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ABSTRACT 

If humanity aims to avoid further biodiversity losses and environmental degradation, future energy 

demands must be met through the use of more sustainable energy production systems. Biofuels have 

been proposed as a more sustainable alternative for energy production as, under several cultivation 

conditions, they reduce greenhouse gas emissions and facilitate carbon recycling over much shorter 

time frames than fossil fuels. However, several environmental impacts have been linked to biofuel 

production, particularly when their cultivation competes with food production and biodiverse lands. 

 

Microalgal production systems may become a more sustainable option for the production of biofuels, 

as a result of their high yields per unit area, their potential to use different types of water (freshwater, 

brackish water, and seawater), their non-dependence on arable lands, and their potential to use 

wastewater and CO2 from industries. This project evaluates the several potential environmental 

impacts of microalgal liquid biofuel production systems compared to first generation biofuels (i.e., 

food crops such as maize, sugarcane, soybeans, and oil palm), with a focus on vertebrate biodiversity. 

Additionally, it identifies cost-effective areas for siting microalgal production farms globally, in 

which profitability is maximized and direct competition with food production and biodiverse areas is 

minimized. Finally, it evaluates how novel and more sustainable biofuel production systems can be 

implemented in order to gradually replace less sustainable biofuel production systems, which include 

those based on food crops. 

 

This work improves the understanding of the potential synergies and trade-offs between microalgal 

biofuel production, agricultural production, and biodiversity conservation at global and regional 

scales. Furthermore, it provides a framework for identifying best areas for siting microalgal biofuel 

production farms globally based on targets in energy demands. Microalgal biofuel production systems 

can help humankind achieve ambitious targets in energy production with lower environmental 

impacts than first generation biofuels, mainly in terms of reduced land-use changes within high-value 

agricultural areas and biodiverse lands. 
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In 2040 energy demands could increase by 28% compared to 2016, even under the implementation 

of policies for the increased use of renewable energy sources (IEA 2017). This could further increase 

environmental degradation, by impacting essential global systems such as climate, food production, 

and biodiversity (Rockström et al. 2009), and by impacting the provision of multiple ecosystem 

services (Balvanera et al. 2001, MEA 2005). How humanity will reach its future energy demands 

while halting environmental degradation remains as a major current challenge. 

 

The replacement of fossil fuels by renewable energy systems has been outlined as the main way to 

meet growing global energy targets while preventing further environmental degradation through the 

reduction of greenhouse gas emissions (Goldemberg 2006, Panwar et al. 2011, IPCC 2015). Biofuels, 

which derive from biomass transformation, have been proposed as a more sustainable alternative for 

energy production compared to fossil fuels—particularly for replacing liquid fuels in the transport 

sector (Fulton et al. 2015)—as in theory, their production and use should not increase the net 

atmospheric CO2 contents (McKendry 2002, Naik et al. 2010). However, several environmental 

impacts of biofuel production systems have been widely debated (Fargione et al. 2010, Fletcher et al. 

2011, Castanheira et al. 2014, Immerzeel et al. 2014). In particular, the conversion of native 

ecosystems into biofuel crops result in the local extinction of species, negatively impacting 

biodiversity (Koh 2007, Duke et al. 2013, Pedroli et al. 2013, Mukherjee and Sovacool 2014), and in 

the emissions of vast amount of greenhouse gasses (Fargione et al. 2008, Searchinger 2010). This can 

occur when biofuels derive from food crops (i.e., from first generation biofuels), which need fertile 

soils and thus compete with agricultural lands and biodiverse areas (Fargione et al. 2010, Immerzeel 

et al. 2014, Correa et al. 2017). 

 

Currently, most liquid biofuels are produced in the forms of ethanol and biodiesel, with around 87.2 

billion liters of ethanol and 26.3 billion liters of biodiesel produced in 2013 (REN21 2016). The USA 

and Brazil lead in ethanol production, mainly from maize and sugarcane, respectively; while the EU-

27 leads in biodiesel production, based on a wide arrange of oilseeds (e.g., soybeans, rapeseed, and 

oil palm) (RFA 2014, REN21 2016). This production overlaps with areas of high agricultural and 

ecological importance (e.g., the temperate grasslands in North America, the Cerrado savannas in 

Brazil, and the tropical rainforests in Southeast Asia), competing with food production and 

INTRODUCTION 
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biodiversity conservation (Fargione et al. 2009, Morefield et al. 2016, WWF 2016). With an expected 

increase of between 6% and 16% in total transport energy demands supplied by biofuels by 2040 

(IEA 2017), the implementation of more sustainable biofuel production alternatives should be 

considered. 

 

Several solutions have been proposed to reduce the environmental impacts exerted by biofuel 

production systems. These include the adoption of systems that can be produced in non-arable lands, 

which would avoid conflicts with food production and biodiverse areas (Tilman et al. 2009). The use 

of third generation biofuels, which derive from microalgae, has been considered as a promising 

sustainable alternative compared to food crops. Microalgal production systems do not depend on 

arable lands, they offer higher yields per unit of area, different species and strains can be selected to 

grow in different types of water (freshwater, brackish water, or seawater), and they have the ability 

to recycle nutrients found in wastewater systems and to absorb CO2 emissions from industries and 

other polluting sources (Chisti 2007, Schenk et al. 2008, Wang et al. 2008, Brennan and Owende 

2010, Mata et al. 2010, Christenson and Sims 2011, Pittman et al. 2011). 

 

However, it is not well understood how microalgal biofuel production systems may impact food 

systems and biodiversity in comparison to first generation biofuels. Furthermore, little is known about 

the optimal siting of microalgal production farms that maximize their profitability but also minimize 

their direct competition with high-value agricultural lands and biodiverse areas. 

 

This project aims to assess the potential impacts of microalgal liquid biofuel production systems on 

food production and biodiversity compared to first generation biofuels and with focus on vertebrate 

species. Analyses are based on open raceway ponds, which are currently considered the most cost-

effective technology for microalgal cultivation (Schenk et al. 2008, Slade and Bauen 2013). In 

particular, this project aims to assess the direct and indirect impacts of biofuel production on 

biodiversity, comparing first generation biofuels with microalgal production systems within tropical 

and subtropical regions of the world and focusing on vertebrates (Chapter 1). Additionally, it aims to 

provide insights into best geographical locations for the potential deployment of microalgal 

production farms where profitability is maximized and direct competition with agricultural systems 

and biodiversity are minimized, considering targets in global (Chapter 2) and national energy 

demands (Chapters 3 and 4). A particular emphasis has been placed on tropical and subtropical 

regions of the world, which not only hold most of global biodiversity (Valencia et al. 1994, Dirzo and 

Raven 2003, Kier et al. 2005), but also offer a great potential for future agricultural and biofuel 
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expansion and intensification (Laurance et al. 2014). Finally, it aims to provide considerations for 

identifying and implementing more sustainable biofuel production alternatives (Chapter 5).  

 

Following the introduction and general context section—which include the rationale and aims of the 

thesis, as well as background information—the dissertation is structured into five chapters (Fig. 1). 

The aims of each of the six chapters are as follows:  

 

• Assess the direct and indirect impacts of biofuel production on biodiversity, comparing first 

generation biofuels with microalgal production systems in tropical and subtropical regions of 

the world and focusing on vertebrates. 

 

• Determine which are the most suitable areas in the world for microalgal cultivation, while 

maximizing profitability and minimizing direct competition with food production and 

biodiversity and considering global energy targets. 

 

• Determine in which countries microalgal biofuel production could be scaled up for fulfilling 

current and future domestic transport energy demands without significantly impacting 

agricultural and natural systems. 

 

• Assess the potential conflicts among microalgal cultivation, food production, biodiversity 

conservation, and carbon storage for fulfilling future domestic targets in transport energy 

demands within four Neotropical countries (Panama, Colombia, Ecuador, and Venezuela) 

when compared to oil palm and sugarcane production. 

 

• Propose how microalgal biofuel production systems and other novel and sustainable biofuel 

production alternatives could be identified and implemented. 

 

The first chapter synthesizes current research on the environmental impacts of first generation 

biofuels, and provides insights on the potential impacts of microalgal biofuel production on 

biodiversity. It also compares the amount of land that would be needed to satisfy each country’s 

gasoline and distillate fuel oil demands by using microalgae or the best bioethanol and biodiesel crop 

per country, offering a direct comparison on their relative ecological footprint in terms of cultivation 

land.  
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The second chapter explores locations globally where microalgal biofuel production systems could 

be scaled up without directly competing with areas of high agricultural and biodiversity value. It also 

explores potential trade-offs between microalgal cultivation, food production, and biodiversity 

conservation based on targets on energy demands. 

 

The third chapter explores best locations for microalgal biofuel production at national scales, 

considering current and future national targets in domestic biofuel production. It offers insights on 

countries where microalgal biofuel production can be scaled up without directly competing with areas 

of high agricultural and biodiversity value.  

 

The fourth chapter compares best areas for reaching future domestic targets in energy production in 

Colombia, Ecuador, Panama, and Venezuela, based on microalgal, oil palm, and sugarcane 

cultivation. It provides insights on potential future conflicts among biofuel cultivation, food 

production, biodiversity, and carbon storage within these four Neotropical countries, where 

agricultural expansion threatens areas of global ecological importance.  

 

The fifth chapter provides information on how more sustainable biofuel production systems, 

including microalgae, can be identified and implemented. Additionally, a set of strategies for 

decreasing the economic barriers that prevent the implementation of more sustainable biofuel 

production systems is provided. 

 

The final section synthesizes the results and caveats found throughout this thesis and offers guidance 

on future work in the fields of biofuel production systems and their sustainability. 
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Figure 1. Structure and chapters of the thesis. 
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1. Current and future energy demands 

In 2016 around 13,760 Million Tonnes of Oil Equivalent (MTOE) were consumed around the world 

(IEA 2017), mainly derived from fossil fuel sources (i.e., 81 %), followed by renewable sources and 

nuclear energy (i.e., 14% and 5%, respectively) (IEA 2017). With around 30% of total final energy 

consumption, and 55% of total oil consumption—in the forms of gasoline and diesel for road 

transport, kerosene for aviation, and heavy fuel oil for navigation—the transport sector was a main 

greenhouse gas emitter (i.e., nearly 23% of total CO2 emissions in 2016 among production sectors) 

(IEA 2017), driving global warming and environmental degradation (Rockström et al. 2009). 

 

Global energy demands are expected to increase as a result of the ongoing global population and 

economic growth, especially in developing economies. Under a central scenario of economic and 

population growth, global energy demands are expected to increase by 28% between 2016 and 2040, 

reaching to 17,584 MTOE, mainly driven by Asian, African, Middle Eastern, and Latin American 

countries. This central scenario considers policies and measures that have been adopted and proposed 

until mid-2017, and thus, includes the proposed support for renewable energies, increased energy 

efficiency, and alternative fuels. Under a scenario for reduced climate change (i.e., Sustainable 

Development Scenario, equivalent to the former 450 Scenario), in which global warming is limited 

to below 2°C compared to pre-industrial levels, total energy demands are expected to increase by 

only 2% from 2016 to 2040. However, under this scenario, biofuel consumption would be highest, 

with an estimated increase from 1.7 mboe day-1 in 2016 to 8.1 mboe day-1 by 2040 (i.e., from 3% to 

16% of total transport energy consumption between 2016 and 2040) (IEA 2017). 

2. Current and future food demands 

Future food demands are expected to increase, driven by population growth, increased GDP, and 

change in food habits (e.g., increasing meat consumption in developing countries). At a population 

projection of around 9 billion people by 2050, it is expected that food production should increase by 
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60%. This increase in food production is expected to occur not only as a result of improved yields 

(Long et al. 2015) but also through agricultural intensification and expansion of agricultural lands 

around the world (Alexandratos and Bruinsma 2012).  

 

According to the Global Agro-Ecological Zones model (FAO 2018), there are 7.2 billion hectares 

that can be suitable for food production. Of these lands, only around 1.6 billion are currently used for 

crop production and an additional 75 million hectares are used for agriculture in lands classified as 

unsuitable but using irrigation. After excluding forests, protected areas, other land-uses (e.g., urban 

areas), and areas with low suitability for agricultural production, around 1.4 billion hectares remain 

for further agriculture expansion. Within these areas, agriculture is expected to expand by around 70 

million hectares by 2050, especially in developing countries in tropical areas (Alexandratos and 

Bruinsma 2012, Laurance et al. 2014), which harbor most of global biodiversity (Pimm and Raven 

2000, Dirzo and Raven 2003). 

3. Conservation of biodiversity and environmental degradation 

Biodiversity—a fundamental component of ecological systems—is currently under threat, mainly 

driven by the anthropogenic habitat destruction (Pimm and Raven 2000, Lawler et al. 2006, 

Rockström et al. 2009), but also affected by climate change, habitat pollution, and occurrence of 

invasive species (MEA 2005). Biodiversity losses diminish the capacity of ecosystems to withstand 

environmental pressures and disturbances (Tilman et al. 2006, Oliver et al. 2015), leading to the 

alteration in the provision of multiple ecosystem services in which humans rely (Costanza et al. 1997, 

MEA 2005). For instance, biodiversity losses can diminish freshwater provision, decrease soil 

fertility, decrease the provision of species that could be used for treating illnesses, and alter patterns 

in the transmission of diseases (MEA 2005, Foley et al. 2007). 

 

Average extinction rates during the past 100 years are considered to be at least 100 times greater 

compared to fossil records (Ceballos et al. 2015). In fact, according to the IUCN red list around 26% 

of mammals, 13% of birds and 41% of amphibians are under any threat category (IUCN 2016). 

Additionally, 9 of the 14 world biomes have been transformed into croplands in around 20% to 50% 

of their original extent; being tropical dry forests, temperate grasslands, temperate broadleaf forests, 

and Mediterranean forests, the most impacted biomes (MEA 2005).  
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As a consequence, in order to prevent further species and ecosystem losses, most governments have 

agreed to halve the rate of loss of forests by 2020. Additionally, minimum 17% of terrestrial and 

inland water systems and minimum 10% of coastal and marine areas are expected to be protected by 

2020, especially in areas with high biodiversity and ecosystem service values (CBD 2011). However, 

ignoring the relationships with other global systems, including energy and food production systems, 

could undermine biodiversity conservation efforts. 

4. Biofuel production for replacing fossil fuels 

Biofuel production involves the transformation of organic compounds from living organisms into 

solid, liquid, or gaseous energy-rich carriers that can be used for energy generation (Kamm and 

Kamm 2004). Liquid biofuels are mainly produced as bioethanol, used as a substitute for gasoline or 

as a precursor for the production of ethyl tertiary butyl ether (ETBE) for gasoline blends, and as 

biodiesel, used as a substitute for diesel (IEA 2016, REN21 2016). For the production of liquid 

biofuels, organic compounds (e.g., cellulose, hemicellulose, lignin, starch, saccharose, oils, and fats) 

are transformed into liquid energy carriers (e.g., alcohol and esters). These liquid biofuels are used 

for offsetting fossil fuels, mainly within the transport sector (Fulton et al. 2015).  

 

Organic compounds can come from different sources (i.e., feedstocks), including herbs, woody 

plants, oilseeds, agricultural and forestry wastes, and algae (McKendry 2002, Naik et al. 2010). Based 

on feedstocks, biofuels can be classified into first, second, and third generation biofuels (Brennan and 

Owende 2010, Naik et al. 2010): 

 

• First generation biofuels are derived from starch, sugar, and oils found in food crops (e.g., 

maize, wheat, sugarcane, soybean). Fermentation processing technologies are used for ethanol 

production, while oil extraction and transesterification processing technologies are used for 

biodiesel production (Naik et al. 2010). 

 

• Second generation biofuels are based in the transformation of lignin and cellulose, which are 

abundant and common components of non-food plants and organic wastes. (Naik et al. 2010). 

 

• Third generation biofuels are based on the use of microalgae (Lü et al. 2011). Along with 

second generation biofuels, they have been considered a better alternative for reducing the 

ecological footprint of biofuel production (Chisti 2008, Demirbas 2010). 
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4.1 Biofuel from microalgae 

Microalgae have been proposed as a more sustainable feedstock for biofuel production (Chisti 2008, 

Schenk et al. 2008, Brennan and Owende 2010). Biofuel can be produced from prokaryotic (i.e., 

cyanobacteria) and eukaryotic microalgae (e.g., green algae, red algae, and diatoms), in the forms of 

biogas, bioethanol, biodiesel, and biohydrogen (Chisti 2007, Schenk et al. 2008, Harun et al. 2009, 

Brennan and Owende 2010). 

 

Benefits of microalgae cropping include their high yield potential, their ability to grow in a wide 

range of environmental conditions (e.g., freshwater, brackish water, seawater) and their potential to 

be produced in non-arable lands. Furthermore, they can be coupled with wastewater treatments and 

industrial CO2 sources, helping in water remediation and greenhouse gasses consumption (Chisti 

2007, Schenk et al. 2008, Pittman et al. 2011). Additionally, microalgal systems can produce biochar, 

helping in CO2 sequestration (Heilmann et al. 2010), as well as products for human consumption and 

animal feed (Pulz and Gross 2004, Brennan and Owende 2010).  

4.1.1 Algae biofuel production process 

Growing 

Algae growth requires carbon dioxide, light, and a growing medium with inorganic salts (i.e., water 

with nutrients such as nitrogen, phosphorus, iron and sometimes silicon). Maximum productivities 

are achieved at high light intensities, constant temperatures (usually between 20 and 35 °C), and 

optimal pH. Production increases when feeding with CO2 (Chisti 2007, Lundquist et al. 2010), 

pathogens are controlled (Mata et al. 2010), and when cell densities and light interception are 

optimized (Schenk et al. 2008, Bechet et al. 2014). 

Outdoor systems include open ponds and closed photobioreactors. Raceway ponds are the most 

widely used type of open ponds, and consist on a closed recirculation channel, built in concrete or 

with plastic covering the earth, usually with a depth between 15 and 30 cm, in which algae and growth 

medium are mixed by paddlewheels at a velocity of at least 15 cm s-1 (Chisti 2007, Schenk et al. 2008, 

Brennan and Owende 2010, Mata et al. 2010). Algae concentrations are low, typically at around 

0.05% solids, CO2 should be added to the water for maximal productivity, and temperature is not 

controlled, although water evaporation helps to cool the medium (Chisti 2007). Compared to 

photobioreactors, this system experiences higher water losses through evaporation, is less efficient in 

CO2 uptake, and is more prone to contamination by other microorganisms, which results in reduced 
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yields (Chisti 2007, Brennan and Owende 2010). However, to date, they are considered the most cost-

effective microalgal production system (Slade and Bauen 2013). 

Photobioreactors consist of a series of plates, tubes, bags, columns or domes set in particular 

arrangements that maximize sunlight uptake. Algae concentrations are higher compared to open 

ponds, light intensity can be better optimized, temperature can be controlled (though energy or water 

use increase), and CO2 can be injected at several intervals in order to ensure continuous carbon uptake, 

leading to biomass yields up to 5 times the obtained in open ponds (Chisti 2007, Schenk et al. 2008, 

Lundquist et al. 2010, Chen et al. 2011). However, an excess of oxygen produced by photosynthesis 

can inhibit algae growth inside the structures, especially at high light intensities and temperatures, 

and thus a degassing zone should be used to extract oxygen (Chisti 2007). Additionally, capital costs 

may be ten times higher than those necessary for the construction of open ponds (Schenk et al. 2008), 

and they have been considered economically unviable by several studies (Lundquist et al. 2010, Davis 

et al. 2011, Slade and Bauen 2013). 

Hybrid systems are based on the initial growth of microalgae in photobioreactors, avoiding 

contamination by other microorganisms, followed by their growing in open ponds in nutrient 

limitation conditions, which induces accumulation of lipids and other cellular compounds (Schenk et 

al. 2008, Pienkos and Darzins 2009). 

 

Harvesting of microalgae, lipid extraction, and biofuel production 

Algae can be harvested continuously (chemostat) or every several days (batch mode, e.g., every 2–

10 days) (Schenk et al. 2008). Biomass can be recovered from the broth using filtration, absorption, 

centrifugation, micro screens, flocculation, or sedimentation following changes in pH (Chisti 2007, 

Darzins et al. 2010, Lundquist et al. 2010). However, this can be a costly practice as a result of the 

small size of algae and their low specific gravity (Uduman et al. 2010, Wiley et al. 2011, Milledge 

and Heaven 2013). 

 

For biodiesel production, oils are mainly extracted using solvents (e.g., hexane), although squeezing 

of cells and solvent-free methods can be used (e.g., supercritical fluid extraction, heated oil extraction, 

and biological extraction) (Darzins et al. 2010, Ranjith Kumar et al. 2015). Finally, lipids are 

converted into biodiesel by transesterification chemical reactions, although different technologies, 

including catalytic hydroprocessing, are being developed (Darzins et al. 2010, Scott et al. 2010). 
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Ethanol can be produced through microalgae fermentation, using yeasts on microalgae after lipid 

extraction processes, and by enhancing the extraction of complex carbohydrates from cell walls 

through different pre-treatments, including the use of acids or alkalis at high temperatures (Harun and 

Danquah 2011). Biogas can also be produced after the extraction of lipids or on raw microalgae, via 

anaerobic fermentation, allowing the recycling of nutrients when re-using the waste effluent 

(Mussgnug et al. 2010, Collet et al. 2011, Prajapati et al. 2014, González-González et al. 2018) 
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ABSTRACT 

Energy and fuel demands, which are currently met primarily using fossil fuels, are expected to 

increase substantially in the coming decades. Burning fossil fuels results in the increase of net 

atmospheric CO2 and climate change, hence there is widespread interest in identifying sustainable 

alternative fuel sources. Biofuels are one such alternative involving the production of different fuels 

which include biodiesel and bioethanol from plants. However, the environmental impacts of biofuels 

are not well understood. First generation biofuels (i.e., biofuels derived from edible biomass including 

crops such as maize and sugarcane) require extensive agricultural areas to produce sufficient 

quantities to replace fossil fuels, resulting in competition with food production, increased land 

clearing and pollution associated with agricultural production and harvesting. Microalgal production 

systems are a promising alternative that suffers from fewer environmental impacts. Here, we evaluate 

the potential impacts of microalgal production systems on biodiversity compared to first generation 

biofuels, through a review of studies and a comparison of environmental pressures that directly or 

indirectly impact biodiversity. We also compare the cultivation area required to meet gasoline and 

distillate fuel oil demands globally, accounting for spatial variation in productivity and energy 

consumption. We conclude that microalgal systems exert fewer pressures on biodiversity per unit of 

fuel generated compared to first generation biofuels, mainly because of reductions in direct and 

indirect land-use change, water consumption if water is recycled, and no application of pesticides. 

CHAPTER 1. Biodiversity impacts of bioenergy production: Microalgae 

vs. first generation biofuels 
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Further improvements of technologies and production methods, including optimization of 

productivities per unit area, colocation with wastewater systems and industrial CO2 sources, nutrient 

and water recycling and use of co-products for internal energy generation, would further increase CO2 

savings. Overall pollution reductions can be achieved through increased energy efficiencies, along 

with nutrient and water recycling. Microalgal systems provide strong potential for meeting global 

energy demand sustainably. 

 

Keywords: Biofuel crops, ecological footprint, land-use change, life-cycle assessment, tropic, 

vertebrate 

1. INTRODUCTION 

Future energy demands are expected to increase as a result of the ongoing population and economic 

growth. According to the IEA (2014), energy consumption could increase between 17% and 50% by 

2040 relative to 2012, reaching around 15,629 and 20,039 Million Tonnes of Oil Equivalent (MTOE) 

respectively. Meeting these demands under current levels of fossil fuels exploitation—with coal, oil 

and gas accounting for 82% of total primary energy consumption in 2012—is likely to drive increases 

in global atmospheric temperature above 3.6°C by 2100 in comparison to pre-industrial levels (IEA 

2014), leading to widespread changes in ecological communities and increases in extinction risks for 

species (Thomas et al. 2004, Bellard et al. 2012) 

 

Although a system that combines energy derived from the wind, water and sunlight has been proposed 

for supplying global energy demands (Jacobson and Delucchi 2011), fuels with their high energy 

density will still be a major component in the future to power large machinery, planes, and ships. 

Biofuels, defined as high-density energy carriers derived from biomass transformation, could be a 

sustainable alternative to replace fossil fuels (Goldemberg 2006, Hill et al. 2006, Panwar et al. 2011), 

especially for the transport sector (IEA 2014, Williams et al. 2015), which in 2012 accounted for 

around 23% of total CO2 emissions (IEA 2014). Burning biofuel releases carbon that has been already 

fixed by plants through photosynthesis and thus, in theory, should not increase the net atmospheric 

CO2 content (McKendry 2002, Naik et al. 2010). However, there are concerns about the 

environmental impacts that a widespread adoption of biofuels could exert at a global scale, which 

could lead to further environmental degradation depending on the production system and initial land-

use (Tilman et al. 2009, Immerzeel et al. 2014). Furthermore, environmental impacts are a function 

of differences in energy demands per country and regional variation in biofuels’ productivities. 



  

27 

 

 

Currently, biofuels are primarily produced in the forms of bioethanol and biodiesel derived from food 

crops (i.e., first generation biofuels). It is estimated that between 2013 and 2015 around 77% of 

produced bioethanol was based on the processing of maize and sugarcane; while around 81% of 

biodiesel was produced from vegetable oils (OECD/FAO 2016). Because first generation biofuels 

compete with agricultural lands, environmental degradation—including biodiversity losses due to 

land clearing of biodiverse systems—has been associated with biofuels’ expansion (Danielsen et al. 

2009, Fargione et al. 2009, Fargione et al. 2010, Fletcher et al. 2011, Koh et al. 2011, Duke et al. 

2013, Immerzeel et al. 2014). Furthermore, biofuel production can increase the magnitude of other 

pressures that directly or indirectly affect biodiversity, including CO2 emissions from land-use change 

(Fargione et al. 2008, Searchinger et al. 2008, Searchinger et al. 2015) and production systems 

(Larson 2006, Crutzen et al. 2008, Cherubini et al. 2009), emission of pollutants (Hill et al. 2006, 

Fargione et al. 2010) and depletion of water (Dominguez-Faus et al. 2009, Gerbens-Leenes et al. 

2009, Gerbens-Leenes et al. 2012). 

 

Microalgal production systems, which include open ponds and closed photobioreactors (Chisti 2007, 

Schenk et al. 2008, Lundquist et al. 2010, Mata et al. 2010, Wijffels and Barbosa 2010) could 

overcome several drawbacks of first generation biofuels, because they offer higher biomass yields 

than terrestrial crops per unit area, can be grown on non-arable lands, can make use of brackish or 

seawater, and can be coupled with wastewater systems and industrial CO2 sources, helping in water 

remediation and in CO2 emission reductions (Chisti 2007, Chisti 2008, Schenk et al. 2008, Brennan 

and Owende 2010, Mata et al. 2010, Sayre 2010). Previous work on microalgal production systems 

has addressed several environmental impacts of microalgal biofuel production, including resource 

consumption and pollution (Lardon et al. 2009, Clarens et al. 2010, Campbell et al. 2011, Clarens et 

al. 2011, Collet et al. 2011, Slade and Bauen 2013), water consumption (Zaimes and Khanna 2013) 

and potential impacts of genetically modified strains (Menetrez 2012). However, no study has focused 

on biodiversity or compared the potential impacts of microalgal systems on biodiversity in relation 

to first generation biofuels. 

 

Here, we review the potential impacts of microalgal systems for biofuel production on biodiversity 

in contrast to first generation biofuels, focusing on vertebrates in tropical and subtropical biodiverse 

regions of the world (Dirzo and Raven 2003, Kier et al. 2005) where the potential for agricultural 

expansion, including first generation biofuels, is greatest (Laurance et al. 2014, Laurance 2015). We 

classify the different factors that affect biodiversity due to biofuel production, using the DPSIR 

framework which, based on Driving forces, Pressures, States, Impacts and Responses, is useful for 
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describing the interactions between society and the environment (Smeets and Weterings 1999, 

Kristensen 2004). Then, we identify and compare the different pressures—defined as anthropogenic 

factors that induce environmental impacts (Gabrielsen and Bosch 2003)—that directly and indirectly 

impact biodiversity, when using microalgal systems or first generation biofuels. Accounting for 

spatial variation in productivity and energy consumption, we estimate the cultivation area required to 

meet gasoline and distillate fuel oil for each country using either microalgal systems or first 

generation biofuels, to investigate the relative impacts of these biofuel production alternatives in 

terms of potential land-use changes. 

2. MATERIALS AND METHODS 

Relevant literature was identified in April 2016 using the Science Citation Index Expanded (SCI-

EXPANDED) and the Emerging Sources Citation Index (ESCI) in Web of Science, with the 

following combinations of keywords: (biofuel OR bioenergy) AND (biodiversity OR wildlife), 

(biofuel OR bioenergy) AND (fish* OR bird* OR avian OR mammal* OR reptil* OR amphibian*). 

A citation report was made using Web of Science in order to show the progress in the field. Papers 

were screened to identify those that relate first generation biofuels or microalgae with impacts in 

tropical and subtropical areas of the world (i.e., between parallels 38°N and 38°S). We used these 

studies to identify the impacts that biofuel production has on biodiversity, the anthropogenic factors 

that induce impacts on biodiversity (i.e., pressures), as well as the mechanisms and processes by 

which those impacts occur.  

 

Further comparisons between microalgal systems and first generation biofuels were based on 

pressures that directly or indirectly have shown to impact biodiversity. Environmental pressures were 

schematized based on the DPSIR causal framework (Smeets and Weterings 1999, Kristensen 2004). 

The DPSIR framework has been adopted by the European Environmental Agency (Smeets and 

Weterings 1999) and has been widely applied for understanding relationships between factors that 

drive impacts on the environment and society responses (Immerzeel et al. 2014), for allowing 

communication between scientists (Maxim et al. 2009) as well as a tool for decision making (Atkins 

et al. 2011). For this comparison, life-cycle assessments for microalgal production systems were 

reviewed.  

 

An estimate of the cultivation area required by microalgal systems and first generation biofuels and 

microalgal systems to meet each country’s 2010 gasoline and distillate fuel oil demands (U.S. Energy 
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Information Administration 2016) was developed. The average yield of crops that could be used for 

ethanol and biodiesel production between 2005 and 2014 was calculated using the “FAOSTAT” 

database (FAO 2019) for each country. For each crop, yields can differ among countries located in 

the same climatic conditions (e.g., same latitude), as a result of differences in cultivars, soils, 

management practices, age of crops, and other factors that affect production. This can lead to larger 

land footprints in countries with less efficient agricultural practices, based on the same crop and 

similar gasoline and distillate fuel oil demands. Average ethanol yields were then estimated using 

conversion efficiencies from feedstocks (Wang et al. 1997, Rajagopal et al. 2007, de Vries et al. 2010, 

El Bassam 2010) and average biodiesel yields were estimated using reported lipid contents and oil-

specific densities per crop (El Bassam 2010, Firestone 2013), assuming lipid extraction efficiencies 

of 90% and lipid conversion efficiencies of 90%. For microalgal systems, lipid yields were obtained 

using the global map developed by Moody et al. (2014). The most frequent value of lipid yield per 

country was obtained based on an area-weighted average. The total cultivation area required to meet 

each country’s gasoline and distillate fuel oil needs was then calculated by dividing their annual 

consumption in 2010 (GJ year-1) by the average biofuel yield per country (GJ ha-1 year-1) (see 

Supplementary Information for details about calculations). 

3. RESULTS AND DISCUSSION 

We identified 898 papers addressing the impacts of biofuels on biodiversity, 101 of which related 

first generation biofuels or microalgal systems to biodiversity in tropical and subtropical regions of 

the world. From this only three studies focused specifically on microalgal systems (Zhu and Ketola 

2012, Usher et al. 2014, Zhu et al. 2015) (Tables S1 and S2 in Supplementary Information). A citation 

report generated in Web of Science shows the increasing trend in the number of citations for recent 

years, from five citations in 1993 to 5036 citations in 2015 and 4243 citations in 2016 (Fig. 1). 

 

Increases in population growth, energy and food demands, and replacement of fossil fuels were 

identified as the main drivers for biodiversity changes arising from biofuel expansion. A wide range 

of pressures that affect biodiversity were identified (Fig. 2). Because first generation biofuels make 

use of food crops, the pressures that impact biodiversity are closely related to those found for 

agricultural systems (McLaughlin and Mineau 1995, Donald 2004). These pressures corresponded to 

changes in land-use, overexploitation of resources, pollution, and changes in environmental 

conditions that directly or indirectly impact biodiversity: land-use change (direct, indirect) and land-

use intensification, increases in greenhouse gas emissions (leading to global warming), pesticide and 



  

30 

 

fertilizer pollution, water depletion, overexploitation of soils (including soil erosion), increases in 

invasive species and genetic pollution, emissions of air pollutants and changes in environmental 

conditions that affect regional climate. 

 

 

Figure 1. Citation report using the Science Citation Index Expanded (SCI-EXPANDED) and the Emerging Sources Citation Index 

(ESCI) in Web of Science and the following combination of keywords: (biofuel OR bioenergy) AND (biodiversity OR wildlife), (biofuel 

OR bioenergy) AND (fish* OR bird* OR avian OR mammal* OR reptil* OR amphibian*). 

 

These pressures alter the state of ecosystems, resulting in a series of impacts on biodiversity (Fig. 2). 

Responses of society to these impacts may increase or decrease their magnitude. For instance, 

adaptation measures to climate change may drive further environmental degradation without adequate 

planning for biodiversity conservation (Watson 2014, Maxwell et al. 2015), which outlines the 

importance of defining priorities that satisfy societal needs at the minimum costs for biodiversity 

(Balvanera et al. 2001). 

 

These pressures can directly or indirectly impact biodiversity through several mechanisms. For 

instance, land-use change directly decreases available habitat, but can also lead to fragmentation that 

further increases potential extinction risks in the remaining habitat patches (Fahrig 2003, Krauss et 

al. 2010). Furthermore, the magnitude of biodiversity impacts resulting from biofuel crop expansion 

was found to be a function of initial land-use, type of biofuel system and its associated management 

practices and production technologies, and landscape configurations between biofuel crops and native 

ecosystems (Azhar et al. 2011, Immerzeel et al. 2014). We examine each category of pressure in 

detail in the following sections. 
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Figure 2. Drivers, Pressures, States, Impacts, and Responses of biofuel production on biodiversity, based on the reviewed literature 

and following the DPSIR framework. 

 

3.1 Direct land-use change and land-use intensification 

Land-use change and land-use intensification were reported as the main pressures negatively 

impacting biodiversity due to the expansion of first generation biofuel systems (Immerzeel et al. 2014, 

Savilaakso et al. 2014). Replacement of native ecosystems and cropping intensification have been 

linked to habitat loss and degradation, decreases in richness and abundance of native vertebrates, 

affecting species of high conservation concern (Buchanan et al. 2008, Alkemade et al. 2009, Carrete 

et al. 2009, Meehan et al. 2010, Fletcher et al. 2011, Immerzeel et al. 2014). Furthermore, species that 

make use of biofuel plantations are mostly considered generalists and of low conservation value 

(Rajaratnam et al. 2007, Fitzherbert et al. 2008, Koh and Wilcove 2008, Danielsen et al. 2009, Azhar 

et al. 2011, Codesido et al. 2011, Fletcher et al. 2011, Mahood et al. 2012, Savilaakso et al. 2014, 

Pardo et al. 2015). 

 

Impacts on biodiversity depended upon the initial land-use, the type of biofuel production system and 

the landscape configuration. Reductions of species diversity are larger when transforming very 

biodiverse ecosystems (Duke et al. 2013) such as tropical forests (Koh and Wilcove 2008, Laurance 
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2015) and savannas (Alkemade et al. 2009, Searchinger et al. 2015) and when using biofuel 

production systems that require a larger area per unit of energy produced (Geyer et al. 2010). In some 

circumstances, where biofuel crops recreate ecological conditions needed for the survival of native 

species, vertebrate diversity could increase. For instance, it has been proposed that the replacement 

of degraded lands by several biofuel crops could increase biodiversity values. In the Indonesian 

tropics, if degraded Imperata grasslands are replaced with oil palm plantations, which are structurally 

and functionally more complex than pastures, diversity of forest-dependent vertebrates is expected to 

increase (Fitzherbert et al. 2008)—though mostly for low conservation value species—and lead to 

less pressure on forests (Nantha and Tisdell 2009). In the USA, large patches of perennial crops (e.g., 

switchgrass, Miscanthus, mixed-grass prairies) are expected to be better than annual crops (e.g., 

maize) for maintaining populations of grassland specialists including endangered vertebrates (e.g., 

the Henslow's sparrow), provided that management practices (e.g., application of pesticides and 

harvesting) do not negatively affect the fitness of species (Fargione et al. 2009, Fletcher et al. 2011, 

Robertson et al. 2011).  

 

If large patches of forests remain near to biofuel plantations, several forest species can use oil palm 

plantations, even endangered vertebrates. For instance, it has been shown that chimpanzees can make 

use of oil palm plantations, eating young leaves, flowers, and fruits when other sources of food are 

scarce (Wich et al. 2014). Populations of large and medium-sized felids can make use of oil palm 

plantations if native forest tracts remain (Pardo et al. 2015). However, the benefits may be diminished 

by negative interactions between humans and wildlife where species are perceived as pests, or where 

they are systematically hunted (Peres 2000, Michalski et al. 2006, Treves et al. 2006). 

 

Microalgal cultivation systems need less land than first generation biofuels in order to produce the 

same amount of energy, and thus it is expected that their widespread adoption would lead to less 

direct land-use changes and lower relative habitat losses for native species. However, estimates for 

lipid productivities are very wide, ranging between 2.3 and 136.9 kL ha-1 year-1 (Quinn and Davis 

2015). Thus, we compare potential land savings based on a more conservative worldwide lipid 

estimation developed by Moody et al. (2014), which closely resembles calculated productivities in 

experimental outdoor raceway ponds (Schenk 2016). 

 

Based on regional changes in productivity for food crops and microalgae (See Materials and Methods 

for details), our calculations show that microalgal cultivation systems consistently need less land than 

the most productive first generation biofuel crop per country (Fig. 3). For instance, in order to meet 

the USA gasoline and distillate fuel oil demands, microalgal systems would need 23.7% the area 
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needed by olives and 40.8% the area needed by sugar beets cropped within the country (Tables S5 

and S6 in Supplementary Information). This is an optimistic scenario for first generation biofuels 

because yields are based on areas where crops grow well, and it is assumed that these crops can be 

readily used for biofuel production. For microalgal systems, conservative yields are assumed, based 

on the area-weighted average of average lipid yields within each country based on the Moody et al. 

(2014) global estimates.  

 

Furthermore, microalgae can be grown in areas not suitable for other crops (i.e., in poor soils and in 

regions with low precipitation values) (Schenk et al. 2008, Mata et al. 2010). If microalgal production 

proves to be feasible in these areas, less land-use change and intensification in highly biodiverse 

regions is expected, although marginal or degraded lands can still retain considerable biodiversity 

values (Meehan et al. 2010, Plieninger and Gaertner 2011), and the construction of microalgal 

facilities will inevitably decrease available habitat for native species (Zhu et al. 2015). 

3.2 Indirect land-use change 

Leakage effects result when economic activities are displaced into different regions where biofuels 

are grown (Cottier et al. 2009). Indirect land-use change occurs when agricultural lands displace into 

regions previously occupied by native ecosystems or non-intensive production systems including 

extensive pastures and agroforestry systems (Edwards et al. 2010, Fargione et al. 2010, Lapola et al. 

2010, Alexandratos and Bruinsma 2012, Castanheira et al. 2014). For example, the European Union 

biofuel policies are expected to lead to increased land-use changes outside Europe and transfer 

environmental impacts to more biodiverse regions (Schleupner and Schneider 2010, Frank et al. 2013, 

Pelikan et al. 2015). Biofuel cropping has also been related to indirect land-use change as a result of 

complex interactions between economic factors, including increases in food prices and economic 

incentives for biofuel production (Mitchell 2008, Lambin and Meyfroidt 2011, Zilberman et al. 2013). 

 

Infrastructure development associated with agricultural expansion can further drive land-use changes, 

as shown in tropical remote regions, where deforestation increases due to higher accessibility and 

cropping profitability when roads are constructed or paved (Soares-Filho et al. 2006, Laurance et al. 

2014). In fact, oil palm and soybean expansion are related to road expansion and further deforestation 

in Southeast Asia and South America (Fitzherbert et al. 2008, Lee et al. 2011). For instance, in the 

Brazilian Cerrado, increased accessibility to forests around soybean plantations has led to further 
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deforestation for fueling the steel industry, which not only decreases the area of remaining forests but 

also generates profits for further soybean expansion (Casson 2003, Lee et al. 2011). 

 

 

Figure 3. Superimposed circles showing the cultivation area (km2) required to meet gasoline and distillate fuel oil demands for each 

country in 2010, when comparing microalgal systems with the most productive biodiesel and bioethanol crop per country.For first 

generation biofuels, yields are based on areas where crops possibly grow best (average yields between 2005 and 2014) (FAO 2019), 

while the most frequent value (area-weighted average) of average lipid yield within countries is used for microalgal systems. 

Microalgal lipid estimations are based on Moody et al. (2014). 

 

Microalgal systems are not considered to drive indirect land-use changes (Fritsche et al. 2010). This 

is because if they are produced in degraded, dry or marginal lands that are less suitable for food 
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production, less competition with agricultural lands would occur, which is expected to lead to fewer 

leakage effects, land clearing, and transformation of biodiverse systems. This assumption is 

contingent upon the feasibility of microalgal biofuel production in areas not suitable for agricultural 

production. However, economic activities currently developed in degraded, dry, or marginal lands 

(e.g., grazing and mining) could be displaced into agricultural areas and biodiverse regions as a result 

of microalgal production. Further analyses that consider how microalgal biofuel production would 

reduce pressures on more humid areas (which include lands of higher agricultural and biodiversity 

value), while increasing pressures on dry areas (e.g., through the development of roads, construction 

of infrastructure, and population growth), would be required. 

3.3 Increases in greenhouse gas emissions 

Biofuel expansion affects the emission of greenhouse gasses via land-use change and energy-

intensive production systems (Creutzig et al. 2015), while co-products can help in decreasing 

greenhouse gas emissions. These emissions of greenhouse gasses have been linked to local extinction 

and habitat shifts for native species through global warming (Thomas et al. 2004, Bellard et al. 2012). 

3.3.1 Greenhouse gas emissions as a result of land-use change 

The clearing of carbon-rich systems releases CO2 when plant biomass is burnt and soil organic carbon 

is lost (Fearnside 2000, Guo and Gifford 2002, Don et al. 2012). In Brazil, it would take around 17 

years to recapture the CO2 emmited after native grasslands are replaced by sugarcane crops (Fargione 

et al. 2008). In Indonesia, around 423 years would be needed to recapture the CO2 emmited after 

peatland rainforests are replaced by oil palm plantations (Fargione et al. 2008). Based on satellite 

images, Koh et al. (2011) estimated that between 2000 and 2010 the conversion of forests into oil 

palm plantations in Malaysia, Borneo, and Sumatra led to the loss of around 140 million Mg of 

aboveground biomass carbon. Furthermore, first generation biofuel production can lead to indirect 

land-use changes, which would further drive the clearing of native ecosystems for crop production, 

and thus increase greenhouse emissions (Searchinger et al. 2008). 

 

Initial land-use is expected to alter the magnitude of CO2 emissions as a result of microalgal biofuel 

production (Stephenson et al. 2010). Because microalgal production systems need less land for 

producing the same amount of energy than terrestrial crops, and their production can be achieved in 

places with naturally lower carbon stocks (i.e., degraded and dry areas), it would be expected that 
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much less CO2 would be released following direct land-use changes when using microalgal systems 

compared to first generation biofuels. If degraded areas, dry areas, and marginal lands are used for 

microalgal biofuel production, or even for the production of microalgal animal feed, less competition 

with crops is expected to occur, leading to less indirect land-use changes and lower CO2 emissions. 

In fact, it has been estimated that the global expansion of microalgae as a feedstock for animal feed, 

in areas not suitable for agricultural production, could free almost 2 billion hectares of pastures and 

feed crops, where forest plantations can be established for bioenergy production and habitat 

restoration, leading to net atmospheric CO2 reductions (Walsh et al. 2015). However, if carbon-rich 

systems are used for microalgal production, CO2 emissions may become substantial. For instance, 

Quiroz-Arita et al. (2016) estimate that within the USA the CO2 savings of microalgal systems may 

decrease between 3% and 85% as a result of losses in aboveground biomass and soil carbon associated 

to land-use changes. 

3.3.2 Production technologies and greenhouse gas emissions 

Biofuel production systems and their associated cropping management practices and conversion 

technologies affect the balance of greenhouse gas emissions (Creutzig et al. 2015). In agriculture, 

greenhouse gas emissions come from energy consumed along the production chain (CO2 emissions), 

fertilizer use (liberation of N2O and CO2), cultivation in flooding conditions (CH4 emissions) and soil 

management practices including tillage, the addition of lime, and irrigation frequency (Snyder et al. 

2009). 

 

As a result, crops with lower fertilizer requirements, coupled with management practices that 

optimize nutrient uptake and soil carbon storage, and less energy-intensive production technologies, 

would lead to lower greenhouse gas emissions. For instance, in the USA biodiesel production from 

soybeans captures more greenhouse gasses than bioethanol production from maize (41% vs. 12% 

respectively; taking into account the energy used for crop cultivation, biofuel production and 

transport), mainly because of lower agricultural inputs and less intensive processes for biofuel 

production (Hill et al. 2006).  

 

In comparison to terrestrial crops, microalgal systems can offer higher CO2 savings when using 

efficient technologies under optimal production conditions (Liu et al. 2012). However, a consensus 

in optimal production technologies—that maximizes both cost-effectiveness and reductions in CO2 

emissions—has not been reached. This is because large commercial microalgal farms for biofuel 



  

37 

 

production have not been deployed, and because of difficulties in comparing studies that have 

different system boundaries, sources of electrical energy, functional units, influence of co-products 

and model parameters (Handler et al. 2012, Liu et al. 2012, Quinn and Davis 2015) (Table 1). 

 

Open raceway ponds are estimated to be energetically more efficient than photobioreactors 

(Resurreccion et al. 2012, Slade and Bauen 2013), leading to higher CO2 savings (Kendall and Yuan 

2013). Using open ponds, carbon savings can further increase due to higher productivities per unit 

area (Stephenson et al. 2010, Campbell et al. 2011, Xu et al. 2011, Sills et al. 2012), colocation of 

microalgal systems with CO2 sources (e.g., use of flue gas) (Clarens et al. 2010, Sander and Murthy 

2010, Campbell et al. 2011, Clarens et al. 2011, Shirvani et al. 2011, Zaimes and Khanna 2013) or 

wastewater systems (Clarens et al. 2010, Clarens et al. 2011), and use of technologies that allow 

nutrient recycling (e.g., water recycling) (Sander and Murthy 2010, Kendall and Yuan 2013, Zaimes 

and Khanna 2013) and production of energy (e.g., anaerobic digestion for producing methane which 

can be used for electricity generation) (Collet et al. 2011, Hou et al. 2011, Resurreccion et al. 2012, 

Sills et al. 2012, Grierson et al. 2013, Quinn et al. 2014, Quinn and Davis 2015). However, Clarens 

et al. (2011) suggest that anaerobic digestion for nutrient recycling and energy production is not the 

best approach for reducing greenhouse gas emissions compared to the direct combustion of algal 

biomass, although increases in digestibility, methane production, and nutrient recovery could increase 

the environmental benefits of this technology. 

 

Increasing the energy efficiency of production methods is also important for reducing emissions, such 

as through improved water pumping methods and more efficient lipid extraction processes (Xu et al. 

2011, Slade and Bauen 2013). In fact, wet extraction routes have the potential for decreasing energy 

inputs and increase CO2 savings (Lardon et al. 2009, Sills et al. 2012, Slade and Bauen 2013), 

especially through hydrothermal liquefaction (Grierson et al. 2013, Bennion et al. 2015). Overall, 

increasing low-carbon energy sources for microalgal production systems, including heat, electricity 

grid, fertilizers, transport, and building materials not derived from fossil fuels, would lead to further 

carbon savings (Shirvani et al. 2011). 

 

Thus, substantially increased carbon savings in comparison to first generation biofuels are feasible. 

For instance, Lardon et al. (2009) estimated that assuming biomass productivities between 20 and 30 

g m-2 d-1 for Chlorella vulgaris grown in open raceway ponds under Mediterranean conditions, and 

using wet extraction lipid routes, microalgal production could lead to less global warming potential 

when compared to soybean and conventional diesel, but not to oil palm or rapeseed. However, this 

study did not take into account nutrient recycling through anaerobic digestion or culture medium 
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recycling. Stephenson et al. (2010) estimated that the production of C. vulgaris in open raceway ponds 

under U.K. conditions could lead to higher carbon savings than biofuel obtained from soybean, 

sunflower and rapeseed grown in South Africa or from oil palm in Malaysia; assuming higher lipid 

productivities, production in degraded lands, use of flue gas from power stations, nutrient recycling, 

energy production through anaerobic digestion, and lower velocities for microalgal cultivation. 

Clarens et al. (2011) found that assuming biomass yields of 91.1 Mg ha-1 year-1 for brackish water 

species grown in Southwestern USA conditions with lipid contents of 19.6%, greenhouse gas 

emissions per kilometer traveled would be lower compared to rapeseed. 

3.3.3 Influence of co-products in greenhouse gas emissions 

Co-products of biofuel production help in increasing CO2 savings. These include dried distillers 

grains, feed products, CO2, starch, syrup, and oils (e.g., corn oil) in the case of bioethanol production 

from sugar and starch crops, as well as protein meal and glycerol from biodiesel production (Naik et 

al. 2010). Microalgal systems can be designed to produce not only biodiesel or bioethanol as main 

biofuel products but also a wide arrange of co-products that can be used for energy production, food 

and animal feed (Brennan and Owende 2010, Wijffels et al. 2010). For instance, using wet conversion 

routes it is possible to produce biodiesel, carbon monoxide, hydrogen, methane, ethane, and propane, 

while through dry conversion, biodiesel, glycerol, pyrolysis oil, and biogas can be produced 

(Gerbens-Leenes et al. 2014). 

 

Co-products are considered fundamental for increasing the cost-effectiveness and sustainability of 

microalgal biofuel production systems (Wijffels et al. 2010, Liu et al. 2012). In particular, methane 

production has been identified as a key co-product that increases carbon savings when it is combusted 

for replacing external energy requirements (Sialve et al. 2009, Collet et al. 2011, Resurreccion et al. 

2012, Sills et al. 2012, Quinn et al. 2014, Quinn and Davis 2015). 
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Table 1. Comparison between several life-cycle assessments developed to date, in relation to system boundaries, main processing technologies, measured environmental impacts, and main results. 

Cultivation System (CS). Open raceway pond (OP), photobioreactor (PB), open raceway pond integrated with photobioreactor (OP-PB), Not Stated (N.S.). 

Species CS System boundaries Main processing technologies First gen. 

biofuels 

Measured environmental 

impacts 

Main results Notes Reference 

Chlorella vulgaris OP 

 

  

Cradle-to-combustion 

analysis for the fuel, 

cradle-to-grave analysis 

for the facility. Includes 

extraction and 

production of raw 

materials, facility 

construction and 

dismantling, biofuel 

production and use in 

the engine. 

1) Advanced drying followed by hexane 

extraction. 2) Direct extraction from the 

wet algal paste. 

Rapeseed, 

soybean, oil 

palm 

Abiotic depletion, potential 

acidification, 

eutrophication, global 

warming potential, ozone 

layer depletion, marine 

toxicity, human toxicity, 

land competition, emission 

of ionizing radiation, 

photochemical oxidation. 

Lower land competition and 

eutrophication compared to first 

generation biofuels. Lower acidification 

potential in comparison to rapeseed and 

lower human toxicity in comparison to 

rapeseed and oil palm. Lower global 

warming potential in comparison to 

soybean. Higher abiotic depletion, 

ozone layer depletion, marine toxicity, 

ionizing radiation, and photochemical 

oxidation compared to first generation 

biofuels. 

Assumed biomass productivities at 

20–30 g m-2 day-1 in Mediterranean 

conditions. Functional unit as the 

combustion of 1 MJ of fuel in a diesel 

engine. 

