3 61.0 28.0 47.1 50.8 45.1 35.1 7.49 43.39 20.74 5.20 

C20:0 0.23 1.67 0.53 0.40 0.46 0.78 3.89 0.76 2.35 0.03 

C20:1c11 0.04 0.13 0.05 0.07 0.16 0.09 0.19 0.02 0.35 0.30 

C22:0 0.36 1.47 0.54 0.39 0.55 0.57 2.42 0.70 2.89 0.08 

C22:2c13,c16 0.10 0.29 0.50 0.27 0.17 0.26 0.84 0.12 0.72 0.07 

C22:4 0.34 0.60 0.29 0.11 0.16 0.39 0.66 0.13 0.00 0.17 

C24:0 0.33 1.44 0.94 0.62 0.99 0.98 0.00 0.00 0.00 0.16 

C26:0 0.33 0.60 0.33 0.22 0.39 0.48 1.34 0.27 1.59 0.28 

TOBCFA3,7 0.78 1.38 0.83 0.81 1.62 2.49 1.89 0.36 3.00 1.95 

TSFA4,7 18.7 35.3 25.1 25.8 28.3 30.2 39.58 30.46 34.15 3.50 

TUFA5,7 76.5 58.0 69.6 68.9 66.6 59.7 37.99 63.39 54.46 3.17 

TC18s6,7 75.1 59.4 68.6 68.0 66.4 59.0 40.10 65.60 56.04 0.19 
1Samples of forages were plucked samples collected across the paddocks and leaves combined from different rows of legume trees 
2Identifiable and quantifiable fatty acids presented only. 
3TOBCFA = total odd branched-chain fatty acids; 4TSFA = total saturated fatty acids; 5TUFA = total unsaturated fatty acids; 6TC18s = total fatty acids 

containing 18 carbon chains.  

7Total of individual fatty acids listed in the table plus other identifiable fatty acids 
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Table 4. Crude protein, dry matter digestibility, metabolizable energy intake in the diet estimated by faecal NIRS  

Forage CP1 DMD2  MEI3 

 
(g/kg 

DM) 
(%) (MJ/100 kg LW) 

Ryegrass 200 68.1 23.3 

Pangola grass 126 63.2 19.8 

Signal grass 128 59.7 17.4 

Star grass 138 59.3 17.0 

Kikuyu 176 62.4 19.2 

Speargrass 

(wet season) 
99 59.2 16.9 

Speargrass 

(dry season) 
39 48.8 9.8 

Leucaena/ 

Green panic 

(dry season) 

135 58.1 16.2 

1Crude protein (CP); 2dry matter digestibility (DMD); 3metabolizable energy intake (MEI); 

All components estimated with the use of faecal near-infrared reflectance spectroscopy. 
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Table 5 Rumen NH3N concentration, and the concentration and molar proportion of volatile fatty acid (VFA), retention time (RT) and fractional outflow rate (FOR) 

of liquid phase marker (CrEDTA) in the rumen and estimated rumen volume of steers grazing various forages 

Parameter Ryegrass Pangola  
Signal 

grass 
Star grass Kikuyu 

Speargrass 

(wet) 

Speargrass 

(dry) 

Leucaena 

/Green panic 

(dry) 

