
Real-time analysis for Nanopore sequencing data

Son Hoang Nguyen

B.Sc, M.Sc

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in 2019

Institute for Molecular Bioscience

Final Version

c© Son Hoang Nguyen, 2019.

Typeset in LATEX 2ε.

Except where acknowledged in the customary manner,

the material presented in this thesis is, to the best of my

knowledge, original and has not been submitted in whole

or part for a degree in any university.

Son Hoang Nguyen

iv

Abstract

The introduction of third-generation sequencing technologies presents many challenges to

the traditional methods in which bioinformatics is applied to genomics data. The MinION

thumb-drive sequencing device has gained great attention from researchers worldwide. De-

spite the relatively high error rates compared to Second Generation Sequencing technologies,

the nanopore approach is widely considered to be a turning point due to its ability to decode

much longer reads (tens or even hundreds of kilobase pairs) in a real-time fashion.

Prior to the work presented in this thesis, there was no available method that could scaf-

fold and finish assemblies in real-time while the nanopore sequencing run is still in progress.

Such a method is desirable because it offers the opportunity to obtain analysis results as soon

as sufficient data are generated. With real-time analysis, answers to questions of interests

could be obtained in situ, in an automated manner that saves considerable amount of time

and resources compared to the conventional approach of sending sample to a sequencing

centre, waiting for bulk data, and conducting a batch analysis. On top of that, streaming

analysis can help to avoid under- and over-sequencing which could result in either the gen-

eration of more sequence data than required at greater cost or a low quality assembly if

insufficient data are generated.

For the reasons mentioned above, the motivation of this thesis project is to develop

methodologies for streaming data analysis of long reads for real-time finishing genome se-

quences. As the initial result, in Chapter 2, I introduce npScarf which can scaffold and

complete short read assemblies alongside with the long read sequencing run. This tool op-

erates on an input of contigs, attempting to bridge them together by using long-read data

v

vi

and reports assembly metrics in real-time so the sequencing run can be terminated once an

assembly of sufficient quality is obtained.

It is also desirable to extend the pipeline application for multiple samples at the same

time, through a parallel mechanism known as barcoded sequencing. In Chapter 3, npBarcode,

a tool supporting real-time demultiplexing of nanopore sequencing data, is employed to serve

that purpose. Depending on requirements, users can choose to run the dedicated demulti-

plexer from the command line or using it as part of the npReader’s graphical user interface

(GUI). The tool provides practitioners a flexible option to monitor a barcoded sequencing

run as well as to integrate pooled sequencing into a streaming analysis pipeline. For example,

in combination with npScarf, we can complete multiple genomes in parallel.

Users can also provide underlying assembly graph structure from short-read assemblers

for better quality. This approach is described in Chapter 4. In which, a streaming algorithm

is implemented together with GUI in npGraph. The benefits of using assembly graph stem

from the fact that by traversing the graph of the contigs’ building blocks, we can reduce the

number of misassemblies and errors in the final sequences.

Chapter 5 discusses another application of nanopore sequencing for decoding small genomes.

By employing rolling circle amplification, long reads containing multiple copies of a given

viral genome can be obtained. The duplicated patterns are possibly identified by a detec-

tion module that can even work with raw signal data. The developed modules, which allow

for single-molecule genome assembly of small genomes, can be integrated into a streaming

pipeline for real-time analyses as well.

In summary, my thesis project aims to develop and apply in-house tools that aid genome

assembly and analysis in real-time in an attempt to facilitate the applications of nanopore

sequencing for various use cases, including but not limited to microbial genomics.

Declaration by author

This thesis is composed of my original work, and contains no material previously pub-

lished or written by another person except where due reference has been made in the text. I

have clearly stated the contribution by others to jointly-authored works that I have included

in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statis-

tical assistance, survey design, data analysis, significant technical procedures, professional

editorial advice, financial support and any other original research work used or reported in

my thesis. The content of my thesis is the result of work I have carried out since the com-

mencement of my higher degree by research candidature and does not include a substantial

part of work that has been submitted to qualify for the award of any other degree or diploma

in any university or other tertiary institution. I have clearly stated which parts of my thesis,

if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University

Library and, subject to the policy and procedures of The University of Queensland, the

thesis be made available for research and study in accordance with the Copyright Act 1968

unless a period of embargo has been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the

copyright holder(s) of that material. Where appropriate I have obtained copyright permission

from the copyright holder to reproduce material in this thesis and have sought permission

from co-authors for any jointly authored works included in the thesis.

vii

Publications included in this thesis

Involved publications are exclusively listed below with the name(s) of candidate high-

lighted in bold and (co)first author(s) underlined. Reproduction and/or remake of any

publication or parts of project in this thesis has been approved by its corresponding authors.

• Cao, M. D., Nguyen, S. H., Ganesamoorthy, D., Elliott, A. G., Cooper, M. A., and

Coin, L. J. (2017). Scaffolding and completing genome assemblies in real-time with

nanopore sequencing. Nature Communications, 8, 14515.

• Nguyen, S. H., Duarte, T. P., Coin, L. J., and Cao, M. D. (2017). Real-time de-

multiplexing Nanopore barcoded sequencing data with npBarcode. Bioinformatics,

33(24), 3988-3990.

Submitted manuscripts included in this thesis

• Pitt, M., Nguyen, S. H., Duarte, T. P., Blaskovich, M., Cooper, M., and Coin, L.

(2018). Evaluating the Genome and Resistome of Extensively Drug-Resistant Kleb-

siella pneumoniae using Native DNA and RNA Nanopore Sequencing.

Other publications during candidature

Peer-reviewed papers:

• Jin, M., Lu, J., Chen, Z., Nguyen, S.H., Mao, L., Li, J., Yuan, Z. and Guo, J. (2018).

Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via

ROS-mediated mutagenesis. Environment international, 120, 421-430.

• Lu, J., Wang, Y., Li, J., Mao, L., Nguyen, S.H., Duarte, T., Coin, L., Bond, P.,

Yuan, Z. and Guo, J. (2018). Triclosan at environmentally relevant concentrations

promotes horizontal transfer of multidrug resistance genes within and across bacterial

genera. Environment international, 121, 1217-1226.

ix

x

• Lu, J., Jin, M., Nguyen, S.H., Mao, L., Li, J., Coin, L.J., Yuan, Z. and Guo, J.

(2018). Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance

through genetic mutation. Environment international, 118, 257-265.

Submitted:

• Bialasiewicz, S., Duarte, T.P., Nguyen, S.H., Sukumaran, V., Stewart, A., Appleton,

S., Pitt, M.E., Bainomugisa, A., Jennison, A.V., Graham, R. and Coin, L.J., (2018).

Rapid Diagnosis of Capnocytophaga canimorsus Septic Shock in an Immunocompe-

tent Individual Using Real-Time Nanopore Sequencing. Preprints, 2018110395 (doi:

10.20944/preprints201811.0395.v1).

Conferences abstract:

• Poster: Completing microbial draft genomes with Oxford Nanopore sequencing data.

Has been presented in:

• The Australian Bioinformatics And Computational Biology Society (ABACBS)

– Garvin Institute of Medical Research, Sydney 2015.

• Big Biology and Bioinformatics Symposium (B3) – Queensland University of

Technology, Brisbane 2015.

• Oral presentation: Scaffolding and completing genome assemblies in real-time with

nanopore sequencing. COMBINE Symposium – Queensland University of Technol-

ogy, Brisbane 2016.

Web resources:

• Software presented in Chapter 2 and Chapter 3 are bundled in Japsa (Java Package

for Sequence Analysis) project https://github.com/mdcao/japsa.

• Software presented in Chapter 4 and Chapter 5 can be found in https://github.com/

hsnguyen/assembly.

https://github.com/mdcao/japsa
https://github.com/hsnguyen/assembly
https://github.com/hsnguyen/assembly

Contributions by others to the thesis

• A/Prof Lachlan Coin, Dr Minh Duc Cao provided assistance and inputs to the concep-

tual design of the software tools. Dr Minh Duc Cao implemented fundamental Java

modules (Japsa package) which had been used as the codebase for the tools.

• Dr Miranda Pitt and Tania Duarte conducted lab experiments and provided details

for Chapter 3 (sample details, library preparation, sequencing methods, discussions).

• A/Prof Andrew Geering and A/Prof Lachlan Coin designed the experiment and su-

pervised the project in Chapter 5 while Ha Ngo Thu and Tania Duarte conducted lab

works and generated the data.

• A/Prof Lachlan Coin, Dr Minh Duc Cao, Dr Hoang Nguyen gave feedback and revisions

for the thesis.

Statement of parts of the thesis submitted to

qualify for the award of another degree

No works submitted towards another degree have been included in this thesis.

Research Involving Human or Animal Subjects

No animal or human subjects were involved in this research.

xi

Acknowledgements

It is great honor for me to work in Coin group for my PhD project and for that, my deepest

appreciation goes to my supervisors, A/Prof Lachlan Coin and Dr Minh Duc Cao, for giving

me such opportunity. Lachlan, with his incredible insight, broad knowledge and kind man-

ners, has made my candidature such a precious experience toward research career. Minh,

on the other hand, had been the one who willingly spent his precious time to advised me

thoroughly from the very beginning and still offers very helpful mentoring after leaving the

group. I have learnt countless from him, both in and out of the office. I would like to thank

A/Prof Lutz Krause also for being my next co-supervisor for the last two years. It is privilege

for me to be able to work under your guidance.

Special thanks go to my thesis committee including A/Prof Scott Beatson, Dr Cheong-

Xin Chan, A/Prof Joselph Powell. My thesis benefits substantially from their advice through

three milestone meetings. I would also like to express deep gratitude to Dr Amanda Carozzi

for her continuously administered assistance during my candidature. This thesis would not

be finished on time without all of their supports.

Undoubtedly, my PhD life cannot become such enjoyable time without my friends and

colleagues. I appreciate all the knowledge, games and laughter shared with Arnold, Chenxi,

Devika, Miranda and Tania in our lab. I will forever remember every Tuesday soccer games

as well as rooftop Friday activities at IMB as they have already become parts of my life. I

am obligated to UQ, not only because of the financial support for my studying but also the

beautiful jacarandas running along my everyday bikeway to the campus.

Last but not least, I want to say thanks to my family, especially my brother, Dr Hoang

Nguyen, who has shown incredible efforts in proofreading this thesis while taking care of my

beloved newborn niece at the same time.

This thesis is dedicated to my Mother and Grandparents who have passed away but

always been there in my heart and watching my way.

xiii

Financial support

This research was supported by the University of Queensland Centennial Scholarship.

Keywords

bioinformatics, computational biology, genomics, antibiotic resistance, nanopore sequenc-

ing, genome assembly, real-time analysis

Australian and New Zealand Standard Research

Classifications (ANZSRC)

ANZSRC code: 080301, Bioinformatics software, 40%

ANZSRC code: 060408, Genomics, 40%

ANZSRC code: 060503, Microbial Genetics, 20%

Fields of Research (FoR) Classification

FoR code: 0803, Computer Software, 40%

FoR code: 0604, Genetics, 40%

FoR code: 0605, Microbiology, 20%

xv

Dedications

This thesis is dedicated to Mom and Grandparents in heaven – I love you all as always.

xvii

Contents

List of Figures xxiii

List of Tables xxvii

List of Abbreviations xxix

1 Introduction 1

1.1 Reading genome – the book of life . 2

1.1.1 DNA sequencing technology . 3

1.1.2 Third-generation sequencing technology 5

1.2 Nanopore long-read data at first glance . 9

1.2.1 Data description . 9

1.2.2 Data analysis: challenges and solutions in working with nanopore data 12

1.3 Genome assembly . 13

1.3.1 Definition . 13

1.3.2 General working principle for genome assembly 15

1.3.3 Overview of assembly algorithms for SGS data 16

1.4 Genome assembly with long read data . 19

1.4.1 Long-read only assemblers . 20

1.4.2 Hybrid assemblers . 21

1.5 Real-time analysis . 23

1.5.1 Definition . 23

1.5.2 Real-time analysis for nanopore sequencing 23

1.6 Summary . 25

xix

xx Contents

1.7 Thesis aims . 26

1.8 Thesis outline . 27

2 Streaming assembly using Nanopore reads 29

2.1 Introduction . 32

2.2 Results . 34

2.2.1 Algorithm overview . 34

2.2.2 Completing bacterial assemblies . 35

2.2.3 Real-time analysis for positional information 38

2.2.4 Comparison with other methods . 40

2.3 Discussion . 46

2.4 Methods . 48

2.4.1 Determining unique contigs . 48

2.4.2 Bridging unique contigs and filling gaps with repetitive contigs 49

2.4.3 Real-time processing . 49

2.4.4 Bacterial cultures and DNA extraction 50

2.4.5 Illumina sequencing and assembly . 50

2.4.6 MinION sequencing . 50

2.4.7 Data collection . 51

2.4.8 Data processing . 51

2.4.9 Comparative metrics . 52

2.4.10 Data availability . 52

3 Multi-samples analyses with barcode sequencing 53

3.1 Demultiplex barcode sequencing with MinION 56

3.1.1 Introduction . 56

3.1.2 Results . 57

3.1.3 Methods . 61

3.1.4 Conclusion . 64

3.2 Assembly of multiple XDR strains for Klebsiella pneumoniae 65

3.2.1 Introduction . 65

Contents xxi

3.2.2 Data description . 66

3.2.3 De novo assembly with multiple approaches 67

3.2.4 AMR analysis on the final assembly 69

3.2.5 Data availability . 72

3.2.6 Discussion . 72

4 Integration of assembly graph into scaffolding pipeline 75

4.1 Assembly graph . 76

4.2 Application of the assembly graph in npScarf wag 79

4.3 Resolve assembly graph in real-time by long reads with npGraph 81

4.3.1 Introduction . 81

4.3.2 Methods . 82

4.3.3 Results . 90

4.3.4 Conclusions . 99

5 MinION sequencing analysis for viral genomes 101

5.1 Introduction . 102

5.2 Bioinformatics analyses . 104

5.2.1 Data description . 104

5.2.2 Reference-based detection of concatemers 104

5.2.3 Reference-free method . 107

5.3 Conclusion . 116

6 Conclusion 119

6.1 Thesis summary . 120

6.2 Key contributions . 120

6.3 Future directions . 122

6.4 Closing remarks . 123

References 125

Appendix A Supplementary materials for Chapter 2 149

xxii Contents

Appendix B Supplementary materials for Chapter 3 155

Appendix C Supplementary materials for Chapter 4 161

Appendix D Supplementary materials for Chapter 5 169

List of Symbols 175

List of Figures

1.1 Prominent sequencing platforms in the era of genomics. 3

1.2 Mechanism of SMRT sequencing with Zero-Mode Waveguides. 5

1.3 Illustration of nanopore sequencing with MinION 7

1.4 Statistics of nanopore burn-in experiments using different flow cell versions . 9

1.5 Basic framework for genome decoding process. 14

1.6 General assembly pipeline for short-read data. 15

1.7 Example about building OLC and DBG graph from a string 18

2.1 Workflow of the real-time algorithm . 34

2.2 Assembly statistics during real-time scaffolding 35

2.3 Structure of a pathogenic island from K. pneumoniae ATCC BAA-2146 . . . 38

3.1 Plot of sensitivity versus specificity of npBarcode compared with existing tools. 58

3.2 A combining pipeline of npReader, npBarcode and npScarf with ONT Native

Barcoding Kit . 59

3.3 Graphical User Interface of npBarcode integrated in npReader. The result

shown is for the a MinION run using Native barcoding kit on 8 libraries. . . 60

4.1 An example of bidirected graph model . 77

4.2 Two approaches for gap filling in our methods. 79

4.3 Example of graph decomposition into longest straight paths 88

4.4 npGraph user interface . 89

4.5 Real-time scaffolding by npScarf versus npGraph 99

4.6 Assembly graph resolving on npGraph Graph View 100

xxiii

xxiv List of Figures

5.1 Rolling Circle Amplification . 103

5.2 Pipeline to reconstruct viral genome sequences from MinION long reads. . . 105

5.3 Mapped read length histogram of barcode 08 and 09. 106

5.4 Example of ACF sliding dot product for a sequence with two repeats 108

5.5 ACF values for a random read versus the 7-concatemer detected 110

5.6 Example of ideal LPF at ft = 0.25Hz and its corresponding impulse response. 113

5.7 Peak picking for a 7-concatemers NSDF signal processed with LPF using

cutFreq = 100 . 115

A.1 Alignment of the npScarf’s assembly for K. pneumoniae ATCC BAA-2146

to its reference genomes . 150

A.2 Alignment of the npScarf’s assembly for K. pneumoniae ATCC 13883 to its

reference genomes . 150

A.3 Alignment of the npScarf’s assembly for S. cerevisiae W303 to the reference

genome of the S288C strain . 151

A.4 Alignment of the Canu’s assembly for S. cerevisiae W303 to the reference

genome of the S288C strain . 152

A.5 Alignment of the miniasm’s assembly for S. cerevisiae W303 to the reference

genome of the S288C strain . 153

B.1 PCR barcode MinION sequencing with npBarcode 156

B.2 Comparison of ONT Native Barcode Sequencing demultiplexing accuracy . . 159

C.1 Dotplot generated by MUMmer for assembly results of Unicycler versus

npGraph. 167

C.2 Alignments of a Enterobacter cloacae reference genome to assembly sequences

generated by Unicycler and npGraph . 168

D.1 Concatemer reads count . 170

D.2 ACF values for a random synthetic read and several k-concatemers nanopore

read detected in Cauliflower mosaic sample (barcode 08). 171

List of Figures xxv

D.3 NSDF signal processed after running average filter method with different win-

dow size . 172

D.4 NSDF signal processed after smoothing with LPF at cutFreq = 30 173

xxvi List of Figures

List of Tables

1.1 Comparison of DNA sequencing methods in general 4

1.2 Sequence two K. pneumoniae strains with the MinION 11

2.1 Comparison between npScarf’s assemblies and the reference genomes of two

K. pneumoniae strains . 36

2.2 Timeline of determining plasmid-encoded antibiotic resistance genes 39

2.3 Comparison of assemblies produced by npScarf and the comparative methods 41

3.1 Sequencing data statistics for each K. pneumoniae strains. 67

3.2 Genome assembly results using multiple approaches. 68

3.3 Final assembly of XDR K. pneumoniae isolates and location of antibiotic

resistance genes. 70

4.1 Comparison of assemblies using npGraph and other comparative methods on

5 synthetic datasets . 91

4.2 Assembly of real datasets using Unicycler and npGraph with the optimized

SPAdes output . 96

5.1 Viral samples subjected to MinION barcoding sequencing 105

A.1 Memory usage (Gb) of the different tools . 154

B.1 Information for each of 8 samples used in the Native Barcoding sequencing

protocol. 156

B.2 Pairwise comparison between samples in Native Barcode Sequencing 157

B.3 Statistics for identification of GP 023 . 157

xxvii

xxviii List of Tables

B.4 Real-time emulation of time to detect resistance genes from DNA sequencing 158

C.1 Benchmarking npGraph against npScarf versions, hybridSPAdes and Unicycler

hybrid assembler with the synthetic dataset. 162

List of Abbreviations

ACF Auto-correlation Function

AMR Antimicrobial Resistance

(K/M)bp (Kilo-/Mega-)base pair(s)

DNA Deoxyribonucleic Acid

DFS Depth First Search

DSP Digital Signal Processing

LPF Low Pass Filter

FFT Fast Fourier Transform

NCBI National Center for Biotechnology Information

NKDF Normalized Kronecker Delta Function

NSDF Normalized Square Difference Function

ONT Oxford Nanopore Technologies

PacBio Pacific Biosciences

PCR Polymerase Chain Reaction

PDR Pan-Drug Resistant

POA Partial Order Alignment

RCA Rolling-circle Amplification

RNA Ribonucleic Acid

SGS Second-Generation Sequencing

XDR Extensively Drug Resistant

TGS Third-Generation Sequencing

xxix

xxx List of Abbreviations

1
Introduction

Genes are like the story, and DNA is the

language that the story is written in

–Sam Kean

2 Introduction

1.1 Reading genome – the book of life

The mission of decoding the genetic information of all organisms has been attracting great

attention and effort from the research community over the past three decades. Although

genomes are thought to contain nearly all the information necessary to create an organism,

sequencing a genome is only the very first step towards understanding the development of an

organism. Subsequent to genome sequencing and annotation there remains a huge amount

of additional work to interpret the genome and understand how genes interact in pathways

in a variety of contexts to sustain life. Nevertheless, the importance of the initial reading

is indisputable as it would shape the details and output of any further analysis. In fact,

the competition of modern sequencing technologies have never been on hiatus, resulting in

remarkably achievements in terms of both quality and quantity. However, unfortunately, we

are still far away from having a flawless sequencer to date.

All genetic material of an organism is embraced in the term genome mentioned earlier.

Basically, the genome includes deoxyribonucleic acid (DNA) molecules – the double helix

polymers [1] that virtually define a whole individual life form (except some viruses made by

ribonucleic acid or RNA). A DNA molecule is a sequence of nucleotides, which is represented

by 4 bases: adenine (A), cytosine (C), guanine (G), or thymine (T). The process of calling

each and every single base of this sequence is known as DNA sequencing. Sequencing an entire

organism’s genome is termed Whole Genome Sequencing (WGS). Innovation in sequencing

technology has enabled WGS for a large variety of species with increasing genome sizes

and complexity over time, such as Haemophilus influenzae bacterium [2], Saccharomyces

cerevisiae [3], Caenorhabditis elegans [4] and Mus musculus (mouse) [5]. Ultimately, the

completion of the Human Genome Project [6] marked the beginning of the genomic era in

which rapidly developing technology would make WGS much more efficient and affordable.

The cost of sequencing has been dropped drastically over time to the point that scientists

are now planning for the Earth BioGenome Project, which plans to sequence 1.5 million

different species across multiple continents[7].

1.1 Reading genome – the book of life 3

Figure 1.1: Prominent sequencing platforms in the era of genomics.

1.1.1 DNA sequencing technology

The first practical sequencing technology was invented by Frederick Sanger and colleagues

[8] and as the consequence, had been named after its founder. Sanger sequencing, can be

considered as the First generation sequencing, employs the mechanism of selectively termi-

nating the chain elongation by dideoxy nucleotide, which is a nucleotide analogue which

lacks a 3‘-hydroxyl group needed for the next incorporation and extension. Improved Sanger

platforms nowadays can output reads up to around 1Kbp with high accuracy (99.9%) but the

yields and cost are still unreasonable compared with other methods. In fact, Sanger sequenc-

ing contributed vastly at the beginning of the sequencing era but became supplanted later

by Second-Generation Sequencing (SGS) machines (previously known as Next-Generation

Sequencing) which are of much larger scale and higher throughput in term of data acquired.

For that reason, it is restricted in use today, and used largely only for validation or in com-

bination with other deep-sequencing methods [9]. SGS platforms, on the other hand, can

output a large amount of DNA sequence with length up to 1Kbp in form of single, mate-

paired or paired-end reads on demand, for a large ranges of studies. Prominent sequencing

technologies include pyrosequencing [10, 11] (Roche 454), ion torrent(ThermoFisher), SOLiD

sequencing (Applied Biosystems) and sequencing by synthesis (Illumina/Solexa).

4 Introduction

Table 1.1: Comparison of DNA sequencing methods in general. Each method may have several
platforms with varied configurations for different usage. More details in [12, 13].

Gen. Sequencing methods
Read length Accuracy Reads Time

(bp) (%) per run per run

Chain termination
1st

(Sanger sequencing)
400− 900 99.9 N/A 0.3− 3 hours

Pyrosequencing (454) 700 99.9 1 million 24 hours

Sequencing by synthesis up to

(Illumina/Solexa)
up to 300 > 99

3 billions
< 1− 14 days

Sequencing by ligation
75 + 35 99.9

up to
1− 2 weeks

(SOLiD sequencing) 2.8 billions

2nd

Ion semiconductor 200 98 5 millions 2 hours

Single molecule, 3000
85 ≈ 50K 2 hours

real-time sequencing on average

extremely ≈ 150K < 48 hours3rd

Nanopore sequencing
long

85− 96
per flow cell (real-time output)

After years of innovation, Illumina is currently leading the sequencing market. This

giant company reportedly has much larger revenues compared to other competitors [14]

and its equipment is ubiquitous amongst genomics labs worldwide. In fact, the sequencing

productivity, quality and deployment cost-effectiveness have been enhanced significantly with

the introduction of new platforms such as MiniSeq, MiSeq series, NextSeq, HiSeq and HiSeq

X and Novaseq series. These sequencers provide high-fidelity paired-end reads of length

100-300bp each. In consequence, bacterial DNA sequencing is typically done at average

sequencing depth of more than 100-folds. In other words, each of every bases in the whole

genome would be covered by around 100 reads using such platforms. In this thesis, data

from Illumina MiSeq or HiSeq were used as input for the assembly algorithms.

The race for better sequencing technology is still going on rapidly and intensively, illus-

trated by the emergence of so-called Third generation or long-read sequencing technology

[15, 16] with two major representatives i.e. Pacific Biosciences of California, Inc. (PacBio)

1.1 Reading genome – the book of life 5

and Oxford Nanopore Technologies Limited (ONT). As indicated by the name, the defin-

ing feature of this category is the ability to measure in real-time the signals of every single

molecule and output significantly longer reads than the previous generation sequencers. Ta-

ble 1.1 presents the performances of above-mentioned sequencing platforms in term of read

length, yield, accuracy and running time.

At the time this thesis being written, Illumina has come to an agreement to acquire

PacBio for approximately $1.2 billions in an attempt to expand its DNA sequencing capacity.

At the same time, ONT is continuing to grow into a essential player in the field of genome

sequencing with remarkable success stories. The next section will briefly shed light into TGS

focusing on the latter technology.

1.1.2 Third-generation sequencing technology

Single molecule, real-time (SMRT) sequencing The first long-read sequencer avail-

able on market was the PacBio RS from Pacific Biosciences of California, Inc. in 2011.

DNA Polymerase

Zero-Mode Waveguide

0

50

100

150

200

250

C

G

A

T

Time

F
lu

o
re

sc
en

ce

Figure 1.2: Mechanism of SMRT sequencing with Zero-Mode Waveguides.

The SMRT technology takes advantage of zero-mode waveguides (ZMW) to detect the

6 Introduction

activity of DNA polymerase incorporating a single nucleotide at a time [17]. A ZMW struc-

ture consists of a circular hole in sub-wavelength scale (20× 10−21 litre volume) in a metal

film [18]. A complex of DNA polymerase and a single stranded template DNA molecule is

immobilized at the bottom of the chamber surrounded by fluorescent dyed bases, as shown

in Figure 1.2. The DNA synthesis activity cleaves off the dyed tag of each incorporated

base which can be detected optically in real-time within this smallest available microscopy

structure [19]. A SMRT cell can harbor thousands (RS platform) to hundred thousands (RS

II) or even millions of ZMWs (Sequel, 8M chip) to facilitate parallelization and thus improve

the throughput per cell.

In fact, both the read length and accuracy of the instrument have been continuing to

increase significantly. The average accuracy per read has increased from about 82% in the

first release to 87% [20, 21] whilst the maximum read length has reached over 50Kbp in

recent runs [22]. As the consequence, PacBio DNA reads have gone from only being used

in hybrid assembly which required high-fidelity complementary reads [23, 24], to now being

able to generate finished de novo bacterial genomes on its own [21].

Oxford Nanopore sequencing In late 2013, ONT released the first nanopore sequencer,

the MinION, in the MinION Access Program (MAP). MAP was offering opportunity to

researchers worldwide to have access on the third-generation reads. Of the particular ad-

vantages using this device is its greater portability and flexibility.

Figure 1.3a presents a general workflow of a sequencing run using MinION. After DNA

extraction, the very first step – sample and library preparation, is straightforward but can

also be varied for different experimental aims, such as maximizing yield, accuracy or read-

length; as well as different experimental conditions, such as amount and quality of starting

DNA. The purpose of library preparation is to bring necessary adapters and/or chemistry

to the input mixture prior to the sequencing. ONT provides a variety of sequencing kits

for different purposes. For example, using the Rapid Sequencing Kit is simple and quick

(10 minutes in theory) that would fit experiments with critical time and resource condition

e.g. remote locations. On the other hand, the Ligation Sequencing Kit family is more

time-consuming (about an hour) but gives better control over read length. Other than

1.1 Reading genome – the book of life 7

(a) Sequencing with MinION

GACTGATCAGCT

(b) Inside the pore

Figure 1.3: Illustration of nanopore sequencing with MinION. (a) General setup for MinION
sequencing. (b) Nanopore sequencing mechanism at molecular level.

these, ONT offers expansion packs for diverse project scenarios such as Barcoding kits for

multiplexed sequencing or Low input kits for sequencing as little as 10ng of DNA molecules.

In addition, if better quality is desired, users could, in the early stages, consider using a

2D kit (which would sequence both DNA strands in a single read), which has been replaced

with an updated 1D2 protocol (which with high probability sequences the second strand

in the same pore immediately after sequencing the first strand, but as a separate read).

After loading the prepared mixture to the device, the sequencing and base-calling phases

could be employed automatically and in situ thanks to the built-in services. In combination

with a MinION, it is only required to have an internet-connected laptop with proper software

installed to run the experiment, making it possible to establish sequencing-on-the-field where

access to lab equipment is limited.

Figure 1.3b illustrates the sequencing mechanism in more details. In fact, the general

mechanism of an artificial nanopore has been proposed [25, 26] long before being applied as

a real DNA sequencing technique by Hagan Banley and ONT [27]. In which, the unwound

molecules are threaded through a nano-scaled pore on an electrically charged membrane

8 Introduction

protein known as the nanopore. In the whole process, the velocity of the molecule translo-

cating through the pore is controlled by a motor enzyme. The rationale of this technology

is that the shift of nucleotide sequence inside of a pore leads to the variation in its electrical

resistance, resulting in a change in the current signal which is recorded as squiggles by time.

These squiggle signals are feasibly translated back to the format of strings of nucleotide

identities. Indeed, a Hidden Markov Model (HMM) [28, 29] in the older version of Albacore,

or Recurrent Neural Network (RNN) deep learning algorithm in later versions of Albacore,

Chiron [30], Guppy are used to study the transition and predict the sequence of DNA that

most likely would generate these signals. Due to the unavoidable noises of the measures

in such tiny scale, a certain innate level of error may be expected from the base callers,

although ONT has proposed using a variety of different types of pores simultaneously in

order to generate independent error profiles.

The nanopores are packed into a flow cell, which is the consumable of this technology.

Start-up cost of operating MinION is virtually zero, as users only have to pay for running

costs, making it suitable for any project scale. The chemistry and computational features

are likewise updated continuously to help reduce the noises from output. Recently, R10

flow cell is made available for higher signal accuracy, together with the newest base-calling

algorithm from Guppy flip-flop pipeline that supports GPU for heavy computational deep-

learning tasks, it has shown positive progress of this sequencing technology to tackle errors.

When the demand of resources optimization is concerned, flongle (single-use flow cell) can

be used for small genomes. On the other hand, washing kits can be applied to reactivate

pores from an interrupted flow cell, making it ready for another run.

Furthermore, GridION and ProthmethION – the scaled-up version of MinION, are made

to public by the company through its access program and has already been deployed for

several experiments involving bigger and more complicated genomes. This included human

genome [31] and metagenomics mock community [32] where data is available at https:

//github.com/LomanLab/mockcommunity.

In summary, ONT provides promising and fast-growing sequencing technology that could

facilitate substantial applications in real-life. The first description of the data generated by

this sequencing method at early stage will be presented in the following section.

https://github.com/LomanLab/mockcommunity
https://github.com/LomanLab/mockcommunity

1.2 Nanopore long-read data at first glance 9

1.2 Nanopore long-read data at first glance

Together with PacBio RS series, the ONT MinION sequencing device, through its early

access program (MAP), has become a prominent long-read data generator for researchers

worldwide. An initial interrogation on the Nanopore data generated by MinION over time

here would provide first impression on its performance as well as the innovating progress

that had been made to improve the output.

1.2.1 Data description

(a) R6 (2014/06/16) (b) R7 (2014/09/16)

(c) R9.4 (2017/01/18) (d) R9.5 (2018/09/12)

Figure 1.4: Statistics of nanopore reads using different flow cell versions (with the running
date) on the lambda phage sample, shown in the order in which they were released. For each flow
cell, the blue normalized histogram is for read length and red one is for quality (Phred score).

10 Introduction

1.2.1.1 Lambda burn-in experiments

Figure 1.4 shows statistics of our lambda experiments acquired by using progressively more

update version of MinION flow cells. This type of practice is a standard control ‘burn-in’

experiment recommended by ONT to help users familiarize themselves with the protocol,

the equipment and the result long-read data. The sample is a virus named lambda phage

with small genome size of 50Kbp. All the test experiments were run for 6 hours, except

R9.5 with a 1-hour run so the sequencing yields are not included in the comparison and

the histogram frequencies are normalized by the number of reads for each attempt. Even

though the ‘burn-in’ experiment is not designed to exhaustively study the potential length

of nanopore reads due to the limit genome size of the sample, it is easily to see from the

figure a clear improvement of read length distribution by applying newer version of flow cells.

The early-staged (2014-released) flow cells and chemistry in the kit produced fewer reads

longer than 10Kbp, as could be observed from Figure 1.4a and 1.4b. This remarked value

has become the mean length of reads generated by R9.4 flow cell which can even possibly

reach 20Kbp in extreme cases. Using the newest available flow cell R9.5 - even for just

a 1-hour run - produced many more longer reads, including the maximum possible 50Kbp

reads that cover the whole genome. Similarly, the fidelity of the long reads has improved

with the 2016-released R9 flow cells. The average quality scores (in Phred scale) of the base-

called sequences have advanced from 5.0 (Perror ≈ 0.3) in R6 and R7 to 10.0 (Perror ≈ 0.1)

in R9.4 and 13.0 (Perror ≈ 0.05) in R9.5. To further enhance the quality, reads from two

complementary strands can be sequenced and computationally merged to produce a single

double-checked 2D or 1D2 read. Even so, noises will inevitably remain in nanopore reads as

the result of measurement noise at nano-scale, as compared to high-precision data generated

by SGS when the average Phred score is usually 30 or more (Perror ≤ 0.001).

1.2.1.2 The first runs with bacteria data

Amongst our first-hand experiments with real-life samples were the ones with K. pneumo-

niae strains as shown in Table 1.2. Flow cell version R7 and R7.3 with 2D sequencing

protocol were used for the runs resulting in 35-fold coverage of long-read data for NDM-1

1.2 Nanopore long-read data at first glance 11

Table 1.2: Sequence two K. pneumoniae strains with the MinION. Figures generated by
npReader GUI [33].

Strain Phred Quality Scores Read Length Distribution Emp. errors

BAA-2146 Del: 9.5%

(NDM-1 strain) Ins: 6.3%

Mis: 15.3%

Chemistry R7 Unaligned:

Sep 2014 13.3%

35-X Coverage

13883 Del: 7.9%

(type strain) Ins: 6.0%

Mis: 12.9%

Chemistry R7.3 Unaligned:

Dec 2014 11%

15-X coverage

strain and 15-fold coverage for the type strain. From the quality histograms, the red lines

represent 2D reads’ scores which are clearly better than the ones in 1D reads (green and blue

for template and complement sequences respectively). The length distribution shows that

MinION sequencing returned significant reads with length around 5K for the first sample

and 7K for the latter. The statistics on the far right of the table show error rate in term

of indels, mismatches and hit rate from alignments with reference data. Overall, chemistry

R7.3 is more up-to-date than R7 and as expected, gave slightly better results. As a next

step, there came a mission to assembly those reads, together with available Illumina data

of corresponding samples, in an attempt to have complete genome reconstructions for these

two K. pneumoniae strains. This task was important at the time as it would depict big-

ger picture about interactions between genetic elements in the whole genome and help to

comprehend the biological pathways supporting this superbug’s mechanisms.

12 Introduction

1.2.2 Data analysis: challenges and solutions in working with

nanopore data

The introduction of long, error-prone nanopore reads has motivated novel developments in

bioinformatics, as many existing approaches had been optimized for high-quality short read

data. A class of efforts was made to carry out an initial error-correction step before using

the dataset [34, 35]. This process usually require either another reference of high quality

SGS reads or a large amount of long reads for self corrections. The majority of algorithms

following this approach uses alignment-based correction which is normally costly in term of

computation.

Another attempt to reduce the error rate from base-called sequences is to utilize the

signal-level information. Nanopolish is designed for such task. The underlying technique

is to train a hidden Markov model that measures the probability of observing a certain

chain of events given a particular DNA sequence. This method has been used for polishing

a draft assembly using an abundance of long-read data [36] and has been extended to de-

tect methylation [37]. Nevertheless, this approach is computational expensive and usually

requires parallelization which is supported in its modules.

Pairwise sequence alignment is a critical operation for many genomic analyses in gen-

eral and comparative studies in particular. To adapt to the specific error characteristics of

nanopore sequencing data, a number of approaches has been introduced on top of the legacy

alignment methods used for short-read SGS data. The ubiquitous practice is still based on

the previous seeds-and-extend dynamic programming technique with modifications in term

of seed finding, gap extension and chaining algorithms. In addition, there would be justified

settings to relax the matching criteria thus allowing more error tolerance and lengthen the

alignments. As the results, early long-read alignment tools have been developed or calibrated

for PacBio SMRT data, including but not limited to BLASR [38], LASTZ [39], LAST [40],

BWA-MEM [41] and DAligner [42]. Recently, several other tools has been designed specifi-

cally for comparing long-read data such as GraphMap [43] and especially minimap [44] (now

minimap2) which significantly reduce the running time while maintaining comparative accu-

racy at the same time. These available solutions have been widely applied in a flexible ways

1.3 Genome assembly 13

for different analysis purposes when it comes to long reads with high error rate.

The problem of aligning raw long reads stems from the error profile per base in the

targeting sequences, especially indels, that would introduce combinatorial explosion using

traditional approaches. The common practice to tackle this problem is to apply hashing

techniques to reduce the dimensional of the data. A hash function maps a particular string to

an index value so that it can be accessed directly without (or minimized) collision. By using

these functions, a DNA sequences can be represented by a small set of fingerprints, known as

sketch, that will be shared between similar but not necessary exact strings. The prominent

sketch types that has been used for nanopore data includes MinHash [45, 46], minimizer [44],

HyperLogLog (Dashing: Fast and Accurate Genomic Distances with HyperLogLog Daniel N

Baker, Benjamin Langmead. bioRxiv 501726; doi: https://doi.org/10.1101/501726).