(Lardon et al. 

2009) 

Chlorella vulgaris OP Microalgal cultivation to 

downstream fuel 

production. Includes 

cultivation, harvesting, 

dewatering, oil 

extraction, oil upgrading 

and nutrient recycling. 

Harvesting by flocculation and 

centrifugation, followed by dry 

conversion routes for lipids 

(transesterification) or wet conversion 

routes lipids (hydrogenation). 

Several 

vegetable 

oils and 

sugar crops 

Land use Large positive energy balance in 

comparison to first generation biofuels 

can be achieved. Potential to increase 

productivity and decrease nutrient usage 

by nitrogen deprivation during growing. 

Larger land savings when increasing the 

productivity per unit area. 

Assumed lipid contents between 19.7–

43% and 15% of nutrient recycling for 

wet processing route. 

(Xu et al. 

2011) 

Chlorella vulgaris OP Production, harvesting 

and concentration of 

algae, methane 

extraction and 

combustion, facility 

construction and 

dismantling, extraction 

and shipping of 

resources. 

Harvesting by settling and 

centrifugation followed by injection in 

anaerobic digesters, biogas burning and 

production, CO2 reinjection into 

cultures. 

Rapeseed, 

oil palm 

Abiotic depletion, potential 

acidification, 

eutrophication, global 

warming potential, ozone 

layer depletion, human 

toxicity, land competition, 

emission of ionizing 

radiation, photochemical 

oxidation. 

Lower impacts compared to first 

generation biofuels for acidification, 

eutrophication, ozone layer depletion, 

and photochemical oxidation, when 

assuming low energy consumption by 

paddlewheels and pumping water 

(Clarens et al. 2010). Global warming 

potential decreases when assuming low 

energy consumption. 

Assumed biomass productivities of 25 

g m-2 day-1 in Mediterranean 

conditions (Narbonne, France). Low 

energy consumption of paddlewheels 

and pumping water is assumed based 

on Clarens et al. (2010). Functional 

unit as the combustion of 1 MJ of fuel 

in an internal combustion engine. 

(Collet et al. 

2011) 

Chlorella vulgaris OP Cultivation, harvesting, 

lipid extraction, fuel 

distribution and 

combustion by end 

users. 

Harvesting by flocculation, drying and 

algae oil extraction. 

N.S. Greenhouse gas emissions.  Higher CO2 emissions compared to 

conventional diesel for most scenarios. 

Assumed biomass productivities of 75 

tonnes ha-1 year-1 and average algae oil 

content of 30–70%. Explicit analyses 

in U.K., France, Brazil, China, 

Nigeria, and Saudi Arabia. Assumes 

use of CO2 from nearby power plants 

(12.5%). Includes three options for co-

product use: co-firing of biomass 

residues, direct combustion in a 

biomass/heating system or a biomass 

combined heat and power unit. The 

functional unit set as 1 MJ of biodiesel 

produced from algae oil. 

(Shirvani et al. 

2011) 

Chlorella vulgaris OP Cradle-to-gate, 

including processes 

upstream of dried 

biomass production. 

Harvesting by centrifugation or 

chamber filter press followed by two 

algal drying options (natural gas based 

drying or waste heat drying). 

N.S. Greenhouse gas emissions, 

direct water demands. 

Greenhouse gas savings for 5 out of 8 

scenarios analyzed. Water demands 

were related to geographic locations and 

their local evaporation rates. 

Assumed algae composition of 20% 

lipids, 25% carbohydrates and 50% 

protein at 21 geographic locations in 

the contiguous USA. Includes 

colocation with natural gas power 

plant and water recycling. Functional 

unit as 1 MJ of dried algal biomass. 

(Zaimes and 

Khanna 2013) 
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Chlorella vulgaris OP Culture, harvest, drying, 

extraction, and 

esterification. 

Drying and lipid extraction. Maize, 

potato, 

sugarcane, 

sugar beet, 

sorghum, 

soybean 

Water footprint, nutrient 

depletion. 

The water footprint is in general lower 

compared to first generation biofuels, 

and lowest if recycling water or using 

wastewater/seawater. Nutrient usage is 

lower when recycling water and when 

using wastewater or seawater. 

Assumed use of freshwater, seawater, 

and wastewater in California 

conditions. 

(Yang et al. 

2011) 

Chlorella vulgaris OP, 

PB 

Cultivation, harvesting 

and lipid extraction, 

anaerobic digestion, oil 

extraction, esterification, 

transport of oil and final 

combustion in vehicles. 

Harvesting by flocculation, followed by 

centrifugation (for open raceway 

ponds), cell disruption by 

homogenization, hexane lipid 

extraction, anaerobic digestion for 

onsite electricity use. 

Rapeseed, 

sunflower, 

soybean, oil 

palm 

Global warming potential 

(CO2, NO2, CH4), water 

depletion. 

Lower global warming potential for 

open raceway ponds and compared to 

rapeseed, sunflower and soybean 

biodiesel grown in arable lands in South 

Africa and compared to oil palm grown 

in Malaysia. Higher water requirements 

for photobioreactors under U.K 

conditions. 

Assumed oil productivities at 40 

tonnes ha-1 year-1 and production in 

degraded lands in U.K. Assumes 

nitrogen deprivation, co-product 

allocation, use of flue gas from power 

stations (12.5% CO2). Functional unit 

as the combustion of 1 tonne of 

biodiesel in a car engine filled at a 

U.K. station. 

(Stephenson et 

al. 2010) 

N.S. N.S. Well-to-wheel. Includes 

cultivation, processing 

and biofuel production, 

transport and final use of 

biodiesel. 

Harvesting, and extraction followed by 

transesterification and excess methanol 

recycling. 

Soybean Abiotic depletion potential, 

global warming potential, 

ozone depletion potential, 

photochemical oxidation 

potential, acidification 

potential, eutrophication 

potential, human toxicity 

potential, freshwater 

aquatic ecotoxicity 

potential, marine aquatic 

ecotoxicity potential, 

terrestrial ecotoxicity 

potential. 

Lower impacts in comparison to first 

generation biofuels for most assessed 

impacts. 

Assumed biomass productivities 

between 5–50 g m-2 day-1 and lipid 

contents between 15–80% in China 

conditions. Includes co-product 

allocation and analyses for water 

recycling. Functional unit as 1 MJ of 

energy from biodiesel well-to-wheel.  

(Hou et al. 

2011) 

N.S. OP Cradle-to-gate, 

including the processes 

upstream of dry biomass 

production. 

Harvesting through flocculation and 

centrifugation. 

Rapeseed, 

maize 

Water use, greenhouse gas 

emissions, eutrophication 

potential, land use. 

Higher impacts than first generation 

biofuels in terms of energy use, 

greenhouse gas emissions and water 

use, mainly driven by demand for CO2 

and fertilizer. Lower impacts for land 

use and eutrophication potential 

compared to first generation biofuels. 

Using wastewater leads to CO2 savings 

and decreases water footprint. 

The model was run for Virginia, Iowa, 

and California, USA. Included 

scenarios for colocation with 

wastewater and industrial CO2 

sources. Functional unit as 317 GJ of 

biomass-derived energy. 

(Clarens et al. 

2010) 

N.S. OP-

PB  

Well-to-pump. From 

cultivation to biofuel 

final use at refueling 

stations. 

1) Filtration through chamber filter 

press followed by drying and hexane 

extraction. 2) Centrifugation followed 

by drying and hexane extraction. 

Soybean CO2 emissions, emissions 

of air pollutants (VOC, 

CO, NOx, particulate 

matter, SOx, CH4). 

Higher CO2 savings in comparison to 

soybeans when using filter press and co-

product allocation. High energy 

consumption for thermal algae 

dewatering. 

Assumed 30% lipids, 31% 

carbohydrates and 37.5% proteins. 

Includes recycling of water and 

addition of external CO2 sources. 

Includes co-product allocations. 

Functional unit as 1,000 MJ of energy 

at a refueling station. 

(Sander and 

Murthy 2010) 
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N.S. OP-

PB  

Well-to-wheel. Includes 

cultivation, harvesting 

and dewatering, lipid 

extraction, lipid 

conversion to a liquid 

transportation fuel, and 

co-products from 

defatted algae.  

1) Harvesting by best filter press 

followed by wet lipid extraction and 

hydrothermal liquefaction, 

hydrotreatment for lipid conversion and 

use of anaerobic digestion or animal 

feed. 2) Harvesting by centrifugation 

followed by hexane lipid extraction, 

lipid conversion by transesterification 

and use of anaerobic digestion or animal 

feed. 

N.S. Global warming potential. Lower global warming potential for wet 

lipid extraction routes compared to dry 

extraction and for high productivity 

scenarios. 

Estimated ranges of expected values of 

life-cycle assessment metrics based on 

Monte Carlo simulations. Assumed 

1210 ha microalgal facility using 

seawater and three ranges in biomass 

productivities: low (2.4−16 g m−2 

day−1), base (17−33 g m−2 day−1), and 

high (34−50 g m−2 day−1). Functional 

unit defined as 1 MJ of liquid biofuel 

(biodiesel or “green” diesel). 

(Sills et al. 

2012) 

N.S. OP, 

PB 

Cradle-to-wheel. From 

upstream of the 

delivered energy product 

to consumer use 

(passenger automobile). 

Harvesting by auto-flocculation 

followed by thickening, 

homogenization, lipid extraction, 

solvent recovery and anaerobic 

digestion, belt-filter pressing, and 

transesterification for biodiesel 

production. 

N.S. Climate change (global 

warming potential from 

greenhouse gas emissions), 

net water use, net 

eutrophication potential. 

Open ponds that use brackish water are 

the preferred option for decreasing 

global warming potential. 

Assumed biomass yields between 

41.6–95.7 Mg ha-1 year-1, and lipid 

contents between 13.4–32.4% using 

freshwater and brackish water species. 

Assumes use of virgin CO2 from 

commercial sources. Includes 

production of biodiesel and methane-

derived bioelectricity. 

(Resurreccion 

et al. 2012) 

N.S. OP, 

PB 

Several system 

boundaries based on 

reviewed studies. 

Several processing technologies based 

on reviewed studies. 

Sugarcane CO2 emissions. Higher variability in CO2 emissions in 

comparison to sugarcane. Emissions 

decrease when using open raceway 

ponds and when recycling water. 

Reviews different studies that relate 

CO2 emissions with production 

technologies. 

(Kendall and 

Yuan 2013) 

N.S.  OP Cradle-to-grave, 

excluding the production 

facilities and its 

construction 

Addition of flocculants for algae 

concentration followed by heating, 

centrifugation and lipid extraction using 

methanol and a catalyst. Anaerobic 

digestion for electricity generation. 

Rapeseed  Greenhouse gas emissions 

(CO2, CH4, NO2). 

Higher CO2 savings in comparison to 

rapeseed, highest when assuming high 

algae productivities and when using 

CO2 from an ammonia plant. 

Assumed biomass productivities at 

15–30 g m-2 day-1 and use of salt water 

in Australian conditions. Includes 

three options for CO2 feeding: in pure 

form from an ammonia plant, from 

flue gas (15% concentration) or 

delivered by truck in liquefied form. 

Functional unit as combustion of 

enough fuel in an articulated truck 

diesel engine to transport one tonne of 

freight one kilometer.  

(Campbell et 

al. 2011) 

Nannochloropsis 

salina 

OP-

PB  

Well-to-pump, including 

microalgal cultivation 

through the delivery of 

fuel to the filling station. 

Well-to-wheel for 

comparison with 

conventional diesel. 

Harvesting by settling, dissolved air 

flotation and centrifugation, followed by 

pressure homogenization, hexane 

extraction, and nutrient recovery 

through anaerobic digestion. 

N.S. Greenhouse gas emissions 

(CO2, CH4, NO2). 

Lower CO2 emissions for the scenario 

that includes improved algae 

productivity and anaerobic digestion. 

Assumed biomass productivities at 25 

g m−2 day−1 and lipid concentrations 

between 25–50%. Four scenarios were 

taken into account: baseline, improved 

algal productivity, supercritical CO2 

extraction, no nutrient recycling (lipid 

extracted biomass used as cattle feed). 

Functional unit as 1MJ of biofuel 

produced. 

(Quinn et al. 

2014) 
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Nannochloropsis 

sp. 

OP-

PB  

Cradle-to-gate, 

including microalgal 

cultivation through 

biodiesel production. 

Dewatering and drying through the use 

of flocculants and centrifugation 

followed by hexane extraction and 

transesterification. 

N.S. CO2 emissions. High energy consumption for lipid 

extraction and biodiesel production. 

CO2 savings were not found. 

Assumed biomass productivities of 25 

g m-2 day-1 in Singapore conditions 

and using seawater. Lipid contents 

between 25–45%. Functional unit as 1 

MJ biofuel. 

(Khoo et al. 

2011) 

Phaeodactylum 

sp., Tetraselmis 

sp. 

OP Well-to-wheel. Includes 

extraction of raw 

materials, cultivation 

and lipid extraction, 

conversion and use of 

biofuel in vehicles. 

Cultivation followed by harvesting 

through auto-flocculation, thickening, 

and homogenization. Several scenarios 

for biomass processing: 1) Anaerobic 

digestion of bulk algae biomass for the 

production of electricity from methane. 

2) Production of biodiesel from algae 

lipids coupled with anaerobic digestion 

for producing electricity. 3) Production 

of biodiesel from lipids and direct 

combustion for electricity production 

from residual algae biomass. 4) Direct 

combustion of algae biomass for 

producing electricity. 

Rapeseed, 

maize 

Net energy use, water use, 

and greenhouse gas 

emissions. 

Highest energy efficiencies when using 

direct combustion of algae biomass for 

producing electricity, and lowest when 

producing biodiesel from algae lipids 

coupled with anaerobic digestion for 

producing electricity. Use of wastewater 

and flue gas increases energy 

efficiencies. Algae systems are better 

than rapeseed and maize in relation to 

vehicle kilometers traveled per ha. 

Greenhouse gas emissions and water 

used per kilometer traveled are lower 

compared to rapeseed 

Assumed biomass yields of 91.1 Mg 

ha-1 year-1 and lipid contents at 19.6% 

using brackish water species in 

Southwestern USA conditions and in 

marginal lands. Includes scenarios for 

CO2 sources: virgin CO2, carbon 

capture from coal-fired using chemical 

sorption, use of flue gas 12.5% CO2 

power plant. Includes one scenario for 

wastewater use. Makes use of 

stochastic inputs to capture uncertainty 

in processes. Functional unit as usable 

energy production per unit land area 

(vehicle kilometers traveled per ha) 

and environmental burdens (net 

energy use, water use, and greenhouse 

gas emissions per vehicle kilometers 

traveled). 

(Clarens et al. 

2011) 

Scenedesmus 

dimorphus 

OP Well-to-pump. 

Cultivation, dewatering, 

thermochemical bio-oil 

recovery, bio-oil 

stabilization, conversion 

to renewable diesel, and 

transport to the pump. 

Harvesting by membrane filtration and 

centrifugation, followed by 

thermochemical conversion 

(hydrothermal liquefaction vs. 

pyrolysis) 

Maize, 

soybean 

Net energy ratio, 

greenhouse gas emissions. 

Hydrothermal liquefaction leads to 

carbon savings in contrast to pyrolysis. 

Carbon savings are higher in 

comparison to maize bioethanol. 

Biomass productivities at 6.5 g m-2 

day-1 in Arizona conditions. 

(Bennion et al. 

2015) 

Several species OP Upstream resources, 

cultivation, conversion 

into biodiesel followed 

by anaerobic digestion. 

Normalization of studies based on 

cultivation in open ponds, conversion 

into biodiesel and use of anaerobic 

digestion. 

Maize, 

soybean 

Greenhouse gas emissions Energy consumption and greenhouse 

gas emissions would be similar to those 

obtained for terrestrial alternatives. 

Meta-analysis based on six life-cycle 

assessments for microalgal biofuel 

production. Functional unit set as 

1,000 L biodiesel. 

(Liu et al. 

2012) 

Several species OP Several system 

boundaries based on 

reviewed studies. 

Several technologies based on the 

reviewed studies. 

Rapeseed Greenhouse gas emissions. 

Overview for water use, 

land use, nutrient and 

fertilizer use, carbon 

fertilization, fossil fuel 

inputs, eutrophication, 

genetically modified algae, 

algal toxicity. 

Decreases in CO2 for raceway ponds 

compared to photobioreactors, reaching 

similar values to those obtained for 

rapeseed. Major energy inputs are 

associated with pumping and mixing 

during cultivation and to the provision 

of heat for algae drying.  

Review of seven life-cycle 

assessments.  

(Slade and 

Bauen 2013) 

Several species OP, 

PB 

Several system 

boundaries based on 

reviewed studies. 

Several biomass processing methods 

including solvent extraction, 

hydrothermal liquefaction, secretion, 

pyrolysis, supercritical water, in-situ 

transesterification. 

N.S. Global warming potential. Global warming potential varies 

between production technologies and 

system boundaries. Thermochemical 

conversion and anaerobic digestion 

seem promising alternatives that reduce 

energy inputs. 

Review that includes information 

about global warming potential for a 

set of microalgal production 

technologies. 

(Quinn and 

Davis 2015) 
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Tetraselmis chui PB Cradle-to-grave, 

including cultivation, 

harvesting, processing, 

and products (utilization 

and consumption). 

Harvesting through primary to tertiary 

dewatering and spray drying, followed 

by slow pyrolysis, oil extraction by 

solvent and production of biogas, bio-

oil, biodiesel, and biochar. 

Rapeseed, 

soybean  

Global warming, abiotic 

resource depletion 

(excluding water), land 

transformation and use, 

water resource depletion, 

eutrophication, 

acidification, eco-toxicity, 

human toxicity, 

photochemical smog, 

ozone depletion, ionizing 

radiation, respiratory 

effects. 

Lower global warming and land use in 

comparison to first generation biofuels. 

Higher eutrophication, water use, 

ecotoxicity, acidification, 

photochemical smog and respiratory 

effects in comparison to first generation 

biofuels. Improvements are expected if 

using hydrothermal liquefaction. 

The system was modeled in 

Queensland conditions, Australia. 

Includes co-product allocation, CO2 

addition from power plant station 

(13%), water use for evaporative 

cooling and water recycling. 

Functional units defined as 1 MJ of 

pyrolysis biogas combusted for 

electricity and 1 MJ of pyrolysis bio-

oil combusted for electricity or 

extracted lipid refined for transport 

fuel. 

(Grierson et al. 

2013) 
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3.4 Pesticide and fertilizer pollution 

Pesticides and fertilizers can impact vertebrate biodiversity in biofuel crops and non-target areas, 

negatively affecting native ecosystems. Pesticides can, directly and indirectly, lead to the collapse of 

vertebrate populations as a result of several mechanisms, including direct poisoning, reduced amounts 

of prey, increases in occurrence of diseases (Hayes et al. 2006, Parsons et al. 2010, Köhler and 

Triebskorn 2013, Gibbons et al. 2015), and decreases in fruit productivities when pollinator 

biodiversity is negatively affected (Potts et al. 2010). 

 

Overuse of fertilizers can pollute soils with heavy metals that bioaccumulate in vertebrates (Atafar et 

al. 2010) and indirectly alter biodiversity through increases in greenhouse gas emissions (Snyder et 

al. 2009). Eutrophication of aquatic systems as a consequence of runoff can lead to oxygen depletion 

and bioaccumulation of toxins produced by toxic algae blooms (Anderson et al. 2002) and occurrence 

of diseases (e.g., nitrate accumulation in vertebrates) (Guillette and Edwards 2005). Besides the 

global warming potential of NOx, increases in nitrogen compounds in the atmosphere have been 

suggested to reduce plant diversity and alter ecosystem functioning (Holland et al. 1999, Phoenix et 

al. 2006). 

 

The release of pollutants depends upon the type of biofuel production system and its associated 

management practices. For example, soybean cropping in the USA uses lower amounts of fertilizers 

and pesticides when compared to maize, leading to the release of 1% of the N, 8.3% of the P, and 

13% of the pesticides, per net energy gain, used for maize ethanol production (Hill et al. 2006). Unlike 

first generation biofuels, microalgal cultivation does not require the use of pesticides (Lardon et al. 

2009, Rodolfi et al. 2009, Brennan and Owende 2010). When grown in photobioreactors, 

contamination of cultures by pathogens and algae grazers does not often occur (Mata et al. 2010, 

Chen et al. 2011). In open ponds, methods other than pesticide addition help to decrease the incidence 

of undesired organisms, such as increases in pH and free ammonia concentrations (Schlüter and 

Groeneweg 1981, Park et al. 2011, Usher et al. 2014, Schenk 2016). 

 

Microalgal systems make use of fertilizers mainly in the forms of nitrates, ammonium, and phosphate 

(Slade and Bauen 2013). It has been estimated that the production of 1 Kg of biodiesel from C. 

vulgaris grown in open raceway ponds under California conditions, needs 0.33, 0.71, 0.58, 0.27, and 

0.15 Kg of nitrogen, phosphorous, potassium, magnesium, and sulfur respectively (Yang et al. 2011). 
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At Pinjarra Hills (Brisbane, Australia) the production of 1 Kg of biodiesel from Scenedesmus 

dimorphus requires 0.04 Kg of mono-ammonium phosphate, 0.02 Kg of magnesium sulfate, 0.2 Kg 

of ammonium sulfate, plus 0.004 Kg of micronutrients (Schenk 2016). However, microalgal systems 

have lower eutrophication potential than first generation biofuels (Lardon et al. 2009, Clarens et al. 

2010, Collet et al. 2011, Hou et al. 2011), primarily because runoff can be controlled in contrast to 

terrestrial crops (Clarens et al. 2010). In fact, if cultivation wastewater is recycled, fertilizers would 

not reach aquatic systems, eliminating gray water footprints (Gerbens-Leenes et al. 2014), and 

reducing nutrient requirements (Yang et al. 2011, Zaimes and Khanna 2013). For instance Yang et 

al. (2011) estimate that water recycling in open ponds using C. vulgaris could reduce fertilizers use 

by around 55%; and if using seawater or wastewater the use of nitrogen would decrease by 94%. 

Using sea/wastewater for algal culture can reduce nitrogen usage by 94% and eliminate the need for 

potassium, magnesium, and sulfur. However, if wastewater reaches aquatic systems negative impacts 

on biodiversity are expected due to eutrophication (Slade and Bauen 2013, Gerbens-Leenes et al. 

2014, Usher et al. 2014, Zhu et al. 2015). 

3.5 Water depletion 

Water depletion can affect biodiversity associated with water systems, because of direct withdrawals 

and changes in water quality, including increases in salinity and concentrations of minerals (Matson 

et al. 1997). The water footprint (WF) can be divided into green WF (volume of rainwater consumed), 

blue WF (volume of surface and groundwater consumed) and gray WF (volume of polluted water) 

(Mekonnen and Hoekstra 2011). Microalgal systems have a green and blue WF as a result of 

evaporative losses in raceway open ponds, evaporative cooling in photobioreactors and evaporation 

from dry biodiesel conversion routes, while if wastewater is recycled or treated the gray WF should 

be zero (Gerbens-Leenes et al. 2014). As a consequence, for open ponds in California, the water 

footprint is expected to be reduced by around 84% if water is recycled, and by around 90% if seawater 

or wastewater are used (Yang et al. 2011).  

 

Green and blue WFs using wet conversion routes and recycling water are between 2.7 and 32.6 kL 

per GJ of produced green diesel (Gerbens-Leenes et al. 2014) (Table S12 in Supplementary 

Information). These values are lower than those obtained for terrestrial biofuel crops such as soybean, 

sugarcane, maize, rapeseed and sugar beet (Fig. 4). The variation in water requirements is a function 

of lipid productivity, local weather conditions, and the architecture of the microalgal production 

system (photobioreactors or open ponds), being highest when using open ponds in places with high 
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evaporation rates (Zaimes and Khanna 2013) and low lipid productivities (Gerbens-Leenes et al. 

2014). Other factors that affect water consumption are the medium preference of microalgal strains 

(fresh, brackish or saline water) and the conversion technologies for biodiesel production (thermal 

drying and pyrolysis in dry conversion route vs. water reuse in wet conversion route), being higher 

when using freshwater species and when using dry conversion routes (Gerbens-Leenes et al. 2014). 

However, water use would be higher if it is not recycled. For instance, Clarens et al. (2010) show that 

open raceway ponds in Virginia, Iowa, and California conditions, would need more water than 

rapeseed and maize cropped in the same locations, provided that there is not water recycling. 

 

 

Figure 4. Water consumption per unit of produced energy (GJ) derived from biodiesel (soybean, oil palm, microalgae) and bioethanol 

(maize, sugarcane).Based on calculations by Gerbens-Leenes et al. (2014) for wet conversion of microalgal biodiesel and assuming 

water recycling. Available water footprints for first generation biofuels were obtained from Mekonnen and Hoekstra (2011). 

Microalgal systems in New Mexico and Perth consist of open ponds using salty water (OPS), in Hawaii correspond to a combination 

of open ponds and photobioreactors using fresh water (OPF-PBF), in Italy consist of photobioreactors using salty water (PBS), and 

in the Netherlands, France and Algeria consist of photobioreactors using fresh water (PBF). 

3.6 Overexploitation of soils  

Soils are considered a renewable resource when managed in a sustainable way, by avoiding erosion 

and maintaining or increasing fertility and soil biodiversity (Doran and Zeiss 2000). Fertile soils 

increase food security, decrease desertification, help in climate change mitigation and increase 

biodiversity (Pimentel et al. 1995, Pimentel and Kounang 1998, Lal 2009). Biofuel production 

systems may negatively affect in-situ soil productivity when using management practices that 

increase soil erosion and affect physical, chemical and biological properties in soils (e.g., 

indiscriminate tillage) (Kim and Dale 2005, Anderson‐Teixeira et al. 2009). Additionally, soil erosion 
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can negatively affect aquatic biodiversity due to eutrophication, sedimentation and the alteration of 

physical and chemical properties in aquatic systems (Pimentel and Kounang 1998). 

 

Soils are not used directly for microalgal production systems. However, construction of open ponds 

could increase soil erosion, soil compaction and alter soil properties including texture and fertility 

(Zhu and Ketola 2012, Zhu 2015), if soil conservation practices are not implemented. The 

construction of elevated ponds (e.g., using bricks) could decrease soil removal (which could be 

around 225,000 and 450,000 tonnes ha-1, assuming pond depths between 15 and 30 cm and soil bulk 

densities at 1.5 g cm-3), although at higher economic costs. After ponds are constructed, soil erosion 

is expected to be lower than in agricultural production systems, which have reported erosion rates 

between 0.5 and 400 tonnes ha-1 year-1 (Pimentel et al. 1995, Pimentel 2006). 

3.7 Increases in invasive species and genetic pollution 

Invasive species are a major threat to biodiversity (Wilcove et al. 1998, Crooks 2002). Biofuel crops 

can increase the occurrence of invasive species within and outside plantations, creating favorable 

environmental conditions for the arrival and persistence of invasive organisms (Richardson and 

Rejmánek 2011). Furthermore, some species may become invasive as a result of their increased 

propagule production, dispersal and/or persistence abilities (Raghu et al. 2006, Chimera et al. 2010). 

Crops like sugarcane, soybean, sugar beet and maize are not considered invasive, while others have 

traits that increase their invasiveness potential (e.g., rapeseed produces large seed quantities that can 

be dispersed by a wide arrange of agents, and can hybridize with wild native varieties) (Chimera et 

al. 2010, Davis et al. 2010) (Table 2). As a consequence, it has been estimated that terrestrial plants 

suitable for biofuel production have two to four times higher potential than other crops to become 

naturalized or become invasive (Buddenhagen et al. 2009, Chimera et al. 2010). 

 

In relation to microalgal production systems, the potential invasion of water systems could happen if 

leakage of growth medium, which may include genetically engineered species, occurs (Fargione et 

al. 2009, Zhu and Ketola 2012, Slade and Bauen 2013). This is because the same traits that allow 

them to grow in a wide range of environmental conditions predispose them to invasiveness potential 

(Phalan 2009). If toxic species are released (e.g., Anabaena circinalis, Oscillatoria agardhii, 

Cylindrospermopsis raciborskii) unexpected changes in ecosystem function could occur under 

favorable environmental conditions (e.g., expansion of toxic algae blooms in eutrophic aquatic 
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systems) (Chimera et al. 2010, Ditomaso et al. 2010). However, if native or local microalgal strains 

are used for biofuel production, or if water is recycled, invasion potential is expected to decrease. 

 

Table 2. Comparison of widely used first generation biofuel crops in relation to their potential for genetic pollution and invasiveness. 

Biofuel crop Center of origin Dispersal units Non-human effective 

dispersal vectors 

Reported genetic 

pollution 

Reported 

invasiveness 

Oil palm 

(Elaeis 

guineensis) 

Tropical Africa 
(Corley and Tinker 

2015) 

Seeds Animals No Yes (Meyer 2000, 
Gordon et al. 2011) 

Maize (Zea 

mays) 

Americas Seeds N.A. Yes (Viljoen and Chetty 

2011, Chaparro-Giraldo 

and López-Pazos 2015) 

No 

Rapeseed 

(Brassica 

napus) 

Mediterranean region 

(Rakow 2004) 

Seeds Autochory, wind, water, 

animals (Australian 

Government 2008) 

Yes (Rieger et al. 2002, 

Knispel and McLachlan 

2010) 

Yes (Pessel et al. 

2001, Kawata et al. 

2009) 
Sugarcane 

(Saccharum sp.) 

Tropical region 

(Moore et al. 2013) 

Cuts, seeds (low 

viability of 

seeds) 

N.A.  No No 

Soybeans 

(Glycine max) 

China Seeds Autochory (Yoshimura et 

al. 2011) 

Yes (Kuroda et al. 2006, 

Mallory‐Smith and Zapiola 

2008) 

No 

3.8 Emissions of air pollutants and changes in factors that affect regional climate  

In addition to greenhouse gasses (section 3.3), the production and use of biofuels generate toxic 

substances that are released into the air, and that can negatively impact ecosystem functions and 

biodiversity. These pollutants include nitrogen oxides (NOx), ammonia (NH3), carbon monoxide 

(CO), volatile organic compounds (VOC), particulate matter (PM), oxides of sulfur (SOx) (Zhang et 

al. 2016), methyl bromide (CH3Br) (Ristaino and Thomas 1997) and nitrous oxide (N2O) 

(Ravishankara et al. 2009). They are produced during cropping (e.g., as a result of fuel combustion 

by the operation of machinery, and as a consequence of chemical applications and soil disturbance), 

biofuel production and combustion (Zhang et al. 2016), as well as during the construction of facilities 

and the extraction and shipping of resources (Collet et al. 2011). They lead to increases in acidification 

(i.e., acid rain), ozone layer depletion, and photochemical oxidation, among other environmental 

impacts (Heijungs et al. 1992). Their effects include changes in the structure and function of both 

terrestrial and aquatic ecosystems, which include alterations in species composition (Barker and 

Tingey 1992, Sala et al. 2000, Lovett et al. 2009).  

 

The release of pollutants differs among biofuel production systems. For instance, taking into account 

total life-cycle emissions, it has been shown that soybean biodiesel produced in the USA releases less 

air pollutants when compared to corn ethanol per net energy gain (Hill et al. 2006), while corn grain 

ethanol blended with gasoline (E-85) increases the amount of emitted pollutants (CO, VOC, PM10, 

NOx, SOx) in comparison to gasoline per unit of energy released upon combustion (Wang et al. 

2005). After accounting for cultivation and harvesting, it is estimated that in the USA corn grain 
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ethanol would emit more pollutants per produced gallon than ethanol from switchgrass, corn stover, 

wheat straw and forest residues (Zhang et al. 2016).  

 

Compared to first generation biofuels, emission of air pollutants can be lower for microalgal systems 

(Collet et al. 2011, Hou et al. 2011). Collet et al. (2011) estimated that biodiesel produced from C. 

vulgaris grown in open raceway ponds in Mediterranean conditions coupled with anaerobic digestion 

and assuming low-energy cultivation systems, led to lower potential acidification, ozone layer 

depletion and photochemical oxidation per MJ of combusted fuel than first generation biofuels after 

accounting for extraction and shipping of resources, cultivation, biofuel production, and construction 

and dismantling of facilities. Using the same species and open raceway ponds in Mediterranean 

conditions, Lardon et al. (2009) found lower acidification potential in comparison to rapeseed, but 

higher ozone layer depletion and photochemical oxidation when compared to first generation 

biofuels. However, they did not account for nutrient recycling (e.g., using anaerobic digestion), which 

would lead to lower energetic burdens and decrease air pollutants. 

 

Air pollution may also impact biodiversity via changes in atmospheric temperature and weather 

patterns: the release of substances that increase tropospheric ozone (CO, NOx, VOC, CH4) 

exacerbates global warming potential, while the release of aerosol particles (including sulfate, organic 

carbon, black carbon, biomass burning, nitrate, and mineral dust aerosols) increase albedo and thus 

exert an atmospheric cooling effect (Forster et al. 2007). Furthermore, it has been shown that aerosols 

affect not only cloud albedo but also the size and number of droplets in clouds, which can alter 

precipitation regimes worldwide depending on meteorological conditions (Forster et al. 2007, 

Rosenfeld et al. 2008, Li et al. 2011). Changes in surface albedo (that result from land-use change), 

coupled with increases in tropospheric ozone and aerosols, can alter atmospheric temperature and 

precipitation patterns, with potential impacts on ecosystems. While deforestation for biofuel 

production would decrease regional humidity and increase atmospheric temperature, evaporation 

from microalgal ponds could have the opposite effect (Usher et al. 2014), with potential increases in 

regional precipitation and additional cooling effects as water evaporates (Forster et al. 2007).  

3.9 Considerations for the adoption of sustainable biofuel production systems 

Transforming biodiverse landscapes into biofuel cropping systems is a detrimental practice for the 

short and long-term conservation of biodiversity. Biofuel production should only be promoted where 

few direct and indirect impacts on biodiverse systems are expected; implying that crops with low 
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biofuel yields or crops that compete with available lands for agriculture or for the conservation of 

biodiversity should be avoided. Currently, biofuel is primarily produced from suboptimal crops that 

do not have the highest biofuel yields (Figs. S1 to S5, Tables S7 to S11 in Supplementary Information) 

and that compete with agricultural lands or highly biodiverse landscapes. Thus, biofuel production 

systems, management practices and production technologies that have lower environmental footprints 

should be encouraged. This means that only systems with low potential to cause direct and indirect 

land-use change of agricultural lands and biodiverse regions and that offer higher carbon savings 

should be deployed, and also those systems with high freshwater consumption, high potential for 

pollution, soil degradation, and high invasiveness should be avoided. 

4. CONCLUSIONS 

The main pressures negatively impacting biodiversity due to biofuel production are direct and indirect 

land-use changes, particularly when ecosystems with high biodiversity values (e.g., tropical and 

subtropical forests and native grasslands) are transformed into biofuel crops. Several other pressures 

that negatively impact biodiversity include greenhouse gas emissions, pesticide and fertilizer 

pollution, water depletion, overexploitation of soils, invasive species and genetic pollution, emissions 

of air pollutants and changes in factors that affect regional climate (e.g., alterations in albedo and 

evapotranspiration patterns), which directly or indirectly impact biodiversity.  

 

Biofuel production systems and their associated management practices influence the magnitude of 

the impacts on biodiversity. Systems with higher productivity per unit area are expected to lead to 

less direct and indirect land-use changes, especially if their cultivation does not occupy fertile 

agricultural lands and does not compete with areas of high biodiversity value. Higher greenhouse gas 

savings would be achieved both when transforming low carbon systems (e.g., eroded lands) into 

biofuel crops and when using biofuel systems with lower energy intensive processes. Pollution would 

be reduced through the adoption of systems with lower fertilizer and pesticide inputs, combined with 

less energy intensive processes that are currently powered by fossil fuels. Furthermore, biofuels and 

their associated management practices can be designed to achieve better water efficiencies, less soil 

degradation (e.g., low soil erosion), and reduced invasive potential. 

 

We estimated that microalgal production systems would need substantially less cultivation area 

compared to first generation biofuels per unit of produced energy, making them the most feasible 

option in terms of reduced land needs, especially within tropical and subtropical regions of the world 
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where they achieve higher productivities. Limiting their cultivation to degraded lands would 

additionally lead to lower biodiversity impacts in comparison to any first generation biofuel 

production system. Open ponds are the preferred system for increasing carbon savings, because of 

their lower energy-intensive production processes compared to photobioreactors. Increased carbon 

savings in microalgal systems can be achieved through the optimization of productivities per unit 

area, their colocation with industrial CO2 sources or wastewater systems, and the implementation of 

technologies that allow nutrient recycling and energy production (e.g., utilizing anaerobic digestion 

and re-using water). Increases in energy efficiencies (e.g., using wet conversion routes for biodiesel 

production and replacing external fossil energy sources) are expected to reduce greenhouse gas 

emissions. Increased energy efficiencies and nutrient recycling are also expected to decrease 

emissions of air pollutants (NOx, NH3, CO, VOC, PM, SOx, N2O). Moreover, water recycling is 

essential to reduce gray water footprints, avoid pollution derived from potential growth media 

releases and decrease the chances of spreading invasive and potentially harmful microalgal strains. 

Finally, we call for a better inclusion of biodiversity in future studies on environmental impacts of 

biofuel production systems as it is currently underrepresented, particularly in life-cycle assessments 

(Guinée et al. 2010, Cherubini and Strømman 2011, Wiloso et al. 2012). 
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1. Studies relating to biofuels and biodiversity 

Tables S1 and S2 summarize the information associated with selected studies relating biofuels and 

biodiversity in tropical and subtropical regions of the world, using the Science Citation Index 

Expanded (SCI-EXPANDED) and the Emerging Sources Citation Index (ESCI) in Web of Science, 

based on the following combination of keywords: (biofuel OR bioenergy) AND (biodiversity OR 

wildlife), (biofuel OR bioenergy) AND (fish* OR bird* OR avian OR mammal* OR reptil* OR 

amphibian*). 

 

Chapter 1: Supplementary Information 



  

53 

 

Table S1. Specific studies that relate to biofuels and biodiversity. 

 Biofuel crop 

Group of 

terrestrial 

vertebrates 

Location Timeframe Main methods Identified pressures Initial land- use Main impact indicators Main impacts Reference 

First (maize, 

soybean) and 

second generation 

biofuels 

Birds 

Americas 

(Upper 

Midwest 

states - 

USA) 

N.S. 

Simulations. Modeling of 

potential richness of birds 

under future expansion of 

bioenergy crops 

Land-use change  
Agricultural lands, marginal 

lands 

Richness of species including 

threatened species 

Decreases in richness of species if maize or 

soybeans replace marginal lands. Increases in 

richness if agricultural lands are replaced by 

second generation biofuel crops 

(Meehan et al. 

2010) 

First (maize, 

soybean) and 

second generation 

biofuels 

Birds, 

mammals, 

amphibians 

Africa 2050 

Spatial analyses. Estimation of 

carbon emissions and 

biodiversity losses under 

potential future increased crop 

cultivation  

Land-use change, greenhouse gas 

emissions 
Wet savannas Habitat loss 

Widespread habitat losses and high 

greenhouse gas emissions if wet savannas are 

transformed into crops 

(Searchinger et 

al. 2015) 

First (maize, 

sugarcane) and 

second generation 

biofuels (corn 

stover) 

N.S. 

Americas 

(Brazil, 

USA) 

2020, 2030 

Assessment of land demands 

between feedstocks for 

fulfilling energy demands 

according to IEA biofuel use 

scenarios 

Land-use change, greenhouse gas 

emissions 
N.S. Habitat loss 

Expected habitat losses as a result of 

increases in land demands for biofuel 

production 

(Leal et al. 

2013) 

First (sugar beet, 

rapeseed) and 

second generation 

biofuels 

(bermudagrass)  

Birds, 

mammals, 

amphibians, 

reptiles 

Americas 

(California 

- USA) 

2050 

Spatial analyses. Assessment 

of potential impacts of crops 

on wildlife based on current 

and potential biofuel crops, 

suitable land and species 

suitability models 

Land-use change, land-use intensification, 

water depletion 
Agricultural lands Habitat loss Higher habitat losses for canola crops 

(Stoms et al. 

2012) 

First and second 

generation biofuels 
N.S. 

Asia 

(India) 
2020 

Assessment of environmental 

impacts of increased biofuel 

production  

Land-use change (direct, indirect), land-

use intensification, greenhouse gas 

emissions, water depletion, pesticide and 

fertilizer pollution, invasive species 

Wastelands, degraded 

grasslands 
Habitat loss 

Expected less habitat loss if using wastelands 

and degraded habitats for biofuel production 

(Ravindranath 

et al. 2011) 

First and second 

generation biofuels 

Birds, 

mammals, 

amphibians, 

reptiles 

Global N.A. 

Review of the impacts of 

biofuel production on 

biodiversity 

Land-use change (direct, indirect), land-

use intensification, greenhouse gas 

emission, invasive potential of crops, 

pesticide and fertilizer pollution 

Agricultural lands, marginal 

and degraded lands, native 

ecosystems 

Habitat loss 

Habitat and biodiversity losses are higher for 

first generation biofuels, when native 

ecosystems are transformed into biofuel 

crops in tropical regions. Biodiversity 

impacts of perennial crops can be positive, 

but still are a matter of debate.  

(Immerzeel et 

al. 2014) 

First and second 

generation biofuels 
N.S. Europe 2000-2030 

Simulations. Determination of 

potential areas of land-use 

change under three different 

biofuel development scenarios 

Land-use change, land-use intensification, 

pesticide and fertilizer pollution 
Croplands, pastures Habitat loss 

Higher habitat loss if croplands and surplus 

pasture lands are transformed into biofuel 

crops 

(Fischer et al. 

2010) 

First and second 

generation biofuels 
N.S. Global 2020 

Simulations. Determination of 

potential direct and indirect 

land-use changes as a result of 

the European Union biofuel 

targets 

Land-use change (direct, indirect), land-

use intensification 

Cropland, grassland, short 

rotation tree plantation, 

managed forests, natural 

forests and other natural 

lands. 

Habitat loss Habitat loss in high biodiversity areas 
(Frank et al. 

2013) 

First and second 

generation biofuels 
N.S. Global 2000-2050 

Simulations. Simulation of 

potential land-use changes 

caused by feedstock 

production under five 

development scenarios 

Land-use change, land-use intensification, 

increases in greenhouse gas emissions, 

water depletion 

Agricultural lands, native 

ecosystems 

Habitat loss, habitat 

perturbation 

Habitat loss, lower for scenarios that target 

not further deforestation. Increases in habitat 

perturbation as a result of increased forest 

management practices 

(Kraxner et al. 

2013) 

First and second 

generation biofuels 
N.S. Global 2050 

Simulations. Use of a 

biophysical biomass-balance 

model for predicting bioenergy 

crop potentials 

Land-use change, land-use intensification, 

pesticide and fertilizer pollution 

Croplands, forests, unused 

areas, others 
Habitat loss 

Higher habitat loss if biofuel cropping 

increases. Intensification also leads to habitat 

loss. 

(Erb et al. 

2012) 

First and second 

generation biofuels 
N.S. 

Africa 

(South 

Africa) 

21st century 

Spatial analyses about 

potential distribution and land 

availability for different 

biofuel crops 

Land-use change, land-use intensification Native ecosystems Habitat loss 
Habitat loss if areas with high ecological 

value are transformed into biofuel crops 

(Blanchard et 

al. 2015) 

First and second 

generation biofuels 
N.S. Europe 2005 

Spatial analyses. Estimation of 

wetland distribution and 

suitable wetland restoration 

sites under different policies 

Land-use change (direct-indirect), land-

use intensification, greenhouse gas 

emissions associated to wetland 

conversion into agricultural lands 

Wetlands, agricultural lands, 

forests, nature reserves 
Habitat loss 

Habitat can be lost within Europe and outside 

Europe as a result of leakage effects 

(Schleupner 

and Schneider 

2010) 

First and second 

generation biofuels 

Birds, 

mammals, 

amphibians, 

reptiles 

Europe 

(EU-27) 
2000-2030 

Spatial analyses. Land-use 

change simulations for three 

biofuel policy options coupled 

with species-specific 

Land-use change (direct, indirect) 

Several land covers including 

forests, semi-natural 

vegetation and agricultural 

lands 

Habitat loss, species 

composition 

Loss of habitat for most species under 

increased biofuel targets. Higher habitat 

losses when using non-woody biofuel crops. 

Changes in species composition. 

(Eggers et al. 

2009) 
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information on habitat 

suitability 

First and second 

generation biofuels 
N.S. Global 1990-2035 

Spatial analyses. Simulations 

of biofuel expansion under 

different development 

scenarios 

Land-use change (direct-indirect), land-

use intensification, greenhouse gas 

emissions  

Agricultural lands, native 

ecosystems including forests 

and grasslands 

Habitat loss Habitat loss as biofuels crops expand 
(Prieler et al. 

2013) 

First generation 

biofuels 
N.S. 

Global (12 

developed 

and 

developing 

countries) 

2000-2013 

Assessment of the 

relationships between biofuel 

production, consumption and 

environmental indicators 

Land-use change (direct, indirect), 

agriculture intensification, greenhouse gas 

emissions 

Arable lands, forests Habitat loss 
Inferred habitat losses within agricultural 

areas 
(Ozturk 2016) 

First generation 

biofuels 
Birds 

Americas 

(Argentina) 
2003-2006 

Field surveys for richness and 

abundance of species 

comparing native ecosystems 

and agricultural lands 

(including crops, pastures and 

ploughed areas) 

Land-use change, land-use intensification 
Native woodlands, 

agricultural lands 

Richness and abundance of 

native species, species 

composition  

Decrease of species richness and changes in 

species composition. Several raptors are 

positively related to agricultural lands. 

(Schrag et al. 

2009) 

First generation 

biofuels 

Birds, 

mammals 

Americas 

(USA) 
N.A. 

Review and meta-analysis 

evaluating diversity values of 

biofuel crops in relation to  

 

 

s that they have replaced  

Land-use change (direct, indirect), land-

use intensification, pesticide and fertilizer 

pollution, increases in greenhouse gas 

emissions (increased global warming) 

Natural habitats (e.g. 

coniferous forests), low-

intensity land uses (e.g. 

pastures), row-crops 

Richness and abundance of 

native species, richness and 

abundance of threatened 

species 

Decrease in richness and abundance of native 

species, higher in row crops than in pine or 

poplar plantations. Decreases for threatened 

bird species, especially in maize crops. There 

are expected increases in richness and 

abundance of birds when row-crops are 

converted into biofuel perennial crops. 

(Fletcher et al. 

2011) 

First generation 

biofuels 
Birds 

Americas 

(USA) 
N.A. 

Review of studies and datasets 

on richness and abundance of 

grassland birds comparing 

biofuel crops 

Land-use change N.S. 

Richness and abundance of 

native species, richness and 

abundance of threatened 

species 

Lower richness and abundance of native and 

threatened species in maize crops when 

compared to perennial plants. Potential of 

habitat provision for grassland birds 

including threatened species using native 

perennial plants (switchgrass, mixed grass–

forb prairies) 

(Robertson et 

al. 2012) 

First generation 

biofuels 
N.S. Global 2000-2030 

Spatial analyses. Estimation of 

potential land-use changes as a 

result of European agricultural 

and biofuel policies 

Land-use change (direct-indirect), land-

use intensification, greenhouse gas 

emissions  

Agricultural lands, native 

ecosystems including 

grasslands and forests 

Habitat loss 
Habitat loss increases especially in Sub-

Saharan Africa, Latin America and Asia  

(Prins et al. 

2011) 

First generation 

biofuels 
N.S. 

Europe 

(EU-27) 
2000-2030 

Spatial analyses. Modelling of 

potential land use-changes 

using four scenarios for 

allocation of biofuel crops 

coupled with environmental 

and economic models, 

exploring two biofuel policies 

Land-use change (direct, indirect), land-

use intensification 

High nature value farmlands, 

forests, semi natural 

vegetation 

Habitat loss 

Loss of habitat as a result of replacement of 

natural habitats and extensive agricultural 

lands. 

(Hellmann and 

Verburg 2010) 

First generation 

biofuels (including 

soybean) 

Birds 
Americas 

(Argentina) 
1993-2008 

Field surveys. Measurements 

for presence of species in 

agricultural systems and 

comparison to historical 

observations 

Land-use change, land-use intensification Native grasslands Presence of native species 

Decrease in presence of native wetland and 

grassland specialists. Habitat generalists and 

woodland specialist did not show any 

decrease. 

(Codesido et al. 

2011) 

First generation 

biofuels (including 

soybean, maize, oil 

palm, sugarcane) 

N.S. 
Tropical 

region 
1999-2030 

Spatial analyses. Overlapping 

of future potential agriculture 

expansion areas and 

conservation priorities 

Land-use change, greenhouse gas 

emissions 

Agricultural lands, native 

ecosystems 
Habitat loss 

Habitat loss as a result of overlapping with 

high biodiverse areas and suitable areas for 

cropland expansion 

(Phalan et al. 

2013) 

First generation 

biofuels (maize, 

soybean, 

sugarcane, 

rapeseed) 

sunflower, and oil 

palm) 

N.S. Gobal 2030 

Spatial analyses. Projection of 

future development threat for 

biofuels 

Land-use change Natural lands Habitat loss Increases in habitat loss 
(Oakleaf et al. 

2015) 

First generation 

biofuels (maize, 

sugar beet) 

N.S. 

Americas 

(California 

- USA) 

2010 

Simulations. Determination of 

potential land-use changes for 

different ethanol production 

targets 

Land-use change, land-use intensification Croplands, native ecosystems Habitat loss 
Habitat loss, higher if corn is used when 

compared to sugar beet 

(Geyer et al. 

2010) 

First generation 

biofuels (oil palm) 
Birds 

Asia 

(Malaysia, 

Indonesia) 

1990-2005 

Assessment of land use 

changes using FAO national 

statics on crop and forest area 

and evaluation of its impacts 

on bird diversity 

Land-use change, land-use intensification 

Primary or secondary 

(logged) forests, croplands 

(rubber)  

Habitat loss, richness of native 

species 

Decrease of bird richness, higher when 

converting native forests than rubber 

plantations. 

(Koh and 

Wilcove 2008) 
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First generation 

biofuels (oil palm) 

Mammals 

(focus on 

Leopard cat and 

murids) 

Asia 

(Malaysia) 
1993-1995 

Field surveys for habitat use of 

leopard cat, distribution and 

abundance of their preys in 

different land covers 

Land-use change 

Selectively logged 

dipterocarp forest, secondary 

forest 

Habitat selection of leopard 

cat, richness and abundance of 

murids 

Increase of occurrence of leopard cat in oil 

palm plantations. Murid relative abundance 

decreased in oil palm plantations.  

(Rajaratnam et 

al. 2007) 

First generation 

biofuels (oil palm) 
Birds 

Asia 

(Malaysia) 
2009 

Field surveys. Comparison 

between different management 

systems 

Land-use change, land-use intensification Peat swamp forest 

Richness and abundance of 

native species, richness and 

abundance of threatened 

species, species composition 

Decrease in richness and abundance of native 

and threatened species in oil palm 

plantations. Species composition between 

large and small plantations is similar, but 

large plantations have lower species richness. 

 (Azhar et al. 

2013) 

First generation 

biofuels (oil palm) 

Birds, 

mammals, 

amphibians, 

reptiles 

Tropical 

region 
N.A. 

Review and meta-analysis of 

studies relating biodiversity 

and oil palm plantations 

Land-use change (direct, indirect) 

Primary forest, logged-over 

forest, secondary forest 

scrubland, grassland, 

cropland 

Species richness and 

abundance, species 

composition 

Species richness decreases in oil palm 

plantations, species assemblages changes and 

forest specialists decrease 

(Savilaakso et 

al. 2014) 

First generation 

biofuels (oil palm) 

Birds, 

mammals, 

reptiles  

Tropical 

region 

(Indonesia, 

Dominican 

Republic, 

Thailand, 

Malaysia) 

N.A. 

Review and meta-analysis on 

studies that compare diversity 

between forests and oil palm 

plantations 

Land-use change, land-use intensification, 

increases in greenhouse gasses emissions 

(result of land-use change), water 

depletion (hydrological changes), 

emission of air pollutants, pesticide and 

fertilizer pollution. 