SEM 

NH3N 

(mg/L) 
113bc 86b 31a 215d 130c 29a 9a 147c 12.2 

Total VFA 

(mM/L) 94.9b 95.6b na1 na1 93.1b 96.2b 69.9a 114.2c 3.0 

Acetic 

(% total VFA) 
62.5a 70.0b na1 na1 65.6a 78.1c 79.9c 72.9b 1.4 

Propionic 

(% total VFA) 19.2b 14.3a na1 na1 26.5c 11.5a 11.5a 13.8a 1.1 

Butyric 

(% total VFA) 13.7d 12.4d na1 na1 4.5a 8.4b 7.1b 10.3c 0.7 

Isobutyric 

(% total VFA) 
1.4d 1.0b na1 na1 1.2c 0.8a 0.7a 1.0b 0.1 

Valeric 

(% total VFA) 
2.1d 1.3c na1 na1 1.2c 0.8b 0.6a 1.2c 0.1 

Isovaleric 

(% total VFA) 
1.2d 0.8c na1 na1 0.8a 0.5b 0.4b 0.9c 0.1 

NGVFA:GVFA 4.8 b 6.6 c na1 na1 2.8 a 8.3 d 8.2 d 6.8 c 0.4 

RT 

(h) 8.3a 8.3a 10.1ab 9.8ab 10.1ab 11.3ab 19.8c 13.4b 0.7 

FOR 

(%/h) 
12.3c 12.5c 10.0bc 10.4bc 10.0bc 9.2bc 5.1a 7.6b 0.5 

Rumen volume 

(L) 50.6bc 41.9b 46.7b 42.2b 61.4c 51.3bc 24.1a 96.6d 3.8 

Rumen volume 

(ml/kg liveweight) 64 bc 53 b 62 bc 54 b 80 c 62 bc 25 a 114 d 4.8 
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Values are means with standard error of the mean (SEM); Different alphabetical superscripts across the rows indicate significant difference between treatments (P<0.05); 1na = 

not analysed; 2NGFA:GFA = ratio of non glucogenic to glucogenic volatile fatty acids [e.g. (Acetic + 2 Butyric)/Propionic]. 
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Table 6 Fatty acid (FA) profile in the rumen fluid of steers grazing ryegrass (Rye), pangola grass (Pang), signal grass 

(Sign), speargrass (SG), star grass (Star) and kikuyu (Kik) during the wet season (wet)1 and SG and leucaena (Leu) 