For the multiple sequence alignment (MSA) problem, the partial order alignment (POA)

graph data structure has been proposed to cope with errors in long reads [47–49]. By applying

this method, the authors proved the integrity of information compared to other MSA format

and developed POA as an efficient tool for large alignment and consensus calling problem.

The latter was then adopted in Racon [50], a commonly used consensus module for long

uncorrected reads.

Genome assembly is another major challenge in bioinformatics when the traditional ap-

proaches for SGS data cannot be applied directly to TGS data. To better understand the

situations and come-up solutions, the general principle of genome assembly and methods

for SGS data will be addressed in the next section. Approaches to genome assembly which

utilize nanopore reads will come later on top of this foundation knowledge.

1.3 Genome assembly

1.3.1 Definition

Despite the huge improvements of sequencing technology, there still exist the common limi-

tation that in most cases, it is impossible to sequence directly the whole length of a genome.

As shown in Figure 1.5, the actual practice is to break the whole genome into smaller pieces

https://doi.org/10.1101/501726

14 Introduction

Figure 1.5: Basic framework for genome decoding process.

that could be efficiently read by an appropriate instrument. Before sequencing, the extracted

DNA sample is normally sheared , e.g. by restriction enzymes, into short fragments before

being subjected to a cloning step, usually Polymerase Chain Reaction or PCR, that gen-

erates a large amount of copies for DNA molecules [51]. The rationale is to have enough

coverage to compensate the stochastic errors which are inevitable during library preparation

and sequencing process. Those amplified pieces are then glued back together in a process

called assembly to have a draft genome prior to applications of additional post-processing

steps for the final complete reconstruction. These include but not limit to scaffolding, gaps

filling, genome polishing and circularizing if applicable. The last two tasks are carried out

with computational tools and in many cases, being referred together as in one whole common

mission known as genome assembly.

Among all the steps involved in WGS, genome assembly undoubtedly plays a critical

role in DNA sequencing since it determines how complete and accurate the picture of whole

genome is.

1.3 Genome assembly 15

Overlap reads

Contigs

Scaffolds
(supercontigs)

Draft genome
(chromosome
+plasmids)

1. Contigs assembly

2. Scaffolding

3. Filling gaps

Figure 1.6: General assembly pipeline for short-read data.

1.3.2 General working principle for genome assembly

A typical short-read assembly workflow would include three stages as shown in Figure 1.6.

Firstly, the overlapping reads are merged together making up longer, un-gapped sequences

named as contigs. Usually this is the most challenging and time-consuming part of the

whole process, especially when the the number of reads is extremely large. The next step is

to connect the fragmented contigs further by taking advantage of linking information from

large insert reads e.g. paired-end or mate pair data. The results are structures known as

super-contigs or scaffolds that may contain estimated gaps. The final stage is to carefully

fill those spaces by appropriate independent reads. The scaffolding and gap filling steps can

be invoked repeatedly until no more improvement can be made [52–54]. The final result is a

draft genome which consists of the longest possible stretch of sequences that can be induced

from the data and algorithm. Unfortunately, it is common to not having the complete

genome after this due to the repetitive nature of the DNA sequences. In fact, the fraction of

16 Introduction

fully completed genomes available in public databases such as GenBank (National Center for

Biotechnology Information or NCBI) or European Bioinformatics Institute (EMBL-EBI), is

comparatively small. Most of the assemblies are only near-completed, marked as contig- or

scaffold-level, meaning that they are still fragmented and/or gap-bearing and require more

work and data to become finished.

1.3.3 Overview of assembly algorithms for SGS data

The demand for robust assemblers became overly compelling when high-throughput sequenc-

ing platforms were employed and started generating massive amount of data in the age of

SGS. The abundance of randomly distributed short reads from SGS platforms had moti-

vated substantial research in bioinformatics toward solving the genome assembly problem

in an efficient way[55]. In general, approaches can be divided into two groups: greedy and

graph-based approaches which are reviewed by [56, 57]. Greedy algorithms [58–60] simply

assemble all the reads by iteratively joining the two with largest overlap to form the shortest

common string, or supersequence. It is noteworthy that greedy approaches implicitly use an

overlapping graph as the data structure for this purpose. Clearly, the obtained result will be

locally optimal and not necessarily the full solution to the problem. However, tools of this

category usually produce a relatively good approximation [61].

The graph-based methods utilize data structure of vertices and edges to represent the

whole set of reads and all of their potential linkage properties. By traversing through the

graph, one can define an assembly as an ordering reads and by searching for the best paths,

find candidates for the optimal solution. There are two types of graph in common use,

namely Overlap–Layout–Consensus (OLC) [62] and de Bruijin graph (DBG) [63, 64].

Overlap–Layout–Consensus The classical OLC algorithms follow the following three

steps: overlap finding, layout forming and consensus calling. Throughout the process, an

overlapping graph is created which has vertices as reads and edges are represented by over-

lapped pairs of reads which have been detected based on alignments in the first step. A

traversal algorithm is then applied to find the paths of ordered and oriented vertices, also

known as the layout. The consensus sequences are called and output based on the layout

1.3 Genome assembly 17

detected. Among all the steps, finding overlap between all pairs of reads is the most compu-

tationally intensive. Although indexing techniques, such as FM index [65], have been applied

to reduce the time [66], the first step still remains the major bottleneck in the whole process,

especially with the burst of short read data yield introduced by recent Illumina platforms.

In that circumstance, the DBG has come to be used as an efficient data structure to deal

with this abundance of data.

De Bruijin Graph To construct the graph, reads are broken into consecutive k-mers

(words of length k) for the set of vertices, whilst edges show adjacencies between k-mers with

k − 1 overlap. The data structure is actually storing fixed-length words and their linkages,

making its memory requirement dependent only on the genome size but not data size. The

graph is then targeted to errors removal based on k-mers spectrum, as well as trimming and

simplification in which non-branched paths are merged together. At this point, the assembly

problem can be reformulated as finding an Eulerian path which defined as a walk visiting

each all edges on the simplified graph exactly once. The complexity of this algorithm is

dependent on properties of the k-mers rather than the number of reads. With a smaller k,

the more details of overlaps emerge in the graph, but the trade-offs would be a bigger search

space due to increasing number of nodes and edges. The reason for additional connections

comes from the raise of repetitive elements not covered by the word length, resulting in more

branches to traverse through the graph. Currently, there are several prominent DBG-based

assemblers such as Velvet [67], SPAdes [68] and ABySS [69]. All of these work efficiently on

Illumina HiSeq or MiSeq output with reasonable resources and running time requirements.

In term of small genomes, such as bacterial genomes, which are the focus of this thesis,

SPAdes is reported to be the most suitable tool amongst the three [70].

Figure 1.7 gives an illustration of the graph construction by applying either the OLC or

DBG approach. A random string containing repetitive elements is given as the reference,

from which reads are sampled as output from a short-read sequencer working on this imag-

inary genome. Using the OLC approach, a graph is built with reads as vertices and edges

reflecting overlapping properties between pairs of them. Each time a new read is generated,

there is one more vertex being added to the graph and by pairwise alignments to every other

18 Introduction

TGACCGTAGC
CGTAGCTAGT

GTAGCTAGTAGC
GTAGCGCCATG

 ……….TGACCGTAGCTAGTAGCGCCATG……….

R2

R1

R3

R4

CGTAG

GTAGC

TAGCT

TAGCG

AGTAG

DBG:OLC:

TGACC CCATG

R1 R2 R3 R4

Figure 1.7: A simple example about building OLC and DBG graph from a string with repeat
(highlighted in red). The repeat introduces ambiguous alignment resulting in a redundant link
(highlighted) in the overlap graph. It also de-linearizes the DBG graph by introducing a branched
node corresponding to the repetitive k-mer.

vertices, new edges can be added properly. To reduce size of the layout graph as the dataset

is growing, the algorithm usually tries to remove contained nodes and redundant edges, e.g.

R2 in the example since it is covered by R1 and R3 together. The repetitive elements cause

additional faulty alignment, e.g. the red link from R1 to R4, making it more complicated

to traverse the graph in the correct sequence.

On the other hand, DBG approach first breaks reads into set of consecutive k-mers (k = 5

in this case). Unlike OLC, no pairwise alignments need to be explicitly carried out. As the

consequence, the DBG graph is more efficient in term of construction, however, would be

more challenging to solve compared to the reduced OLC graph. The reason stems from the

fact that the integrity of reads are usually lost after being broken into smaller pieces as k

must be strictly less than the read length. At the same time, the repeat nature of original

sequence would split the OLC nodes into extra branches compared to DBG counterparts,

making it more fragmented and difficult to traverse. It is worth to mention the importance

1.4 Genome assembly with long read data 19

of parameter k for the DBG performance. As aforementioned, k should be chosen as large

as possible to restraint the loss of information and the complexity of the resulting graph.

However the graph would suffer the risk of disjointed components, or dead-ends, if k−mers

becomes too long so that one word would less likely overlap with another by k − 1. From

the example, we chose k = 5 as the best option since the DBG with k = 6 would fail to

represent the overlap between R3 and R4.

As mentioned earlier, genome assembly from SGS data usually suffers from the pres-

ence of repeats, leading to generation of highly fragmented draft genomes (also known as

pre-assemblies). This limits identification of structural variation, or identification of the con-

figuration and location of mobile genetic elements. One theoretical solution is to have reads

that exceed the ‘golden threshold’ of 7000 nucleotides to span over the majority of repeats in

prokaryotes [71], thus able to connect fragmented contigs and render continuous assemblies

out of them. In fact resolving repeats has remained a bottle-neck until the recent emer-

gence of the so-called Third Generation Sequencing technologies with the introduction of

two instruments PacBio RS and Oxford Nanopore MinION that were specially designed for

long-read sequencing. Thanks to these sequencers, DNA molecules with continuous length of

up to tens of kilo base-pairs or even more could be sequenced in full. As a result, long-read

data have been widely exploited to finish genomes [72, 73] or identify mobile genetic elements

of interest [74, 75], despite having a higher base-calling error rate. A class of assemblers us-

ing these new instrument’s output has been developed, which I will describe in the following

section.

1.4 Genome assembly with long read data

Nanopore data can be used on its own for de novo genome assembly, or in conjunction with

high quality SGS data in a process called hybrid assembly. Both approaches have their own

pros and cons and should be considered in reference to available dataset and the ultimate

purposes of using the final assembly.

20 Introduction

1.4.1 Long-read only assemblers

Non-hybrid assembly tools, as stated above, follow either OLC and/or an adjusted DBG

approach, described below. Accordingly, most of current OLC algorithms rely on a hier-

archical approach [76]. From this perspective, seeds are first chosen top-down as a subset

of longest reads that must have good base-called quality and not contain each others. The

remaining reads of shorter length are then aligned to the seeds for error-correction before

invoking assembly and post-processing as usual.

Hierarchical Genome Assembly Process (HGAP) [77] was one of the first hierarchical OLC

tool available for PacBio data but a more well-known assembler in this category is Canu, a

renovated version of Celera Assembler [78] that was designed to work in particular with noisy

long sequences. Canu employs a typical OLC approach with an adaptive overlapping strategy

and sparse assembly graph construction to be able to build a correct overlap graph out of

error-prone data [79]. Canu is able to generate decent final assembly for large eukaryotic

genomes but usually requires a lengthy running time. FALCON [80] is another assembler

applicable to big genomes, more than that, its string graph is designed to be diploid-aware.

Another efficient OLC implementation is to apply a fast overlap finding algorithm first for

the assembly skeleton, then use another consensus calling or polishing tool on the draft

assembly to improve the quality. This idea has been integrated in SMARTdenovo (https:

//github.com/ruanjue/smartdenovo) or in a pipeline that combines 2 separately developed

modules: miniasm [44] as the rapid draft constructor and Racon [50] as the consensus caller.

Regarding to other class, Flye [81, 82] and wtdbg (https://github.com/ruanjue/wtdbg2)

are two representatives of long-read assemblers that used adaptive versions of de Bruijin

graph. The first method introduces the definition of ABruijin graphs that only take a subset

of “solid strings” instead of all fixed length words decomposed from reads. The solid strings

are chosen based on the k-mer spectrum from which their fidelity are examined. Unlike the

traditional DBG methods, a fast dynamic programming algorithm is used to evaluate the

overlaps of various lengths between read pairs based on their longest common subpaths. The

draft assembly is constructed by adding vertices of those overlapped reads before undergoing

a polishing step by aligning it to the original reads. The tool wtdbg (now wtdbg2) on the

https://github.com/ruanjue/smartdenovo
https://github.com/ruanjue/smartdenovo
https://github.com/ruanjue/wtdbg2

1.4 Genome assembly with long read data 21

other hand, builds a fuzzy de Bruijin graph for genome assembly. This graph is similar

to the original DBG but allows mismatches and indels so that approximate k-mers can be

collapsed into one node of the graph. Furthermore, the read paths are kept during decompo-

sition and collapsing. After layout construction with the fuzzy DBG, a POA-like consensus

step is invoked to generate the final assembly. The tool is reportedly able to quickly finish

an assembly but consumes more memory than an original DBG approach due to the new

graph structure.

For exclusive long reads assembly, the quality of assembly is in general lesser than SGS

counterparts, even after a polishing step. As the consequence, additional polishing steps

with Illumina data is desired for higher accuracy in e.g. for SNP callings projects. Another

approach is to utilize the erroneous long reads as the linker to connect the incomplete SGS

assemblies [83, 84]. Assemblers from this class usually require less long read coverage. More-

over, bridging operations are much less resource-consuming than aforementioned approaches.

I expand on these hybrid assemblers in the next section.

1.4.2 Hybrid assemblers

Hybrid assembly using long reads is an economical and efficient approach to retrieve more

complete genomes from the drafts since it requires less runs of the currently expensive third-

generation sequencing. One of the first algorithms that takes advantage of long reads for

hybrid assembly is Cerulean [83]. By aligning the contig sequences from short read assembly

to the long reads, it tries to build a skeleton graph of long contigs connected together as

the backbone and later accompany smaller contigs iteratively to the backbone to improve

the assembly quality. This tool provides an efficient way of finishing the draft genomes in

the sense of running time and memory usage. Likewise, in term of assembling with long-

read data, SSPACE-LongRead [84] stands out as a widely-used software for this particular

task. Briefly, the method relies on the BLASR [38] alignments between long reads and the

pre-assemblies which are normally contigs resulted from short-read assemblers. Based on

the linkages from the best alignments, a placement of these contigs into super-scaffolds is

established. The scaffolds will undergone a post-processing step of final linearization and

22 Introduction

circularization before being used as the assembly output. This approach provided a cost-

effective reconstruction of bacterial genomes by using two libraries: one Illumina MiSeq or

Roche-454 paired-end reads and one 50-folds long reads data from PacBio. Although long

reads from other sources, such as MinION, can also be used by these methods [85], it usually

requires extra works on parameter calibration.

In addition, another scaffolding algorithm, LINKS [86], uses a k-mer approach to make

use of long reads properties rather than an aligner to connect the draft genomes. This method

succeeded in improving the contiguity of ABySS genome assemblies and could adapt to a

certain scale of eukaryotic genome. However, the performance highly depends on the data

quality so that for early-staged chemistry of Nanopore sequencing, only 2D reads screening

and/or application of error-correction utilities are recommended beforehand. In ligth of

that, beside several dedicated genome scaffolding tools for MinION data as above, users can

always utilize the traditional approach of using error-free short reads to correct the nanopore

reads at base level. After that, the corrected long reads can be assembled by a conventional

OLC algorithm in the next step. Nanocorr [34] and NaS [35] are two representatives for this

approach. Normally, these assemblers could provide assemblies of high quality per base but

with much more expensive computations in exchange.

Finally, another appropriate software for this purpose is Unicycler [87] which has been

developed as the state-of-the-art. This application is in fact a set of tools including a com-

bination of short-read assembly optimization, long-read only assembly, hybrid assembly,

consensus calling and other post-processing steps for microbial genome assembly. It is de-

signed to work with either short-read or long-read data but focuses on the hybrid algorithm

that take advantage of both type of datasets. Its hybrid assembly module works in a likewise

non-interactive (batch) mode on the whole bulk of input data, traverses the input assembly

graph and returns a exhaustively polished assembly as the result. This method has been

proved to generate high quality, very close-to-complete genome assemblies thanks to exhaus-

tive computational steps but the running time, as a trade-off, is relatively long and is only

efficient for microbial genomes. More details about this method will be provided later in

Chapter 4 as a relevant content.

1.5 Real-time analysis 23

1.5 Real-time analysis

1.5.1 Definition

In circumstances of this thesis, the adjective “real-time” indicates a high level of respon-

siveness of an analysis system in updating its environment status corresponding to inputs

fed into the system [88]. The time gap from getting new input to the point of status being

updated, or deadlines [89], is not necessary to be as close to zero as possible (immediate),

but in reality a positive value limited by a reasonable upper-bound (nearly immediate). The

upper-bound is normally defined based on human temporal sensation e.g. within minutes.

Briefly, real-time data analysis is the operation applied on the data in a prompt time

interval to provide near-instantaneous output. In contrast, a data processing system is

known to work in “batch mode” if it collects all the input data before any any operation is

applied. The result obtained from a batch analysis on the bulk of data is final and static,

meaning it cannot be updated using another batch of data without rerunning the whole

process. Real-time applications usually involve a specific communications method namely

data stream. Streaming data is characterized by its continuously migration from a source to

a sink, which are normally the consecutive modules in a real-time pipeline. To implement

instant response programs is a challenging task but in return, grants certain amount of

advantages over traditional batch counterparts [90]. This will be discussed later throughout

the content of this thesis.

1.5.2 Real-time analysis for nanopore sequencing

One of the novel aspects of ONT’s sequencing platforms is that the sequence data of each

molecule is written to disk as soon as it is generated (with up to 2000 molecules being

sequenced in parallel, each molecule progressing through the pore at 450bp per second).

This is unlike SGS sequencing-by-synthesis platforms, which sequence billions of short reads

in parallel, with each cycle (contributing an extra base) taking several minutes, with the

data being provided in batch at the end of a run.

For this task, the raw data of a read must be retrieved and analyzed while sequencing is

24 Introduction

still in progress. This offers the opportunity to obtain analysis results as soon as sufficient

data are generated, upon which sequencing can be terminated or used for other experiments.

As the consequences, answers to the related genomic questions could be obtained in situ, in

an automated manner that saves considerable amount of time and resources compared to the

conventional approaches. Furthermore, streaming analysis can benefit from avoiding under-

and over-sequencing which could result in either the generation of more sequence data than

is required at greater cost, or a low quality assembly if insufficient data are generated.

Several systems incorporating real-time feature of MinION data have been developed

e.g. the cloud based platform Metrichor (Oxford Nanopore), work by Quick et al. [91] and

MetaPORE [92], focusing on phylogenetic analysis of a sample. Importantly, it is worth

noting the selective sequencing protocol, i.e.“Read Until”, which had been proposed and

implemented [93] exclusively for nanopore sequencing, motivated by the idea that only DNA

molecules of interest should be sequenced. In this proposal, the process could intervene the

transition of DNA through the pore by reversing the pore bias to eject the one deemed as

non-informative. To achieve this, an examination is carried out for each molecule by reading

the real-time squiggle data from current changes caused by the transition and comparing

this signal to a reference. This real-time feedback system would be important for target

enrichment and background depletion sequencing [94].

On the other hand, as a member one of the very first groups having access to MinION

sequencing, I have been developing an in-house tool set to analyze the data for specific

studies, focusing in streaming analysis on microbial genomics. The framework had been

implemented with utilities ranging from initial analysis to handful of further identification

processes such as species typing, strain typing and investigating antibiotic resistance profiles

on microbes [95]. In such pipelines, npReader [33] continuously scans the folder containing

sequencing data in parallel with the MinION sequencing. It picks up base-called sequences as

soon as they are generated, and a stream of reads is created to feed the appropriate pipeline

for further identification analyses. Different modules of a workflow can communicate to

each other via the network sockets or inter-process redirection pipes provided by Unix-like

operating systems. In general, each module takes a stream of data of interest (e.g. a

read, an alignment) as input and carries out its task every time a given amount of data or

1.6 Summary 25

waiting interval has passed. As a response, only relevant information is extracted to retain

or forward to another module following the analysis. This data processing methodology

can return results on-the-go and at the same time, only engages small memory footprint

which is a clear benefit when working with large amounts of data, over long period of

running experiment. Our tools are proved to be helpful in reducing the turn-around time

for the clinical analysis and heading toward rapid diagnostic usage of MinION in real-life

applications [96].

However, there still exists a gap for a method that could scaffold and finish assemblies in

a real-time fashion. This has become the motivation for this thesis project which will focus

on using nanopore data in the scaffolding and annotating feature of npScarf, demultiplexing

algorithm from npBarcode, as well as assembly graph resolving in npGraph - all working in

real-time.

1.6 Summary

To sum up, for the time being, there are various DNA sequencing platforms available in the

market, each of them embraces its own methodology and outputs different reads in term

of length, accuracy, throughput and sequencing cost. Hence the choice for a sequencing

method depends on the requirement from individual project and sometimes, users need to

use several sequencers together on the same sample to obtain adequate data of interest.

Amongst the sequencing options, ONT nanopore sequencing with MinION stands out as a

remarkably portable and deployable long-read sequencer that offers real-time access to the

sequencing output. The continuous upgrades of its flow cell and sequencing kits are indeed

improving the quality and quantity of the long-read data, making this sequencing method a

very welcomed additional player in the field.

MinION data has been shown to be a useful source of genomic data for various studies

thanks to its long-spanning and real-time accessible features. In the midst of those, genome

assembly and structural annotation are amongst the most common applications since this

technology can bypass the fragmentation caused by repetitive elements that are difficult to

resolve using the short-read sequencing. At the same time, the on-time accessibility of the

26 Introduction

data opens up the opportunity to establish analyses in real-time, thus offering interactive

management on resources during sequencing process.

1.7 Thesis aims

Inspired by the unique functionality of nanopore sequencing technology, this thesis project

aims to develop real-time applications using MinION data, focusing on genome assembly

pipelines for microbial isolates. The purpose is to have further complete assemblies, as much

as possible, that would facilitate downstream annotations.

Goals setting Initially, the project targets to implement a streaming pipeline to rapidly

finish short-read assemblies using real-time MinION sequencing. It is aimed to join frag-

mented contigs with least input data as possible while at the same time, still able to pro-

ducing high quality and complete sequences. The ability to run and to report completion

status in real-time allows users to decide when to stop the sequencing prematurely thus open

the possibility of saving time and cost for genome analyses. In addition, hybrid assembly

algorithm is expected to work on the assembly graph of the short-read assemblies to further

improve the sensitivity and completeness of the final result. It would also provide users

appropriate visualization for better interaction with the assembly pipeline in real-time.

On the other hand, it is desired to extend aforementioned pipeline for multiple samples

at the same time, through a paralleling mechanism known as barcoded sequencing. This

technology is made available from ONT, via Barcoding kits, to allow pooling and sequencing

of multiple libraries on the sample flow cell, which further enhances the versatility of the

technology. The underlying mechanism is to ligate a unique oligonucleotide sequence, or

barcode, to the fragments of each DNA sample. Multiple samples can then be pooled together

and sequenced in one flow cell. After that, the sequenced reads are demultiplexed into bins by

examining the barcode portions on the reads. For this purpose, a streaming demultiplexer

for barcode sequencing is developed. The tool brings to MinION practitioners a flexible

option to monitor a barcoded sequencing run as well as to integrate pooled sequencing

into a streaming analysis pipeline. Together with in-house software developments, their

1.8 Thesis outline 27

applications into real-life use cases are taken place. This would give better understanding

about software performances as well as specifications on different datasets.

Contributions This thesis resulted in several real-time processing modules that are able to

assist genome assembly and annotation, including npScarf [97] npBarcode[98] and npGraph.

All of these individual add-on modules were wrapped in a bigger framework that was specif-

ically designed for nanopore data analysis, hosted in https://github.com/mdcao/japsa.

The main contribution of this thesis regarding genome scaffolding and assembly can be found

in a separate repository https://github.com/hsnguyen/assembly for the convenience of

development and maintenance.

The source code of the whole project is made available and applied in numerous use cases

internally as well as from community. Feedback from users and external data sources are

treated with care to further improve the performance and functionality of the developing

software.

Restrictions The thesis mostly focuses on applications in microbial genomics as this is a

clear use case for the applicability of real-time analysis particularly in diagnosis and identi-

fication of antibiotic resistance strains. However, the methodologies developed in this thesis

can be applied more broadly, and have been demonstrated on yeast genomes. Applications

to metagenomics and eukaryotic genomes were attempted but not thoroughly studied thus

not included in the scope of in this thesis.

Another limitation is that the developed assemblers are hybrid approaches, meaning an

additional SGS run is required before using the tools. An exclusive long-read assembler

is difficult to adapt to a real-time pipeline due to its intensive computation for the error-

correction stage which usually requires bulk of data and heavy resources consumption.

1.8 Thesis outline

The main research chapters of this thesis are organized as follows.

https://github.com/mdcao/japsa
https://github.com/hsnguyen/assembly

28 Introduction

Chapter 2 : This chapter presents the implementation of the very first pipeline for finish-

ing genomes in real-time using MinION long reads and side applications through npScarf.

Chapter 3 : This chapter describes demultiplexing barcoded nanopore sequencing data

with npBarcode in real-time and its application. In addition, there is another use case of

using different assembly strategies to finish four XDR K. pneumoniae strains.

Chapter 4 : This chapter shows how to integrate assembly graph into the available

pipeline from npScarf to improve the assembly quality. This work results in npGraph and

relate applications.

Chapter 5 : This chapter introduces another computational analysis of MinION sequenc-

ing data for small circular genome assembly, such as for virus, bacterial plasmids. Data for

two Caulimovirids samples are shown to demonstrate the performance of proposed methods.

2
Streaming assembly using Nanopore reads

The speed of decision making is the essence of

good governance.

–Piyush Goyal

30 Streaming assembly using Nanopore reads

This chapter describes a unique streaming assembly strategy on MinION data that has

been implemented in a tool named npScarf. Its methodology allows completing the assembly

in real-time together with the nanopore sequencing nature. Several experiments on different

datasets are conducted for better illustrations of npScarf performance and functionality.

Comparisons with other methods indicate better quality from the results while at the same

time, consume less resources and running time.

These research findings have been published in a journal manuscript under the digital

object identifier (DOI):10.1038/ncomms14515. The manuscript will be reproduced with mi-

nor changes and reformatting for the whole content of this chapter. The Supplementary

materials for this paper is shown in Appendix A.

As the co-first author, I am a primary contributor to the project in term of conception

and design, software development, data analysis as well as drafting the first version of the

manuscript. Specifically, I have predominantly designed the streaming pipeline and imple-

mented the algorithm as the main developer of npScarf. I have also contributed significantly

to the analysis and interpretation of the research data. Finally, I am the author of the first

draft versions of the manuscript on which the publication is based.

Scaffolding and completing genome assemblies in

real-time with nanopore sequencing

Minh Duc Cao1,∗,+, Son Hoang Nguyen1,+, Devika Ganesamoorthy1, Alysha G.
Elliott1, Matthew A. Cooper1 and Lachlan J.M. Coin1,∗

1Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD 4072 Australia
∗Correspondence: m.cao1@uq.edu.au and l.coin@imb.uq.edu.au
+These authors contributed equally to this work

Received 11 Jul 2016. Accepted 6 Jan 2017. Published 20 Feb 2017

PMID: 28218240 DOI: 10.1038/ncomms14515

Abstract

Third generation sequencing technologies provide the opportunity to improve genome assem-

blies by generating long reads spanning most repeat sequences. However, current analysis

methods require substantial amounts of sequence data and computational resources to over-

come the high error rates. Furthermore, they can only perform analysis after sequencing has

completed, resulting in either over-sequencing, or in a low quality assembly due to under-

sequencing. Here we present npScarf, which can scaffold and complete short read assemblies

while the long read sequencing run is in progress. It reports assembly metrics in real-time so

the sequencing run can be terminated once an assembly of sufficient quality is obtained. In

assembling four bacterial and one eukaryotic genomes, we show that npScarf can construct

more complete and accurate assemblies while requiring less sequencing data and computa-

tional resources than existing methods. Our approach offers a time- and resource-effective

strategy for completing short read assemblies.

m.cao1@uq.edu.au
l.coin@imb.uq.edu.au
https://doi.org/10.1038/ncomms14515

32 Streaming assembly using Nanopore reads

2.1 Introduction

High-throughput sequencing technology has transformed genomics research over the last

decade with the ability to sequence the whole genome of virtually any organism on the

planet. Most sequencing projects to date employ short read technology and hence cannot

unambiguously resolve the repetitive sequences that are present abundantly in most genomes.

As a result, assemblies are fragmented into large numbers of contigs and the positions of

repeat sequences in the genome cannot be determined. These repeat sequences often play

important biological roles; for example, they mediate the lateral transfer of genes between

bacterial species via pathogenicity islands and plasmids. Analyzing these regions is thus es-

sential to determine key characteristics such as antimicrobial resistance (AMR) or to identify

highly pathogenic variants of many bacterial species [75].

Long read sequencing technologies, for example Pacific Biosciences’ (PacBio) and Ox-

ford Nanopore MinION sequencing, allow users to generate reads spanning most repetitive

sequences, which can be used to close gaps in fragmented assemblies. A key innovation of

the MinION nanopore sequencing device is that it measures the changes in electrical current

as a single-stranded molecule of DNA passes through the nanopore and uses the signal to

determine the nucleotide sequence of the DNA strand [99–101]. As such, the raw data of

a read can be retrieved and analyzed as soon as it is generated, while sequencing of other

reads is still in progress. This offers the opportunity to obtain analysis results as soon as

sufficient data are generated, upon which sequencing can be terminated or used for other

experiments.

Several algorithms have been developed to utilize long reads for genome assembly. de novo

assemblers such as the hierarchical genome assembly process (HGAP) [77] and nanocorrec-

t/nanopolish [36] can assemble a complete bacterial genome using only long read sequenc-

ing data. However, because of the high error rates in these sequencing technologies, this

de novo approach requires substantial amounts of sequencing data and extensive compu-

tational resources, mainly for polishing the genome assembly. Hybrid assemblers, which

combine error-prone long reads with highly accurate and cheaper short read sequence data,

provide a more economical and efficient alternative for building complete genomes. They

2.1 Introduction 33

can be classified into three categories. de novo methods such as Canu [46] and miniasm/ra-

con pipeline [50] employ fast approximate approaches to assemble a skeleton of the genome

using long reads. The skeleton, often as erroneous as the raw reads, is then polished with

high quality short reads. On the other hand, tools in the error-correction category (e.g.,

PBcR [23], Nanocorr [34] and NaS [35]) correct long reads with high quality short reads

before assembling the genome with the corrected long reads. Finally, the scaffolding meth-

ods (SPAdes-hybrid [68, 75], SSPACE-LongRead [73, 84] and LINKS [86]) use long reads to

scaffold and fill in gaps in the assemblies from short read sequencing.

While these tools are reported to assemble high quality bacterial genomes [102, 103],

they have not made use of the real-time sequencing potential of the MinION; assembly

of a genome can only be performed after the sequencing is complete. This can lead to

over-sequencing, which incurs extra cost and time; or under-sequencing resulting in a low-

quality assembly. Here, we present npScarf, the first hybrid assembler that can scaffold and

complete fragmented short read assemblies with sequence data streaming from the MinION

while sequencing is still in progress. In effect, npScarf can fully utilize a sequence read within

minutes of it being generated. Furthermore, it continuously reports assembly quality during

the experiment so that users can terminate the sequencing when an assembly of sufficient

quality and completeness is obtained. We show that our method can generate more accurate

and more complete genomes than existing tools, while requiring less nanopore sequencing

data and computational resources. As such, npScarf can be used to efficiently control

MinION sequencing in completing existing short read assemblies and in hybrid assembly

projects. More importantly, npScarf can facilitate the real-time analysis of positioning

genomic sequences for time critical applications such as in AMR investigation. We show

that the npScarf can rapidly and accurately reconstruct genomic islands carrying AMR

genes that are fragmented in short read assemblies. It can also identify AMR genes encoded

in plasmids. These are among the main analyses to understand the acquisition of AMR in

pathogenic bacteria.

34 Streaming assembly using Nanopore reads

2.2 Results

2.2.1 Algorithm overview

BWA‐MEM

Stream of bridges

connecƟng

Stream of long reads

Pre‐assemblies

Stream of

alignment records

pairing

Extending scaffolds

co
nƟ

nu
in
g
pr
oc
es
s

output in
real‐Ɵme

repeats
aligning

Figure 2.1: Workflow of the real-time algorithm. Stream of long reads are aligned to the
existing contigs to create alignment records. Bridges connecting contigs are formed, and are used
for extending scaffolds. These steps are performed in a streaming fashion.

The genomes of most organisms contain an abundance of repeat sequences that are longer

than the read length limit (300 bps) of Illumina sequencing platforms [104]. In assembling

a genome using this technology, these repeat sequences cannot be distinguished and hence

are often collapsed into contigs, leaving gaps in the genome assembly. To complete the

assembly, npScarf first determines the multiplicity of each contig, thereby identifying contigs

2.2 Results 35

representing non-repetitive sequences (called unique contigs). It then scaffolds and fills in

gaps in the assembly in a streaming fashion (Figure 2.1). Upon receiving a long read from

the MinION, npScarf immediately aligns it to the unique contigs. Reads aligned to two

unique contigs form a bridge connecting the two contigs. Gradually, the unique contigs are

joined to form the scaffold of the genome, while the repetitive contigs are used to fill in the

gaps in the scaffold. The details of the algorithms are presented in Methods.

2.2.2 Completing bacterial assemblies

0 8 16 24
0

5

10

15

20

Coverage (-fold)

C
o
n
ti

g
s

a) K. pneumoniae ATCC BAA-2146

0 6 12 18
0

5

10

15

20

Coverage (-fold)

b) K. pneumoniae ATCC 13883

0 12 24 36
0

5

10

15

20

Coverage (-fold)

C
o
n
ti

g
s

c) E. coli K12 MG1655

0 10 20 30
0

10

20

30

40

Coverage (-fold)

d) S. Typhi H58

0 30 60 90
0

20

40

60

Coverage (-fold)

e) S. cerevisiae W303

1.0

3.0

5.0

1.0

3.0

5.0

N
5
0
 (

M
b

)

1.0

3.0

5.0

0.3

0.6

0.9

0.3

0.6

0.9

N
5
0
 (

M
b

)

contig limit
#contigs
#circular contigs
N50 Limit
N50

Figure 2.2: Assembly statistics during real-time scaffolding. The plots show N50 statistics,
number of contigs, and number of circular contigs against the amount of nanopore sequencing
data.

We assessed the performance of our algorithm for its ability to scaffold and complete

the Illumina assemblies of two bacterial Klebsiella pneumoniae strains, ATCC BAA-2146

(New Delhi metallo-beta-lactamase (NDM-1) positive) and ATCC 13883 (type strain). We

first sequenced the genomes of these strains with the Illumina MiSeq platform to 250-fold

coverage and assembled them with SPAdes [68] (See Methods). This resulted in assemblies

of 90 and 69 contigs that were 500bp or longer, respectively. The N50 statistics of the

two assemblies were 288Kbp and 302Kbp, respectively. We then sequenced the two strains

36 Streaming assembly using Nanopore reads

Table 2.1: Comparison between npScarf’s assemblies and the reference genomes of two K. pneu-
moniae strains

npScarf assemblies Reference sequences

Name Size (bp) Plasmid ORI Accession Size (bp) Plasmid ORI

K. pneumoniae ATCC BAA-2146

Contig 1∗ 5,437,518 - CP006659.1∗ 5,435,369 -

Contig 2∗ 141,026 IncA/C2 CP006661.1∗ 140,825 IncA/C2

Contig 3∗ 118,278 IncFIB(K); IncFII(K) CP006663.1∗ 117,755 IncFIB(K); IncFII(K)

Contig 4∗ 85,233 IncR; IncFIA(HII) CP006662.1∗ 85,164 IncR; IncFIA(HII)

Contig 5∗ 2,015 ColRNAI CP006660.1∗ 2,014 ColRNAI

K. pneumoniae ATCC 13883

Contig 1 4,923,970 - KN046818.1 5,284,261 -

Contig 2 372,214 -

Contig 3 139,480 IncFIA(HII); IncFIB(K) KN046820.1 95,930 IncFIA(HII); IncFIB(K)

KN046821.1 42,420 -

Contig 4* 119,388 ColRNAI; IncFII(pCoo); pSM22 KN046819.1 106,842 IncFII(pCoo); pSM22

KN046822.1 16,331 -

∗Circular sequences.

with Oxford Nanopore MinION using chemistry R7. For ATCC BAA-2146, we obtained

185Mbp of sequencing data (∼33-fold coverage of the genome), of which 27Mbp were two-

directional (2D) reads. The run for strain ATCC 13883 yielded only 13.5Mbp of sequencing

data (∼2.4-fold coverage). We re-sequenced this strain with the improved chemistry R7.3.

By combining sequencing data from both experiments for this strain, we obtained a total of

100Mbp (∼18-fold coverage) data, including 22.5Mbp of 2D reads. The quality of the data,

described in [95], was broadly similar to that reported by other MinION users [75, 105, 106].

As the pipeline described here was developed after we performed the MinION sequencing

runs, we tested our streaming analysis by re-running the base-calling using the Metrichor ser-

vice. Sequence reads in fast5 format were written to disk, and were instantaneously picked up

and streamed to the pipeline by npReader [33]. In essence, the scaffolding pipeline received

sequence data in fastq format in a streaming fashion as if a MinION run was in progress.

During analysis, the pipeline continuously reported the assemblies’ statistics (the numbers

of contigs and the N50 statistic), allowing us to track the completeness of the assembly, as

well as the number of circular sequences in the genome. This is especially important for the

2.2 Results 37

analysis of bacterial genomes where chromosomes and plasmids are usually circular. To vali-

date the resulting assemblies, we compared them with the reference genomes of these strains

obtained from NCBI (GenBank Accessions GCA 000364385.2 and GCA 000742135.1). We

also ascertained the predicted plasmids in these assemblies by looking for the existence of

plasmid origins of replication sequences from the PlasmidFinder database [107].