Primary forests 

Richness and abundance of 

native species, richness and 

abundance of threatened 

species, species composition  

Decrease in richness and abundance of native 

forest species with high ecological 

requirements including threatened species, 

increases in richness of generalist species 

(Danielsen et 

al. 2009) 

First generation 

biofuels (oil palm) 

Birds, 

mammals, 

amphibians, 

reptiles 

Americas 

(Focus on 

Colombia) 

N.A. 
Review of environmental 

impacts of oil palm plantations 
Land-use change, land-use intensification 

Agricultural lands, native 

ecosystems (including forests 

and savannas) 

Habitat losses, diversity of 

native and threatened species 

Current and expected habitat losses as a 

result of oil palm expansion. Presence of 

generalist species within oil palm plantations. 

Potential lower biodiversity losses or even 

gains if pastures are transformed into oil 

palm plantations while conserving 

surrounding forests. 

(Vargas et al. 

2015) 

First generation 

biofuels (oil palm) 

Birds, 

mammals, 

reptiles 

Asia 

(Focus on 

Malaysia 

and 

Indonesia) 

N.A. 

Review. Comparison of 

biodiversity in native forests, 

oil palm plantations and 

alternative uses 

Land-use change, land-use intensification, 

pesticide and fertilizer pollution, increases 

in greenhouse gas emissions (result of 

land-use change), increases in invasive 

species 

Native forests, Imperata 

grasslands, crops (rubber, 

cocoa, coffee, Acacia 

mangium) 

Habitat loss, richness and 

abundance of species, richness 

and abundance of threatened 

species 

Decrease in species richness and abundance 

of native species with high ecological 

requirements, increase in richness and 

abundance of generalist species. Increase in 

forest species for Imperata grasslands. 

(Fitzherbert et 

al. 2008) 

First generation 

biofuels (oil palm) 

Mammals 

(Great apes) 

Africa 

(Tropical 

Africa) 

N.A. 

Review. Determination of 

conflicts between great apes 

and potential oil palm 

plantations  

Land-use change, land-use intensification Tropical forests Habitat loss 

Habitat loss for great apes if suitable areas 

for oil palm plantations are transformed, 

increase of conflicts between apes and 

farmers 

(Wich et al. 

2014) 

First generation 

biofuels (oil palm) 
N.S. 

Asia 

(Indonesia) 
2020 

Simulations. Simulation of 

potential land-use changes 

under different development 

scenarios (business-as-usual, 

food production, forest 

preservation, carbon 

conservation, hybrid approach) 

Land-use change (direct, indirect), land-

use intensification 

Agricultural lands, tropical 

forest  
Habitat loss, biodiversity loss 

Habitat and biodiversity losses in most 

scenarios, except if degraded and agricultural 

lands are transformed into oil palm 

plantations 

(Koh and 

Ghazoul 2010) 

First generation 

biofuels (oil palm) 
N.S. 

Americas 

(Peru) 
2000-2010 

Spatial analyses. Calculation 

of land-use change based on 

satellite images 

Land-use change, land-use intensification Native lowland forests Habitat loss 
Habitat loss for native species, greater for 

high-yield plantations 

(Gutierrez-

Velez et al. 

2011) 

First generation 

biofuels (oil palm) 
Birds 

Australasia 

(Papua 

New 

Guinea) 

1989-2000 

Spatial analyses. Estimation of 

deforestation using satellite 

images and assessing of 

conservation status of birds 

based on the IUCN criteria 

Land-use change Native forests 
Habitat loss, number of 

threatened species  

Loss of habitat for native and endemic 

species, Increase in number of threatened 

species as a result of habitat loss 

(Buchanan et 

al. 2008) 

First generation 

biofuels (oil palm) 
Birds 

Asia 

(Southeast 

Asia) 

2000-2010 

Spatial analyses. Estimation of 

replacement of native forests 

into oil palm plantations based 

on satellite images and model 

of biodiversity impacts 

Land-use change, greenhouse gas 

emissions as a result of land-use change 

Native forests including peat 

swamp forests 

Habitat loss, loss of native 

species 

Habitat loss for native species and local 

extinction of native species 

(Koh et al. 

2011) 

First generation 

biofuels (oil palm, 

soybean) 

N.S. 

Tropical 

region 

(Indonesia, 

Malaysia, 

Brazil, 

Argentina) 

Mid 1990-

early 2000 

Assessment of socioeconomic 

and biodiversity impacts of 

agriculture development on 

biodiversity between the 

selected periods of time, taking 

into account production, 

socioeconomic and 

biodiversity indicators 

Land-use change (direct, indirect), land-

use intensification 

Natural ecosystems, 

extensive land use and 

intensive croplands 

Indicators based on the 

Natural Capital Index (NCI) 

Decrease of biodiversity as a result of 

agriculture expansion and intensification in 

most production areas. Biodiversity losses 

were lower in areas already transformed for 

agricultural purposes. 

(Kessler et al. 

2007) 

First generation 

biofuels (oil palm, 

sugarcane) 

N.S. 
Tropical 

region 
2050, 2100 

Spatial analyses. Modelling of 

land competition for biofuel 

crop production vs. 

Land-use change (direct, indirect)  Tropical forests Habitat loss 

Increases in habitat loss were biofuel 

production is more profitable than 

conservation for carbon payments 

(Persson 2012) 
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conservation for carbon 

payments 

First generation 

biofuels (soybean) 
N.S. 

Americas 

(Bolivia, 

Paraguay, 

Brazil) 

1990s-2000s 

Assessment. Modelling of 

relationships between 

deforestation and changes in 

exchange rates between US 

dollar and local currencies  

Land-use change(direct-indirect), land-use 

intensification 

Agricultural lands, native 

ecosystems 
Habitat loss 

Habitat loss as a result of currency 

fluctuations, displacement of cattle farms to 

the Amazon region 

(Richards et al. 

2012) 

First generation 

biofuels 

(sugarcane, 

soybean) 

N.S. 
Americas 

(Brazil) 
2006 

Spatial analyses. Identification 

of available "residual lands" 

with low biodiverse value for 

biofuel production 

Land-use change (direct, indirect) 

"Residual lands" outside the 

Amazon region and protected 

areas, and with low 

biodiversity value 

Habitat loss 

Less habitat losses are expected if using 

"residual lands" outside protected areas and 

outside the Amazon region for biofuel 

production 

(Lossau et al. 

2015) 

First generation 

biofuels (including 

soybean) 

Birds (Raptors) 
Americas 

(Argentina) 
2002-2005 

Field surveys. Measurement 

for richness and abundance of 

raptors along roads. 

Land-use change, land-use intensification 

Native ecosystems in five 

biomes: Paraná forest, 

Espinal, Pampas, Patagonian 

forest, Monte desert 

Diversity, richness and 

abundance of raptors 

Decreases in diversity, richness and 

abundance of raptors, including endemic and 

rare species, in transformed areas with 

fragmented native ecosystems 

(Carrete et al. 

2009) 

N.S. Birds 
Americas 

(Brazil) 
2005 

Field surveys, simulations. 

Measurement of richness and 

abundance of birds in 

agricultural matrices. 

Simulations of potential local 

bird extinction under different 

land-use scenarios 

Land-use change, land-use intensification Tropical forest  
Richness and abundance, 

species composition 

Habitat loss for forest dependent species, 

increase in number of generalist species. 

Additional losses are expected if relictual 

large trees are removed. 

(Mahood et al. 

2012) 

N.S. N.S. Global 2050 

Simulations. Prediction of 

areas needed to satisfy global 

energy demands 

Land-use change, land-use intensification, 

water depletion, greenhouse gas emissions 

(soil carbon losses) 

Croplands, native ecosystems Habitat loss 
Great habitat losses if biofuels become a 

major energy source 

(Haberl et al. 

2013) 

N.S. N.S. Global 1995-2050 

Simulations. Simulation of 

impacts on mean species 

abundance under difference 

scenarios of pressures and 

policies (climate-change 

mitigation using bioenergy, 

increases in plantation 

forestry, increases in protected 

areas) 

Land-use change, land-use intensification, 

greenhouse gas emissions, pesticide and 

fertilizer pollution 

Native ecosystems, 

agricultural lands among 

others 

Mean species abundance 

(MSA) 

Decreases in MSA especially when using 

extensive biofuel crops for climate change 

mitigation. Grasslands and savannas are 

more vulnerable to land conversion. 

(Alkemade et 

al. 2009) 

N.S. N.S. 
Americas 

(Brazil) 
N.S. 

Spatial analyses. Assessment 

of the compliance of current 

agricultural lands with 

environmental legislation 

of existing agricultural lands 

and environmental legislation 

Land-use change (direct-indirect)  
Agricultural lands, native 

ecosystems 
Habitat loss 

Habitat has been lost, and there are 

mismatches between agricultural areas and 

environmental legislation. Potential leakage 

effects if current legislation is followed. 

(Sparovek et al. 

2010) 

N.S. N.S. Global 2020 

Spatial analyses. Estimation of 

the economic and 

environmental impacts of 

European sustainability 

requirements (EFA proposal) 

Land-use change (direct, indirect), land-

use intensification, pollution through 

fertilizers, increases in greenhouse gas 

emissions 

Agricultural areas, 

grasslands, native 

ecosystems, marginal lands 

Habitat loss 

Habitat loss in European marginal lands as a 

result of agriculture intensification, habitat 

loss and intensification outside Europe as 

croplands expand 

(Pelikan et al. 

2015) 
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Table S2. Reviews, overviews and general assessments relating biofuels and biodiversity in tropical and subtropical regions of the world. 

Biofuel crop 

Reported 

group of 

terrestrial 

vertebrates 

Location Main methods Main identified pressures Initial land- use Main impacts Reference 

First (focus on 

maize), second and 

third generation 

biofuels (microalgae) 

Birds, 

mammals, 

fishes 

Americas 

(USA) 

Assessment of the impacts of 

biofuel production on wildlife 

Land-use change, land-use intensification, pesticide and 

fertilizer pollution, water depletion, invasiveness 

potential, overexploitation of soils (e.g. reduction in 

fertility when corn stover is used for biofuel production) 

Agricultural lands, abandoned lands, native prairies 
Habitat loss for native species, impacts on aquatic diversity 

as a result of eutrophication and algae blooms 

(Fargione et al. 

2009) 

First (including 

sugarcane) and 

second generation 

biofuels (Jatropha) 

Birds 

Africa 

(sub-

Saharian) 

Review of current 

environmental impacts of 

biofuel production and biofuel 

production prospects 

Land-use change, greenhouse gas emissions, pesticide 

and fertilizer pollution, water depletion 
Agricultural lands, native ecosystems 

Habitat loss, reported decreases in richness and abundance 

of birds 

(Gasparatos et 

al. 2015) 

First (maize) and 

second generation 

biofuels 

N.S. Global 

Review of available 

technologies for the reduction 

in global warming, air 

pollution, and energy security 

Land-use change (direct, indirect), land-use 

intensification, greenhouse gas emissions, air pollution, 

water depletion, pollution by wastes (e.g. sewage 

effluents) 

Agricultural lands, native ecosystems 
Habitat loss, higher when native ecosystems are transformed 

into biofuel crops 
(Jacobson 2009) 

First (maize, 

soybean) and second 

generation biofuels 

Birds 
Americas 

(USA) 

Overview of alternatives for 

biofuel production in the USA 

based on Meehan et al. (2010) 

simulations on potential 

increases in bioenergy crop 

cultivation 

Land-use change, greenhouse gas emissions, pollution 

through fertilizer use 
Agricultural lands, marginal lands 

Decreases in richness of species when using maize or 

soybeans. Increases in richness if agricultural lands are 

replaced by second generation biofuel crops 

(Fargione 2010) 

First (maize, 

soybean, sorghum, 

sugarcane, oil palm) 

and second 

generation biofuels 

N.S. Americas 

Review of current and 

potential conflicts between 

biofuel production and 

biodiversity 

Land-use change, pesticide and fertilizer pollution, 

invasive species 
Agricultural lands, marginal lands, native ecosystems 

Habitat loss (initially as forests are converted into pastures 

and later as a result of intensification), higher for first 

generation biofuels 

(Kline et al. 

2015) 

First (oil crops for 

biodiesel) and 

second generation 

biofuels 

N.S. Global 

Review of the role of degraded 

lands on biodiversity 

conservation 

Land-use change (direct, indirect), invasive species  Degraded lands 

Expected habitat losses if degraded lands are transformed 

into biofuel crops, especially when significant biodiversity 

values are still retained 

(Plieninger and 

Gaertner 2011) 

First (soybean, oil 

palm) and second 

generation biofuels 

N.S. 
Tropical 

region 

Review of the future impacts 

of agriculture expansion, 

including biofuel systems, in 

biodiversity 

Land-use change (direct, indirect), land-use 

intensification, greenhouse gas emissions, increases in 

infrastructure (e.g. roadways), water depletion, pesticide 

and fertilizer pollution 

Agricultural lands, native ecosystems 
Expected habitat losses and biodiversity declining, biotic 

homogenization 

(Laurance et al. 

2014) 

First (sugarcane, oil 

palm) and second 

generation biofuels 

(Jatropha, castor oil) 

N.S. Africa 

Review and assessment of 

environmental impacts of 

biofuel production in Africa 

Land-use change, land-use intensification, greenhouse 

gas emissions, water depletion, soil overexploitation, 

invasive potential, pesticide and fertilizer pollution 

Native ecosystems (forests, woodlands, wetlands), 

agricultural lands, marginal lands  

Loss of habitat for native species, decreases in richness of 

native species, potential increases in habitat availability if 

marginal lands are converted into perennial crops 

(Senelwa et al. 

2012) 

First (sugarcane, 

sugar beet, 

sunflower, canola, 

soybean) and second 

generation biofuels 

N.S. 

Africa 

(South 

Africa) 

Assessment of impacts of 

South African biofuel strategy 

for the sustainable production 

of biofuels in South Africa 

Land-use change (direct, indirect), land-use 

intensification, invasive species, greenhouse gas 

emissions, pesticide and fertilizer pollution, 

overexploitation by soils (e.g. use of crop wastes may 

impact soil fertility), genetic pollution 

Native ecosystems, agricultural lands 

Potential habitat loss in non-protected areas, habitat 

perturbation (e.g. changes in fire regimes, micro-climate, 

phenology) 

(Blanchard et 

al. 2011) 

First and second 

generation biofuels 
Birds Global 

Overview of environmental 

impacts of biofuel production  

Land-use change (direct, indirect), pesticide and 

fertilizer pollution, greenhouse gas emissions, water 

depletion, emission of air pollutants (e.g. ozone 

production) 

Native ecosystems, degraded or abandoned 

agricultural lands 

Expected biodiversity losses associated with biofuel 

expansion. Biodiversity losses can also occur in degraded or 

abandoned agricultural lands 

(Scharlemann 

2008) 

First and second 

generation biofuels 

Birds, 

mammals 
Global 

Review of the environmental 

impacts of biofuels  

Land-use change (direct, indirect), land-use 

intensification, greenhouse gas emissions, pesticide and 

fertilizer pollution, emission of air pollutants, water 

depletion, invasive potential  

Native ecosystems, agricultural lands 

Loss of habitat for native species, decreases in richness of 

native species, impacts on aquatic and groundwater 

dependent ecosystems 

(Reijnders 

2012) 

First and second 

generation biofuels 

Birds, 

mammals, 

amphibians, 

reptiles 

Europe 

Review of the current and 

future impacts of biofuel 

production in biodiversity 

Land-use change (direct, indirect), land-use 

intensification, pesticide and fertilizer pollution, 

greenhouse gas emissions, overexploitation of soils (e.g. 

soil organic carbon), water depletion 

Agricultural lands, native ecosystems 

Habitat loss, decreases in biodiversity especially for first 

generation biofuels, perennial crops may increase 

biodiversity of vertebrates  

(Gabrielle et al. 

2014) 

First and second 

generation biofuels 
N.S. 

Americas 

(USA) 

Review of the opportunities 

and risks of biofuel production 

on USA environment 

Land-use change, land-use intensification, greenhouse 

gas emissions, pesticide and fertilizer pollution, 

overexploitation of soils (e.g. soil erosion) 

Agricultural and marginal lands 

Potential habitat losses and perturbation if bioenergy crops 

and forest harvest biomass increase. Potential environmental 

benefits (reductions in greenhouse gas emissions and air 

pollutants including SOx) if perennial plants are 

intercropped or if annual crops are replaced by perennial 

crops in marginal or sensitive lands.  

(Cook and 

Beyea 2000) 

First and second 

generation biofuels 
N.S. Europe 

Assessment of environmental 

impacts of energy crop 

cultivation 

Land-use change, pesticide and fertilizer pollution, 

overexploitation of soils (loss in soil quality, erosion), 

pollution by wastes 

N.S. 

Reduction of biodiversity in monocultures. Potential 

increases in biodiversity when using second generation 

biofuels 

(Fernando et al. 

2010) 
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First and second 

generation biofuels 
N.S. Global 

Assessment of biofuel 

sustainability potential in 2020 

Land-use change (direct-indirect), greenhouse gas 

emissions 
Natural lands, marginal lands 

Habitat is expected to be lost as a result of biofuel and crop 

expansion for food production. Expected conflicts between 

available lands for competing objectives and expected 

increases in carbon emissions as a result of land-use change. 

(Bindraban et 

al. 2009) 

First and second 

generation biofuels 
N.S. Global 

Review of the potential effects 

of biofuel production on 

ecosystems 

Land-use change (direct, indirect), greenhouse gas 

emissions, overexploitation of soils (erosion, leaching of 

soil nutrients, continuous removal of agricultural 

residues), pesticide and fertilizer pollution, water 

depletion, invasive potential of biofuel crops 

Agricultural lands, native ecosystems, marginal or 

degraded lands. 

Habitat losses, potential habitat gains in marginal or 

degraded lands if replaced by second generation biofuels 

(Bonin and Lal 

2012) 

First and second 

generation biofuels 
N.S. Global 

Overview of current and 

potential environmental 

impacts of biofuel production 

Land-use change, soil overexploitation, pesticide and 

fertilizer pollution, invasive potential, water depletion, 

greenhouse gas emissions 

Native ecosystems and agricultural lands 

Habitat losses, higher when biodiverse ecosystems are 

transformed into crops. Potential positive impacts if habitat 

heterogeneity is increased or land degradation is reversed 

(Dauber and 

Bolte 2014) 

First and second 

generation biofuels 
N.S. Global 

Review of the ecological 

impacts of biofuels 

Land-use change (direct-indirect), greenhouse gas 

emissions as a result of land-use change and indirect or 

market-mediated effects, air pollution, water depletion 

and pollution 

Agricultural lands, abandoned lands, other uses 

including native forests and grasslands 

Habitat can be lost both within and outside biofuel 

production areas, reduction in grassland areas in the USA, 

direct and indirect conversion of grasslands, shrublands and 

forests in Brazil, conversion of forests in Southeast Asia 

(Fargione et al. 

2010) 

First and second 

generation biofuels 
N.S. Global 

Overview of the prospects of 

future global crop 

sustainability to 2050 

Land-use change (direct, indirect), land-use 

intensification, water depletion, increases in greenhouse 

gas emissions (climate change) 

Agricultural lands, native ecosystems 
Current and expected habitat losses as native ecosystems are 

transformed into biofuel crops 
(Hertel 2015) 

First and second 

generation biofuels 
N.S. Global 

Review of trade-offs between 

ecosystem services and 

agriculture, including biofuel 

crops 

Land-use change, greenhouse gas emissions N.S. 

Expected conflicts between biofuel production and 

ecosystem services, some of them related to changes in 

biodiversity (e.g. biological control) 

(Power 2010) 

First and second 

generation biofuels 
N.S. Global 

Review of the assumptions for 

the estimation of global 

bioenergy potential 

Land-use change, land-use intensification, water 

depletion 

Agricultural lands, native ecosystems (e.g. natural 

grasslands) 

Potential total habitat losses would depend on several 

assumptions, including type and productivity of feedstocks 

and type of land used for biofuel crops (e.g. surplus 

agricultural, lands, degraded lands) 

(Slade et al. 

2014) 

First generation 

biofuels (Focus on 

sugarcane) 

N.S. 

Global 

(Focus on 

Brazil and 

Europe) 

Overview of the synergies and 

trade-offs between biofuel 

production, food production 

and biodiversity conservation 

Land-use change (direct, indirect), land-use 

intensification, water depletion, pesticide and fertilizer 

pollution, soil overexploitation, air pollution 

Agricultural lands, natural, and semi-natural 

ecosystems 

Habitat losses. Potential biodiversity improvements if 

current biofuel crops are better managed for improving 

biodiversity and ecosystem services, taking into account 

spatial arrangements. 

(Manning et al. 

2015) 

First generation 

biofuels (mainly oil 

palm, soybean, 

sugarcane) 

N.S. 
Tropical 

region 

Review of the environmental 

impacts of biofuel in 

biodiversity hotspots 

Land-use change (direct, indirect), land-use 

intensification, greenhouse gas emissions, pesticide and 

fertilizer pollution, detrimental management practices 

(e.g. burning of sugarcane straw), soil overexploitation 

(soil erosion), pollution by wastes (e.g. palm oil mill 

effluent), increases in infrastructure, detrimental 

synergies with other industries (e.g. oil palm plantations 

and charcoal industries) 

Agricultural lands, native ecosystems, degraded lands 
Habitat losses, decreases in richness of species with high 

ecological requirements, biotic homogenization. 
(Lee 2011) 

First generation 

biofuels (oil palm) 

Mammals 

(Orangutan) 

Asia 

(Indonesia, 

Malaysia) 

Assessment of the strategies 

that reduce the potential for 

orangutan conservation 

Land-use change Native forests 

Habitat loss as a result of deforestation. If Imperata 

grasslands are used for oil palm plantations habitat loss 

could decrease. 

(Nantha and 

Tisdell 2009) 

First generation 

biofuels (oil palm) 
N.S. 

Asia 

(Indonesia) 

Review of environmental and 

social impacts of biofuel 

production from oil palm  

Land-use change, emission of air pollutants and other 

wastes, overexploitation of soils (soil erosion), water 

depletion, increases in greenhouse gas emissions when 

native ecosystems are transformed 

Native ecosystems (rainforests, peatlands, secondary 

forests) 

Loss of habitat for native species, decreases in richness and 

abundance of native and threatened species (e.g. Sumatran 

tiger, orangutan) 

(Obidzinski et 

al. 2012)  

First generation 

biofuels (oil palm) 
N.S. 

Asia 

(Southeast 

Asia) 

Review and assessment of the 

sustainability of oil palm 

plantations in Southeast Asia 

Land-use change, land-use intensification, 

overexploitation of soils (decreases in soil quality, 

increases in soil erosion), water depletion, emission of 

wastes, changes in ecological conditions (fire regimes) 

Native ecosystems Loss of habitat for native and threatened species 
(Mukherjee and 

Sovacool 2014) 

First generation 

biofuels (oil palm) 
N.S. 

Asia 

(Southeast 

Asia) 

Review of potential solutions 

to decrease threats to 

biodiversity associated with oil 

palm expansion 

Land-use change Native forests Habitat loss for native species 
(Wilcove and 

Koh 2010) 

First generation 

biofuels (oil palm) 
N.S. 

Tropical 

region 

Review and meta-analysis of 

life cycle assessments for oil 

palm production 

Land-use change, greenhouse gas emissions (potential of 

global warming), pesticide and fertilizer pollution, water 

depletion 

Primary, secondary forests, agricultural lands, 

grasslands 

Habitat loss for native species, species richness decreases in 

plantations, less impacts are expected when replacing 

agricultural lands or grasslands 

(Manik and 

Halog 2013) 

First generation 

biofuels (rapeseed, 

sunflower, oil palm, 

soybean) 

N.S. Global 

Overview of the potential 

habitat and biodiversity losses 

from biofuel production 

Land-use change, land-use intensification Agricultural lands, native ecosystems Current and potential habitat loss  (Koh 2007) 

First generation 

biofuels (soybean 

and oil palm) 

Mammals 

(Primates) 
Global 

Review of prospects and 

threats for primate 

conservation in the world 

Land-use change, pesticide and fertilizer pollution, 

infrastructure development 
Tropical forests 

Current and potential habitat losses as a result of 

deforestation. 
(Estrada 2013) 
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First generation 

biofuels (soybean) 

and beef tallow 

N.S. 
Americas 

(Brazil) 

Review of the impacts and 

environmental sustainability of 

biodiesel production in Brazil 

Land-use change (direct, indirect), greenhouse gas 

emissions (a result of land use-change, use of fertilizers, 

transportation activities), water depletion, pesticide and 

fertilizer pollution, overexploitation of soils (e.g. 

erosion) 

Agricultural lands, native ecosystems (natural 

grasslands, forests) 

Reported habitat losses mainly as a result of replacement of 

natural grasslands for soybean plantations. Indirect land-use 

change (deforestation) in the Amazon region. 

(Castanheira et 

al. 2014) 

First generation 

biofuels (sugarcane) 

Birds, 

mammals 

Americas 

(Brazil) 

Review of environmental and 

economic aspects of ethanol 

production in Brazil 

Land-use change (direct, indirect), land-use 

intensification, greenhouse gas emissions, water 

depletion, pollution by wastes (e.g. burning crop 

residues). 

Agricultural lands, native ecosystems (including 

savannas and forests) 

Habitat and biodiversity losses as a result of intensification 

and to a minor extent as a result of replacement of native 

habitats within the study region 

(Walter et al. 

2014) 

First generation 

biofuels (sugarcane) 
N.S. 

Americas 

(Brazil) 

Assessment of environmental 

impacts of sugarcane cropping 

Land-use change, land-use intensification, greenhouse 

gas emissions, water depletion, overexploitation of soils 

(e.g. soil erosion), pesticide and fertilizer pollution, 

pollution by wastes (e.g. air pollution after bagasse is 

burned, water pollution when vinasses reach aquatic 

systems), direct and indirect climatic shifts (e.g. changes 

in temperature as a result of changes in albedo) 

Agricultural lands, native grasslands, and forests 
Habitat has been lost and is expected to continue (including 

fragmentation), biotic homogenization 

(Filoso et al. 

2015) 

First generation 

biofuels (sugarcane) 
N.S. 

Americas 

(Brazil) 

Review of environmental 

impacts of sugarcane 

production 

Land-use change (direct-indirect), greenhouse gas 

emissions, soil erosion, water depletion and pollution, 

pesticide and fertilizer pollution, pollution by wastes 

(e.g. burning crop residues) 

Agricultural lands (pastures, croplands) and native 

ecosystems including natural grasslands 

Loss of habitat for native species if sugarcane expands into 

native ecosystems.  

(Smeets et al. 

2008) 

First generation 

biofuels (sugarcane, 

soybean) 

N.S. 
Americas 

(Brazil) 

Review of past and future 

land-use change impacts of 

biofuel production 

Land-use change (direct, indirect), land-use 

intensification, greenhouse gas emissions 

Agricultural lands, native ecosystems (including 

natural savannas, gallery forests, and Amazon forest) 

Expected higher habitat losses in the future as a result of 

biofuel crop expansion 
(Volpi 2010) 

First generation 

biofuels (sugarcane, 

soybean, oil palm) 

N.S. 
Americas 

(Brazil) 

Review of hazards imposed by 

current registered pesticides  

Land-use change (direct, indirect), land-use 

intensification, pesticide and fertilizer pollution 

Agricultural lands, native ecosystems (forests, native 

grasslands) 

Habitat loss as native ecosystems are transformed into 

pastures and then into biofuel crops. Expected toxicities for 

wildlife as a result of increased use of pesticides 

(Schiesari and 

Grillitsch 2011) 

First, second 

(agricultural and 

forest residues, 

organic wastes) and 

third generation 

biofuels (microalgae) 

N.S. Global 

Review of different biofuel 

production alternatives and 

their sustainability potential 

and deployment potential by 

2050 

Land-use change (direct, indirect), greenhouse gas 

emissions, overexploitation of soils (reduction of fertility 

as a result of continuous harvesting of residues), direct 

and indirect climate shifts (changes in albedo, roughness, 

evapotranspiration), pesticide and fertilizer pollution, 

water depletion 

Agricultural land, marginal or degraded lands, native 

ecosystems 

Habitat losses and high carbon emissions when native 

ecosystems are replaced, potential carbon losses in 

intensively managed forests for biomass extraction, habitat 

losses dependent on crop specific yields and management 

practices, habitat degradation. Use of degraded land for 

perennial plantations can increase biodiversity. Emission of 

air pollutants can be reduced (e.g. SOx and particulate 

matter) 

(Creutzig et al. 

2015) 

First, second and 

third generation 

biofuels (microalgae) 

Birds, 

mammals, 

amphibians, 

reptiles 

Global 
Review of impacts of biofuels 

production on biodiversity 

Land-use change, land-use intensification, pesticide and 

fertilizer pollution, water depletion, increases in 

greenhouse gas emissions (global warming potential), 

changes in management regimes, potential invasive 

species, genetic pollution 

Native ecosystems, agricultural lands 

Habitat loss for native and threatened species, 

homogenization, alteration of species composition and 

species populations 

(Liu et al. 2014) 

First, second and 

third generation 

biofuels (microalgae) 

Birds, 

mammals, 

amphibians, 

reptiles 

Global 
Review of environmental 

impacts of biofuel crops 

Land-use change (direct, indirect), land-use 

intensification, pesticide and fertilizer pollution, invasive 

species, spread of diseases, water depletion 

Agricultural lands, degraded lands, native ecosystems 
Impacts on biodiversity are context dependent, although are 

mostly negative 

(Verdade et al. 

2015) 

First, second and 

third generation 

biofuels (microalgae) 

N.S. 

Asia 

(Southeast 

Asia) 

Overview of the social and 

environmental costs of 

biofuels in Asia 

Land-use change (direct-indirect), greenhouse gas 

emissions as a result of land use change and 

management practices, water depletion, emissions of 

wastes, invasiveness potential 

Agricultural lands, marginal lands, abandoned lands, 

native ecosystems including forests, grasslands and 

wetlands 

Habitat loss for native species (Phalan 2009) 

First, second and 

third generation 

biofuels (microalgae) 

N.S. Global 

Overview of the impacts of 

direct and indirect land-use 

change on greenhouse gas 

emissions 

Land-use change (direct, indirect), greenhouse gas 

emissions 
Native ecosystems, abandoned and degraded lands 

Carbon losses when rich carbon systems are transformed 

into biofuel crops. Biodiversity losses may occur in 

marginal lands. Biofuel options that do not compete with 

other uses may be preferred (e.g. microalgal systems) 

(Fritsche et al. 

2010) 

First, second and 

third generation 

biofuels (microalgae) 

N.S. Global 
Review of the current debate 

on biofuel sustainability 

Land-use change, land-use intensification, greenhouse 

gas emissions, pollution by wastes, pesticide and 

fertilizer pollution, overexploitation of soils (e.g. organic 

carbon losses, losses in soil fertility), water depletion, 

invasive potential 

Agricultural lands, native ecosystems 
Habitat losses, higher greenhouse emissions when 

transforming rich carbon ecosystems 
(Gomiero 2015) 

First, second and 

third generation 

biofuels (microalgae) 

N.S. Global 

Assessment of biofuel 

production potential and its 

environmental impacts 

Land-use change (direct-indirect), land-use 

intensification, greenhouse gas emissions as a result of 

land-use change, water depletion 

Agricultural lands (including agroforest systems) and 

native ecosystems 

Habitat loss for native species (e.g. orangutan in Southeast 

Asia) 

(Koh and 

Ghazoul 2008) 

First, second and 

third generation 

biofuels (microalgae) 

N.S. Global 

Review about the 

environmental impacts of 

biofuels  

Land-use change (direct-indirect), land-use 

intensification, greenhouse gas emissions (as a result of 

land-use change and production technologies), pesticide 

and fertilizer pollution, invasive species 

Native ecosystems, semi-natural areas, agricultural 

and marginal lands 

Less expected habitat losses for biofuel produced from 

wastes and from third generation biofuels. Potential 

biodiversity gains if landscape heterogeneity increases. 

(Wiens et al. 

2011) 

First, second and 

third generation 

biofuels (microalgae) 

N.S. 
Oceania 

(Australia) 

Quantitative assessment of 

current and future biofuel 

Land-use change, greenhouse gas emissions, 

overexploitation of soils, water depletion 
Agricultural and marginal lands 

Potential positive impacts if saline and degraded lands are 

replaced by eucalypt forests 

(Farine et al. 

2012) 
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crops and associated estimates 

of greenhouse gas mitigation 

First, second 

generation and third 

generation biofuels 

(microalgae) 

N.S. Global 

Review of the opportunities of 

crops for food, feed and 

biofuel production 

Land-use change, land-use intensification, greenhouse 

gas emissions, pesticide and fertilizer pollution 
Agricultural lands, marginal lands, native ecosystems 

Habitat and biodiversity losses depend on agroecological 

conditions, soil traits and cropping systems 

(Spiertz and 

Ewert 2009) 

N.S. N.S. Global 

Assessment of surplus land 

availability for future biofuel 

expansion 

Land-use change (direct-indirect), land-use 

intensification, potential increases in greenhouse gasses 

(as a result of carbon soil losses, energy intensive 

production technologies, fertilizers and distance to 

markets), pollution through fertilizers, increases in 

invasive species 

"Surplus" lands including agricultural lands 

Habitat loss for native species including those found in 

agricultural lands. Potential biodiversity gains if structural 

and functional heterogeneity increases. 

(Dauber et al. 

2012) 

N.S. N.S. Global 

Assessment of the impacts of 

climate change on biodiversity 

including the role of the 

potential expansion of biofuel 

crops 

Land-use change (direct, indirect), land-use 

intensification, greenhouse gas emissions (climate 

change), soil overexploitation (e.g. soil erosion), 

pesticide and fertilizer pollution, water depletion 

Agricultural lands, marginal lands, native ecosystems 
Expected habitat losses within and outside Europe for 

fulfilling European biodiesel demands 

(Omann et al. 

2009) 

N.S. N.S. 
Tropical 

region 

Review of strategies for 

potential reduction of 

synergistic threats on 

biodiversity 

Land-use change (direct-indirect) , greenhouse gasses 

emissions as a result of land-use change 
Tropical forests Habitat loss and disturbance for native species 

(Brodie et al. 

2012) 

N.S. N.S. 
Tropical 

region 

Review of emerging threats to 

tropical forests 

Land-use change (direct, indirect), land-use 

intensification 
Tropical forests Habitat loss for native and threatened species 

(Laurance 

2015) 

N.S. N.S. 
Tropical 

region 

Assessment of future of forests 

based on threats for 

biodiversity conservation 

Land-use change, land-use intensification, Tropical forests 
Loss of habitat for native and threatened species, increases 

in forest degradation 

(Putz and 

Romero 2014) 

Second and third 

generation biofuels 

(microalgae) 

N.S. 

N.S. for the 

microalgal 

systems. 

Boreal 

forest for 

the forest 

system 

Overview of life cycle 

assessment comparing 

lignocellulosic biofuels with 

microalgal systems 

Land-use change (direct, indirect), greenhouse gas 

emissions, water depletion, soil overexploitation (e.g. 

decreases in soil fertility and changes in texture), 

pesticide and fertilizer pollution, introduction of invasive 

species, genetic pollution 

Managed forests, non-arable land  
Expected fewer habitat losses when using microalgal 

systems 

(Holma et al. 

2013) 

Third generation 

biofuels (microalgae) 
N.S. Global 

Review of the potential 

environmental risks of 

microalgal biofuel production 

Land-use change, water depletion, greenhouse gas 

emissions, pollution through wastes (e.g. water pollution 

by fertilizer and chemical use), invasive species, genetic 

pollution (by leakages of genetically modified algae), 

soil overexploitation (soil pollution, soil erosion) 

N.S. 
Potential changes in biodiversity as a result of land-use 

change and water pollution 

(Zhu and Ketola 

2012) 

Third generation 

biofuels (microalgae) 
N.S. Global 

Exploration of sustainability 

aspects of microalgal 

biorefinery systems 

Land-use change, water depletion, pollution by wastes 

(i.e. wastewater), soil overexploitation (soil erosion, soil 

compaction), invasive species, greenhouse gas emissions 

Marginal lands (e.g. arid or saline soils, infertile or 

polluted lands)  
Potential biodiversity losses 

(Zhu et al. 

2015) 

Third generation 

biofuels (microalgae) 
N.S. Global 

Overview of the potential 

environmental impacts of 

large-scale microalgal 

cultivation 

Land-use change, pollution by wastes (wastewater), 

water depletion, invasive species  
Marginal lands, forested areas, pastures 

Potential habitat losses and changes in terrestrial and aquatic 

ecosystems. Some species could make use of ponds for 

drinking water. 

(Usher et al. 

2014) 
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2. Calculation of area needed to satisfy gasoline and distillate fuel oil demands 

in 2010 

Tables S3 and S4 list the selected crops that may be used for biodiesel and bioethanol production, 

based on their lipid and carbohydrate contents, respectively. Average biodiesel yields per crop within 

countries was calculated based on the following equation: 

 

BDY = CY*LP/OD*0.81 

 

Where BDY is average biodiesel yield per crop within countries (L ha-1 year-1), CY is the average crop 

yield between 2005 and 2014 for each country (tonnes ha-1 year-1) (FAO 2019), LP is the proportion 

of lipids in the seeds, OD is oil density (tonnes L-1), and 0.81 is the product of the assumed extraction 

efficiency of oils (0.9) and the conversion efficiency from lipids to biodiesel (0.9). 

 

Average bioethanol yield per crop within countries was based on the following equation: 

 

ETY = CY*CE 

 

Where ETY is average bioethanol yield per crop within countries (L ha-1 year-1), CY is the average 

crop yield between 2005 and 2014 for each country (tonnes ha-1 year-1) (FAO 2019) and CE is the 

reported conversion efficiency per crop (L tonnes-1) 

 

An area-weighted average was calculated for microalgal biodiesel yield per country, using the 

estimations from Moody et al. (2014), taking into account the mean value at lipid yield intervals of 

550 L ha-1 year-1 and the proportion of land that these intervals represent within each country. Total 

average biodiesel yield was obtained multiplying by 0.81, which is the product of the assumed 

extraction efficiency of oils (0.9) and the conversion efficiency from lipids to biodiesel (0.9). 

 

Average energy yields (GJ ha-1 year-1) were obtained by multiplying the average biodiesel yields (L 

ha-1 year-1) by 0.0326 GJ L-1, using the Low Heating Value conversion factor. For bioethanol, a 

conversion factor of 0.0211 GJ L-1 was used (Hofstrand 2008).  
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Annual consumption of gasoline and distillate fuel oil within countries was obtained from the U.S. 

Energy Information Administration database (U.S. Energy Information Administration 2016). The 

amount of total energy consumption was obtained using a conversion factor at Low Heating Value of 

5.113 GJ per barrel of gasoline and 5.703 GJ per barrel of distillate oil. 

 

Finally, the amount of cultivation land required to meet gasoline and distillate fuel oil demands for 

each country in 2010 was obtained by dividing the annual consumption of gasoline and distillate fuel 

oil in 2010 (GJ year-1) by their associated average energy yields (GJ ha-1 year-1) (Tables S5 and S6).  

 

Figures S1 to S5 and tables S7 to S11 show the cultivation area (km2) required to meet gasoline and 

distillate fuel oil demands for each country in 2010 using soybean, oil palm, and rapeseed for 

biodiesel, and maize and sugarcane for bioethanol, in comparison to microalgae. 

 

Table S3. Conversion efficiencies for the production of biodiesel from selected crops found in the Faostat3 database. Averages of seed 

oil percentages were obtained from El Bassam (2010), tables 10.2 and 6.3; and averages of oil densities (at 15–25°C) were obtained 

from Firestone (2013). 

Crops Seed oil percentage Oil density (Kg m-3) 

Castor oil seed 50 956 

Coconuts 36 921 

Groundnuts, with shell 50 917 

Hempseed 32 925 

Jojoba seed 52 864 

Linseed 39 930 

Oil, palm fruit 26 920 

Olives 40 910 

Poppy seed 47 919 

Rapeseed 45 910 

Safflower seed 34 922 

Sesame seed 55 915 

Soybeans 21 919 

Sunflower seed 43 918 

Tallowtree seed 19 939 

 

Table S4. Conversion efficiencies for the production of ethanol from selected crops found in the Faostat3 database. Efficiency 

conversion refers to the amount of produced ethanol in liters per tonne of feedstock. 

Crops Efficiency conversion (L tonne-1)  Reference 

Barley 371  El Bassam (2010), table 10.1 

Cassava 322  El Bassam (2010), table 10.1 

Maize 417  El Bassam (2010), table 10.1 

Oats 317  El Bassam (2010), table 11.1 

Potatoes 114  El Bassam (2010), table 10.1 

Rice, paddy 430  Rajagopal et al. (2007) 

Rye 360  Wang et al. (1997) 

Sorghum 380  Rajagopal et al. (2007) 

Sugar beet 110  Rajagopal et al. (2007) 

Sugarcane 83  de Vries et al. (2010) 

Sweet potatoes 200  El Bassam (2010), table 10.1 

Triticale 382  El Bassam (2010), table 11.1 

Wheat 396  El Bassam (2010), table 10.1 
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Table S5. Cultivation area (km2) required to meet gasoline and distillate fuel oil demands for each country in 2010, for the best 

biodiesel crop in comparison to microalgal systems. Relative cultivation area of microalgal systems in comparison to best biodiesel 

crop is showed. 

Country Best biodiesel crop 
Area (km2) for best 

biodiesel crop 

Area (km2) for 

microalgae 

Relative cultivation 

area of microalgal 

systems (%) 

Afghanistan Olives 26,150.1 1,650.1 6.3 

Albania Sunflower seed 14,709.8 811.9 5.5 

Algeria Rapeseed 150,194.3 8,747.7 5.8 

American Samoa Coconuts 2,606.6 126.2 4.8 

Angola Oil, palm fruit 17,795.7 2,663.3 15.0 

Argentina Groundnuts, with shell 200,584.8 16,235.9 8.1 

Australia Groundnuts, with shell 421,362.1 22,653.9 5.4 

Austria Rapeseed 98,358.3 13,493.5 13.7 

Azerbaijan Sunflower seed 41,837.7 2,166.2 5.2 

Bahamas Coconuts 2,621.2 377.5 14.4 

Bangladesh Groundnuts, with shell 55,295.2 2,362.8 4.3 

Barbados Groundnuts, with shell 1,803.0 153.1 8.5 

Belarus Rapeseed 102,608.2 7,066.9 6.9 

Belgium Rapeseed 108,949.2 21,891.3 20.1 

Belize Coconuts 1,507.4 87.8 5.8 

Benin Oil, palm fruit 3,914.9 810.7 20.7 

Bhutan Soybeans 4,886.6 78.2 1.6 

Bolivia Groundnuts, with shell 45,867.5 1,476.8 3.2 

Bosnia and 

Herzegovina 
Rapeseed 17,236.8 1,349.7 7.8 

Botswana Sunflower seed 26,436.7 590.2 2.2 

Brazil Coconuts 225,314.5 45,995.8 20.4 

Brunei Coconuts 13,217.1 408.3 3.1 

Bulgaria Rapeseed 34,895.3 2,801.9 8.0 

Burkina Faso Groundnuts, with shell 16,152.4 321.8 2.0 

Burundi Oil, palm fruit 294.5 36.5 12.4 

Cambodia Coconuts 6,105.1 625.1 10.2 

Cameroon Oil, palm fruit 3,084.0 789.7 25.6 

Canada Rapeseed 1,059,209.8 136,433.0 12.9 

Cape Verde Coconuts 840.4 48.8 5.8 

Central African 

Republic 
Oil, palm fruit 332.4 33.6 10.1 

Chad Groundnuts, with shell 1,918.5 39.5 2.1 

Chile Olives 79,750.6 10,181.4 12.8 

China Coconuts 895,340.0 276,923.3 30.9 

Colombia Oil, palm fruit 23,322.3 6,289.9 27.0 

Comoros Coconuts 469.7 22.5 4.8 

Cook Islands Coconuts 373.2 18.2 4.9 

Costa Rica Oil, palm fruit 5,996.7 1,287.4 21.5 

Côte d'Ivoire Coconuts 6,695.0 597.0 8.9 

Croatia Rapeseed 29,681.1 2,977.8 10.0 

Cuba Coconuts 16,953.2 1,175.0 6.9 

Cyprus Groundnuts, with shell 1,959.8 888.7 45.3 

Czech Republic Rapeseed 62,947.6 9,109.8 14.5 

Democratic Republic 

of the Congo 
Oil, palm fruit 4,487.2 372.0 8.3 

Denmark Rapeseed 52,328.8 10,328.2 19.7 

Dominica Coconuts 524.9 28.5 5.4 

Dominican Republic Oil, palm fruit 8,444.6 1,647.7 19.5 

East Timor Groundnuts, with shell 1,484.5 44.9 3.0 

Ecuador Oil, palm fruit 31,608.4 5,391.9 17.1 

Egypt Olives 67,976.3 12,605.4 18.5 
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El Salvador Coconuts 3,635.0 779.4 21.4 

Equatorial Guinea Oil, palm fruit 954.2 128.7 13.5 

Eritrea Groundnuts, with shell 6,385.9 118.8 1.9 

Estonia Rapeseed 17,298.1 1,488.5 8.6 

Ethiopia Groundnuts, with shell 29,637.6 896.2 3.0 

Fiji Coconuts 3,048.8 190.8 6.3 

Finland Rapeseed 142,407.0 11,557.3 8.1 

France Hempseed 371,001.7 74,430.1 20.1 

French Guiana Coconuts 1,376.6 129.4 9.4 

French Polynesia Coconuts 2,048.0 148.4 7.2 

Gabon Oil, palm fruit 4,903.4 396.5 8.1 

Gambia Oil, palm fruit 753.3 98.2 13.0 

Georgia Soybeans 17,099.4 889.6 5.2 

Germany Rapeseed 632,743.3 117,604.2 18.6 

Ghana Coconuts 7,958.1 1,329.7 16.7 

Greece Sesame seed 16,009.0 9,726.2 60.8 

Grenada Coconuts 836.6 53.7 6.4 

Guadeloupe Coconuts 6,352.6 295.8 4.7 

Guam Coconuts 812.6 88.8 10.9 

Guatemala Oil, palm fruit 6,541.5 1,680.8 25.7 

Guinea Coconuts 1,882.3 130.0 6.9 

Guinea-Bissau Oil, palm fruit 389.5 43.0 11.0 

Guyana Coconuts 3,186.9 268.0 8.4 

Haiti Coconuts 8,148.5 419.1 5.1 

Honduras Oil, palm fruit 4,126.3 870.2 21.1 

Hungary Rapeseed 59,186.1 5,982.1 10.1 

India Coconuts 578,183.3 59,125.7 10.2 

Indonesia Oil, palm fruit 149,733.7 36,416.5 24.3 

Iran Groundnuts, with shell 517,215.3 38,078.9 7.4 

Iraq Groundnuts, with shell 150,905.6 12,945.3 8.6 

Ireland Rapeseed 42,900.0 8,813.8 20.5 

Israel Groundnuts, with shell 21,231.9 4,403.6 20.7 

Italy Sesame seed 100,818.9 44,140.6 43.8 

Jamaica Coconuts 7,030.3 691.4 9.8 

Japan Groundnuts, with shell 1,056,153.6 108,241.5 10.2 

Jordan Olives 44,211.8 2,082.3 4.7 

Kazakhstan Groundnuts, with shell 123,883.4 8,466.4 6.8 

Kenya Groundnuts, with shell 33,572.8 1,340.8 4.0 

Kiribati Coconuts 113.3 11.6 10.2 

Kuwait Olives 120,505.9 4,468.5 3.7 

Kyrgyzstan Groundnuts, with shell 14,661.2 854.6 5.8 

Laos Groundnuts, with shell 798.8 47.7 6.0 

Latvia Rapeseed 19,678.9 2,029.7 10.3 

Lebanon Groundnuts, with shell 30,661.8 3,205.6 10.5 

Liberia Oil, palm fruit 584.8 82.4 14.1 

Libya Groundnuts, with shell 134,894.8 7,373.5 5.5 

Lithuania Rapeseed 8,651.4 824.3 9.5 

Luxembourg Rapeseed 22,559.3 3,666.1 16.3 

Macedonia Rapeseed 7,424.9 569.9 7.7 

Madagascar Oil, palm fruit 2,019.6 313.5 15.5 

Malawi Groundnuts, with shell 6,884.7 162.3 2.4 

Malaysia Oil, palm fruit 48,182.3 14,884.0 30.9 

Maldives Coconuts 3,055.0 228.6 7.5 

Mali Groundnuts, with shell 4,206.0 126.2 3.0 

Malta Olives 20,401.9 456.7 2.2 
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Martinique Coconuts 6,383.8 231.6 3.6 

Mauritania Groundnuts, with shell 15,605.1 320.0 2.1 

Mauritius Groundnuts, with shell 5,501.3 332.0 6.0 

Mexico Oil, palm fruit 238,950.8 42,614.4 17.8 

Moldova Rapeseed 14,704.5 819.8 5.6 

Mongolia Rapeseed 15,708.1 1,187.6 7.6 

Montenegro Olives 9,142.2 256.2 2.8 

Morocco Groundnuts, with shell 64,953.8 4,152.2 6.4 

Mozambique Coconuts 7,602.0 490.5 6.5 

Myanmar Coconuts 4,239.4 884.7 20.9 

Namibia Sunflower seed 26,859.9 639.0 2.4 

Nauru Coconuts 49.7 7.7 15.5 

Nepal Coconuts 6,463.9 636.7 9.8 

Netherlands Rapeseed 118,787.2 22,275.5 18.8 

New Caledonia Coconuts 1,820.9 216.9 11.9 

New Zealand Linseed 108,202.7 5,583.8 5.2 

Nicaragua Oil, palm fruit 1,669.2 469.0 28.1 

Niger Sesame seed 10,532.5 152.8 1.5 

Nigeria Coconuts 58,562.6 6,716.3 11.5 

Niue Coconuts 45.8 0.8 1.8 

North Korea Soybeans 25,735.5 580.0 2.3 

Norway Rapeseed 112,313.7 12,947.3 11.5 

Pakistan Coconuts 56,316.5 7,632.0 13.6 

Palestina Poppy seed 1,670.7 517.0 30.9 

Panama Oil, palm fruit 7,746.8 1,045.4 13.5 

Papua New Guinea Oil, palm fruit 1,931.1 377.1 19.5 

Paraguay Oil, palm fruit 7,547.2 1,001.0 13.3 

Peru Coconuts 17,634.4 4,730.6 26.8 

Philippines Oil, palm fruit 45,276.0 7,560.3 16.7 

Poland Rapeseed 205,424.3 26,993.4 13.1 

Portugal Groundnuts, with shell 98,092.1 6,705.8 6.8 

Puerto Rico Coconuts 7,887.6 2,268.8 28.8 

Republic of Congo Oil, palm fruit 2,135.3 348.9 16.3 

Reunion Coconuts 3,889.3 330.5 8.5 

Romania Rapeseed 100,371.9 7,130.0 7.1 

Russia Rapeseed 1,693,756.3 125,951.9 7.4 

Rwanda Rapeseed 6,100.3 99.4 1.6 

Saint Kitts and Nevis Coconuts 519.0 50.8 9.8 

Saint Lucia Coconuts 1,174.6 92.9 7.9 

Saint Vincent and the 

Grenadines 
Coconuts 679.0 44.7 6.6 

Samoa Coconuts 293.3 35.8 12.2 

Sao Tome and 

Principe 
Oil, palm fruit 169.0 22.1 13.1 

Saudi Arabia Groundnuts, with shell 357,869.5 36,038.8 10.1 

Senegal Oil, palm fruit 4,400.9 611.1 13.9 

Serbia Rapeseed 25,151.4 2,383.4 9.5 

Seychelles Coconuts 1,916.5 151.1 7.9 

Sierra Leone Oil, palm fruit 1,103.5 117.5 10.6 

Singapore Coconuts 18,815.2 3,708.2 19.7 

Slovakia Rapeseed 30,219.6 3,155.2 10.4 

Slovenia Rapeseed 28,375.3 3,071.3 10.8 

Solomon Islands Oil, palm fruit 216.8 47.3 21.8 

Somalia Coconuts 1,655.8 95.7 5.8 

South Africa Groundnuts, with shell 372,357.2 14,494.9 3.9 

South Korea Groundnuts, with shell 348,534.9 35,056.7 10.1 
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Spain Groundnuts, with shell 366,344.6 38,059.4 10.4 

Sri Lanka Coconuts 18,882.6 1,877.9 9.9 

Suriname Coconuts 1,694.7 302.5 17.9 

Swaziland Groundnuts, with shell 12,017.4 155.1 1.3 

Sweden Rapeseed 102,640.4 16,546.3 16.1 

Switzerland Rapeseed 100,848.7 14,023.0 13.9 

Syria Groundnuts, with shell 78,978.2 6,401.4 8.1 

Taiwan Coconuts 47,672.7 12,032.8 25.2 

Tajikistan Groundnuts, with shell 3,765.4 297.1 7.9 

Tanzania Oil, palm fruit 4,126.9 737.6 17.9 

Thailand Oil, palm fruit 67,481.7 17,837.0 26.4 

Togo Oil, palm fruit 3,609.3 417.6 11.6 

Tonga Coconuts 130.0 33.0 25.4 

Trinidad and Tobago Coconuts 7,685.6 841.7 11.0 

Tunisia Linseed 41,853.1 1,821.8 4.4 

Turkey Groundnuts, with shell 142,744.7 16,833.9 11.8 

Uganda Sunflower seed 28,227.1 629.9 2.2 

Ukraine Rapeseed 175,425.6 13,791.7 7.9 

United Kingdom Rapeseed 417,125.7 78,255.1 18.8 

United States Olives 3,028,611.2 716,924.0 23.7 

Uruguay Rapeseed 22,577.6 1,296.3 5.7 

Uzbekistan Sunflower seed 43,732.9 2,574.2 5.9 

Vanuatu Coconuts 477.3 30.4 6.4 

Venezuela Coconuts 92,496.1 17,659.3 19.1 

Vietnam Coconuts 54,354.9 10,683.5 19.7 

Yemen Sesame seed 115,421.5 3,272.7 2.8 

Zambia Soybeans 17,114.3 324.2 1.9 

Zimbabwe Soybeans 27,018.8 409.0 1.5 

 

Table S6. Cultivation area (km2) required to meet gasoline and distillate fuel oil demands for each country in 2010, for the best 

bioethanol crop in comparison to microalgal systems. Relative cultivation area of microalgal systems in comparison to best bioethanol 

crop is showed. 