green panic (GP) mix in the dry season (dry) 1 

Fatty acid 

Rye Pang Sign Star Kik SG Leu/GP SEM 

wet wet wet wet wet wet dry dry  

% of total FA2    

C12:0 0.61a 1.19b 1.31b 1.11b 0.71a 1.32b 1.46c 1.10b 0.10 

C12:1 0.32a 0.44a 0.38a 0.39a 0.41a 0.64b 0.68b 0.63b 0.04 

C13:1 1.18 1.60 1.33 1.85 1.48 1.67 0.77 0.93 0.12 

C14:0 3.42ab 3.85b 3.94b 3.83b 3.12a 4.52c 4.41c 3.36ab 0.15 

C15:0anteiso 7.55ac 7.68bc 8.81cd 8.77cd 10.10d 6.28b 3.83a 5.61ab 0.63 

C15:0 3.76b 3.61b 3.71b 4.97bc 5.82c 3.51c 2.70a 2.90a 0.32 

C15:1 1.77 2.09 1.50 1.87 1.35 1.78 1.37 1.38 0.09 

C16:0 30.55bc 31.33c 34.16d 34.00d 32.32cd 29.10ab 24.50a 33.73d 1.01 

C16:1c7 0.72de 0.48ab 0.40a 0.66cd 0.85e 0.59bc 0.58bc 0.66cd 0.04 

C16:1c9 0.16a 0.16a 0.19a 0.29c 0.24b 0.15a nd3 nd3 0.02 

C17:0iso 0.69 0.70 0.61 0.65 0.48 0.74 1.59 0.82 0.11 

C17:0anteiso 1.28c 1.33c 1.46c 1.13bc 0.59a 0.88ab 1.49 c 1.34 c 0.10 

C17:0 1.16ab 2.02c 1.20ab 1.08ab 0.58a 1.57bc 1.19ab 0.88ab 0.13 

C18:0 7.40b 9.09c 6.52b 7.38b 3.35a 7.11b 8.16bc 6.75b 0.52 

C18:1t10+t11 4.21c 3.02bc 3.40bc 1.84b 4.43c 1.74b 0.71a 2.26bc 0.40 

C18:1c9 3.04bc 2.50ab 3.44c 2.17a 2.86ab 2.27a 9.69e 6.22d 0.82 

C18:1c11 0.97a 1.09a 1.04a 1.66b 1.04a 0.85a 1.29ab 2.14c 0.14 

C18:1c12 0.32b 0.34b 0.27ab 0.32b 0.16a 0.14a nd nd 0.03 

C18:2n-6 3.91a 5.19b 5.59b 5.54b 5.30b 5.56b 17.17e 10.54d 1.38 

C18:3n-3 5.49c 4.47bc 4.31bc 4.90c 5.42c 3.50b 1.53a 3.28b 0.41 

CLAc9,t11 0.63c 0.49b 0.22a 0.17a 0.19a 0.28a 0.39ab 0.13a 0.05 

C20:0 0.42a 0.80c 0.60b 0.48a 0.61b 0.53ab 1.10 d 0.62b 0.07 

C20:1c11 0.09b 0.06a 0.07a 0.07a 0.17c 0.17c 0.00 a 0.25d 0.03 

C22:0 0.38a 0.79c 0.48b 0.32a 0.37a 0.36a nd nd 0.06 

C22:2c13,c16 0.54ab 0.32a 0.71b 0.54ab 0.98c 0.41a nd nd 0.08 

C22:4 1.01d 0.66c 0.44b 0.19a 0.49b 0.31ab 1.30e 0.27 ab 0.12 

C24:0 0.33a 0.56b 0.52b 0.33a 0.46b 0.50b 0.54b 0.28a 0.03 

C26:0 0.31 0.32 0.20 0.12 0.26 0.23 0.00 0.02 0.04 

TOBCFA4,8 16.91bc 17.90bc 17.95bc 19.17bc 19.81c 15.16ab 12.15a 13.46a 0.85 

TSFA5,8 58.54a 63.68b 64.16b 64.83b 59.65a 57.05a 56.85a 63.07b 1.03 

TUFA6,8 29.72bc 27.19ab 28.16bc 27.08ab 31.49c 23.76a 37.25c 32.30 c 1.28 

TC18s7,8 29.95c 28.57bc 27.85bc 25.49ab 25.11ab 22.49a 39.16e 33.45d 1.65 

Different alphabetical superscripts across the rows indicate significant difference between treatments 

(P<0.05). 
1Arithmetic average between samples of rumen fluid of steers grazing different forage types collected 

in five different times within 16 h period. 
2Identifiable and quantifiable fatty acids presented only. 
3nd = non detected; 4TOBCFA = total odd branched-chain fatty acids; 5TSFA = total saturated fatty 

acids; 6TUFA = total unsaturated fatty acids; 7TC18s = total fatty acids containing 18 carbon chains; 
8Total of individual fatty acids listed in the table plus other identifiable fatty acids. 

 

 

ACCEPTED M
ANUSCRIP

T



Table 7 The statistical relationship in change in fatty acid 

concentration within a 16 h period1 

Fatty acid2 Linear Quadratic 
Time  

P value 

C12:0 
0.034 1.576 < 0.001 

C14:0 
0.786 0.000 0.014 

C15:1 
1.384 <0.001 <0.001 

C16:0 
0.006 0.136 0.017 

C16:1c7 
<0.001 0.634 <0.001 

C17:0iso 
0.010 <0.001 0.001 

C17:0anteiso 
<0.001 <0.001 <0.001 

C17:0 
<0.001 0.339 <0.001 

C18:0 
0.037 0.798 0.049 

C18:2n-6 
0.011 0.001 0.001 

C18:3n-3 
0.032 <0.001 0.006 

TSFA3,4 
0.465 <0.001 0.006 

1Rumen fluid samples were collected 0, 4, 8, 12 and 16 h after dosing with Cr-EDTA. 
2Only those FA with a significant time effect on concentration are presented. 
3TSFA = total saturated fatty acids. 
4Total of individual, identifiable saturated fatty acids present in the rumen fluid samples. 
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