Figure 2.2a) and 2.2b) present the progress of assembly completion against the coverage

of MinION data during scaffolding. As expected, N50 statistics increased and the number

of contigs decreased with more MinION data. For K. pneumoniae ATCC BAA-2146, we

found that our algorithm required only 20-fold coverage of sequence data (< 120Mbp) to

complete the genome, reducing the assembly to the limit of five contigs (one chromosome

and four plasmids). Those five contigs were circularised, indicating completeness. We found

these five contigs to be in total agreement with the complete genome assembly of the strain,

previously sequenced with PacBio and Illumina [74] (See Table 2.1 and Supplementary Fig.

1).

With 18-fold coverage of the MinION data for K. pneumoniae ATCC 13883, the assembly

was improved to four contigs, in which one was reported to be circular (Contig 4). These

contigs were aligned to the reference genome for this strain, which contained 16 contigs in

five scaffolds. We found Contig 1 and Contig 2 from the npScarf’s assembly were aligned to

the reference scaffold KN046818.1, while Contig 3 and Contig 4 were aligned to two reference

scaffolds (See Table 2.1 and Supplementary Fig. 2). The alignments contained forward and

reverse matches. The breakpoints of these matches corresponded to the contig joints in the

reference scaffolds, indicating the incorrect orientation of contigs in the reference scaffolds.

The reference scaffold KN046818.1 was 5.2Mbp in size, suggesting this scaffold was the

chromosome and was fragmented into two contigs in the npScarf’s assembly. In examining

this chromosomal sequence, we found the two contigs to be separated by an rRNA operon

of 7Kbp in length. BLAST search revealed the structure of this operon with rRNA 5S,

23S and 16S as the main components. This rRNA operon sequence was also found to be

present at five other loci in the genome, which were all resolved. However, no long MinION

read was found to align to this particular position, possibly because of the low yield of

this dataset, which caused the chromosome sequence to be fragmented. We anticipate this

38 Streaming assembly using Nanopore reads

could be resolved with more nanopore sequencing data. Contig 3 (139Kbp) and Contig 4

(119Kbp) contained several origin of replication sequences (See Table 2.1), suggesting they

were plasmid sequences; Contig 4 was also reported to be a circular sequence. In Contig 4,

we noticed an extra plasmid origin of replication sequence (ColRNAI) that was not found in

the reference genomes (see Table 2.1). In examining the position of ColRNAI, we found it

was in one of the gaps in the reference scaffold, hence not reported in the reference assembly.

2.2.3 Real-time analysis for positional information

Sa
pF

Sa
pD

Sa
pC

in
tA

m
un

IM

Y
qa

J

re
cT

Pa
rA

L
ex

A

C
II

yd
aU

dn
aC

IS
26

aa
dA

su
l1

eb
r

G
C

N
5-

lik
e

IS
61

00

IS
26

hi
n

ltr
A

um
uD

um
uC

FR
G

Contigs

Sequence data required to join

15
M

b
15

M
b

54
M

b

54
M

b

54
M

b

54
M

b
54

M
b

65
M

b

65
M

b

Figure 2.3: Structure of a pathogenic island from K. pneumoniae ATCC BAA-2146. The island
harbours three antibiotic resistance genes strep, sul1 and ebr, flanked by mobility genes integrase
(int), inverstase (hin), DNA replication (dnaC), and insertion sequences (IS26 and IS6100). The
island was fragmented into 10 contigs in the Illumina assembly, and was completely resolved with
65Mbp out of the total of 185Mbp of nanopore sequence data.

The ability to complete genome assemblies in streaming fashion also enables real-time

analyses that rely on positional information. Such analyses include identifying genes encoded

in bacterial genomic islands and plasmids. These functional regions in the bacterial genomes

can be horizontally transferred between organisms, which is one of the main mechanisms

for acquiring AMR in pathogenic bacteria. Here we demonstrate these analyses on the

multi-drug resistant K. pneumoniae ATCC BAA-2146 strain.

Prior to scaffolding the Illumina assembly of the sample, we annotated the assembly

using Prokka [108] to identify the positions of genes and insertion sequences in the assem-

bly. Bacterial genomic islands are genomic regions longer than 8Kbp, containing certain

2.2 Results 39

Table 2.2: Timeline of determining plasmid-encoded antibiotic resistance genes

Data

required
Gene ID NCBI ref Antibiotic resistance Plasmid evidence

10Mbp blaTEM-1B JF910132 penicillins, some cephalosporins IncR;IncFIA(HI1)

strB M96392 streptomycin IncR;IncFIA(HI1)

strA AF321551 streptomycin IncR;IncFIA(HI1)

sul2 GQ421466 sulfonamides IncR;IncFIA(HI1)

14Mbp aac6Ib M21682 tobramycin, amikacin, netilmicin, sisomicin IncR;IncFIA(HI1)

21Mbp mphA D16251 erythromycin IncFIB(K);IncFII(K)

tetA AJ517790 tetracyclines IncFIB(K);IncFII(K)

QnrB7 EU043311 quinolones IncR;IncFIA(HI1)

29Mbp dfrA14 DQ388123 trimethoprim IncR;IncFIA(HI1)

46Mbp blaNDM-1 FN396876 penicillins, cephalosporins, carbapenems IncA/C2

51Mbp rmtC AB194779 aminoglycosides (include gentamicin, kanamycin) IncA/C2

78Mbp sul1 AY224185 sulphonamide IncA/C2

aac6Ib 1 M21682 tobramycin, amikacin, netilmicin, sisomicin IncA/C2

blaCMY-6 AJ011293 penicillins, some cephalosporins IncA/C2

83Mbp blaSHV-11 GQ407109 penicillins, some cephalosporins IncR;IncFIA(HI1)

aac6Ib M21682 tobramycin, amikacin, netilmicin, sisomicin IncR;IncFIA(HI1)

blaOXA-1 J02967 penicillins IncR;IncFIA(HI1)

aac3-IIa X51534 gentamicin, tobramycin, netilmicin, sisomicin IncR;IncFIA(HI1)

classes of genes such as AMR genes. In addition, they often carry mobility genes such as

transposase, integrase and insertion sequences (IS) [109]. These sequences generally appear

multiple times in the genomes (repetitive sequences), causing genomic islands fragmented

in the short read assembly. We ran Islander [110] and PHAST [111] on the Illumina as-

sembly, which together detected six genomic islands. In the annotation, we also found 28

insertion sequences; 14 of these were within 3Kbp of the contig ends, suggesting that any

genomic islands flanked by these insertion sequences were fragmented. During scaffolding of

the assembly with nanopore sequencing data, npScarf constructed four additional genomic

islands, which were not previously reported by Islander and PHAST (data not shown). All

10 genomic islands were precisely in agreement with the analysis of the PacBio assembly

by [74]. Figure 2.3 presents the structure of such a genomic island, namely Kpn23SapB,

and the timeline of its reconstruction. The genomic island harboured three AMR genes,

40 Streaming assembly using Nanopore reads

namely aadA (mediates resistance to streptomycin and spectinomycin), sul1 (sulfonamides)

and ebr (ethidium bromide and quaternary ammonium). The genomic island also carried

two copies of the insertion sequence IS26, which flanked the AMR genes, and a copy of the

insertion sequence IS6100. The presence of these repetitive sequences caused the island to

be fragmented into 10 contigs in the Illumina assembly; the three resistance genes were in

two different contigs. npScarf required 64.59Mbp of data (14-fold coverage of the genome)

to report the full structure of the island (Figure 2.3).

For real-time detection of plasmid-encoded genes, we identified plasmid origin of replica-

tion sequences from the Illumina assembly using the PlasmidFinder database [107]. Contigs

containing a plasmid origin of replication sequence were considered to be part of a plasmid.

Essentially, only 166 genes contained within these contigs could be ascertained as plasmid-

encoded genes from the Illumina sequencing of the K. pneumoniae ATCC BAA-2146 strain.

During scaffolding of the Illumina assembly, once a contig was added to a plasmid, npScarf

reported genes in the contig as plasmid-encode genes. The amount of long-read sequence data

required to assign each gene to a plasmid is presented in the Supplementary Spreadsheet.

With the Illumina assembly, we identified 27 AMR genes, but none was in a contig

containing a plasmid origin replication sequence. As such, whether any of these genes were

carried by a plasmid could only be ascertained with long reads. Table 2.2 presents the

time-line of such determination. In particular, we confirmed 18 AMR genes as plasmid-

encoded with 83Mbp (∼14-fold coverage) of nanopore sequencing data. In addition, as all

four plasmids were circularized and complete with 103Mbp (∼18-fold coverage) of data, we

could confidently conclude that only these 18 AMR genes were plasmid-encoded, even before

the completion of the full genome assembly and the sequencing run.

2.2.4 Comparison with other methods

2.2 Results 41

Table 2.3: Comparison of assemblies produced by npScarf and the comparative methods

Assembly #Contigs N50 Mis- Error Run times

Method size (Mbp) (≥ 500bp) (Kp) assemblies (per 100Kbp) (CPU hrs)

K. pneumoniae ATCC BAA-2146. Nanopore data: 33X coverage

SPAdes 5.70 90 288 0 4.72 15.63

SPAdes-Hybrid 5.75 17 3,076 1 6.61 16.07

SPAdes+SSPACE 5.74 53 400 4 12.73 15.63 + 2.3

SPAdes+LINK 5.74 31 554 5 16.05 15.63 + 4.03

SPAdes+npScarf (rt) 5.78 5 5,438 0 20.00 15.63 + 1.6

SPAdes+npScarf (b) 5.78 5 5,438 0 22.76 15.63 + 0.84

NaS+CA 5.89 29 345 15 18.89 324.35 + 3.49

Nanocorr+CA 5.68 68 139 8 141.32 312.64 + 1.37

Canu+Pilon 0 - - - - - -

Miniasm+Pilon 0 - - - - - -

K. pneumoniae ATCC 13883. Nanopore data: 18X coverage

SPAdes 5.51 69 302 5 6.22 16.95

SPAdes-Hybrid 5.54 15 729 19 8.02 16.97

SPAdes+SSPACE 5.55 36 685 13 12.39 16.95 + 1.48

SPAdes+LINK 5.55 17 1,527 18 16.12 16.95 + 1.12

SPAdes+npScarf (rt) 5.55 4 4,924 21 10.84 16.95 + 0.52

SPAdes+npScarf (b) 5.55 4 4,924 21 10.26 16.95 + 0.45

NaS+CA 5.46 38 394 36 10.24 192.78 + 6.92

Nanocorr+CA 5.02 60 148 16 118.34 161.33 + 2.6

Canu+Pilon 0.04 4 12 4 10.40 0.53 + 0.46

Miniasm+Pilon 0.03 3 13 1 14.12 0.00 + 0.26

E. coli K12 MG1655. Nanopore data: 67X coverage

SPAdes 4.61 114 176 0 3.51 4.38

SPAdes-Hybrid 4.67 42 4,643 2 1.21 4.76

SPAdes+SSPACE 4.66 59 3,155 1 29.26 4.38 + 3.42

SPAdes+LINK 4.66 50 3,318 2 36.19 4.38 + 4.03

SPAdes+npScarf (rt) 4.64 1 4,644 2 13.08 4.38 + 2.43

SPAdes+npScarf (b) 4.64 1 4,646 2 11.72 4.38 + 1.91

NaS+CA 4.87 21 874 19 10.60 807.19 + 6.77

Continued on next page

42 Streaming assembly using Nanopore reads

Table 2.3 – continued from previous page

Assembly #Contigs N50 Mis- Error Run times

Method size (Mbp) (≥ 500bp) (Kp) assemblies (per 100Kbp) (CPU hrs)

Nanocorr+CA 4.66 2 4,650 6 10.41 213.68 + 8.49

Canu+Pilon 0.11 9 14 0 13.90 0.79 + 0.28

Miniasm+Pilon 1.91 85 23 1 595.61 0.04 + 1.24

S. Typhi H58. Nanopore data: 26X coverage

SPAdes 4.84 89 107 7 39.05 1.86

SPAdes-Hybrid 4.88 27 443 12 55.46 2.06

SPAdes+SSPACE 4.88 34 358 10 59.39 1.86 + 1.55

SPAdes+LINK 4.86 20 473 13 66.65 1.86 + 1.28

SPAdes+npScarf (rt) 4.87 9 864 18 53.86 1.86 + 0.93

SPAdes+npScarf (b) 4.86 8 864 16 52.01 1.86 + 0.47

NaS+CA 4.97 54 212 17 58.87 248.32 + 7.21

Nanocorr+CA 2.98 95 37 9 973.63 199.85 + 0.94

Canu+Pilon 0 - - - - - -

Miniasm+Pilon 0.02 2 14 0 10.96 0.01 + 0.26

S. cerevisiae W303. Nanopore data: 196X coverage

SPAdes 11.82 364 155 29 124.10 20.54

SPAdes-Hybrid 12.06 240 346 68 158.13 67.81

SPAdes+SSPACE 13.39 263 392 89 136.66 20.54 + 31.54

SPAdes+LINK 12.09 161 580 83 143.04 20.54 + 26.97

SPAdes+npScarf (rt) 12.00 19 913 82 141.93 20.54 + 21.28

SPAdes+npScarf (b) 11.90 17 924 79 141.01 20.54 + 18.84

NaS+CA 12.76 121 155 123 140.08 9811.88 + 140.69

Nanocorr+CA 13.48 108 600 133 197.00 7208.08 + 272.86

Canu+Pilon 12.31 43 497 81 229.08 599.36 + 58.5

Miniasm+Pilon 11.79 51 391 41 1400.82 0.27 + 30.27

We compared the performance of our algorithm against existing methods that were reported

to build assemblies with nanopore sequencing. In addition to the two samples presented

above, we sourced three other samples reported in the literature including i.) an Escherichia

coli K12 MG1655 strain sequenced to 67-fold coverage with a nanopore R7.3 flowcell and

2.2 Results 43

standard library preparation [112]; ii.) a Salmonella enterica serovar Typhi (S. Typhi) hap-

lotype, H58 [75] sequenced to 27-fold and iii.) a Saccharomyces cerevisiae W303 genome

(196-fold) [34]. Note that the coverage reported here was from all base-called data (includ-

ing both 1D and 2D reads). Of the methods selected for comparison, SPAdes-hybrid [68],

SSPACE-LongRead [84], LINKS [86] and npScarf were scaffolders, whereas Nanocorr [34]

and NaS [35] belonged to the error correction category. We assembled the Illumina data of

these samples using SPAdes [68] before running the scaffolding methods with nanopore data.

SPAdes-hybrid was run by incorporating nanopore data into the assembly (with –nanopore

option). The two error correction tools Nanocorr and NaS were run on the nanopore se-

quencing data using about 50-fold coverage of Illumina data, as suggested by authors of

the respective publications. The corrected reads were then assembled using Celera Assem-

bler [78]. We observed that the quality of the assemblies produced by Celera Assembler were

highly sensitive to the parameters specified in the specification file. We therefore ran Celera

Assembler for each dataset on three specification files provided by the authors of NaS and

Nanocorr, and report here the most complete assembly obtained. We also ran two popular

de novo assembly methods, Canu [46] and Miniasm [44] on these datasets. These methods

necessitated a polishing step using Pilon [113].

We evaluated the assemblies in terms both of completeness and accuracy. The complete-

ness of an assembly was assessed by N50 statistics and the number of contigs that were

longer than 500 bp. To examine the accuracy of an assembly, we compared it with the

closest reference genome of the samples in NCBI (See Methods) to obtain the number of

misassemblies, mismatches and short indels. During the test, we recorded the CPU times

required by these pipelines to produce the assemblies. Run times for the scaffolder methods

included times for running SPAdes and for scaffolding, while those for NaS and Nanocorr

included correction time and Celera Assembler time. The times reported for the de novo

methods included that for polishing using Pilon. Table 2.3 presents the comparison metrics

of all assemblies as reported by Quast [114], as well as their run times.

We ran npScarf in real-time mode, in which nanopore sequencing data are streamed to

the pipeline in the exact order they were generated. This allowed us to assess the complete-

ness of the assemblies against the amount of data generated. Figure 2.2 shows the progress of

44 Streaming assembly using Nanopore reads

completing the assemblies for all five samples. As mentioned previously, npScarf produced

complete and near-complete assemblies for the two K. pneumoniae samples (Figures 2.2a

and 2.2b) with under 20-fold coverage of nanopore data. For the E. coli K12 MG1655 sam-

ple, npScarf required less than 30-fold coverage of nanopore data to complete the genome

assembly with one circular contig. npScarf also reduced the S. Typhi assembly to only nine

contigs (N50=864Kbp), which was significantly better than the assembly reported by [75]

from the same data (34 contigs, N50=319Kbp).

As for the S. cerevisiae W303 genome, which contains 16 nuclear chromosomes and one

mitochondrial chromosome, npScarf generated an assembly of 19 contigs (N50=913Kbp);

substantially fewer than the 108 contigs (N50=600Kbp) generated by the next best method

(Nanocorr, see Table 2.3). We noticed a drop in N50 statistics at the point where about

50-fold coverage of nanopore data were received (Figure 2.2e). This was because npScarf

encountered contradicting bridges and hence broke the assembly at the lowest scoring bridge

in lieu of a higher scoring one. The N50 was then improved to reach the N50 of 913Kbp

with 90-fold coverage of nanopore sequencing; the assembly did not change with more data

(90-fold to 196-fold). We examined the assembly by comparing that with the reference

genome of S. cerevisiae strain S288C. One of the contigs (Contig 17, length = 81Kbp) was

reported to be circular, which was completely aligned to the mitochondrial chromosome of

the reference genome. Ten chromosomes (II, IV, V, VII, IX, X, XI, XIII, XV and XVI)

were completely assembled into individual contigs, and three chromosomes (I, III and VIII)

were assembled into two contigs per chromosome (See Supplementary Figure 3). We found

a misassembly that joined chromosome IV and the start of chromosome XIV into Contig 10.

The end of chromosome XIV was also joined with chromosome XII into Contig 2. These

misassemblies essentially fused these three chromosomes into two contigs. We found these

misassemblies were due to the presence of interspersed repeat elements which are known for

being problematic in assembly analysis [104]. The assemblies produced by Canu and Miniasm

also presented several misassemblies fusing different chromosomes together, emphasizing the

challenges posed by interspersed repeats in assembling complex genomes (See Supplementary

Figures 4 and 5).

We reran npScarf on the datasets in batch mode, in which the scaffolding was performed

2.2 Results 45

with the complete dataset. We found that all five assemblies were more complete than in

real-time mode. In particular, the S. cerevisiae W303 assembly was further reduced to 17

contigs as chromosomes I and VIII were resolved into individual contigs (data not shown).

In this assembly, 12 out of 17 chromosomes were completely recovered to one contig, one

chromosome (XIII) was fragmented into two contigs and three chromosomes were fused into

two contigs due to misassemblies

In all datasets, npScarf consistently produced the most complete assemblies, while its

accuracy was among the best. It was the only method that was able to completely resolve the

K. pneumoniae ATCC BAA-2146 genome (five contigs, N50 of 5.4Mbp) with no misassem-

bly, requiring only 20-fold coverage of nanopore data; the second most completed assembly

(produced by SPAdes Hybrid) contained 17 contigs and had the N50 of only 3.1Mbp despite

using 33-fold coverage of nanopore sequence data. On the well studied E. coli K12 MG1655

strain sample where LINK, NaS and Nanocorr were reported to resolve the whole genome

with a larger dataset (147-fold coverage) [86], none of these methods could produce the same

result on the 67-fold coverage data set we tested. On the other hand, npScarf was able to

reconstruct the genome into one circular contig with as little as 30-fold coverage of the data.

On the S. Typhi dataset, npScarf produced assemblies with nine contigs in real-time mode,

and with eight contigs in batch mode (N50=864Kbp), significantly better than assemblies

from other methods (over 20 contigs). We observed that the de novo methods, Canu and

Miniasm failed to construct a skeleton for the these bacterial genomes (either no output or

only a few small sequences produced), possibly due to the low coverage of these datasets.

The S. cerevisiae W303 assembly produced by npScarf was near complete and N50

statistics reached the theoretical limit of 924Kbp. Note that npScarf obtained these results

from only less than half of the dataset (95-fold coverage). On the whole dataset (196-fold

coverage), Canu and Miniasm produced assemblies of 43 contigs (N50=496Kbp) and 51

contigs (N50=391Kbp), respectively. These assemblies contained more than twice as many

contigs as the results from npScarf. The second most complete assembly in terms of N50

statistic was produced by Nanocorr (N50=600Kbp) which was significantly lower than that

from npScarf.

We observed that the scaffolding methods and the de novo methods were much faster

46 Streaming assembly using Nanopore reads

than the error correction counterparts. Both NaS and Nanocorr required the alignment of

the short reads to the long reads, which were computationally expensive. On the other

hand, the scaffolding pipelines required 20 CPU hours or less to build an assembly from

short reads, and from a few hours to around 30 hours to scaffold the assembly with long

reads. As Canu and Miniasm did not produce a decent assembly for the bacterial data sets,

we only include them in the comparison for the S. cerevisiae dataset. Miniasm was the

fastest on this dataset, requiring only 0.27 CPU-hours to assemble and over 30 CPU-hours

to polish the genome. Apart from SPAdes-Hybrid, which performed scaffolding as part of

short read assembly, npScarf was the fastest among other scaffolders and consistently re-

quired less scaffolding time. Note that the times reported in Table 2.3 were for processing

the entire nanopore dataset, whereas npScarf could be terminated early once a desirable

assembly was obtained. We observed that npScarf required only 2GB of memory for scaf-

folding the bacterial datasets, and 4GB for the S. cerevisiae dataset, which can be easily

installed on a laptop computer. A summary of memory usage of other tools was presented

in Supplementary Table 1.

2.3 Discussion

The development of high-throughput long read sequencing technologies such as PacBio and

nanopore has opened up opportunities for resolving repetitive sequences to assemble complete

genomes and to improve existing genome assemblies. However, the relatively high error rates

of these technologies pose a challenge to the accurate assembly of genome sequences. An

obvious solution is to combine long and erroneous reads with more accurate and cheaper short

read data for assembling genomes [23, 72]. One such approach is to perform de novo assembly

of long reads to generate a skeleton of the genome, and error correct the skeleton with

accurate short reads [44, 46]. Alternatively, erroneous long reads are corrected [23, 34, 35, 72]

before being assembled with classical assemblers designed for long and accurate reads such

as Celera Assembler [78]. These approaches usually require large amounts of long read

data. Hybrid assemblers in the scaffolding class harness long spanning reads to guide the

extension of contigs in the draft genome assemblies. For example, SSPACE-LongRead [84]

2.3 Discussion 47

and Cerulean [83] rely on the alignment of long reads to the assembly graph to determine

the adjacent contigs. LINKS [86] uses a k-mer approach, which further improves the running

time with a small sacrifice of accuracy. Overall, hybrid-assembly methods, especially those

in the scaffolding category, provide economical genome finishing pipelines that can produce

high quality genome assemblies from small amounts of long read data on modest computing

equipment. npScarf is similar to these mentioned scaffolders in the sense that it aligns the

long reads to the contigs to build a scaffold of the genome. However, our method estimates

the copy number of each contig in the genome and constructs the scaffold from non-repetitive

contigs, while the repetitive contigs are used to fill the gaps in the scaffold. Consequently, we

demonstrated that npScarf is capable of generating more complete and accurate assemblies

than the competitors, while requiring much less data.

To date, there is no prominent assembler that takes advantage of the real-time feature

from nanopore sequencing. Nanopore technology allows one to terminate a run and wash the

flowcell for subsequent runs without compromising sequencing yield and quality. The ability

to analyse data on the fly and to stop a sequencing run when sufficient data are generated

plays a critical role to control resources necessary for a single experiment.

One of the main contributions of our algorithm is that it can process data streaming from

the sequencer and report the current status of the analysis in real-time. Our pipeline still re-

lies on a base-caller, and the introduction of fast real-time base-callers such as Nanocall [115]

and DeepNano [116] helps to reduce the latency. The current pipeline processes a sequence

read within minutes of it finishing traversing the pore, rather than as the read is actually

passing through the pore, and as such is real-time at the temporal resolution of minutes,

but not at the millisecond level required to update with the addition of each base. However,

this temporal resolution is sufficient to allow our pipeline to answer the biological problems

at hand at the earliest possible time, and while sequencing is still in progress. Investigators

can also assess the progress of the analysis, and terminate the sequencing once an assembly

of sufficient quality and completeness is obtained. This enables the generation of sufficient

data necessary for the analysis to guarantee the experimental outcomes and, at the same

time, avoids costly over-sequencing. While our pipeline still requires short read data which

cannot be generated in real-time with current technology, it offers a strategy to minimise

48 Streaming assembly using Nanopore reads

the generation of the more expensive long read data.

The real-time function to complete genomic sequences opens the possibility of in situ

biological analyses [95]. Certain biological markers of interest may be identified from short

read assemblies, but their positions in the genome could only be determined by completing

the genome assembly with long reads. We have shown that npScarf can facilitate such

analyses in real-time by demonstrating the identification of AMR genes encoded in plasmids

and pathogenicity islands.

2.4 Methods

2.4.1 Determining unique contigs

Before scaffolding a fragmented short read genome assembly, npScarf determines the mul-

tiplicity of each contig in the assembly by comparing short read sequencing coverage of the

contig to that of the whole genome. Coverage information is often included in the sequences

assembled by most tools, such as SPAdes [68] and Velvet [67], or can otherwise be obtained

from the mapping of short reads to the assembly. An reasonable estimate for depth coverage

of the genome is that of the largest contig. npScarf however leverages this to the normalized

average coverage of the largest contigs so long as their depth coverage does not deviate from

the estimated genome depth coverage. More formally, let depthi and leni respectively repre-

sent the sequencing depth (coverage) and the length of contig i, where contigs are sorted in

decreasing order in length. Let depthg represent the estimated coverage of the whole genome.

npScarf first initializes depthg to that of the largest contig:

depth1
g = depth1 (2.1)

It then iteratively updates the estimate

depthig =

∑
i depthi × leni∑

i leni
(2.2)

and terminates the process when the depth coverage of the next contig greater than a thresh-

old
depthi
depthi−1

g

> θ (2.3)

2.4 Methods 49

npScarf set the threshold θ to 1.5. In our experience, the statistic is stable with up to 20

of the largest contigs longer than 20Kbp, which are most likely unique contigs in bacterial

genomes [71]. We hence also add these into the condition for termination. The multiplicity

of contig i (muli) is determined by

muli =
depthi
depthg

(2.4)

npScarf considers a contig unique if its multiplicity is less than θ.

2.4.2 Bridging unique contigs and filling gaps with repetitive con-

tigs

npScarf next builds the backbone of the genome from the unique contigs. It identifies the

long reads that are aligned to two unique contigs, thereby establishing the relative position

(i.e., distance and orientation) of these contigs. To minimize the effect of false positives that

can arise from aligning noisy long reads, npScarf groups reads that consistently support a

particular relative position into a bridge and assigns the bridge a score based on the number

of supporting reads and the alignment quality of these reads. When two unique contigs

are connected by a bridge, they are merged into one larger unique contig. npScarf uses a

greedy strategy based on Kruskal’s algorithm [117], which merges contigs from the highest

scoring bridges. In the newly created contig, the gap is temporarily filled with the consensus

sequence of the reads forming the bridge. npScarf then identifies repetitive contigs that are

aligned to this consensus sequence, and uses these contigs to fill in the gap.

2.4.3 Real-time processing

To support real-time analysis of nanopore sequencing, the previously described algorithm

can be augmented to process long read data directly from a stream (See Figure 2.1). In

this mode, npScarf employs a mapping method that supports streaming processing such

as BWA-MEM [41] to align a small number of long reads to the existing assembly as they

arrive. This block-wise processing allows npScarf to make use of information from a small

batch of reads sequenced within a short period of time (within minutes). If a read is aligned

50 Streaming assembly using Nanopore reads

to two unique contigs, it is added to the bridge connecting the two contigs. Once the

bridge reaches a pre-defined scoring threshold, the two contigs are merged and the gap is

filled as above. In case this merging contradicts with the existing assembly (for example, if

the relative distance and/or orientation implied by the bridge is inconsistent with those of

previously used bridges) npScarf revisits the previous bridges, breaks the smallest scoring

contradicting bridge and uses the current bridge instead. The algorithm hence gradually

improves the completeness and the quality of the assembly as more data are received.

2.4.4 Bacterial cultures and DNA extraction

Bacterial strains K. pneumoniae ATCC BAA-2146 ((NDM-1 positive) and ATCC 13883

(type strain) were obtained from American Type Culture Collection (ATCC, USA). Bacte-

rial cultures were grown overnight from a single colony at 37 ◦C with shaking (180 rpm).

Whole cell DNA was extracted from the cultures using the DNeasy Blood and Tissue Kit

(QIAGEN c©, Cat #69504) according to the bacterial DNA extraction protocol with modified

enzymatic lysis pre-treatment.

2.4.5 Illumina sequencing and assembly

Library preparation was performed using the NexteraXT DNA Sample preparation kit (Il-

lumina), as recommended by the manufacturer. Libraries were sequenced on the MiSeq

instrument (Illumina) with 300 bp paired end sequencing, to a coverage of over 250-fold.

2.4.6 MinION sequencing

Library preparation was performed using the Genomic DNA Sequencing kit (Oxford Nanopore),

according to the manufacturer’s instructions. For the R7 MinION Flow Cells SQK-MAP-

002 sequencing kit was used and for R7.3 MinION Flow Cells SQK-MAP-003 were used,

according to the manufacturer’s instructions. A new MinION Flow Cell (R7 or R7.3) was

used for each sequencing run. The library was loaded onto the MinION Flow Cell and the

Genomic DNA 48-hour sequencing protocol was initiated using MinKNOW software.

2.4 Methods 51

2.4.7 Data collection

MinION data for the E. coli K12 MG1655 sample [105] were downloaded from the European

Nucleotide Archive (ENA) with accession number ERP007108. We used the data from

the chemistry R7.3 run (67-fold coverage of the genome from run accession ERR637419)

rather than the chemistry R7 reported in work by [34, 35, 86]. Illumina MiSeq sequencing

data for the sample were also obtained from ENA (assession number ERR654977). Data

from both Illumina and MinION sequencing of the S. Typhi strain [75] were collected from

ENA accession number ERP008615. The S. cerevisiae W303 sequencing data were provided

by [34] from the website http://schatzlab.cshl.edu/data/nanocorr/.

2.4.8 Data processing

Read data from Illumina sequencing were trimmed with trimmomatic V0.32 [118] and sub-

sequently assembled using SPAdes V3.5 [68]. SPAdes was run with the recommended pa-

rameters (-k 21,33,55,77,99,127 –careful). SPAdes-Hybrid was run with the inclusion of the

–nanopore option. SSPACE and LINKS were run on the original SPAdes’ assemblies. For

SSPACE, we used the parameters reported to work with MinION reads in [73] (-i 70 -a 1500

-g -5000). In the case of LINKS, a script was adapted from the example run for E. coli K12

MG1655 sample to allow 30 iterations of the algorithms being executed for each dataset. NaS

and Nanocorr were applied to correct nanopore data from the maximum of 50-fold coverage

of Illumina data. The corrected long reads were assembled using Celera Assembler version

8.3 with the configuration files provided by the respective publication. Canu was run with

the recommended parameter for nanopore data (-nanopore-raw). Miniasm were run with

its default parameter. The short reads were aligned to Canu’s and Miniasm’s assemblies by

BWA-MEM, and Pilon was run on the alignments to polish the assembly sequences.

The Illumina assembly of K. pneumoniae ATCC BAA-2146 was annotated using Prokka

(version 1.12-beta) with the recommended parameters for a K. pneumoniae strain. AMR

genes from the assembly were identified using the ResFinder database [119]. Plasmid origin

of replication sequences in both K. pneumoniae assemblies were identified by uploading the

assembly to the PlasmidFinder database [107].

http://schatzlab.cshl.edu/data/nanocorr/

52 Streaming assembly using Nanopore reads

In real-time analysis, npScarf aligned incoming long reads using BWA-MEM [41] with

the parameters –k11 –W20 –r10 –A1 –B1 –O1 –E1 –L0 –a –Y –K10000 . The –K10000

parameter allowed alignments to be streamed to the scaffolding algorithm after several reads

were aligned.

2.4.9 Comparative metrics

The assemblies produced by the mentioned methods were evaluated using Quast (V3.2) to

compare with the respective reference sequences. The number of contigs, N50 statistics and

the number of misassemblies were as per Quast reports. The error rates were computed from

sum of the number of mismatches and the indel length. The CPU time for each pipeline

was measured using the Linux time command (/usr/bin/time -v); the sum of user time and

system time was reported. When a pipeline was distributed across a computing cluster, its

CPU time was the sum of that across all jobs.

2.4.10 Data availability

Sequencing data for the two K. pneumoniae samples were deposited to the European Nu-

cleotide Archive (ENA). The accession numbers for the MinION sequencing data are ERR1474979

and ERR1474981, and that for the MiSeq sequencing data are ERR1474547 and ERR1474549.

The software presented in this article and its documentation is publicly available at GitHub

https://github.com/mdcao/npScarf.

https://github.com/mdcao/npScarf

3
Multi-samples analyses with barcode

sequencing

The more you read, the better you get at it.

–James Patterson

54 Multi-samples analyses with barcode sequencing

The first part of this chapter presents a demultiplex algorithm that can be applied to-

gether with a barcode Nanopore sequencing in order to analyze multiple samples simultane-

ously in real-time. This practice is favorable for microbial genomics when the genome size is

relatively small and a single flow cell can normally host more than one isolate for a run. As

the result, a combination of barcode sequencing and streaming analysis can further reduce

the overuse of resources.

The concept for such real-time demultiplexer has been implemented in npBarcode and

published in the Bioinformatics journal article, namely ”Real-time demultiplexing Nanopore

barcoded sequencing data with npBarcode” as shown below. Its content will be adopted with

additional details for the first section of this chapter. As the first author of this paper, I am

the primary designer and software developer of the project. I contributed significantly to

data generation, interpretation as well as writing the first draft of the manuscript.

Later in this chapter, an use case will be addressed as a highlighted example of genome

assembly practices to resolve an actual problem in research. npScarf with other state-of-the-

art assembly methods are employed for such task. The data being presented in this section is

part of another study, namely ”Evaluating the Genome and Resistome of Extensively Drug-

Resistant Klebsiella pneumoniae using Native DNA and RNA Nanopore Sequencing” which

has myself as a co-author. In general, my contributions fell mostly in the bioinformatics

aspects of the research, especially in data processing and genome assembly. I also helped in

plotting and interpreting the final results.

The full manuscript with supplementary materials can be accessed via the preprint version

from the link https://doi.org/10.1101/482661. The study has been submitted to Nature

Microbiology journal and is currently under review.

https://doi.org/10.1101/482661

Real-time demultiplexing Nanopore barcoded

sequencing data with npBarcode

Son Hoang Nguyen1,∗, Tania Duarte1, Lachlan J.M. Coin1 and Minh Duc Cao1,∗

1Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD 4072 Australia
∗Correspondence: s.nguyen@uq.edu.au and m.cao1@uq.edu.au.

Received 20 Jun 2017. Accepted 23 Aug 2017. Published 24 Aug 2017

PMID: 28961965 DOI: 10.1093/bioinformatics/btx537

Abstract

Motivation: The recently introduced barcoding protocol to Oxford Nanopore sequencing

has increased the versatility of the technology. Several bioinformatics tools have been devel-

oped to demultiplex the barcoded reads, but none of them support the streaming analysis.

This limits the use of pooled sequencing in real-time applications, which is one of the main

advantages of the technology.

Results: We introduced npBarcode, an open source and cross platform tool for barcode

demultiplex in streaming fashion. npBarcode can be seamlessly integrated into a stream-

ing analysis pipeline. The tool also provides a friendly graphical user interface through

npReader, allowing the real-time visual monitoring of the sequencing progress of barcoded

samples. We show that npBarcode achieves comparable accuracy to the other alternatives.

Availability: npBarcode is bundled in Japsa - a Java tools kit for genome analysis, and is

freely available at https://github.com/hsnguyen/npBarcode.

s.nguyen@uq.edu.au
m.cao1@uq.edu.au
https://doi.org/10.1093/bioinformatics/btx537
https://github.com/hsnguyen/npBarcode

56 Multi-samples analyses with barcode sequencing

3.1 Demultiplex barcode sequencing with MinION

3.1.1 Introduction

Oxford Nanopore Technologies (ONT) sequencing has already become an established tech-

nology for its portability and its potential for high yield data generation. In particular,

it offers the ability to sequence genomes in real-time where practitioners can analyze data

streaming directly from the device, and can terminate a sequencing run once the satisfactory

results are obtained. Recently, ONT has introduced barcode protocols to allow pooling and

sequencing multiple libraries on the sample flow cell, which further enhances the versatility

of the technology. The underlying mechanism is to ligate a unique oligonucleotide sequence,

or barcode, to the fragments of each DNA sample. Multiple samples can then be pooled

together and sequenced in one flow cell. The sequenced reads can then be demultiplexed

into bins by examining the barcode portions on the reads.

Several outstanding tools for demultiplexing Nanopore barcoded sequences such as pore-

FUME [120], Porechop https://github.com/rrwick/Porechop and Metrichor built-in de-

multiplexer have been developed. Of these tools, only the latter supports real-time analysis

of a sequencing run, but it is only available as a cloud service. This limits the use of this

technology in time-critical applications or when the users wish to perform sequencing only

until sufficient data are obtained.

Being able to exploit the streaming property of nanopore sequencing is important for

time-critical applications, especially when its data generating yield and rate is escalating

drastically with new technologies and platforms already or soon become available such as

GridION, PromethION. Hence, algorithms that can work with streaming data and be able

to integrated into a pipeline should be taken into consideration in earnest for this sequencing

technology. Furthermore, a more friendlier user interface to inexperienced users is highly on

demand as many more researchers worldwide are enrolled in MinION multi-sample sequenc-

ing. In addition, the visualization can provide more efficient statistical reports in real-time

thus allowing users to have better control over the whole sequencing process. For that reason,

we have developed another tool for ONT barcode sequencing demultiplex analysis.

https://github.com/rrwick/Porechop

3.1 Demultiplex barcode sequencing with MinION 57

Here, we present npBarcode, a tool for demultiplexing barcoded MinION sequencing data

in real-time. npBarcode provides the traditional command line interface and a graphical user

interface. The command line interface offers a flexible environment to be integrated in with

other real-time downstream analyses, e.g. real-time finishing genome sequence (npScarf [97])

and real-time species identification (npAnalysis[95]). The demultiplexer is also integrated

into npReader’s [33], our previously developed platform for real-time analysis and visualiza-

tion of nanopore sequencing. From this mode, beside the utilities provided by npReader,

one can visually monitor on the sequencing progress of each barcoded sample.