Country Best Ethanol crop 
Area (km2) for best 

ethanol crop 

Area (km2) for 

microalgae 

Relative cultivation 

area of microalgal 

systems (%) 

Afghanistan Sugarcane 17,785.5 1,650.1 9.3 

Albania Potatoes 6,275.8 811.9 12.9 

Algeria Sorghum 70,870.9 8,747.7 12.3 

American Samoa Cassava 1,615.3 126.2 7.8 

Angola Cassava 18,367.9 2,663.3 14.5 

Antigua and 

Barbuda 
Cassava 1,258.3 74.8 5.9 

Argentina Sugarcane 60,132.9 16,235.9 27.0 

Armenia Maize 2,890.5 351.4 12.2 

Australia Sugarcane 91,133.2 22,653.9 24.9 

Austria Sugar beet 25,094.1 13,493.5 53.8 

Azerbaijan Sugar beet 12,815.3 2,166.2 16.9 

Bahamas Cassava 1,934.4 377.5 19.5 

Bahrain Potatoes 10,804.4 740.5 6.9 

Bangladesh Sugarcane 17,211.9 2,362.8 13.7 

Barbados Cassava 630.5 153.1 24.3 

Belarus Sugar beet 20,328.0 7,066.9 34.8 

Belgium Sugar beet 32,683.3 21,891.3 67.0 

Belize Cassava 478.8 87.8 18.3 

Benin Cassava 4,668.6 810.7 17.4 
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Bermuda Potatoes 584.3 64.5 11.0 

Bhutan Sugarcane 613.1 78.2 12.8 

Bolivia Sugarcane 9,319.9 1,476.8 15.8 

Bosnia and 

Herzegovina 
Sugar beet 10,770.7 1,349.7 12.5 

Botswana Wheat 34,294.7 590.2 1.7 

Brazil Sugarcane 188,711.3 45,995.8 24.4 

Brunei Cassava 1,928.9 408.3 21.2 

Bulgaria Rice, paddy 20,951.5 2,801.9 13.4 

Burkina Faso Sugarcane 1,017.9 321.8 31.6 

Burundi Sugarcane 193.4 36.5 18.9 

Cambodia Cassava 2,123.1 625.1 29.4 

Cameroon Cassava 4,934.1 789.7 16.0 

Canada Sugar beet 192,510.8 136,433.0 70.9 

Cape Verde Cassava 346.6 48.8 14.1 

Cayman Islands Cassava 2,675.7 122.6 4.6 

Central African 

Republic 
Cassava 1,003.2 33.6 3.4 

Chad Sugarcane 133.4 39.5 29.6 

Chile Sugar beet 20,478.0 10,181.4 49.7 

China Sugarcane 769,456.6 276,923.3 36.0 

Colombia Sugarcane 21,516.6 6,289.9 29.2 

Comoros Cassava 321.4 22.5 7.0 

Cook Islands Cassava 55.9 18.2 32.6 

Costa Rica Sugarcane 5,530.9 1,287.4 23.3 

Côte d'Ivoire Sugarcane 2,612.7 597.0 22.9 

Croatia Sugar beet 8,580.3 2,977.8 34.7 

Cuba Sugarcane 11,044.1 1,175.0 10.6 

Cyprus Potatoes 7,934.7 888.7 11.2 

Czech Republic Sugar beet 18,586.5 9,109.8 49.0 

Democratic Republic 

of the Congo 
Sugarcane 2,939.7 372.0 12.7 

Denmark Sugar beet 18,075.9 10,328.2 57.1 

Djibouti Maize 2,317.2 57.6 2.5 

Dominica Cassava 302.6 28.5 9.4 

Dominican Republic Sugarcane 10,512.5 1,647.7 15.7 

East Timor Cassava 971.8 44.9 4.6 

Ecuador Sugarcane 20,468.2 5,391.9 26.3 

Egypt Sugarcane 35,047.3 12,605.4 36.0 

El Salvador Sugarcane 3,017.8 779.4 25.8 

Equatorial Guinea Sweet potatoes 3,403.1 128.7 3.8 

Eritrea Barley 7,975.9 118.8 1.5 

Estonia Potatoes 9,544.9 1,488.5 15.6 

Ethiopia Sugarcane 2,772.5 896.2 32.3 

Faroe Islands Potatoes 1,735.8 376.6 21.7 

Fiji Cassava 1,314.6 190.8 14.5 

Finland Sugar beet 27,774.1 11,557.3 41.6 

France Sugar beet 118,439.8 74,430.1 62.8 

French Guiana Sugarcane 668.5 129.4 19.4 

French Polynesia Sugarcane 621.4 148.4 23.9 

Gabon Sugarcane 2,149.2 396.5 18.4 

Gambia Cassava 2,377.2 98.2 4.1 

Georgia Potatoes 12,479.8 889.6 7.1 

Germany Sugar beet 204,170.3 117,604.2 57.6 

Ghana Cassava 7,154.5 1,329.7 18.6 

Greece Sugar beet 29,724.9 9,726.2 32.7 

Grenada Sugarcane 389.6 53.7 13.8 
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Guadeloupe Sugarcane 1,609.6 295.8 18.4 

Guam Sweet potatoes 961.8 88.8 9.2 

Guatemala Sugarcane 5,848.9 1,680.8 28.7 

Guinea Sugarcane 773.3 130.0 16.8 

Guinea-Bissau Cassava 381.5 43.0 11.3 

Guyana Sugarcane 1,361.0 268.0 19.7 

Haiti Sugarcane 2,153.6 419.1 19.5 

Honduras Sugarcane 3,457.5 870.2 25.2 

Hong Kong Sweet potatoes 51,076.4 5,945.1 11.6 

Hungary Sugar beet 14,877.7 5,982.1 40.2 

Iceland Potatoes 5,030.8 1,304.1 25.9 

India Cassava 135,108.4 59,125.7 43.8 

Indonesia Cassava 149,214.6 36,416.5 24.4 

Iran Sugarcane 151,936.5 38,078.9 25.1 

Iraq Potatoes 183,553.5 12,945.3 7.1 

Ireland Sugar beet 19,909.6 8,813.8 44.3 

Israel Maize 11,381.1 4,403.6 38.7 

Italy Sugar beet 132,754.4 44,140.6 33.2 

Jamaica Cassava 3,135.4 691.4 22.1 

Japan Sugar beet 261,293.1 108,241.5 41.4 

Jordan Maize 6,835.4 2,082.3 30.5 

Kazakhstan Sugar beet 55,323.5 8,466.4 15.3 

Kenya Sugarcane 5,665.5 1,340.8 23.7 

Kuwait Maize 8,924.8 4,468.5 50.1 

Kyrgyzstan Maize 6,080.6 854.6 14.1 

Laos Cassava 168.4 47.7 28.3 

Latvia Sugar beet 6,208.8 2,029.7 32.7 

Lebanon Sugar beet 15,932.6 3,205.6 20.1 

Lesotho Potatoes 1,317.6 100.0 7.6 

Liberia Cassava 902.8 82.4 9.1 

Libya Potatoes 88,207.8 7,373.5 8.4 

Lithuania Sugar beet 2,008.8 824.3 41.0 

Luxembourg Potatoes 13,362.4 3,666.1 27.4 

Macedonia Sugar beet 3,363.2 569.9 16.9 

Madagascar Sugarcane 3,152.1 313.5 9.9 

Malawi Sugarcane 498.9 162.3 32.5 

Malaysia Cassava 61,442.6 14,884.0 24.2 

Maldives Maize 3,753.4 228.6 6.1 

Mali Sugarcane 553.9 126.2 22.8 

Malta Potatoes 4,488.1 456.7 10.2 

Martinique Sugarcane 1,484.7 231.6 15.6 

Mauritania Rice, paddy 3,913.8 320.0 8.2 

Mauritius Sugarcane 1,479.9 332.0 22.4 

Mexico Sugarcane 182,604.8 42,614.4 23.3 

Moldova Sugar beet 3,935.7 819.8 20.8 

Mongolia Potatoes 12,147.9 1,187.6 9.8 

Montenegro Maize 2,813.8 256.2 9.1 

Montserrat Maize 200.1 18.5 9.2 

Morocco Sugar beet 16,999.7 4,152.2 24.4 

Mozambique Sugarcane 2,327.7 490.5 21.1 

Myanmar Sugarcane 4,072.2 884.7 21.7 

Namibia Wheat 7,065.7 639.0 9.0 

Nepal Sugarcane 3,889.7 636.7 16.4 

Netherlands Sugar beet 32,675.5 22,275.5 68.2 

New Caledonia Cassava 2,696.8 216.9 8.0 
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New Zealand Potatoes 18,336.6 5,583.8 30.5 

Nicaragua Sugarcane 1,685.9 469.0 27.8 

Niger Cassava 778.4 152.8 19.6 

Nigeria Cassava 53,643.7 6,716.3 12.5 

Niue Sweet potatoes 6.7 0.8 12.3 

North Korea Sweet potatoes 3,192.5 580.0 18.2 

Norway Potatoes 42,889.3 12,947.3 30.2 

Oman Sorghum 11,623.2 2,482.9 21.4 

Pakistan Sugarcane 41,722.3 7,632.0 18.3 

Palestina Sweet potatoes 2,537.5 517.0 20.4 

Panama Sugarcane 5,504.3 1,045.4 19.0 

Papua New Guinea Cassava 2,834.3 377.1 13.3 

Paraguay Cassava 5,361.8 1,001.0 18.7 

Peru Sugarcane 11,226.1 4,730.6 42.1 

Philippines Sugarcane 27,523.7 7,560.3 27.5 

Poland Sugar beet 59,822.7 26,993.4 45.1 

Portugal Sugarcane 19,832.2 6,705.8 33.8 

Puerto Rico Cassava 23,310.2 2,268.8 9.7 

Qatar Maize 13,643.6 3,159.2 23.2 

Republic of Congo Sugarcane 2,991.8 348.9 11.7 

Reunion Sweet potatoes 1,303.8 330.5 25.3 

Romania Sugar beet 30,251.7 7,130.0 23.6 

Russia Sugar beet 334,361.7 125,951.9 37.7 

Rwanda Cassava 790.1 99.4 12.6 

Saint Kitts and Nevis Sugarcane 306.3 50.8 16.6 

Saint Lucia Sweet potatoes 1,261.0 92.9 7.4 

Saint Vincent and the 

Grenadines 
Maize 152.6 44.7 29.3 

Samoa Cassava 220.4 35.8 16.2 

Sao Tome and 

Principe 
Cassava 424.0 22.1 5.2 

Saudi Arabia Potatoes 340,323.2 36,038.8 10.6 

Senegal Sugarcane 1,733.0 611.1 35.3 

Serbia Sugar beet 7,772.6 2,383.4 30.7 

Seychelles Cassava 1,032.9 151.1 14.6 

Sierra Leone Sugarcane 534.2 117.5 22.0 

Slovakia Sugar beet 7,340.0 3,155.2 43.0 

Slovenia Sugar beet 9,414.1 3,071.3 32.6 

Solomon Islands Cassava 222.3 47.3 21.3 

Somalia Cassava 949.7 95.7 10.1 

South Africa Sugarcane 73,281.8 14,494.9 19.8 

South Korea Sweet potatoes 176,396.3 35,056.7 19.9 

Spain Sugar beet 88,177.3 38,059.4 43.2 

Sri Lanka Sugarcane 10,478.7 1,877.9 17.9 

Suriname Cassava 987.5 302.5 30.6 

Swaziland Sugarcane 499.1 155.1 31.1 

Sweden Sugar beet 28,508.0 16,546.3 58.0 

Switzerland Sugar beet 23,094.6 14,023.0 60.7 

Syria Sugar beet 28,286.7 6,401.4 22.6 

Taiwan Cassava 36,025.4 12,032.8 33.4 

Tajikistan Maize 1,476.0 297.1 20.1 

Tanzania Sugarcane 3,607.5 737.6 20.4 

Thailand Cassava 62,355.8 17,837.0 28.6 

Togo Cassava 6,250.9 417.6 6.7 

Tonga Cassava 180.2 33.0 18.3 

Trinidad and Tobago Sugarcane 5,083.8 841.7 16.6 
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Tunisia Sugar beet 7,888.5 1,821.8 23.1 

Turkey Sugar beet 60,379.8 16,833.9 27.9 

Turkmenistan Sugar beet 49,352.9 2,913.2 5.9 

Uganda Sugarcane 3,193.0 629.9 19.7 

Ukraine Sugar beet 54,131.5 13,791.7 25.5 

United Arab 

Emirates 
Sorghum 9,027.9 7,097.8 78.6 

United Kingdom Sugar beet 122,722.2 78,255.1 63.8 

United States Sugar beet 1,755,095.8 716,924.0 40.8 

Uruguay Sugarcane 6,706.1 1,296.3 19.3 

Uzbekistan Maize 15,211.1 2,574.2 16.9 

Vanuatu Maize 3,280.2 30.4 0.9 

Venezuela Sugarcane 78,495.3 17,659.3 22.5 

Vietnam Cassava 43,560.5 10,683.5 24.5 

Western Sahara Barley 5,077.9 41.4 0.8 

Yemen Sweet potatoes 53,185.6 3,272.7 6.2 

Zambia Sugarcane 1,053.7 324.2 30.8 

Zimbabwe Sugarcane 1,766.8 409.0 23.1 

 

 

 

Figure S1. Superimposed circles showing the cultivation area (km2) required to meet gasoline and distillate fuel oil demands for each 

country in 2010, when comparing microalgae with soybean production. 
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Figure S2. Superimposed circles showing the cultivation area (km2) required to meet gasoline and distillate fuel oil demands for each 

country in 2010, when comparing microalgae with oil palm production. 

 

 

Figure S3. Superimposed circles showing the cultivation area (km2) required to meet gasoline and distillate fuel oil demands for each 

country in 2010, when comparing microalgae with rapeseed production. 
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Figure S4. Superimposed circles showing the cultivation area (km2) required to meet gasoline and distillate fuel oil demands for each 

country in 2010, when comparing microalgae with maize production. 

 

 

Figure S5. Superimposed circles showing the cultivation area (km2) required to meet gasoline and distillate fuel oil demands for each 

country in 2010, when comparing microalgae with sugarcane production. 

 

Table S7. Cultivation area (km2) required to meet gasoline and distillate fuel oil demands for each country in 2010 when comparing 

microalgae with soybean production. Relative cultivation area of microalgal systems in comparison to soybean is showed. 

Country 
Area (km2) for 

soybean 

Area (km2) for 

microalgae 

Relative cultivation 

area of microalgal 

systems (%) 

Albania 32,074.9 811.9 2.5 

Angola 534,072.4 2,663.3 0.5 

Argentina 460,958.9 16,235.9 3.5 

Australia 1,030,702.7 22,653.9 2.2 

Austria 250,978.1 13,493.5 5.4 

Azerbaijan 257,566.0 2,166.2 0.8 
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Bangladesh 128,040.7 2,362.8 1.8 

Belize 4,600.8 87.8 1.9 

Benin 93,332.9 810.7 0.9 

Bhutan 4,886.6 78.2 1.6 

Bolivia 70,403.7 1,476.8 2.1 

Bosnia and 

Herzegovina 
41,961.3 1,349.7 3.2 

Brazil 1,522,318.6 45,995.8 3.0 

Bulgaria 112,045.7 2,801.9 2.5 

Burkina Faso 22,384.2 321.8 1.4 

Burundi 4,623.2 36.5 0.8 

Cambodia 33,350.6 625.1 1.9 

Cameroon 73,771.8 789.7 1.1 

Canada 1,562,018.1 136,433.0 8.7 

China 8,927,261.8 276,923.3 3.1 

Colombia 255,161.8 6,289.9 2.5 

Côte d'Ivoire 53,286.4 597.0 1.1 

Croatia 67,656.5 2,977.8 4.4 

Czech Republic 202,409.8 9,109.8 4.5 

Democratic Republic 

of the Congo 
73,318.6 372.0 0.5 

East Timor 3,561.9 44.9 1.3 

Ecuador 302,855.7 5,391.9 1.8 

Egypt 372,113.3 12,605.4 3.4 

El Salvador 35,745.6 779.4 2.2 

Ethiopia 68,299.3 896.2 1.3 

France 1,455,797.7 74,430.1 5.1 

Gabon 47,336.0 396.5 0.8 

Georgia 17,099.4 889.6 5.2 

Germany 3,460,447.3 117,604.2 3.4 

Greece 309,114.3 9,726.2 3.1 

Guatemala 60,119.1 1,680.8 2.8 

Honduras 36,076.4 870.2 2.4 

Hungary 141,792.5 5,982.1 4.2 

India 4,633,344.4 59,125.7 1.3 

Indonesia 2,366,365.1 36,416.5 1.5 

Iran 1,360,744.5 38,078.9 2.8 

Iraq 939,856.3 12,945.3 1.4 

Italy 852,517.8 44,140.6 5.2 

Japan 3,618,903.5 108,241.5 3.0 

Kazakhstan 245,002.4 8,466.4 3.5 

Kenya 125,386.3 1,340.8 1.1 

Kyrgyzstan 47,875.9 854.6 1.8 

Laos 2,615.1 47.7 1.8 

Liberia 17,676.3 82.4 0.5 

Macedonia 19,057.2 569.9 3.0 

Madagascar 55,797.8 313.5 0.6 

Malawi 17,194.6 162.3 0.9 

Mali 12,717.9 126.2 1.0 

Mexico 2,386,561.3 42,614.4 1.8 

Moldova 29,498.4 819.8 2.8 

Morocco 361,105.7 4,152.2 1.1 

Myanmar 55,889.7 884.7 1.6 

Nepal 49,177.1 636.7 1.3 

Nicaragua 20,951.6 469.0 2.2 

Nigeria 675,080.2 6,716.3 1.0 

North Korea 25,735.5 580.0 2.3 

Pakistan 908,321.9 7,632.0 0.8 

Panama 271,236.6 1,045.4 0.4 

Paraguay 38,026.0 1,001.0 2.6 

Peru 238,169.0 4,730.6 2.0 
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Philippines 373,222.8 7,560.3 2.0 

Poland 830,458.6 26,993.4 3.3 

Romania 200,392.8 7,130.0 3.6 

Russia 3,721,409.7 125,951.9 3.4 

Rwanda 13,707.9 99.4 0.7 

Serbia 53,867.3 2,383.4 4.4 

Slovakia 86,694.1 3,155.2 3.6 

Slovenia 66,053.2 3,071.3 4.6 

South Africa 755,214.2 14,494.9 1.9 

South Korea 1,144,272.0 35,056.7 3.1 

Spain 1,050,103.2 38,059.4 3.6 

Sri Lanka 103,285.9 1,877.9 1.8 

Suriname 26,335.2 302.5 1.1 

Switzerland 260,834.8 14,023.0 5.4 

Syria 280,799.2 6,401.4 2.3 

Taiwan 442,550.0 12,032.8 2.7 

Tajikistan 92,929.4 297.1 0.3 

Tanzania 82,445.1 737.6 0.9 

Thailand 479,291.9 17,837.0 3.7 

Togo 87,664.6 417.6 0.5 

Turkey 311,855.3 16,833.9 5.4 

Uganda 63,672.4 629.9 1.0 

Ukraine 427,075.8 13,791.7 3.2 

United States 14,210,193.3 716,924.0 5.0 

Uruguay 48,348.8 1,296.3 2.7 

Venezuela 1,111,923.4 17,659.3 1.6 

Vietnam 581,580.5 10,683.5 1.8 

Zambia 17,114.3 324.2 1.9 

Zimbabwe 27,018.8 409.0 1.5 

 

Table S8. Cultivation area (km2) required to meet gasoline and distillate fuel oil demands for each country in 2010, for oil palm in 

comparison to microalgal systems. Relative cultivation area of microalgal systems in comparison to oil palm is showed. 

Country Area (km2) for oil palm Area (km2) for microalgae 
Relative cultivation area of 

microalgal systems (%) 

Angola 17,795.7 2,663.3 15.0 

Benin 3,914.9 810.7 20.7 

Brazil 309,386.5 45,995.8 14.9 

Burundi 294.5 36.5 12.4 

Cameroon 3,084.0 789.7 25.6 

Central African Republic 332.4 33.6 10.1 

China 897,755.2 276,923.3 30.8 

Colombia 23,322.3 6,289.9 27.0 

Costa Rica 5,996.7 1,287.4 21.5 

Côte d'Ivoire 6,791.0 597.0 8.8 

Democratic Republic of the 

Congo 
4,487.2 372.0 8.3 

Dominican Republic 8,444.6 1,647.7 19.5 

Ecuador 31,608.4 5,391.9 17.1 

Equatorial Guinea 954.2 128.7 13.5 

Gabon 4,903.4 396.5 8.1 

Gambia 753.3 98.2 13.0 

Ghana 17,907.6 1,329.7 7.4 

Guatemala 6,541.5 1,680.8 25.7 

Guinea 3,627.6 130.0 3.6 

Guinea-Bissau 389.5 43.0 11.0 

Honduras 4,126.3 870.2 21.1 

Indonesia 149,733.7 36,416.5 24.3 

Liberia 584.8 82.4 14.1 

Madagascar 2,019.6 313.5 15.5 
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Malaysia 48,182.3 14,884.0 30.9 

Mexico 238,950.8 42,614.4 17.8 

Nicaragua 1,669.2 469.0 28.1 

Nigeria 194,867.7 6,716.3 3.4 

Panama 7,746.8 1,045.4 13.5 

Papua New Guinea 1,931.1 377.1 19.5 

Paraguay 7,547.2 1,001.0 13.3 

Peru 20,838.1 4,730.6 22.7 

Philippines 45,276.0 7,560.3 16.7 

Republic of Congo 2,135.3 348.9 16.3 

Sao Tome and Principe 169.0 22.1 13.1 

Senegal 4,400.9 611.1 13.9 

Sierra Leone 1,103.5 117.5 10.6 

Solomon Islands 216.8 47.3 21.8 

Suriname 11,156.2 302.5 2.7 

Tanzania 4,126.9 737.6 17.9 

Thailand 67,481.7 17,837.0 26.4 

Togo 3,609.3 417.6 11.6 

Venezuela 94,294.4 17,659.3 18.7 

 

Table S9. Cultivation area (km2) required to meet gasoline and distillate fuel oil demands for each country in 2010, for rapeseed in 

comparison to microalgal systems. Relative cultivation area of microalgal systems in comparison to rapeseed is showed. 

Country Area (km2) for rapeseed Area (km2) for microalgae 
Relative cultivation area of 

microalgal systems (%) 

Algeria 150,194.3 8,747.7 5.8 

Argentina 346,673.5 16,235.9 4.7 

Australia 875,244.0 22,653.9 2.6 

Austria 98,358.3 13,493.5 13.7 

Bangladesh 97,810.4 2,362.8 2.4 

Belarus 102,608.2 7,066.9 6.9 

Belgium 108,949.2 21,891.3 20.1 

Bosnia and Herzegovina 17,236.8 1,349.7 7.8 

Brazil 1,472,945.2 45,995.8 3.1 

Bulgaria 34,895.3 2,801.9 8.0 

Canada 1,059,209.8 136,433.0 12.9 

Chile 87,281.6 10,181.4 11.7 

China 3,846,822.5 276,923.3 7.2 

Croatia 29,681.1 2,977.8 10.0 

Czech Republic 62,947.6 9,109.8 14.5 

Denmark 52,328.8 10,328.2 19.7 

Estonia 17,298.1 1,488.5 8.6 

Ethiopia 31,920.1 896.2 2.8 

Finland 142,407.0 11,557.3 8.1 

France 547,623.3 74,430.1 13.6 

Germany 632,743.3 117,604.2 18.6 

Greece 223,398.6 9,726.2 4.4 

Hungary 59,186.1 5,982.1 10.1 

India 2,137,788.5 59,125.7 2.8 

Iran 725,049.9 38,078.9 5.3 

Ireland 42,900.0 8,813.8 20.5 

Italy 601,534.6 44,140.6 7.3 

Japan 2,317,352.6 108,241.5 4.7 

Kazakhstan 294,975.2 8,466.4 2.9 

Kyrgyzstan 28,780.0 854.6 3.0 

Latvia 19,678.9 2,029.7 10.3 

Lithuania 8,651.4 824.3 9.5 

Luxembourg 22,559.3 3,666.1 16.3 

Macedonia 7,424.9 569.9 7.7 
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Mexico 1,196,178.5 42,614.4 3.6 

Moldova 14,704.5 819.8 5.6 

Mongolia 15,708.1 1,187.6 7.6 

Morocco 166,473.5 4,152.2 2.5 

Myanmar 38,066.8 884.7 2.3 

Netherlands 118,787.2 22,275.5 18.8 

New Zealand 122,777.3 5,583.8 4.5 

Norway 112,313.7 12,947.3 11.5 

Pakistan 309,354.2 7,632.0 2.5 

Paraguay 150,194.3 8,747.7 3.5 

Poland 346,673.5 16,235.9 13.1 

Romania 875,244.0 22,653.9 7.1 

Russia 98,358.3 13,493.5 7.4 

Rwanda 97,810.4 2,362.8 1.6 

Serbia 102,608.2 7,066.9 9.5 

Slovakia 108,949.2 21,891.3 10.4 

Slovenia 17,236.8 1,349.7 10.8 

South Africa 1,472,945.2 45,995.8 3.1 

South Korea 34,895.3 2,801.9 4.5 

Spain 1,059,209.8 136,433.0 5.6 

Sweden 87,281.6 10,181.4 16.1 

Switzerland 3,846,822.5 276,923.3 13.9 

Taiwan 29,681.1 2,977.8 2.7 

Tajikistan 62,947.6 9,109.8 1.3 

Tunisia 52,328.8 10,328.2 1.1 

Turkey 17,298.1 1,488.5 9.4 

Ukraine 31,920.1 896.2 7.9 

United Kingdom 142,407.0 11,557.3 18.8 

United States 547,623.3 74,430.1 6.5 

Uruguay 632,743.3 117,604.2 5.7 

Uzbekistan 223,398.6 9,726.2 3.2 

 

Table S10. Cultivation area (km2) required to meet gasoline and distillate fuel oil demands for each country in 2010, for maize in 

comparison to microalgal systems. Relative cultivation area of microalgal systems in comparison to maize is showed. 

Country Area (km2) for maize Area (km2) for microalgae 
Relative cultivation area of 

microalgal systems (%) 

Afghanistan 42,210.7 1,650.1 3.9 

Albania 6,425.7 811.9 12.6 

Algeria 83,486.8 8,747.7 10.5 

Angola 247,988.1 2,663.3 1.1 

Antigua and Barbuda 2,654.8 74.8 2.8 

Argentina 124,018.6 16,235.9 13.1 

Armenia 2,890.5 351.4 12.2 

Australia 255,091.2 22,653.9 8.9 

Austria 44,694.1 13,493.5 30.2 

Azerbaijan 20,156.8 2,166.2 10.7 

Bahamas 4,104.0 377.5 9.2 

Bangladesh 22,623.0 2,362.8 10.4 

Barbados 3,545.9 153.1 4.3 

Belarus 45,464.6 7,066.9 15.5 

Belgium 58,310.4 21,891.3 37.5 

Belize 1,979.9 87.8 4.4 

Benin 41,714.7 810.7 1.9 

Bhutan 1,471.2 78.2 5.3 

Bolivia 35,770.3 1,476.8 4.1 

Bosnia and Herzegovina 12,475.7 1,349.7 10.8 

Botswana 184,129.1 590.2 0.3 

Brazil 680,227.0 45,995.8 6.8 
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Bulgaria 23,365.7 2,801.9 12.0 

Burkina Faso 12,300.9 321.8 2.6 

Burundi 2,264.0 36.5 1.6 

Cambodia 9,151.8 625.1 6.8 

Cameroon 25,323.2 789.7 3.1 

Canada 328,354.5 136,433.0 41.6 

Cape Verde 16,916.5 48.8 0.3 

Central African Republic 1,746.3 33.6 1.9 

Chad 2,427.9 39.5 1.6 

Chile 44,580.3 10,181.4 22.8 

China 1,875,195.6 276,923.3 14.8 

Colombia 140,179.8 6,289.9 4.5 

Comoros 583.3 22.5 3.9 

Costa Rica 40,598.9 1,287.4 3.2 

Côte d'Ivoire 18,384.1 597.0 3.2 

Croatia 17,739.1 2,977.8 16.8 

Cuba 33,795.7 1,175.0 3.5 

Czech Republic 38,239.2 9,109.8 23.8 

Democratic Republic of the 

Congo 
32,090.4 372.0 1.2 

Denmark 48,422.6 10,328.2 21.3 

Djibouti 2,317.2 57.6 2.5 

Dominica 42,210.7 1,650.1 2.2 

Dominican Republic 6,425.7 811.9 2.3 

East Timor 83,486.8 8,747.7 2.8 

Ecuador 247,988.1 2,663.3 4.1 

Egypt 2,654.8 74.8 12.1 

El Salvador 124,018.6 16,235.9 4.6 

Eritrea 2,890.5 351.4 1.2 

Ethiopia 255,091.2 22,653.9 3.7 

Fiji 44,694.1 13,493.5 3.1 

France 20,156.8 2,166.2 22.5 

French Guiana 4,104.0 377.5 1.5 

Gabon 22,623.0 2,362.8 2.6 

Gambia 3,545.9 153.1 1.6 

Georgia 45,464.6 7,066.9 5.4 

Germany 58,310.4 21,891.3 31.6 

Ghana 1,979.9 87.8 2.7 

Greece 41,714.7 810.7 21.1 

Grenada 1,471.2 78.2 1.5 

Guam 35,770.3 1,476.8 4.2 

Guatemala 12,475.7 1,349.7 3.1 

Guinea 184,129.1 590.2 2.1 

Guinea-Bissau 680,227.0 45,995.8 1.7 

Guyana 23,365.7 2,801.9 2.2 

Haiti 12,300.9 321.8 1.2 

Honduras 2,264.0 36.5 2.5 

Hungary 9,151.8 625.1 17.3 

India 25,323.2 789.7 3.9 

Indonesia 328,354.5 136,433.0 7.0 

Iran 16,916.5 48.8 12.5 

Iraq 1,746.3 33.6 4.9 

Israel 2,427.9 39.5 38.7 

Italy 44,580.3 10,181.4 20.7 

Jamaica 1,875,195.6 276,923.3 1.9 

Japan 140,179.8 6,289.9 6.7 

Jordan 583.3 22.5 30.5 

Kazakhstan 40,598.9 1,287.4 13.0 

Kenya 18,384.1 597.0 2.3 

Kuwait 17,739.1 2,977.8 50.1 
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Kyrgyzstan 33,795.7 1,175.0 14.1 

Laos 38,239.2 9,109.8 9.2 

Lebanon 32,090.4 372.0 5.7 

Lesotho 48,422.6 10,328.2 1.0 

Libya 2,317.2 57.6 3.4 

Lithuania 42,210.7 1,650.1 17.3 

Luxembourg 6,425.7 811.9 24.7 

Macedonia 83,486.8 8,747.7 9.7 

Madagascar 247,988.1 2,663.3 2.3 

Malawi 2,654.8 74.8 3.0 

Malaysia 124,018.6 16,235.9 10.2 

Maldives 2,890.5 351.4 6.1 

Mali 255,091.2 22,653.9 3.5 

Mauritania 44,694.1 13,493.5 1.1 

Mauritius 20,156.8 2,166.2 11.9 

Mexico 4,104.0 377.5 5.0 

Moldova 22,623.0 2,362.8 7.6 

Montenegro 3,545.9 153.1 9.1 

Montserrat 45,464.6 7,066.9 9.2 

Morocco 58,310.4 21,891.3 1.3 

Mozambique 1,979.9 87.8 1.4 

Myanmar 41,714.7 810.7 6.3 

Namibia 1,471.2 78.2 3.0 

Nepal 35,770.3 1,476.8 4.3 

Netherlands 12,475.7 1,349.7 41.2 

New Caledonia 184,129.1 590.2 5.9 

New Zealand 680,227.0 45,995.8 26.1 

Nicaragua 23,365.7 2,801.9 2.2 

Niger 12,300.9 321.8 1.3 

Nigeria 2,264.0 36.5 2.8 

North Korea 9,151.8 625.1 10.0 

Pakistan 25,323.2 789.7 6.3 

Panama 328,354.5 136,433.0 2.8 

Papua New Guinea 16,916.5 48.8 8.0 

Paraguay 1,746.3 33.6 5.1 

Peru 2,427.9 39.5 5.1 

Philippines 44,580.3 10,181.4 4.6 

Poland 1,875,195.6 276,923.3 20.1 

Portugal 140,179.8 6,289.9 13.6 

Puerto Rico 583.3 22.5 2.7 

Qatar 40,598.9 1,287.4 23.2 

Republic of Congo 18,384.1 597.0 1.4 

Reunion 17,739.1 2,977.8 13.2 

Romania 33,795.7 1,175.0 9.5 

Russia 38,239.2 9,109.8 16.1 

Rwanda 32,090.4 372.0 2.4 

Saint Vincent and the 

Grenadines 
48,422.6 10,328.2 29.3 

Sao Tome and Principe 2,317.2 57.6 2.4 

Saudi Arabia 42,210.7 1,650.1 8.2 

Senegal 6,425.7 811.9 2.4 

Serbia 83,486.8 8,747.7 13.0 

Sierra Leone 247,988.1 2,663.3 2.2 

Slovakia 2,654.8 74.8 18.5 

Slovenia 124,018.6 16,235.9 21.0 

Somalia 2,890.5 351.4 1.9 

South Africa 255,091.2 22,653.9 6.7 

South Korea 44,694.1 13,493.5 12.8 

Spain 20,156.8 2,166.2 21.2 

Sri Lanka 4,104.0 377.5 4.0 
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Suriname 22,623.0 2,362.8 3.9 

Swaziland 3,545.9 153.1 1.9 

Switzerland 45,464.6 7,066.9 26.7 

Syria 58,310.4 21,891.3 6.9 

Taiwan 1,979.9 87.8 12.9 

Tajikistan 41,714.7 810.7 20.1 

Tanzania 1,471.2 78.2 2.0 

Thailand 35,770.3 1,476.8 7.3 

Togo 12,475.7 1,349.7 1.8 

Trinidad and Tobago 184,129.1 590.2 3.8 

Turkey 680,227.0 45,995.8 15.6 

Turkmenistan 23,365.7 2,801.9 2.2 

Uganda 12,300.9 321.8 3.2 

Ukraine 2,264.0 36.5 14.1 

United Arab Emirates 9,151.8 625.1 39.3 

United States 25,323.2 789.7 24.3 

Uruguay 328,354.5 136,433.0 8.2 

Uzbekistan 16,916.5 48.8 16.9 

Vanuatu 1,746.3 33.6 0.9 

Venezuela 2,427.9 39.5 5.6 

Vietnam 44,580.3 10,181.4 7.4 

Yemen 1,875,195.6 276,923.3 2.2 

Zambia 140,179.8 6,289.9 3.5 

Zimbabwe 583.3 22.5 1.1 

 

Table S11. Cultivation area (km2) required to meet gasoline and distillate fuel oil demands for each country in 2010, for sugarcane in 

comparison to microalgal systems. Relative cultivation area of microalgal systems in comparison to sugarcane is showed. 

Country Area (km2) for sugarcane Area (km2) for microalgae 
Relative cultivation area of 

microalgal systems (%) 

Afghanistan 17,785.5 1,650.1 9.3 

American Samoa 40,626.1 126.2 0.3 

Angola 23,656.6 2,663.3 11.3 

Argentina 60,132.9 16,235.9 27.0 

Australia 91,133.2 22,653.9 24.9 

Bahamas 4,850.1 377.5 7.8 

Bangladesh 17,211.9 2,362.8 13.7 

Barbados 1,131.8 153.1 13.5 

Belize 653.1 87.8 13.4 

Benin 9,429.8 810.7 8.6 

Bhutan 613.1 78.2 12.8 

Bolivia 9,319.9 1,476.8 15.8 

Brazil 188,711.3 45,995.8 24.4 

Burkina Faso 1,017.9 321.8 31.6 

Burundi 193.4 36.5 18.9 

Cambodia 7,909.1 625.1 7.9 

Cameroon 27,761.7 789.7 2.8 

Cape Verde 749.4 48.8 6.5 

Central African Republic 1,555.3 33.6 2.2 

Chad 133.4 39.5 29.6 

China 769,456.6 276,923.3 36.0 

Colombia 21,516.6 6,289.9 29.2 

Costa Rica 5,530.9 1,287.4 23.3 

Côte d'Ivoire 2,612.7 597.0 22.9 

Cuba 11,044.1 1,175.0 10.6 

Democratic Republic of the 

Congo 
2,939.7 372.0 12.7 

Dominica 475.6 28.5 6.0 

Dominican Republic 10,512.5 1,647.7 15.7 

Ecuador 20,468.2 5,391.9 26.3 
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Egypt 35,047.3 12,605.4 36.0 

El Salvador 3,017.8 779.4 25.8 

Ethiopia 2,772.5 896.2 32.3 

Fiji 1,328.6 190.8 14.4 

French Guiana 668.5 129.4 19.4 

French Polynesia 621.4 148.4 23.9 

Gabon 2,149.2 396.5 18.4 

Ghana 16,492.4 1,329.7 8.1 

Grenada 389.6 53.7 13.8 

Guadeloupe 1,609.6 295.8 18.4 

Guatemala 5,848.9 1,680.8 28.7 

Guinea 773.3 130.0 16.8 

Guinea-Bissau 516.9 43.0 8.3 

Guyana 1,361.0 268.0 19.7 

Haiti 17,785.5 1,650.1 19.5 

Honduras 40,626.1 126.2 25.2 

India 23,656.6 2,663.3 22.4 

Indonesia 60,132.9 16,235.9 20.5 

Iran 91,133.2 22,653.9 25.1 

Iraq 4,850.1 377.5 6.8 

Jamaica 17,211.9 2,362.8 16.6 

Japan 1,131.8 153.1 30.5 

Kenya 653.1 87.8 23.7 

Laos 9,429.8 810.7 16.3 

Liberia 613.1 78.2 3.3 

Madagascar 9,319.9 1,476.8 9.9 

Malawi 188,711.3 45,995.8 32.5 

Malaysia 1,017.9 321.8 19.0 

Mali 193.4 36.5 22.8 

Martinique 7,909.1 625.1 15.6 

Mauritius 27,761.7 789.7 22.4 

Mexico 749.4 48.8 23.3 

Morocco 1,555.3 33.6 20.7 

Mozambique 133.4 39.5 21.1 

Myanmar 769,456.6 276,923.3 21.7 

Nepal 21,516.6 6,289.9 16.4 

Nicaragua 5,530.9 1,287.4 27.8 

Niger 2,612.7 597.0 15.5 

Nigeria 11,044.1 1,175.0 7.4 

Oman 2,939.7 372.0 7.0 

Pakistan 475.6 28.5 18.3 

Panama 10,512.5 1,647.7 19.0 

Papua New Guinea 20,468.2 5,391.9 12.8 

Paraguay 35,047.3 12,605.4 16.2 

Peru 3,017.8 779.4 42.1 

Philippines 2,772.5 896.2 27.5 

Portugal 1,328.6 190.8 33.8 

Republic of Congo 668.5 129.4 11.7 

Reunion 621.4 148.4 22.9 

Rwanda 2,149.2 396.5 7.7 

Saint Kitts and Nevis 16,492.4 1,329.7 16.6 

Saint Vincent and the 

Grenadines 
389.6 53.7 7.6 

Samoa 1,609.6 295.8 3.9 

Senegal 5,848.9 1,680.8 35.3 

Sierra Leone 773.3 130.0 22.0 

Somalia 516.9 43.0 9.8 

South Africa 1,361.0 268.0 19.8 

Spain 17,785.5 1,650.1 21.1 

Sri Lanka 40,626.1 126.2 17.9 
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Suriname 23,656.6 2,663.3 12.6 

Swaziland 60,132.9 16,235.9 31.1 

Taiwan 91,133.2 22,653.9 28.5 

Tanzania 4,850.1 377.5 20.4 

Thailand 17,211.9 2,362.8 24.0 

Trinidad and Tobago 1,131.8 153.1 16.6 

Uganda 653.1 87.8 19.7 

United States 9,429.8 810.7 38.6 

Uruguay 613.1 78.2 19.3 

Venezuela 9,319.9 1,476.8 22.5 

Vietnam 188,711.3 45,995.8 22.4 

Zambia 1,017.9 321.8 30.8 

Zimbabwe 193.4 36.5 23.1 

   
 

3. Calculation of water footprint for microalgal production systems 

Table S12 shows the amount of green and blue water consumed per unit of produced green diesel 

(wet conversion), assuming water recycling, following the calculations from Gerbens-Leenes et al. 

(2014) for open ponds and photobioreactors in several locations: New Mexico, Perth, Hawaii, Italy, 

The Netherlands, France and Algeria. 
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Table S12. Green and blue water footprint per energy unit of produced green biodiesel.Based on calculations by Gerbens-Leenes et al. (2014) for obtaining of microalgal biodiesel through wet conversion, 

assuming water recycling. Photobioreactor (PB). 

Locations 
Microalgal 

system 

Length 

growing 

period (days) 

Cultivation 

Area (m2) 

Area covered 

with ponds 

(m2) 

Annual dry biomass 

production (tonnes 

year-1) 

Total green diesel 

energy production 

(GJ) 

Daily mean 

evaporation (mm 

day-1) 

Annual pond 

evaporation 

(kL) 

Annual 

evaporative 

cooling (kL ha-1) 

Green and blue 

water footprint 

(kL GJ-1) 

New Mexico 
Open pond (salt 

water) 
365.0 2,000.0 2,150.0 7.3 95.2 2.3 1,781.0 - 18.7 

Perth 
Open pond (salt 

water) 
300.0 1.0 1.1 0.0 0.1 2.8 0.9 - 12.6 

Hawaii 
Open pond/PB 

(fresh water) 
365.0 601.0 417.0 2.3 18.6 4.0 606.0 - 32.6 

Italy PB 180.0 10,000.0 - 32.0 521.7 - - 4,485.0 8.6 

The 

Netherlands 
PB 365.0 10,000.0 - 115.0 749.9 - - 2,030.0 2.7 

France PB 365.0 10,000.0 - 155.0 1,010.7 - - 9,530.0 9.4 

Algeria PB 365.0 10,000.0 - 185.0 1,202.6 -  - 27,752.0 23.1 
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ABSTRACT 

Sustainable alternatives to fossil fuels are urgently needed to avoid severe climate impacts and further 

environmental degradation. Microalgae are one of the most productive crops globally and do not need 

to compete for arable land or freshwater resources. Hence, they may become a promising, more 

sustainable cultivation alternative for the large-scale production of biofuels provided substantial 

reductions are achieved in their production costs. In this study, we identify the most suitable areas 

globally for siting microalgal farms for biodiesel production that maximize profitability and minimize 

direct competition with food production and direct impacts on biodiversity, based on a spatially 

explicit multiple-criteria decision analysis (MCDA). We further explore the relationships between 

microalgal production, agricultural value, and biodiversity, and propose several solutions for siting 

microalgal production farms, based on current and future targets in energy production using integer 

linear programming. If using seawater for microalgal cultivation, biodiesel production could reach 

4.17 × 1011 L year-1 based on top suitable lands (i.e., between 10% and 12% of total transport energy 

demands in 2030) without directly competing with food production and areas of high biodiversity 

value. These areas are particularly abundant in the dry coasts of North and East Africa, the Middle 

East, and western South America. This is the first global analysis that incorporates economic and 

environmental feasibility for microalgal production sites. Our results can guide the selection of best 

CHAPTER 2. Global mapping of cost-effective microalgal biofuel 

production areas with minimal environmental impact 

https://doi.org/10.1111/gcbb.12619
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locations for biofuel production using microalgae while minimizing conflicts with food production 

and biodiversity conservation. 

 

Keywords: Biodiversity, biofuel, fossil fuel, energy, food, GIS, microalgae, renewable, sustainability 

1. INTRODUCTION 

Rapid climate change is having profound impacts on social and environmental systems globally, and 

these threats are expected to become substantially more severe in the coming decades (MEA 2005, 

Scheffers et al. 2016). In 2016, the energy sector emitted around 32 Gt CO2 into the atmosphere, 

mostly from fossil fuel use (IEA 2017). The replacement of fossil fuels is an urgent component of 

efforts to prevent global warming from exceeding 2°C compared to pre-industrial levels, a 

commitment that has been ratified by 185 parties following the 21st Conference of the Parties (COP) 

to the United Nations Framework Convention on Climate Change (UNFCCC) (IPCC 2015). Through 

the transformation of biomass into bioenergy (McKendry 2002), biofuel systems can provide an 

alternative to fossil fuels in the transport sector, especially for the shipping and aviation industries, 

which in the mid-term cannot be fully powered by electricity (Fulton et al. 2015). 

 

However, first generation biofuels, which derive from food crops (e.g., maize, sugarcane, soybean, 

and oil palm), compete with food production (Pimentel et al. 2009, Tilman et al. 2009) and drive 

environmental degradation (Fargione et al. 2008, Searchinger et al. 2008, Fargione et al. 2010, 

Immerzeel et al. 2014, Correa et al. 2017), directly competing for agricultural lands and leading to 

habitat loss for native species (Koh 2007, Fargione et al. 2010, Koh et al. 2011, Immerzeel et al. 2014, 

Correa et al. 2017). Furthermore, they have been linked to increases in CO2 emissions after carbon-

rich systems (e.g., forests and native grasslands) are transformed into biofuel monocultures, which 

can negate their potential for climate change mitigation (Fargione et al. 2008, Searchinger et al. 2008, 

Searchinger et al. 2015). At a projected population of 9 billion people and a 60% increase in food 

demand by 2050 compared to 2006 (FAO 2016), biofuel systems not only need to offer climate 

change mitigation (IPCC 2015) but also must have limited competition with food production and 

biodiverse lands (CBD 2011, Foley et al. 2011). These goals could be achieved by increasing the 

productivity of first generation biofuels and their co-products (e.g., food and animal feed) within 

current production areas (Souza et al. 2015, Tomei and Helliwell 2016, IEA 2017) while preventing 

their expansion into agricultural lands and biodiverse regions (Foley et al. 2011, Souza et al. 2015), 

coupled with the adoption of systems that do not rely on arable lands (e.g., wastes and microalgae) 
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(Tilman et al. 2009, Correa et al. 2017) able to gradually replace less sustainable biofuel production 

alternatives (Correa et al. 2019). Microalgal biofuel production systems (i.e., third generation 

biofuels) are based on the cultivation of prokaryotic and eukaryotic photosynthetic microorganisms 

(i.e., microalgae) in recirculation channels open to the atmosphere (i.e., open ponds) or in enclosed 

culture devices (i.e., photobioreactors), making use of water (fresh, brackish or salt water) and 

nutrients (Chisti 2007, Schenk et al. 2008, Lundquist et al. 2010, Mata et al. 2010). The lipids and 

carbohydrates contained in microalgal cells can be respectively converted into biodiesel and 

bioethanol, helping to offset liquid fossil fuels (i.e., diesel and gasoline) (Schenk et al. 2008, Mata et 

al. 2010) as well as produce biohydrogen or biogas (Schenk et al. 2008). These systems are a 

promising alternative for future biofuel production (Aro 2016), primarily because they need less land 

for producing the same amount of energy compared to first generation biofuels, and additionally 

because they do not need fertile soils for their cultivation (Chisti 2007, Schenk et al. 2008, Mata et 

al. 2010, Quinn and Davis 2015, Correa et al. 2017). These advantages could decrease direct 

competition with agricultural and biodiverse lands, leading to lower competition with food production 

and reduced habitat loss for native species (Correa et al. 2017), or free lands for further agricultural 

production, ecological restoration, and biodiversity conservation (Walsh et al. 2015). While 

technological advances in the cultivation, harvesting, and conversion of microalgae into biofuels 

increase the cost-effectiveness and sustainability of microalgal production systems (Yang et al. 2011, 

Mu et al. 2014, Uggetti et al. 2014, Venteris et al. 2014, González-González et al. 2018), further steps 

are needed to identify the most profitable areas for microalgal biofuel production without competing 

for arable lands or biodiverse landscapes. 

 

With 16% of transport energy demands potentially fulfilled by biofuels in 2040 (IEA 2017), 

microalgal biofuel production systems could become an important alternative for offsetting fossil 

fuels in the transport sector, provided that significant reductions in their production costs are achieved 

(Norsker et al. 2011, Slade and Bauen 2013, Acién et al. 2018, Chia et al. 2018). Costs reductions 

can derive from the development of biorefinery systems that produce high-value co-products (e.g., 

food and animal feed) along with biofuels (Ruiz et al. 2016, Chia et al. 2018); the identification, 

development, and cultivation of fast-growing microalgal strains (Mata et al. 2010, Ajjawi et al. 2017); 

the co-location of microalgal production systems with free nutrient and CO2 sources (e.g., from 

wastewater operations and industries) (Mu et al. 2014, Orfield et al. 2014, Roostaei and Zhang 2017, 

Beal et al. 2018); the production of biogas and the recycling of nutrients (i.e., by anaerobic digestion) 

(Uggetti et al. 2014, González-González et al. 2018); and the implementation of governmental 

incentives based on the relative environmental benefits of biofuel production alternatives (Correa et 

al. 2019). However, considerable land areas will still be required to offset fossil fuels by microalgal 
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cultivation, although lower compared to first generation biofuels (Chisti 2008, Correa et al. 2017). 