3.1.2 Results

3.1.2.1 Algorithm overview

npBarcode relies on local pairwise alignment to detect the existence of a barcode sequence

in each nanopore read. We apply the Smith-Waterman algorithm with Gotoh’s optimiza-

tion [121] for the alignment. Basically, the aligner attempts to align the barcode sequences

within a window on both ends of a nanopore read. The read is assigned to the group of the

barcode with the highest alignment score, provided that the score is greater than a threshold,

and is greater than the second best alignment score by a safety distance.

npBarcode is implemented within the Japsa toolkit as a program named jsa.np.barcode.

The program consumes the base-called data in a streaming fashion and demultiplexes the

data into different channels containing reads that belong to the same bin. These output

streams can be piped to other downstream real-time analyses. This design allows practition-

ers to integrate the tool into a streaming analysis pipeline of interests.

3.1.2.2 Comparison with other methods

We barcoded and sequenced 8 different bacterial strains on a single MinION R9.4 flow cell

using the Oxford Nanopore Technology’s 2D native barcoding kit (SQK-LSK208 + EXP-

NDB002). Another run with PCR barcoding kit for 3 libraries is not discussed here as part

of a different study, but its result is included in Appendix Figure B.1.

The pool consisted of one gram positive isolate (Staphylococcus aureus) and seven gram

58 Multi-samples analyses with barcode sequencing

 99.25

 99.3

 99.35

 99.4

 99.45

 99.5

 74 76 78 80 82 84 86 88

S
p

e
ci
fi

ci
ty

 (
%

)

Sensitivity (%)

npBarcode
npBarcode default

porechop default
poreFUME default
Metrichor default

Figure 3.1: Plot of sensitivity versus specificity of npBarcode compared with existing tools.

negative isolates (four Klebsiella pneumoniae, one Klebsiella quasipneumoniae, one Pseu-

domonas aeruginosa and one Acinetobacter baumannii). In order to establish a ground

truth benchmark for comparison of different de-multiplexing tools, we aligned the sequence

reads of the eight samples to their respective assemblies to identify the original source of the

reads. Due to the high level of similarity among the gram negative isolates, we could only

obtain the confident assignment of reads to the S. aureus, a gram positive strain, versus the

other gram negative strains. Hence, we set up the comparison framework as the accuracy

of the tool detecting the barcode associated with the S. aureus sample. For an exhaustive

benchmark for each of every strains included, ones can assess Appendix Figure B.2.

Figure 3.1 presents the sensitivity and specificity of npBarcode with differing parameters.

We also obtained the results from Metrichor, porechop and poreFume with their default

parameter settings. Statistics of all tools with their automatic settings is depicted in details

in Appendix Table B.3. We found that npBarcode performed comparably with Metrichor

and was marginally more accurate than the competitive porechop and poreFUME.

3.1 Demultiplex barcode sequencing with MinION 59

0 20 40
0

10

20

30

40

Time (hrs)

C
o
n
ti
g
s

K. pneumoniae

0 20 40
0

20

40

60

80

100

Time (hrs)

M
b

Sequencing yield

0.0

2.0

4.0

N
5
0
(M

b
)

(a) K. pneumoniae isolate 1

0 20 40
0

10

20

30

40

Time (hrs)

C
o
n
ti
g
s

K. pneumoniae

0 20 40
0

20

40

60

80

100

Time (hrs)

M
b

Sequencing yield

0.0

2.0

4.0

N
5
0
(M

b
)

(b) K. pneumoniae isolate 2

0 20 40
0

10

20

30

40

Time (hrs)

C
o
n
ti
g
s

K. pneumoniae

0 20 40
0

20

40

60

80

100

Time (hrs)

M
b

Sequencing yield

0.0

2.0

4.0

N
5
0
(M

b
)

(c) K. pneumoniae isolate 3

0 20 40
0

10

20

30

40

Time (hrs)

C
o
n
ti
g
s

K. pneumoniae

0 20 40
0

20

40

60

80

100

Time (hrs)

M
b

Sequencing yield

0.0

2.0

4.0

N
5
0
(M

b
)

(d) K. pneumoniae isolate 4

0 20 40
0

10

20

30

40

Time (hrs)

C
o
n
ti
g
s

K. quasipneumoniae

0 20 40
0

20

40

60

80

100

Time (hrs)

M
b

Sequencing yield

0.0

2.0

4.0

N
5
0
(M

b
)

(e) K. quasipneumoniae isolate

0 20 40
0

10

20

30

40

Time (hrs)
C
o
n
ti
g
s

A. baumannii

0 20 40
0

20

40

60

80

100

Time (hrs)

M
b

Sequencing yield

0.0

2.0

4.0

N
5
0
(M

b
)

(f) A. baumannii isolate

0 20 40
0

20

40

60

Time (hrs)

C
o
n
ti
g
s

P. aeruginosa

0 20 40
0

20

40

60

80

100

Time (hrs)

M
b

Sequencing yield

0.0

2.0

4.0

N
5
0
(M

b
)

(g) P. aeruginosa isolate

Figure 3.2: Result for running a combining pipeline of npReader, npBarcode and npScarf with
ONT Native Barcoding Kit in order to scaffold genomes of 7 gram-negative samples in real-time.
For each sample, the upper plot shows number of contigs (blue) and N50 (red) while the lower
graph presents data yield (bases) for that particular demultiplexed sample over time.

60 Multi-samples analyses with barcode sequencing

3.1.2.3 Real-time scaffolding pipeline for multiple samples

As part of the experiment, we also integrated npBarcode into a streaming analysis pipeline

where we scaffolded genome assemblies in real-time. Prior to the MinION run, we sequenced

the seven gram negative samples with Illumina technology and used SPAdes [68] to assemble

them into more than 100 contigs each. The S. aureus sample was used as a control sample

during demultiplexing, and was not used for scaffolding. As soon as a sequence read was

generated, it was base-called, demultiplexed and streamed into the appropriate instance of

npScarf [97] for scaffolding. This pipeline allowed us to simultaneously scaffold all seven

bacterial samples while the sequencing was still in progress (Figure 3.2). We were able to

complete the genome of one K. pneumoniae isolate after 16 hours of sequencing and with

about 80Mbp of nanopore sequencing data. While the genomes of the other six isolates were

not completed due to their low proportions in the pooled sample, and the less than ideal

yield of the run, they were significantly improved over time with nanopore long reads.

3.1.2.4 Graphical user interface

Figure 3.3: Graphical User Interface of npBarcode integrated in npReader. The result shown
is for the a MinION run using Native barcoding kit on 8 libraries.

npBarcode is also integrated into npReader’s graphical user interface. This allows users

3.1 Demultiplex barcode sequencing with MinION 61

to monitor the amount of sequencing data for each pooled sample in real-time. When

required, npReader provides a view showing read-count per bin in a real-time fashion. This

view provides two plots that can depict the progress in an over-time and in-time manner,

respectively. The top graph shows a more general progress viewing by showing the read

count of the whole process while the lower graph figures the exact number of binned reads

at a particular time point. An example of the visualization is shown in Figure 3.3. Overall

it reflects the demultiplex functioning appropriately with the majority of reads falling in

the bins corresponding to the samples used for the barcode sequencing. Only an negligible

amount of reads are mis-classified into unrelated bins.

3.1.3 Methods

3.1.3.1 Bacterial cultures and DNA extraction

Bacterial strains include Streptococcus pneumoniae from the American Type Culture Col-

lection (ATCC 700677) and clinical isolates from Hygeia General Hospital, Athens, Greece

or Instituto Dante Pazzanese de Cardiologia, Brazil [122]. Clinical isolates comprise of four

Klebsiella pneumoniae (3 GR 13, 5 GR 13, 11 BR 13, 22 GR 12), Klebsiella quasipneumo-

niae (21 GR 13), Acinetobacter baumannii (source: Hygeia General Hospital, 2013) and

Pseudomonas aeruginosa (source: Hygeia General Hospital, 2013). It is worth noting that

the sample identifiers are re-assigned for convenient as shown in Table B.1 which emphasize

on the gram stain of the bacteria: GP for gram positive and GN for gram negative. Bacte-

rial cultures were supplied as stabs/slants or on agar, grown in nutrient broth or brain heart

infusion broth, glycerol stocks were made to 20% (v/v) glycerol and stored at 80oC.

For DNA extractions, glycerol stocks were struck out on either nutrient agar or tryptic soy

agar with 5% defibrinated sheep blood to isolate single colonies. Strains were grown overnight

at 37o shaking at 220 rpm and DNA subsequently extracted from this inoculum. DNA was

isolated using the DNeasy Blood and Tissue Kit (Qiagen) with the additional enzymatic

lysis buffer pre-treatment as per the manufacturers instructions. DNA was quantified with

Qubit3.0 (ThermoFisher Scientific).

62 Multi-samples analyses with barcode sequencing

3.1.3.2 Illumina sequencing and assembly

One nanogram of DNA was used for the Nextera XT (Illumina) library preparation as per

the manufacturers instructions and quality was evaluated via a 2100 Bioanalyzer (Agilent

Technologies). Libraries were sequenced on an Illumina MiSeq (300 bp paired-end reads)

with >100X coverage per sample.

The raw reads from each dataset were processed by Trimmomatic [118] version 0.36 to

remove adapter sequences and attain paired reads only. After that, SPAdes 3.10.1 was used

to generate short-read assembly consisting of high quality contigs.

3.1.3.3 MinION barcode sequencing

The same DNA extract from the Illumina sequencing run was used for Nanopore sequencing.

The library preparation was done following the 2D native barcoding kit (SQK-LSK208+EXP-

NDB002) with the input between 900 to 1500 nanograms of DNA for each sample as in

Table B.1. The samples were pooled in equimolar concentrations and 15.75ng was loaded

into a R9.4 FLOMIN106 flow cell. After 20 hours the flow cell was topped up with 6µL of

library.

The sequencing run was stopped after 43 hours and generated 65,029 reads and 331,329,280

events. The reads were basecalled with settings: 2D Basecalling plus Barcoding for FLO-

MIN106 250bps - v1.125.

3.1.3.4 Comparative metrics

We conduct a sensitivity/specificity test on the ability to identify the only gram positive

bacterial S. aureus of the interested binning algorithms. The rationale stems from the fact

that it has the most distinctive genome compare to the others (as shown in Appendix Ta-

ble B.2), therefore it would account for the least probability of having ambiguous alignments.

Statistics are generated as: the number of indeed aligned reads from the bin S. aureus (true

positive); number of unaligned reads in the bin (false positive); number of aligned (false nega-

tive) and unaligned (true negative) reads from outside the bin. Sensitivity and specificity are

then calculated by following equations: sensitivity = TP
TP+FN

; specificity = TN
TN+FP

where

3.1 Demultiplex barcode sequencing with MinION 63

TP, FN, TN and FP stand for true positive, false negative, true negative and false positive

respectively.

3.1.3.5 Software UI design

We provide both command line and graphical user interface for nanopore barcode sequencing.

While the former is flexible and convenient to those who want to integrate downstream

analysis directly from demutiplexed results, the latter offers a simpler maneuver and better

visualization.

From terminal, one can invoke either jsa.np.npreader with barcode input sequences

specified, or dedicated jsa.np.barcode module which requires an executable script for down-

stream analysis.

On the other hand, users can type jsa.np.npreader -gui to have a user-friendly demul-

tiplex running, especially for streaming-mode as the sequencing is still ongoing. Beside the

traditional npReader’s window, whenever having a demultiplex phase involved, there is an

additional tab view showing binned read-count in a real-time fashion. This view provides 2

plots that can depict the progress in an over-time and in-time manner respectively. The top

graph would offer more general progress viewing by showing the read count of the whole pro-

cess while the lower graph figures the number of binned reads in more detail at a particular

time point.

3.1.3.6 Real-time analysis setup

Users can implement a streaming pipeline that consumes demultiplexed output from npBarcode

in two ways. The first method is simply watching the content of the appending output files

and explicitly pipe them to appropriate downstream processes, e.g. by using tail -f. In

order to do this, ones initially need to tell npBarcode to output the demultiplexed sequences

into different files to read from.

Another way, which has been used in this study, is to provide a script for downstream

scenario to npBarcode and let it handle implicitly. This approach will reduce the I/O

operations and disk space required for the analysis. For example, in order to invoke npScarf

64 Multi-samples analyses with barcode sequencing

to scaffold multiple samples at the same time using barcoded sequences, we stream the base-

called sequence to npBarcode command line via the inter-process communication (Linux

pipe) or network channels (Java sockets) protocol [123] and provide it a script (script .sh) to

invoke npScarf. An example of such bash script is given in Appendix List B.1.

< data stream > | jsa.np.barcode -seq − -bc barcode.fasta -sc script .sh

where < data stream > is the input stream and barcode.fasta is the file containing the

actual barcode sequences that have been used. From an appending base-called output file,

the stream can be achieved by a monitoring command, e.g. tail -f (for a local mounted

file system) or by using socket communication utility, e.g. jsa.util.streamServer and

jsa.util.streamClient from Japsa package. Refer to Japsa documentation for more details.

3.1.4 Conclusion

We have described npBarcode, a tool supporting real-time demultiplex of nanopore sequenc-

ing data. Depending on requirements, users can choose to run the dedicated demultiplexer

from command line or using it as part of npReader’s graphical user interface. The tool

provides practitioners a flexible option to monitor a barcoded sequencing run as well as to

integrate pooled sequencing into a streaming analysis pipeline.

Shortly after the manifestation of open-sourced demultiplexers such as npBarcode, Al-

bacore and new (commercial) version of Metrichor have been offered to the community that

integrate direct FASTQ output as well as demultiplex option. The overlapping functional-

ity lead to the retirement of npReader and npBarcode maintenance, however, they are still

applicable for the use cases that demands flexible control and customization from end users.

The code is made available and free via Japsa package.

In the next section, we adopt a combination of in-house tools and other open-source

software for another assembly use case in order to comprehend the resistance gene profile of

several Extensively Drug-Resistant (XDR) K. pneumoniae strains using MinION sequencing.

http://japsa.readthedocs.org/en/latest/index.html
https://github.com/mdcao/japsa

3.2 Assembly of multiple XDR strains for Klebsiella pneumoniae 65

3.2 Assembly of multiple XDR strains for Klebsiella pneu-

moniae

The following detail is extracted from a submitted publication with permission from its

corresponding authors. As part of this thesis, I only report my major contributions in

the publication, i.e. genome assembly and associated computational analysis on the DNA

barcode sequencing data.

In this section, a combined application of npScarf with other assemblers is implemented

to generate the final assembly of interests. Such practice can demonstrate in depth the

performances of each method and at the same time, provide a consensus approach for a de

novo reference-free assembly. This use case also highlights the ability of long-read assembly

in discerning the location of acquired resistance in the whole genomes of XDR bacterial

strains, especially on the identified plasmid(s).

3.2.1 Introduction

The bacterial samples exclusively subjected to this research conduct were Klebsiella pneumo-

niae, a species known as one of the prominent pathogens found in health care facilities. As

a matter of fact, K. pneumoniae is vastly responsible for the risks of nosocomial infections

(caused by transmission of germs within hospital environment) with mortality rate has been

observed as high as 50% [124–128]. More importantly, the treatment options are becom-

ing limited as the bacteria is developing its resistance to the available antibiotics, including

carbapenems, fosfomycin, tigecycline and polymyxins [129]. As shown by current evidence,

plasmids are the primary source of resistance genes [130] of the superbugs and are irrepress-

ibly disseminating them to other strains, accounting for the rapid global dissemination of

resistance [124, 131]. More severely, pandrug-resistant (PDR) K. pneumoniae strains have

been reported as resistant to all commercially available antibiotics [132, 133] at the moment.

The shortcoming for a robust detection methodology to accurately assess bacterial infec-

tions, the resistance profile in particular, has been considered as one factor accounting for

the exhibition of antibiotic resistance [134]. In light of antimicrobial therapy, this drawback

66 Multi-samples analyses with barcode sequencing

gave rise to the unnecessary applications of antibiotics for viral infections and ineffective

antibiotics being administered for resistant infections. Rapid sequencing has been proposed

as a way to determine PDR profiles, including approaches which utilize high accuracy short

reads, as well as those which utilize real-time single molecule sequencing. In particular,

MinION is a portable single-molecule sequencer which can sequence long fragments of DNA

and stream the sequence data for further data processing in real-time to detect the presence

of bacterial species and acquired resistance genes [91, 95, 135–137].

Moreover, the long reads coupled with the ability to multiplex samples has immensely

aided with the assembly of bacterial genomes [98, 138–140]. This capability allows for the

rapid determination of whether resistance is residing on the chromosome or plasmid(s). Of

particular interest are high levels of resistance encoded on plasmids, as these genes can

rapidly be transferred throughout the bacterial population via horizontal gene transfer.

3.2.2 Data description

MinION sequencing and associated computational analysis were conducted to interrogate the

resistance profile in the whole genomes of four XDR clinical K. pneumoniae strains. These

isolates had been previously sequenced by Illumina platform and undergone antimicrobial

susceptibility testing. Three of them, namely 1 GR 13, 2 GR 12 and 16 GR 13, exhibited

resistance to all 24 classes or combinations of antibiotics tested, including the ‘last resort’

polymyxin. Accordingly, there were high abundance of antibiotic resistance genes found in

these samples’ genome (≥ 26) [122]. Another polymyxin-susceptible XDR isolate, 20 GR 12,

was included for comparative studying purpose.

The WGS sequencing yield and length statistics for each sample are shown in Table 3.1.

Illumina paired-end data was assembled by SPAdes v3.10.1 [68]. The fact of having more

than 60-folds coverage for each sample assures the high quality of the short-read assem-

bly. The Rapid Barcoding Sequencing was used for a mixture of 1 GR 13, 16 GR 13 and

20 GR 12 and the base-called data were demultiplexed by npBarcode. Isolate 2 GR 12, due

to potential carbonhydrate contamination, has been prepared separately and subjected to

another MinION run using Rapid Sequencing Kit. As shown in the table, this sample has

3.2 Assembly of multiple XDR strains for Klebsiella pneumoniae 67

Table 3.1: Sequencing data statistics for each K. pneumoniae strains.

Strain Lineage
Illumina Nanopore

Coverage(X) N50a Coverage(X) N50b Time(mins)

1 GR 13 ST147 63 242,838 215 8,712 1,279

2 GR 12 ST258 158 196,706 67 5,251 2,468

16 GR 13 ST11 123 203,529 101 5,012 1,277

20 GR 12 ST258 262 256,217 115 10,151 1,277

a of the Illumina assembly contigs.

b of the raw Nanopore sequences.

the least coverage of Nanopore data despite of the longest sequencing time. The low N50

values of 2 GR 12 and 16 GR 13 (' 5Kbp) may introduce difficulties in completing their

genomes using hybrid approaches, however, the abundance of long-read data from the latter

would increase the chance of having appropriate bridges over the repetitive elements.

3.2.3 De novo assembly with multiple approaches

In order to have the assembly of high confidence without any reference genomes, multiple

prominent approaches were applied to the dataset. The real-time assembly is not reported

here as exhaustive operations of MinION flow cells were established in expectations to obtain

as much data as possible, not to mention npScarf is the only tool supporting the streaming

mode. Instead, only the final assembly were of interest. After having results from different

assemblers, an alignment-based comparative interrogation was conducted to investigate the

completeness and quality of each contigs in relations with its corresponding counterparts.

By doing so, the consensus sequence can be determined as the best candidate among all.

68
M
u
lt

i-sa
m
p
l
e
s
a
n
a
ly

se
s
w
it
h
b
a
r
c
o
d
e
se

q
u
e
n
c
in
g

Table 3.2: Contigs in the genome assembly results of 4 K. pneumoniae isolates using multiple approaches. Output identifies circular
sequences in bold and underlined if chosen for the final assembly.

Isolate
Assembly method

npScarf Unicycler Canu minasm+Racon

1 GR 13 5,289,533; 193,063;

168,873; 61,039;

53,489; 55,020; 6,457

5,181,675; 192,771;

159,172; 108,879;

55,018; 53,495;

5,073,727; 226,704;

184,820; 136,154;

100,186; 82,924 ;

54,495

5,167,584; 192,237;

168,292; 108,582;

53,325

2 GR 12 5,466,424; 457,649;

60,365; 42,041; 32,458;

21,300; 13,841; 12,226

3,743,268; 1,694,231;

175,636; 152,644;

95,481; 43,380; 28,913;

26,127;16,315; 16,781;

13,841

5,440,093; 392,198;

122,463; 57,534; 26,891

3,769,033; 1,696,038;

204,124; 179,356;

158,561; 43,085;

13,400; 2,250

16 GR 13 5,426,917; 186,908;

154,971; 63,588;

37,608; 35,578; 5,225;

4,426; 3,703

5,426,765; 187,670;

155,161; 63,589;

5,234; 4,940; 2,156

5,400,611; 199,904;

180,542; 83,467;

14,853; 11.623; 9,308;

9,423; 7,568; 7,089

5,410,256; 186,950;

154,635; 63,299;

5,100; 4,900

20 GR 12 5,391,578; 163,468;

50,940; 50,856; 12,578

5,395,894; 170,467;

50,979; 43,380;

13,841; 4,645

5,342,491; 192,947;

74,844; 72,588; 25,624

5,380,057; 169,880;

50,636; 43,157; 13,600

3.2 Assembly of multiple XDR strains for Klebsiella pneumoniae 69

In particular, the enforced hybrid assemblers included npScarf and Unicycler v0.3.1

[87]. Assemblers using only ONT reads were Canu v1.5 [79] (excluding read shorter than

500bp) and a combination pipeline of miniasm v0.2-r-168-dirty, minimap2 v2.1-r311; Racon (git

commit 834442) were used in both cases to polish the assemblies afterward [50]. Consensus

sequences were determined among all obtained assemblies manually using visualization from

Mauve [141] snapshot 2015-02-13. From which, potential bridging differences between can-

didates were further investigated by alignments with Illumina paired-end data on IGV 2.3

[142, 143].

The output from each assembly method is reported in Table 3.2. Overall, Unicycler

returned most accurate results and as the consequence, a majority of the final assembly were

composed from its output contigs. The high quality achieved thanks to the application of the

optimized assembly graph in Unicycler’s hybrid assembly module, as well as comprehensive

post-processing steps carried out on the draft sequences subsequently [87]. npScarf, on the

other hand, can generate longer contigs but the results are more susceptible to misassemblies.

The algorithm, which is independent on the assembly graph, can bridge two nodes that lack

connections in the graph, but at the same time, is more prone to erroneous alignments.

The two remaining methods, even though with polishing step, produced inferior results but

would give additional information for the ultimate backbones of the assembly.

Amongst four datasets, 2 GR 12 shows most fragmented assembly as the shorter reads

could not resolve all repeats. For this sample, only npScarf and Canu can successfully as-

semble the chromosomal sequence as the longest contig of length ' 5.4Mbp. Two other

circular sequences were reports as complete plasmid DNA from Unicycler. In addition,

there were 3 unfinished (linear) sequences in the final assembly for this sample, correspond-

ing to 5 fragmented contigs from Unicycler. Another longest contig found by npScarf

belonged to 16 GR 13 dataset (5,426,917bp). Unicycler reported very close circular se-

quence (5,426,765bp) with equivalent quality but hosting less genes than the former thus

was not selected in this case.

3.2.4 AMR analysis on the final assembly

70
M
u
lt

i-sa
m
p
l
e
s
a
n
a
ly

se
s
w
it
h
b
a
r
c
o
d
e
se

q
u
e
n
c
in
g

Table 3.3: Final assembly of XDR K. pneumoniae isolates and location of antibiotic resistance genes.

Isolate Contiga
Lengthb Abundance

Resistance Genesc
(bp) (X)

C 5,181,675 1 blaSHV-11, fosA, oqxA, oqxB

P: IncA/C2 192,771 1.95 aadA1, ant(2”)-Ia, aph(6)-Id, ARR-2, blaOXA-10, blaTEM-1B, blaVEB-1, cmlA1, dfrA14,

dfrA23, rmtB, strA, sul1, sul2, tet(A), tet(G)

P: IncFIBpKpn3, IncFIIpKP91 168,873 2 aadA24, aph(3’)-Ia, aph(6)-Id, dfrA1, dfrA14, strA

P: IncFIBpKPHS1 108,879 1.53 -

- 55,018 14.10 -

1 GR 13

P: IncR, IncN 53,495 2.36 aadA24, aph(3’)-Ia, aph(6)-Id, blaVIM-27, dfrA1,mph(A), strA, sul1

C 5,466,424 1 blaSHV-11, fosA, oqxA, oqxB

P: IncFIBpKpn3, IncFIIK 197,872 1.3 aadA2, aph(3’)-Ia, catA1, dfrA12, mph(A), sul1

P: IncA/C2 175,636 1.49 aadA1, ant(2”)-Ia, aph(3”)-Ib, aph(6)-Id, ARR-2, blaOXA-10, blaTEM-1A, blaVEB-1,

cmlA1, dfrA14, dfrA23, rmtB, sul1, sul2, tet(A), tet(G)

P: IncFIBpQil 95,481 1.61 blaKPC-2, blaOXA-9, blaTEM-1A

P: IncX3 43,380 1.91 blaSHV-12

2 GR 12

P: ColRNAI 13,841 4 aac(6’)-Ib, aac(6’)Ib-cr

C 5,426,917 1 blaSHV-11, fosA, oqxA, oqxB

P: IncFIBpKpn3, IncFIIK 187,670 0.88 aac(3)-IIa, aac(6’)Ib-cr, aadA2, aph(3’)-Ia, blaCTX-M-15, blaOXA-1, catB4, dfrA12,

mph(A), sul1

P: IncA/ C2 155,161 0.99 aadA1, ant(2”)-Ia, aph(3”)-Ib, aph(6)-Id, ARR-2, blaOXA-10, blaTEM-1B, blaVEB-1,

cmlA1, rmtB, sul1, sul2, tet(A), tet(G)

P: IncL/ MpOXA-48 63,589 1.49 blaOXA-48

- 5,234 188.49 -

16 GR 13

P: ColRNAI 4,940 97.77 -

C 5,395,894 1 blaSHV-11, fosA, oqxA, oqxB

P: IncFIBpKpn3, IncFIIK 170,467 1.77 aph(3’)-Ia, blaKPC-2, blaOXA-9, blaTEM-1A

P: IncN 50,979 1.42 aph(3”)-Ib, aph(6)-Id, blaTEM-1A, dfrA14, sul2, tet(A)

P: IncX3 43,380 1.78 blaSHV-12

20 GR 12

P: ColRNAI 13,841 10.82 aac(6’)-Ib, aac(6’)Ib-cr

a Contig identity indicating chromosome (C) or plasmid (P: replicon determined by PlasmidFinder 1.3).

b Bold indicates circular sequences.

c Resistance genes determined by ResFinder 3.0 and displayed in alphabetical order.

3.2 Assembly of multiple XDR strains for Klebsiella pneumoniae 71

Table 3.3 shows the consensus assembly of four XDR K. pneumoniae strains. Genome

annotations had been accomplished by using Prokka v1.12 [108]. Plasmids were identified

among the output contigs by looking for the origin of replication sequences from the collec-

tion of PlasmidFinder 1.3 [144]. The location of acquired antibiotic resistance genes were

determined based on alignments with ResFinder 3.0 [119] database.

Overall, the assembly contigs were circular as ones should be for fully resolved microbial

genomes, with the exception of 2 GR 12 as aforementioned. The chromosomal sequence for

each isolate was located on top of the contig list from Table 3.3 with the genome size varying

between 5.1− 5.5Mbp. They were shown to carry the same set of resistance genes including

blaSHV-11, fosA and oqxAB.

According to Table 3.3, the majority of resistance (≥ 75%) were hosted by plasmids. In

all samples, there was at least one megaplasmid, defined as a plasmid larger than 100Kbp,

being assembled. From which, the replicon sequence IncA/C2 or InFIB and IncFIIK were

commonly found. The IncA/C2 plasmid appeared in all samples except 20 GR 12. This

plasmid contained up to 16 resistance genes which conferred resistance towards aminogly-

cosides, β-lactams, phenicols, rifampicin, sulphonamides, tetracyclines and trimethoprim,

with the exception of 16 GR 13. Isolate 16 GR 13 lacked trimethoprim resistance on its In-

cA/C2 plasmid. The plasmids containing both replicons IncFIB and IncFIIK differed vastly

between all four replicates. All contained IncFIBpKpn3 and IncFIIK, however, 1 GR 13 dif-

fered with IncFIIpKP91. Additionally, a differing IncFIB replicon was detected on a separate

contig in 1 GR 13 (pKPHS1) and 2 GR 12 (pQil). The only instance where another dual

replicon was identified was in 1 GR 13 which harboured both IncR and IncN. This plasmid

contained aminoglycoside, β-lactam, trimethoprim, macrolide and sulphonamide resistance.

Assembly for 1 GR 13 also contained a 5.5Kbp circular contig which was annotated as a

phage genome.

The ColRNAI plasmid was shown in every sample but 1 GR 13 which encoded amino-

glycoside and quinolone resistance (aac(6’)-Ib, aac(6’)-Ib-cr) (Table 3.3). The ColRNAI

plasmid in 2 GR 12 and 20 GR 12 was 13, 841 bp in size and shared 75% similarity between

the two isolates. This plasmid differed in 16 GR 13 (35% the size) with no resistance genes

being found. The same IncX3 plasmid (43, 380 bp) was apparent in isolates 2 GR 12 and

72 Multi-samples analyses with barcode sequencing

20 GR 12. Unique to 16 GR 13 was the IncL/ MpOXA-48 plasmid containing blaOXA-48

and the 50, 979 bp IncN plasmid in 20 GR 12 with resistance against 5 classes (aminogly-

coside (aph(3”)-Ib, aph(6)-Id), β-lactam (blaTEM-1A), sulphonamide (sul2), tetracycline

(tet(A)), trimethoprim (dfrA14)) of antibiotics.

Multiple copies of acquired resistance genes were located across plasmids in several iso-

lates. For 1 GR 13, up to three copies were observed for genes aadA24, aph(3’)-Ia, aph(6)-Id,

dfrA1, dfrA14, strA and sul1. In 2 GR 12, the copy number of sul1 and blaTEM-1A were

two and for 16 GR 13, sul1 was spotted with the same frequency.

3.2.5 Data availability

Whole genome sequencing of 4 clinical isolates and their final assemblies have been uploaded

to NCBI under BioProject PRJNA307517. MinION DNA sequencing data has been de-

posited within project ID SRP133040. Accession numbers are as followed: SRR6747887

for 1 GR 13; SRR6747886 for 2 GR 12; SRR6747885 for 16 GR 13 and SRR6747884 for

20 GR 12.

3.2.6 Discussion

The ability for ONT to sequence long fragments of DNA in parallel has present an efficient

method to finish and resolve the assembly of bacterial genomes and plasmids [97, 138],

particularly superbugs that host high levels of resistance.

In this use case, we have identified multiple megaplasmids (≥ 100Kbp), which were pre-

viously unresolved via Illumina sequencing [122]. These harboured replicons IncA/C2 or a

dual replicon, IncFIIK and IncFIB. The IncA/C, IncF and IncN plasmids have been com-

monly associated with multidrug resistance [145]. Although several plasmids in this study

revealed similarity to previously reported isolates via NCBI, various sequences deviated. In

particular, the IncA/C2 plasmid exhibited multiple regions unique to these isolates. Several

IncA/C2 megaplasmids have been previously described which harbour various resistance

genes, however, the extent of resistance in this study has yet to be unveiled [146, 147]. Prior

studies have shown the IncFIIK and IncFIB replicons to localize on the same plasmid and

3.2 Assembly of multiple XDR strains for Klebsiella pneumoniae 73

also megaplasmids with multidrug resistance [131]. The IncFIBpQil plasmid in this study

contained various β-lactam resistance genes (blaKPC-2, blaOXA-9, blaTEM-1A) which has

been identified previously [148]. Similarly, blaOXA-48 segregated with the IncL/M repli-

con [149, 150], however, deviations in this plasmid were identified.

The final assembly has been generated by using multiple methods available, in which

Unicycler returned the most accurate contigs. npScarf can produce assembly of highly

continuity with decent quality, but susceptible to misassemblies in some cases due to its

greedy approach. Since these mistakes can affect the fidelity of the results, e.g. when

studying the highly variant XDR plasmids, improvement in term of accuracy is needed for

npScarf. Methods to adopt assembly graph will be investigated on top of the original

algorithm in the next chapter to serve this purpose.

74 Multi-samples analyses with barcode sequencing

4
Integration of assembly graph into scaffolding

pipeline

Timing and accuracy is really what matters at

the end of the day.

–Carson Wentz

76 Integration of assembly graph into scaffolding pipeline

Actually the idea of using assembly graph for scaffolding in npScarf has been considered

from the very beginning of the software design. However, the computational challenges

hinder its real-time process ability thus being neglected from the first versions of npScarf.

In the first section of this chapter, I will introduce the concept and model of the SPAdes

assembly graph which would be used as the input. The next section will describe the first

attempt to apply this information into npScarf for a better gap-filling. Finally, a real-time

assembly graph bridging algorithm will be shown in a new tool, namely npGraph together

with its performance in numerous use cases.

4.1 Assembly graph

npScarf is a hybrid assembler that essentially conducts scaffolding on the SGS contigs and

then filling the gaps, without using information from the short-read assembly process about

the formation of the contigs themselves. This is illustrated in Figure 1.6 where the algorithm

enhances step 2 and 3 by using nanopore long reads in an attempt to give more complete

genome assemblies. However, SGS assemblers usually provide a richer source of information

than just the contig sequences themselves, namely assembly graph. For the graph-based

approaches, either OLC or DBG, assembly graph stores the ultimate string content of DNA

sequences and their links in its components: edges and vertices. This is usually resulting

from running a simplification algorithm on the original graph built from input data, e.g. tips

clipping, bubble removing, error removal, and/or scaffolding using paired-end or mate-pair

links [67, 68] (Section 1.3).

Assembly graph is normally implemented by using a directed graph data structure. In

which, each component (vertex or edge, depends on particular implementation) storing a

string has a corresponding counterpart for that string in reversed complement order [67].

To have a more compact representation of the graph, we employ the bidirected graph data

structure instead.

For a bidirected graph G = {V,E}, each edge has two directions associated with two

nodes forming it. The direction here refers to a binary value that represent either incoming

or outgoing state. Unlike an edge in a directed graph, a bidirected edge can be traversed in

4.1 Assembly graph 77

Figure 4.1: An example of bidirected graph model. Each node contains a DNA sequence
that can be spelled as template(+) or reverse complement(-). There are four possible types of a
bidirected edge as shown as ones from node z. Each edge has two possible spelling depends on
the starting node, resulting in two sequences of template and reversed complement. According to
the rule of bidirected graph traversal, we have the following valid paths spelled as: (u+, z+, v+),
(u+, z+, t−), (w−, z+, v+), (w−, z+, t−) and in the opposite direction respectively (v−, z−, u−),
(t+, z−, u−), (v−, z−, w+), (t+, z−, w+).

both ways, similar to the property of an undirected edge except the content of each traversed

vertex is not unique, but direction-wised. This means that if there exist a path from node A

to B (or B is reachable from A) then the reversed path is legal as well (A is reachable from

B), with a reverse-complemented spelling manner. Thus another equivalent interpretation

for bidirected graph is an undirected graph of directed vertices, which can be related directly

to the purpose of modeling connections of DNA sequences as nodes in a graph structure,

regarding they are double-stranded (sense and anti-sense). The edge-based modeling, in

short, is more intuitive to work with; however in terms of comprehensive understandings

and implementations, the directed-node ideology is additionally helpful.

Edge-based modeling From this point of view, any edge e ∈ E connecting an ordered

pair of node (u, v) ∈ V 2 would fall into one out of four categories: II, IJ, JI or JJ. By

modeling edge directions as such, the graph traversal is able to cover the double-stranded

78 Integration of assembly graph into scaffolding pipeline

property of the DNA sequences (template/reverse complement) in vertices through edge-

walking. The rule is that if we follow the arrow, its associated vertex is spelled as it is (+)

and if we traverse against the arrow direction, the corresponding vertex is spelled as reverse

complement sequence (-). As mentioned before, there are 2 ways of traversing through an

edge, e.g.from u to v and from v to u, as illustrated in Figure 4.1.

Vertex-based modeling From this angle, it is convenient to firstly introduce the defini-

tion of directed node, −→v = (v, dv) ∈
−→
V , as a tuple of vertex v and its associated direction

dv ∈ D = {in, out}. In this case, a bidirected edge is almost similar to an undirected edge

connecting two (directed) vertices, e.g.an unique edge that connect −→u and −→v can be equally

written as (−→u ,−→v) or (−→v ,−→u). These two forward and reverse edges would refers to the

same bidirected edge, except the content will be different depending on the order of spelled

directed nodes.

The two definitions are equivalent and their applications are interchangeable and cohe-

sive in our implementation. In summary, the meaning and spelling for a bidirected graph

components is as follow:

• u II v equivalent to (u− out, v − in): spelling u+ v+ or v − u−

• u IJ v equivalent to (u− out, v − out): spelling u+ v+ or v − u−

• u JI v equivalent to (u− in, v − in): spelling u− v+ or v − u+

• u JJ v equivalent to (u− in, v − out): spelling u− v− or v + u+

To create a valid path when traversing a bidirected graph, two adjacent edges must obey

the direction rule similar to a conventional directed graph, that is a path which has an edge

entering an intermediate node (not 2 ending nodes) must leave that node on the next edge.

In addition, due to the allowance of traversing against the arrows in bidirected graph, it is

possible to follow edges against their direction but the spelling will be reverse-complemented.

4.2 Application of the assembly graph in npScarf wag 79

4.2 Application of the assembly graph in npScarf wag

The first attempt of utilizing assembly graph is to integrate this pieces of information into

the scaffolding algorithm for the gap-filling step thus increasing the accuracy of the final

assembly. This is due to the fact that the edges from assembly graph come from Illumina

data with much higher accuracy (99.9%) compared to nanopore data (≈90%), which usually

require high abundance to generate a consensus read with comparative quality.

As shown in Figure 4.2, for the first approach of gap filling, which is implemented in the

very first version of npScarf, segments from nanopore reads corresponding to a gap are first

extracted based on the alignments to the flanking regions. A set of these pileup segments

are then undergone a consensus calling step by multiple sequence aligner e.g. kalign [151] or

poaV2 [47–49], and the result sequence can later be used to fill in the gap.

Figure 4.2: Two approaches for gap filling: 1. using consensus sequences from long reads in
npScarf and 2. using corresponding path in the assembly graph in npScarf wag .

Another npScarf version, namely npScarf wag, utilizes assembly graph information for

the gap filling step. In which, assembly graph from SPAdes is also learned together with

contigs used as pre-assemblies in the workflow shown in Figure 2.1. It is worth mentioning

that each of these contigs is made of a path by traversing the assembly graph and normally

short-read assemblers allow backtracking this piece of information, e.g. via ”contigs.paths”

80 Integration of assembly graph into scaffolding pipeline

file output from SPAdes.

Mathematically, of this thesis’ scope, a (bidirected) path p ∈ P in (bidirected) graph

G{V,E} is defined as a walk through a series of alternative vertices and edges that are

connected together, given that the bidirected transition rule holds true for every intermediate

vertices. For example, from the edge-based modelling point of view, a path p of size k can

be written as p = {v0, e1, v1, e2, v2, . . . , vk−1, ek, vk} where ei is the bidirected edge connects

vi−1 and vi+1 with every 1 ≤ i < k and will determine the their directions in the walk. A

path of size 0 contains only one vertex and no edge. Importantly, the transition rule requires

dir(ei, vi) 6= dir(ei+1, vi), ∀1 ≤ i < k where dir : (E, V) → D is the function that returns

direction (from vertex-based modelling) of a vertex on a given edge.

Using this decomposition, the corresponding components of the assembly graph (consec-

utive nodes) that make up the corresponding flanking tips of the gap are identified. Then

by applying a searching algorithm, e.g. Depth-First Search (DFS), on the graph, a set of

candidate paths connecting two tipping nodes are determined. By selecting the path that

maximize the likelihood of the long reads, the gap can be filled up by the sequence spelled

out from it as shown in Algorithm 1.

Algorithm 1: Pseudo-code for filling gap with assembly graph in npScarf2.

Data: Assembly graph G{V,E}

Input: Bridge B = (contig1, contig2) with gap

Output: Sequence to fill in the gap of B

1 begin

2 p1 := decompose(G, contig1) // decompose first contig into graph components

3 p2 := decompose(G, contig2) // decompose second contig into graph components

4
−→v1 := p1.peek() // get the last directed vertex of p1

5
−→v2 := p2.getRoot() // get the first directed vertex of p2

6 p := DFS(G,−→v1 ,
−→v2) // find a path connect these 2 tips

7 return p.spell()

Theoretically, this approach can increase the accuracy of gap-filling step, however, it offers

limited capacity in reducing the misassemblies. The reason is that the ending components of

a contig can be repetitive, make it impossible to confirm a genuine bridge with the existence

4.3 Resolve assembly graph in real-time by long reads with npGraph 81

of a path connect two tips as above. To deal with this issue, the assembly graph should

be applied completely to the scaffolding algorithm by using the graph components as the

building blocks, in replacement of the independent contigs as in npScarf and npScarf wag.

This idea lead to the development of npGraph - a graph-based tool that can finish genomes

in real-time.

4.3 Resolve assembly graph in real-time by long reads

with npGraph

4.3.1 Introduction

Streaming assembly methods have been proven to be useful in saving time and resources

compared to the traditional batch algorithms with examples included e.g.Faucet [152] and

npScarf [97]. The first method allows the assembly graph to be constructed incrementally

as long as reads are retrieved and processed. This practice is helpful dealing with huge

short-read dataset because it can significantly reduce the local storage for the reads, as well

as save time for a DBG construction while waiting for the data being retrieved.

npScarf, on the other hand, works on the available short-read assembly to scaffold the

contigs using nanopore sequencing which is well-known by the real-time property. The

completion of genome assembly along with the sequencing run provides explicit benefits in

term of resource control and turn-around time for analysis [97]. However, due to the greedy

approach of a streaming algorithm, as well as being an alignment-based-only scaffolding

mechanism, running the tool with default settings suffers from misassemblies [87, 153]. In

many case, the gap filling step has to rely on the low quality nanopore reads thus the accuracy

of the final assembly is affected as well. To tackle the quality issue while maintaining its

streaming execution, an assembly graph processing system is investigated as it would provide

an additional high-quality source of linking information for the assembly operations.

After the construction of an assembly graph, the next step is to traverse the graph, resolve

the repeats and identify the longest possible un-branched paths that would represents contigs

for the final assembly. Hybrid assembler using nanopore data to resolve the graph has been

82 Integration of assembly graph into scaffolding pipeline

implemented in hybridSPAdes [154] or Unicycler [87]. In general, the available tools employ

batch-mode algorithms on the whole long-read dataset to generate the final genome assembly.

In which, the SPAdes hybrid assembly module, from its first step, exhaustively looks for the

most likely paths (with minimum edit distance) on the graph for each of the long read given

but only ones supported by at least two reads are attained. In the next step, these paths will

be subjected to a decision-rule algorithm, namely exSPAnder [155], for repeat resolution by

step-by-step expansion, before output the final assembly. On the other hand, Unicycler’s

hybrid assembler will initially generate a consensus long read for each of the bridge from

the batch data. The higher quality consensus reads are used to align with the assembly

graph to find the best paths bridging pairs of anchored contigs. While the later approach

employs the completeness of the dataset from the very beginning for a consensus step, the

former only iterates over the batch of possible paths and relies on a scoring system for the

final decision of graph traversal. For that reason, the first direction is more suitable for a

real-time pipeline.

However, the challenges to adapt this approach into a real-time mechanism are obvious

and mainly come from the heavy path-finding task and the complication of self-improvement

step which is critical to a streaming algorithm. A modified DFS algorithm and a voting

system with accumulating scores calculation has been implemented to overcome these issues.

This results in npGraph, an user-friendly tool with GUI that can traverse the assembly graph

and scaffold its components in real-time as long as the nanopore sequencing process is running

and continuously generating long reads.

4.3.2 Methods

4.3.2.1 Overview

The input consists of Illumina assembly graph resulted from running assembler, e.g. SPAdes [68],

Velvet [67], AbySS [69] on Illumina short reads, together with long reads from third gen-

eration sequencing technology (Oxford Nanopore Technology, Pacbio). The long reads will

be aligned with the contigs in the assembly graph to indicate longer paths that should be

traversed. These local paths, given sufficient data, are expected to untangle the complicated

4.3 Resolve assembly graph in real-time by long reads with npGraph 83

graph and guide to the global Eulerian paths (or cycles if possible) that represent the entire

genomic sequences.

Basically the work flow of npGraph can be divided into 3 main phases: abundance binning,

graph resolving and assembly output. The first step is to bin the contigs into different

groups of population based on their coverage. Each population would include contigs of the

similar abundance in the final assembly sequences, e.g. chromosome , plasmids, or even

particular species genome in a metagenomics community. The binning phase would assist to

differentiate between repetitive contigs and unique ones as well. By using this information,

in combination with paths inducing from long reads, the assembly graph is then traversed

and resolved in real-time. Finally, the graph is subjected to the last attempt of resolving

and cleaning, as well as output the final results. The whole process can be managed by using

either command-line interface or GUI.

4.3.2.2 Pre-processing: identify repeat and unique contigs

The purpose of this step is to investigate the sequencing properties of contigs, i.e. length

and k-mer count, in combination with the graph topology, for an initial binning algorithm

to determine multiplicity for each of them.

Initial binning contigs into groups of abundances Each contig is represented as a

node in the assembly graph and an edge connecting two nodes indicates their overlap (link)

properties. This step is to cluster the significant nodes (longer than 10Kbp) into different

sets, namely core groups, based on their degree and coverage values.

DBSCAN clustering algorithm [156] is applied for this task. The idea is to consider a

coverage value of a significant contig (which can be split into more than 10,000 k-mers) to

be a sampled mean of a Poisson distribution (of k-mers count). The metric is a distance

function based on Kullback-Leibner divergence [157], or relative entropy, of two Poisson

distributions.

Assume there are 2 Poisson distribution P1 and P2 with density functions

p1(x, λ1) =
e−λ1λx1

Γ(x+ 1)
(4.1)

84 Integration of assembly graph into scaffolding pipeline

and

p2(x, λ2) =
e−λ2λx2

Γ(x+ 1)
(4.2)

The Kullback-Leibner divergence from P2 to P1 is defined as:

DKL(P1||P2) =

∫ ∞
−∞

p1(x) log
p1(x)

p2(x)
dx (4.3)

or in other words, it is the expectation of the logarithmic difference between the probabilities

P1 and P2, where the expectation is taken with regard to P1.

The log ratio of the density functions is

log
p1(x)

p2(x)
= x log

λ1

λ2

+ λ2 − λ1 (4.4)

take expectation of this expression with regard to P1 with mean λ1 we have

DKL(P1||P2) = λ1 log
λ1

λ2

+ λ2 − λ1 (4.5)

The metric we used is the distance defined as

D(P1, P2) =
DKL(P1||P2) +DKL(P2||P1)

2
=

1

2
(λ1 − λ2)(log λ1 − log λ2) (4.6)

Coverage re-estimation Due to the possible divergence of sequencing coverage relative

to the real abundance of sequences, especially the short ones, an optimization step is imple-

mented to alleviate this issue. The coverage measure of nodes (which represent contigs) are

spread throughout the graph via edges that connect them for comparison and calibration.

The assignment of coverage to edges is also helpful to identify multiplicity in later step.

The re-estimation is basically carried out by following two steps.

1. From nodes coverage, estimate edges’ value by quadratic unconstrained optimization

of the least-square function:

1

2

∑
i

li((
∑

e+
i − ci)2 + (

∑
e−i − ci)2 (4.7)

where li and ci is the length and coverage of a node i in the graph;∑
e+
i and

∑
e−i indicates sum of the values of incoming and outgoing edges from i

respectively. The above function and be rewritten as:

f(x) =
1

2
xTQx+ bTx+ r (4.8)

4.3 Resolve assembly graph in real-time by long reads with npGraph 85

and then being minimized by using Newton or gradient method.

2. Update nodes’ coverage based on itself and its neighbor edges’ measures.

The calibration is iterative until no further improvements are made or a threshold loop count

is reached.

Multiplicity estimation Based on the coverage values of all the edges and the graph’s

topology, we induce the copy numbers of every significant nodes (long contigs) in the final

paths. For each node, this could be done by investigating its adjacent edges and answer-

ing the questions of how many times it should be visited, from which abundance groups.

Multiplicities of insignificant nodes (of sequences with length less than 1, 000 bp) can be esti-

mated in the same way but usually with less confident due to more complicated connections

and greater variances of coverage values. For that reason, they are only used as augmented

information to calculate candidate paths’ score in the next step.

4.3.2.3 Untangling assembly graph by stream of nanopore data.

Building bridges in real-time Bridge is the data structure designed for tracking the

possible connections between two unique contigs (anchor nodes in the assembly graph). This

approach was implemented in npScarf gap-filling phase with assembly graph as in Figure

4.2. Here we take advantage of the graph topology and nodes’ multiplicity information to

employ a dynamic bridging mechanism. This procedure considers the dynamic changing of

multiplicity property for each node, meaning that a n-times repetitive node can become a

unique node at certain time point when its (n − 1) occurrences are identified and assigned

in appropriate unique paths.

Other than npScarf, a bridge in npGraph has several completion levels. A bridge is

only created with at least one unique contig as an end, if so it has level 1 of completion.

If both ends are identified, the level is 2. The number is greater than that only if paths

connecting two ends are found. A bridge is known as fully complete (level 4) if there is only

one unique linking path left. Given a bridge with 2 ends, a path finding algorithm (described

in next section) is invoked to find all candidate paths. Each of these paths is given a score of

86 Integration of assembly graph into scaffolding pipeline

alignment-based likelihood which are updated immediately as long as there is an appropriate

long read being generated by the sequencer. As more nanopore data arrives, the divergence

between candidates’ score becomes greater and only the best ones are voted for the next

round.

Whenever a bridge becomes complete thanks to the voting system, the assembly graph

is transformed or reduced by replacing its unique path by an composite edge and removing

any unique edges (edges coming from unique nodes) along the path. The assembly graph

would have at least one edge less than the original after the reduction. The nodes located

on the reduced path, other than 2 ends, also have their multiplicities subtracted by one and

the bridge is marked as finally resolved without any further modifications.

Path finding algorithm In npScarf with assembly graph, the path finding algorithm

is the original DFS (depth first search) which becomes computationally expensive when

the traversing depth increases. For npGraph, we implement a modified stack-based version

utilizing Dijkstra’s shortest path finding algorithm [158] to reduce the search space.

Algorithm 2 demonstrates the path finding module in general. In which, function

shortestTree(
−−−−→
vertex, distance) : (V, Z)→ V n

from line 3 of the algorithm’s pseudo code builds a shortest tree rooted from −→v , following

its direction until a distance of approximately d (with a tolerance regarding nanopore read

error rate) is reached. This task is implemented based on Dijkstra algorithm. This tree is

used on line 4 and in function includedIn() on line 19 to filter out any node or edge with

ending nodes that do not belong to the tree.

Basically, the algorithm keeps track of a stack that contains sets of candidate edges to

discover. During the traversal, a variable d is updated as an estimation for the distance to

the target. A hit is reported if the target node is reached with a reasonable distance i.e.

close to zero, within a given tolerance (line 21). A threshold for the traversing depth is set

(150) to ignore too complicated and time-consuming path searching.

It is worth to mention that the length() functions for node and edge are totally different.

While the former returns the length of the sequence represented by the node, i.e. contig from

short-read assembly, the latter is usually negative because an edge models a link between

4.3 Resolve assembly graph in real-time by long reads with npGraph 87

Algorithm 2: Pseudo-code for finding paths connecting a bridge with 2 ends.

Data: Assembly graph G{V,E}

Input: Bridge B = (−→v1 ,
−→v2) with two ending unique bidirected nodes −→v1 ,

−→v2

Output: Set of candidate paths P connecting B

1 begin

2 d:=B.length() // length of the bridge or the distance between 2 ending nodes

3 M :=shortestTree(−→v2 , d) // build shortest tree from −→v2 with range d

4 if M.contain(−→v1) then

5 S:=new Stack() // stack of sets of edges to traverse

6 edgesSet:=getEdges(−→v1) // get all bidirected edges going from −→v1

7 S.push(edgesSet)

8 p:=new Path(−→v1) // init a path that has −→v1 as root

9 while true do

10 edgesSet:=S.peek()

11 if edgesSet.isEmpty() then

12 if p.size() ≤ 1 then

13 break // stop the loop when there is no more edge to discover

14 S.pop()

15 d+=p.peekNode.length() + p.popEdge().length()

16 else

17 curEdge := edgesSet.remove()

18
−→v :=curEdge.getOpposite(p.peekNode())

19 S.push(getEdges(−→v).includedIn(M))

20 p.add(curEdge)

21 if reach −→v2 with reasonable d then

22 P.add(p)

23 d-=−→v .length() + curEdge.length()

24 return P

88 Integration of assembly graph into scaffolding pipeline

two nodes, which is normally an overlap (except for composite edges). For example, in a

k-mers DBG-derived assembly graph, the value of an edge is −k.

4.3.2.4 Result extraction and output

npGraph reports assembly result in real-time by decomposing the assembly graph into a set

of longest straight paths (LSP), each of the LSP will present a contig for the result. A

path p = {v0, e1, v1, . . . , vk−1, ek, vk} of size k is considered as straight if every edge along the

path, ei,∀i = 1, . . . , k, must be the only option to traverse from either vi−1 or vi following the

transition rule. To decompose the graph, we can just simply mask out all incoming/outgoing

edges rooted from any node with in/out degree greater than 1 as demonstrated in Figure 4.3.

These edges are defined as branching edges which stop straight paths from further extending.

Figure 4.3: Example of graph decomposition into longest straight paths. Branching edges are
masked out (shaded) leaving only straight paths (bold colored) to report. There would be 3 contigs
extracted by traversing along the straight paths here.

The decomposed graph is only used to report the contigs that can be extracted from an

assembly graph at certain time point. For that reason, the branching edges are only masked

but not removed from the original graph as they would be used for further bridging.

The final assembly output contains files in both FASTA and GFA v1 format (https:

//github.com/GFA-spec/GFA-spec). While the former only retains the actual genome se-

quences from the final decomposed graph, the latter output file can store almost every prop-

erties of the ultimate un-masked graph such as nodes, links and potential paths between

them.

https://github.com/GFA-spec/GFA-spec
https://github.com/GFA-spec/GFA-spec

4.3 Resolve assembly graph in real-time by long reads with npGraph 89

4.3.2.5 User interface

Figure 4.4: npGraph user interface including Console (0) and GUI components (1-6). The
GUI consists of the Dashboard (1-5) and the Graph View (6). From the Dashboard there are 5
components as follow: 1 the assembly graph input field; 2 the long reads input field; 3 the aligner
settings field; 4 control buttons (start/stop) to monitor the real-time scaffolding process; 5 the
statistics plots for the assembly result.

npGraph can be invoked and fully function from the command-line interface. In addition,

in order to aid the visualization of the assembly process, a GUI has been developed as well.

The GUI includes the dashboard for control the settings of the program and another

pop-up window for a simple visualization of the assembly graph in real-time (Figure 4.4).

In this interface, the assembly graph loading stage is separated from the actual assembly

process so that users can check for the graph quality first before carry out any further tasks.

The box numbered 1 on Figure 4.4 is designed for this task. Only after an assembly graph

is loaded successfully, users can move to box 2 to specify the nanopore input data. Settings

for an aligner (BWA-MEM or minimap2) in box 3 is required if the input is the raw sequences in

FASTA/FASTQ format. Another option is to run the alignment independently and provide

SAM/BAM input for the next stage of bridging and assembly. This stage is controlled

90 Integration of assembly graph into scaffolding pipeline

by buttons in box 4: the START button ignites the process while the STOP button can

prematurely terminate it and output the assembly result till that moment. The plots from

the right panel (5) depicts real-time statistics of the assembly contigs inferred from the

graph. From the second window (6), the colored vertices imply unique contigs while the

white ones involve either unspecified or repetitive elements. The number of different colors

(other than white) indicates the amount of abundant groups being detected as population

bins (e.g. chromosome versus different plasmids, or different bins in metagenomics).

A proper combination of command line and GUI can provide an useful streaming pipeline

that copes well with MinION output data. The practice is similar to the previous developed

pipelines [33, 97, 98] that allow the analysis to take place abreast to a nanopore sequencing

run.

4.3.3 Results

4.3.3.1 Hybrid assembly for synthetic datasets

To evaluate the performance of the method, npGraph was benchmarked against SPAdes with

its hybrid assembly module [154], npScarf with/without assembly graph integrated, and

Unicycler version 0.4.6 on the latter’s testing data [87] . This dataset were simulations of

Illumina and MinION raw data, generated in silico based on random and available microbial

references. Specifically, the synthetic Illumina data was generated by using a wrapper script

of ART [159] that allows uniform coverage for circular genome sequencing with justifiable

depths. PBSIM [160], on the other hand, was used to simulate the long reads.

There were three settings for each of the synthetic raw data (good, medium, bad) corre-

sponding to the quality, yield and length of reads being generated. In the SGS simulation,

the bad data consist of 100bp paired-end reads with low and uneven coverage (40X) leading

to many dead ends in the assembly graph due to missing regions in the genome. The read

length was 125bp in the medium setting with better depth distributions that could cover the

genome better. Finally, the good option provided best datasets with 150bp of read length

and 100X coverage. While the quality of SGS reads would determine the assembly graph

nature, the nanopore data plays critical role in graph resolving. The three settings leveled up

4.3 Resolve assembly graph in real-time by long reads with npGraph 91

the depth (8X, 16X, 32X) and at the same time, average length (5Kbp, 10Kbp, 20Kbp) and

maximum identities (90% ,95% ,98%) respectively. We only considered the good configura-

tions of both platforms for the sequence data being tested. Also, since the other comparative

tools do not support streaming assembly, there were only batch-mode runs being carried out

and the reciprocal results were examined by QUAST 5.0.2 [161].

Table 4.1: Comparison of assemblies produced in batch-mode using npGraph and the com-

parative methods on 5 synthetic datasets taken from https://cloudstor.aarnet.edu.au/plus/

index.php/s/dzRCaxLjpGpfKYW

Assembly N50 Mis- Error Run times

Method size (Mb) #Contigs (Kp) assemblies (per 100 Kb) (CPU hrs)

random sequence with repeats

SPAdes 3.928 226 40.5 0 0.00 0.95

SPAdes-Hybrid 4.109 3 4,000.0 0 0.85 1.196

Unicycler 4.110 3 4,000.0 0 0.47 6.783

npScarf 4.251 9 3,952.2 27 8.74 0.95 + 0.39

npScarf wag 4.554 9 3,999.6 37 6.16 0.95 + 0.45

npGraph (bwa) 4.110 3 4,000.0 0 0.47 0.95 + 0.33

ngGraph (minimap2) 4.110 3 4,000.0 0 0.47 0.95 + 0.02

Mycobacterium tuberculosis H37Rv

SPAdes 4.371 114 125.5 1 1.51 1.55

SPAdes-Hybrid 4.411 1 4,411.2 0 1.73 1.68

Unicycler 4.412 1 4,411.5 0 2.56 6.36

npScarf 4.446 4 4,389.9 12 11.41 1.55 + 0.78

npScarf wag 4.408 1 4,407.6 2 7.01 1.55 + 0.79

npGraph (bwa) 4.411 1 4,411.6 0 7.28 1.55 + 0.63

ngGraph (minimap2) 4.411 1 4,411.4 0 7.01 1.55 + 0.02

Continued on next page

https://cloudstor.aarnet.edu.au/plus/index.php/s/dzRCaxLjpGpfKYW
https://cloudstor.aarnet.edu.au/plus/index.php/s/dzRCaxLjpGpfKYW

92 Integration of assembly graph into scaffolding pipeline

Table 4.1 – continued from previous page

Assembly N50 Mis- Error Run times

Method size (Mb) #Contigs (Kp) assemblies (per 100 Kb) (CPU hrs)

E. coli O25b H4-ST131

SPAdes 5.173 159 191.0 1 1.69 1.26

SPAdes-Hybrid 5.249 7 5,109.6 0 2.65 1.40

Unicycler 5.249 3 5,109.8 0 4.29 4.70

npScarf 5.354 7 5,087.5 14 29.12 1.26 + 0.78

npScarf wag 5.413 7 5,108.1 6 30.29 1.26 + 0.78

npGraph (bwa) 5.252 3 5,112.3 0 16.37 1.26 + 0.66

ngGraph (minimap2) 5.250 3 5,111.1 0 14.61 1.26 + 0.03

Streptococcus suis BM407

SPAdes 2.119 81 131.0 0 3.84 0.59

SPAdes-Hybrid 2.147 48 1,438.0 0 0.98 0.65

Unicycler 2.171 2 2,146.2 0 2.99 2.58

npScarf 2.220 4 2,120.0 9 97.20 0.59 + 0.31

npScarf wag 2.245 4 2,128.3 3 89.64 0.59 + 0.31

npGraph (bwa) 2.167 6 2,146.7 0 26.77 0.59 + 0.21

ngGraph (minimap2) 2.167 6 2,146.2 0 22.53 0.59 + 0.01

Acinetobacter AB30

SPAdes 4.134 265 42.5 0 3.23 0.95

SPAdes-Hybrid 4.287 49 3,308.0 0 5.04 1.84

Unicycler 4.333 1 4,333.0 1 6.95 5.27

npScarf 4.595 11 4,299.7 1 120.99 0.95 + 0.45

npScarf wag - - - - - -

npGraph (bwa) 4.317 6 2,766.9 1 39.82 0.95 + 0.41

ngGraph (minimap2) 4.337 1 4,336.8 0 24.71 0.95 + 0.03

Table 4.1 shows evaluation results for 5 synthetic datasets, the output of the full run

can be found in Table C.1. In the first column of applied methods, beside Unicycler

and hybridSPAdes, npScarf is included as the original scaffolder (described in Chapter 2)

and npScarf wag is the modified version with assembly graph integrated (this Chapter,

Section 4.2). On the other hand, npGraph can use 2 different aligners, BWA-MEM and minimap2,

for its bridging phase thus both practices were included in this comparison.

4.3 Resolve assembly graph in real-time by long reads with npGraph 93

In general, the graph integrated version of npScarf improved the assembly results in

terms of misassemblies and error reduction while virtually consuming similar resources com-

pared to the original version. The only exception where the number of misassemblies being

increased was the simulation of a random sequence with many repeats. There were 10 more

mistakes detected using the later version npScarf wag. However, with additional investiga-

tions, we found that the number of misassemblies on the true positive circular sequences (3

from the reference) has been significant reduced by applying assembly graph for npScarf.

The errors mostly came from redundant sequences output from the software due to the fail-

ure in estimation of contig multiplicity. Even though using assembly graph for gap fillings,

there were no changes in the way to determine if a contig is unique or not from npScarf wag.

It still relied on the length and coverage statistics, i.e. Astats [78] to find anchors that were

critical for the backbone construction of the assembly. Redundant path findings for false

positive replicons consequently returned additional wrong translocations in the final contigs

which were reported by QUAST. Other than that, the method had successfully produced

better assemblies than the original. Regarding Mycobacterium tuberculosis H37Rv, the num-

ber of misassembled breakpoints had been trimmed down from 12 to 2, while the number of

final contigs had reduced from 4 to only one as in the reference. Results in cases of E. coli

O25b H4ST131 and Streptococcus suis BM407 also showed enhancements in terms of those

categories as well as N50 statistics. There was improvements considering the nucleotide

errors (mismatches and indels) as well from aforementioned datasets, except for the E. coli

when slightly more mismatches had been detected. However, these errors can be corrected

by running polishing tools with the raw Illumina data afterward.

For Acinetobacter AB30 synthetic data, it was an deficiency for npScarf wag in traversing

the graph to find candidate paths for a bridge of long distance due to particular large search

space. The exhaustive, naive DFS implementation for this version of npScarf required a

lot of memory to traverse a complex assembly graph that usually exceed a normal desktop’s

capacity. This issue has been fixed in npGraph when Algorithm 2 was used on the definitive

graph. This resulted in completed runs of the assembly process for all datasets with the

similar number of misassemblies compared to the best figures in this category. As shown in

Table 4.1 and C.1, the assembly graph based methods offered significant improvements when

94 Integration of assembly graph into scaffolding pipeline

compared to npScarf. Not only because of the clear drops with respect to misassemblies

and errors, but it was also reflected by the number of final contigs and their N50 as well.

To align the long reads to the assembly graph components, either BWA-MEM [41] or minimap2 [44]

was invoked in npGraph. The former option was inherited from npScarf pipeline with the

intact parameters while the latter was used with the recommended settings (-k15 -w5) for

the best sensitivity working on MinION data. Even though, BWA-MEM normally reported

more hits than minimap2 but at the same time, was responsible for more false positive align-

ments. For instance, regarding the last dataset from Table 4.1, the assembly of npGraph

using BWA-MEM was suffered from the ambiguous alignments thus more fragmented than the

other counterparts. On the other hand, referring to more complicated graphs from Acine-

tobacter A1 and the yeast Saccharomyces cerevisiae S288c from Table C.1, the number of

misassemblies from using minimap2 were increased due to the lacks of appropriate align-

ments to support accurate bridging process. However, under almost circumstances, using

either aligners would result in final assemblies with similar qualities. Furthermore, in terms

of running time and resources required, minimap2 proved to be the best option. The total

CPU hours had been trimmed down drastically with the new aligner, making npGraph the

fastest hybrid assembler available. This feature is certainly more favoured to a real-time as-

sembly as well. As the consequence, as long as minimap2 is expected to replace BWA-MEM for

long-read sequencing data alignment, it would likewise become the main aligner for npGraph

pipeline in the future.

It is noteworthy to discuss in more details the errors addressed in the above assembly

methods. This figure measured the total mismatches and indels per 100kpb from the assem-

bly sequences when mapping to the reference. As expected from hybrid assemblies where

Illumina sequencing data were used as the main building blocks, the figures were hardly

bigger than 100 (equivalent to 0.1% error rate) for almost every case. In addition, the indels

errors, which mainly caused by TGS data, were found relatively low in the final contigs (Ta-

ble C.1). The majority of the differences accounted for the mismatched nucleotides caused

by the alternative paths connecting the unique anchors from the backbone of the assembly.

This phenomenon may root from homologous repeats or sequencing errors of the genome.

From all the hybrid assemblers, hybridSPAdes reported results with highest fidelity. This

4.3 Resolve assembly graph in real-time by long reads with npGraph 95

meant that the performance its decision-rule algorithm exSPAnder [155] was the most ac-

curate amongst all path finding methods. As the trade-off, there were fewer connections

satisfying its quality threshold, resulting in the fragmented assemblies in cases of Strepto-

coccus suis or Acinetobacter samples (Table 4.1 and C.1). Unicycler, which employs an

algorithm based on semi-global (or glocal) alignments [162] with the consensus long reads,

returned the second best reliable and at the same time, closest-to-complete results overall.

npScarf, on the other hand, exploited the long reads for the gap filling thus inherited the

high error rates from them. By integrating the assembly graph for the task, the errors were

reduced in general (random sequences, M. tuberculosis, S.suis from Table 4.1) but not com-

pletely since the mis-placed contigs were still not resolved in other circumstances. npGraph

significantly reduced the errors compared to npScarf, however the figures were still higher

than the those of the best counterparts. This implied a more robust decision making system

is needed in npGraph’s real-time path finding module for even better output’s accuracy.

4.3.3.2 Hybrid assembly for real datasets

Several sequencing datasets of actual bacterial samples [140] were used in this scenario.

The data included both Illumina paired-end and MinION sequencing based-call data for

each sample. Unlike previous settings, rather than the default output, the optimal SPAdes

assembly graph detected by Unicycler were used for npGraph algorithm as well. This step

had been proved to be useful in selecting the best graph available, amongst SPAdes runs with

ranging k-mer values, that have dead-ends and number of contigs minimized [87]. Likewise,

as mentioned before, the quality of the initial assembly graph would considerably influence

the final results of npGraph.

Due to the lack of available reference genomes, fewer statistics were reported by QUAST

for the comparison of the results. Instead, we investigated the number of circular sequences

and PlasmidFinder 1.3 [144] mappings to obtain an evaluation on the accuracy and com-

pleteness of the assemblies. Table 4.2 shows the benchmark results of npGraph (using

minimap2) against Unicycler on three datasets of bacterial species Citrobacter freundii,

Enterobacter cloacae and Klebsiella oxytoca.

From the first dataset, there was high similarity between final contigs generated by two

96 Integration of assembly graph into scaffolding pipeline

Table 4.2: Assembly of real datasets using Unicycler and npGraph with the optimized SPAdes

output. Circular contigs are highlighted in bold, fragmented assemblies are presented as X|Y where
X is the total length and Y is the number of supposed contigs making up X.

Unicycler npGraph Replicons (based on PlasmidFinder 1.3)

Citrobacter freundii 5,029,534 5,029,486 Chromosome

CAV1374 109688 109688 IncFIB(pHCM2) 1 pHCM2 AL513384

100,873 100,873 IncFIB(pB171) 1 pB171 AB024946

85,575 85,575 IncL/M(pMU407) 1 pMU407 U27345

43,621 43,621 repA 1 pKPC-2 CP013325

3,223 3,223 -

1,916 1,916 ColRNAI 1 DQ298019

14,464|3 14,456|2 -

Enterobacter cloacae 4,806,666|2 4,858,438|2 Chromosome

CAV1411 90,451 90,693|2 IncR 1 DQ449578

33,610 33,610 repA 1 pKPC-2 CP013325

13,129|2 14,542|4 -

Klebsiella oxytoca 6,153,947|5 6,155,762 Chromosome

CAV1015 113,105 113,105
IncFII(SARC14) 1 SARC14 JQ418540;

IncFII(S) 1 CP000858

111,395 111,395 -

108,418 109,209|13 IncFIB(K) 1 Kpn3 JN233704

76,183 76,186 IncL/M(pMU407) 1 pMU407 U27345

11,638 11,892|2 -

assemblers. They shared the same number of circular ultimate sequences, including the chro-

mosomal and other six replicons contigs. The only divergence lied on the biggest sequence

(' 5.029Mbp) when the Unicycler’s chromosome was 48 nucleotides longer than that of

npGraph. Five out of six identical replicons were confirmed as plasmids based on the occur-

rences of appropriate Origin of replication sequences (PlasmidFinder database). In detail,

4.3 Resolve assembly graph in real-time by long reads with npGraph 97

two megaplasmids (longer than 100Kpb) were classified as IncFIB while the other two mid-

size replicons, 85.6Kbp and 43.6Kpb, were incL and repA respectively, leaving the shortest

one with 2Kbp of length as ColRNAI plasmid. The remaining circular sequence without any

hits to the database was 3.2Kbp long suggesting that it could be phage or newly replicon’s

DNA. Lastly, there were still 14.5Kbp unfinished sequences resulted in 3 linear contigs from

Unicycler and 2 for npGraph respectively.

The assembly task for Enterobacter cloacae was more challenging as the chromosomal

DNA sequence was not been fully resolved using either method. The chromosome size was

estimated to be approximately 4.8Mbp but had been broken into two smaller pieces. npGraph

returned longer stretches of length 3.324Mbp and 1.534Mbp while the figures were 2.829Mbp

and 1.978Mbp from Unicycler’s output. However, the number of circular sequences detected

by Unicycler was one more than the other (2 versus 1). They were corresponding to 2

plasmids, namely IncR and repA. While the latter were recognized by both methods, the

longer plasmid sequence was fragmented running npGraph. Similar to the previous dataset,

there were around 14Kpb of data were unable to be finished by the assemblers.

Finally, assembly for Klebsiella oxytoca saw fragmented chromosome using Unicycler

but it was a fully complete contig for npGraph with 6.156Mbp of size. The two assem-

blers shared 3 common circular sequences where two of them were confirmed plasmids. The

first identical sequences represented a megaplasmid (' 113Kbp) with two variations of In-

cFII’s origin of replication DNA being identified. The other agreed plasmid were IncL/M

with 76Kbp of length. Particularly, there was one circular contig with length greater than

100Kbp but returned no hits to the plasmid database, suggesting the importance of de novo

replicon assembly in combination with further interrogations. Unicycler detected another

megaplasmid of size 108.4Kbp which was fractured by npGraph. The dissolution was also

observed in npGraph for the final contig of length 11.6Kbp where it failed to combine two

smaller sequences into one.

In addition to what presented in Table 4.2, dot plots for the pair-wise alignments between

the assembly contigs were generated and can be found in Appendix Figure C.1. Interest-

ingly, beside all other agreements, there was a structural difference using two methods for

E. cloacae CAV1411 genome assembly. This was caused by the inconsistency of a fragment’s

98 Integration of assembly graph into scaffolding pipeline

direction on the final output contigs. However, when compare to a reference genome of

the same bacteria strain (GenBank ID: CP011581.1 [163]), contigs generated by npGraph

demonstrated a consistent alignment which was not the case for Unicycler results (Ap-

pendix Figure C.2). Even though this might reflect a novel variation between bacterial

samples of the same strain, it was more likely a misassembly by using Unicycler.

Overall, by testing with synthetic and real data, npGraph proved to be able to generate

assemblies of comparative quality compared to other powerful batch-mode hybrid assemblers,

such as hybridSPAdes or Unicycler. Furthermore, similar to npScarf, it has the advantage

in term of supporting real-time assembly. The next section will address this utility and the

interactive GUI bundled in npGraph.

4.3.3.3 Real-time mode hybrid assembly

Figure 4.5 demonstrates the real-time mode performance of npScarf and npGraph via N50

statistics during the assembly of 4 example datasets. This experiment would discover the rate

of completing genome assemblies of the new method, set aside the accuracy aspect which had

already been discussed previously. npScarf wg basically scaffolds the pre-assembly contigs

in the same manner with the original version thus was not discussed here.

As can be observed from all the plots, npGraph and npScarf both converged to the same

ultimate completeness but with different paces and patterns. Apparently it took more data

for npGraph to finish the same genome than the other. The reason stems from the fact that

the new algorithm implemented a more ‘conservative’ approach of bridge construction with at

least 3 supporting long-reads for each to prevent any potential mis-bridging. Unlike npScarf

when the connections could be undone and rectified later if needed, a bridge in npGraph will

remain unchanged once created. The plot for E. coli data clarifies this behaviour when a

fluctuation can be observed in npScarf assembly at ' 3-folds data coverage. On the other

hand, the N50 length of npGraph is always a monotonic increasing function. The sharp

‘jumping’ patterns suggested that the linking information from long-read data had been

stored and exploited at certain time point decided by the algorithm. Once a unique path

has been determined, the bridge can be formed to connect the fragments together into longer

sequences.

4.3 Resolve assembly graph in real-time by long reads with npGraph 99

(a) Citrobacter freundii CAV1374 (b) Escherichia coli K12 MG1655

(c) Klebsiella 30660 NJST258 (d) Klebsiella NTUH K2044

Figure 4.5: N50 statistics of real-time scaffolding by npScarf versus npGraph.

Figure 4.6 shows an example of the real-time graph resolving process being displayed on

GUI. The result graph, after cleaning, would only report the significant connected compo-

nents that represents the final contigs. Smaller fragments, even unfinished but with high

remaining coverage, are also presented as potential candidates for further downstream anal-

ysis. Further annotation utility can be implemented in the future better monitoring the

features of interests as in npScarf.

4.3.4 Conclusions

Assembly graph is the data structure describing the assembly process at a lower level of more

details. The current chapter brings this informative knowledge to the original npScarf’s

100 Integration of assembly graph into scaffolding pipeline

(a) Initial graph (b) Resolved graph

Figure 4.6: Assembly graph of Shigella dysenteriae Sd197 synthetic data being resolved by
npGraph and displayed on the GUI Graph View. The SPAdes assembly graph contains 2186 nodes
and 3061 edges, after the assembly shows 2 circular paths representing the chromosome and one
plasmid.

mechanism in two ways, either partly for the gap-filling module only (npScarf wag) or

completely as the building block of the assembly construction method (npGraph).

While the first approach showed improvements in terms of base’s accuracy for the final

results, it had limited ability in rectifying the misassemblies from the original version due to

false positive alignments at contig level. The issue can be tackled by applying the assembly

graph completely as in npGraph. With a more conservative bridging method applied, the

new method may consume more data to confidently construct the assembly but at the same

time, the number of mis-located fragments has reduced significantly. Furthermore, users can

monitor the assembly in an interactive way providing the assembly GUI.