Here, we evaluate global opportunities for large-scale microalgal biodiesel production while 

minimizing direct competition with agricultural lands and biodiverse areas, taking into account 

attributes that maximize the profitability in microalgal biodiesel production: water availability, lipid 

productivity, flat land availability, proximity to main transport networks, gross national income (GNI) 

per capita (as a substitute for labor costs), and proximity to known industrial CO2 sources. Based on 

four scenarios for microalgal cultivation, which combine two main approaches to decrease microalgal 

production costs and freshwater use (i.e., availability of free CO2 and availability of seawater)—

Scenario 1 (i.e., use of fresh, brackish or salt water), Scenario 2 (i.e., use of fresh, brackish or salt 

water adjacent to known industrial CO2 sources), Scenario 3 (i.e., use of seawater), and Scenario 4 

(i.e., use of seawater adjacent to known industrial CO2 sources)—we: 1) Identify the most suitable 

areas globally for siting microalgal farms for biodiesel production (i.e., microalgal cultivation systems 

along with the associated infrastructure), while avoiding direct competition with food production and 

direct impacts on biodiversity, which are considered the two main impacts of first generation biofuels 

(Immerzeel et al. 2014, Correa et al. 2017), 2) Explore the relationships between microalgal 

production, agricultural value, and biodiversity, and 3) Explore solutions for siting microalgal 

production farms based on current and future targets in energy production. Because we aim at finding 

areas globally for siting microalgal production farms, we assume free trade for microalgal biofuel 

commercialization in the context of a globalized economy. 

2. MATERIALS AND METHODS 

2.1 Development of microalgal suitability model 

A GIS-based multiple-criteria decision analysis (MCDA) was developed for selecting suitable areas 

for large-scale microalgal biodiesel production at a pixel resolution of 5 × 5 km, allowing the 

identification of large areas (i.e., 25 km2 pixel-1) that meet suitable conditions for microalgal 

production. GIS-based MCDAs have been widely used in natural resource management and land-use 

planning (Mendoza and Martins 2006) as they allow the solution of complex decision-making 

problems through the combination of multiple geographic criteria (Malczewski and Rinner 2015). 

Three main objectives were considered in the analysis: maximization of profitability in microalgal 

biodiesel production, minimization of direct competition with food production, and minimization of 

direct impacts on biodiversity (Fig. S1 in Supplementary Information). Based on the reviewed 
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literature (Lundquist et al. 2010, Klise et al. 2011, Wigmosta et al. 2011, Borowitzka et al. 2012, 

Fortier and Sturm 2012, Quinn et al. 2012, Venteris et al. 2012, Chiu and Wu 2013, Quinn et al. 2013, 

Venteris et al. 2013, Bennett et al. 2014, Coleman et al. 2014, Orfield et al. 2014, Prasad et al. 2014, 

Venteris et al. 2014, Venteris et al. 2014, Venteris et al. 2014, Boruff et al. 2015, Bravo-Fritz et al. 

2015, Sharma et al. 2015, Mohseni et al. 2016, Niblick and Landis 2016, Roostaei and Zhang 2017), 

a set of attributes that capture the complexity of microalgal biodiesel production were selected, either 

because they are essential for microalgal cultivation or because they have shown to maximize the 

profitability of microalgal biodiesel production (Sharma et al. 2015): water availability, lipid 

productivity, availability of flat lands, proximity to main transport networks (i.e., main roads and 

railroads), GNI per capita (used as a substitute for the availability of low labor costs), and proximity 

to known industrial CO2 sources. Water availability is essential for microalgal cultivation (Chisti 

2007, Schenk et al. 2008) while lipid productivity is proportional to biodiesel production, increasing 

the profitability of microalgal biofuel production (Quinn et al. 2011, Slade and Bauen 2013, Moody 

et al. 2014). Water can be obtained from freshwater sources (i.e., water from precipitation, rivers, 

irrigation dams, or fresh groundwater sources), brackish water sources (e.g., brackish groundwater 

sources), and salt water sources (i.e., salt groundwater sources or seawater) (Chisti 2007, Schenk et 

al. 2008, Venteris et al. 2013). The use of flat lands decreases the costs for ground leveling when 

constructing microalgal ponds, as well as the costs related to water pumping (Darzins et al. 2010, 

Lundquist et al. 2010, Wigmosta et al. 2011, Borowitzka et al. 2012, Quinn et al. 2012, Venteris et 

al. 2012). The proximity to main transport networks allows connectivity between production areas, 

markets, and inputs (e.g., nutrients needed for microalgal cultivation) (Venteris et al. 2014, Venteris 

et al. 2014, Boruff et al. 2015, Slegers et al. 2015). The availability of low labor costs decreases 

overall operational costs (Slade and Bauen 2013, Tredici et al. 2016) and the proximity to known 

industrial CO2 sources allows the use of free CO2 that increases biomass production (Lundquist et al. 

2010, Klise et al. 2011, Wigmosta et al. 2011, Borowitzka et al. 2012, Quinn et al. 2013, Slade and 

Bauen 2013, Orfield et al. 2014, Venteris et al. 2014). Although wastewater sources would decrease 

costs associated with nutrient obtaining, they were not included in the model as they are not 

consistently mapped globally. 

 

For minimizing competition with food production, the selected attribute corresponded to the 

agricultural value of lands (i.e., potential annual gross economic rents from agricultural lands) 

(Naidoo and Iwamura 2007). For minimizing impacts on biodiversity, the selected attribute 

corresponded to the biodiversity value. Biodiversity value was based on the number of vertebrate 

species and the number of threatened vertebrate species (i.e., considering amphibians, birds, and 

mammals) (Jenkins et al. 2013), the presence of islands (which harbor higher proportions of endemic 
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and threatened species compared to the mainland) (Tershy et al. 2015, McCreless et al. 2016), and 

the presence of areas with low human pressures (which is related to the integrity of ecosystems) based 

on the Global Human Footprint (Venter et al. 2016). Water bodies (Lehner and Döll 2004), protected 

areas (UNEP-WCMC 2016), Key Biodiversity Areas (KBA) (BirdLife International 2016), and urban 

areas (i.e., based on built areas) (Schneider et al. 2009) were assumed to be unsuitable for microalgal 

cultivation and excluded from final suitability maps (i.e., assigning No Data to water bodies and zero 

to the other layers). 

 

We developed four scenarios for microalgal cultivation, based on the type of available water and the 

inclusion of known industrial CO2 sources (Scenarios 1, 2, 3, and 4): Scenarios 1 and 2 included the 

use of fresh, brackish or salt water, while Scenarios 3 and 4 included the use of seawater, which is 

abundant and does not compete with scarce freshwater sources (Vorosmarty et al. 2010, Gleeson et 

al. 2012). Scenarios 2 and 4 included the proximity to known industrial CO2 sources (including public 

electricity and heat production, manufacturing industries and construction, production of minerals, 

and production of metals, but not to anaerobic digesters as this information is currently not available), 

which is a cost-effective way to increase microalgal biomass productivities (Lundquist et al. 2010, 

Klise et al. 2011, Wigmosta et al. 2011, Borowitzka et al. 2012, Quinn et al. 2013, Slade and Bauen 

2013, Orfield et al. 2014, Venteris et al. 2014), while Scenarios 1 and 3 did not include the proximity 

to known industrial CO2 sources (Figs. S2, S3, S4, S5 in Supplementary Information). 

 

Land covers potentially replaced by microalgal production farms were identified for top suitable 

microalgal production lands (i.e., suitability values ≥ 0.7), using the MODIS-derived global mosaic 

for 2012 at a resolution of 5 arcminutes (Channan et al. 2014). The proportion of top suitable lands 

within politically unstable countries, which could challenge potential large-scale microalgal biofuel 

production, was calculated based on the Fragile States Index for 2016 (FFP 2017) for Scenarios 2, 3, 

and 4—which are the most feasible in terms of reduced competition with freshwater—considering 

countries with total values ≥ 80 as politically unstable. This index is based on social, economic and 

political risk indicators that lead to higher values in politically unstable countries. Potential biodiesel 

production was estimated for top suitable lands, along with the percentage of transport energy 

demands that could be fulfilled based on Scenarios 2, 3 and 4 in 2016, 2030, and 2040 (See 

Supplementary Information for details). Future transport energy demands were based on the Current 

Policies, New Policies, and the Sustainable Development Scenarios for 2030 and 2040 (IEA 2017). 

The Current Policies Scenario takes into account policies that have been enacted in mid-2017 for 

reducing greenhouse emissions, while the New Policies Scenario additionally includes announced 

policy intentions for reducing global warming, and the Sustainable Development Scenario aims at 
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limiting global warming consistent with the Paris Agreement and the United Nations 2030 Agenda 

for Sustainable Development. 

2.2 Development of sensitivity analysis on slope and lipid productivities 

In order to determine how changes in model parameters influence the siting of microalgal production 

farms and potential biodiesel production, a sensitivity analysis was developed based on slope and 

lipid productivities. For this, the slope was increased from a membership midpoint of 5° to 10°, and 

15°; and lipid productivity was both increased and decreased in 20% and 40% from a midpoint of 

13,000 L ha-1 year-1 (see Supplementary Information for details on fuzzy memberships and 

midpoints). We used the one-at-a-time method, in which the changes in values for each factor were 

evaluated in turn (Malczewski and Rinner 2015). 

2.3 Relationships among microalgal production, agricultural value, and biodiversity 

The percentage of distribution ranges of threatened vertebrates (i.e., vulnerable, endangered, and 

critically endangered amphibians, birds, mammals, and reptiles) (BirdLife International and 

NatureServe 2016, IUCN 2016) overlapping top suitable microalgal production lands (i.e., suitability 

values ≥ 0.7) was calculated for Scenarios 2, 3, and 4. Potential conflicts among microalgal biodiesel 

production, agricultural production, and biodiversity were mapped using a color-grading scale for 

Scenario 1 (i.e., use of fresh, brackish and salt water).  

2.4 Siting of microalgal production farms based on targets in transport energy 

demands 

In order to find locations for siting microalgal production farms based on targets in transport energy 

demands, an integer linear optimization model (Beyer et al. 2016) was developed using the software 

R and Gurobi Optimizer (see Supplementary Information for calculation details). The model aimed 

at maximizing profitability while minimizing direct competition with agricultural lands and 

biodiverse areas through the following formula: 

 

maximize∑ 𝑃𝑖
2

𝑖
𝑥𝑖/ (maximum(𝐴𝑖, 𝐵𝑖) + 1) 

subject to 
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∑𝐷𝑖
𝑖

𝑥𝑖 = 𝑇 

0 ≤ 𝑥𝑖 ≤ 0.8 

 

Where 𝑖 corresponds to each pixel, 𝑃 corresponds to microalgal profitability (ranging from 0 to 1), 𝑥 

corresponds to the decision variable given by the software (ranging from 0 to 0.8 and representing 

the available area for placing microalgal ponds), “maximum” corresponds to the maximum value 

among agricultural value 𝐴 (ranging from 0 to 1) and biodiversity value 𝐵 (ranging from 0 to 1), 𝐷 

corresponds to productivity values in units of energy (GJ pixel-1 year-1), and 𝑇 represents the targets 

in energy demands globally in 2016, 2030, and 2040 (GJ year-1) based on the IEA (2017) energy 

production estimates (i.e., Current Policies Scenario, New Policies Scenario and Sustainable 

Development Scenario). Using the square of the profitability as the numerator and the maximum 

value between 𝐴 and 𝐵 as the denominator, ensures that pixels with low or average profitabilities, 

and with high agricultural or high biodiversity value, are excluded in the final solutions. Future 

technological improvements can increase microalgal biofuel productivities per pixel and thus 

decrease land areas to reach a fixed target in transport energy demands. 

We investigated alternative solutions in which the agricultural and biodiversity values were not taken 

into account (see Supplementary Information), and in which targets in microalgal biodiesel 

production increased from 10% to 40% based in 2016’s transport energy demands. Finally, the 

amount of cultivation land needed to meet 10%, 20%, 30% and 40% of total transport energy demands 

in 2016, 2030, and 2040 was determined based in the several IEA (2017) energy production scenarios 

(Current Policies Scenario, New Policies Scenario, and Sustainable Development Scenario) and 

current estimated microalgal lipid productivities (Moody et al. 2014).  

3. RESULTS 

The most suitable areas for microalgal biodiesel production, while avoiding direct competition with 

agricultural and biodiverse lands, were located in human-transformed dry tropical and subtropical 

mainlands (Figs. 1, 2). For Scenario 1 (i.e., cultivation based on fresh, brackish or salt water) top 

suitable microalgal production lands (suitability values ≥ 0.7) could reach around 1,422.8 thousand 

km2, concentrated in dry areas in North and East Africa, the Middle East, South and Central Asia, 

and South America, mainly overlapping with barren and sparsely vegetated lands (60%), open 

shrublands (22%), and grasslands (9%) (Table 1). Significant competition with scarce freshwater 
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resources would occur in dry areas, where low-density microalgal production farms could be 

established (Fig. 3). Scenario 2, which is restricted to known industrial CO2 sources, could reach 

around 464.2 thousand km2 mainly over barren and sparsely vegetated lands (57%), open shrublands 

(17%), and grasslands (8%). The cultivation scenarios 3 and 4 (i.e., cultivation based on seawater) 

could reach around 305.3 thousand km2 and 132.9 thousand km2, respectively, mainly over barren or 

sparsely vegetated lands and open shrublands. 

 

 

Figure 1. Global suitability map for microalgal biodiesel production based on the maximization of microalgal productivity, 

minimization of competition with food production, and minimization of direct impacts on biodiversity for (a) Scenario 1 (use of fresh, 

brackish or salt water without considering known industrial CO2 sources) and (b) Scenario 2 (use of fresh, brackish or salt water 

adjacent to known industrial CO2 sources). 
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Figure 2. Global suitability map for microalgal biodiesel production based on the maximization of microalgal productivity, 

minimization of competition with food production, and minimization of direct impacts on biodiversity for (a) Scenario 3 (use of seawater 

without considering known industrial CO2 sources) and (b) Scenario 4 (use of seawater adjacent to known industrial CO2 sources). 
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Figure 3. Top suitable areas for microalgal biodiesel production (suitability values ≥ 0.7) for Scenario 1 (use of fresh, brackish or 

salt water without considering known industrial CO2 sources) in (a) North America, (b) South America, (c) Southern Europe, North 

and East Africa, the Middle East, and South and Central Asia. Orange represents potential low-density microalgal cultivation (LD), 

dependent on fresh/brackish water availability, while red represents potential high-density microalgal cultivation (HD) based on 

seawater use. 
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Table 1. Land-cover composition within top suitable microalgal production lands (suitability values ≥ 0.7), based on the MODIS 

derived global mosaic for 2012 at a resolution of 5 arcminutes (Channan et al. 2014). 

Land Cover Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Area 
(thousands 

km2) 

Area 
(%) 

Area 
(thousands 

km2) 

Area 
(%) 

Area 
(thousands 

km2) 

Area 
(%) 

Area 
(thousands 

km2) 

Area 
(%) 

Barren or sparsely 

vegetated 

850.9 59.8 266.2 57.4 239.4 78.4 102.7 77.3 

Open shrublands 308.8 21.7 79.7 17.2 25.4 8.3 8.9 6.7 

Grasslands 132.0 9.3 39.6 8.5 2.4 0.8 1.5 1.1 

Croplands 87.4 6.1 61.4 13.2 9.2 3.0 7.7 5.8 

Woody savannas 8.0 0.6 1.8 0.4 3.7 1.2 1.2 0.9 

Cropland/Natural 

vegetation mosaic 

5.8 0.4 1.9 0.4 2.1 0.7 1.2 0.9 

Others 29.9 2.1 13.5 2.9 23.2 7.6 9.8 7.4 

Total 1,422.8 100.0 464.2 100.0 305.3 100.0 132.9 100.0 

 

 

For Scenarios 2, 3 and 4, which are the most feasible options for widespread microalgal biodiesel 

production in terms of reduced competition with scarce freshwater, 61%, 45% and 34% of top suitable 

lands (suitability values ≥ 0.7), respectively, fell within several politically unstable countries in 

Africa, the Middle East, and South Asia (i.e., Afghanistan, Egypt, Iran, Iraq, Lebanon, Libya, 

Mauritania, Niger, Pakistan, Somalia, Sudan, Syria, Turkey, and Yemen). Based on these scenarios, 

potential total microalgal biodiesel production ranged between 5.85 × 1011 and 1.81 × 1011 L year-1, 

representing between 17% and 6% of total transport energy demands in 2016, respectively (Table 2). 

Among these scenarios, maximum levels of biodiesel production would be achieved in Scenario 2, 

followed by Scenarios 3 and 4, which are restricted to the use of seawater. 

 

Table 2. Estimates of microalgal biodiesel production for Scenarios 2, 3 and 4 in top suitable microalgal production lands (suitability 

values ≥ 0.7) (see Supplementary Information for calculation details). The percentages of transport energy consumption fulfilled by 

each cultivation scenario are shown for 2016, 2030 and 2040. Scenarios of transport energy consumption (Current Policies Scenario, 

New Policies Scenario, and Sustainable Development Scenario) are based on the IEA (2017) energy production estimates. 

    2016 2030 2040 

      
Current 

Policies 

Scenario 

New Policies 

Scenario 

Sustainable 

Development 

Scenario 

Current 

Policies 

Scenario 

New Policies 

Scenario 

Sustainable 

Development 

Scenario 

Cultivation 

scenarios 

Potential 

biodiesel 

production 

(L year-1) 

Shares (%)       

Scenario 2 5.85 × 1011 16.7 13.5 14.3 16.1 11.8 13.0 16.8 

Scenario 3 4.17 × 1011 11.9 9.7 10.2 11.5 8.4 9.3 12.0 

Scenario 4 1.81 × 1011 5.6 4.2 4.4 5.0 3.6 4.0 5.2 
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Less than 0.5%, 5.8%, 3.5%, and 5.1% of threatened amphibians, birds, mammals, and reptiles, 

respectively, would overlap top suitable microalgal production lands (i.e., suitability values ≥ 0.7) 

for Scenarios 2, 3, and 4. Around 25%, and less than 2.5%, 2.8%, and 3.6% of this set of threatened 

amphibians, birds, mammals, and reptiles, respectively, would face competition with microalgal 

production in more than 20% of their distribution ranges (Fig. 4). This competition would be highest 

for Scenario 3 compared to Scenarios 2 and 4 (Table S3). 

 

 

Figure 4. Boxplots showing the percentage of distribution ranges of threatened vertebrates (i.e., vulnerable, endangered, and critically 

endangered amphibians, birds, mammals, and reptiles) overlapping top suitable microalgal production lands (suitability values ≥ 0.7) 

based on Scenarios 2, 3, and 4. The maximum outliers were identified after multiplying the interquartile range by 1.5. 

 

At a global scale, potential conflicts could arise among microalgal production and areas of high 

agricultural and biodiversity value, mainly in Central America, tropical and subtropical South 

America, Africa, India, and Southeast Asia (Fig. 5). If agricultural and biodiversity value are not 

considered, microalgal cultivation for one of the most feasible cultivation scenarios (i.e., Scenario 3, 

which is based on seawater) would include larger tracts of humid lands in the tropics (e.g., in 

Southeast Asian islands and Madagascar when just avoiding areas of high agricultural value; and in 

Central and South America, Southeast Africa, India, and Southeast Asian mainland when just 

avoiding areas of high biodiversity value) (Figs. 6, 7). Locations for microalgal cultivation would 

change as a function of targets in microalgal biofuel production (Figs. 8, 9). Potential conflicts with 

areas of higher agricultural and biodiversity value (e.g., in Central and South America, Africa, South 

and Southeast Asia, and China) would increase if fulfilling higher targets in microalgal biofuel 

demands (i.e., from 10% to 40% of total transport energy demands in 2016). Finally, more lands 

0

10

20

30

40

50

60

70

80

90

O
v
e
rl
a
p
 i
n
 d

is
tr

ib
u
ti
o
n
 r

a
n
g
e
s
 (

%
) 

Amphibians Birds Mammals Reptiles

Scenario 2 Scenario 3 Scenario 4



  

97 

 

would be needed to fulfill higher targets in microalgal biofuel demands based on current and future 

energy consumption scenarios (IEA 2017) (Fig. 10). 

 

 

Figure 5. Overlapping of microalgal biodiesel profitability for Scenario 1 (i.e., use of fresh, brackish or salt water without considering 

known industrial CO2 sources) with (a) agricultural value, and (b) biodiversity value. The agricultural value corresponds to the 

potential gross economic rents from agricultural lands in USD ha-1 (Naidoo and Iwamura 2007). The biodiversity value (i.e., ranging 

from 0 to 1) is based on the number of vertebrate species (considering amphibians, birds, and mammals), the number of threatened 

vertebrate species (Jenkins et al. 2013), the presence of islands, and the presence of areas with low human pressures (Venter et al. 

2016). 
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Figure 6. Microalgal cultivation areas for meeting 30% of global transport energy demand in 2016 for Scenario 3 (i.e., use of seawater 

without considering known industrial CO2 sources). These areas were identified using an integer linear programming model (See 

Methods and Supplementary Information for details) and four sets of weights for agricultural value and biodiversity: (a) Maximization 

of profitability and minimization of direct competition with high-value agricultural lands and biodiverse areas, (b) Maximization of 

profitability and minimization of direct competition with high-value agricultural lands. Within each pixel (i.e., 25 km2) a maximum 

proportion (Prop.) of 0.8 is permitted to be used for microalgal cultivation. 
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Figure 7. Microalgal cultivation areas for meeting 30% of global transport energy demand in 2016 for Scenario 3 (i.e., use of seawater 

without considering known industrial CO2 sources). These areas were identified using an integer linear programming model (See 

Methods and Supplementary Information for details) and four sets of weights for agricultural value and biodiversity: (a) Maximization 

of profitability and minimization of direct competition with biodiverse lands, (b) Maximization of profitability irrespective of 

agricultural value or biodiversity. Within each pixel (i.e., 25 km2) a maximum proportion (Prop.) of 0.8 is permitted to be used for 

microalgal cultivation. 
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Figure 8. Microalgal cultivation areas for meeting (a) 10%, and (b) 20% of total transport energy demands in 2016 for Scenario 3 

(i.e., use of seawater without considering known industrial CO2 sources), identified using an integer linear programming model (See 

Methods and Supplementary Information for details). Within each pixel (i.e., 25 km2) a maximum proportion (Prop.) of 0.8 is permitted 

to be used for microalgal cultivation. 
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Figure 9. Microalgal cultivation areas for meeting (a) 30%, and (b) 40% of total transport energy demands in 2016 for Scenario 3  

(i.e., use of seawater without considering known industrial CO2 sources), identified using an integer linear programming model (See 

Methods and Supplementary Information for details). Within each pixel (i.e., 25 km2) a maximum proportion (Prop.) of 0.8 is permitted 

to be used for microalgal cultivation. 
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Figure 10. Potential microalgal cultivation area needed to meet 10%, 20%, 30% and 40% of total transport energy demands in 2016, 

2030, and 2040. Scenarios for transport energy consumption (Current Policies Scenario, New Policies Scenario, and Sustainable 

Development Scenario) are based on the IEA (2017) energy production estimations. The average values among energy consumption 

scenarios are shown for each year with their standard deviations. 

4. DISCUSSION 

We provide the first global analyses on cost-effective areas for microalgal biodiesel production that 

minimize direct competition with food production and biodiversity, considering variables that 

increase the profitability in microalgal biofuel production. Our analyses are based on four scenarios 

for microalgal cultivation (i.e., use of fresh, brackish or salt water; use of fresh, brackish or salt water 

adjacent to known industrial CO2 sources; use of seawater; use of seawater adjacent to known 

industrial CO2 sources). Furthermore, we explore how microalgal production, agricultural value, and 

biodiversity are related, and how changes in current and future targets in energy demands alter the 

siting of microalgal production farms. These results can help in decision making towards the selection 

of best areas for microalgal biodiesel production at lower conflicts with food production and 

biodiversity. 

 

Based on a multiple-criteria decision analysis (MCDA), our results show that dry tropical and 

subtropical mainlands in areas subject to high human pressures on the environment (i.e., human-

transformed dry tropical and subtropical mainlands), are the most suitable areas for large-scale 

microalgal biodiesel production. While avoiding direct competition with agricultural and biodiverse 

lands (i.e., based on the richness of vertebrates, presence of threatened vertebrates, presence of 
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islands, and presence of areas with low human pressures) these areas still provide access to water and 

flat lands for microalgal cultivation, access to transport networks that ensure supply of inputs and 

distribution of biodiesel, and low labor costs (here measured as GNI per capita) that reduce production 

costs. As expected, microalgal suitability increases where high solar irradiance and temperature 

facilitate larger microalgal biomass and lipid yields (Lundquist et al. 2010, Wigmosta et al. 2011, 

Quinn et al. 2012, Moody et al. 2014, Venteris et al. 2014), which occurs in tropical and subtropical 

regions of the world. 

 

The use of dry lands for microalgal production, which in general are less suitable for cropping 

(Alexandratos and Bruinsma 2012) and hold lower biodiversity values compared to more humid 

regions (Gaston 2000), would decrease direct competition with high-value agricultural and biodiverse 

lands. In contrast, several studies developed in the USA show that humid regions are the most feasible 

locations for large-scale microalgal production (Wigmosta et al. 2011, Venteris et al. 2013, Coleman 

et al. 2014, Venteris et al. 2014). These studies indicate that the consumption of water per liter of 

microalgal oil and the costs associated with water pumping would be lower in the Southeastern USA 

(i.e., mainly around the Gulf and East Coasts) compared to the drier southwestern lands, where water 

demands and water pumping costs increase as a result of higher evaporation rates relative to 

precipitation. Notwithstanding, the use of humid areas for microalgal production would inevitably 

lead to direct competition with food production and biodiversity (although lower compared to first 

generation biofuels because of their higher biofuel productivities per unit area) (Correa et al. 2017). 

Furthermore, targeting humid areas for carbon sequestration, where forests can grow (Saatchi et al. 

2011), is an effective solution for climate change mitigation (Canadell and Raupach 2008). 

 

The establishment of low-density microalgal production farms would be a more sustainable option in 

regions where significant competition with freshwater resources is expected to occur, including dry 

areas around the Nile river in North Africa and the Tigris and Euphrates rivers in the Middle East, as 

well as along low-recharge aquifers in North America, South America, North and East Africa, 

Southern Europe, the Middle East, South and Central Asia, and China (Vorosmarty et al. 2010, 

Gleeson et al. 2012). Scenarios 3 and 4 (i.e., based on seawater use) would become a more feasible 

alternative for large-scale microalgal biodiesel production, in terms of reduced competition with 

scarce freshwater resources. However, top suitable lands (i.e., suitability values ≥  0.7) would 

decrease from 1,422.8 thousand km2 for Scenario 1 to 305.3 thousand km2 and 132.9 thousand km2 

for Scenarios 3 and 4, respectively. In these areas, the use of microalgal strains tolerant to a wide 

range of salinity conditions could prevent the use of freshwater and minimize the use of seawater that 

would maintain pond salinities as water evaporates (Borowitzka and Moheimani 2013). Additionally, 
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the recycling of harvest water could facilitate nutrient recovery while reducing water requirements 

(Yang et al. 2011, Venteris et al. 2013). 

 

Currently not considered in other studies, the political stability of countries could constitute an 

additional challenge for the widespread adoption of microalgal biofuel production systems (i.e., 

between 61% and 34% of top suitable lands for Scenarios 2, 3, and 4 fell within politically unstable 

countries). However, several of these countries already have a well-developed infrastructure for oil 

production and processing (e.g., Egypt, Iran, Iraq, Libya, Sudan, and Turkey are among top oil 

producers globally), which would facilitate the transition towards a more sustainable future fuel 

production based on microalgae. Furthermore, microalgal biofuel production may represent an 

important development option to improve livelihoods and build sustainable economies in these 

countries, following the replacement of fossil fuels for limiting global warming (IPCC 2015). 

Microalgal production can lead to the creation of jobs for local communities, helping in poverty 

alleviation. The implementation of microalgal biorefinery systems that produce biofuels along with 

high-value products (e.g., food and animal feed) is of particular interest for increasing the profitability 

of microalgal production while offering economic opportunities for local communities and reaching 

regional and global targets in climate change mitigation, food demands, and agricultural production 

(Walsh et al. 2015, Correa et al. 2019). 

 

Potential microalgal biodiesel production is a function of the cultivation scenarios and changes in 

membership midpoints applied to the different variables. Between 5.85 × 1011 and 1.81 × 1011 L year-

1 could be produced in top suitable lands (suitability values ≥ 0.7) for the most feasible cultivation 

scenarios (i.e., Scenarios 2, 3, and 4). For these scenarios, changing the midpoint in slope from 5° to 

15° would increase potential microalgal biodiesel production by between 8% and 10%, while 

decreasing the midpoint in lipid productivity from 13,000 to 7,800 L ha-1 year-1 (i.e., in 40%) would 

increase potential microalgal biodiesel production by between 8% and 32%, and increasing the 

midpoint in lipid productivity from 13,000 to 18,200 L ha-1 year-1 (i.e., in 40%) would decrease 

potential microalgal biodiesel production by between 45% and 82% (Figs. S6, S7 in Supplementary 

Information). Biodiesel production estimates are expected to increase with the cultivation of fast-

growing and high-lipid producing microalgal strains (Mata et al. 2010, Slade and Bauen 2013, Ajjawi 

et al. 2017), along with the adoption of more efficient cultivation, harvesting, and processing 

techniques that increase microalgal biomass and lipid productivities (Pierobon et al. 2017, González-

González et al. 2018). Reducing the uncertainty in global microalgal potential biodiesel production 

would require the refinement of models based on resource availability (e.g., inclusion of nutrients 

from wastewater sources, inclusion of CO2 sources from anaerobic digesters, and inclusion of 
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freshwater restrictions) and economic feasibility (e.g., considering land costs, opportunity costs with 

other economic activities, and several microalgal production technologies). 

4.1 Relationships among microalgal production, agricultural value, and biodiversity 

value 

Potential conflicts among microalgal production and areas of high agricultural and biodiversity value 

could arise within the tropical region (Fig. 5), which faces the highest deforestation rates globally as 

agricultural activities expand for meeting food and biofuel demands (Hansen et al. 2013, Laurance et 

al. 2014, Laurance 2015), in spite of harbouring most of Earth’s biodiversity (Dirzo and Raven 2003, 

Kier et al. 2005). In fact, if agricultural and biodiversity values are not considered, microalgal 

production for Scenario 3 (i.e., use of seawater) would shift to areas of higher agricultural value and 

ecological importance (e.g., in Central and South America, Africa, India, and Southeast Asia), 

similarly to food crops for biofuel production. This would intensify the pressures on food production 

and biodiversity in regions currently impacted by agriculture and biofuel expansion, including the 

Southeast Asian tropical forests (Koh 2007, Fargione et al. 2010, Koh et al. 2011), as well as in 

regions with current little agricultural development such as the Amazon and Congo tropical forests 

(Laurance et al. 2001, Wich et al. 2014) and the South American and African savannas (Laurance 

2015, Searchinger et al. 2015). Avoiding areas of high agricultural and biodiversity value for 

microalgal cultivation would help in decreasing direct competition with food production and 

biodiversity loss, which is unlikely by using food crops (Searchinger and Heimlich 2015, Correa et 

al. 2017). 

 

The consideration of the trade-offs among microalgal biodiesel profitability, cultivation water source 

(i.e., fresh, brackish, and salt water) and its availability, along with the agricultural and biodiversity 

value of lands, could limit direct competition with food production and prevent further direct habitat 

loss in biodiverse regions (Correa et al. 2017). The use of human-transformed mainland coasts within 

the tropics and subtropics for microalgal production seems to be the most sustainable option in terms 

of reduced competition with freshwater resources, high-value agricultural lands, and biodiversity. 

However, dry coastal areas hold unique and threatened biodiversity (Durant et al. 2012, Brito et al. 

2014, Vale et al. 2015, IUCN 2016) and provide a wide range of important ecosystem services (e.g., 

coastal protection, maintenance of fisheries, and tourism) (Barbier et al. 2011). In fact, top suitable 

microalgal production lands for Scenarios 2, 3, and 4 harbor as much as 3.1% of terrestrial threatened 

vertebrates globally (i.e., mainly birds and reptiles), and some of them would face competition with 
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microalgal production in more than 20% of their distribution ranges (Table S3). Several of these areas 

could be easily avoided without significantly impacting species and microalgal production (i.e., for 

the amphibian Eupsophus queulensis and the Lima leaf-toed gecko, with distribution ranges smaller 

than 393.5 km2). For species with larger distribution ranges (i.e., the Syrian hamster, the Atacama 

toad, the Peruvian plantcutter, the four-toed jerboa, and the rufous flycatcher, with distribution ranges 

larger than 4,713.6 km2), microalgal cultivation could avoid their habitat patches. Furthermore, 

functional connections among dry terrestrial ecosystems and mangroves, mudflats, saltmarshes, and 

coral reefs (Martínez et al. 2007), should be preserved by avoiding pollution (e.g., through harvest 

water recycling). 

4.2 Locations for siting microalgal farms for biodiesel production based on energy 

targets 

Locations for microalgal biodiesel production would not only change as a function of trade-offs 

among profitability, water availability, agricultural value, and biodiversity but also along with targets 

in microalgal biofuel production. As expected, more lands would be needed to fulfill higher targets 

in microalgal biofuel demands. Furthermore, as targets in microalgal biofuels increase, regions of 

higher agricultural and biodiversity value would be considered suitable for microalgal cultivation. In 

fact, increasing microalgal production from fulfilling 10% to 40% transport energy demands in 2016, 

would lead to the inclusion of regions with higher agricultural and ecological importance within 

Central and South America, Africa, South and Southeast Asia, and China, potentially compromising 

food production and biodiversity in these areas. 

 

Future assessments based on global and national targets in energy and food production, economic 

development (e.g., urbanization, mining, tourism), biodiversity conservation, and provision of 

ecosystem services (e.g., carbon sequestration and coastal protection), in the context of climate 

change, can improve the understanding of the socioeconomic and environmental role of microalgal 

biofuels. Spatially explicit comparisons with biofuel production alternatives (e.g., first and second 

generation biofuels), can guide the identification and adoption of more sustainable biofuel production 

systems (Correa et al. 2019). These comparisons can help to assess the impacts of microalgal biofuels 

in dry regions, in contrast to systems that rely on agricultural lands and more biodiverse areas for 

crop production (e.g., oil palm and sugarcane) (Jaiswal et al. 2017, Ocampo-Peñuela et al. 2018).  
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Although we propose that avoiding the cultivation of microalgae within agricultural and biodiverse 

areas would be the best option for reducing direct competition with food production and biodiversity, 

further assessments on the overall environmental impacts of microalgal production in humid areas 

are needed. These assessments could consider the replacement of areas of currently established 

biofuel crops by microalgal biofuel systems—which offer higher biofuel yields per unit area (Chisti 

2008, Correa et al. 2017)—along with the co-location of microalgal systems with free nutrient sources 

(e.g., from wastewater and agricultural residues) (Fortier and Sturm 2012, Chiu and Wu 2013, Mu et 

al. 2014, Orfield et al. 2014, Roostaei and Zhang 2017) and free CO2 sources (e.g., from industrial 

operations, including anaerobic digesters and biorefineries with fermenters) (Lundquist et al. 2010, 

Wigmosta et al. 2011, Orfield et al. 2014). 

5. Concluding remarks 

We propose best locations for siting microalgal farms for biodiesel production that meet substantial 

biofuel production levels while avoiding direct land-use competition with agricultural lands and 

biodiverse areas, through a GIS-based mutiple-criteria decision analysis and integer linear 

programming. We conclude that potential conflicts with food production and biodiversity 

conservation, as well as with freshwater consumption, can be reduced if cultivation is restricted to 

human-transformed dry mainland coasts in tropical and subtropical regions of the world, in contrast 

to first generation biofuels, which need agricultural lands and freshwater (Correa et al. 2017). 

However, even in these areas, the prevention of environmental impacts associated with microalgal 

production would be required. This includes halting direct habit loss for threatened species, by 

avoiding microalgal production within habitat patches while preserving functional connections 

among ecosystems (e.g., terrestrial dry ecosystems, mangroves, mudflats, saltmarshes, and coral 

reefs). Potential total biofuel production decreases with the accumulative number of constraints (i.e., 

from 5.85 × 1011 to 1.81 × 1011 L year-1 for Scenarios 2 and 4, respectively, based on top suitable 

microalgal production lands). Locations for microalgal biodiesel production would not only change 

as a function of trade-offs between profitability, water availability, agricultural value, and biodiversity 

but also along with targets in microalgal biofuel production. Higher targets in microalgal biofuels 

would inevitably lead to competition with areas of higher agricultural and biodiversity value, mainly 

within the tropics and subtropics. Future assessments that include optimized cultivation technologies, 

cultivation of more productive microalgal strains, availability of nutrients (e.g., from wastewater 

sources and agricultural residues), availability of CO2 (e.g., from anaerobic digesters), restrictions on 

freshwater use, regional changes in land costs, and trade-offs among ecosystem services (e.g., carbon 
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storage and coastal protection), can further refine the assessment of opportunities for microalgal 

biofuel production at a global scale. Microalgal production could become an important economic 

alternative in areas with little potential for agricultural development and relatively low biodiversity 

value (i.e., human-transformed dry tropical and subtropical mainlands), thereby helping in poverty 

alleviation while reaching substantial energy and environmental targets. 
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1. Development of suitability model for large-scale microalgal biodiesel 

production 

Our model aimed at maximizing the profitability of microalgal biodiesel production while minimizing 

direct competition with food production and direct impacts on biodiversity (Fig. S1), based on four 

scenarios for microalgal cultivation: Scenario 1 (i.e., use of fresh, brackish or salt water), Scenario 2 

(i.e., use of fresh, brackish or salt water adjacent to known industrial CO2 sources), Scenario 3 (i.e., 

use of seawater), Scenario 4 (i.e., use of seawater adjacent to known industrial CO2 sources). 

 

Water availability, lipid productivity, availability of flat lands, proximity to transport networks (i.e., 

main roads and railroads), availability of low gross national income (GNI) per capita (used as a 

proximate for labor costs), and proximity to known industrial CO2 sources were selected as the 

attributes for maximizing profitability. The potential annual gross economic rents from agricultural 

lands (Naidoo and Iwamura 2007) was selected as the attribute to minimize direct competition with 

food production, while the biodiversity value, based on the number of vertebrate species, number of 

threatened vertebrate species (Jenkins et al. 2013), presence of islands, and presence of areas with 

low human pressures (Venter et al. 2016) was selected as the attribute to minimize direct impacts on 

biodiversity. 

 

Several suitability layers were developed to construct the final suitability model for each cultivation 

scenario. Fuzzy logic was applied to construct each layer, through the use of sigmoid or linear 

functions that transform entry values into suitability scores. This method allows the transformation 

of an input raster into a scale that ranges from 0 to 1, using a membership function. Following Raines 

et al. (2010) linear functions were defined as: 

 

𝜇(𝑥) = 0 𝑖𝑓 𝑥 < 𝑚𝑖𝑛, 𝜇(𝑥) = 1 𝑖𝑓 𝑥 > 𝑚𝑎𝑥 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝜇(𝑥) =
(𝑥 − 𝑚𝑖𝑛)

(𝑚𝑎𝑥−𝑚𝑖𝑛 )
  

Chapter 2. Supplementary Information 
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Where 𝑥 corresponds to each pixel value, 𝑚𝑎𝑥 corresponds to the maximum value among pixels, and 

𝑚𝑖𝑛 corresponds to the minimum value among pixels. 

 

Sigmoid functions with large membership (i.e., larger entry values result in high suitability values) 

were defined as: 

 

𝜇(𝑥) =
1

1 +
𝑥
𝑓2

−𝑓1
 

 

And sigmoid functions with small membership (i.e., smaller entry values result in high suitability 

values) were defined as: 

𝜇(𝑥) =
1

1 +
𝑥
𝑓2

𝑓1
 

 

Where 𝑓1  is the spread of the function (defined as 5) and 𝑓2  is the membership midpoint. The 

midpoints are assigned a suitability value of 0.5, and were defined based on the reviewed literature 

(Table S1). 

 

These layers were overlaid for each of the four scenarios based on the Boolean AND/OR operators, 

using the software ArcGIS 10.5. While the AND operator retrieves the lowest value among layers 

(ensuring that pixels with the lowest values are maintained), the OR operator retrieves the highest 

value (ensuring that pixels with the highest values are maintained). This approach, based on set 

theory, allows the combining of the fuzzy layers without the use of weights. 
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Figure S1. Set of criteria (objectives and attributes) for the development of a suitability model for siting microalgal farms for biodiesel 

production at a global scale, aiming at maximizing the profitability in microalgal production while minimizing direct competition with 

food production and direct impacts on biodiversity. 

1.1 Construction of layers 

A final suitability layer for microalgal biodiesel production was developed for each cultivation 

scenario, by overlying microalgal biodiesel profitability, agricultural value, and biodiversity value, 

based on the AND Boolean operator (Figs S2, S3, S4, and S5). Protected areas, Key Biodiversity 

Areas (KBA) (BirdLife International 2016), water bodies (Lehner and Döll 2004) and urban areas 

(Schneider et al. 2009) were excluded from the analyses, assigning No Data to water bodies and zero 

to the other layers. Protected areas corresponded to the IUCN categories Ia, Ib, II, III, IV, V and VI 

(i.e., strict nature reserves, wilderness areas, national parks, natural monument or features, 

habitat/species management areas, protected landscapes, and protected areas with sustainable use of 

natural resources), as well as areas where no category has been reported or assigned or where the 

IUCN categories do not apply (i.e., world heritage sites and UNESCO MAB reserves) (UNEP-

WCMC 2016). KBA included important areas for the conservation of biodiversity and threatened 

species (BirdLife International 2016). Water bodies corresponded to large lakes and reservoirs with 

Selection of suitable areas for 
large-scale microalgal biodiesel 

production

Maximization of profitability in 
biodiesel production

Minimization of direct competition 
with food production

Minimization on direct impacts 
on biodiversity

➢ Water availability (aridity 

index, proximity to 

rivers, proximity to 

irrigation dams, 

proximity to 

fresh/brackish/salt  

groundwater sources, 

proximity to oceans)

➢ Lipid productivity

➢ Availability of flat lands

➢ Proximity to transport 

networks (i.e. main 

roads and railroads)

➢ Availability of low Gross 

National Income (GNI) 

per capita (as a 

proximate to labor costs)

➢ Proximity to known 

industrial CO2 sources

➢ Agricultural value (i.e., 

potential annual gross 

economic rents from 

agricultural lands)

➢ Biodiversity value 

(number of vertebrate 

species, number of 

threatened vertebrate 

species, presence of 

islands, presence of 

areas with low human 

pressures)

A
T

T
R

IB
U

T
E

S
O

B
J
E

C
T

IV
E

S



  

112 

 

surface areas ≥  100 km2 (Lehner and Döll 2004), while urban areas were obtained from the 

classification developed by Schneider et al. (2009) for built environments. 

1.1.1 Microalgal profitability 

Microalgal profitability was the result of overlaying water availability (i.e., fresh, brackish, or salt 

water sources for Scenarios 1 and 2, and proximity to oceans for Scenarios 3 and 4), along with lipid 

productivity, availability of flat lands, proximity to transport networks (i.e., main roads and railroads), 

availability of low gross national income (GNI) per capita, and proximity to known industrial CO2 

sources (for Scenarios 2 and 4), using the AND Boolean operator. Information for agricultural CO2 

sources (e.g., from anaerobic digesters, fermenters in biorefineries, etc) was not available globally 

and thus not included in the present study. 

For Scenarios 1 and 2, the aridity index, proximity to rivers, proximity to irrigation dams, proximity 

to fresh, brackish, or salt groundwater sources, and proximity to oceans were overlaid using the OR 

Boolean operator. A recharge/discharge ≥ 1.8 km3 year-1 was used for selecting suitable rivers, 

irrigation dams, and groundwater basins. This amount of water could sustain nearly 80 km2 of 

microalgal open ponds (i.e., around twenty 400-ha microalgal ponds) in regions with high evaporative 

loss (i.e., 2,000 mm year-1) and compromise 10% of total available water per year if harvest water is 

recycled. In areas with lower evaporation loss (e.g., 1,000 mm year-1) a similar water 

recharge/discharge could sustain nearly 140 km2 of microalgal ponds (i.e., around thirty-five 400-ha 

microalgal ponds) if harvest water is recycled. This is considering that a microalgal production farm 

consisting of 400 ha raceway ponds with a depth of 30 cm (Lundquist et al. 2010, Wigmosta et al. 

2011) would need a constant volume of around 0.0012 km3 year-1, which should be continuously 

replaced because of evaporative loss (Gerbens-Leenes et al. 2014). For groundwater resources an 

estimation of the annual water recharge was calculated for each aquifer mapped in the Whymap 

database (BGR & UNESCO 2008), multiplying the average water recharge (mm year-1) within 

categories by their area. Based on the river bankfull width database developed by Andreadis et al. 

(2013), streams with bankfull width equal or higher than 54.4 m were selected (as having a mean 

annual peak discharge equal or higher than 57.08 m3 s-1, which corresponds to 1.8 km3 year-1). Mean 

annual discharge is by definition lower than mean annual peak discharge, which would further restrict 

available water from rivers for microalgal cultivation. The development of a high-resolution database 

on mean annual river discharge would help to refine estimates on freshwater availability. 

Lipid productivity was predicted globally through a multiple linear regression model, based on 4,388 

lipid productivity estimates for the cultivation of Nannochloropsis sp. in photobioreactors (Moody et 
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al. 2014), using the package “raster” (Hijmans et al. 2017) in the software R 3.4.2. To our knowledge, 

these are the best available estimates on microalgal biomass and lipid productivities at a global scale, 

subject to further refinements as strains with different lipid contents and preferences in growing 

conditions are considered (Richmond 1986, Ras et al. 2013, Singh and Singh 2015). Additionally, 

these productivity estimates are similar to values already achieved for other species in open raceway 

ponds (Schenk 2016). Mean annual radiation and the residuals of mean annual temperature explained 

by radiation (Hijmans et al. 2005, Fick and Hijmans 2017) were used as explanatory variables. This 

allowed the prediction of lipid productivities in areas with lower densities of point estimates, such as 

mountainous areas, accounting for the geographic variation in radiation and temperature. 89% of the 

variance was explained by the model (i.e., adjusted R-squared = 0.8848) (Table S2). The Pearson’s r 

correlation coefficient between original productivity values and predicted productivity values was 

0.94 (t = 180.79, df = 4,254, p-value < 2.2 × 10-16). 

The proximity to rivers, irrigation dams, fresh/brackish/salt groundwater sources, oceans, transport 

networks, and known industrial CO2 sources, was calculated based on a cost layer (i.e., cost distance). 

For constructing the cost layer, the slope was rescaled using a linear function with output values 

ranging from 1 to 10. This allowed the inclusion of slope as a physical constraint for accessing 

resources (i.e., water and CO2) and transport networks. 

1.1.2 Agricultural and biodiversity value 

Agricultural value corresponded to the potential annual gross economic rents from agricultural lands 

estimated by Naidoo and Iwamura (2007). Biodiversity value was obtained by overlaying the number 

of vertebrates species (i.e., amphibians, birds, and mammals), the number of threatened vertebrates 

(i.e., vulnerable, endangered, or critically endangered amphibians, birds, and mammals) (Jenkins et 

al. 2013), the presence of islands (as a proximate variable to vulnerable areas with endemic 

populations/species), and the presence of areas with low human pressures (which is related to the 

integrity of ecosystems) (Venter et al. 2016), using the AND Boolean operator. 
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Figure S2. Overlaying of suitability layers for the development of a suitability model for siting microalgal farms for biodiesel 

production at a global scale. Scenario 1: Use of fresh, brackish or salt water without taking into account known industrial CO2 sources. 

 

 

Figure S3. Overlaying of suitability layers for the development of a suitability model for siting microalgal farms for biodiesel 

production at a global scale. Scenario 2: Use of fresh, brackish or salt water adjacent to known industrial CO2 sources. 
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Figure S4. Overlaying of suitability layers for the development of a suitability model for siting microalgal farms for biodiesel 

production at a global scale. Scenario 3: use of seawater without taking into account known industrial CO2 sources. 

 

 

Figure S5. Overlaying of suitability layers for the development of a suitability model for siting microalgal farms for biodiesel 

production at a global scale. Scenario 4: Use of seawater adjacent to known industrial CO2 sources. 
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1.1.3 Projection of rasters 

All rasters were transformed into the Eckert-IV equal-area pseudocylindrical map projection. Rasters 

with spatial resolution coarser than 5 × 5 km (i.e., known industrial CO2 sources, potential annual 

gross economic rents from agricultural lands, number of vertebrate species, and number of threatened 

vertebrate species) were resampled. The Nearest Neighbor resampling method was applied for the 

known industrial CO2 sources and for the potential annual gross economic rents from agricultural 

lands. This method is suitable for categorical data and does not change pixel values. The Bilinear 

Interpolation resampling method was applied for the number of vertebrate species and for the number 

of threatened vertebrate species. This method is suitable for continuous data and creates new values 

based on surrounding pixels. 
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Table S1. Original layers and fuzzy membership functions applied for the construction of suitability layers. Sigmoid Large: larger entry values result in high suitability. Sigmoid Small: smaller entry 

values result in high suitability. Not Applicable (NA). 

Objectives Layers Description Original spatial 

resolution for 

rasters 

Type of 

membership 

function 

Membership 

midpoint 

Source 

Maximization of 

profitability in 

biodiesel 

production 

Aridity index Quantification of precipitation availability over 

atmospheric water demand. AI = MAP/MAE, where AI 
corresponds to the aridity index, MAP corresponds to 

mean annual precipitation and MAE corresponds to 

mean annual potential evapotranspiration. 

30 arcseconds Sigmoid 

Large  

1 

 

Global aridity and PET database (Trabucco and Zomer 

2009) 

Proximity to rivers Cost distance to permanent rivers with annual discharge 

≥ 1.8 km3 year-1. Based on annual peak discharge. 

NA Sigmoid 

Small 

50 km Layer based on HydroSHEDS (Lehner et al. 2008), 

Vmap0 for permanent streams http://gis-

lab.info/qa/vmap0-eng.html and river bankfull width 

database (Andreadis et al. 2013) 

Proximity to 

irrigation dams 

Cost distance to irrigation dams with annual recharge ≥ 

1.8 km3 year-1 

NA Sigmoid 

Small 
 

50 km GRanDv1 database (Lehner et al. 2011) 

Proximity to 

fresh/brackish/ salt 
groundwater sources 

Cost distance to fresh/brackish/salt aquifers with annual 

recharge ≥ 1.8 km3 year-1. Excludes areas with complex 
hydrogeological structures, and areas with local and 

shallow aquifers. 

NA Sigmoid 

Small 

50 km 

 

Groundwater Resources of the World 1: 25 000 000. 

(BGR & UNESCO 2008) 

Proximity to oceans Cost distance to oceans NA Sigmoid 

Small 

50 km Oceans v.3.00 http://www.naturalearthdata.com 

Lipid productivity Lipid productivity based on 4,388 lipid point estimates 

for the cultivation of Nannochloropsis sp. in 

photobioreactors (Moody et al. 2014), using as 

predictors mean annual radiation and the residuals of 

mean annual temperature explained by radiation 

5 × 5 km Sigmoid 

Large 

13,000 L ha-1 year-

1 

Layer based on lipid productivity estimates (Moody et 

al. 2014), and WorldClim v.1.4 and v2 (Hijmans et al. 

2005, Fick and Hijmans 2017) 

Availability of flat 
lands 

Terrain slope 30 arcseconds Sigmoid 
Small 

5° Layer derived from GTOPO30 DEM 
https://lta.cr.usgs.gov/GTOPO30 

Proximity to 
transport networks 

Cost distance to roads and railroads  NA Sigmoid 
Small  

50 km Roads and railroads v. 3.0.0 
http://www.naturalearthdata.com 

Availability of low 

gross national 
income (GNI) per 

capita 

GNI per capita, Atlas method in 2014. Proximate 

variable for labor costs.  
 

NA Linear 

(inverse) 

NA GNI per capita database (World Bank 2015) 

Proximity to known 
industrial CO2 

sources 

Cost distance to known industrial CO2 sources in 2010, 
including public electricity and heat production, 

manufacturing industries and construction, production 

of minerals, production of metals (IPCC codes 1A1a, 
1A2, 2A, 2C) with CO2 emissions ≥ 10 µg m-2 s-1 

360 arcseconds Sigmoid 
Small 

50 km Global Emissions EDGAR v4.2 FT2010 (European 
Commission 2011) 

Minimization of 

direct competition 

with food 

production 

Agricultural value Potential annual gross economic rents from agricultural 

lands  

300 arcseconds Sigmoid 

Small 

USD 200 ha-1 

year-1 

Potential annual gross economic rents from 

agricultural lands (Naidoo and Iwamura 2007) 

 

Number of 
vertebrate species 

Number of vertebrate species (amphibians, birds, and 
mammals) based on IUCN species distribution maps, 

Bird Life International, and Nature Serve 

10 × 10 km 
 

Sigmoid 
Small 

 

230 species Biodiversity maps (Jenkins et al. 2013) 

http://gis-lab.info/qa/vmap0-eng.html
http://gis-lab.info/qa/vmap0-eng.html
http://www.naturalearthdata.com/
https://lta.cr.usgs.gov/GTOPO30
http://www.naturalearthdata.com/
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Minimization of 

direct impacts on 

biodiversity 

Number of 

threatened vertebrate 
species 

Number of threatened vertebrate species (amphibians, 

birds, and mammals) based on IUCN distribution maps, 
Bird Life International, and Nature Serve 

 

10 × 10 km  Sigmoid 

Small 
 

15 species Biodiversity maps (Jenkins et al. 2013) 

Presence of islands Islands NA Sigmoid 
Large  

1,000,000 km2  Layer based on GADM database http://gadm.org/ 

Presence of areas 

with low human 
pressures 

Measure of human pressures (no pressure, low pressure, 

moderate pressure, high pressure, very high pressure) 
based on the presence of built environments, croplands, 

pastures, human population density, night-time lights, 

railways, roads, and navigable waterways 

1 × 1 km Sigmoid 

Large 

4 Human footprint (Venter et al. 2016) 

http://gadm.org/
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Table S2. Fitted model between lipid productivity, mean annual radiation and the residuals of mean annual temperature explained by 

radiation (i.e., sequential regression) as predictor variables (Dormann et al. 2013), based on 4388 lipid point estimates for the 

cultivation of Nannochloropsis sp. in photobioreactors (Moody et al. 2014). 

Coefficients Estimate Std. Error t value P value 

Intercept -6.56 1.17 × 10-1 -56.09 <2 × 10-16 *** 

Radiation 1.40 × 10-3 7.75 × 10-6 180.69 <2 × 10-16 *** 

Residuals of temperature explained by radiation 2.65 × 10-2 4.46 × 10-4 59.38 <2 × 10-16 *** 
     

Residual standard error: 1.587 on 4253 degrees of freedom (72 observations deleted due to missingness) 

Multiple R-squared: 0.8848, Adjusted R-squared: 0.8848  
   

F-statistic: 1.634 × 104 on 2 and 4253 DF, p-value: <2 × 10-16       

    

2. Calculation of microalgal biodiesel production  

Total potential biodiesel production was calculated for top suitable microalgal production lands 

(suitability values ≥ 0.7) based on the most feasible microalgal cultivation scenarios (Scenarios 2, 3, 

and 4) based on the following equation: 

 

𝐵 = 𝑃 ∗ 0.8 ∗ 0.81 

 

where 𝐵 corresponds to biodiesel production (L year-1), 𝑃 corresponds to the summation in estimated 

microalgal lipid productivity per pixel within top suitable microalgal production lands (L year-1) 

(Moody et al. 2014), 0.8 is the assumed proportion of area that could be used for cultivation while 

0.2 would remain as associated infrastructure (Wigmosta et al. 2011), and 0.81  is the assumed 

proportion of biodiesel produced from an initial volume of lipids contained in microalgal cells (i.e., 

the product of the lipid extraction efficiency from microalgal cells, 0.9, and the lipid conversion 

efficiency into biodiesel, 0.9). 

 

The percentage of global transport energy demands that could be fulfilled by each of the four 

microalgal biodiesel production scenarios was calculated by dividing the total energy yields (GJ year-

1) in top suitable lands by the transport energy demands in 2016, 2030 and 2040 (GJ year-1) (IEA 

2017), and then multiplying by 100. Energy yields for each scenario (GJ year-1) were obtained by 

multiplying the biodiesel production 𝐵 (L year-1) by 0.0326 GJ L-1 (i.e., low heating value, which is 

closest to the actual energy yield in motor vehicles) (Hofstrand 2008). Transport energy demands 

were converted into GJ from million tonnes of oil equivalent (MTOE) by multiplying by the 

conversion factor 4.1868 × 107 GJ MTOE-1 (IEA 2017). 
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3. Sensitivity analysis of microalgal biodiesel production  

A sensitivity analysis was developed based on slope and lipid productivity, in order to determine how 

changes in model parameters influence the siting of microalgal production farms and biodiesel 

production. The slope was increased from a membership midpoint of 5° to 10° and 15°; and lipid 

productivity was both increased and decreased in 20% and 40% from a midpoint of 13,000 L ha-1 

year-1, using the one-at-a-time method, in which changes in values for each factor are evaluated in 

turn (Malczewski and Rinner 2015). Results show that changes in midpoints for lipid productivity 

are more important than changes in midpoints for slope in estimating potential microalgal production 

areas and biodiesel yields (Figs S6 and S7). 

 

Figure S6. Sensitivity analyses on potential microalgal production area (km2) for Scenarios 2, 3 and 4 considering top suitable lands  

(suitability values ≥ 0.7). Scenario 2: use of fresh, brackish or salt water adjacent to known industrial CO2 sources. Scenario 3: use of 

seawater without taking into account known industrial CO2 sources. Scenario 4: use of seawater adjacent to known industrial CO2 

sources. The slope (sl) was increased from a membership midpoint of 5° to 10° and 15°. Lipid productivity (LP) was both increased 

and decreased by 20% and 40% from a midpoint of 13,000 L ha-1 year-1. 
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Figure S7. Sensitivity analyses on potential biodiesel production (L ha-1 year-1) for Scenarios 2, 3 and 4 considering top suitable lands 

(suitability values ≥ 0.7). Scenario 2: use of fresh, brackish or salt water adjacent to known industrial CO2 sources. Scenario 3: use of 

seawater without taking into account known industrial CO2 sources. Scenario 4: use of seawater adjacent to known industrial CO2 

sources. The slope (sl) was increased from a membership midpoint of 5° to 10° and 15°. Lipid productivity (LP) was both increased 

and decreased by 20% and 40% from a midpoint of 13,000 L ha-1 year-1. 

4. Threatened vertebrates with more than 20% of their distribution range 

overlapping top suitable microalgal production lands for Scenarios 2, 3, and 4 

Within top suitable microalgal production lands for Scenarios 2, 3, and 4 several threatened 

vertebrates would face competition with microalgal production in more than 20% of their distribution 

range. They correspond to the amphibian Eupsophus queulensis, a recently discovered and vulnerable 

species with a small distribution range (i.e., 12 km2) in Central Chile; the Lima leaf-toed gecko, a 

critically endangered reptile restricted to an area of 393.5 km2 in some localities around Lima, Peru; 

the Syrian hamster, a vulnerable rodent found in Syria and Turkey; the Atacama toad, a vulnerable 

amphibian found in the Chilean Atacama desert; the four-toed jerboa, a vulnerable rodent found in 

salt marshes and coastal deserts in Libya and Egypt; and the Peruvian plantcutter and rufous 

flycatcher, two vulnerable bird species found in the dry shrublands along the coastal region of Peru 

and Ecuador (Table S3). 
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Table S3. Threatened vertebrates (amphibians, birds, mammals, and reptiles) with more than 20% of their distribution ranges 

overlapping top suitable microalgal production lands (suitability values ≥ 0.7) for Scenarios 2, 3, and 4. IUCN Category (Cat.): 

Vulnerable (VU), endangered (EN), and critically endangered (CR). Total distribution range (DR), overlapping area (OA). 

Microalgal cultivation Group Scientific name Common name IUCN Cat. Location DR (km2) OA (%) 

Scenario 2 
Mammals Mesocricetus auratus Syrian hamster VU Syria, Turkey 4,713.6 21.1 

Reptiles Phyllodactylus sentosus Lima leaf-toed gecko CR Peru 393.5 51.3 

Scenario 3 

Amphibians 
Eupsophus queulensis - VU Chile 12.0 87.0 

Rhinella atacamensis Atacama toad VU Chile 13,654.1 21.0 

Birds 
Myiarchus semirufus Rufous flycatcher VU Peru, Ecuador 47,432.6 21.5 

Phytotoma raimondii Peruvian plantcutter VU Peru, Ecuador 17,729.5 21.4 

Mammals Allactaga tetradactyla Four-toed jerboa VU Libya, Egypt 23,162.2 24.2 

Reptiles Phyllodactylus sentosus Lima leaf-toed gecko CR Peru 393.5 51.3 

Scenario 4 Reptiles Phyllodactylus sentosus Lima leaf-toed gecko CR Peru 393.5 51.3 

5. Development of optimization model based on weights and targets in energy 

demands 

Using integer linear programming (Beyer et al. 2016) and the packages “slam” (Hornik et al. 2016) 

and “gurobi” (Gurobi Optimization Inc. 2017) in the software R 3.4.2, an optimization model based 

on targets in energy demands was developed for maximizing profitability while minimizing direct 

competition with agricultural lands and biodiverse areas: 

 

maximize∑ 𝑃𝑖
2

𝑖
𝑥𝑖/ (maximum(𝐴𝑖, 𝐵𝑖) + 1) 

subject to 

∑𝐷𝑖
𝑖

𝑥𝑖 = 𝑇 

0 ≤ 𝑥𝑖 ≤ 0.8 

 

Where 𝑖 corresponds to each pixel, 𝑃 corresponds to microalgal profitability (ranging from 0 to 1), 𝑥 

corresponds to the decision variable given by the software (ranging from 0 to 0.8 and representing 

the available area for placing microalgal ponds), “maximum” corresponds to the maximum value 

among agricultural value 𝐴 (ranging from 0 to 1) and biodiversity value 𝐵 (ranging from 0 to 1), 𝐷 

corresponds to productivity values in units of energy (GJ pixel-1 year-1), and 𝑇 represents the targets 

in energy demands globally in 2016, 2030, and 2040 (GJ year-1) based on the IEA (2017) energy 

production estimates (i.e., Current Policies Scenario, New Policies Scenario and Sustainable 

Development Scenario). 
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The proportion of available areas for microalgal cultivation per pixel (i.e., values ranging from 0 to 

0.8) was considered after excluding water bodies (Lehner and Döll 2004), protected areas (UNEP-

WCMC 2016), Key Biodiversity Areas (KBA) (BirdLife International 2016), and urban areas 

(Schneider et al. 2009). It was assumed that 80% of the area within each pixel can be utilized for 

microalgal cultivation, with a remaining 20% for associated infrastructure (Wigmosta et al. 2011). 

 

Agriculture values were transformed using a linear function with a maximum of USD 800 ha-1, as 

beyond this value lands are considered highly profitable (Naidoo and Iwamura 2007). Biodiversity 

value resulted from overlaying the number of vertebrate species, the number of threatened vertebrates 

species (Jenkins et al. 2013), the presence of islands, and the presence of areas with low human 

pressures (Venter et al. 2016) using the OR Boolean operator. For the number of vertebrate species 

and the number of threatened vertebrate species linear functions were applied; while for the presence 

of islands and areas with low human pressures sigmoid functions were applied (i.e., a small 

membership function with a membership midpoint of 1,000,000 km2 for islands and a small 

membership function with a midpoint of 4 for areas with low human pressures), resulting in most 

islands and areas with none and low human pressures (Venter et al. 2016) as important for biodiversity 

conservation. 

 

We investigated alternative solutions in which the agricultural and biodiversity values were not taken 

into account, based on a matrix of weights (Table S4), and in which targets in microalgal biodiesel 

production increased from 10% to 40% based on 2016’s transport energy demands. 

 

Table S4. Matrix of weights assigned to assess the influence of agricultural (A) and biodiversity value (B) in the optimization model. 

Weight A Weight B 

1 1 

1 0 

0 1 

0 0 
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ABSTRACT 

While several biofuel production systems based on non-food crops have been explored as alternatives 

for replacing first generation biofuels, their potential impacts on food production and biodiversity 

remain unclear. Microalgal production systems can produce higher levels of biofuels per unit area 

compared to food crops, and do not depend on fertile soils or freshwater; however, little is known 

about potential conflicts of large-scale microalgal production with agricultural areas and biodiversity 

for fulfilling domestic energy targets. Using a GIS-based multiple-criteria decision analysis (MCDA) 

and integer linear programming we selected the most cost-effective areas for large-scale microalgal 

production (i.e., where water, flat lands, and transport networks are available, and where high lipid 

productivities can be achieved), able to satisfy 30% of each country’s transport energy demands in 

2016 and 2050 while avoiding areas of high agricultural and biodiversity value. Main areas for 

microalgal biofuel production mainly corresponded drier low-latitude areas or drier lowlands within 

countries. In around one-quarter of the countries, mainly located in the Middle East, North Africa, 

and non-OECD Americas, microalgal production could currently overlap with areas of median 

potential agricultural revenues lower than 225 USD ha-1, and median biodiversity values lower than 

260 and 16 vertebrate species and threatened vertebrate species, respectively. While domestic biofuel 

CHAPTER 3. Best areas for microalgal biofuel production at national 

scales: Conflicts with agricultural lands and biodiversity 



  

126 

 

production could help to fulfill national energy targets and reduce the external dependence on energy, 

scaling-up microalgal production farms in countries with either high energy demands or without 

available human-transformed dry lands could cause significant conflicts with food production and 

biodiversity. 

 

Keywords: Microalgae, biofuels, agriculture, biodiversity, sustainability, transport, fossil fuel 

1. INTRODUCTION 

Current energy production systems, based in the use of fossil fuels, are the primary source of 

anthropogenic greenhouse gas emissions (Hartmann et al. 2013), contributing to global warming (Cox 

et al. 2000, Rockström et al. 2009) and its impacts on ecosystems (Bellard et al. 2012), society, and 

economy (Ciscar et al. 2011). Replacing fossil fuels by renewable energy sources has been proposed 

as the main mechanism for reducing CO2 emissions (Jacobson and Delucchi 2011) and limiting global 

warming to well below 2°C (IPCC 2015) along with its undesired environmental end socioeconomic 

consequences (UN 2015). In the face of future higher energy demands (EIA 2016, IEA 2017), 

countries have become increasingly interested in ensuring a domestic production of renewable energy 

so as to reduce uncertainties associated to global energy markets (Correlje and Van der Linde 2006, 

Baumann 2008) and to replace unsustainable energy sources (Asif and Muneer 2007, da Silva et al. 

2016, Kumar 2016). This can lead to a different set of environmental impacts compared to fossil fuels 

(Akella et al. 2009, Berrill et al. 2016), including land-use changes within areas suitable for 

agricultural production (Owusu and Asumadu-Sarkodie 2016) or with high biodiversity value 

(Gasparatos et al. 2017). 

 

Biofuel production, based on the transformation of biomass into carbon-rich energy carriers aimed at 

replacing fossil fuels (e.g., gasoline by bioethanol and diesel by biodiesel) (Naik et al. 2010), could 

quadruple by 2040 compared to 2016 (i.e., from 1.7 to 8.1 million barrels of oil equivalent day-1) 

despite an increased share of transportation driven by electricity (IEA 2017). This is because biofuels 

are expected to remain a prime source of energy for ships, planes, and long-haul trucks (Fulton et al. 

2015). However, current first generation biofuel production systems (i.e., those derived from food 

crops) compete with agricultural lands and thus displace food production (Lambin and Meyfroidt 

2011), leading to the direct and indirect transformation of biodiverse (Fargione et al. 2010, Immerzeel 

et al. 2014, Correa et al. 2017, Elshout et al. 2019) and carbon-rich systems into monocultures 

(Fargione et al. 2008). A future expansion of first generation biofuels would drive further land-use 
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changes within and outside agricultural lands, potentially impairing food security particularly in 

developing economies (Naylor et al. 2007, To and Grafton 2015) while driving the transformation 

and degradation of native ecosystems (Butler and Laurance 2009, Wich et al. 2014, Searchinger et al. 

2015). 

 

Microalgal biofuel production systems, which have been proposed as a promising alternative to first 

generation biofuels, offer higher biofuel productivities per unit area and do not depend on arable lands 

or freshwater resources for their cultivation (Chisti 2007, Schenk et al. 2008, Correa et al. 2017). As 

a consequence, compared to first generation biofuels, microalgal production systems could offer land 

savings and their cultivation could more easily be constrained to areas unsuitable for agriculture and 

with low biodiversity values (Correa et al. 2019). Furthermore, they offer great potential for water 

remediation (i.e., recycling nutrients from wastewater sources) (Abdel-Raouf et al. 2012) and for CO2 

mitigation (i.e., re-using CO2 produced by industries) (Wang et al. 2008). Provided there are 

reductions in their production costs—achievable through the development of biorefinery systems that 

increase the profitability of biofuels based on the production of high-value products (e.g., food, 

animal feed) (Zhu 2015, Ruiz et al. 2016), coupled with the cultivation of highly productive 

microalgal strains (Chisti 2008, Ajjawi et al. 2017), the development of more cost-effective 

cultivation technologies (e.g., mixotrophic cultivation systems) (Roostaei et al. 2018) that reduce 

energy inputs and enhance nutrient recycling (e.g., through anaerobic digestion) (González-González 

et al. 2018), and the co-location with free nutrient and CO2 sources (e.g., from wastewater and 

industries) (Slade and Bauen 2013, Acién et al. 2018)—microalgal biofuels could complement or 

eventually replace other biofuel production alternatives (Chisti 2008, Schenk et al. 2008, Correa et 

al. 2019). However, if production is concentrated within countries for fulfilling domestic energy 

targets, potential conflicts with agricultural lands or biodiversity could occur. 

 

Under future increases in food demands, projected in around 60% between 2006 and 2050 

(Alexandratos and Bruinsma 2012) and higher targets for ensuring biodiversity conservation and the 

services that ecosystem provide (UN 2015), understanding the potential conflicts between microalgal 

biofuel production, agricultural value, and biodiversity, can guide decision making towards the 

identification of more sustainable biofuel production alternatives (Correa et al. 2019). Aiming at 

reducing uncertainties in global energy markets and transport costs (Baumann 2008), we provide best 

areas for fulfilling each country’s 30% current and future domestic transport energy demands through 

microalgal biofuels, while decreasing direct competition with lands of high agricultural and 

biodiversity value within countries. Furthermore, we 1) Identify countries where current and future 

high lipid productivity levels and minimal overlap among microalgal production, agricultural value, 
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and biodiversity value would occur, and 2) Explore potential conflicts among microalgal production 

and areas of high ecological importance (i.e., biodiverse areas and conservation priority ecoregions) 

for this set of countries. 

2. METHODS 

We aimed at selecting suitable areas for fulfilling each country’s 30% current and future domestic 

transport energy demands through microalgal biofuels, while decreasing direct competition with 

lands of high agricultural and biodiversity value (Fig. 1). Furthermore, we identified countries where 

minimal overlap among microalgal production, agricultural value, and biodiversity value would 

occur; and explored potential conflicts among microalgal production and conservation priority 

ecoregions for this set of countries. 

x 

Figure 1. Diagram showing the main steps involved to: 1) Develop an integer linear optimization model to select best areas for fulfilling 

each country’s 30% current and future domestic transport energy demands through microalgal biofuels while decreasing direct 

competition with lands of high agricultural and biodiversity value, 2) Identify countries with lower direct conflicts among microalgal 

production, food production, and biodiversity, and 3) Explore conflicts with conservation priority ecoregions for this set of countries. 

*Estimations on future aridity index and future microalgal lipid productivity were developed considering changes in precipitation, 

potential evapotranspiration, and temperature, based on an ensemble model for the Representative Concentration Pathway (RCP) 8.5 

(See Supplementary Information for details). 

2.1 Development of integer linear programming model 

Based on integer linear programming (Beyer et al. 2016) a model was developed to select potential 

microalgal production areas with high profitabilities and low direct competition with food production 

and biodiversity, for fulfilling each country’s 30% of transport energy demands in 2016 and 2050 

based on two microalgal cultivation scenarios: Scenario 1 (i.e., use of fresh/brackish/salt water) and 

Development of integer linear optimization 
model 

maximize∑ 𝑃𝑖
2

𝑖
𝑥𝑖/ (maximum 𝐴𝑖, 𝐵𝑖 + 1)
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Scenario 2 (i.e., use of seawater). We used the software R and Gurobi optimizer for resolving the 

following equation (Correa et al. 2019): 

 

maximize∑ 𝑃𝑖
2

𝑖
𝑥𝑖/ (maximum(𝐴𝑖, 𝐵𝑖) + 1) 

subject to 

∑𝐷𝑖
𝑖

𝑥𝑖 = 𝑇 

0 ≤ 𝑥𝑖 ≤ 0.8 

 

Where 𝑖 corresponds to each pixel, 𝑃 corresponds to the microalgal profitability layer (ranging from 

0 to 1), 𝑥 corresponds to the decision variable given by the software (ranging from 0 to 0.8, assuming 

that 20% of each pixel would be used for operational infrastructure) (Wigmosta et al. 2011), 

“maximum” corresponds to the maximum value among agricultural value 𝐴 (ranging from 0 to 1) 

and biodiversity value 𝐵 (ranging from 0 to 1), 𝐷 corresponds to productivity values in units of 

energy (GJ pixel-1 year-1), and 𝑇 represents 30% of each country’s transport energy demands for 2016 

and 2050 (GJ year-1). The squaring of the profitability as the numerator and the maximum value 

among 𝐴 or 𝐵 as the denominator, ensures that pixels with lower or average profitabilities, and with 

either high agricultural or high biodiversity values, are not part of final solutions. The percentage of 

available area for microalgal cultivation was determined per pixel after excluding water bodies larger 

than 100 km2 (Lehner and Döll 2004), protected areas (UNEP-WCMC 2016), Key Biodiversity Areas 

(KBA) (BirdLife International 2016), and urban areas (i.e., built environments) (Schneider et al. 

2009). 

 

Lands covers potentially replaced by microalgal production (i.e., considering cultivation areas plus 

associated infrastructure) were identified based on the MODIS-derived global mosaic for 2012 at a 

resolution of 5 arcminutes (Channan et al. 2014) for each cultivation scenario. 

2.2 Development of layers (microalgal profitability, agricultural value, and 

biodiversity value) 

The profitability layer was obtained through a GIS-based multiple-criteria decision analysis (MCDA) 

developed in the software ArcGIS 10.5 at a spatial resolution of 5 × 5 km (see Supplementary 

Information for details). The profitability layer resulted from overlaying water availability, 

microalgal lipid productivity, availability of flat lands, and proximity to main transport networks (i.e., 
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main roads and railroads), which are necessary for microalgal cultivation (i.e., water availability) and 

for decreasing costs in microalgal biofuel production (i.e., lipid productivity, flat lands, proximity to 

transport networks) (Chisti 2007, Schenk et al. 2008, Lundquist et al. 2010, Wigmosta et al. 2011, 

Slade and Bauen 2013, Venteris et al. 2014, Slegers et al. 2015). For Scenario 1 water availability 

included water from rivers, irrigation dams, or fresh/brackish/salt groundwater sources after 

accounting for water depletion (Brauman et al. 2016), as well as water from precipitation (i.e., aridity 

index) and seawater. For Scenario 2, the water source corresponded to seawater (i.e., excluding inland 

brackish/salt water bodies such as the Aral and the Caspian seas). Our model did not constrain siting 

based on the location of CO2 sources (e.g., CO2 from industries, anaerobic digesters, fermenters in 

biorefineries) or free nutrient sources (e.g., wastewater treatment facilities), which, in spite of 

reducing biofuel production costs (Lundquist et al. 2010, Slade and Bauen 2013, Venteris et al. 2014) 

are not consistently mapped globally and would further limit the amount of suitable lands for 

microalgal biofuel production (Correa et al. 2019).  

 

For determining the future siting of microalgal production farms, which could result from changes in 

the aridity index (i.e., based on changes in precipitation, potential evapotranspiration, and 

temperature), and changes in lipid productivities (i.e., based on changes in temperature) (See 

Supplementary Information for details), we developed ensemble models based on several climate 

change scenarios. For each Representative Concentration Pathway (RCP) (i.e., 2.6, 4.6, 6.0, and 8.5) 

we constructed an ensemble model by averaging mean monthly temperatures, minimum monthly 

temperatures, maximum monthly temperatures, and mean annual precipitation values among the 

following General Circulation Models (GCMs): BCC-CSM1-1, CCSM4, GISS-E2-R, IPSL-CM5A-

LR, HadGEM2-ES, MIROC-ESM-CHEM, MRI-CGCM3, and NorESM1-M (Hijmans et al. 2005). 

The high emissions RCP 8.5 (Riahi et al. 2011) was used to find potential microalgal production areas 

with high profitabilities and low direct competition with food production and biodiversity by 2050.   

 

Agricultural value corresponded to the potential annual gross economic rents from agricultural lands 

(Naidoo and Iwamura 2007). Biodiversity value resulted from overlaying the number of vertebrate 

species, the number of threatened vertebrate species, the number of vertebrate species with small 

distribution ranges (i.e., considering amphibians, birds, and mammals) (Jenkins et al. 2013), the 

presence of islands (which compared to the mainland harbour more endemic species and populations) 

(Kier et al. 2009, Tershy et al. 2015, McCreless et al. 2016), the presence of areas with low human 

pressures on the environment (i.e., based on the Global Human Footprint) (Venter et al. 2016), and 

the presence of mangroves (which hold key ecological significance and provide a wide range of 

ecosystem services) (Giri et al. 2011). 
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2.3 Calculation of current and future transport energy demands 

Countries corresponded to sovereign states and administrative units with an associated ISO based on 

the GADM database v.2. Transport energy demands in 2016 were obtained for each country in million 

tonnes of oil equivalent (MTOE) (IEA 2018). These values were transformed into GJ by multiplying 

by the conversion factor 4.1868 × 107 GJ MTOE-1 (IEA 2017). For countries without information—

i.e., other Africa, other non-OECD Asia, and other non-OECD Americas (IEA 2018)—transport 

energy demands were assumed proportional to their population (UN 2017). Each country’s future 

transport energy demands were estimated based on the annual growth on transport energy 

consumption between 2012 and 2040 per economic region (Africa, non-OECD Asia, non-OECD 

Americas, the Middle East, non-OECD Europe and Eurasia, OECD Europe) and selected countries 

(Australia, Brazil, Canada, Chile, China, Japan, India, Mexico, New Zealand, South Korea, and the 

USA) (EIA 2016) (Table S3, Supplementary Information). 

2.4 Identification of countries with current and future lower direct conflicts with food 

production and biodiversity 

Based on median values for lipid productivity, agricultural value, and biodiversity value globally, 

countries that offer high microalgal productivities (i.e., lipid productivity values higher than the 

global median value) at lower direct conflicts with high-value agricultural lands and biodiversity (i.e., 

agricultural and biodiversity values lower than the global median values), were identified for 2016 

and 2050. For these set of countries, lands covers potentially replaced by microalgal production (i.e., 

considering cultivation areas plus associated infrastructure) were identified based on the MODIS-

derived global mosaic for 2012 at a resolution of 5 arcminutes (Channan et al. 2014). Furthermore, 

the potential overlap among microalgal production areas and the Global 200 ecoregions, which have 

been identified key for biodiversity conservation globally (Olson and Dinerstein 2002), was 

determined. 
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3. RESULTS 

3.1 Best areas for siting microalgal biofuel production farms at national scales 

Globally, between 1,010.5 thousand km2 and 1,016.8 thousand km2 would be needed to fulfill 30% 

of each country’s transport energy demands in 2016, based on Scenario 1 (i.e., use of fresh, brackish 

or salt water) and 2 (i.e., use of seawater), respectively (Table 1). 70% of microalgal production areas 

would fall within OECD countries in the Americas (i.e., USA, Canada, Mexico), Europe (i.e., 

Germany, United Kingdom, France, Italy), and Asia (i.e., Japan and South Korea), as well as non-

OECD countries like China, Russia, India, and Brazil (Fig. 2). For Scenario 1, 80% of microalgal 

production areas would overlap mixed forests, croplands, grasslands, cropland/natural vegetation 

mosaics, woody savannas, barren or sparsely vegetated lands, and open shrublands (i.e., 17%, 15%, 

14%, 12%, 9%, 7%, and 6% of total microalgal production land, respectively). For Scenario 2, 80% 

of microalgal production areas would overlap mixed forests, croplands, cropland/natural vegetation 

mosaics, woody savannas, barren or sparsely vegetates lands, open shrublands, evergreen broadleaf 

forests, and grasslands (i.e., 19%, 17%, 14%, 11%, 6%, 5%, 5%, and 4% of total microalgal 

production land, respectively) (Fig. 3, Table 1). 

 

Around half of the analyzed countries could meet 30% transport energy demands in 2016 by 

microalgal production in lands with median agricultural values lower than 0.19 and 0.28, based on 

Scenarios 1 and 2, respectively. In these lands, mainly located within temperate areas in the Northern 

Hemisphere (i.e., median latitudes of 38°N both for Scenarios 1 and 2), median potential agricultural 

revenues would be between 75–108.5 USD ha-1 (Naidoo and Iwamura 2007) for Scenarios 1 and 2, 

respectively. Similarly, around half of the analyzed countries could meet 30% of current transport 

energy demands in lands with median biodiversity values lower than 0.28, both for Scenarios 1 and 

2. In these lands, the median number of vertebrate and threatened vertebrate species is (i.e., based on 

amphibians, birds, and mammals) would be between 212–213 vertebrate species and between 3–4 

threatened vertebrate species for Scenarios 1 and 2, respectively. 
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Figure 2. Cultivation areas for fulfilling each country’s 30% of transport energy demands in 2016 and 2050 by microalgal production 

for a) Scenario 1 (use of fresh, brackish and saltwater sources) and b) Scenario 2 (use of seawater). These areas are based on an 

optimization model that maximizes microalgal profitability and minimizes direct competition with high-value agricultural lands and 

biodiverse areas. 

 

 

Figure 3. Land-cover composition of areas that fulfill each country’s 30% transport energy demands in 2016 and 2050, considering 

Scenarios 1 (i.e., use of fresh, brackish, and salt water) and 2 (i.e., use of seawater). Land covers are based on the MODIS derived 

global mosaic for 2012 at a resolution of 5 arcminutes (Channan et al. 2014). 
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Table 1. Land-cover composition within areas that fulfill each country’s 30% transport energy demands in 2016 and 2050, based on 

Scenarios 1 (i.e., use of fresh, brackish, and salt water) and 2 (i.e., use of seawater). Land covers are based on the MODIS derived 

global mosaic for 2012 at a resolution of 5 arcminutes (Channan et al. 2014). Land areas are shown in thousands km2. The relative 

changes (Rel.) in areas between 2016 and 2050 are shown for each land cover. 

Land Cover  

Scenario 1 (2016) Scenario 2 (2016) Scenario 1 (2050) Scenario 2 (2050) 

Area % Area % Area % Rel. (%) Area % Rel. (%) 

Mixed forest 174.1 17 190.6 19 233.0 15 34 218.4 14 15 

Croplands 153.3 15 175.8 17 244.7 16 60 355.1 22 102 

Grasslands 141.9 14 40.6 4 170.5 11 20 54.4 3 34 

Cropland/Natural vegetation mosaic 120.9 12 147.3 14 182.0 12 51 234.2 15 59 

Woody savannas 90.2 9 106.9 11 184.2 12 104 142.0 9 33 

Barren or sparsely vegetated 66.2 7 59.6 6 119.6 8 81 113.3 7 90 

Open shrublands 59.5 6 50.2 5 106.8 7 79 83.0 5 66 

Evergreen Broadleaf forest 47.4 5 46.0 5 117.5 7 148 122.1 8 166 

Savannas 32.3 3 21.5 2 60.8 4 88 31.9 2 48 

Deciduous Broadleaf forest 27.1 3 17.3 2 29.6 2 9 21.4 1 24 

Evergreen Needleleaf forest 26.9 3 23.3 2 24.4 2 -9 25.4 2 9 

Others 70.8 7 137.8 14 98.4 6 39 203.0 13 47 

Total 1,010.5 100 1,016.8 100 1,571.4 100 56 1,604.3 100 58 

 

In around one-quarter of countries, mainly located in Africa, the Middle East, non-OECD Americas, 

and non-OECD Asia and Oceania, 30% of transport energy demands could be fulfilled by achieving 

high microalgal productivities (i.e., median lipid productivity values higher than 20.3 and 20.2 m3 ha-

1 year-1 for Scenarios 1 and 2, respectively) at lower direct competition with food production or 

biodiversity (i.e., median agricultural values lower than 0.19 and 0.28 for Scenarios 1 and 2, 

respectively, and median biodiversity values lower than 0.28 for both Scenarios 1 and 2) (Fig. 4, 

Tables S4, S5, S6, and S7 in Supplementary Information). Within these countries, microalgal 

production would mainly overlap with barren or sparsely vegetated lands and open shrublands for the 

different cultivation scenarios (i.e., ranging from 88 to 92% of total microalgal production area) 

(Table 2). Between 30% and 35%, and between 46% and 53% of microalgal production areas for 

Scenarios 1 and 2, respectively, would overlap ecoregions of high conservation priority (Olson and 

Dinerstein 2002), mostly on arid and semi-arid lands (i.e., between 94% and 97%, and between 74% 

and 96% of overlapping ecoregions for Scenarios 1 and 2, respectively) (Table S8 in Supplementary 

Information). Microalgal cultivation would overlap less than 5% of each of these ecoregions (Table 

3). 
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Figure 4. Median microalgal lipid productivities and a) agricultural value of lands or b) biodiversity value of lands that satisfy each 

country’s 30% transport energy demands in 2016, based on Scenario 1 (use of fresh, brackish, and saltwater sources). The quadrants 

are delimited by the median productivity, agricultural, and biodiversity values globally. 

 

Table 2. Land-cover composition within areas that fulfill each country’s 30% transport energy demands in 2016 and 2050, considering 

countries where high microalgal productivities (HP) can be achieved at lower competition with agriculture (LA) and biodiversity (LB). 

Median microalgal lipid productivity > 20.3, 20.2, 20.1, and 19.9 m3 ha-1 year-1 for Scenario 1 in 2016, Scenario 2 in 2016, Scenario 

1 in 2050, and Scenario 2 in 2050, respectively. Median agricultural values < 0.19, 0.28, 0.22, and 0.28 for Scenario 1 in 2016, 

Scenario 2 in 2016, Scenario 1 in 2050, and Scenario 2 in 2050, respectively. Median biodiversity values < 0.28, 0.28, 0.28, and 0.31 

for Scenario 1 in 2016, Scenario 2 in 2016, Scenario 1 in 2050, and Scenario 2 in 2050, respectively. Land covers are based on the 

MODIS derived global mosaic for 2012 at a resolution of 5 arcminutes (Channan et al. 2014). Land areas are shown in thousands of 

km2. The relative changes in land areas between 2016 and 2050 are shown for each land cover. 

Land Cover Scen. 1 HP-LA Scen. 1 HP-LB Scen. 2 HP-LA Scen. 2 HP-LB 

Scen. 1 

HP-

LA 

Scen. 1 

HP-

LB 

Scen. 2 

HP-

LA 

Scen. 2 

HP-

LB 

Area % Area % Area % Area % Relative change 2016–2050 (%) 

Barren or 

sparsely vegetated 50.5 68.1 49.7 78.1 48.2 60.1 48.2 63.5 73.8 75.9 92.7 92.7 

Open shrublands 15.8 21.4 8.7 13.6 22.0 27.5 20.9 27.5 234.8 464.4 63.2 66.3 

Grasslands 1.5 2.0 0.1 0.2 1.4 1.8 0.2 0.2 14.1 881.8 93.2 174.3 
Cropland/Natural 

vegetation mosaic 0.8 1.1 0.4 0.6 1.1 1.4 0.3 0.4 -18.0 217.7 647.8 285.5 

Savannas 0.5 0.7 0.2 0.3 0.1 0.2 0.1 0.2 143.1 119.1 2,244.4 214.9 

Evergreen 

Broadleaf forest 0.3 0.4 0.3 0.5 0.6 0.7 0.3 0.4 97.9 132.0 4,386.3 150.5 

Woody savannas 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.3 489.2 353.1 404.2 124.1 

Croplands 0.1 0.1 0.3 0.4 0.1 0.1 0.3 0.4 6,446.9 1,767.7 981.1 224.6 

Closed shrublands 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 138.4 138.4 

Others 4.4 6.0 3.8 6.0 6.5 8.0 5.4 7.1 130.0 174.7 201.1 125.2 

Total 74.1 100.0 63.6 100.0 80.2 100.0 75.9 100.0 116.8 145.6 138.4 89.9 
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Table 3. Percentage of arid/semiarid priority ecoregions for global conservation (Olson and Dinerstein 2002) overlapping microalgal production areas that fulfill each country’s 30% transport energy 

demands in 2016 and 2050. Countries where higher microalgal productivities (HP) can be achieved at lower competition with agriculture (LA) and biodiversity (LB) are considered for Scenarios 1 (i.e., 

use of fresh, brackish and salt water) and 2 (i.e., use of seawater). Land areas are shown in km2. 

Ecoregion 
2016 2050 

Scen. 1 HP-LA Scen. 1 HP-LB Scen. 2 HP-LA Scen. 2 HP-LB Scen. 1 HP-LA Scen. 1 HP-LB Scen. 2 HP-LA Scen. 2 HP-LB 

Arabian Highlands Woodlands and Shrublands 1.3 1.3 0.9 1.4 3.2 3.2 3.3 3.3 

Atacama-Sechura Deserts 0.7 0.7 0.8 0.7 1.0 1.0 1.0 1.0 

Carnavon Xeric Shrubs 2.1 2.1 1.2 2.4 2.8 2.8 3.6 3.6 

Chilean Matorral 0.3 0.3 0.2 0.3 0.6 0.6 0.6 0.6 

Great Sandy-Tanami-Central Ranges Desert 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0 

Horn of Africa Acacia Savannas 0.1 - - - 0.3 - - - 

Madagascar Spiny Thicket - - 0.1 0.1 - - 0.1 0.1 

Mediterranean Forests, Woodlands and Scrub 0.1 0.1 - - - - 0.0 0.0 

Namib-Karoo-Kaokoveld Deserts and Shrublands 0.7 0.0 - - 1.7 1.6 - - 

Northern Australia and Trans-Fly Savannas 0.2 0.2 0.5 0.2 0.3 0.3 0.2 0.2 

Rann of Kutch Flooded Grasslands - - - - 0.1 0.1 0.5 0.5 

Socotra Island Desert - - 4.2 - - - - - 

Sonoran-Baja Deserts - - 4.8 4.7 6.3 6.3 6.4 6.4 

Southern Mexican Dry Forests - - 0.0 0.1 0.7 0.7 0.6 0.6 

Sudd-Sahelian Flooded Grasslands and Savannas - - - - 0.0 0.0 - - 
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3.2 Future siting microalgal biofuel production farms at national scales 

Based on a high-emissions climate change scenario (i.e., RCP 8.5), total microalgal production area 

by 2050 would increase between 56% and 58% compared to 2016 to fulfill a future 30% target in 

transport energy demands per country (Table 1). For Scenario 1, increases in land-cover overlapping 

would be highest for evergreen broadleaf forests, followed by woody savannas, savannas, barren or 

sparsely vegetated lands, and open shrublands (i.e., 148%, 104%, 88%, 81%, and 79%, respectively). 

For Scenario 2, increases in land-cover overlapping would be highest for evergreen broadleaf forests, 

followed by croplands, barren or sparsely vegetated lands, open shrublands, and cropland/natural 

vegetation mosaics (i.e., 166%, 102%, 90%, 66%, and 59%, respectively). 

 

Microalgal production areas for fulfilling 30% of each country’s transport energy demands would 

increase by around 4-fold in India; by around three-fold in most African and non-OECD Asian and 

Oceanian countries and China; and by around two-fold in non-OECD American countries, Middle 

Eastern countries, and Chile. In contrast, the lowest increases in production areas would occur in non-

OECD European and Eurasian countries and most OECD countries (i.e., Australia, Canada, Japan, 

Mexico, New Zealand, United states, South Korea and OECD Europe) (Fig. 5). 

 

 

Figure 5. Microalgal production areas needed to satisfy each country’s 30% transport energy demands in 2050 (log10 scale) under a 

Representative Concentration Pathway (RCP) 8.5 climate change scenario. The width of the circles is proportional to increases in 

microalgal production areas by 2050 compared to 2016 (i.e., ranging from 0.8 in Japan to 4.4 in India between 2016 and 2050). 

Million tonnes of oil equivalent (MTOE). 

 

In around one-quarter of the countries, 30% of future transport energy could be met in lands with 
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Scenarios 1 and 2, respectively) at lower direct competition with food production or biodiversity (i.e., 

median agricultural values lower than 0.22 and 028, and median biodiversity values lower than 0.28 

and 0.31, for Scenarios 1 and 2, respectively) (Figs. 6, 7, 8, and 9). As in 2016, these countries are 

mainly located in Africa, the Middle East, non-OECD Americas, and non-OECD Asia and Oceania, 

and microalgal production would mainly overlap with barren or sparsely vegetated lands and open 

shrublands for the different cultivation scenarios (i.e., ranging from 67 to 89% of total microalgal 

production area within these countries), over less than 6.4% of total land area within each high 

conservation priority ecoregion (Table 3). 

 

For Scenarios 1 and 2, countries that consistently could offer high productivities at lower competition 

with areas of high agricultural and biodiversity (i.e., for 2016 and 2050) correspond to Australia, 

Chile, Djibouti, Egypt, Eritrea, Haiti, Iran, Iraq, Kuwait, Madagascar, Mauritania, Oman, Pakistan, 

Papua New Guinea, Qatar, Saudi Arabia, Somalia, Sudan, United Arab Emirates, and Yemen. 

 

 

Figure 6. Boxplots for agricultural value of lands in areas that fulfill each country’s 30% transport energy demands by 2050, based 

on Scenario 1 (use of fresh, brackish and saltwater sources). Countries with median agricultural values lower than the global median 
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value (i.e., median agricultural value < 0.22) are included. Maximum and minimum values within countries are shown within the 

whiskers.  

Figure 7. Boxplots for agricultural value of lands in areas that fulfill each country’s 30% transport energy demands by 2050, based 

on Scenario 1 (use of fresh, brackish and saltwater sources). Countries with median agricultural values higher than the global median 

value (i.e., median agricultural value ≥ 0.22) are included. Maximum and minimum values within countries are shown within the 

whiskers. 

 

 

Figure 8. Boxplots for biodiversity value of lands in areas that fulfill each country’s 30% transport energy demands by 2050, based on 

Scenario 1 (use of fresh, brackish and saltwater sources). Countries with median biodiversity values lower than the global median 

value (i.e., median biodiversity value < 0.28) are included. Maximum and minimum values within countries are shown within the 

whiskers. 
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Figure 9. Boxplots for biodiversity value of lands in areas that fulfill each country’s 30% transport energy demands by 2050, based on 

Scenario 1 (use of fresh, brackish and saltwater sources). Countries with median biodiversity values higher than the global median 

value (i.e., median biodiversity value ≥ 0.28) are included. Maximum and minimum values within countries are shown within the 

whiskers. 

4. DISCUSSION 

Current and future domestic transport energy demands can be partially fulfilled by microalgal 

biofuels, if reduction in their production costs allow their adoption (Slade and Bauen 2013, Zhu et al. 

2017). However, their overall potential environmental impacts for satisfying domestic transport 

energy needs, including potential direct competition with food production and biodiversity, are 

largely unknown. Based on integer linear programming, we propose best areas for siting microalgal 

production farms for meeting a 30% domestic target for current and future transport energy 

production, aiming at reducing direct competition with agricultural lands and biodiversity. 

Furthermore, we identify countries where minimal overlap with high-value agricultural lands and 

biodiversity would occur while high lipid production levels are achieved, and explore potential 

conflicts with ecoregions of high ecological importance within these countries. 

 

Our analyses show that direct competition among microalgal production, agricultural lands, and 

biodiversity, depend on the availability of areas with high potential microalgal biofuel productivities 

within countries, along with the availability of lands with low biodiversity and agricultural value in 

relation to each country’s transport energy demands. Fulfilling 30% of current domestic transport 

energy demands would require 0.6% of global land area. However, microalgal production areas 
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would be concentrated in countries with high energy consumption levels (i.e., 70% of microalgal 

production areas would occur within the USA, China, Russia, Germany, Canada, Japan, United 

Kingdom, India, Brazil, France, South Korea, Mexico, and Italy). Most of these countries do not offer 

large tracts of human-transformed dry lands for microalgal cultivation—which are less suitable for 

agricultural production (Alexandratos and Bruinsma 2012) and hold lower biodiversity values 

compared to more humid areas (Gaston 2000)—in relation to their high transport energy demands. 

This results in the global overlapping of microalgal production with areas of significant agricultural 

and biodiversity value (i.e., between 65% and 67% of microalgal production would overlap with 

mixed forests, grasslands, croplands, cropland/natural vegetation mosaics, and woody savannas). In 

contrast, previous analyses that do not consider national energy security targets show that best 

microalgal production areas globally would mostly overlap with barren and sparsely vegetation lands 

(i.e., dry areas) along coasts in North and East Africa, the Middle East, and western South America 

(Correa et al. 2019). Additionally, several of these countries are located within the temperate region 

(i.e., Russia, Germany, Canada, United Kingdom, France, South Korea, and Italy)—where biomass 

and lipid microalgal productivities are lower compared to tropical and subtropical regions as a result 

of fluctuating temperatures and solar irradiation (Moody et al. 2014, Venteris et al. 2014)—which 

would result in larger land footprints for fulfilling fixed domestic energy targets. 

 

Microalgal biofuel production increases in low latitudes (Moody et al. 2014, Venteris et al. 2014). 

However, tropical and subtropical countries offer highly productive lands for future agricultural 

intensification and expansion (Alexandratos and Bruinsma 2012, Laurance 2015) and hold the highest 

biodiversity values globally (Dirzo and Raven 2003), which would increase the potential for conflicts 

among microalgal production, food production, and biodiversity in these areas (Correa et al. 2019). 

Countries located in low latitudes, and with available human-transformed dry areas (i.e., where 

agricultural and biodiversity value decrease) in relation to their domestic transport energy demands, 

would offer ideal conditions for fulfilling transport demands at lower direct competition with 

agriculture and biodiversity. In these set of countries—which mainly include emerging and 

developing economies within Africa, the Middle East, non-OECD Americas, and non-OECD Asia 

and Oceania—microalgal production would mostly overlap areas of lower agricultural and 

biodiversity values (i.e., between 90 and 92% of total microalgal production area would overlap with 

barren or sparsely vegetated lands and open shrublands, with median potential agricultural revenues 

of 75–108.5 USD ha-1, a median number of 212–213 vertebrate species, and a median number of 3–

4 threatened vertebrate species). Within these countries, less than 5% of each ecoregion of high 

ecological importance (Olson and Dinerstein 2002) would overlap microalgal production areas, 

mainly in arid and semiarid lands. However, even in these human-transformed dry areas, the 
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minimization of environmental impacts driven by microalgal production, which include habitat loss 

for unique and threatened native species (Olson and Dinerstein 2002, Miles et al. 2006), should be 

considered. 

 

The use of seawater could reduce competition with freshwater (Brauman et al. 2016), however, at 

higher competition with areas of higher agricultural value, with global median agricultural values 

increasing from 0.19 to 0.28 (i.e., from median potential agricultural revenues of 75 USD ha-1 to 108.5 

USD ha-1). Thus, future assessments on best areas for microalgal biofuels at national scales can 

consider trade-offs among freshwater consumption and agricultural value of lands, based on energy 

targets. 

4.1 Future siting of microalgal production farms 

Transport energy demands are expected to increase globally, leading to larger microalgal cultivation 

areas needed to fulfill each country’s 30% domestic transport energy consumption (i.e., an increase 

in microalgal cultivation area between 56% and 58% compared to 2016 for Scenarios 1 and 2, 

respectively). Because the highest increases in microalgal production areas would occur in developing 

economies (i.e., mainly in India, Africa, non-OECD Asia and Oceania, non-OECD Americas, and the 

Middle East), potential conflicts with high-value agricultural lands and biodiverse areas would 

particularly intensify in tropical and subtropical regions (i.e., for Scenario 1, the overlapping among 

microalgal production areas with broadleaf forest, woody savannas, and savannas would increase by 

148%, 104%, and 88%, respectively, and for Scenario 2, the overlapping with broadleaf forests would 

increase by 166%). Countries with available human-transformed dry lands in relation to their 

domestic transport energy demands in tropical and subtropical areas of the world, would offer low 

land footprints at the lowest competition with lands of high agricultural and biodiversity value (Figs. 

6 and 8). As in 2016, these countries would be mainly located in Africa, the Middle East, non-OECD 

Americas, and non-OECD Asia and Oceania, mostly overlapping with barren or sparsely vegetated 

lands and open shrublands (i.e., ranging from 67% to 89% of total microalgal production area).  

 

Overall, for both Scenarios 1 and 2, current and future scaling-up of microalgal biofuel production 

would lead to lower direct conflicts with food production and biodiversity (i.e., in relation to median 

values globally) within Australia, Chile, Djibouti, Egypt, Eritrea, Haiti, Iran, Iraq, Kuwait, 

Madagascar, Mauritania, Oman, Pakistan, Papua New Guinea, Qatar, Saudi Arabia, Somalia, Sudan, 

United Arab Emirates, and Yemen. However, some of these countries are constituted by islands (i.e., 
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Haiti, Madagascar, and Papua New Guinea), where the extinction risk of native endemic species is 

highest compared to the mainland (Kier et al. 2009). Reducing targets in microalgal biofuel 

production would be an option for decreasing potential conflicts with local food production and 

endemic biodiversity in these island countries, particularly in Haiti, where a future 30% microalgal 

production target would require 1.2% of total land area. 

 

While technological improvements (e.g., based on biorefinery systems and cultivation highly 

productive strains) (Chisti 2007, González-González et al. 2018) further reduce land footprints in 

countries with high energy demands, reducing targets in microalgal biofuel production (e.g., from 

30% to 20% or 10%) can help to achieve substantial domestic transport energy demands at lower 

direct competition with food production and biodiversity. Furthermore, future assessments comparing 

microalgal biofuels with counterfactual biofuel production alternatives (e.g., maize, sugarcane, 

soybean, and oil palm), can guide the identification of biofuel alternatives that offer lowest potential 

competition with freshwater, food production and biodiversity for fulfilling increasing targets in 

transport energy demands (Correa et al. 2019). These analyses can consider microalgal biorefinery 

systems—in which food, animal feed, and biofuels can be produced (Uggetti et al. 2014, Vermuë et 

al. 2018)—that make use free CO2 (i.e., from industries and anaerobic digesters) and nutrient sources 

(i.e., from wastewater), considering other measures of land value (e.g., ecosystem services, mining, 

and tourism). 

5. CONCLUSIONS 

Conflicts among microalgal biofuel production, high-value agricultural lands, and biodiverse areas, 

are expected to increase with higher domestic transport energy demands and lack of available human-

transformed dry lands within countries. Countries with enough human-transformed dry lands in 

relation to their transport energy demands, are particularly promising for fulfilling larger domestic 

targets with microalgae at lower direct competition with food production and biodiversity. These 

conditions are met in a large set of developing economies in tropical and subtropical regions of the 

world, mainly located in Africa, the Middle East, non-OECD Americas, and non-OECD Asia and 

Oceania. Reducing targets in microalgal biofuel production would decrease potential conflicts with 

high-value agricultural lands and biodiversity in countries with high energy demands (e.g., in USA, 

China, Russia, Germany, Canada, Japan, United Kingdom, India, Brazil, France, South Korea, 

Mexico, and Italy), as well as in countries where future increases in transport energy demands are 

highest (e.g., developing economies within the tropics and subtropics), in tropical and subtropical 



  

144 

 

countries without available human-transformed dry lands, and in island countries. In spite of the lower 

agricultural and biodiversity value of dry lands compared to more humid regions, and the smaller 

land footprint of microalgal production systems compared to food crops and second generation 

biofuels (Correa et al. 2017, Correa et al. 2019), the eventual expansion of microalgal production 

should consider the minimization of conflicts with the unique and important biodiversity of dry areas, 

particularly for threatened species. Further analyses based on free CO2 (i.e., from industries anaerobic 

digesters) and nutrient sources (i.e., from wastewater), alternative land values (e.g., considering 

ecosystem services and several economic activities such as mining and tourism), and counterfactual 

biofuel production alternatives (e.g., food crops and second generation biofuels), can further refine 

the location of cost-effective areas for siting microalgal production farms at lowest environmental 

costs and at national scales. 
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1. Construction of layers for a global GIS model on microalgal profitability 

A GIS-based multiple-criteria decision analysis (MCDA) was developed for constructing microalgal 

profitability layers (ranging from 0 to 1) for two cultivation scenarios: Scenario 1 (cultivation by 

using fresh/brackish/salt water sources) and Scenario 2 (cultivation by using seawater). Attributes 

that are essential for microalgal cultivation or that can maximize the profitability in microalgal biofuel 

production (i.e., water availability, lipid productivity, availability of flat lands, and proximity to main 

roads and railroads) (Chisti 2007, Schenk et al. 2008, Lundquist et al. 2010, Wigmosta et al. 2011, 

Slade and Bauen 2013, Venteris et al. 2014, Slegers et al. 2015) were considered for this analysis. In 

spite of reducing biofuel production costs, free CO2 and nutrient sources (e.g., CO2 from industries 

and anaerobic digesters, or nutrients from wastewater) were not included in the model, since they are 

inconsistently mapped globally and would limit the amount of land to reach fixed targets in domestic 

transport energy demands. 