Compared to the other hybrid assemblers of similar methodology, such as hybridSPAdes

and Unicycler, there are still rooms for further development of npGraph. More compre-

hensive pre-processing step is needed for a better input graph possible since it would affect

the completeness of final results. Importantly, a robust real-time voting system should be

implemented to be able to detect the most probable path amongst all candidates in an ef-

ficient way. This would alleviate the data consumption of the npGraph while at the same

time, maintain high confident and accurate scaffolding.

5
MinION sequencing analysis for viral genomes

A virus can change the fate of the world; power

has nothing to do with being tiny or giant!

–Mehmet Murat Ildan

102 MinION sequencing analysis for viral genomes

This chapter describes another MinION sequencing application for short circular genomes,

e.g. bacterial plasmids or viruses. The text emphasizes the relevant computational methods

of the application. This study exploits the excessive length of nanopore reads and their po-

tential to harbor multiple copies of small-sized viral DNA sequences. These genomes, given

sufficient coverage depth, can be reconstructed by a high-resolution consensus calling of the

single molecule Even though this study does not present real-time results from the device,

it is straight-forward to adapt such pipeline using the developed modules since they operate

rapidly in a read-by-read manner.

The analyses reported in this chapter come solely from my contribution to a joint project

studying plant viral genomics. The lab works, including but not limited to DNA extraction,

amplification as well as library preparation and sequencing steps were established indepen-

dently thus will not be described in details. The data has not yet been published but

permission to document part of the preliminary research findings for this thesis has been

granted by all collaborators.

5.1 Introduction

There have been attempts to sequence bacterial plasmids using MinION device as part of

a whole genome assembly [136, 138] or in exclusively studies [139, 164]. As mentioned

earlier, studying the whole structure of replicons is important as they are responsible for

the horizontal gene transfer between strains, e.g. the dissemination of AMR factors in

superbugs. At the same time, it is critical to understand the mechanism of viral transmission

and evolution in real-time to monitor and control epidemics [165–168]. As a result, nanopore

sequencing for viral samples has already been employed in clinics or even in the field during

outbreaks, e.g. influenza [169], Ebola [170] or Zika [171] viruses.

The ONT MinION benefits sequencing short genomes, such as viruses, in many ways es-

pecially in terms of genome assembly. In fact, we regularly obtain nanopore reads that cover

the whole length of the circular IncP-α plasmid RP4 (around 60kpb long) genomes [164],

which significantly assist in the assembly phase. Even without associated Illumina data,

nanopore data can generate results with decent quality after consensus calling thanks to

5.1 Introduction 103

sufficient high coverage [50]. The multiplexing method is usually applied to reduce the costs

and increase the scale of microorganisms study of interests [171].

Here another approach is presented for viral sequencing using ONT platform. A special

amplification technique is employed to increase the copy numbers of the whole circular

DNA molecules before being subjected to the sequencing step by MinION and relevant

computational task for subsequent assembly.

Rolling-circle DNA amplification PCR is the most widely used amplification method

for many organisms in general but for this study, we employed different whole genome am-

plification technique in order to obtain longest sequences possible for MinION sequencing.

The cloning method is known as rolling-circle amplification (RCA), a one-step whole-genome

multiplication that has been applied for small circular DNA molecules, especially virus fam-

ilies [172–178].

Figure 5.1: General mechanism of Rolling-Circle Amplification. Figure is adapted from [179]
under Elsevier license (attached at the end of this thesis). Primer sequences are highlighted in red,
the circular genome subjected for amplification is in black and the synthesized clones are in blue.

The basic principle for RCA is shown in Figure 5.1 [179]. On top is an example of the

process with only one imaginary primer binding to a template circular. The synthesis starts

from this point and move across the whole length of the molecule in the complementary

direction as being guided by the DNA polymerase phi29 of bacteriophage Baccilus subtilis.

104 MinION sequencing analysis for viral genomes

Due to this particular enzyme’s features, the incorporation can continue passing the binding

site whilst the newly synthesized strand being displaced from the track. Depending on the

size of the template circle, the copying process can go several rounds, resulting in elongated

molecules consisting of multiple copies of the original. From the diagram in the bottom of

Figure 5.1, multiple random primers are used for the amplification as it should usually be

in practice. In this case, the abundance of primers from the reaction mixture can bind to

the displaced strand and trigger additional syntheses, creating the branching patterns of the

cloning process.

The RCA products are called concatemers as they are long concatemeric molecules con-

sisting of consecutive copies of the target DNA sequence. Normally, restriction enzymes are

used to chop them into separated monomers before taking further steps. For our method,

concatemers are directly sequenced by MinION and computational methods are used after-

ward to detect such patterns.

Viral samples The viral genomes used in this study belonged to the plant infectious family

Caulimoviridae, or caulimovirids with size varied around 7-9Kbp. Amongst nine genera

detected [180, 181], two of them were investigated, namely Badnavirus and Caulimovirus,

represented by Banana streak MY virus (BSMYV) and Cauliflower mosaic virus (CaMV)

respectively.

5.2 Bioinformatics analyses

5.2.1 Data description

A multiplex sequencing has been conducted for 4 samples with the Rapid Barcode Sequencing

kit. The barcode assignment is given in Table 5.1.

5.2.2 Reference-based detection of concatemers

Raw signal data from MinION were base-called and demultiplexed by Albacore version

2.1.0. This resulted in 4 DNA sequence files corresponding to 4 barcoded samples, only pass

5.2 Bioinformatics analyses 105

Table 5.1: Viral samples subjected to MinION barcoding sequencing

Barcode Sample Description Pass reads N50

08 CaMV+ Cauliflower mosaic virus 14,385 6,707

09 BSMYV+ Banana streak MY virus 3,389 8,178

10 BSMYV- Banana streak MY virus, negative control 4,653 6,023

12 CaMV- Cauliflower mosaic virus, negative control 9,942 4,919

reads from those sequences were used for further analyses.

Work flow Due to the application of rolling circle amplification, each long read is expected

to contain more than one copy of the virus DNA, potentially sitting next to each other in a

concatemer. We create an in-house pipeline to detect and extract the monomer sequences

out of the reads to build their consensus as shown in Figure 5.2.

Figure 5.2: Pipeline to reconstruct viral genome sequences from MinION long reads.

In more details, the pipeline is implemented in the following steps:

106 MinION sequencing analysis for viral genomes

1. align nanopore reads to the corresponding reference by minimap2 [44] version 2.11-r797

and keep only the ones covering > 80% of the target; then induce locations of monomer

on each reads based on the alignments.

2. for each monomer inferred, scanning for the nearest hit to the tRNAMet 12 nucleotides

motif TGGTATCAGAGC where the DNA synthesis is primed in Caulimovirids

replication cycle [182, 183]. Those loci are then used as final breakpoints for a later

chopping step to extract monomers.

3. build consensus sequence on those extracted monomers by Racon [50] version 1.2.1.

Align to the reference Figures 5.3a and 5.3b show the read length histogram of only

mapped reads from nanopore data of barcode 08 and 09 respectively. Two negative control

samples (barcode 10 and 12) returned no hits when aligned to their corresponding reference

thus not shown. As can be observed, CaMV virus (barcode 08) has richer sequencing data

compared to BSMYV sample (barcode 09).

(a) Mapped reads from barcode 08 (b) Mapped reads from barcode 09

Figure 5.3: Mapped read length histogram of barcode 08 and 09.

Concatemer extraction Chart D.1 presents the number of k-concatemers (concatemers

with exact k monomers extracted) for each positive sample (barcode 08 and 09). The longest

5.2 Bioinformatics analyses 107

concatemer detected was a 7-concatemer of CaMV DNA sequence. There was also one 6-

concatemer and one 4-concatemer from this sample. In addition, the numbers of detected

k-concatemers for Cauliflower mosaic virus were more than 1 for k = 3 (2 reads) or k = 2 (6

reads). Monomer reads made up the most abundance group with 33 CaMV sequences and

5 BSMYV sequences. There were no other concatemers detected for the latter sample.

The extraction step generated in total 68 and 5-folds coverage of monomers respectively

for barcode 08 and 09. By using these monomer sequences, we can pile them up and call

the consensus sequence out of the nanopore data. The obtained sequence coverage played a

critical role for the accuracy of the result: for barcode 08, the consensus was 99.5% identical

to its reference while it was only 93.72% in case of barcode 09.

5.2.3 Reference-free method

Assuming no references are given, the duplication of a DNA sequence in a nanopore read can

still be detectable by using self-alignment to study the repeat pattern. A proposed approach

to investigate periodic repeat patterns is to use auto-correlation function (ACF) in digital

signal processing (DSP) technique. Similar DSP-based methods have been developed for

fast biological sequence alignment and repeat detection [184, 185]. Here I present another

application of signal processing techniques to detect the concatemers of the aforementioned

viral sample using nanopore data. Tools are developed to work on both base-called and

raw signal sequences. For better demonstrating purpose, analysis result from the longest

7-concatemer read (from barcode 08 sample) is described without loss of generalization.

5.2.3.1 Auto-correlation function

Given an infinite sequence of discrete signals S = . . . s1s2 . . . sk . . . where S(i) = si , its ACF

f(n) is defined as the cross correlation to itself

f(n) =
∑
k

sk ∗ sk−n (5.1)

where ∗ operator returns a similarity score when compare two operands, e.g. complex

conjugate for s(i) ∈ C [184], and n stands for the lag value. By increasing this value, we

108 MinION sequencing analysis for viral genomes

have a sliding dot product between the signal vector with itself which in expect give peaks

when repeat parts of the sequence are overlapped as demonstrated in Figure 5.4. Note that

for every signal sequence S, there is always a peak at n = 0 as a result from self-overlapping.

In addition, the ACF values are symmetric with regard to this center value.

Figure 5.4: Example of ACF sliding dot product for a sequence with two repeats. The plots
shows 3 dominating peaks corresponding to n = −100, n = 0, n = 100.

In fact, the signal sequence to process is definite: S = {si}, i = 1 . . . L for sequence with

length L. Out of range values are normally zero padded sj ≡ 0 ∀j ≤ 0, j > L or duplicated

so that si ≡ si+n×L ∀n ∈ Z. In this study, the former filling method is used.

The following content will focus on ACF-based attempts in determining the concatemeric

pattern of nanopore long reads. Firstly, in the next section, a straightforward strategy will

be employed directly on the base-called sequence of nucleotides. The sliding dot product

algorithm for the time-domain signal, together with a simple filter will be implemented

initially. This simple but applicable method would serve as a proof-of-concept for the idea of

using DSP technique to the problem. After that, we introduce a more robust method that

allows fast calculations not only on the DNA sequences, but also on the raw squiggle signals

from the underlying ONT sequencing process. The ability to operate quickly per read would

enable the concatemers detection to work in a streaming fashion so that it can be integrated

in a real-time pipeline as aforementioned.

5.2 Bioinformatics analyses 109

5.2.3.2 Concatemers detection protocol using DSP

To apply DSP algorithm, the first step is to convert the nucleotides sequence into appropriate

digital signal. Given a DNA sequence, we have S(i) = si ∈ {A,C,G, T} ∀i ∈ N. A

straightforward conversion is to map letters to their corresponding numerical values, e.g.

{1, 2, 3, 4} respectively. Consequently, the ∗ operator from Equation 5.1 can be simply

adapted to the Kronecker delta function

si ∗ sj ≡ δsi,sj =

 0 if si = sj

1 if si 6= sj

As shown in Equation 5.2, the ACF values are normalized by the overlap length to alleviate

the position-dependant behaviour of the function that is important to locate peaks that

represent monomer overlaps in next step. Due to the errors (indels/mismatches) of MinION

sequence data, these overlaps are not aligned perfectly as of one-to-one mapping of base

pairs but rather scattered hits along the overlapped region. This results in a ‘group of

nearby spikes’ rather than a single prominent peak, making it more difficult to locate exact

coordinates of monomers in the read. For that reason, a low-pass filter (LPF) is needed

to help reduce the noises, or smooth the signal before further analysis. Primarily, we use

running average with a fixed window size (ws) of nearby values for such task. We set the

window size equal to 10 for this scenario.

Overall, for this case, we investigate the signal of the normalized Kronecker delta function

(NKDF) as shown in Equation 5.2

f(n) =

L∑
i=1

δsi,si−n

L− |n|
, n ∈ (−L;L) (5.2)

then apply the running average filter on it

f(n) =

ws/2∑
i=−ws/2

f(n+ i)

ws

Figure 5.5 presents the result signal for the detected 7-concatemer versus a random

synthetic read with similar length. According to the plots, there is only one distinct peak

110 MinION sequencing analysis for viral genomes

(a) ACF for a random DNA sequence (b) ACF for the 7-concatemer read

Figure 5.5: ACF values for a random read (5.5a) versus the 7-concatemer detected (5.5b).

from the ACF signal of the random read which reflects the trivial case of self-alignment. On

the other hand, from the longest concatemer read available, we can observe 7 clear peaks on

each side of the symmetric squiggle representing the same copy number of the viral monomer.

These peaks are possibly identified by a peak picking algorithm which can determine the

significant local maxima located across the range with similar distances.

On the other hand, the formula 5.2 implies greater variance of the signal values toward

the ends of the range (−L;L) due to fewer overlap data points involved. This tailing issue

would hinders the algorithm to locate the monomers at two ends of a read. This effect can

be observed from Figure 5.5b where the squiggles become more diverse leaving further the

center lag (n = 0). For that reason, the peak picker will start the scan from n = 0 to either

side for distinct spikes of higher confident and determine the period before reaching the noisy

peaks toward the ends. Figure D.2 from the Appendix gives more examples of ACF-induced

signals for several other k-concatemers using this calculation method. Similarly, in all cases

the fluctuations at the ends of ACF graphs are plotted beside the ‘genuine’ maxima. This

introduces difficulties to detect ‘real’ hits close to the ends especially when k = 1 as we have

no other peak for comparison.

In general, via above experiment, the DSP approach utilizing ACF-based estimation

has been proved to be feasible to detect the concatemeric pattern of nanopore RCA reads.

However, there are several points needed to be further developed and improved from this

protocol to be able to work in an applicable pipeline. The most important task is to optimize

the algorithm to reduce the running time. The current sliding method takes O(L2) time

for a read of length L. Even though it is relatively reasonable for viral concatemers of

5.2 Bioinformatics analyses 111

medium length (' 50Kbp), it would become time-consuming to process reads with high

copy numbers which are favoured and aimed for in this study. Also, the turn-around speed

per read is critical in real-time analysis, not to mention the desired application at the level of

sequencing raw signal from the very pre-basecalling stage. Another essential operation is a

robust LPF mechanism since the simple moving average method is unable to comprehensively

remove the high-frequency noises from the target signal. Lastly, a peak picking algorithm

is needed to spot the periodical maxima and chop the repeat sequence at those breakpoints

into monomers of interest. All of those steps will be addressed in the following section.

5.2.3.3 Rapid method to detect concatemeric signal

Generalized problem for real signal data. While Kronecker delta function is fast to

calculate, it is only suitable for sequences of discrete, categorical values e.g. DNA letters.

Nanopore raw signal for a read is given as a series of real values of electrical current sam-

pled thousands times per second when the biological molecular transiting through the pore.

Processing concatemers at raw signal level before base-calling would accelerate the whole

pipeline to a new level, as well as improving the quality of signal for the next stage.

From this context, the sequence S, S(i) = si ∈ R ∀i would have ACF written as

f(n) =
∑
k

sksk−n

where the ? operator in Equation 5.1 is replaced by the multiplicity in R instead of the

previous Kronecker delta function for discrete values of Z. Due to the symmetric property

of ACF, only the right half of the range will be considered instead of the whole plot as

demonstrated in Figure 5.5, corresponding with lag from 0 to L − 1. The trivial peak of

self-alignment thus locates in the very first element of the array.

Rapid estimation method for normalized ACF signal Calculation of ACF function

given above is straight-forward and efficient using Fast Fourier Transform (FFT) [186–188]

with complexity O(L logL). However, to additionally normalize the signal while maintaining

the speed aspect of the algorithm is not a trivial task. To achieve such goal, the Normalized

Square Difference Function (NSDF) [189] is implemented. This function can be calculated

112 MinION sequencing analysis for viral genomes

as shown in Equations 5.3.

h(n) = 1−

∑
k

(sk − sk−n)2

∑
k

(s2
k + s2

k−n)

=

∑
k

2sksk−n∑
k

(s2
k + s2

k−n)

=
2f(n)
g(n)

(5.3)

The values of h(n) would fall in (0, 1] with ∀n, representing a normalized measure of proximity

between S and its n-delay signal.

Algorithm 3: Algorithm to calculate the NSDF by using FFT.

Input: Time-domain sequence signal S of lenth L

Output: NSDF signal H

1 Function ACF(S, R):

2 R := fftForward(S) // Convert signal to frequency domain by FFT

3 R[i] := R[i] ? R[i], ∀i = 0 . . . (L− 1) // complex conjugate element-by-element

4 R := fftReverse(R) // Convert back to time domain by reverse FFT

5 return

6 Function SS(S, M):

7 SS[i] = S2[i], ∀i = 0 . . . (L− 1)

8 M [0] = 2 ∗ sum(SS) // get sum of all elements in SS

9 M [i] = M [i− 1]−SS[i− 1]−SS[L− i], ∀i = 1 . . . (L− 1) // update incrementally

10 return

11 begin

12 ACF(S,R) // calculate ACF and assign to R

13 SS(S,M) // calculate lag sum square and assign to M

14 H[n] =
2R[n]
M [n]

, ∀n = 1 . . . (L− 1) // calculate NSDF as in Equation 5.3

15 return H

More than that, this function is determined by f(n) and g(n) which can be both measured

rapidly by using FFT (using JTransform [190], a Java library for DSP) and incremental

5.2 Bioinformatics analyses 113

calculation as shown in Algorithm 3.

LPF with Blackman windowing function. The plain moving average method is helpful

to show the trend of the overall signal but not sensitive enough to completely remove the

noises encountered. Figure D.3 in the Appendix plots the NSDF of the 7-concatemer read

with large smooth window sizes of 10, 000 and 20, 000. As a peak scanning method is sensitive

to abundant of local optima, a ‘smoother’ transition is expected via a signal filtering step.

For that reason, a finite impulse response (FIR) filter by windowing is implemented.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

ft=.25

Pass band

Stop band

normalized frequency

Ideal LPF frequency response

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-40 -20 0 20 40

Ideal LPF impulse response

Figure 5.6: Example of ideal LPF at ft = 0.25Hz and its corresponding impulse response.

Figure 5.6 gives example for an ideal LPS with transition (cutoff) frequency ft = 0.25.

The left plot presents the frequency response of the filter in frequency domain (normalized

with respect to the sampling frequency). In this perfect scenario, a brick-wall filtering is

expected when any frequency values below 0.25Hz would pass and all higher components

are stop. This system would have an equivalent impulse response as shown on the right plot,

given by function IRF:

IRF(x) = 2ft sinc(2πftx)

where sinc(x) is the sine cardinal function

sinc(x) =

 sinx
x if x 6= 0

1 if x = 0

In practice, to implement a finite impulse response LPF, only a window of the shifted sinc

function is sampled for a finite number of filter weights. We set this window’s length, or

114 MinION sequencing analysis for viral genomes

filter length, as the length of signal L.

IRF(n) =


sin [2πft(n−

M

2
)]

π(n− M

2
)

if n 6= M
2

2ft if n = M
2

(5.4)

where M is the filter order, defined as M = L− 1.

Furthermore, to reduce the ripple from the ringing artifact due to crude approach of

truncating the infinite ideal impulse response [191, 192], we apply Blackman windowing [193,

194] instead of a rectangle window (w(n) = 1) on the IRF values.

w(n) = 0.42− 0.5 cos
2πn

M
+ 0.8 cos

4πn

M
(5.5)

Overall, to apply the LPS with Blackman windowing on the NSDF signal, we follow the

steps below.

(1) Calculate the weights of the LPF as a function of cutoff frequency ft as in Equation 5.4

(2) Multiply the result with the windowing calculated in Equation 5.5

(3) Apply FFT for the result filter values.

(4) Calculate FFT of the NSDF and multiply its values element-by-element to the filter

values in the frequency domain.

(5) Calculate the reverse FFT to get the result in the time domain.

The cutoff frequency (before being normalized) is empirically set as 100Hz assuming

that a 100-times RCA duplication is virtually impossible or due to process’s artifacts. This

threshold can be set more stringent with knowledge about specific reference genome size

and obtained sequencing read length. Figure 5.7 shows the filtered signals for the only

7-concatemer read, at both pre- and post- base-calling stage. Additionally, Appendix Fig-

ure D.4 depict plots from applying the method with cutoff frequency of 30Hz. As expected,

the signal will become ‘smoother’ as the transition frequency decreased but would risk the

specificity of the signal and generalization of the method when apply to other dataset. The

filtered signal is now ready to be used as input for a pick peaking method to detect the

repeat pattern of the concatemeric reads.

5.2 Bioinformatics analyses 115

(a) DNA sequence

(b) Raw signal

Figure 5.7: Peak picking results for a 7-concatemers NSDF signal processed with LPF using
cutFreq = 100 of (5.7a) the base-called DNA sequence and (5.7b) its corresponding raw signal.

Pick peaking algorithm A list of candidates are first selected out of all local maxima

by choosing the highest ones locating between every positively sloped zero crossing and

negatively sloped zero crossing [189]. By setting the cutoff frequency, a respective minimum

period (or monomer length) is determined as a consequence: minLen = 1
cutFreq . Any

peaks on the left of this value will be ignored and the algorithm will iteratively scan to the

right in the remaining peaks list for the correct first peak. The correct first peak at n1 must

satisfy criteria as below:

(1) There are at least b Ln1
c−1 more peaks with similar distances along the signal sequence.

116 MinION sequencing analysis for viral genomes

(2) The sum of these peaks’ height must be more than a certain portion, e.g. 0.8, of the

counterpart for all candidates.

The algorithm will stop at the very first coordinate that meets above 2 conditions and return

the list of periodic peaks which can be used to break the concatemer into monomers.

Figure 5.7 also reflects the peak-picking results applied for the longest concatemeric read.

In both signal level, we detect exactly 7 peaks (highlighted in red dots) corresponding to the

breakpoints that can be used for a 7-concatemer chopping process. Interestingly, when the

peaks from DNA signal shows very stable repeat pattern, there is a slight variance from raw

signal toward the far end. This phenomenon is shown clearer in Appendix Figure D.4b when

the sixth peak is shifted more to the right, considerably making the sixth monomer longer

and the seventh monomer shorter than average. We argue that there should be an unsmooth

transition of the squiggle signal reading from the sequencing process [195]. This is due to

the nonuniform translocation time of the DNA molecule caused by the motor enzyme at the

homopolymeric regions [196–198] and normally responsible for the high indels from nanopore

sequencing [199–201]. However, the base-calling in this case has successfully manipulated

the situation, resulting in more evenly-distributed peaks being detected.

Overall, via above example, we demonstrated that a 7-concatemer can be detected using

the reference-free method based on NSDF signal investigation. Similarly, any k-concatemer

(k ≥ 1) can be identified by the same manner and its monomers can be extracted by chopping

at respective break-points. However, in order to obtain results of high confident, only reads

corresponding to k ≥ 2 should be selected as they would show more than 2 peaks for an

affirmative picking task.

5.3 Conclusion

This chapter demonstrated a method of using MinION sequencing together with RCA for

small-sized circular genomes, in particular two samples from Caulimovirids. Results from this

preliminary finding showed that concatemer molecules generated from RCA can be sequenced

directly by the thumbnail sequencer without using restriction enzymes to physically divide

them into monomers.

5.3 Conclusion 117

In fact, this step can be accomplished by using computational approaches, given or not a

reference sequence. In the reference-based method, corresponding monomers’ break-points

for RCA reads could be detected straightforward, resulting in abundance of single-copied

sequences that could be subjected to a consensus calling. For the de novo detection algo-

rithm, concatemeric reads were more confidently identified if they contains higher number of

monomer duplication. For that reason, we can apply the reference-free method on data from

CaMV barcoded sample to extract monomers and run the consensus calling with 35-folds

coverage. RCA for BSMYV, on the other hand, returned solely monomers which were ex-

clusively detectable given the reference DNA. Further improvement from sequencing phase

should be made in order to achieve longer stretches of clones so that the pipeline can operate

completely without prior knowledge about the target genome.

The implemented module could operate rapidly read-by-read thus it is able to adapt for

a streaming pipeline. For instance, a viral or plasmid sequencing would run until sufficient

copies of monomers are produced for each sample. Furthermore, the whole process can be

established at raw signal level, before the base-calling step. For reference-based algorithm,

the alignment step can be carried out between sequences of squiggle signal, as described in

Read-Until protocol [93]. In case a reference is not provided, an DSP implementation based

on NSDF is available for the task of determining concatemers.

In summary, this approach provide another promising method to study relative small but

highly varied genomes of microorganisms. For instance, the longer concatemeric sequences

will offer superior resolution to the nucleotides of individual virus thus enhancing the knowl-

edge about inter- and intra-sample variations of this rapid evolving species. Continuing

efforts are made to improve the monomer copy numbers from RCA reads so that we can

utilize the methods in more comprehensive ways for real-life applications.

118 MinION sequencing analysis for viral genomes

6
Conclusion

In the end we come up with a conclusion that we

need to start from somewhere.

–Deyth Banger

120 Conclusion

6.1 Thesis summary

The advent of Third-generation sequencing methods, particularly ONT platforms, have

brought novel opportunities together with challenges to the field of bioinformatics similar

to those arisen from the arrival of Second-generation sequencing methods before [202, 203].

Chapter 1 has provided a brief review as well as comparison between these two generations

of sequencing methods, aiming at their applications in genome assembly. Specifically, the

long spanning reads generated in real-time from ONT MinION device had been found to be

useful in generating more complete assemblies despite of their error profiles [34, 35, 85].

Throughout this thesis, computational methods have been designed and applied to com-

plete genomes as fast as possible. For that purpose, Chapter 2 described npScarf, a stream-

ing hybrid assembler that could finish the fragmented short-read assemblies using the con-

secutive nanopore reads. In addition, we have shown that the pipeline could be used to

determine the locations of highlighted genes of interests on the whole genome during its

construction in real-time. To adapt the parallel mechanism of MinION using barcode se-

quencing in our streaming pipelines, npBarcode has been developed and its applications were

mentioned in Chapter 3. The scalability of npScarf, as well as of other streaming analy-

ses, to multiple samples were verified through this chapter. Chapter 4, on the other hand,

focused on designs to help improve the accuracy of the assembly output. This resulted in

npScarf wg and especially npGraph which employed the assembly graph for better fidelity.

Lastly, Chapter 5 conducted computational analysis on the MinION data of concatemeric

long reads in an attempt to produce viral genome assembly in an efficient way.

6.2 Key contributions

Overall, the thesis focuses on genome assembly methods using the MinION data and how to

exploit its real-time feature to reduce the turn-around time of the computational analyses.

Accordingly, the main contributions fall into two categories as followed.

Contributions to genome assembly methods We offered a set of open-source software

and utilities for genome assembly using Nanopore data. In combination with short-read

6.2 Key contributions 121

assemblies, npScarf can finish and return complete genomes in a short amount of time

while consuming less resources compared with other methods. In addition, npBarcode, a

robust multiplexer for barcode sequencing, can be used together with npScarf to scaffolding

multiple samples at the same time.

We also addressed an use case of using a combination of npScarf with other promi-

nent methods consuming the same inputs. Through this example, ones can measure the

advantages and disadvantages of each method to come up with the best solution possible.

Importantly, if short-reads assembly graph is provided, npGraph can be employed for more

accurate results. It also comes with a GUI to monitor the process in an user-friendly manner.

Finally, we proposed another assembly method for small circular genomes using concate-

meric MinION reads after RCA. Either a reference-based or reference-free assembly algorithm

can be applied on the long reads to generate the monomers of whole genome sequences with

decent quality given sufficient read coverage.

Contributions to real-time analysis To date, npScarf and its derived version npGraph

are the only assembly methods exclusively designed to assemble genomes in real-time in ac-

cordance with MinION’s output. We have successfully addressed, implemented and applied

a streaming pipeline to rapidly finish short-read assemblies using real-time sequencing. As

a result, it enabled real-time analyses that rely on positional information, including but not

limited to identifying genes encoding bacterial genomic islands and plasmids. These func-

tional regions in the bacterial genomes can be horizontally transferred between organisms,

which is one of the main mechanisms for acquiring AMR in pathogenic bacteria.

Furthermore, the streaming demultiplexer npBarcode allows the pipeline to run in paral-

lel for multiple samples. This feature is critical to clinical applications such as diagnosis and

treatments, especially in emergency units, which normally require quick response from mul-

tiple testing activities. On the other hand, the ability to operate and to monitor completion

status in real-time (even with GUI) allows users to decide when to stop the sequencing pro-

cess thus fulfilling the task of saving time and cost for genome analyses. The reference-free

concatemeric assembler from Chapter 5 can even work with raw signal from the sequencing

device hence open up the possibility to be integrated into the ReadUntil pipeline [93] which

122 Conclusion

had been designed to further reduce the turn-around time of the nanopore data analyses.

6.3 Future directions

Improve software performance The thesis has shown continuous development of a real-

time hybrid assembler. It has evolved from the original npScarf to a version with assembly

graph (npScarf wag) and ultimately an exhaustive graph-traversing algorithm (npGraph).

The efforts indeed have leveled up the accuracy of the assembly output considerably. Even

though, there are still rooms to enhance the performance of the software given the inputs kept

intact. Specifically, there is a need for more robust voting system and/or a decision making

mechanism to be able to determine bridges with higher confidence in real-time. Other than

that, a revertible bridge construction on the graph is also considered for a self-rectifying

assembly mechanism of npGraph.

npScarf, on the other hand, performs better with mid- or large-size datasets. However,

an optimization is required to minimize the resources required when working with huge

and complicated genomes, e.g. of eukaryotic organisms. Besides, npScarf and npGraph are

currently working as two separate modules due to different methodology and implementation.

For convenience, they will be integrated in one common interface of a hybrid assembly

software supporting different scenarios.

Application in metagenomics Preliminary works on mock datasets of metagenomics

using npScarf have demonstrated that our approach is feasible for this case (data not shown).

As a consequence, one of the development direction is to implement a hybrid assembler that

can solve metagenomics assembly graph in real-time with npGraph.

In order to achieve this goal, we first plan to run SPAdes with --meta option [204] to

generate a metagenomics assembly graph. After that the contigs (nodes from the graph)

will be subjected to a binning algorithm, e.g. metaBAT [205], to discover the populations of

the community. This information is then used to determine multiplicity and membership

of each contigs so that npGraph algorithm can work with and produce assembly for each of

those detected populations.

6.4 Closing remarks 123

Non-hybrid methods It is desired to have a non-hybrid real-time de novo assembly as the

yield and quality of the nanopore reads being generated are increased significantly compared

to the early stage. In fact, there are several fast algorithms being developed recently for

such task in batch-mode, i.e. miniasm [44] or wtdbg2 (Ruan, J. and Li, H. (2019) Fast

and accurate long-read assembly with wtdbg2. bioRxiv. doi:10.1101/530972). However, to

adapt those approaches for a streaming pipeline is non trivial. The modified OLC or DBG

algorithm for nanopore data are both consuming much more resource due to the errors.

Furthermore, the error correction step, e.g. racon [50] using POA graph data structure, is

costly thus make it difficult to operate in real-time during the sequencing process.

6.4 Closing remarks

Long-reads data from TGS platforms, such as MinION, are considered as the current game-

changer for genomics studies, especially genome assembly which has been partly addressed

throughout the thesis.

Recently, however, there has been arguments concerning the quality of long-reads assem-

bly from the DNA reference resource, such as NCBI database, that would affect the down-

stream analyses at protein level due to relatively high error rates especially indels [206, 207].

In the meantime, the hybrid approaches can combine the high fidelity of sequence data from

Illumina to overcome the current defects of TGS assembly. Plus, the innovation of tech-

nology in combination with the improvement of computational methods can leverage the

genome assembly for not only microorganisms, but also human and multiploidy species of

greater complexity.

To sum up, the author strongly believe that the long reads real-time sequencing methods,

e.g.by using ONT platforms, and their applications will continue to be the trending direction

in life science. Advancements made by scientific and commercial bodies in this field would

greatly facilitate the genome sequencing practice in order to ultimately resolve the long-

lasting assembly problem.

124 Conclusion

References

[1] J. D. Watson, F. H. Crick, et al. Molecular structure of nucleic acids. Nature

171(4356), 737 (1953).

[2] R. D. Fleischmann, M. D. Adams, O. White, R. A. Clayton, et al. Whole-genome

random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223),

496 (1995).

[3] A. Goffeau, B. G. Barrell, H. Bussey, R. Davis, et al. Life with 6000 genes. Science

274(5287), 546 (1996).

[4] The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans:

A platform for investigating biology. Science 282, 2012 (1998).

[5] A. T. Chinwalla, L. L. Cook, K. D. Delehaunty, G. A. Fewell, L. A. Fulton, R. S.

Fulton, T. A. Graves, L. W. Hillier, E. R. Mardis, J. D. McPherson, et al. Initial

sequencing and comparative analysis of the mouse genome. Nature 420(6915), 520

(2002).

[6] I. H. G. S. Consortium. Finishing the euchromatic sequence of the human genome.

Nature 431(7011), 931 (2004).

[7] H. A. Lewin, G. E. Robinson, W. J. Kress, W. J. Baker, J. Coddington, K. A. Crandall,

R. Durbin, S. V. Edwards, F. Forest, M. T. P. Gilbert, et al. Earth biogenome project:

Sequencing life for the future of life. Proceedings of the National Academy of Sciences

115(17), 4325 (2018).

125

126 References

[8] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating

inhibitors. Proceedings of the National Academy of Sciences 74(12), 5463 (1977).

[9] J. D. Freeman, R. L. Warren, J. R. Webb, B. H. Nelson, and R. A. Holt. Profiling the

T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome research

19(10), 1817 (2009).

[10] M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlén, and P. Nyrén. Real-time DNA

sequencing using detection of pyrophosphate release. Analytical biochemistry 242(1),

84 (1996).

[11] M. Ronaghi, M. Uhlén, and P. Nyren. A sequencing method based on real-time py-

rophosphate. Science 281(5375), 363 (1998).

[12] C.-Y. Lee, Y.-C. Chiu, L.-B. Wang, Y.-L. Kuo, E. Y. Chuang, L.-C. Lai, and M.-

H. Tsai. Common applications of next-generation sequencing technologies in genomic

research. Translational Cancer Research 2(1), 33 (2013).

[13] E. R. Mardis. Dna sequencing technologies: 2006–2016. Nature protocols 12(2), 213

(2017).

[14] A. Philippidis. TOP 10 Sequencing Companies: Plunging Cost, Wider Use of Tech-

nology Help Drive NGS Growth. Genetic Engineering & Biotechnology News 38(9), 6

(2018).

[15] D. J. Munroe and T. J. Harris. Third-generation sequencing fireworks at marco island.

Nature biotechnology 28(5), 426 (2010).

[16] C. Bleidorn. Third generation sequencing: technology and its potential impact on

evolutionary biodiversity research. Systematics and biodiversity 14(1), 1 (2016).

[17] A. Rhoads and K. F. Au. Pacbio sequencing and its applications. Genomics, proteomics

& bioinformatics 13(5), 278 (2015).

[18] J. Korlach, P. J. Marks, R. L. Cicero, J. J. Gray, D. L. Murphy, D. B. Roitman, T. T.

Pham, G. A. Otto, M. Foquet, and S. W. Turner. Selective aluminum passivation for

References 127

targeted immobilization of single DNA polymerase molecules in zero-mode waveguide

nanostructures. Proceedings of the National Academy of Sciences 105(4), 1176 (2008).

[19] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W.

Webb. Zero-mode waveguides for single-molecule analysis at high concentrations. sci-

ence 299(5607), 682 (2003).

[20] J. Eid, A. Fehr, J. Gray, K. Luong, S. Turner, et al. Real-time DNA sequencing from

single polymerase molecules. Science (New York, N.Y.) 323(5910), 133 (2009).

[21] S. Koren, G. Harhay, T. Smith, J. Bono, D. Harhay, S. Mcvey, D. Radune, N. Bergman,

and A. M. Phillippy. Reducing Assembly Complexity of Microbial Genomes with Single-

Molecule Sequencing. Genome Biology 14(9), R101 (2013).

[22] K. Berlin, S. Koren, C.-s. Chin, J. Drake, and M. Jane. Assembling Large Genomes

with Single-Molecule Sequencing and Locality Sensitive Hashing. Nat Biotech 33, 623

(2015).

[23] S. Koren, M. C. Schatz, B. P. Walenz, J. Martin, J. T. Howard, G. Ganapathy, Z. Wang,

D. A. Rasko, W. R. McCombie, E. D. Jarvis, and A. M. Phillippy. Hybrid Error Correc-

tion and de novo Assembly of Single-molecule Sequencing Reads. Nature Biotechnology

30(7), 693 (2012).

[24] F. J. Ribeiro, D. Przybylski, S. Yin, T. Sharpe, S. Gnerre, A. Abouelleil, A. M. Berlin,

A. Montmayeur, T. P. Shea, B. J. Walker, S. K. Young, C. Russ, C. Nusbaum, I. Mac-

Callum, and D. B. Jaffe. Finished bacterial genomes from shotgun sequence data.

Genome research 22(11), 2270 (2012).

[25] J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer. Characterization

of individual polynucleotide molecules using a membrane channel. Proceedings of the

National Academy of Sciences 93(24), 13770 (1996).

[26] G. Church, D. W. Deamer, D. Branton, R. Baldarelli, and J. Kasianowicz. Char-

acterization of individual polymer molecules based on monomer-interface interactions

(1998). US Patent 5,795,782.

128 References

[27] J. Clarke, H.-C. Wu, L. Jayasinghe, A. Patel, S. Reid, and H. Bayley. Continuous base

identification for single-molecule nanopore dna sequencing. Nature nanotechnology

4(4), 265 (2009).

[28] L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state

Markov chains. The annals of mathematical statistics 37(6), 1554 (1966).

[29] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring

in the statistical analysis of probabilistic functions of Markov chains. The annals of

mathematical statistics 41(1), 164 (1970).

[30] H. Teng, M. D. Cao, M. B. Hall, T. Duarte, S. Wang, and L. J. Coin. Chiron:

Translating nanopore raw signal directly into nucleotide sequence using deep learning.

GigaScience 7(5), giy037 (2018).