 

For constructing the final profitability layers, suitability layers representing each attribute (i.e., water 

availability, lipid productivity, availability of flat lands, and proximity to main roads and railroads) 

were overlaid in ArcGIS 10.5 based on the AND/OR Boolean operators. Without the use of weights, 

the AND Boolean operator retrieves the lowest value among pixels, while the OR Boolean operator 

retrieves the highest values among pixels. Fuzzy logic was applied for constructing each suitability 

layer, which based on the use of linear membership and sigmoid membership functions transforms 

input values into suitability values (i.e., ranging from 0 to 1) (Raines et al. 2010). 

 

A linear function was defined as: 

𝜇(𝑥) = 0 𝑖𝑓 𝑥 < 𝑚𝑖𝑛, 𝜇(𝑥) = 1 𝑖𝑓 𝑥 > 𝑚𝑎𝑥 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝜇(𝑥) =
(𝑥 − 𝑚𝑖𝑛)

(𝑚𝑎𝑥−𝑚𝑖𝑛 )
  

 

Chapter 3. Supplementary Information 
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Where 𝑥 corresponds to each pixel value, 𝑚𝑎𝑥 corresponds to the maximum value among pixels, and 

𝑚𝑖𝑛 corresponds to the minimum value among pixels. 

 

A sigmoid function with large membership (i.e., larger input values result in higher suitability values) 

was defined as: 

𝜇(𝑥) =
1

1 +
𝑥
𝑓2

−𝑓1
 

 

A sigmoid function with small membership (i.e., smaller input values result in higher suitability 

values) was defined as: 

𝜇(𝑥) =
1

1 +
𝑥
𝑓2

𝑓1
 

Where 𝑓1  is the spread of the function (defined as 5) and 𝑓2  is the membership midpoint. The 

midpoints, which are assigned a membership value of 0.5, are shown in Table S1.  

1.1 Microalgal profitability 

Microalgal profitability resulted from overlaying water availability (i.e., fresh/brackish/salt water 

availability for Scenario 1, proximity to oceans for Scenario 2), along with lipid productivity, 

availability of flat lands, and proximity to transport networks, using the AND Boolean operator (Figs. 

S1 and S2). For Scenario 1, water availability (excluding oceans) after taking into account water 

depletion was overlaid with the aridity index—which corresponds to the ratio between mean annual 

precipitation and mean annual potential evapotranspiration (Trabucco and Zomer 2009)—and with 

the proximity to oceans, using the OR Boolean operator. Water availability excluding oceans was 

overlaid with water depletion driven by human activities (Brauman et al. 2016), using the AND 

Boolean operator. Water availability excluding oceans resulted from overlaying the proximity to 

rivers, proximity to irrigation dams, and proximity to fresh/brackish/salt groundwater sources, using 

the OR Boolean operator. 

 

Considering restrictions in water use, a recharge/discharge membership midpoint of 1.8 km3 year-1 

was used for selecting suitable rivers, irrigation dams, and groundwater basins (Correa et al. 2019). 

For rivers, mean annual peak discharge was calculated. Thus, available water from rivers is expected 

to further decrease and limit microalgal cultivation. 
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The water depletion layer was obtained by rescaling the original water depletion percentages within 

watersheds obtained by Brauman et al. (2016) into suitability values ranging from 0 to 1 (Table S2). 

The proximity to rivers, irrigation dams, fresh/brackish/salt groundwater sources, oceans, and 

transport networks was based on the use of a cost layer (i.e., cost distance) based on slope, in which 

the slope was rescaled through a linear function into values ranging from 1 to 10. 

 

 

Figure S1. Overlaying of suitability layers for the development of a profitability model for siting microalgal farms for biodiesel 

production at a global scale. Scenario 1: Use of fresh, brackish or salt water. 

 

 

 

Figure S2. Overlaying of suitability layers for the development of a profitability model for siting microalgal farms for biodiesel 

production at a global scale. Scenario 2: Use of seawater. 
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1.2 Projection of rasters 

Rasters were transformed into the Eckert-IV equal-area pseudocylindrical map projection. The 

potential annual gross economic rents from agricultural lands was resampled to a resolution of 5 × 5 

km by using the Nearest Neighbor resampling method, while the number of vertebrate species, the 

number of threatened vertebrate species, and the number of species with small distribution ranges, 

were resampled to a resolution of 5 × 5 km based on the Bilinear Interpolation resampling method.  
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Table S1. Description of layers and membership functions used for the development of a profitability model for microalgal biofuel production and for the construction of layers on agricultural and 

biodiversity value. Sigmoid Large: larger entry values have higher suitability. Sigmoid Small: lower entry values have higher suitability. Not Applicable (NA). 

Layers Description 

Original 

spatial 

resolution for 

rasters 

Type of 

membership 

function 

Membership 

midpoint 
Source 

Aridity index 

Quantification of precipitation availability over atmospheric water demand. Aridity 
Index (AI) = MAP/MAE, where MAP = Mean Annual Precipitation and MAE = Mean 

Annual potential Evapotranspiration. 

30 arcseconds Sigmoid Large 
 
1 

 

Global aridity and PET database (Trabucco and 

Zomer 2009) 

Proximity to rivers 
Cost distance to permanent rivers with annual discharge ≥ 1.8 km3 year-1. Based on 

annual peak discharge. 
NA Sigmoid Small 50 km 

Layer based on HydroSHEDS (Lehner et al. 2008), 
Vmap0 for permanent streams http://gis-

lab.info/qa/vmap0-eng.html and river bankfull width 

(Andreadis et al. 2013). 

Proximity to 

irrigation dams 
Cost distance to irrigation dams with annual recharge ≥ 1.8 km3 year-1 NA 

 

Sigmoid 

Small 
 

50 km GRanDv1 database (Lehner et al. 2011) 

Proximity to 

fresh/brackish/ salt 

groundwater sources 

Cost distance to fresh/brackish/salt groundwater global aquifers with annual recharge 

≥ 1.8 km3 year-1. Excludes areas with complex hydrogeological structures, and areas 
with local and shallow aquifers. 

NA Sigmoid Small 

 

50 km 
 

Groundwater Resources of the World 1: 25 000 000. 

(BGR & UNESCO 2008) 

Water depletion 
Water availability based on the fraction of renewable water consumptively used for 

human activities within a watershed. 
NA 

NA. See Table 

S2  
NA 

Layer based water depletion metric within 

watersheds (Brauman et al. 2016) 

Proximity to oceans Cost distance to oceans NA Sigmoid Small 50 km Oceans v.3.00 http://www.naturalearthdata.com 

Lipid productivity 

Estimation of lipid productivity based on 4,388 lipid point estimates for the cultivation 

of Nannochloropsis sp. in photobioreactors (Moody et al. 2014), using as predictors 
mean annual radiation and the residuals of mean annual temperature explained by 

radiation. Future mean annual temperature (by 2050) was obtained based on an 

ensemble model for the Representative Concentration Pathway (RCP) 8.5 (i.e., high 
emissions scenario), by averaging mean annual temperatures among the following 

General Circulation Models (GCMs): BCC-CSM1-1, CCSM4, GISS-E2-R, IPSL-

CM5A-LR, HadGEM2-ES, MIROC-ESM-CHEM, MRI-CGCM3, and NorESM1-M 
(Hijmans et al. 2005). 

5 × 5 km Linear NA 

Layer based on lipid productivity estimates (Moody 

et al. 2014), and WorldClim v.1.4 and v2 (Hijmans 
et al. 2005).  

Availability of flat 

lands 
Terrain slope 30 arcseconds Sigmoid Small 5° 

Layer derived from GTOPO30 DEM 

https://lta.cr.usgs.gov/GTOPO30 
Proximity to 

transport networks 
Cost distance to roads and railroads NA Sigmoid Small 50 km 

Roads and railroads v. 3.0.0 

http://www.naturalearthdata.com 

Agricultural value Potential annual gross economic rents from agricultural lands 
300 
arcseconds 

Linear NA 
Potential annual gross economic rents from 
agricultural lands (Naidoo and Iwamura 2007) 

Number of 

vertebrate species 

Number of vertebrate species (considering amphibians, birds, and mammals) based on 

IUCN species distribution maps, Bird Life International, and Nature Serve 

 

10 × 10 km  

 

Linear  
NA Biodiversity maps (Jenkins et al. 2013) 

Number of 

threatened 

vertebrate species 

Number of threatened vertebrate species (considering amphibians, birds, and 

mammals) based on IUCN distribution maps, Bird Life International, and Nature Serve  
10 × 10 km 

 

Linear  
NA Biodiversity maps (Jenkins et al. 2013) 

Number of 

vertebrate species 

with small 

distribution ranges 

Number of vertebrate species with small distribution ranges (considering amphibians, 

birds, and mammals) based on IUCN distribution maps, Bird Life International, and 

Nature Serve 

10 × 10 km Linear NA Biodiversity maps (Jenkins et al. 2013) 

Presence of islands Islands NA Sigmoid Small 15,000 km2  Layer based on GADM database http://gadm.org/ 

http://gis-lab.info/qa/vmap0-eng.html
http://gis-lab.info/qa/vmap0-eng.html
http://www.naturalearthdata.com/
https://lta.cr.usgs.gov/GTOPO30
http://www.naturalearthdata.com/
http://gadm.org/
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Presence of areas 

with low human 

pressures 

Measure of human pressures (no pressure, low pressure, moderate pressure, high 

pressure, very high pressure) based on the presence of built environments, croplands, 
pastures, human population density, night-time lights, railways, roads, and navigable 

waterways. 

1 × 1 km Sigmoid Small 4 Human footprint (Venter et al. 2016) 

Presence of 

mangroves 
Percentage of mangroves covering each pixel (i.e., 25 km2) 

 
NA 

 

Linear NA Global distribution of mangroves (Giri et al. 2011) 
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1.3 Future aridity index and lipid productivity 

For each Representative Concentration Pathway (RCP) (i.e., 2.6, 4.6, 6.0, and 8.5) we constructed an 

ensemble model by averaging mean monthly temperatures, minimum monthly temperatures, 

maximum monthly temperatures, and mean annual precipitation values among the following General 

Circulation Models (GCMs): BCC-CSM1-1, CCSM4, GISS-E2-R, IPSL-CM5A-LR, HadGEM2-ES, 

MIROC-ESM-CHEM, MRI-CGCM3, and NorESM1-M (Hijmans et al. 2005). The RCP 8.5, which 

corresponds to a high emissions scenario (Riahi et al. 2011), was used to find potential microalgal 

production areas with high profitabilities and low direct competition with food production and 

biodiversity by 2050. A difference in radiative forcing of around 2 W m-2 (i.e., equivalent to about 1° 

C in global mean surface air temperature) is predicted between the low emissions RCP 2.5 and the 

high emissions RCP 8.5 by 2050 (van Vuuren et al. 2011, Pachauri et al. 2014). This change did not 

substantially alter best areas for growing microalgae globally. 

 

The aridity index was calculated by dividing the mean annual precipitation by the mean annual 

potential evapotranspiration (Trabucco and Zomer 2009). The mean daily potential 

evapotranspiration was calculated based on the Hargreaves model (Hargreaves and Samani 1985, 

Hargreaves and Allen 2003), which has been considered suitable for predicting potential 

evapotranspiration globally (Trabucco and Zomer 2009). 

 

𝑃𝐸𝑇 =  0.0023 ∗  𝑅𝐴 ∗  (𝑇 +  17.8) ∗  𝑇𝑅0.5 

 

Where 𝑃𝐸𝑇  (mm day-1) is daily potential evapotranspiration, 𝑅𝐴 is the extra-terrestrial radiation 

(expressed in mm day-1), 𝑇 is the mean daily temperature (°C), and 𝑇𝑅 is the mean daily temperature 

range as a proxy to describe the effect of cloud cover on the quantity of extra-terrestrial radiation that 

reaches the land surface (Trabucco and Zomer 2009). Because daily means for the several variables 

are not available, monthly means are used. The summation of the daily PET along the year resulted 

in the annual potential evapotranspiration. 

 

A multiple linear regression model was developed to predict lipid productivity globally by using 

4,388 lipid point productivity estimates for the cultivation of Nannochloropsis sp. in photobioreactors 

(Moody et al. 2014). We used the package “raster” (Hijmans et al. 2017) and the software R 3.4.2, 

using as predictors the mean annual radiation and the residuals of mean annual temperature explained 
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by radiation (Hijmans et al. 2005, Fick and Hijmans 2017), allowing the estimation of lipid 

productivities in areas with lower density in point estimates (e.g., mountains) (Correa et al. 2019). 

The future mean annual temperature was obtained based on the RCP 8.5 ensemble model. 

1.4 Agricultural and biodiversity value 

The agricultural value (i.e., the potential annual gross economic rents from agricultural lands) was 

rescaled using a linear function with a maximum value of 800 USD ha-1, which corresponds to highly 

profitable lands (Naidoo and Iwamura 2007). Biodiversity value resulted from overlaying the number 

of vertebrate species, the number of threatened vertebrate species, and the number of vertebrate 

species with small distribution ranges (i.e., considering amphibians, birds, and mammals) (Jenkins et 

al. 2013), along with the presence of islands (which compared to the mainland harbor more endemic 

species and populations) (Kier et al. 2009, Tershy et al. 2015, McCreless et al. 2016), the presence of 

areas with low human pressures (i.e., based on the Global Human Footprint) (Venter et al. 2016), and 

the presence of mangroves (Giri et al. 2011), using the OR Boolean operator. 

 

Table S2. Reclassification of original values for water depletion categories (Brauman et al. 2016) into suitability values ranging from 

0 to 1. 

Water depletion categories Suitability values 

<5% depleted 0.95 

5–25% depleted 0.75 

25–50% depleted 0.5 

50–75% depleted  0.25 

Dry-year depleted 0.25 

Seasonally depleted 0.25 

75–100% depleted 0 

100% depleted 0 

2. Countries included in the analyses 

Table S3 shows the different countries included in the analyses. Here, countries are defined as 

sovereign states or administrative units with an associated ISO based on the GADM database v.2. 

The following countries—which excluding the Antartica and Greenland represent 0.25% of global 

land area—were not considered: Åland, American Samoa, Andorra, Antarctica, Bouvet Island, 

British Indian Ocean Territory, Christmas Island, Cocos Islands, Faroe Islands, French Southern 

Territories, Greenland, Guam, Guernsey, Heard Island and McDonald Islands, Isle of Man, Jersey, 

Liechtenstein, Marshall Islands, Mayotte, Micronesia, Monaco, Nauru, Niue, Norfolk Island, 
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Northern Mariana Islands, Palau, Palestina, Pitcairn Islands, Saint Helena, Saint-Barthélemy, Saint-

Martin, San Marino, South Georgia and the South Sandwich Islands, Spratly islands, Svalbard and 

Jan Mayen, Tokelau, Tuvalu, United States Minor Outlying Islands, Vatican City, Virgin Islands 

U.S., Wallis and Futuna, and Western Sahara. 

Table S3. Current and future transport energy demands for the different countries included in the analyses. The annual growth on 

transport energy consumption is shown per economic region (EIA 2016). Following EIA (2016), Turkey and Israel are considered part 

of OECD Europe. Million tonnes of oil equivalent (MTOE). 

ISO Country Region Landlocked Annual 

increase in 

transport 

demands 

(%) 

Transport 

demands 

2016 

(MTOE) 

Transport 

demands 

2050 

(MTOE) 

DZA Algeria Africa No 3.1 15.13 42.72 

AGO Angola Africa No 3.1 2.75 7.77 

BEN Benin Africa No 3.1 1.59 4.49 

BWA Botswana Africa Yes 3.1 0.83 2.34 

BFA Burkina Faso Africa Yes 3.1 0.43 1.21 

BDI Burundi Africa Yes 3.1 0.24 0.68 

CMR Cameroon Africa No 3.1 1.08 3.05 

CPV Cape Verde Africa No 3.1 0.01 0.03 

CAF Central African Republic Africa Yes 3.1 0.10 0.29 

TCD Chad Africa Yes 3.1 0.33 0.94 

COM Comoros Africa No 3.1 0.02 0.05 

CIV Côte d'Ivoire Africa No 3.1 1.20 3.39 

COD Democratic Republic of the 

Congo 

Africa No 3.1 0.63 1.78 

DJI Djibouti Africa No 3.1 0.02 0.06 

EGY Egypt Africa No 3.1 18.69 52.77 

GNQ Equatorial Guinea Africa No 3.1 0.03 0.08 

ERI Eritrea Africa No 3.1 0.06 0.17 

ETH Ethiopia Africa Yes 3.1 1.74 4.91 

GAB Gabon Africa No 3.1 0.27 0.76 

GMB Gambia Africa No 3.1 0.05 0.13 

GHA Ghana Africa No 3.1 2.42 6.83 

GIN Guinea Africa No 3.1 0.28 0.80 

GNB Guinea-Bissau Africa No 3.1 0.04 0.12 

KEN Kenya Africa No 3.1 2.94 8.30 

LSO Lesotho Africa Yes 3.1 0.05 0.14 

LBR Liberia Africa No 3.1 0.11 0.30 

LBY Libya Africa No 3.1 7.09 20.02 

MDG Madagascar Africa No 3.1 0.57 1.61 

MWI Malawi Africa Yes 3.1 0.42 1.17 

MLI Mali Africa Yes 3.1 0.41 1.17 

MRT Mauritania Africa No 3.1 0.10 0.28 

MUS Mauritius Africa No 3.1 0.38 1.07 

MAR Morocco Africa No 3.1 5.58 15.76 

MOZ Mozambique Africa No 3.1 1.28 3.61 

NAM Namibia Africa No 3.1 0.75 2.12 

NER Niger Africa Yes 3.1 0.39 1.10 

NGA Nigeria Africa No 3.1 17.25 48.71 

COG Republic of Congo Africa No 3.1 0.67 1.89 

REU Reunion Africa No 3.1 0.02 0.05 

RWA Rwanda Africa Yes 3.1 0.27 0.77 

STP Sao Tome and Principe Africa No 3.1 0.01 0.01 

SEN Senegal Africa No 3.1 0.97 2.74 

SYC Seychelles Africa No 3.1 0.00 0.01 

SLE Sierra Leone Africa No 3.1 0.17 0.48 

SOM Somalia Africa No 3.1 0.33 0.93 

ZAF South Africa Africa No 3.1 18.80 53.08 

SSD South Sudan Africa Yes 3.1 0.32 0.90 

SDN Sudan Africa No 3.1 3.14 8.87 
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SWZ Swaziland Africa No 3.1 0.03 0.09 

TZA Tanzania Africa No 3.1 2.30 6.49 

TGO Togo Africa No 3.1 0.51 1.44 

TUN Tunisia Africa No 3.1 2.45 6.92 

UGA Uganda Africa Yes 3.1 0.96 2.70 

ZMB Zambia Africa Yes 3.1 0.40 1.13 

ZWE Zimbabwe Africa Yes 3.1 0.64 1.81 

BHR Bahrain Middle East No 1.9 1.22 2.31 

IRN Iran Middle East No 1.9 44.84 85.03 

IRQ Iraq Middle East No 1.9 8.49 16.10 

JOR Jordan Middle East No 1.9 2.77 5.25 

KWT Kuwait Middle East No 1.9 4.79 9.08 

LBN Lebanon Middle East No 1.9 1.95 3.70 

OMN Oman Middle East No 1.9 4.17 7.91 

QAT Qatar Middle East No 1.9 4.37 8.29 

SAU Saudi Arabia Middle East No 1.9 45.80 86.85 

SYR Syria Middle East No 1.9 2.15 4.08 

ARE United Arab Emirates Middle East No 1.9 11.69 22.17 

YEM Yemen Middle East No 1.9 0.94 1.78 

AIA Anguilla non-OECD Americas No 2.5 0.00 0.01 

ATG Antigua and Barbuda non-OECD Americas No 2.5 0.03 0.07 

ARG Argentina non-OECD Americas No 2.5 17.51 40.54 

ABW Aruba non-OECD Americas No 2.5 0.03 0.07 

BHS Bahamas non-OECD Americas No 2.5 0.11 0.25 

BRB Barbados non-OECD Americas No 2.5 0.08 0.18 

BLZ Belize non-OECD Americas No 2.5 0.10 0.24 

BMU Bermuda non-OECD Americas No 2.5 0.02 0.04 

BOL Bolivia non-OECD Americas Yes 2.5 2.86 6.62 

BES Bonaire, Saint Eustatius and Saba non-OECD Americas No 2.5 0.01 0.02 

BRA Brazil non-OECD Americas No 1.7 82.96 147.16 

VGB British Virgin Islands non-OECD Americas No 2.5 0.01 0.02 

CYM Cayman Islands non-OECD Americas No 2.5 0.02 0.04 

COL Colombia non-OECD Americas No 2.5 10.65 24.66 

CRI Costa Rica non-OECD Americas No 2.5 1.89 4.38 

CUB Cuba non-OECD Americas No 2.5 0.55 1.27 

CUW Curaçao non-OECD Americas No 2.5 0.36 0.83 

DMA Dominica non-OECD Americas No 2.5 0.02 0.05 

DOM Dominican Republic non-OECD Americas No 2.5 2.04 4.72 

ECU Ecuador non-OECD Americas No 2.5 5.58 12.92 

SLV El Salvador non-OECD Americas No 2.5 1.17 2.71 

FLK Falkland Islands non-OECD Americas No 2.5 0.00 0.00 

GUF French Guiana non-OECD Americas No 2.5 0.07 0.17 

GRD Grenada non-OECD Americas No 2.5 0.03 0.07 

GLP Guadeloupe non-OECD Americas No 2.5 0.13 0.29 

GTM Guatemala non-OECD Americas No 2.5 2.69 6.23 

GUY Guyana non-OECD Americas No 2.5 0.22 0.50 

HTI Haiti non-OECD Americas No 2.5 0.47 1.09 

HND Honduras non-OECD Americas No 2.5 1.36 3.15 

JAM Jamaica non-OECD Americas No 2.5 0.64 1.48 

MTQ Martinique non-OECD Americas No 2.5 0.11 0.25 

MSR Montserrat non-OECD Americas No 2.5 0.00 0.00 

NIC Nicaragua non-OECD Americas No 2.5 0.78 1.81 

PAN Panama non-OECD Americas No 2.5 1.56 3.61 

PRY Paraguay non-OECD Americas Yes 2.5 2.13 4.93 

PER Peru non-OECD Americas No 2.5 7.87 18.22 

PRI Puerto Rico non-OECD Americas No 2.5 0.92 2.14 

KNA Saint Kitts and Nevis non-OECD Americas No 2.5 0.02 0.04 

LCA Saint Lucia non-OECD Americas No 2.5 0.05 0.12 

SPM Saint Pierre and Miquelon non-OECD Americas No 2.5 0.00 0.00 

VCT Saint Vincent and the Grenadines non-OECD Americas No 2.5 0.03 0.07 

SMX Sint Maarten non-OECD Americas No 2.5 0.01 0.03 

SUR Suriname non-OECD Americas No 2.5 0.20 0.46 

TTO Trinidad and Tobago non-OECD Americas No 2.5 1.24 2.87 
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TCA Turks and Caicos Islands non-OECD Americas No 2.5 0.01 0.02 

URY Uruguay non-OECD Americas No 2.5 1.28 2.96 

VEN Venezuela non-OECD Americas No 2.5 13.62 31.54 

AFG Afghanistan non-OECD Asia and Oceania Yes 2.9 2.73 7.20 

BGD Bangladesh non-OECD Asia and Oceania No 2.9 3.45 9.12 

BTN Bhutan non-OECD Asia and Oceania Yes 2.9 0.06 0.16 

BRN Brunei non-OECD Asia and Oceania No 2.9 0.45 1.19 

KHM Cambodia non-OECD Asia and Oceania No 2.9 1.68 4.44 

CHN China non-OECD Asia and Oceania No 2.7 298.19 737.71 

COK Cook Islands non-OECD Asia and Oceania No 2.9 0.00 0.00 

TLS East Timor non-OECD Asia and Oceania No 2.9 0.10 0.26 

FJI Fiji non-OECD Asia and Oceania No 2.9 0.07 0.18 

PYF French Polynesia non-OECD Asia and Oceania No 2.9 0.02 0.06 

HKG Hong Kong non-OECD Asia and Oceania No 2.9 2.58 6.82 

IND India non-OECD Asia and Oceania No 4.4 89.95 388.88 

IDN Indonesia non-OECD Asia and Oceania No 2.9 47.25 124.89 

KIR Kiribati non-OECD Asia and Oceania No 2.9 0.01 0.02 

LAO Laos non-OECD Asia and Oceania Yes 2.9 0.53 1.39 

MAC Macao non-OECD Asia and Oceania No 2.9 0.05 0.13 

MYS Malaysia non-OECD Asia and Oceania No 2.9 21.58 57.04 

MDV Maldives non-OECD Asia and Oceania No 2.9 0.03 0.09 

MNG Mongolia non-OECD Asia and Oceania Yes 2.9 0.58 1.53 

MM

R 

Myanmar non-OECD Asia and Oceania No 2.9 1.71 4.52 

NPL Nepal non-OECD Asia and Oceania Yes 2.9 1.28 3.38 

NCL New Caledonia non-OECD Asia and Oceania No 2.9 0.02 0.06 

PRK North Korea non-OECD Asia and Oceania No 2.9 0.48 1.27 

PAK Pakistan non-OECD Asia and Oceania No 2.9 15.66 41.39 

PNG Papua New Guinea non-OECD Asia and Oceania No 2.9 0.63 1.67 

PHL Philippines non-OECD Asia and Oceania No 2.9 11.46 30.29 

WSM Samoa non-OECD Asia and Oceania No 2.9 0.02 0.04 

SGP Singapore non-OECD Asia and Oceania No 2.9 2.37 6.26 

SLB Solomon Islands non-OECD Asia and Oceania No 2.9 0.05 0.12 

LKA Sri Lanka non-OECD Asia and Oceania No 2.9 3.10 8.19 

TWN Taiwan non-OECD Asia and Oceania No 2.9 12.83 33.91 

THA Thailand non-OECD Asia and Oceania No 2.9 25.20 66.61 

TON Tonga non-OECD Asia and Oceania No 2.9 0.01 0.02 

VUT Vanuatu non-OECD Asia and Oceania No 2.9 0.02 0.06 

VNM Vietnam non-OECD Asia and Oceania No 2.9 12.28 32.46 

ALB Albania non-OECD Europe and Eurasia No 1 0.83 1.16 

ARM Armenia non-OECD Europe and Eurasia Yes 1 0.62 0.87 

AZE Azerbaijan non-OECD Europe and Eurasia Yes 1 2.27 3.18 

BLR Belarus non-OECD Europe and Eurasia Yes 1 3.79 5.32 

BIH Bosnia and Herzegovina non-OECD Europe and Eurasia No 1 1.19 1.67 

BGR Bulgaria non-OECD Europe and Eurasia No 1 3.29 4.61 

HRV Croatia non-OECD Europe and Eurasia No 1 2.05 2.88 

CYP Cyprus non-OECD Europe and Eurasia No 1 0.65 0.91 

GEO Georgia non-OECD Europe and Eurasia No 1 1.46 2.05 

GIB Gibraltar non-OECD Europe and Eurasia No 1 0.15 0.21 

KAZ Kazakhstan non-OECD Europe and Eurasia Yes 1 5.47 7.67 

KO- Kosovo non-OECD Europe and Eurasia Yes 1 0.39 0.55 

KGZ Kyrgyzstan non-OECD Europe and Eurasia Yes 1 1.14 1.60 

LTU Lithuania non-OECD Europe and Eurasia No 1 1.87 2.62 

MKD Macedonia non-OECD Europe and Eurasia Yes 1 0.68 0.95 

MLT Malta non-OECD Europe and Eurasia No 1 0.20 0.28 

MDA Moldova non-OECD Europe and Eurasia Yes 1 0.69 0.97 

MNE Montenegro non-OECD Europe and Eurasia No 1 0.22 0.31 

ROU Romania non-OECD Europe and Eurasia No 1 5.82 8.16 

RUS Russia non-OECD Europe and Eurasia No 1 94.29 132.25 

SRB Serbia non-OECD Europe and Eurasia Yes 1 2.03 2.85 

TJK Tajikistan non-OECD Europe and Eurasia Yes 1 0.43 0.60 

TKM Turkmenistan non-OECD Europe and Eurasia Yes 1 4.33 6.07 

UKR Ukraine non-OECD Europe and Eurasia No 1 9.18 12.88 

UZB Uzbekistan non-OECD Europe and Eurasia Yes 1 2.24 3.14 
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CAN Canada OECD Americas No 0.1 61.13 63.24 

CHL Chile OECD Americas No 1.2 8.84 13.26 

MEX Mexico OECD Americas No 1.2 52.94 79.42 

USA United States OECD Americas No 0.1 626.10 647.74 

AUS Australia OECD Asia and Oceania No 1 32.92 46.17 

JPN Japan OECD Asia and Oceania No -0.7 72.41 57.03 

NZL New Zealand OECD Asia and Oceania No 1 4.89 6.86 

KOR South Korea OECD Asia and Oceania No 0.8 35.42 46.44 

AUT Austria OECD Europe Yes 0.2 8.58 9.18 

BEL Belgium OECD Europe No 0.2 9.09 9.73 

CZE Czech Republic OECD Europe Yes 0.2 6.53 6.99 

DNK Denmark OECD Europe No 0.2 4.19 4.49 

EST Estonia OECD Europe No 0.2 0.79 0.85 

FIN Finland OECD Europe No 0.2 4.31 4.61 

FRA France OECD Europe No 0.2 44.06 47.16 

DEU Germany OECD Europe No 0.2 57.17 61.19 

GRC Greece OECD Europe No 0.2 5.92 6.34 

HUN Hungary OECD Europe Yes 0.2 4.37 4.68 

ISL Iceland OECD Europe No 0.2 0.33 0.35 

IRL Ireland OECD Europe No 0.2 4.05 4.34 

ISR Israel OECD Europe No 0.2 5.87 6.28 

ITA Italy OECD Europe No 0.2 36.13 38.67 

LVA Latvia OECD Europe No 0.2 1.07 1.15 

LUX Luxembourg OECD Europe Yes 0.2 1.93 2.07 

NLD Netherlands OECD Europe No 0.2 10.47 11.21 

NOR Norway OECD Europe No 0.2 4.81 5.15 

POL Poland OECD Europe No 0.2 18.67 19.98 

PRT Portugal OECD Europe No 0.2 5.61 6.00 

SVK Slovakia OECD Europe Yes 0.2 2.45 2.62 

SVN Slovenia OECD Europe No 0.2 1.88 2.01 

ESP Spain OECD Europe No 0.2 30.83 33.00 

SWE Sweden OECD Europe No 0.2 8.22 8.80 

CHE Switzerland OECD Europe Yes 0.2 5.72 6.12 

TUR Turkey OECD Europe No 0.2 26.69 28.57 

GBR United Kingdom OECD Europe No 0.2 41.09 43.98 

3. Countries with high productivities and lower direct competition with high-

value agricultural lands and biodiversity 

Best countries for siting microalgal biofuel production farms (i.e., high potential lipid productivities) 

at the lowest direct competition with high-value agricultural and biodiverse lands are shown for 

Scenario 1 (Tables S4, S5) and Scenario 2 (Tables S6, S7). 

 

Table S4. Countries that offer higher potential lipid productivities (i.e., median values higher than 20.3 m3 ha-1 year-1) with lower 

direct competition with agricultural lands  (i.e., median agricultural values lower than 0.19) in 2016 for Scenario 1 (i.e., use of 

fresh/brackish and salt water for microalgal cultivation). 

Region Country Median lipid productivity (m3 ha-1 year-1) Median agricultural value 

Africa Chad 24.0 0.00 

Africa Egypt 23.3 0.00 

Africa Namibia 21.8 0.00 

Africa Algeria 20.4 0.00 

Africa Sudan 23.7 0.00 

Africa Eritrea 24.0 0.00 

Africa Somalia 24.5 0.00 
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Africa South Africa 21.5 0.00 

Africa Djibouti 24.2 0.00 

Africa Mauritania 23.9 0.00 

Africa Mali 24.1 0.01 

Africa Niger 23.4 0.01 

Africa Kenya 22.8 0.01 

Africa Botswana 22.1 0.02 

Africa Togo 22.1 0.06 

Africa Senegal 23.9 0.09 

Africa Ethiopia 23.3 0.09 

Africa Madagascar 22.7 0.10 

Africa Guinea 22.5 0.17 

Middle East United Arab Emirates 23.7 0.00 

Middle East Oman 23.3 0.00 

Middle East Yemen 24.0 0.00 

Middle East Iran 22.1 0.00 

Middle East Saudi Arabia 22.9 0.00 

Middle East Iraq 21.1 0.00 

Middle East Qatar 21.7 0.00 

Middle East Bahrain 21.6 0.00 

Middle East Kuwait 21.5 0.03 

non-OECD Americas Venezuela 22.1 0.03 

non-OECD Americas Haiti 21.1 0.10 

non-OECD Asia and Oceania Pakistan 21.8 0.00 

non-OECD Asia and Oceania Vanuatu 21.0 0.10 

non-OECD Asia and Oceania Solomon Islands 21.5 0.10 

non-OECD Asia and Oceania Papua New Guinea 21.7 0.16 

OECD Americas Chile 20.5 0.00 

OECD Asia and Oceania Australia 24.1 0.01 

 

Table S5. Countries that offer higher potential lipid productivities (i.e., median values higher than 20.3 m3 ha-1 year-1) with lower 

direct competition with biodiverse lands (i.e., median biodiversity values lower than 0.28) in 2016 for Scenario 1 (i.e., use of 

fresh/brackish and salt water for microalgal cultivation). 

Region Country Median lipid productivity (m3 ha-1 year-1) Median biodiversity value 

Africa Mauritania 23.9 0.09 

Africa Sudan 23.7 0.11 

Africa Egypt 23.3 0.12 

Africa Algeria 20.4 0.12 

Africa Somalia 24.5 0.14 

Africa Madagascar 22.7 0.16 

Africa Chad 24.0 0.17 

Africa Niger 23.4 0.22 

Africa Mali 24.1 0.25 

Africa Namibia 21.8 0.27 

Africa Djibouti 24.2 0.27 

Africa Eritrea 24.0 0.28 

Middle East Iraq 21.1 0.06 

Middle East Bahrain 21.6 0.06 

Middle East Yemen 24.0 0.10 

Middle East Qatar 21.7 0.11 

Middle East Saudi Arabia 22.9 0.12 

Middle East Kuwait 21.5 0.12 

Middle East United Arab Emirates 23.7 0.13 

Middle East Oman 23.3 0.15 

Middle East Iran 22.1 0.17 

non-OECD Americas Dominican Republic 21.0 0.20 

non-OECD Americas Haiti 21.1 0.22 

non-OECD Americas Cuba 22.1 0.26 
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non-OECD Asia and Oceania Pakistan 21.8 0.17 

non-OECD Asia and Oceania Papua New Guinea 21.7 0.24 

OECD Americas Chile 20.5 0.08 

OECD Asia and Oceania Australia 24.1 0.23 

 

Table S6. Countries that offer higher potential lipid productivities (i.e., median values higher than 20.2 m3 ha-1 year-1) with lower 

direct competition with agricultural lands (i.e., median agricultural values lower than 0.28) in 2016 for Scenario 2 (i.e., use of seawater 

for microalgal cultivation). 

Region Country Median lipid productivity (m3 ha-1 year-1) Median agricultural value 

Africa Egypt 22.3 0.00 

Africa Sudan 22.4 0.00 

Africa Eritrea 24.0 0.00 

Africa Somalia 24.5 0.00 

Africa Djibouti 24.2 0.00 

Africa Mauritania 22.6 0.00 

Africa Senegal 22.4 0.08 

Africa Madagascar 22.0 0.17 

Africa Gambia 22.5 0.19 

Middle East United Arab Emirates 23.7 0.00 

Middle East Oman 23.3 0.00 

Middle East Yemen 24.0 0.00 

Middle East Iran 22.2 0.00 

Middle East Saudi Arabia 22.9 0.00 

Middle East Qatar 21.7 0.00 

Middle East Bahrain 21.6 0.00 

Middle East Iraq 21.1 0.02 

Middle East Kuwait 21.5 0.03 

non-OECD Americas Venezuela 22.1 0.03 

non-OECD Americas Haiti 21.1 0.10 

non-OECD Americas Jamaica 22.2 0.27 

non-OECD Asia and Oceania Pakistan 21.8 0.00 

non-OECD Asia and Oceania Vanuatu 21.0 0.10 

non-OECD Asia and Oceania Solomon Islands 21.5 0.10 

non-OECD Asia and Oceania Papua New Guinea 21.7 0.16 

non-OECD Asia and Oceania Cambodia 20.8 0.24 

OECD Americas Chile 20.5 0.00 

OECD Americas Mexico 20.2 0.02 

OECD Asia and Oceania Australia 24.0 0.01 

 

Table S7. Countries that offer higher potential lipid productivities (i.e., median values higher than 20.2 m3 ha-1 year-1) with lower 

direct competition with biodiverse lands (i.e., median biodiversity values lower than 0.28) in 2016 for Scenario 2 (i.e., use of seawater 

for microalgal cultivation). 

Region Country Median lipid productivity (m3 ha-1 year-1) Median biodiversity value 

Africa Egypt 22.3 0.12 

Africa Somalia 24.5 0.14 

Africa Sudan 22.4 0.15 

Africa Mauritania 22.6 0.16 

Africa Madagascar 22.0 0.18 

Africa Djibouti 24.2 0.27 

Africa Eritrea 24.0 0.28 

Middle East Bahrain 21.6 0.06 

Middle East Yemen 24.0 0.10 

Middle East Qatar 21.7 0.11 

Middle East Saudi Arabia 22.9 0.12 

Middle East Kuwait 21.5 0.12 

Middle East United Arab Emirates 23.7 0.13 
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Middle East Oman 23.3 0.15 

Middle East Iran 22.2 0.17 

Middle East Iraq 21.1 0.19 

non-OECD Americas Dominican Republic 21.0 0.20 

non-OECD Americas Haiti 21.1 0.22 

non-OECD Americas Cuba 22.1 0.26 

non-OECD Asia and Oceania Pakistan 21.8 0.17 

non-OECD Asia and Oceania Papua New Guinea 21.7 0.24 

non-OECD Asia and Oceania East Timor 22.5 0.28 

OECD Americas Chile 20.5 0.08 

OECD Americas Mexico 20.2 0.24 

OECD Asia and Oceania Australia 24.0 0.23 

 

Table S8 shows the overlapping among microalgal cultivation areas and ecoregions of high ecological 

priority (Olson and Dinerstein 2002) for Scenarios 1 and 2.  
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Table S8. Microalgal production areas that fulfill each country’s 30% transport energy demands in 2016 and 2050 and overlap priority ecoregions for global conservation (i.e., Global 200 ecoregions) 

(Olson and Dinerstein 2002). Countries where higher microalgal productivities (HP) can be achieved at lower competition with agriculture (LA) and biodiversity (LB) are considered for Scenarios 1 (i.e., 

use of fresh, brackish and salt water) and 2 (i.e., use of seawater). Median microalgal lipid productivity > 20.3, 20.2, 20.1, and 19.9 m3 ha-1 year-1 for Scenario 1 in 2016, Scenario 2 in 2016, Scenario 1 

in 2050, and Scenario 2 in 2050, respectively. Median agricultural values < 0.19, 0.28, 0.22, and 0.28 for Scenario 1 in 2016, Scenario 2 in 2016, Scenario 1 in 2050, and Scenario 2 in 2050, respectively. 

Median biodiversity values < 0.28, 0.28, 0.28, and 0.31 for Scenario 1 in 2016, Scenario 2 in 2016, Scenario 1 in 2050, and Scenario 2 in 2050, respectively. Microalgal production areas (km2) and their 

percentages in relation to total microalgal production areas are included. 

Ecoregions 

 
2016 2050 

 
Scen. 1 HP-LA Scen. 1 HP-LB Scen. 2 HP-LA Scen. 2 HP-LB Scen. 1 HP-LA Scen. 1 HP-LB Scen. 2 HP-LA Scen. 2 HP-LB 

Arid/semiarid Area % Area % Area % Area % Area % Area % Area % Area % 

Non-200 ecoregions  48,507 65.5 44,265 69.6 37,481 46.7 41,205 54.3 89,286 55.6 87,495 56.0 102,191 53.4 86,676 60.1 

Arabian Highlands Woodlands and Shrublands Yes 6,139 8.3 6,139 9.6 4,105 5.1 6,459 8.5 14,993 9.3 14,993 9.6 15,347 8.0 15,347 10.6 

Carnavon Xeric Shrubs Yes 5,795 7.8 5,795 9.1 3,138 3.9 6,635 8.7 7,630 4.8 7,630 4.9 9,687 5.1 9,687 6.7 

Namib-Karoo-Kaokoveld Deserts and Shrublands Yes 5,700 7.7 225 0.4 - - - - 13,495 8.4 12,895 8.3 - - - - 

Atacama-Sechura Deserts Yes 2,132 2.9 2,132 3.4 2,291 2.9 2,132 2.8 3,036 1.9 3,036 1.9 3,036 1.6 3,036 2.1 

Northern Australia and Trans-Fly Savannas Yes 2,088 2.8 2,088 3.3 5,669 7.1 1,975 2.6 3,187 2.0 3,187 2.0 2,298 1.2 2,298 1.6 

Horn of Africa Acacia Savannas Yes 1,225 1.7 - - - - - - 3,475 2.2 - - - - - - 

Mediterranean Forests, Woodlands and Scrub Yes 1,172 1.6 1,172 1.8 - - - - - - - - 200 0.1 200 0.1 

Chilean Matorral Yes 467 0.6 467 0.7 284 0.4 467 0.6 944 0.6 944 0.6 944 0.5 944 0.7 

Solomons-Vanuatu-Bismarck Moist Forests  241 0.3 205 0.3 35 0.0 205 0.3 490 0.3 483 0.3 542 0.3 483 0.3 

Madagascar Dry Forests  175 0.2 175 0.3 75 0.1 75 0.1 383 0.2 383 0.2 296 0.2 296 0.2 

Amazon-Orinoco-Southern Caribbean Mangroves  167 0.2 - - 186 0.2 - - - - - - 301 0.2 - - 

Greater Antillean Moist Forests  150 0.2 823 1.3 617 0.8 823 1.1 322 0.2 1,804 1.2 322 0.2 1,789 1.2 

Great Sandy-Tanami-Central Ranges Desert Yes 118 0.2 118 0.2 36 0.0 - - 271 0.2 271 0.2 1 0.0 1 0.0 

Madagascar Spiny Thicket Yes - - - - 75 0.1 75 0.1 - - - - 175 0.1 175 0.1 

Rann of Kutch Flooded Grasslands Yes - - - - - - - - 25 0.0 25 0.0 150 0.1 150 0.1 

Socotra Island Desert Yes - - - - 159 0.2 - - - - - - - - - - 

Sonoran-Baja Deserts Yes - - - - 15,727 19.6 15,364 20.2 20,825 13.0 20,825 13.3 20,986 11.0 20,986 14.6 

Southern Mexican Dry Forests Yes - - - - 125 0.2 406 0.5 2,145 1.3 2,145 1.4 1,957 1.0 1,957 1.4 

Sudd-Sahelian Flooded Grasslands and Savannas Yes - - - - - - - - 50 0.0 50 0.0 - - - - 

Borneo Lowland and Montane Forests  - - - - - - - - - - - - 201 0.1 - - 

Greater Antillean Pine Forests  - - 21 0.0 - - 21 0.0 - - 43 0.0 - - 43 0.0 

Greater Sundas Mangroves  - - - - - - - - - - - - 88 0.0 - - 

Guinean Moist Forests  - - - - - - - - 2 0.0 - - - - - - 

Madagascar Forests and Shrublands  - - - - 23 0.0 23 0.0 42 0.0 42 0.0 23 0.0 23 0.0 

Moluccas Moist Forests  - - - - 3,723 4.6 - - - - - - 11,637 6.1 - - 

New Guinea Mangroves  - - - - - - - - - - - - 818 0.4 - - 
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New Guinea Montane Forests  - - - - - - - - - - - - 13 0.0 - - 

Nusu Tenggara Dry Forests  - - - - 3,593 4.5 59 0.1 - - - - 2,303 1.2 84 0.1 

Southern New Guinea Lowland Forests  - - - - 888 1.1 - - - - - - 5,126 2.7 - - 

Sulawesi Moist Forests  
- - - - 1,840 2.3 - - - - - - 12,582 6.6 - - 

Sumatran Islands Lowland and Montane Forests  
- - - - 154 0.2 - - - - - - - - - - 

Total   74,075 100.0 63,625 100.0 80,225 100.0 75,925 100.0 160,600 100.0 156,250 100.0 191,225 100.0 144,175 100.0 
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ABSTRACT 

Biofuel production is expected to increase in the following decades, particularly in tropical 

developing countries. The adoption of more sustainable biofuel production alternatives is a necessary 

step for decreasing greenhouse gas emissions and prevent further biodiversity losses and degradation 

of native ecosystems. With their high productivity per unit area, and their ability to grow in non-

arable lands, microalgal biofuel production systems could become a major sustainable alternative for 

biofuel production, compared to food crops (i.e., first generation biofuels). However, their potential 

impacts on biodiversity and carbon storage compared to other biofuel production alternatives, are 

largely unknown. Through a GIS-based multiple-criteria decision analysis and integer linear 

programming, we determined best areas for siting microalgal production farms compared with oil 

palm and sugarcane, aiming at fulfilling 30% of future transport energy demands within four 

Neotropical countries (Colombia, Ecuador, Panama, and Venezuela), while avoiding areas of high 

agricultural and biodiversity value. We then compare potential competition with agricultural lands, 

biodiverse areas, and aboveground biomass for these biofuel production alternatives. Based on our 

results, microalgal biofuel production is the preferable alternative for reaching a 30% target in future 

transport energy targets in comparison to oil palm and sugarcane within these Neotropical countries, 

in terms of reduced land-use change, reduced competition with areas of high biodiversity value, and 

reduced competition with carbon-rich areas. The reduction of targets in future biofuel blends can 

CHAPTER 4. Freeing agricultural land for future biofuel production in 

the Neotropics through microalgal cultivation 
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decrease potential competition with high-value agricultural lands in the Colombian Caribbean region, 

and in general, reduce the overall potential environmental impacts of biofuel production. This study 

can guide decision making towards the identification and adoption of more sustainable biofuel 

production alternatives within the Neotropical region. 

 

Keywords: Microalgae, oil palm, sugarcane, food crops, biofuel 

1. INTRODUCTION 

Renewable energy sources will play a prominent role for fulfilling future energy demands and replace 

fossil fuels (Jacobson and Delucchi 2011, IEA 2017), reducing the negative impacts driven by 

greenhouse gases (Bellard et al. 2012, Pecl et al. 2017). Among renewable energy sources, biofuels 

can help in replacing significant amounts of fossil fuels, particularly in the transport sector, which 

would still need liquid fuels for ships, airplanes and long-haul trucks. In fact, biofuel production could 

increase from 1.7 to 8.1 million of barrels of oil equivalent day-1 between 2016 and 2040, under the 

implementation of policies that favor the adoption of renewable energy sources for limiting global 

warming well below 2°C in comparison to pre-industrial levels (IEA 2017), in accordance with the 

Paris Agreement. 

 

However, a wide arrange of environmental impacts have been related to the production of biofuels 

(Hill et al. 2006, Fargione et al. 2010, Immerzeel et al. 2014, Correa et al. 2017). These impacts 

include habitat losses for native species (Koh 2007, Wiens et al. 2011), and increases in greenhouse 

gas emissions when carbon-rich systems are replaced into monocultures for biofuel production 

(Fargione et al. 2008, Searchinger et al. 2008, Searchinger et al. 2015). Furthermore, bioenergy 

production is expected to expand in the biodiverse tropical areas of the world, where vast amounts of 

undeveloped lands offer higher crop productivities in comparison to temperate regions (Foley et al. 

2011, Laurance et al. 2014, Laurance 2015). The combined impacts of a future expansion in biofuel 

and agricultural production within the tropics can increase competition with food production (Tilman 

et al. 2009), trigger biodiversity losses and degrade ecosystems and its associated services, including 

losses in carbon sinks and increases in CO2 emissions as a result of deforestation (Laurance et al. 

2014). 

 

The adoption of alternatives for biofuel production that do not drive direct and indirect land-use 

changes in agricultural and biodiverse lands, and that reduce greenhouse gas emissions, can increase 
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the sustainability in biofuel production, while reaching growing targets in energy demands. 

Microalgal biofuel production systems have been proposed as an alternative to first generation 

biofuels. They do not require fertile soils and thus, in theory, are not expected to directly compete 

with food production (Schenk et al. 2008, Correa et al. 2017). They can make use of brackish/salt 

water for their cultivation, avoiding direct competition with freshwater resources (Schenk et al. 2008, 

Usher et al. 2014), as well as make use of nutrients from wastewater (Abdel-Raouf et al. 2012) and 

CO2 from industries (Stephens et al. 2010, Huang and Tan 2014). Furthermore, if culture media is 

recycled, their grey water footprint (i.e., the volume of polluted water) is expected to be zero, 

decreasing the overall freshwater use per energy unit compared to terrestrial crops (Gerbens-Leenes 

2018). However, their potential impacts on food production, biodiversity, and carbon storage 

compared to other biofuel production alternatives, are largely unknown. 

 

The Neotropical region harbor several of the most important areas for biodiversity conservation 

globally, as a result of its high number of total, endemic, and threatened species (Gentry 1982, Rull 

2011), as well as the presence of systems with high ecological importance (e.g., the Amazon 

rainforest) (Myers et al. 2000, Foley et al. 2007, Watson et al. 2018). Additionally, future biofuel and 

agricultural expansion are likely to occur in the region as it has large areas of underexploited lands 

that are suitable for biofuel and food production (Butler and Laurance 2009, Laurance et al. 2014). 

 

Here, we aim at understanding the potential direct competition of three different alternatives of 

biofuel production (i.e., microalgae, oil palm, and sugarcane) with areas of high agricultural and 

biodiversity value, and with carbon-rich areas, for fulfilling a 30% target in transport energy demands 

by 2050 within four Neotropical countries (i.e., Panama, Colombia, Ecuador, and Venezuela). 

Currently, oil palm is considered the most productive food crop for biodiesel production, and 

sugarcane the most productive food crop for bioethanol production in the region. The assessment of 

these potential conflicts can guide decision making towards the implementation of more sustainable 

biofuel production alternatives in future development scenarios. 