[31] W. De Coster, P. De Rijk, A. De Roeck, T. De Pooter, S. D’Hert, M. Strazisar,

K. Sleegers, and C. Van Broeckhoven. Structural variants identified by Oxford Nanopore

PromethION sequencing of the human genome. Genome research pp. gr–244939 (2019).

[32] S. M. Nicholls, J. C. Quick, S. Tang, and N. J. Loman. Ultra-deep, long-read nanopore

sequencing of mock microbial community standards. GigaScience 8(5), giz043 (2019).

[33] M. D. Cao, D. Ganesamoorthy, M. A. Cooper, and L. J. M. Coin. Realtime analysis

and visualization of MinION sequencing data with npReader. Bioinformatics 32(5),

764 (2016).

[34] S. Goodwin, J. Gurtowski, S. Ethe-Sayers, P. Deshpande, M. C. Schatz, and W. R.

McCombie. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly

of a eukaryotic genome. Genome Research 25(11), 1750 (2015).

[35] M.-A. Madoui, S. Engelen, C. Cruaud, C. Belser, L. Bertrand, A. Alberti,

A. Lemainque, P. Wincker, and J.-M. Aury. Genome assembly using Nanopore-guided

long and error-free DNA reads. BMC Genomics 16(1), 327 (2015).

References 129

[36] N. J. Loman, J. Quick, and J. T. Simpson. A complete bacterial genome assembled de

novo using only nanopore sequencing data. Nature Methods 12(8), 733 (2015).

[37] J. T. Simpson, R. E. Workman, P. Zuzarte, M. David, L. Dursi, and W. Timp. De-

tecting dna cytosine methylation using nanopore sequencing. Nature methods 14(4),

407 (2017).

[38] M. Chaisson and G. Tesler. Mapping Single Molecule Sequencing Reads Using Basic

Local Alignment with Successive Refinement (BLASR): Application and Theory. BMC

Bioinformatics 13(1), 238 (2012).

[39] R. S. Harris. Improved pairwise alignment of genomic DNA. Ph.D. thesis, The Penn-

sylvania State University (2007).

[40] S. M. Kie\lbasa, R. Wan, K. Sato, P. Horton, and M. C. Frith. Adaptive Seeds Tame

Genomic Sequence Comparison. Genome Research (2011).

[41] H. Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM

p. 3 (2013). 1303.3997.

[42] G. Myers. Efficient local alignment discovery amongst noisy long reads. In D. Brown

and B. Morgenstern, eds., Algorithms in Bioinformatics, pp. 52–67 (Springer Berlin

Heidelberg, Berlin, Heidelberg, 2014).

[43] I. Sović, M. Šikić, A. Wilm, S. N. Fenlon, S. Chen, and N. Nagarajan. Fast and sensitive

mapping of nanopore sequencing reads with GraphMap. Nature communications 7,

11307 (2016).

[44] H. Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long

sequences. Bioinformatics 32(14), 2103 (2016).

[45] B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman, S. Koren,

and A. M. Phillippy. Mash: fast genome and metagenome distance estimation using

MinHash. Genome biology 17(1), 132 (2016).

1303.3997

130 References

[46] K. Berlin, S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin, and A. M. Phillippy. As-

sembling large genomes with single-molecule sequencing and locality-sensitive hashing.

Nature Biotechnology 33(6), 623 (2015).

[47] C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment using partial order

graphs. Bioinformatics 18(3), 452 (2002).

[48] C. Lee. Generating consensus sequences from partial order multiple sequence alignment

graphs. Bioinformatics 19(8), 999 (2003).

[49] C. Grasso and C. Lee. Combining partial order alignment and progressive multiple

sequence alignment increases alignment speed and scalability to very large alignment

problems. Bioinformatics 20(10), 1546 (2004).

[50] R. Vaser, I. Sović, N. Nagarajan, and M. Šikić. Fast and accurate de novo genome

assembly from long uncorrected reads. Genome research (2017).

[51] L. Garibyan and N. Avashia. Research techniques made simple: polymerase chain

reaction (pcr). The Journal of investigative dermatology 133(3), e6 (2013).

[52] I. J. Tsai, T. D. Otto, and M. Berriman. Improving draft assemblies by iterative

mapping and assembly of short reads to eliminate gaps. Genome biology 11(4), R41

(2010).

[53] M. Boetzer and W. Pirovano. Toward almost closed genomes with gapfiller. Genome

biology 13(6), R56 (2012).

[54] D. Paulino, R. L. Warren, B. P. Vandervalk, A. Raymond, S. D. Jackman, and I. Birol.

Sealer: a scalable gap-closing application for finishing draft genomes. BMC bioinfor-

matics 16(1), 230 (2015).

[55] L. Liu, Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, and M. Law. Comparison

of next-generation sequencing systems. BioMed Research International 2012 (2012).

[56] J. R. Miller, S. Koren, and G. Sutton. Assembly Algorithms for Next-Generation

Sequencing Data. Genomics 95(6), 315 (2010).

References 131

[57] Z. Li, Y. Chen, D. Mu, J. Yuan, Y. Shi, H. Zhang, J. Gan, N. Li, X. Hu, B. Liu, et al.

Comparison of the two major classes of assembly algorithms: overlap–layout–consensus

and de-bruijn-graph. Briefings in functional genomics 11(1), 25 (2012).

[58] G. G. Sutton, O. White, M. D. Adams, and A. R. Kerlavage. TIGR Assembler: A new

tool for assembling large shotgun sequencing projects. Genome Science and Technology

1(1), 9 (1995).

[59] P. Green. Documentation for PHRAP and CROSSMATCH (version 0.990319). Uni-

versity of Washington, Seattle (1999).

[60] X. Huang and A. Madan. CAP3: A DNA sequence assembly program. Genome research

9(9), 868 (1999).

[61] J. T. Simpson and M. Pop. The theory and practice of genome sequence assembly.

Annual review of genomics and human genetics 16, 153 (2015).

[62] R. Staden. A strategy of dna sequencing employing computer programs. Nucleic acids

research 6(7), 2601 (1979).

[63] R. M. Idury and M. S. Waterman. A new algorithm for dna sequence assembly. Journal

of computational biology 2(2), 291 (1995).

[64] P. A. Pevzner, H. Tang, and M. S. Waterman. An Eulerian Path Approach to DNA

Fragment Assembly. Proceedings of the National Academy of Sciences 98(17), 9748

(2001).

[65] P. Ferragina and G. Manzini. Indexing Compressed Text. Journal of the ACM 52(4),

552 (2005).

[66] Z. Ning, A. J. Cox, and J. C. Mullikin. SSAHA: a fast search method for large DNA

databases. Genome research 11(10), 1725 (2001).

[67] D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly using

de Bruijn graphs. Genome research 18(5), 821 (2008).

132 References

[68] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M.

Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V. Sirotkin,

N. Vyahhi, G. Tesler, M. A. Alekseyev, and P. A. Pevzner. SPAdes: A New Genome

Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Com-

putational Biology 19(5), 455 (2012).

[69] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. M. Jones, and I. Birol.

ABySS: A parallel assembler for short read sequence data. Genome Research 19(6),

1117 (2009).

[70] T. Magoc, S. Pabinger, S. Canzar, X. Liu, Q. Su, D. Puiu, L. J. Tallon, and S. L.

Salzberg. GAGE-B: An evaluation of genome assemblers for bacterial organisms.

Bioinformatics 29(14), 1718 (2013).

[71] S. Koren and A. M. Phillippy. One chromosome, one contig: complete microbial

genomes from long-read sequencing and assembly. Current Opinion in Microbiology

23, 110 (2015).

[72] A. Bashir, A. A. Klammer, W. P. Robins, C.-S. Chin, D. Webster, E. Paxinos, D. Hsu,

M. Ashby, S. Wang, P. Peluso, R. Sebra, J. Sorenson, J. Bullard, J. Yen, M. Valdovino,

E. Mollova, K. Luong, S. Lin, B. LaMay, A. Joshi, L. Rowe, M. Frace, C. L. Tarr,

M. Turnsek, B. M. Davis, A. Kasarskis, J. J. Mekalanos, M. K. Waldor, and E. E.

Schadt. A Hybrid Approach for the Automated Finishing of Bacterial Genomes. Nature

Biotechnology 30(7), 701 (2012).

[73] E. Karlsson, A. Lärkeryd, A. Sjödin, M. Forsman, and P. Stenberg. Scaffolding of

a bacterial genome using MinION nanopore sequencing. Scientific Reports 5, 11996

(2015).

[74] C. M. Hudson, Z. W. Bent, R. J. Meagher, and K. P. Williams. Resistance determinants

and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain. PloS

one 9(6), e99209 (2014).

References 133

[75] P. M. Ashton, S. Nair, T. Dallman, S. Rubino, W. Rabsch, S. Mwaigwisya, J. Wain,

and J. O’Grady. MinION nanopore sequencing identifies the position and structure of

a bacterial antibiotic resistance island. Nature Biotechnology 33(3), 296 (2015).

[76] V. Jayakumar and Y. Sakakibara. Comprehensive evaluation of non-hybrid genome

assembly tools for third-generation pacbio long-read sequence data. Briefings in bioin-

formatics (2017).

[77] C.-S. Chin, D. H. Alexander, P. Marks, A. A. Klammer, J. Drake, C. Heiner, A. Clum,

A. Copeland, J. Huddleston, E. E. Eichler, S. W. Turner, and J. Korlach. Nonhybrid,

finished microbial genome assemblies from Long-Read SMRT sequencing data. Nature

Methods 10(6), 563 (2013).

[78] E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J. Flanigan,

S. A. Kravitz, C. M. Mobarry, K. H. Reinert, K. A. Remington, E. L. Anson, R. A.

Bolanos, H. H. Chou, C. M. Jordan, A. L. Halpern, S. Lonardi, E. M. Beasley, R. C.

Brandon, L. Chen, P. J. Dunn, Z. Lai, Y. Liang, D. R. Nusskern, M. Zhan, Q. Zhang,

X. Zheng, G. M. Rubin, M. D. Adams, and J. C. Venter. A Whole-Genome Assembly

of Drosophila. Science 287(5461), 2196 (2000).

[79] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M. Phillippy.

Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat

separation. Genome research pp. gr–215087 (2017).

[80] C.-S. Chin, P. Peluso, F. J. Sedlazeck, M. Nattestad, G. T. Concepcion, A. Clum,

C. Dunn, R. O’Malley, R. Figueroa-Balderas, A. Morales-Cruz, et al. Phased diploid

genome assembly with single-molecule real-time sequencing. Nature methods 13(12),

1050 (2016).

[81] Y. Lin, J. Yuan, M. Kolmogorov, M. W. Shen, M. Chaisson, and P. A. Pevzner.

Assembly of long error-prone reads using de bruijn graphs. Proceedings of the National

Academy of Sciences 113(52), E8396 (2016).

134 References

[82] M. Kolmogorov, J. Yuan, Y. Lin, and P. A. Pevzner. Assembly of long, error-prone

reads using repeat graphs. Nature biotechnology 37(5), 540 (2019).

[83] V. Deshpande, E. D. K. Fung, S. Pham, and V. Bafna. Cerulean: A Hybrid Assembly

Using High Throughput Short and Long Reads. In Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 8126 LNBI, pp. 349–363 (2013). 1307.7933.

[84] M. Boetzer and W. Pirovano. SSPACE-LongRead: scaffolding bacterial draft genomes

using long read sequence information. BMC bioinformatics 15(1), 211 (2014).

[85] E. Karlsson, A. Lärkeryd, A. Sjödin, M. Forsman, and P. Stenberg. Scaffolding of a

bacterial genome using MinION nanopore sequencing. Scientific reports 5 (2015).

[86] R. L. Warren, C. Yang, B. P. Vandervalk, B. Behsaz, A. Lagman, S. J. M. Jones, and

I. Birol. LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads.

GigaScience 4(1), 35 (2015).

[87] R. R. Wick, L. M. Judd, C. L. Gorrie, and K. E. Holt. Unicycler: resolving bacte-

rial genome assemblies from short and long sequencing reads. PLOS Computational

Biology 13(6), e1005595 (2017).

[88] D. Phillips. Programming Real-Time Computer Systems (1966).

[89] M. Ben-Ari and M. Ben-Ar̂ı. Principles of concurrent and distributed programming

(Pearson Education, 2006).

[90] D. Croushore. Frontiers of real-time data analysis. Journal of economic literature

49(1), 72 (2011).

[91] J. Quick, P. Ashton, S. Calus, C. Chatt, S. Gossain, J. Hawker, S. Nair, K. Neal,

K. Nye, T. Peters, E. De Pinna, E. Robinson, K. Struthers, M. Webber, A. Catto,

T. J. Dallman, P. Hawkey, and N. J. Loman. Rapid draft sequencing and real-time

nanopore sequencing in a hospital outbreak of Salmonella. Genome Biology 16(1), 114

(2015).

1307.7933

References 135

[92] A. L. Greninger, S. N. Naccache, S. Federman, G. Yu, P. Mbala, V. Bres, D. Stryke,

J. Bouquet, S. Somasekar, J. M. Linnen, R. Dodd, P. Mulembakani, B. S. Schneider,

J.-J. Muyembe-Tamfum, S. L. Stramer, and C. Y. Chiu. Rapid metagenomic identifi-

cation of viral pathogens in clinical samples by real-time nanopore sequencing analysis.

Genome Medicine 7(1), 99 (2015).

[93] M. Loose, S. Malla, and M. Stout. Real time selective sequencing using nanopore

technology. bioRxiv (2016).

[94] H. S. Edwards, R. Krishnakumar, A. Sinha, S. W. Bird, K. D. Patel, and M. S.

Bartsch. Real-time selective sequencing with rubric: Read until with basecall and

reference-informed criteria. bioRxiv p. 460014 (2018).

[95] M. D. Cao, D. Ganesamoorthy, A. G. Elliott, H. Zhang, M. A. Cooper, and L. J. Coin.

Streaming algorithms for identification of pathogens and antibiotic resistance potential

from real-time MinIONTM sequencing. GigaScience 5(1), 32 (2016).

[96] S. Bialasiewicz, T. P. Duarte, S. H. Nguyen, V. Sukumaran, A. Stewart, S. Appleton,

M. E. Pitt, A. Bainomugisa, A. V. Jennison, R. Graham, et al. Rapid Diagnosis of

Capnocytophaga canimorsus Septic Shock in an Immunocompetent Individual Using

Real-Time Nanopore Sequencing (2018).

[97] M. D. Cao, S. H. Nguyen, D. Ganesamoorthy, A. G. Elliott, M. A. Cooper, and

L. J. Coin. Scaffolding and completing genome assemblies in real-time with nanopore

sequencing. Nature Communications 8, 14515 (2017).

[98] S. H. Nguyen, T. P. Duarte, L. J. Coin, and M. D. Cao. Real-time demultiplex-

ing Nanopore barcoded sequencing data with npBarcode. Bioinformatics 33(24), 3988

(2017).

[99] J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer. Characterization

of individual polynucleotide molecules using a membrane channel. Proceedings of the

National Academy of Sciences 93(24), 13770 (1996).

136 References

[100] D. Branton, D. W. Deamer, A. Marziali, H. Bayley, S. A. Benner, T. Butler, M. Di

Ventra, S. Garaj, A. Hibbs, X. Huang, S. B. Jovanovich, P. S. Krstic, S. Lindsay,

X. S. Ling, C. H. Mastrangelo, A. Meller, J. S. Oliver, Y. V. Pershin, J. M. Ramsey,

R. Riehn, G. V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, and J. A. Schloss.

The potential and challenges of nanopore sequencing. Nature biotechnology 26(10),

1146 (2008).

[101] D. Stoddart, A. J. Heron, E. Mikhailova, G. Maglia, and H. Bayley. Single-nucleotide

discrimination in immobilized DNA oligonucleotides with a biological nanopore. Pro-

ceedings of the National Academy of Sciences of the United States of America 106(19),

7702 (2009).

[102] S. L. Castro-Wallace, C. Y. Chiu, K. K. John, S. E. Stahl, K. H. Rubins, A. B. R.

McIntyre, J. P. Dworkin, M. L. Lupisella, D. J. Smith, D. J. Botkin, T. A. Stephenson,

S. Juul, D. J. Turner, F. Izquierdo, S. Federman, D. Stryke, S. Somasekar, N. Alexan-

der, G. Yu, C. Mason, and A. S. Burton. Nanopore DNA Sequencing and Genome

Assembly on the International Space Station. Tech. rep. (2016).

[103] B. Istace, A. Friedrich, L. D’Agata, S. Faye, E. Payen, O. Beluche, C. Caradec, S. Davi-

das, C. Cruaud, G. Liti, A. Lemainque, S. Engelen, P. Wincker, J. Schacherer, and

J.-M. Aury. de novo assembly and population genomic survey of natural yeast isolates

with the Oxford Nanopore MinION sequencer. Tech. rep. (2016).

[104] T. J. Treangen and S. L. Salzberg. Repetitive DNA and Next-generation Sequencing:

Computational Challenges and Solutions. Nature Reviews Genetics 13(1), 36 (2012).

[105] N. J. Loman and A. R. Quinlan. Poretools: a toolkit for analyzing nanopore sequence

data. Bioinformatics 30(23), 3399 (2014).

[106] M. Jain, I. T. Fiddes, K. H. Miga, H. E. Olsen, B. Paten, and M. Akeson. Improved

data analysis for the MinION nanopore sequencer. Nature Methods 12(4), 351 (2015).

[107] A. Carattoli, E. Zankari, A. Garcia-Fernandez, M. Voldby Larsen, O. Lund, L. Villa,

F. Moller Aarestrup, and H. Hasman. In Silico Detection and Typing of Plasmids

References 137

using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrobial Agents

and Chemotherapy 58(7), 3895 (2014).

[108] T. Seemann. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14),

2068 (2014).

[109] M. G. I. Langille, W. W. L. Hsiao, and F. S. L. Brinkman. Detecting genomic islands

using bioinformatics approaches. Nature reviews. Microbiology 8(5), 373 (2010).

[110] Y. Mantri and K. P. Williams. Islander: a database of integrative islands in prokary-

otic genomes, the associated integrases and their DNA site specificities. Nucleic acids

research 32(Database issue), D55 (2004).

[111] Y. Zhou, Y. Liang, K. H. Lynch, J. J. Dennis, and D. S. Wishart. PHAST: A Fast

Phage Search Tool. Nucleic Acids Research 39(suppl), W347 (2011).

[112] J. Quick, A. R. Quinlan, and N. J. Loman. A Reference Bacterial Genome Dataset

Generated on the MinION Portable Single-molecule Nanopore Sequencer. GigaScience

3(1), 22 (2014).

[113] B. J. Walker, T. Abeel, T. Shea, M. Priest, A. Abouelliel, S. Sakthikumar, C. A.

Cuomo, Q. Zeng, J. Wortman, S. K. Young, and A. M. Earl. Pilon: An Integrated Tool

for Comprehensive Microbial Variant Detection and Genome Assembly Improvement.

PLoS ONE 9(11), e112963 (2014).

[114] A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler. QUAST: quality assessment tool

for genome assemblies. Bioinformatics 29(8), 1072 (2013).

[115] M. David, L. J. Dursi, D. Yao, P. C. Boutros, and J. T. Simpson. Nanocall: An Open

Source Basecaller for Oxford Nanopore Sequencing Data. bioRxiv p. 046086 (2016).

[116] V. Boža, B. Brejová, and T. Vina. DeepNano: Deep Recurrent Neural Networks for

Base Calling in MinION Nanopore Reads (2016). 1603.09195.

[117] J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman

Problem. Proceedings of the American Mathematical Society 7(1), 48 (1956).

1603.09195

138 References

[118] A. M. Bolger, M. Lohse, and B. Usadel. Trimmomatic: a flexible trimmer for Illumina

sequence data. Bioinformatics 30(15), 2114 (2014).

[119] E. Zankari, H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen, O. Lund, F. M.

Aarestrup, and M. V. Larsen. Identification of Acquired Antimicrobial Resistance

Genes. Journal of Antimicrobial Chemotherapy 67(11), 2640 (2012).

[120] E. van der Helm, L. Imamovic, M. M. Hashim Ellabaan, W. van Schaik, A. Koza, and

M. O. Sommer. Rapid resistome mapping using nanopore sequencing. Nucleic acids

research 45(8), e61 (2017).

[121] O. Gotoh. An improved algorithm for matching biological sequences. Journal of molec-

ular biology 162(3), 705 (1982).

[122] M. E. Pitt, A. G. Elliott, M. D. Cao, D. Ganesamoorthy, I. Karaiskos, H. Giamarellou,

C. S. Abboud, M. A. Blaskovich, M. A. Cooper, and L. J. Coin. Multifactorial chro-

mosomal variants regulate polymyxin resistance in extensively drug-resistant klebsiella

pneumoniae. Microbial genomics 4(3) (2018).

[123] M. D. Cao, D. Ganesamoorthy, A. Elliott, H. Zhang, M. Cooper, and L. Coin. Stream-

ing algorithms for identification of pathogens and antibiotic resistance potential from

real-time MinIONTM sequencing. bioRxiv (2015).

[124] R. M. Martin and M. A. Bachman. Colonization, infection, and the accessory genome

of Klebsiella pneumoniae. Frontiers in cellular and infection microbiology 8, 4 (2018).

[125] S. S. Magill, J. R. Edwards, W. Bamberg, Z. G. Beldavs, G. Dumyati, M. A.

Kainer, R. Lynfield, M. Maloney, L. McAllister-Hollod, J. Nadle, et al. Multistate

point-prevalence survey of health care–associated infections. New England Journal of

Medicine 370(13), 1198 (2014).

[126] A. A. Kalanuria, W. Zai, and M. Mirski. Ventilator-associated pneumonia in the ICU.

Critical care 18(2), 208 (2014).

References 139

[127] K. Talha, Z. Hasan, F. Selina, and M. Palash. Organisms associated with ventilator

associated pneumonia in intensive care unit. Mymensingh medical journal: MMJ 18(1

Suppl), S93 (2009).

[128] R. Podschun and U. Ullmann. Klebsiella spp. as nosocomial pathogens: epidemiology,

taxonomy, typing methods, and pathogenicity factors. Clinical microbiology reviews

11(4), 589 (1998).

[129] I. Karaiskos and H. Giamarellou. Multidrug-resistant and extensively drug-resistant

Gram-negative pathogens: current and emerging therapeutic approaches. Expert opin-

ion on pharmacotherapy 15(10), 1351 (2014).

[130] C. M. Hudson, Z. W. Bent, R. J. Meagher, and K. P. Williams. Resistance Deter-

minants and Mobile Genetic Elements of an NDM-1 Encoding Klebsiella pneumoniae

Strain. PLoS ONE 9(6), e99209 (2014).

[131] S. Navon-Venezia, K. Kondratyeva, and A. Carattoli. Klebsiella pneumoniae: a major

worldwide source and shuttle for antibiotic resistance. FEMS microbiology reviews

41(3), 252 (2017).

[132] L. Chen, R. Todd, J. Kiehlbauch, M. Walters, and A. Kallen. Notes from the Field:

Pan-Resistant New Delhi Metallo-Beta-Lactamase-Producing Klebsiella pneumoniae-

Washoe County, Nevada, 2016. MMWR. Morbidity and mortality weekly report 66(1),

33 (2017).

[133] H. M. Zowawi, B. M. Forde, M. Alfaresi, A. Alzarouni, Y. Farahat, T.-M. Chong,

W.-F. Yin, K.-G. Chan, J. Li, M. A. Schembri, S. A. Beatson, and D. L. Paterson.

Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae. Scientific Reports

5, 15082 (2015).

[134] M. O. Sommer, C. Munck, R. V. Toft-Kehler, and D. I. Andersson. Prediction of an-

tibiotic resistance: time for a new preclinical paradigm? Nature Reviews Microbiology

15(11), 689 (2017).

140 References

[135] J. L. Gardy and N. J. Loman. Towards a genomics-informed, real-time, global pathogen

surveillance system. Nature Reviews Genetics 19(1), 9 (2018).

[136] J. K. Lemon, P. P. Khil, K. M. Frank, and J. P. Dekker. Rapid nanopore sequenc-

ing of plasmids and resistance gene detection in clinical isolates. Journal of clinical

microbiology pp. JCM–01069 (2017).

[137] A. A. Votintseva, P. Bradley, L. Pankhurst, C. del Ojo Elias, M. Loose, K. Nilgiriwala,

A. Chatterjee, E. G. Smith, N. Sanderson, T. M. Walker, et al. Same-day diagnostic

and surveillance data for tuberculosis via whole genome sequencing of direct respiratory

samples. Journal of clinical microbiology pp. JCM–02483 (2017).

[138] R. R. Wick, L. M. Judd, C. L. Gorrie, and K. E. Holt. Completing bacterial genome

assemblies with multiplex MinION sequencing. Microbial genomics 3(10) (2017).

[139] R. Li, M. Xie, N. Dong, D. Lin, X. Yang, M. H. Y. Wong, E. W.-C. Chan, and

S. Chen. Efficient generation of complete sequences of MDR-encoding plasmids by

rapid assembly of MinION barcoding sequencing data. GigaScience 7(3), gix132 (2018).

[140] S. George, L. Pankhurst, A. Hubbard, A. Votintseva, N. Stoesser, A. E. Sheppard,

A. Mathers, R. Norris, I. Navickaite, C. Eaton, et al. Resolving plasmid structures in

Enterobacteriaceae using the MinION nanopore sequencer: assessment of MinION and

MinION/Illumina hybrid data assembly approaches. Microbial genomics 3(8) (2017).

[141] A. E. Darling, A. Tritt, J. A. Eisen, and M. T. Facciotti. Mauve assembly metrics.

Bioinformatics 27(19), 2756 (2011).

[142] J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander, G. Getz,

and J. P. Mesirov. Integrative genomics viewer. Nature biotechnology 29(1), 24 (2011).

[143] H. Thorvaldsdóttir, J. T. Robinson, and J. P. Mesirov. Integrative Genomics Viewer

(IGV): high-performance genomics data visualization and exploration. Briefings in

bioinformatics 14(2), 178 (2013).

References 141

[144] A. Carattoli, E. Zankari, A. Garc̀ıa-Fernandez, M. V. Larsen, O. Lund, L. Villa, F. M.

Aarestrup, and H. Hasman. Plasmidfinder and pmlst: in silico detection and typing of

plasmids. Antimicrobial agents and chemotherapy pp. AAC–02412 (2014).

[145] A. Carattoli. Resistance plasmid families in Enterobacteriaceae. Antimicrobial agents

and chemotherapy 53(6), 2227 (2009).

[146] S. Desmet, S. Nepal, J. M. van Dijl, M. Van Ranst, M. A. Chlebowicz, J. W. Rossen,

J. K. Van Houdt, P. Maes, K. Lagrou, and E. Bathoorn. Antibiotic Resistance Plasmids

Cointegrated into a Megaplasmid Harboring the blaOXA-427 Carbapenemase Gene.

Antimicrobial agents and chemotherapy 62(3), e01448 (2018).

[147] C. C. Papagiannitsis, M. Dolejska, R. Izdebski, P. Giakkoupi, A. Skálová,

K. Chudějová, H. Dobiasova, A. C. Vatopoulos, L. P. Derde, M. J. Bonten, et al. Char-

acterisation of IncA/C2 plasmids carrying an In416-like integron with the blaVIM-19

gene from Klebsiella pneumoniae ST383 of Greek origin. International journal of an-

timicrobial agents 47(2), 158 (2016).

[148] L. Chen, K. D. Chavda, R. G. Melano, M. R. Jacobs, B. Koll, T. Hong, A. D. Rojtman,

M. H. Levi, R. A. Bonomo, and B. N. Kreiswirth. Comparative genomic analysis of

KPC-encoding pKpQIL-like plasmids and their distribution in New Jersey and New

York hospitals. Antimicrobial agents and chemotherapy 58(5), 2871 (2014).

[149] L. Poirel, R. A. Bonnin, and P. Nordmann. Genetic features of the widespread plasmid

coding for the carbapenemase OXA-48. Antimicrobial agents and chemotherapy 56(1),

559 (2012).

[150] A. Potron, L. Poirel, and P. Nordmann. Derepressed transfer properties leading to the

efficient spread of the plasmid encoding carbapenemase OXA-48. Antimicrobial agents

and chemotherapy 58(1), 467 (2014).

[151] T. Lassmann, O. Frings, and E. L. L. Sonnhammer. Kalign2: High-performance Multi-

ple Alignment of Protein and Nucleotide Sequences Allowing External Features. Nucleic

Acids Research 37(3), 858 (2009).

142 References

[152] R. Rozov, G. Goldshlager, E. Halperin, and R. Shamir. Faucet: streaming de novo

assembly graph construction. Bioinformatics 34(1), 147 (2017).

[153] F. Giordano, L. Aigrain, M. A. Quail, P. Coupland, J. K. Bonfield, R. M. Davies,

G. Tischler, D. K. Jackson, T. M. Keane, J. Li, et al. De novo yeast genome assemblies

from MinION, PacBio and MiSeq platforms. Scientific reports 7(1), 3935 (2017).

[154] D. Antipov, A. Korobeynikov, J. S. McLean, and P. A. Pevzner. hybridSPAdes: an

algorithm for hybrid assembly of short and long reads. Bioinformatics 32(7), 1009

(2016).

[155] A. D. Prjibelski, I. Vasilinetc, A. Bankevich, A. Gurevich, T. Krivosheeva, S. Nurk,

S. Pham, A. Korobeynikov, A. Lapidus, and P. A. Pevzner. ExSPAnder: a universal

repeat resolver for DNA fragment assembly. Bioinformatics 30(12), i293 (2014).

[156] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering

clusters in large spatial databases with noise. pp. 226–231 (AAAI Press, 1996).

[157] S. Kullback and R. A. Leibler. On information and sufficiency. The annals of mathe-

matical statistics 22(1), 79 (1951).

[158] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische math-

ematik 1(1), 269 (1959).

[159] W. Huang, L. Li, J. R. Myers, and G. T. Marth. ART: a Next-generation Sequencing

Read Simulator. Bioinformatics 28(4), 593 (2012).

[160] Y. Ono, K. Asai, and M. Hamada. PBSIM: PacBio Reads Simulator Toward Accurate

Genome Assembly. Bioinformatics (2012).

[161] A. Mikheenko, A. Prjibelski, V. Saveliev, D. Antipov, and A. Gurevich. Versatile

genome assembly evaluation with QUAST-LG. Bioinformatics 34(13), i142 (2018).

[162] M. Brudno, S. Malde, A. Poliakov, C. B. Do, O. Couronne, I. Dubchak, and S. Bat-

zoglou. Glocal alignment: finding rearrangements during alignment. Bioinformatics

19(suppl 1), i54 (2003).

References 143

[163] R. F. Potter, A. W. Dsouza, and G. Dantas. The rapid spread of carbapenem-resistant

Enterobacteriaceae. Drug Resistance Updates 29, 30 (2016).

[164] J. Lu, Y. Wang, J. Li, L. Mao, S. H. Nguyen, T. Duarte, L. Coin, P. Bond, Z. Yuan,

and J. Guo. Triclosan at environmentally relevant concentrations promotes horizontal

transfer of multidrug resistance genes within and across bacterial genera. Environment

international 121, 1217 (2018).

[165] J. Gardy, N. J. Loman, and A. Rambaut. Real-time digital pathogen surveillance the

time is now. Genome Biology 16(1), 155 (2015).

[166] K. G. Andersen, B. J. Shapiro, C. B. Matranga, R. Sealfon, A. E. Lin, L. M. Moses,

O. A. Folarin, A. Goba, I. Odia, P. E. Ehiane, et al. Clinical sequencing uncovers

origins and evolution of Lassa virus. Cell 162(4), 738 (2015).

[167] E. C. Holmes, G. Dudas, A. Rambaut, and K. G. Andersen. The evolution of ebola

virus: Insights from the 2013–2016 epidemic. Nature 538(7624), 193 (2016).

[168] G. Dudas, L. M. Carvalho, T. Bedford, A. J. Tatem, G. Baele, N. R. Faria, D. J. Park,

J. T. Ladner, A. Arias, D. Asogun, et al. Virus genomes reveal factors that spread and

sustained the ebola epidemic. Nature 544(7650), 309 (2017).

[169] J. Wang, N. E. Moore, Y.-M. Deng, D. A. Eccles, and R. J. Hall. MinION nanopore

sequencing of an influenza genome. Frontiers in microbiology 6, 766 (2015).

[170] J. Quick, N. J. Loman, S. Duraffour, J. T. Simpson, et al. Real-time, portable genome

sequencing for Ebola surveillance. Nature 530(7589), 228 (2016).

[171] J. Quick, N. D. Grubaugh, S. T. Pullan, I. M. Claro, A. D. Smith, K. Gangavarapu,

G. Oliveira, R. Robles-Sikisaka, T. F. Rogers, N. A. Beutler, et al. Multiplex PCR

method for MinION and Illumina sequencing of Zika and other virus genomes directly

from clinical samples. nature protocols 12(6), 1261 (2017).

144 References

[172] A. Rector, R. Tachezy, and M. Van Ranst. A sequence-independent strategy for detec-

tion and cloning of circular DNA virus genomes by using multiply primed rolling-circle

amplification. Journal of virology 78(10), 4993 (2004).

[173] A. K. Inoue-Nagata, L. C. Albuquerque, W. B. Rocha, and T. Nagata. A simple

method for cloning the complete begomovirus genome using the bacteriophage ϕ29 DNA

polymerase. Journal of virological methods 116(2), 209 (2004).

[174] J. Schubert, A. Habekuß, K. Kazmaier, and H. Jeske. Surveying cereal-infecting gem-

iniviruses in Germanydiagnostics and direct sequencing using rolling circle amplifica-

tion. Virus research 127(1), 61 (2007).

[175] D. Knierim and E. Maiss. Application of Phi29 DNA polymerase in identification and

full-length clone inoculation of tomato yellow leaf curl Thailand virus and tobacco leaf

curl Thailand virus. Archives of virology 152(5), 941 (2007).

[176] D. N. Shepherd, D. P. Martin, P. Lefeuvre, A. L. Monjane, B. E. Owor, E. P. Rybicki,

and A. Varsani. A protocol for the rapid isolation of full geminivirus genomes from

dried plant tissue. Journal of virological methods 149(1), 97 (2008).

[177] D. Haible, S. Kober, and H. Jeske. Rolling circle amplification revolutionizes diagnosis

and genomics of geminiviruses. Journal of virological methods 135(1), 9 (2006).

[178] M. Homs, S. Kober, G. Kepp, and H. Jeske. Mitochondrial plasmids of sugar beet

amplified via rolling circle method detected during curtovirus screening. Virus research

136(1-2), 124 (2008).

[179] R. Johne, H. Müller, A. Rector, M. Van Ranst, and H. Stevens. Rolling-circle ampli-

fication of viral DNA genomes using phi29 polymerase. Trends in microbiology 17(5),

205 (2009).

[180] A. D. Geering, T. Scharaschkin, and P.-Y. Teycheney. The classification and nomencla-

ture of endogenous viruses of the family Caulimoviridae. Archives of virology 155(1),

123 (2010).

References 145

[181] D. Mollov, B. Lockhart, D. C. Zlesak, and N. Olszewski. Complete nucleotide sequence

of rose yellow vein virus, a member of the family Caulimoviridae having a novel genome

organization. Archives of virology 158(4), 877 (2013).

[182] A. Bhat, T. Hohn, and R. Selvarajan. Badnaviruses: the current global scenario.

Viruses 8(6), 177 (2016).

[183] A. C. Sukal, D. B. Kidanemariam, J. L. Dale, R. M. Harding, and A. P. James.

Characterization of a novel member of the family Caulimoviridae infecting Dioscorea

nummularia in the Pacific, which may represent a new genus of dsDNA plant viruses.

PloS one 13(9), e0203038 (2018).

[184] A. L. Rockwood, D. K. Crockett, J. R. Oliphant, and K. S. Elenitoba-Johnson. Se-

quence alignment by cross-correlation. Journal of biomolecular techniques: JBT 16(4),

453 (2005).

[185] G. Ravi, S. Divya, M. Ankush, and S. Kuldip. A novel signal processing measure to

identify exact and inexact tandem repeat patterns in dna sequences. EURASIP Journal

on Bioinformatics and Systems Biology 2007(1), 43596 (2007).

[186] W. M. Gentleman and G. Sande. Fast Fourier Transforms: for fun and profit. In

Proceedings of the November 7-10, 1966, Fall Joint Computer Conference, pp. 563–

578 (ACM, 1966).

[187] C. Van Loan. Computational frameworks for the fast Fourier transform, vol. 10 (Siam,

1992).

[188] M. Heideman, D. Johnson, and C. Burrus. Gauss and the history of the fast Fourier

transform. IEEE ASSP Magazine 1(4), 14 (1984).

[189] P. McLeod and G. Wyvill. A smarter way to find pitch. In ICMC (2005).

[190] H. Eichelberger and L. Ii. Jtransform – a Java source code transformation framework.

Tech. rep., TR 303, Institute for Computer Science, Wurzburg University (2002).

146 References

[191] S. W. Smith et al. The scientist and engineer’s guide to digital signal processing (1997).

[192] I. Bankman. Handbook of medical image processing and analysis (Elsevier, 2008).

[193] F. J. Harris. On the use of windows for harmonic analysis with the discrete Fourier

transform. Proceedings of the IEEE 66(1), 51 (1978).

[194] R. B. Blackman and J. W. Tukey. The measurement of power spectra from the point of

view of communications engineering. Bell System Technical Journal 37(1), 185 (1958).

[195] F. J. Rang, W. P. Kloosterman, and J. de Ridder. From squiggle to basepair: computa-

tional approaches for improving nanopore sequencing read accuracy. Genome biology

19(1), 90 (2018).

[196] E. A. Manrao, I. M. Derrington, A. H. Laszlo, K. W. Langford, M. K. Hopper, N. Gill-

gren, M. Pavlenok, M. Niederweis, and J. H. Gundlach. Reading DNA at single-

nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Na-

ture biotechnology 30(4), 349 (2012).

[197] G. M. Cherf, K. R. Lieberman, H. Rashid, C. E. Lam, K. Karplus, and M. Akeson.

Automated forward and reverse ratcheting of DNA in a nanopore at 5-̊a precision.

Nature biotechnology 30(4), 344 (2012).

[198] P. Sarkozy, Á. Jobbágy, and P. Antal. Calling homopolymer stretches from raw

nanopore reads by analyzing k-mer dwell times. In EMBEC & NBC 2017, pp. 241–244

(Springer, 2017).

[199] M. Jain, S. Koren, K. H. Miga, J. Quick, A. C. Rand, T. A. Sasani, J. R. Tyson,

A. D. Beggs, A. T. Dilthey, I. T. Fiddes, et al. Nanopore sequencing and assembly of

a human genome with ultra-long reads. Nature biotechnology 36(4), 338 (2018).

[200] M. C. Stancu, M. J. Van Roosmalen, I. Renkens, M. M. Nieboer, S. Middelkamp,

J. De Ligt, G. Pregno, D. Giachino, G. Mandrile, J. E. Valle-Inclan, et al. Mapping

and phasing of structural variation in patient genomes using nanopore sequencing.

Nature communications 8(1), 1326 (2017).

References 147

[201] C. L. Ip, M. Loose, J. R. Tyson, M. de Cesare, B. L. Brown, M. Jain, R. M. Leggett,

D. A. Eccles, V. Zalunin, J. M. Urban, et al. MinION Analysis and Reference Con-

sortium: Phase 1 data release and analysis. F1000Research 4 (2015).

[202] E. E. Schadt, S. Turner, and A. Kasarskis. A window into third-generation sequencing.

Human molecular genetics 19(R2), R227 (2010).

[203] R. Thakur, R. Bandopadhyay, B. Chaudhary, and S. Chatterjee. Now and Next-

Generation Sequencing Techniques: Future of Sequence Analysis Using Cloud Com-

puting. Frontiers in Genetics 3, 280 (2012).

[204] S. Nurk, D. Meleshko, A. Korobeynikov, and P. A. Pevzner. metaSPAdes: a new

versatile metagenomic assembler. Genome Research 27(5), 824 (2017).

[205] D. D. Kang, J. Froula, R. Egan, and Z. Wang. MetaBAT, an efficient tool for accurately

reconstructing single genomes from complex microbial communities. PeerJ 3, e1165

(2015).

[206] M. Watson and A. Warr. Errors in long-read assemblies can critically affect protein

prediction. Nature Biotechnology p. 1 (2019).

[207] S. Koren, A. M. Phillippy, J. T. Simpson, N. J. Loman, and M. Loose. Reply to errors

in long-read assemblies can critically affect protein prediction. Nature Biotechnology

p. 1 (2019).

148 References

A
Supplementary materials for Chapter 2

149

150 Appendices

 CP006659.1

C
tg

1

 CP006660.1

C
tg

5

 CP006661.1

C
tg

2

 CP006662.1

C
tg

4

 CP006663.1

C
tg

3

Figure A.1: Alignment of the npScarf’s assembly for K. pneumoniae ATCC BAA-2146 to
its draft reference genomes (GeneBank Accession GCA 000364385.2). The five contigs were in
complete agreement with the chromosome and four plasmids.

Scf18

C
tg

1
C

tg
2

Scf19 Scf22

C
tg

4

Scf20 Scf21

C
tg

3

Figure A.2: Alignment of the npScarf’s assembly for K. pneumoniae ATCC 13883 to its
draft reference genomes (GeneBank Accession GCA 000742135.1). For display convenience, IDs of
reference sequences are abbreviated by the last two digits before the dot in the original accession
code: Contigs 1 and 2 were aligned to the reference Scaffold 18 (KN046818.1). Contig 4 was aligned
to two Scaffolds 19 (KN046819.1) and 22 (KN046822.1) and Contig 3 to Scaffolds 20 (KN046820.1)
and 21 (KN046821.1).

Appendices 151

 chrI

C
tg

1
4

C
tg

1
9

 chrII

C
tg

7

 chrIII

C
tg

1
5

C
tg

1
6

 chrIV
C

tg
1

 chrV

C
tg

1
1

 chrVII

C
tg

4

 chrVIII

C
tg

1
2

C
tg

1
8

 chrIX

C
tg

1
3

 chrX

C
tg

8

 chrXI

C
tg

9

 chrXIII

C
tg

6

 chrXV

C
tg

3

 chrXVI

C
tg

5

 mitochondrion

C
tg

1
7

chrVI chrXII chrXIV

C
tg

2
C

tg
1

0

Figure A.3: Alignment of the npScarf’s assembly for S. cerevisiae W303 to the reference
genome of the S288C strain. Ten chromosomes (II, IV, V, VII, IX, X, XI, XIII, XV, XVI and
the mitochondrion) were constructed into individual contigs, three chromosomes (I, III and VIII)
were into two contigs each, and three chromosomes (VI, XII and XIV) were fused into two contigs
because of misassembly.

152 Appendices

 chrI

Ctg19

 chrIII

Ctg22

Ctg34
Ctg24

 chrIV

Ctg10

Ctg16

Ctg25
Ctg7

 chrV

Ctg12

Ctg23

 chrVI

Ctg21

 chrVII

Ctg29
Ctg38
Ctg27

Ctg13

Ctg18

Ctg28

 chrVIII

Ctg26

Ctg15

 chrIX

Ctg14

 chrX

Ctg3

 chrXI

Ctg5

 chrXII

Ctg43

Ctg39
Ctg32
Ctg11

Ctg35Ctg42

 chrXIII

Ctg20

Ctg33
Ctg2

 chrXIV

Ctg1

 chrXV

Ctg6

Ctg17

Ctg30

chrII chrXVI

Ctg4

Ctg9

Ctg8

 mitochondrion

Ctg31

Ctg41

Figure A.4: Alignment of the Canu’s assembly for S. cerevisiae W303 to the reference genome
of the S288C strain. Chromosomes II and XVI were fused onto three contigs.

Appendices 153

 chrI

Ctg2

Ctg26

 chrII

Ctg18

Ctg34
Ctg3

 chrIII

Ctg32

Ctg45
Ctg37

 chrIV

Ctg29

Ctg28
Ctg4

Ctg36
Ctg9

Ctg1

 chrVI

Ctg17

 chrVII

Ctg19

Ctg15
Ctg47Ctg24

 chrVIII

Ctg30

Ctg20

 chrIX

Ctg16

Ctg48

 chrX

Ctg8

Ctg10

 chrXII

Ctg23

Ctg7

 chrXIII

Ctg49Ctg27

Ctg12

Ctg5

Ctg25Ctg40

 chrXIV

Ctg14

Ctg13

Ctg22

 chrXV

Ctg21

Ctg35

 chrXVI

Ctg39
Ctg11

chrV chrXI

Ctg6

Ctg31
Ctg41

 mitochondrion

Ctg42

Ctg38

Ctg43

Figure A.5: Alignment of the miniasm’s assembly for S. cerevisiae W303 to the reference
genome of the S288C strain. Chromosomes V and XI were fused onto three contigs.

154 Appendices

Supplementary Table A.1 shows the memory usage of the tools on the datasets described

in the paper. The scaffolders (SSPACE, LINK and npScarf) were run on the short read

assemblies outputed by SPAdes. We hence only present the memory footprint from running

these tools only. The memory requirement for each pipeline should be the maximum between

memory usage of the tool and SPAdes. For NaS and Nanocorr, the error correction steps

were distributed across hundreds of jobs, each consumed a small memory footprint. We

report here only the memory usage from running The values reported in the table were from

running Celera Assembler. Note that we ran Celera Assembler on differing configurations,

and we reported the here the memory usage of the configuration resulting in the most

complete assembly. Memory reported for Canu and Miniasm was the maximum among all

tasks in the pipeline (including Pilon and BWA-MEM) because each task can be run one

at a time; However, the reported memory usage for npScarf was the sum of memory for

running npScarf and BWA-MEM.

Table A.1: Memory usage (Gb) of the different tools

Kp2146 Kp13883 E. coli K12 ST H58 Sc W303

SPAdes 35.67 34.32 34.24 10.45 85.99

+ SSPACE 3.41 4.01 5.09 2.39 36.84

+ LINK 28.47 16.33 44.83 19.89 233.49

+ npScarf (rt) 2.11 1.11 2.32 1.27 4.27

NaS + CA 8.02 8.10 9.21 8.23 83.60

Nanocorr + CA 3.76 3.99 6.91 1.57 159.91

Canu + Pilon - 6.78 6.30 - 56.20

Miniasm + Pilon 2.99 6.08 6.04 1.97 89.51

B
Supplementary materials for Chapter 3

155

156 Appendices

Figure B.1: Another application of npBarcode with GUI for ONT sequencing using PCR
barcoding kit (3 libraries, Albacore base-caller).

Table B.1: Information for each of 8 samples used in the Native Barcoding sequencing protocol.

ID Strain Publish ID Barcode ID Input (ng)

GP 023 Streptococcus pneumoniae ATCC 700677 NB01 1,000

GN 092 Klebsiella pneumoniae 3 GR 13 [122] NB02 1,500

GN 093 Acinetobacter baumannii n/a NB03 1,500

GN 096 Klebsiella pneumoniae 5 GR 13 [122] NB04 935

GN 101 Pseudomonas aeruginosa n/a NB05 1,500

GN 106 Klebsiella pneumoniae 11 BR 13 [122] NB06 1,500

GN 132 Klebsiella quasipneumoniae 21 GR 13 [122] NB07 1,000

GN 133 Klebsiella pneumoniae 22 GR 12 [122] NB08 1,500

Appendices 157

Table B.2: Pairwise comparison (using MUMmer) between 8 samples in our Native Barcode
Sequencing. Value in cell (i, j) is percentage (bases) of genome i aligned to genome j. Highly
identical genomes and their figures are highlighted.

GP 023 GN 092 GN 093 GN 096 GN 101 GN 106 GN 132 GN 133

GP 023 100 0.30 0.16 0.27 0.09 0.34 0.28 0.30

GN 092 0.14 100 0.30 87.28 1.09 92.74 78.42 97.11

GN 093 0.13 0.32 100 0.32 0.30 0.25 0.23 0.3

GN 096 0.14 88.84 0.31 100 1.27 88.10 79.75 86.24

GN 101 0.03 0.90 0.15 1.00 100 1.02 0.73 0.72

GN 106 0.17 93.96 0.17 87.47 1.19 100 79.65 91.86

GN 132 0.13 79.99 0.16 79.94 0.84 80.50 100 79.66

GN 133 0.15 99.99 0.26 87.31 0.93 93.47 80.50 100

Table B.3: True Positive and True Negative rate on identification of Gram Negative species
GP 023.
It can be seen that npBarcode has the highest rate of true positive (sensitivity 88.26%) and the low-
est rate of true negative (specificity 99.19%). The common behavior for all demultiplex algorithms
is to takes higher/lower risk of wrong classification in exchange for the greater/lesser discovery rate
possible. This ratio has to be managed in a proper way depending on different situations yet can
be adjusted by parameter calibration. For this use case with default parameter set, npBarcode,
Porechop and Metrichor built-in demultiplex return comparable results while poreFUME is slightly
more conservative.

npBarcode Porechop poreFUME Metrichor

True Positive 2,924 2,812 2,515 2,875

True Negative 22,125 22,147 22,177 22,155

False Positive 181 159 129 151

False Negative 389 501 798 438

Sensitivity (%) 88.26 84.88 75.91 86.78

Specificity (%) 99.19 99.29 99.42 99.32

158 Appendices

Table B.4: Real-time emulation of time to detect resistance genes from DNA sequencing. Bold
represents genes or gene family detected in final assembly and # displays more than three genes
grouped within this family. Genes displayed in order of time detected. Brackets represent class of
antibiotic this gene confers resistance which includes: A, aminoglycoside; B, beta-lactam; F; fos-
fomycin; Fu; fusidic acid, M, macrolide; P, phenicol; Q, quinolone; R, rifampicin; S, sulphonamide;
T, tetracycline; Tr, trimethoprim; V, vancomycin.

Time (mins) Resistance gene(s) detected

Isolate: 1 GR 13 Total run time: 1279 mins

10
oqxA (Q), dfrA1 (Tr), dfrA14 (Tr), dfrA23 (Tr), blaVIM-27# (B), sul1/3 (S), strA (A),

aph(3)-Ia/c (A), strB (A), aadB (A), mph(A (M), blaTEM-1B# (B), oqxB (Q), rmtB2 (A)

30
sul2 (S), ARR-2/3/6 (R), blaOXA-10# (B), blaVEB-1# (B), tet(G) (T), cmlA1 (P), floR (P),

blaSHV-11# (B), fosA (F)

60 ARR-3 (R), aac(6)Ib# (A), ARR-7 (R), aac(2) (A), cml (P)

120 aac(3)-IIIc (A)

300 aac(3)-IIIb (A), aac(6)-Ic (A),

600 blaPAO (B), aph(3)-IIb (A), aph(6)-Ic (A)

900 catpC233 (P), blaOKP (B)

1200 tet(A) (T)

Isolate: 2 GR 12 Total run time: 2468 mins

10 blaKPC-2# (B), blaTEM-1A#(B), aac6Ib/-cr# (A), cmlA1 (P), dfrA12 (Tr), sul1/ 3 (S)

30 rmtB2 (A), oqxA (Q), dfrA14 (Tr), blaPAO (B)

60
oqxB (Q), strA (A), strB (A), aph(3)-1a/c (A), sul2 (S), blaSHV-11/12# (B), mph(A) (M),

catA1 (P), tet(G) (T), blaOXA-9# (B), aadA1/2# (A), fusB (Fu), aac(6)/aph(2) (A)

120 blaOXA-10# (B), floR (P), ARR-2/3/6 (R), aadB (A), fosA (F), blaVEB-1# (B), cml (P), dfrA23 (Tr)

300 aac(3)-IIIc (A), catpC233 (P), aac(3)-IIIb (A), ARR-3 (R)

600 tet(A) (T)

900 aph(6)-Ic (A)

1200 -

Isolate: 16 GR 13 Total run time: 1277 mins

10 blaOXA-436 (B), sul1/3 (S), dfrA12 (Tr), fosA (F), aadB (A), strA (A), sul2 (S), strB (A), blaCTX-M-64 (B)

30
blaOXA-48# (B), aph(3)-1a/c (A), mph(A) (M), rmtB2 (A), floR (P), blaCTX-M-15# (B),

aac(6)Ib-cr# (A), blaOXA-1# (B), oqxB (Q), oqxA (Q), blaTEM-1B# (B), blaVEB-1# (B), cmlA1 (P)

60 tet(G) (T), blaOXA-10# (B), blaSHV-11# (B), aac(3)-IIa# (A), ARR-2/3/6 (R)

120 aadA1/2# (A), fusB (Fu), ermT (M), str (A), rmtG (A), aac(6)/aph(2) (A)

300 ARR-3 (R), catpC233 (P), cml (P), aph(6)-Ic (A), aac(3)-IIIb (A)

600 vanR (V), dfrA14 (Tr)

900 blaPAO (B)

1200 aph(3)-IIb (A)

Isolate: 20 GR 12 Total run time: 1277 mins

10 aac(6)Ib/-cr# (A), blaTEM-1A# (B), dfrA14 (Tr), sul2 (S), strB (A), blaKPC-2# (B), tet(A) (T)

30 oqxA (Q), blaSHV-11/12# (B), aph(3)-Ia (A), fosA (F), blaOXA-9 (B), oqxB (Q), aph(6)-Ic (A)

60 -

120 aac(2) (A), catpC233 (P), aac(3)-IIIb (A)

300 ermT (M), blaPAO (B), aac(6)/aph(2) (A), catpC221 (P)

600 rmtf (A), ermG (M)

900 aac(3)-IIIc (A), aac(6)-Ic (A)

1200 vatB (M), ARR-2/3/6 (R), aadB (A)

Appendices 159

Figure B.2: Comparison of ONT Native Barcode Sequencing (8 libraries) demultiplexing accu-
racy. The bars present the number of aligned reads to references. Each group of bars correspond to
a demultiplex bin. Bars in a group, from left to right, are from (1) the total dataset (2) npBarcode
(3) Porechop (4) poreFUME demultiplex. GN 092, GN 106, GN 133 together with GN 096 and
GN 132 are very close thus being filled by similar colors (pink-red).

160 Appendices

Listing B.1: An example of script.sh used for npBarcode, assuming that all SPAdes output
folders are located in the same directory as this script and have name containing the barcoded
sample.

#!/bin/bash

dirname=‘find . -maxdepth 1 -type d -name "*${1}*" -print -quit ‘

bwa index ${dirname }/ contigs.fasta

bwa mem -t 16 -k11 -W20 -r10 -A1 -B1 -O1 -E1 -L0 -a -Y -K 10000 \

${dirname }/ contigs.fasta - 2> /dev/null | \

jsa.np.npscarf -realtime -read 100 -time 1 -b - \

-seq ${dirname }/ contigs.fasta -spadesDir ${dirname} \

-prefix ${1} > ${1}. log 2>&1

C
Supplementary materials for Chapter 4

161

162 Appendices

Table C.1: Benchmarking npGraph against npScarf versions, hybridSPAdes and Unicycler

hybrid assembler with the synthetic dataset.

Assembly N50 Mis- Mismatch Indel

Method size (bp) #Contigs (bp) assemblies (per 100Kbp) (per 100Kbp)

random sequences no repeats

npScarf 4110000 3 4000000 0 0.00 0.00

npScarf wag 4109516 3 4000000 0 0.00 0.00

npGraph-bwa 4110000 3 4000000 0 0.00 0.00

npGraph-mm2 4110000 3 4000000 0 0.00 0.00

hybridSPAdes 4110231 3 4000077 0 0.00 0.07

Unicycler 4110000 3 4000000 0 0.00 0.00

random sequences some repeats

npScarf 4109612 3 4001483 0 0.00 1.22

npScarf wag 4108128 3 3999999 0 0.00 0.95

npGraph-bwa 4110000 3 4000000 0 0.00 0.00

npGraph-mm2 4110000 3 4000000 0 0.00 0.00

hybridSPAdes 4108283 3 4000077 0 0.02 0.05

Unicycler 4110000 3 4000000 0 0.00 0.00

random sequences many repeats

npScarf 4251391 9 3952225 27 0.88 7.86

npScarf wag 4554192 9 3999620 37 0.32 5.84

npGraph-bwa 4110000 3 4000000 0 0.32 0.15

npGraph-mm2 4110000 3 4000000 0 0.32 0.15

hybridSPAdes 4108646 3 4000077 0 0.68 0.17

Unicycler 4110000 3 4000000 0 0.32 0.15

Continued on next page

Appendices 163

Table C.1 – Continued from previous page

Assembly N50 Mis- Mismatch Indel

Method size (bp) #Contigs (bp) assemblies (per 100Kbp) (per 100Kbp)

Acinetobacter A1

npScarf 3918192 3 3899455 4 3.15 0.77

npScarf wag 4188998 5 3286149 6 6.94 1.87

npGraph-bwa 3917160 2 3908429 1 19.80 2.25

npGraph-mm2 3918048 2 3909317 4 21.42 1.51

hybridSPAdes 3886253 53 1403208 0 5.62 0.26

Unicycler 3917745 2 3909014 0 2.50 0.13

Acinetobacter AB30

npScarf 4594626 11 4299677 1 69.95 51.04

npScarf wag - - - - - -

npGraph-bwa 4317408 6 2766938 1 38.10 1.72

npGraph-mm2 4336804 1 4336804 0 23.16 1.55

hybridSPAdes 4286627 49 3308039 0 4.60 0.44

Unicycler 4333041 1 4333041 1 6.42 0.53

E. coli K12 MG1655

npScarf 4647010 5 4609437 9 10.65 17.61

npScarf wag 4678785 5 4641364 0 8.38 2.31

npGraph-bwa 4643368 1 4643368 0 9.37 0.75

npGraph-mm2 4643265 1 4643265 0 10.43 1.25

hybridSPAdes 4641097 1 4641097 0 1.19 0.13

Unicycler 4641650 1 4641650 0 3.43 0.26

Continued on next page

164 Appendices

Table C.1 – Continued from previous page

Assembly N50 Mis- Mismatch Indel

Method size (bp) #Contigs (bp) assemblies (per 100Kbp) (per 100Kbp)

E. coli O25b H4-ST131

npScarf 5353639 7 5087544 14 22.43 6.69

npScarf wag 5413499 7 5108146 6 26.34 3.95

npGraph-bwa 5251882 3 5112329 0 15.26 1.11

npGraph-mm2 5250391 3 5110666 0 13.56 1.05

hybridSPAdes 5249315 7 5109649 0 2.23 0.42

Unicycler 5249442 3 5109760 0 4.02 0.27

Klebsiella 30660 NJST258 1

npScarf 5739591 9 5257627 8 11.55 12.93

npScarf wag 5527526 5 5264334 0 9.86 2.43

npGraph-bwa 5535507 8 5264082 2 12.77 1.50

npGraph-mm2 5534879 8 5263608 0 6.49 1.14

hybridSPAdes 5528124 8 5263320 0 1.36 0.80

Unicycler 5537860 9 5263196 0 1.34 0.51

Klebsiella MGH 78578

npScarf 5676644 6 5308928 17 20.26 14.74

npScarf wag 5672565 5 5315270 6 19.15 3.73

npGraph-bwa 5698292 6 5316232 1 23.94 2.34

npGraph-mm2 5696273 6 5315757 0 19.35 1.84

hybridSPAdes 5665442 19 5315086 0 5.28 0.92

Unicycler 5694231 14 5315096 0 5.38 0.21

Continued on next page

Appendices 165

Table C.1 – Continued from previous page

Assembly N50 Mis- Mismatch Indel

Method size (bp) #Contigs (bp) assemblies (per 100Kbp) (per 100Kbp)

Klebsiella NTUH-K2044

npScarf 5468717 3 5239437 5 5.53 1.92

npScarf wag 5471159 2 5249462 0 6.98 1.72

npGraph-bwa 5472856 2 5248714 0 8.06 1.41

npGraph-mm2 5472845 2 5248703 0 7.07 1.15

hybridSPAdes 5472760 2 5248601 0 2.34 0.60

Unicycler 5472697 2 5248545 0 2.41 0.35

Mycobacterium tuberculosis H37Rv

npScarf 4446095 4 4389968 12 7.61 3.53

npScarf wag 4407553 1 4407553 2 4.21 2.80

npGraph-bwa 4411594 1 4411594 0 6.21 1.07

npGraph-mm2 4411387 1 4411387 0 6.28 0.73

hybridSPAdes 4411162 1 4411162 0 1.41 0.32

Unicycler 4411538 1 4411538 0 2.22 0.34

Saccharomyces cerevisiae S288c

npScarf 11875932 20 896738 48 77.76 12.63

npScarf wag 12626448 37 630281 189 43.11 5.16

npGraph-bwa 11907663 37 774482 24 72.70 4.14

npGraph-mm2 11881030 39 795662 30 58.48 3.58

hybridSPAdes 11968398 246 731962 4 12.20 0.89

Unicycler 11847655 72 909114 0 21.81 1.04

Continued on next page

166 Appendices

Table C.1 – Continued from previous page

Assembly N50 Mis- Mismatch Indel

Method size (bp) #Contigs (bp) assemblies (per 100Kbp) (per 100Kbp)

Shigella dysenteriae Sd197

npScarf 4037570 70 179761 63 103.66 182.99

npScarf wag 6571492 23 640874 1154 81.15 53.47

npGraph-bwa 4574433 6 4382010 133 93.64 12.47

npGraph-mm2 4565129 10 1512588 193 86.63 13.29

hybridSPAdes 4562642 244 77009 35 7.14 1.20

Unicycler 4560901 3 4369231 0 11.88 1.05

Shigella sonnei 53G

npScarf 5335195 77 388533 68 104.26 116.07

npScarf wag - - - - - -

npGraph-bwa 5210154 4 4987138 14 59.84 1.02

npGraph-mm2 5212051 4 4989035 19 30.70 1.01

hybridSPAdes 5223176 14 4987892 0 3.14 0.27

Unicycler 5220517 5 4988548 0 7.39 0.52

Streptococcus suis BM407

npScarf 2220434 4 2120037 9 48.28 48.92

npScarf wag 2245214 4 2128290 3 85.79 3.85

npGraph-bwa 2167238 6 2146682 0 26.08 0.69

npGraph-mm2 2166779 6 2146223 0 21.88 0.65

hybridSPAdes 2147092 48 1437972 0 0.79 0.19

Unicycler 2170829 2 2146250 0 2.67 0.32

Appendices 167

(a) Citrobacter freundii CAV1374 (b) Klebsieall oxytoca CAV1015

(c) Enterobacter cloacae CAV1411

Figure C.1: Dotplot generated by MUMmer for assembly results of Unicycler versus npGraph.
Structural agreements between two methods were found in (a) C.freundii and (b) K.oxytoca assem-
bly contigs. On the other hand, for (c) E.cloacae sample, there was a disagreement detected between
2 largest contigs given by two assembly algorithms. This case is investigated more thoroughly by
using a reference from a same bacterial strain in Figure C.2.

168 Appendices

(a) E. cloacae Unicycler assembly versus reference

genome

(b) E. cloacae npGraph assembly versus reference

genome

Figure C.2: Alignments of an Enterobacter cloacae reference genome to assembly sequences
generated by (a) Unicycler and (b) npGraph. While the former presents a structural variant, the
latter is virtually an 1-to-1 mapping.

D
Supplementary materials for Chapter 5

169

170 Appendices

Figure D.1: Number of k-concatemers for each positive viral sample with barcode 08 (CaMV)
and 09 (BSMYV). k = 1 . . . 7

Appendices 171

(a) ACF for a monomer read (b) ACF for a 2-concatemers read

(c) ACF for a 3-concatemers read (d) ACF for a 6-concatemers read

(e) ACF for the 7-concatemer read (f) ACF for a random DNA sequence

Figure D.2: ACF values for a random synthetic read and several k-concatemers nanopore read
detected in Cauliflower mosaic sample (barcode 08).

172 Appendices

(a) NSDF signal averaged by 10k window

(b) NSDF signal averaged by 20k window

Figure D.3: NSDF signal processed by a running average filter step with different window
size (ws): (D.3a) ws = 10, 000 (D.3b) ws = 20, 000. While the larger window sizes mean better
de-noised signals, it also reduces the specificity of the local maxima. As can be seen from the
Figure D.3b, the peaking regions are easier to spot but their blunt tips, making it more difficult to
determine the exact coordinates. In Figure D.3a the window size 10, 000 returned clear spikes for
easier monomer length evaluation. However, the seesaw pattern were not eliminated completely.

Appendices 173

(a) NDSF for DNA sequence

(b) NSDF for raw signal

Figure D.4: 7-concatemers NSDF signal processed after LPF using cutFreq = 30 of: (D.4a)
base-called DNA sequence (D.4b) raw signal sequence.

174 Appendices

List of Symbols

G = {V,E}: graph composed of vertices set and edges set

−→u ,−→v : vertex of a bidirected graph with direction property

v+, v−: DNA content of v spelled in template or reversed complement order

S = {s1, . . . sL}: a signal sequence of length L

N,Z,R,C: set of natural, integer, real and complex numbers respectively

175

07/03/2019 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=8d52990f-66a3-4d1d-8872-f47ed43d8d54 1/5

ELSEVIER LICENSE

 TERMS AND CONDITIONS

Mar 07, 2019

This Agreement between Mr. Son Nguyen ("You") and Elsevier ("Elsevier") consists of your
license details and the terms and conditions provided by Elsevier and Copyright Clearance
Center.

License Number 4543471436155

License date Mar 07, 2019

Licensed Content Publisher Elsevier

Licensed Content Publication Trends in Microbiology

Licensed Content Title Rolling-circle amplification of viral DNA genomes using phi29

polymerase

Licensed Content Author Reimar Johne,Hermann Müller,Annabel Rector,Marc van Ranst,Hans

Stevens

Licensed Content Date May 1, 2009

Licensed Content Volume 17

Licensed Content Issue 5

Licensed Content Pages 7

Start Page 205

End Page 211

Type of Use reuse in a thesis/dissertation

Portion figures/tables/illustrations

Number of

figures/tables/illustrations

1

Format electronic

Are you the author of this

Elsevier article?

No

Will you be translating? No

Original figure numbers Figure 1

Title of your

thesis/dissertation

Real-time analysis for Nanopore sequencing data

Expected completion date Mar 2019

Estimated size (number of

pages)

200

Requestor Location Mr. Son Nguyen

 4/66

 Cedar Street

 Greenslopes

 Brisbane, QLD 4120

 Australia

 Attn: Mr. Son Nguyen

Publisher Tax ID GB 494 6272 12

Total 0.00 USD

Terms and Conditions

INTRODUCTION
1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection
with completing this licensing transaction, you agree that the following terms and conditions

07/03/2019 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=8d52990f-66a3-4d1d-8872-f47ed43d8d54 2/5

apply to this transaction (along with the Billing and Payment terms and conditions
established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your
Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS
2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to
the terms and conditions indicated.
3. Acknowledgement: If any part of the material to be used (for example, figures) has
appeared in our publication with credit or acknowledgement to another source, permission
must also be sought from that source. If such permission is not obtained then that material
may not be included in your publication/copies. Suitable acknowledgement to the source
must be made, either as a footnote or in a reference list at the end of your publication, as
follows:
"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of
chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE
SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The
Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with
permission from Elsevier."
4. Reproduction of this material is confined to the purpose and/or media for which
permission is hereby given.
5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be
altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions
and/or any other alterations shall be made only with prior written authorization of Elsevier
Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications can be made
to any Lancet figures/tables and they must be reproduced in full.
6. If the permission fee for the requested use of our material is waived in this instance,
please be advised that your future requests for Elsevier materials may attract a fee.
7. Reservation of Rights: Publisher reserves all rights not specifically granted in the
combination of (i) the license details provided by you and accepted in the course of this
licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment
terms and conditions.
8. License Contingent Upon Payment: While you may exercise the rights licensed
immediately upon issuance of the license at the end of the licensing process for the
transaction, provided that you have disclosed complete and accurate details of your proposed
use, no license is finally effective unless and until full payment is received from you (either
by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If
full payment is not received on a timely basis, then any license preliminarily granted shall be
deemed automatically revoked and shall be void as if never granted. Further, in the event
that you breach any of these terms and conditions or any of CCC's Billing and Payment
terms and conditions, the license is automatically revoked and shall be void as if never
granted. Use of materials as described in a revoked license, as well as any use of the
materials beyond the scope of an unrevoked license, may constitute copyright infringement
and publisher reserves the right to take any and all action to protect its copyright in the
materials.
9. Warranties: Publisher makes no representations or warranties with respect to the licensed
material.
10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and
their respective officers, directors, employees and agents, from and against any and all
claims arising out of your use of the licensed material other than as specifically authorized
pursuant to this license.
11. No Transfer of License: This license is personal to you and may not be sublicensed,
assigned, or transferred by you to any other person without publisher's written permission.
12. No Amendment Except in Writing: This license may not be amended except in a writing
signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).
13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any
purchase order, acknowledgment, check endorsement or other writing prepared by you,
which terms are inconsistent with these terms and conditions or CCC's Billing and Payment
terms and conditions. These terms and conditions, together with CCC's Billing and Payment
terms and conditions (which are incorporated herein), comprise the entire agreement

07/03/2019 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=8d52990f-66a3-4d1d-8872-f47ed43d8d54 3/5

between you and publisher (and CCC) concerning this licensing transaction. In the event of
any conflict between your obligations established by these terms and conditions and those
established by CCC's Billing and Payment terms and conditions, these terms and conditions
shall control.
14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described
in this License at their sole discretion, for any reason or no reason, with a full refund payable
to you. Notice of such denial will be made using the contact information provided by you.
Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier
or Copyright Clearance Center be responsible or liable for any costs, expenses or damage
incurred by you as a result of a denial of your permission request, other than a refund of the
amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied
permissions.

LIMITED LICENSE
The following terms and conditions apply only to specific license types:
15. Translation: This permission is granted for non-exclusive world English rights only
unless your license was granted for translation rights. If you licensed translation rights you
may only translate this content into the languages you requested. A professional translator
must perform all translations and reproduce the content word for word preserving the
integrity of the article.
16. Posting licensed content on any Website: The following terms and conditions apply as
follows: Licensing material from an Elsevier journal: All content posted to the web site must
maintain the copyright information line on the bottom of each image; A hyper-text must be
included to the Homepage of the journal from which you are licensing at
http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at
http://www.elsevier.com; Central Storage: This license does not include permission for a
scanned version of the material to be stored in a central repository such as that provided by
Heron/XanEdu.
Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier
homepage at http://www.elsevier.com . All content posted to the web site must maintain the
copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following
clauses are applicable: The web site must be password-protected and made available only to
bona fide students registered on a relevant course. This permission is granted for 1 year only.
You may obtain a new license for future website posting.
17. For journal authors: the following clauses are applicable in addition to the above:
Preprints:
A preprint is an author's own write-up of research results and analysis, it has not been peer-
reviewed, nor has it had any other value added to it by a publisher (such as formatting,
copyright, technical enhancement etc.).
Authors can share their preprints anywhere at any time. Preprints should not be added to or
enhanced in any way in order to appear more like, or to substitute for, the final versions of
articles however authors can update their preprints on arXiv or RePEc with their Accepted
Author Manuscript (see below).
If accepted for publication, we encourage authors to link from the preprint to their formal
publication via its DOI. Millions of researchers have access to the formal publications on
ScienceDirect, and so links will help users to find, access, cite and use the best available
version. Please note that Cell Press, The Lancet and some society-owned have different
preprint policies. Information on these policies is available on the journal homepage.
Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an
article that has been accepted for publication and which typically includes author-
incorporated changes suggested during submission, peer review and editor-author
communications.
Authors can share their accepted author manuscript:

immediately
via their non-commercial person homepage or blog
by updating a preprint in arXiv or RePEc with the accepted manuscript

07/03/2019 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=8d52990f-66a3-4d1d-8872-f47ed43d8d54 4/5

via their research institute or institutional repository for internal institutional
uses or as part of an invitation-only research collaboration work-group
directly by providing copies to their students or to research collaborators for
their personal use
for private scholarly sharing as part of an invitation-only work group on
commercial sites with which Elsevier has an agreement

After the embargo period
via non-commercial hosting platforms such as their institutional repository
via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

link to the formal publication via its DOI
bear a CC-BY-NC-ND license - this is easy to do
if aggregated with other manuscripts, for example in a repository or other site, be
shared in alignment with our hosting policy not be added to or enhanced in any way to
appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final
record of published research that appears or will appear in the journal and embodies all
value-adding publishing activities including peer review co-ordination, copy-editing,
formatting, (if relevant) pagination and online enrichment.
Policies for sharing publishing journal articles differ for subscription and gold open access
articles:
Subscription Articles: If you are an author, please share a link to your article rather than the
full-text. Millions of researchers have access to the formal publications on ScienceDirect,
and so links will help your users to find, access, cite, and use the best available version.
Theses and dissertations which contain embedded PJAs as part of the formal submission can
be posted publicly by the awarding institution with DOI links back to the formal
publications on ScienceDirect.
If you are affiliated with a library that subscribes to ScienceDirect you have additional
private sharing rights for others' research accessed under that agreement. This includes use
for classroom teaching and internal training at the institution (including use in course packs
and courseware programs), and inclusion of the article for grant funding purposes.
Gold Open Access Articles: May be shared according to the author-selected end-user
license and should contain a CrossMark logo, the end user license, and a DOI link to the
formal publication on ScienceDirect.
Please refer to Elsevier's posting policy for further information.
18. For book authors the following clauses are applicable in addition to the above:
Authors are permitted to place a brief summary of their work online only. You are not
allowed to download and post the published electronic version of your chapter, nor may you
scan the printed edition to create an electronic version. Posting to a repository: Authors are
permitted to post a summary of their chapter only in their institution's repository.
19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be
submitted to your institution in either print or electronic form. Should your thesis be
published commercially, please reapply for permission. These requirements include
permission for the Library and Archives of Canada to supply single copies, on demand, of
the complete thesis and include permission for Proquest/UMI to supply single copies, on
demand, of the complete thesis. Should your thesis be published commercially, please
reapply for permission. Theses and dissertations which contain embedded PJAs as part of
the formal submission can be posted publicly by the awarding institution with DOI links
back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions
You can publish open access with Elsevier in hundreds of open access journals or in nearly
2000 established subscription journals that support open access publishing. Permitted third
party re-use of these open access articles is defined by the author's choice of Creative
Commons user license. See our open access license policy for more information.

07/03/2019 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=8d52990f-66a3-4d1d-8872-f47ed43d8d54 5/5

Terms & Conditions applicable to all Open Access articles published with Elsevier:
Any reuse of the article must not represent the author as endorsing the adaptation of the
article nor should the article be modified in such a way as to damage the author's honour or
reputation. If any changes have been made, such changes must be clearly indicated.
The author(s) must be appropriately credited and we ask that you include the end user
license and a DOI link to the formal publication on ScienceDirect.
If any part of the material to be used (for example, figures) has appeared in our publication
with credit or acknowledgement to another source it is the responsibility of the user to
ensure their reuse complies with the terms and conditions determined by the rights holder.
Additional Terms & Conditions applicable to each Creative Commons user license:
CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new
works from the Article, to alter and revise the Article and to make commercial use of the
Article (including reuse and/or resale of the Article by commercial entities), provided the
user gives appropriate credit (with a link to the formal publication through the relevant
DOI), provides a link to the license, indicates if changes were made and the licensor is not
represented as endorsing the use made of the work. The full details of the license are
available at http://creativecommons.org/licenses/by/4.0.
CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts,
abstracts and new works from the Article, to alter and revise the Article, provided this is not
done for commercial purposes, and that the user gives appropriate credit (with a link to the
formal publication through the relevant DOI), provides a link to the license, indicates if
changes were made and the licensor is not represented as endorsing the use made of the
work. Further, any new works must be made available on the same conditions. The full
details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.
CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article,
provided this is not done for commercial purposes and further does not permit distribution of
the Article if it is changed or edited in any way, and provided the user gives appropriate
credit (with a link to the formal publication through the relevant DOI), provides a link to the
license, and that the licensor is not represented as endorsing the use made of the work. The
full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0.
Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY
NC ND license requires permission from Elsevier and will be subject to a fee.
Commercial reuse includes:

Associating advertising with the full text of the Article
Charging fees for document delivery or access
Article aggregation
Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.9
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or

+1-978-646-2777.

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Streaming assembly using Nanopore reads
	Multi-samples analyses with barcode sequencing
	Integration of assembly graph into scaffolding pipeline
	MinION sequencing analysis for viral genomes
	Conclusion
	References
	Appendix Supplementary materials for Chapter 2
	Appendix Supplementary materials for Chapter 3
	Appendix Supplementary materials for Chapter 4
	Appendix Supplementary materials for Chapter 5
	List of Symbols