2. METHODS 

Our analyses were developed in four Neotropical countries (Panama, Colombia, Ecuador, and 

Venezuela), which are among the most biodiverse on Earth as a result of their complex 

biogeographical history and their wide range of climatic conditions within the tropical region (Gentry 

1982, Rull 2011). For each biofuel feedstock (i.e., microalgae, oil palm, and sugarcane), we 
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developed a model based on integer linear programming (Beyer et al. 2016) for determining best 

production areas to satisfy a 30% target in internal energy demands, while avoiding areas of high 

agricultural and biodiversity value. The model was developed using the software R and Gurobi 

optimizer, based on the following formula (Correa et al. 2019): 

 

maximize∑ 𝑃𝑖
2

𝑖
𝑥𝑖/ (maximum(𝐴𝑖, 𝐵𝑖) + 1) 

subject to 

∑𝐷𝑖
𝑖

𝑥𝑖 = 𝑇 

0 ≤ 𝑥𝑖 ≤ 0.8 

 

Where 𝑖 corresponds to each pixel, 𝑃 corresponds to the microalgal profitability layer (ranging from 

0 to 1), “maximum” corresponds to the maximum value among agricultural value 𝐴 (ranging from 0 

to 1) and biodiversity value 𝐵 (ranging from 0 to 1), 𝑥 corresponds to the decision variable given by 

the software (ranging from 0 to 0.8 for microalgae, and from 0 to 0.9 for oil palm and sugarcane), D 

represents the productivity values in units of energy by 2050 (GJ pixel-1 year-1) (See Supplementary 

Information for details), and T represents 30% of each country’s transport energy demands by 2050 

(GJ year-1). Squaring the profitability in the numerator and using the maximum value among A or B 

in the denominator ensures that pixels with lower or average profitabilities or with either high 

agricultural or high biodiversity values are excluded from final solutions. Within each pixel, the 

percentage of available area for microalgal cultivation ranged from 0 to 0.8, assuming that 20% would 

include associated infrastructure (Wigmosta et al. 2011). For oil palm and sugarcane, which can be 

more densely produced, the percentage of available area cultivation ranged from 0 to 0.9. The 

percentage of available area for cultivation was calculated after excluding water bodies (Lehner and 

Döll 2004), protected areas (UNEP-WCMC 2016), Key Biodiversity Areas (KBA) (BirdLife 

International 2016), and urban areas (Schneider et al. 2009).  

 

For each cultivation feedstock, the profitability layer was obtained through a GIS-based multiple- 

criteria decision analysis (MCDA) developed in the software ArcGIS 10.5, at a spatial resolution of 

5 × 5 km. For microalgae, two cultivation scenarios were considered. Scenario 1: Cultivation by using 

fresh/brackish/salt water sources, and Scenario 2: Cultivation by using seawater, which does not 

compete with freshwater (i.e., assuming that microalgal strains tolerant to a wide range of salinity 

conditions are cultivated, thereby preventing the use of freshwater for maintaining salinity as water 

evaporates) (Borowitzka and Moheimani 2013). For microalgal production, the profitability layer was 
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the result of overlaying water availability, microalgal lipid productivity, availability of flat lands, and 

proximity to main transport networks (i.e., main roads and railroads). For Scenario 1 water 

availability included the proximity to rivers, irrigation dams and fresh/brackish/salt groundwater 

sources after taking into account water depletion within watersheds (Brauman et al. 2016), along with 

the aridity index (i.e., the availability of water from precipitation in relation to potential 

evapotranspiration) (Trabucco and Zomer 2009) and proximity to seawater. For Scenario 2 water 

availability corresponded to proximity to seawater. Water availability is essential for microalgal 

cultivation (Chisti 2007, Schenk et al. 2008), while high microalgal lipid productivities (Slade and 

Bauen 2013) and flat lands reduce production costs (Wigmosta et al. 2011), and the proximity to main 

transport networks facilitates access to fertilizers and markets (Venteris et al. 2014, Slegers et al. 

2015). Future potential mean annual precipitation, mean annual potential evapotranspiration, and 

mean annual temperature, which affect the aridity index and lipid productivities, were calculated by 

2050 (Chapter 3), based on an ensemble model for the climate change Representative Concentration 

Pathway (RCP) 8.5 (i.e., high-emissions climate change scenario) (Riahi et al. 2011). This ensemble 

model was constructed by averaging mean annual and monthly temperatures, minimum monthly 

temperatures, maximum monthly temperatures, and mean annual precipitation values among the 

following General Circulation Models (GCMs) BCC-CSM1-1, CCSM4, GISS-E2-R, IPSL-CM5A-

LR, HadGEM2-ES, MIROC-ESM-CHEM, MRI-CGCM3, and NorESM1-M (Hijmans et al. 2005). 

The layers were overlayed by using fuzzy membership functions and the AND/OR Boolean operators, 

in which memberships are assigned without the use of weights (Raines et al. 2010) (See 

Supplementary Information for details). 

 

For oil palm and sugarcane, the profitability layer was the result of overlaying water availability, 

agro-climatically attainable yield in dry weight by 2050 (IIASA/FAO 2012), the availability of flat 

lands, the proximity to main transport networks (i.e., main roads and railroads), and the proximity to 

current cultivation areas (You et al. 2014, Furumo and Aide 2017). Water availability included the 

proximity to rivers, irrigation dams, and fresh groundwater sources after taking into account water 

depletion within watersheds (Brauman et al. 2016), along with the aridity index (Trabucco and Zomer 

2009). While freshwater availability is necessary for oil palm and sugarcane cultivation (Adzemi 

2014, FAO 2018), high agro-climatically attainable yields and flat lands (which favour farming 

intensification) increase profitability (Garnett et al. 2013), the proximity to main transport networks 

facilitates access to fertilizers and markets (Laurance et al. 2014), and the proximity to current 

plantations facilitates the establishment of new cultivation areas (Garcia-Ulloa et al. 2012). For both 

oil palm and sugarcane, we obtained the agro-climatically attainable yields by 2050 from the Global 

Agro-Ecological Zones GAEZ database (IIASA/FAO 2012) by averaging the yields among the 
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following climate change models for 2050: CCCma CGCM2 A2, CSIRO Mk2 A2, Hadley CM3 A2, 

and MPI ECHAM4 A2, which are comparable with the high-emissions RCP 8.5 scenario used for 

future microalgal cultivation (Riahi et al. 2011). We selected the layers corresponding to irrigated 

and high-input level (i.e., assuming that freshwater can be readily obtained for crop cultivation and 

that a high level of intensification for crop production will be achieved). 

 

The agricultural value corresponded to the potential annual gross economic rents from agricultural 

lands, after rescaling from 0 to 1 by using a linear membership function with a maximum input value 

of 800 USD ha-1, which corresponds to highly profitable lands (Naidoo and Iwamura 2007). 

Biodiversity value was the result of overlaying the number of vertebrate species, the number of 

threatened vertebrate species, the number of vertebrate species with small distribution ranges (Jenkins 

et al. 2013), the presence of areas with low human pressures (Venter et al. 2016), the presence of 

islands (which contain more endemic populations/species compared to mainlands) (Kier et al. 2009, 

Tershy et al. 2015, McCreless et al. 2016), and the percentage of mangroves within each pixel (i.e., 

25 km2) (Giri et al. 2011), after rescaling from 0 to 1 by using linear membership functions. 

 

Future transport energy demands were calculated for each country based on current transport energy 

demands (IEA 2018) and an estimated annual increase in transport energy consumption at 2.5% for 

non-OECD Americas (EIA 2016). We determined land-covers potentially replaced by microalgae, 

oil palm, and sugarcane (Channan et al. 2014). Non-parametric Dunn’s tests with Bonferroni 

corrections (Dino 2017) were performed to detect statistically significant differences among biofuel 

production alternatives per country, in relation to agricultural and biodiversity values, and 

aboveground biomass. Potential conflicts among each biofuel production alternative, agricultural 

value, biodiversity value, and aboveground biomass, were mapped. 

3. RESULTS 

For fulfilling 30% of each country’s transport energy demands by 2050, best areas for microalgal 

biofuel production at lowest direct competition with high-value agricultural lands and biodiversity, 

would mainly correspond to dry lowlands (Fig. 1). For Scenarios 1 (use of fresh/brackish/salt water) 

and 2 (use of seawater), main cultivation areas would be located in the Colombian Caribbean region 

(i.e., mostly in the Guajira desert and around the San Jacinto mountains) and interandean Valleys 

(i.e., mainly in the Alto Magdalena Valley), in the Ecuadorian coastal region (i.e., mainly in provinces 

of Santa Elena, Manabí, and Guayas), in the Panamanian Pacific coast (i.e., mainly in the provinces 
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of Veraguas and Coclé), and in the Venezuelan Caribbean coastline (i.e., around the Gulf of 

Venezuela in the state of Falcón and around the Lake Maracaibo in the state of Zulia). Based on these 

cultivation scenarios, potential replaced land-covers would correspond to cropland/natural vegetation 

mosaics (24.9–28.5%), followed by savannas (19.5–20.5%), grasslands (10.5–10.8%), croplands 

(10.6–13.1%), open shrublands (7.7–7.9%), and woody savannas (7.1–7.3%) (Table 1). 

 

 

 

Figure 1. Production areas for fulfilling each country’s 30% transport energy demands by 2050 based on: a) microalgae (i.e., use of 

fresh/brackish/salt water), b) microalgae (i.e., use of seawater), c) oil palm, and d) sugarcane. The maximum proportion (Prop.) of 

cultivation area per pixel corresponds to 0.8 for microalgae and 0.9 for oil palm and sugarcane. 
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Table 1. Land covers potentially replaced for fulfilling 30% of transport energy demands by 2050 in four Neotropical countries 

(Colombia, Ecuador, Panama, Venezuela)by using microalgae, oil palm, and sugarcane. Land covers were obtained from the MODIS 

derived global mosaic for 2012 at a resolution of 5 arcminutes (Channan et al. 2014). Microalgal cultivation scenario 1: use of fresh, 

brackish and saltwater sources; microalgal cultivation scenario 2: use of seawater. 

Land Cover 

Scenario 1 (microalgae) Scenario 2 (microalgae) Oil palm Sugarcane 

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%) 

Cropland/Natural vegetation mosaic 6,837.2 28.5 5,994.7 24.9 17,686.9 35.0 25,687.5 35.6 

Savannas 4,929.2 20.5 4,683.7 19.5 10,038.8 19.9 13,169.5 18.3 

Grasslands 2,582.6 10.8 2,518.6 10.5 97.8 0.2 1,712.5 2.4 

Croplands 2,543.1 10.6 3,159.3 13.1 2,912.8 5.8 1,823.0 2.5 

Open shrublands 1,842.1 7.7 1,888.4 7.9 890.6 1.8 5,492.1 7.6 

Woody savannas 1,710.7 7.1 1,753.8 7.3 
 

0.0 
 

0.0 

Evergreen Broadleaf forest 1,034.9 4.3 1,267.2 5.3 16,373.1 32.4 22,017.2 30.5 

Deciduous Broadleaf forest 110.8 0.5 
 

0.0 190.1 0.4 
 

0.0 

Others 2,409.5 10.0 2,784.1 11.6 2,334.9 4.6 2,173.1 3.0 

Total 24,000.0 100.0 24,050.0 100.0 50,525.0 100.0 72,075.0 100.0 

 

Areas for oil palm production at lowest direct competition with high-value agricultural lands and 

biodiversity, would be mainly spread along humid lowlands in the Colombian Caribbean and 

Catatumbo regions and Middle Magdalena Valley, the Ecuadorian Pacific lowlands (i.e., mainly in 

the provinces of Esmeraldas, Pichincha, Manabí, Los Ríos, and Guayas), the Panamanian Pacific 

coast (i.e., mainly in the provinces of Chiriquí and Veraguas), and the Venezuelan northern lowlands 

(i.e., mainly the states of Zulia, Táchira, Monagas, and Delta Amacuro). Areas for sugarcane 

production at lowest direct competition with high-value agricultural lands and biodiversity would be 

located in valleys and foothills along mountain ranges, mainly in the Colombian Cauca and 

Magdalena Valleys, the Ecuadorian Pacific lowlands (i.e., mainly in the provinces of Pichincha, Los 

Ríos, Manabí, and Guayas), the Panamanian Pacific coast (i.e., mainly in the provinces of Chiriquí 

and Veraguas), and the Venezuelan northern lowlands (i.e., mainly in the states of Lara, Falcón, 

Guárico, and Sucre). Land-covers potentially replaced by oil palm and sugarcane include 

cropland/natural vegetation mosaics (35 and 35.6% for oil palm and sugarcane, respectively), 

followed by evergreen broadleaf forests (32.4 and 30.5% for oil palm and sugarcane, respectively), 

and savannas (19.9 and 18.3% for oil palm and sugarcane, respectively). 

 

Microalgal cultivation would lead to lower competition with high-value agricultural lands in Ecuador 

(compared to sugarcane) and Venezuela (compared to oil palm and sugarcane) (Fig. 2). Microalgal 

cultivation would lead to lower competition with biodiverse and carbon-rich areas, except for 

biodiversity in Colombia compared to sugarcane (Figs. 3, 4). 
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Figure 2. Boxplots showing statistically significant differences among biofuel production alternatives (microalgae, oil palm, 

sugarcane) in relation to the agricultural (A) value of lands needed for fulfilling each country’s 30% of transport energy demands in 

2050. Letters represent homogeneous groups based on post hoc Dunn’s tests with Bonferroni corrections. Asterisks represent the 

maximum and minimum outliers (defined after multiplying the interquartile range by 1.5). Microalgal cultivation scenario 1 (use of 

fresh, brackish and saltwater sources), microalgal cultivation scenario 2 (use of seawater). 

 

 

Figure 3. Boxplots showing statistically significant differences among biofuel production alternatives (microalgae, oil palm, 

sugarcane) in relation to the biodiversity (B) value of lands needed for fulfilling each country’s 30% of transport energy demands in 

2050. Letters represent homogeneous groups based on post hoc Dunn’s tests with Bonferroni corrections. Asterisks represent the 

maximum and minimum outliers (defined after multiplying the interquartile range by 1.5). Microalgal cultivation scenario 1 (use of 

fresh, brackish and saltwater sources), microalgal cultivation scenario 2 (use of seawater). 
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Figure 4. Boxplots showing statistically significant differences among biofuel production alternatives (microalgae, oil palm, 

sugarcane) in relation to the aboveground (AG) biomass of lands needed for fulfilling each country’s 30% of transport energy demands 

in 2050. Letters represent homogeneous groups based on post hoc Dunn’s tests with Bonferroni corrections. Asterisks represent the 

maximum and minimum outliers (defined after multiplying the interquartile range by 1.5). Microalgal cultivation scenario 1 (use of 

fresh, brackish and saltwater sources), microalgal cultivation scenario 2 (use of seawater). 

 

Higher targets in biofuel demands would increase competition with areas of higher agricultural and 

biodiversity value and larger aboveground biomass (Figs. 5, 6, 7). 
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Figure 5. Overlapping between profitability and agricultural value (A value in USD ha-1) for (a) microalgal cultivation scenario 2: 

use of seawater, (b) oil palm, and (c) sugarcane. Purple colors show areas with high potential profitabilities and low potential conflicts 

with food production, while red show areas with high potential profitabilities and high potential conflicts with food production. 

Cultivation areas for fulfilling each country’s 30% transport energy demands by 2050 are delineated in black. 
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Figure 6. Overlapping between profitability and biodiversity value (B value ranging from 0 to 1) for (a) microalgal cultivation scenario 

2: use of seawater, (b) oil palm, and (c) sugarcane. Purple colors show areas with high potential profitabilities and low potential 

conflicts with biodiversity, while red show areas with high potential profitabilities and high potential conflicts with biodiversity. 

Cultivation areas for fulfilling each country’s 30% transport energy demands by 2050 are delineated in black. 
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Figure 7. Overlapping between profitability and aboveground biomass (AG biomass in tonne ha-1) for (a) microalgal cultivation 

scenario 2: use of seawater, (b) oil palm, and (c) sugarcane. Purple colors show areas with high potential profitabilities and low 

potential conflicts with carbon storage, while red show areas with high potential profitabilities and high potential conflicts with carbon 

storage. Cultivation areas for fulfilling each country’s 30% transport energy demands by 2050 are delineated in black. 
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4. DISCUSSION 

Future biofuel production levels will likely increase in the Neotropics, potentially impacting food 

production, biodiversity, and carbon storage in the region. However, the environmental impacts of 

main biofuel production systems (i.e., oil palm and sugarcane) and promising biofuel production 

alternatives (i.e., microalgae), based on future targets in transport energy demands, have not been 

evaluated in the region. 

 

Our results show that in Colombia, Ecuador, Panama, and Venezuela, microalgal biofuel production 

would need between 48 and 33% the land required by oil palm and sugarcane, respectively, for 

fulfilling the same levels of future transport energy demands. This is explained by the higher 

microalgal biofuel production efficiencies per unit area, compared to any other biofuel crop (Chisti 

2008, Correa et al. 2017). Our model considered maximum attainable yields for oil palm and 

sugarcane, based on optimal cultivation techniques (i.e., high-input cultivation under irrigation) 

(IIASA/FAO 2012), but conservative yield estimates for microalgae. Based on biodiesel production, 

future microalgal lipid productivities could reach a six-fold increase in the study region (Chisti 2007) 

compared to current estimations (i.e., from maximum attainable oil yields of 22,800 to 136,900 L ha-

1) (Moody et al. 2014), as a result of technological improvements (e.g., use of photobioreactors) and 

cultivation of more productive microalgae strains (e.g., through the selection and cultivation of 

microalgae with higher lipid contents per cell). Thus, even under expected future higher productivities 

for oil palm and sugarcane (Murphy 2009, Marin et al. 2016), the relative advantage of microalgae in 

terms of reduced land-use is expected to increase. 

 

At a global scale, microalgal biomass and lipid productivities, which increase biofuel production 

levels, are proportional to solar irradiance and mean annual temperature (Lundquist et al. 2010, 

Moody et al. 2014, Venteris et al. 2014). Microalgal strains can be further selected to thrive under 

higher temperature conditions. Thus, based on a Representative Concentration Pathway (RCP) 8.5 

climate change scenario (i.e., a high-emissions climate change scenario) (Riahi et al. 2011), 

microalgal profitability would be highest in lowlands within the study region. In contrast, more 

restricted temperature ranges for the optimal cultivation of oil palm and sugarcane, coupled with 

changes in precipitation and evapotranspiration patterns as a result of global warming, would 

inevitably alter future optimal cultivation areas, unless new varieties tolerant to higher temperatures 

and drought are developed (de Carvalho et al. 2015, Paterson et al. 2015, Zhao and Li 2015). Based 

on the Global Agro-Ecological Zones model (IIASA/FAO 2012), maximum oil palm and sugarcane 

attainable yields would be found at higher altitudes compared to current cultivation areas, increasing 
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the cultivation suitability in interandean valleys and higher-altitude foothills for oil palm and 

sugarcane, respectively. 

 

Based on our model, which aims to increase profitability in biofuel production while reducing direct 

competition with high-value agricultural areas and important for biodiversity conservation, 

microalgal cultivation would mainly overlap dry lowlands within countries (i.e., areas with median 

annual precipitation values equal to 547 and 498 mm for the microalgal cultivation scenarios 1 and 

2, respectively, which correspond to semi-arid lands), with more than 83% of production areas 

potentially replacing cropland/natural vegetation mosaics, savannas, grasslands, croplands, open 

shrublands, and woody savannas. In contrast, even after reducing competition with high-value 

agricultural lands and with biodiverse areas, oil palm and sugarcane cultivation would overlap more 

humid regions (i.e., areas with median precipitation values equal to 1,607 and 1,382 mm for oil palm 

and sugarcane, respectively) and potentially replace a higher proportion of evergreen broadleaf forests 

(i.e., 32.4 and 30.5% of total production areas for or oil palm and sugarcane, respectively). These 

broadleaf forests harbor high biodiversity values and hold higher amounts of aboveground biomass 

compared to grasslands, croplands, and open shrublands (Avitabile et al. 2016). Thus, microalgal 

cultivation would lead to a lower competition with biodiverse and carbon-rich areas within countries, 

compared to oil palm and sugarcane (with the exception of microalgae and sugarcane in Colombia 

for biodiversity).  

 

Although in the study region recent oil palm and sugarcane plantations have mostly replaced non-

forested areas (Furumo and Aide 2017, Rueda Ordoñez et al. 2018), reaching biofuel blends for the 

increasing future transport energy demands (which has not been considered by previous studies) 

would likely increase deforestation. Zoning oil palm and sugarcane cultivation to areas of lower 

biodiversity value, such as pastures, transformed and degraded lands (Garcia-Ulloa et al. 2012, 

Castiblanco et al. 2013, Ocampo-Peñuela et al. 2018, Rueda Ordoñez et al. 2018), may be an option 

for reducing direct conflicts with forested regions, however at an expense of biofuel productivity per 

unit area, unless targets in biofuel production are reduced. 

 

The potential impact of microalgal cultivation on agricultural lands does not follow a consistent 

pattern among countries. Microalgal cultivation in Ecuador (compared to sugarcane) and Venezuela 

(compared to oil palm and sugarcane) would lead to lower competition with high-value agricultural 

lands. In contrast, microalgal cultivation in Colombia would likely overlap areas of higher agricultural 

value compared to oil palm and sugarcane. This results from the high profitability of agricultural 

lands estimated for the Colombian Caribbean region (i.e., higher than 800 USD ha-1 for most lands 
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outside La Guajira department) (Naidoo and Iwamura 2007). This competition would be highest when 

using seawater for microalgal cultivation, which shows a trade-off between agricultural value and 

seawater use in the Colombian Caribbean. 

 

As expected, higher competition with food production, biodiversity, and carbon storage would occur 

if fulfilling higher targets in transport energy demands, either for internal consumption or if biofuels 

become an export commodity, as pixels with lower profitabilities and higher agricultural, 

biodiversity, and aboveground biomass values are added into final solutions. Thus, increasing 

mandates in biofuel blends (e.g., current bioethanol and biodiesel are mandated at 10% in Colombia) 

based on cultivation of feedstocks within each country, or developing a market for their exportation, 

would likely increase impacts on agricultural production, biodiversity, and ecosystems services (e.g., 

carbon storage and water provision) in the study region. 

 

A careful planification of future agricultural development in the Neotropical region, based on explicit 

targets in food and energy demands, coupled with goals for reducing biodiversity losses and 

maintaining ecosystem services (e.g., carbon storage and freshwater provision) should help in 

evaluating potential environmental impacts of biofuel production alternatives. Further analyses based 

on the availability of nutrients (i.e., considering fertilizers or wastewater sources), CO2 sources (i.e., 

based on industrial and agricultural sources including anaerobic digesters), and freshwater, can 

improve the understanding on the overall environmental impacts of biofuel production alternatives 

within the Neotropical region. While technological improvements increase the cost-effectiveness of 

microalgal production systems—for instance, through the obtention of free nutrients and CO2 (Slade 

and Bauen 2013), or through the development of biorefinery systems that produce biofuels 

(González-González et al. 2018) along with food or animal feed (Rösch et al. 2018)—governments 

can support more sustainable biofuel production alternatives based on their relative environmental 

benefits (Correa et al. 2019). Furthermore, microalgal production systems could be co-located with 

current oil palm and sugarcane production systems (Moreno-Garcia et al. 2017, Klein et al. 2018), 

aiming at reducing land footprint and increase the sustainability of current biofuel production 

systems. 

5. CONCLUSIONS 

Considering potential conflicts among biofuel production, food production, biodiversity, and carbon 

storage is fundamental for improving decision making towards the identification and adoption of 
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more sustainable biofuel production systems. Within the Neotropical region, one of the most diverse 

in the world and with high potential for future agricultural development, the implementation of 

microalgal biofuel production systems would lead to lower direct competition with areas of high 

biodiversity and carbon storage. For reaching 30% of future transport energy demands, potential 

competition with high-value agricultural lands would likely occur for microalgal production systems 

in Colombia, being highest when using seawater for microalgal cultivation as a result of high-value 

agricultural lands in the Caribbean region. Overall, the availability of dry lowlands in relation to 

domestic transport energy demands would favor the siting of microalgal production systems at lower 

direct competition with biodiversity and aboveground carbon sinks. However, potential conflicts with 

dry ecosystems are likely to emerge. 
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1. Construction of profitability layers 

Using ArcGIS 10.5, a GIS-based multiple-criteria decision analysis (MCDA) was developed for 

constructing each profitability layer (i.e., ranging from 0 to 1), for the cultivation of microalgae, oil 

palm, and sugarcane at a spatial resolution of 5 × 5 km. For constructing these profitability layers, 

several suitability layers (Figs. S1, S2, S3, and S4) were overlaid using the AND/OR Boolean 

operators, which retrieve the likelihood of belonging to any suitability layer based without the use of 

weights. Each suitability layer was constructed through the use of linear and sigmoid membership 

functions (i.e., applying fuzzy logic) (Raines et al. 2010). Linear memberships were assigned based 

on the following formula: 

 

𝜇(𝑥) = 0 𝑖𝑓 𝑥 < 𝑚𝑖𝑛, 𝜇(𝑥) = 1 𝑖𝑓 𝑥 > 𝑚𝑎𝑥 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝜇(𝑥) =
(𝑥 − 𝑚𝑖𝑛)

(𝑚𝑎𝑥−𝑚𝑖𝑛 )
  

 

Where x corresponds to each pixel value, max corresponds to the maximum value among pixels, and 

min corresponds to the minimum value among pixels. 

 

Sigmoid large memberships (i.e., large inputs have large memberships) were assigned based in the 

following formula: 

𝜇(𝑥) =
1

1 +
𝑥
𝑓2

−𝑓1
 

 

And sigmoid small memberships (i.e., small inputs have small memberships) were assigned based in 

the following formula: 

𝜇(𝑥) =
1

1 +
𝑥
𝑓2

𝑓1
 

Chapter 4. Supplementary Information 
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Where f1 is the spread of the function (defined as 5) and f2 is the midpoint. The midpoints (Table S1), 

are assigned a membership value of 0.5. 

 

The profitability layer for microalgal cultivation was constructed by overlaying water availability 

(i.e., fresh/brackish/salt water availability for Scenario 1, proximity to oceans for Scenario 2), lipid 

productivity, availability of flat lands, and proximity to transport networks (i.e., main roads and 

railroads) (Figs. S1, S2), through the AND Boolean operator. The profitability layers for oil palm and 

sugarcane were constructed by overlaying water availability, agro-climatically attainable yield, 

availability of flat lands, proximity to main transport networks (i.e., main roads and railroads), and 

proximity to current cultivation areas (You et al. 2014, Furumo and Aide 2017) (Figs. S3, S4), through 

the AND Boolean operator. 

 

For the microalgal cultivation scenario 1, water availability excluding oceans after taking into account 

water depletion was overlaid with the aridity index and with the proximity to oceans, using the OR 

Boolean operator. Water availability excluding oceans was overlaid with water depletion driven by 

human activities (Brauman et al. 2016), using the AND Boolean operator. The water depletion layer 

was obtained by rescaling the original water depletion percentages within watersheds obtained by 

Brauman et al. (2016) into suitability values ranging from 0 to 1 (Table S2). Water availability 

excluding oceans resulted from overlaying the proximity to rivers, proximity to irrigation dams, and 

proximity to fresh/brackish/salt groundwater sources, using the OR Boolean operator. The proximity 

to rivers, irrigation dams, fresh/brackish/salt groundwater sources, oceans, and transport networks 

was based on the use of a cost layer (i.e., cost distance), in which the slope was rescaled through a 

linear function into 1 to 10 to account for access restrictions these due to rugged terrain (Correa et al. 

2019). 

 

For oil palm and sugarcane cultivation, freshwater availability after taking into account water 

depletion was overlaid with the aridity index, using the OR Boolean operator. Freshwater availability 

was overlaid with water depletion driven by human activities (Brauman et al. 2016) (Table S2), using 

the AND Boolean operator. Freshwater availability resulted from overlaying the proximity to rivers, 

proximity to irrigation dams, and proximity to fresh groundwater sources, using the OR Boolean 

operator, and considering a cost distance based on slope. 
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Figure S1. Overlaying of suitability layers for the development of a profitability model for siting biodiesel production microalgal farms 

by 2050. Scenario 1: Use of fresh, brackish, or salt water.  

 

 

Figure S2. Overlaying of suitability layers for the development of a profitability model for siting biodiesel production microalgal farms 

by 2050. Scenario 2: Use of seawater. 
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Figure S3. Overlaying of suitability layers for the development of a profitability model for oil palm cultivation by 2050.  

 

 

Figure S4. Overlaying of suitability layers for the development of a profitability model for sugarcane cultivation by 2050. 
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et al. 2013), the presence of areas with low human pressures (Venter et al. 2016), the presence of 

islands (which contain more endemic populations/species compared to mainlands) (Kier et al. 2009, 

Tershy et al. 2015, McCreless et al. 2016), and the percentage of mangroves within each pixel (i.e., 
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1.2 Projection of rasters 

All rasters were transformed into the Eckert-IV equal-area pseudocylindrical map projection. The 

agro-climatically attainable yields for oil palm and sugarcane, the cost distance to current oil palm 

and sugarcane cultivation areas, and the potential annual gross economic rents from agricultural lands, 

were resampled to a resolution of 5 × 5 km by using the Nearest Neighbor resampling method. The 

number of vertebrate species, the number of threatened vertebrate species, and the number of species 

with small distribution ranges, were resampled to a resolution of 5 × 5 km based on the Bilinear 

Interpolation resampling method.  
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Table S1. Description of layers and membership functions used for the development of a profitability model for biofuel production from microalgae, oil palm, and sugarcane; and for the construction of 

layers on agricultural and biodiversity value. Sigmoid Large: Larger input values result in higher suitability. Sigmoid Small: Lower input values result in higher suitability. Not Applicable (NA). 

Layers Description 

Original 

spatial 

resolution for 

rasters 

Type of 

function 
Midpoint Source 

Proximity to rivers 
Cost distance to permanent rivers with annual discharge ≥1.8 km3 year-1. Based 

on annual peak discharge. 
NA 

Sigmoid 

Small 
50 km 

Layer based on HydroSHEDS (Lehner et al. 2008), Vmap0 
for permanent streams http://gis-lab.info/qa/vmap0-

eng.html and river bankfull width (Andreadis et al. 2013). 

Proximity to 

irrigation dams 
Cost distance to irrigation dams with annual recharge ≥ 1.8 km3 year-1 NA 

 
Sigmoid 

Small 

 

50 km GRanDv1 database (Lehner et al. 2011). 

Proximity to 

fresh/brackish/ salt 

groundwater 

sources 

Cost distance to fresh/brackish/salt groundwater global aquifers with annual 
recharge ≥ 1.8 km3 year-1. Excludes areas with complex hydrogeological 

structures, and areas with local and shallow aquifers. 

NA 
Sigmoid 

Small 

50 km 

 

Groundwater Resources of the World 1: 25 000 000. (BGR 

& UNESCO 2008). 

Water depletion 
Water availability based on the fraction of renewable water consumptively used 

for human activities within a watershed. 
NA 

NA. See 

Table S2  
NA 

Layer based water depletion metric within watersheds 

(Brauman et al. 2016). 

Aridity index 

Quantification of precipitation availability over atmospheric water demand by 

2050. Aridity Index (AI) = MAP/MAE, where MAP = Mean Annual Precipitation 

and MAE = Mean Annual potential Evapotranspiration. Future mean annual 
precipitation and mean annual potential evapotranspiration were calculated based 

on an ensemble model for the Representative Concentration Pathway (RCP) 8.5 

(i.e., high-emissions climate change scenario), by using the following General 
Circulation Models (GCMs): BCC-CSM1-1, CCSM4, GISS-E2-R, IPSL-CM5A-

LR, HadGEM2-ES, MIROC-ESM-CHEM, MRI-CGCM3, and NorESM1-M 

(Hijmans et al. 2005) (Chapter 3). 

30 arcseconds 
Sigmoid 
Large 

 
1 for microalgae 

and oil palm 

(Adzemi 2014), 1.3 
for sugarcane 

(FAO 2018) 

 
 

Global aridity and PET database (Trabucco and Zomer 
2009). 

Proximity to oceans Cost distance to oceans. NA 
Sigmoid 

Small 
50 km Oceans v.3.00 http://www.naturalearthdata.com 

Microalgal lipid 

productivity 

Prediction of lipid productivity based on 4,388 lipid point estimates for the 
cultivation of Nannochloropsis sp. in photobioreactors (Moody et al. 2014) by 

2050, using as predictors annual mean radiation and the residuals of mean annual 

temperature explained by radiation. Future mean annual temperature was obtained 
based on an ensemble model for the Representative Concentration Pathway (RCP) 

8.5 (i.e., high-emissions climate change scenario), by averaging mean annual 

temperatures among the following General Circulation Models (GCMs): BCC-
CSM1-1, CCSM4, GISS-E2-R, IPSL-CM5A-LR, HadGEM2-ES, MIROC-ESM-

CHEM, MRI-CGCM3, and NorESM1-M (Hijmans et al. 2005). (Chapter 3). 

5 × 5 km Linear NA 
Layer based on lipid productivity estimates (Moody et al. 

2014), and WorldClim v.1.4 and v2 (Hijmans et al. 2005).  

Agro-climatically 

attainable yield 

Attainable yield for oil palm and sugarcane by 2050, based on radiation, 
temperature, water balances, and optimal crop calendars. Irrigation and high-input 

management practices (i.e., high-yielding varieties and high crop densities) were 
considered. 

300 

arcseconds 
Linear NA Global Agro-Ecological Zones GAEZ (IIASA/FAO 2012). 

Availability of flat 

lands 
Terrain slope. 30 arcseconds 

Sigmoid 

Small 
5° 

Layer derived from GTOPO30 DEM 

https://lta.cr.usgs.gov/GTOPO30 
Proximity to 

transport networks 
Cost distance to roads and railroads. NA 

Sigmoid 

Small 
50 km 

Roads and railroads v. 3.0.0 

http://www.naturalearthdata.com 

Proximity to current 

cultivation areas 
Cost distance to current oil palm and sugarcane cultivation areas. 10 × 10  

Sigmoid 
Small 

300 km 
Layer based on current cultivation areas for oil palm and 
sugarcane, considering the Spatial Production Allocation 

http://gis-lab.info/qa/vmap0-eng.html
http://gis-lab.info/qa/vmap0-eng.html
http://www.naturalearthdata.com/
https://lta.cr.usgs.gov/GTOPO30
http://www.naturalearthdata.com/
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Model SPAM 2005 v2.0. (≥ 100 ha pixel-1) (You et al. 

2014) and oil palm cultivation polygons (Furumo and Aide 
2017). 

Agricultural value Potential annual gross economic rents from agricultural lands. 
300 

arcseconds 
Linear NA 

Potential annual gross economic rents from agricultural 

lands (Naidoo and Iwamura 2007). 
Number of 

vertebrate species 

Number of vertebrate species (amphibians, birds, and mammals) based on IUCN 

species distribution maps, Bird Life International, and Nature Serve. 

 

10 × 10 km  

 

Linear  
NA Biodiversity maps (Jenkins et al. 2013). 

Number of 

threatened 

vertebrate species 

Number of vertebrate species (amphibians, birds, and mammals) based on IUCN 

distribution maps, Bird Life International, and Nature Serve.  
10 × 10 km 

 

Linear  
NA Biodiversity maps (Jenkins et al. 2013). 

Number of 

vertebrate species 

with small 

distribution ranges 

Number of vertebrate species with small distribution ranges (amphibians, birds, 

and mammals) based on IUCN distribution maps, Bird Life International, and 
Nature Serve. 

10 × 10 km Linear NA Biodiversity maps (Jenkins et al. 2013). 

Presence of areas 

with low human 

pressures 

Measure of human pressures (no pressure, low pressure, moderate pressure, high 

pressure, very high pressure) based on the presence of built environments, 

croplands, pastures, human population density, night-time lights, railways, roads, 
and navigable waterways. 

1 × 1 km Sigmoid 

Small 

4 Human footprint (Venter et al. 2016) 

Presence of islands Islands NA 
Sigmoid 

Small 
5000 km2  Layer based on GADM database http://gadm.org/ 

Presence of 

mangroves 
Percentage of mangroves covering each pixel (i.e., 25 km2). 

 

NA 

 

Linear NA Global distribution of mangroves (Giri et al. 2011). 

http://gadm.org/
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Table S2. Reclassification of original values for water depletion categories (Brauman et al. 2016) into suitability values ranging from 

0 to 1. 

Water depletion categories Reclassified values 

<5% depleted 0.95 

5–25% depleted 0.75 

25–50% depleted 0.5 

50–75% depleted  0.25 

Dry-year depleted 0.25 

Seasonally depleted 0.25 

75–100% depleted 0 

100% depleted 0 

2. Calculation of productivity values per pixel 

For microalgal and oil palm cultivation, potential productivities per pixel (GJ pixel-1 year-1) were 

calculated based on the following formula: 

 

𝐷 =  𝐿𝑝 ∗ 0.81 ∗ 0.0326 

 

Where 𝐷 corresponds to productivity values in units of energy (GJ pixel-1 year-1), 𝐿𝑝 corresponds to 

lipid production (L pixel-1 year-1), 0.81 is the assumed proportion of biodiesel produced from an 

initial volume of lipids contained in microalgal cells or oil palm fruits (assuming a lipid extraction 

efficiency of 0.9 and a conversion efficiency from lipids to biodiesel of 0.9), and 0.0326 (GJ L-1) 

corresponds to the Low Heating Value conversion factor from a volume of biodiesel to energy 

(Hofstrand 2008). 

 

For microalgae, lipid production was calculated based on Moody et al. (2014) (see section 1 in 

Supplementary Information). For oil palm, lipid production was calculated based on the following 

formula: 

 

𝐿𝑝 =
𝑌

0.225
∗  

0.26

9.2 ∗ 10−4
∗ 2500 

 

Where 𝐿𝑝 corresponds to lipid production (L pixel-1 year-1), 𝑌 corresponds to the agro-climatically 

attainable yield (t ha-1 year-1 in dry weight), 0.225 is the conversion factor from fresh weight to dry 

weight for oil palm fruits (IIASA/FAO 2012), 0.26 is the proportion of lipids in oil palm fruits (El 
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Bassam 2010), 9.2 ∗ 10−4 is the palm oil density (t L-1) (Firestone 2013), and 2500 corresponds to 

the number of hectares per pixel (ha pixel-1). 

 

For sugarcane cultivation, potential productivities per pixel (GJ pixel-1 year-1) were calculated based 

on the following formula: 

 

𝐷 =  
𝑌

0.1
∗ 83 ∗ 2500 ∗ 0.0211 

 

Where 𝐷 corresponds to productivity values in units of energy (GJ pixel-1 year-1), 𝑌 is the agro-

climatically attainable yield (t ha-1 year-1 in dry weight), 0.1 is the conversion factor from fresh 

weight to dry weight for sugarcane (IIASA/FAO 2012), 83 is the conversion efficiency from an initial 

fresh weight of sugarcane into bioethanol (L t-1) (de Vries et al. 2010), 2500 corresponds to the 

number of hectares per pixel (ha pixel-1), and 0.0211  corresponds to the Low Heating Value 

conversion factor from a volume of bioethanol to energy (GJ L-1) (Hofstrand 2008). 
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HIGHLIGHTS 

• First generation biofuels are the least sustainable biofuel production alternative 

• Implementing more sustainable biofuel production systems is urgently needed 

• Sustainable biofuels need the integration of socioeconomic and environmental goals 

• Economic barriers to adopt these systems can be overcome through policy mechanisms 

ABSTRACT 

Novel energy production systems are needed that not only offer reductions in greenhouse gas 

emissions but also cause fewer overall environmental impacts. How to identify and implement more 

sustainable biofuel production alternatives, and how to overcome economic challenges for their 

implementation, is a matter of debate. In this study, the environmental impacts of alternative 

approaches to biofuel production (i.e., first, second, and third generation biofuels), with a focus on 

CHAPTER 5. Towards the implementation of sustainable biofuel 

production systems 
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biodiversity and ecosystem services, were contrasted to develop a set of criteria for guiding the 

identification of sustainable biofuel production alternatives (i.e., those that maximize socioeconomic 

and environmental benefits), as well as strategies for decreasing the economic barriers that prevent 

the implementation of more sustainable biofuel production systems. The identification and 

implementation of sustainable biofuel production alternatives should be based on rigorous 

assessments that integrate socioeconomic and environmental objectives at local, regional, and global 

scales. Further development of environmental indicators, standardized environmental assessments, 

multi-objective case studies, and globally integrated assessments, along with improved estimations 

of biofuel production at fine spatial scales, can enhance the identification of more sustainable biofuel 

production systems. In the short term, several governmental mandates and incentives, along with the 

development of financial and market-based mechanisms and applied research partnerships, can 

accelerate the implementation of more sustainable biofuel production alternatives. The set of criteria 

and strategies developed here can guide decision making towards the identification and adoption of 

sustainable biofuel production systems. 

 

Keywords: Biodiversity, biofuel, bioenergy, climate change, microalgae, renewable energy, 

ecosystem service 

1. INTRODUCTION 

Boosting economic growth while halting environmental degradation remains one of the major global 

challenges for humankind (Raudsepp-Hearne et al. 2010). Current unsustainable use of the Earth’s 

finite natural capital (Hoekstra and Wiedmann 2014) has led to a wide range of negative impacts on 

the environment (Rockström et al. 2009), including increasing biodiversity losses (Ceballos et al. 

2015), alterations in the provision and quality of ecosystem services (Lawler et al. 2014), and climate 

change (Cox et al. 2000). These impacts and the decisions that society makes to reduce them, which 

include balancing human population growth (Crist et al. 2017) and planning for solutions based on 

multiple interacting environmental pressures (Watson 2014), will have profound implications for 

global socioeconomic and environmental systems. 

 

How to meet increasing energy consumption demands, while reversing environmental degradation, 

is a matter of debate (Heard et al. 2017). Currently, the provision of energy relies primarily on fossil 

fuels, with around 5.8 × 1011 GJ consumed globally in 2016, of which 81% was derived from coal, 

petroleum, and natural gas (IEA 2017). Their associated greenhouse gas (GHG) emissions are linked 



  

192 

 

to global warming and its negative impacts on biodiversity (Pecl et al. 2017) and ecosystem services 

(Scholes 2016). Limiting global warming to well below 2°C compared to pre-industrial levels, a goal 

ratified or acceded by 185 parties (i.e., on February 2019) following the 21st Conference of the Parties 

to the United Nations Framework Convention on Climate Change (UNFCCC) in Paris (IPCC 2015), 

is expected to require the rapid adoption of renewable energy systems for replacing fossil fuels (Walsh 

et al. 2017). Consequently, the share of energy from renewable sources could increase from 9% of 

total primary energy demands in 2016 to 29% by 2040 (IEA 2017).  

 

While solar, wind and water as renewable energy sources could provide electricity with lower 

environmental costs compared to fossil fuels (Jacobson and Delucchi 2011), liquid fuels are expected 

to remain necessary in the transport sector—mainly for aviation, shipping, and long-haul trucking—

in spite of an expected increase in electric vehicles (Fulton et al. 2015). In fact, some scenarios for 

limiting global warming to 2°C, foresee biofuel production increasing from 9.7 × 106 GJ d-1 to 4.6 × 

107 GJ d-1 between 2016 and 2040, reaching 16% of total transport fuels (IEA 2017), though it 

remains unclear to what degree biofuel adoption would reduce net GHG emissions compared to other 

climate change mitigation options (Righelato and Spracklen 2007).  

 

Current biofuel production is based on food crops (i.e., first generation biofuels) that compete with 

agricultural lands and biodiverse landscapes (Box 1, Fig. 1). Furthermore, biofuel production has 

been linked to several other environmental pressures that may, directly and indirectly, impact 

biodiversity and the provision of ecosystem services. These pressures (Correa et al. 2017) include 

direct and indirect land-use change (Immerzeel et al. 2014), GHG emissions (Fargione et al. 2008), 

emission of pollutants (i.e., from pesticides, fertilizers, biofuel production, and final use of biofuels) 

(Hill et al. 2006), water depletion (Gerbens-Leenes et al. 2009), soil degradation and erosion (Gregg 

and Izaurralde 2010), and introduction of invasive species (Barney and DiTomaso 2008). The impacts 

of biofuels on biodiversity and ecosystem services, however, depend on the type of biofuel production 

system and several factors associated with its cultivation and production (Immerzeel et al. 2014), 

including: the competing land-use and the spatial configurations of biofuel cultivation landscapes 

(Koh et al. 2009), their cultivation and conversion technologies (Hill et al. 2006), their cultivation 

management practices (Fargione et al. 2009), their invasiveness potential (Barney and DiTomaso 

2011), and the presence of co-products (Box 2) (Fargione et al. 2010). 
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Box 1. Biofuels, main production regions, and overlapping areas of high ecological importance 

 

Biofuel production involves the transformation of organic compounds—including cellulose, hemicellulose, 

lignin, starch, saccharose, and oils—from living organisms into carbon-rich carriers (e.g., alcohols and esters) 

that can be used for energy generation (Kamm and Kamm 2004). These organic compounds can come from a 

wide range of feedstocks (i.e., the range of sources from which biofuels are produced), including herbaceous 

and woody plants, oilseeds, agricultural and forestry wastes, and algae (Naik et al. 2010). Feedstocks are 

transformed into biofuels through various combinations of thermochemical, biochemical, chemical and 

physical processes depending on feedstock properties (e.g., moisture content, proportions of fixed carbon and 

volatile matter, and cellulose/lignin ratios) (McKendry 2002). Different environmental impacts, including 

habitat loss for native species (Immerzeel et al. 2014), GHG emissions (Fargione et al. 2008), emission of 

pollutants (Hill et al. 2006), and water withdrawals (Gerbens-Leenes 2018), arise from combinations of 

feedstock cultivation systems and their processing technologies. 

 

According to REN21 (2016), 133 × 109 L of liquid biofuels were produced in 2015, mainly in the forms of 

bioethanol (98.3 × 109 L, contributing to 74% of global biofuel production) and biodiesel (30.1 × 109 L, 

contributing to 23% of global biofuel production). Bioethanol production was led by the USA (57% of the 

total global bioethanol production), followed by Brazil (29%) and the EU-28 (4%), mostly from maize in the 

USA, maize and wheat in the EU-28, and sugarcane in Brazil. Biodiesel production was led by the EU-28 

(38% of the global total production), followed by the USA (16%) and Brazil (14%) (REN21 2016), primarily 

from rapeseed in Europe, and soybean in the USA and Brazil. Another widely used biodiesel feedstock is oil 

palm (Mekhilef et al. 2011). Cultivation of these crops overlaps with areas of high ecological importance, and 

have widely replaced native ecosystems, including native grasslands in the USA (Morefield et al. 2016) and 

Brazil (WWF 2016), as well as tropical and subtropical forests in South America (Barona et al. 2010) and 

Southeast Asia (Vijay et al. 2016). 
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Figure 1. Cultivation areas of food crops used for biofuel production globally (a) and overlapping habitat types and ecoregions (as 

dotted areas) (TNC 2009) in North America (b), South America (c) and South East Asia (d). Total physical cultivation area for crops 

is based on the Spatial Production Allocation Model (SPAM) 2005 v.2.0 at 5 arcmin grid cells (You et al. 2014).  

 

Box 2. Factors that modify the environmental impacts of biofuel production  

 

The impacts of biofuel production on biodiversity and ecosystem services are modified by: 

• Competing land-use: Determines how much GHG will be emitted (Searchinger 2010) and how much 

biodiversity will be lost (Immerzeel et al. 2014) after the replacement of original systems by biofuel 

production systems. The transformation of native ecosystems leads to fragmentation, habitat losses, 

and large CO2 emissions arising from losses in biomass and soil carbon contents (Fargione et al. 2010). 

The competition with agricultural lands increases the potential for indirect land-use changes (Lambin 

and Meyfroidt 2011), leading to increases in CO2 emissions, further biodiversity losses and 

environmental degradation outside biofuel cultivation areas (Fargione et al. 2010). 

• Spatial configurations of cultivation landscapes: Modifies the likelihood of species persistence at local 

and landscapes scales, as well as the provision of ecosystems services. For instance, a combination of 

intensive production areas, agroforestry systems, and forest patches (i.e., land-sparing) has been 

proposed as a way to maintain regional biodiversity and ecosystem services for oil palm cultivation 
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(Koh et al. 2009). Alternatively, biofuel cultivation areas could be managed to promote higher 

biodiversity (i.e., land-sharing) (Manning et al. 2015). Jager and Kreig (2018) propose the 

conservation of large patches of native ecosystems, the implementation of biological corridors at 

landscape scales (i.e., land-sparing), and the reduction of production intensity at the scale of parcels 

(i.e., land-sharing). 

• Biofuel cultivation and conversion technologies: Determines how much GHGs will be saved in 

comparison to fossil fuels, as a balance between inputs (e.g., fertilizers, energy used for converting 

feedstocks into biofuels) and products (i.e., biofuels and co-products) (Hill et al. 2006). Affects water 

withdrawal (Gerbens-Leenes et al. 2014) and the amount of emitted pollutants during the cultivation 

and processing of feedstocks (Hill et al. 2006), as well as the overall environmental impacts associated 

with biofuel production (Correa et al. 2017). 

• Cultivation management practices: Modifies the magnitude of ongoing GHG emissions depending on 

how much fertilizer is used (Hill et al. 2006) and how soil is disturbed (e.g., frequent vs. sporadic soil 

tillage) (Paustian et al. 2000). For instance, Qin et al. (2018) found that reducing tillage in USA maize-

soybean production systems can offset GHG emissions derived from corn stover harvesting. Affects 

soil erosion rates, as well as pollution potential within and outside cultivation areas as a result of 

pesticide and fossil fuel use (Correa et al. 2017). Impacts the persistence of native species within 

production areas (Fargione et al. 2009). 

• Invasiveness potential: Affects the local and regional persistence of native species, as well as the 

resilience of natural systems and their associated ecosystems services (Barney and DiTomaso 2008). 

• Co-products: Affects the sustainability of biofuel production systems, as well as the emission of 

GHGs, pollutants, and energy efficiencies (Hill et al. 2006). Can help in offset GHG emissions 

(Creutzig et al. 2015) and reduce external energy inputs dependent on fossil fuels (Slade and Bauen 

2013). 

 

How to identify and implement more sustainable biofuel production alternatives (Darda et al. 2019), 

and how to overcome economic obstacles to their implementation, are unresolved challenges (Soares 

et al. 2018). Here, the environmental impacts of several biofuel production alternatives (i.e., first, 

second, and third generation biofuels) on biodiversity and ecosystem services are evaluated. This 

information is integrated with criteria and avenues of research for guiding the identification and 

implementation of sustainable biofuel production alternatives (i.e., those that maximize 

socioeconomic and environmental benefits). Finally, promising strategies for overcoming economic 

barriers to adopt more sustainable biofuel production systems, are discussed. 
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2. An overview of the environmental impacts of several biofuel production 

alternatives 

First generation biofuels, which compete with agricultural and biodiverse lands, have led to habitat 

loss for native species (Elshout et al. 2019) and associated GHG emissions (Fargione et al. 2008) 

(Box 3). This mainly occurs by the direct replacement of biodiverse and carbon-rich original systems 

(i.e., direct land-use change) (Immerzeel et al. 2014), and by the agricultural expansion outside 

biofuel production areas (Lambin and Meyfroidt 2011) as a consequence of increases in food prices 

generated by the competition with food production (i.e., indirect land-use change) (To and Grafton 

2015). For instance, between 1990 and 2005 in Southeast Asia, more than 55% of oil palm crops—

which is used for human consumption and as a source for biodiesel production—came from oil palm 

plantations on converted native forests, directly increasing the extinction risk of thousands of species 

(Fitzherbert et al. 2008), while emitting large amounts of CO2 into the atmosphere (Fargione et al. 

2008). In Borneo, Sumatra and Peninsular Malaysia alone, it is estimated that the conversion of 6% 

of peat-swamp forests into oil palm by the early 2000s, led to direct emissions of more than 140 Mt 

of CO2 into the atmosphere plus ongoing annual carbon losses of around 4.6 Mt as a result of peat 

oxidation (Koh et al. 2011). Conversion of peat-swamps and associated releases of CO2 are ongoing 

(Miettinen et al. 2016). The expansion of first generation biofuels has also impacted South America, 

where soybean cultivation—used for food, animal feed, and biodiesel production—has directly 

replaced large areas of the biodiverse Cerrado savannas (WWF 2016), and indirectly driven 

deforestation in the Amazon forest for cattle production (Barona et al. 2010). In North America, 

bioethanol production from maize has, directly and indirectly, promoted the replacement of native 

and planted grasslands (Lark et al. 2015). Further cultivation of food crops for biofuel production 

threatens many other biodiverse and carbon-rich systems, including the African savannas 

(Searchinger et al. 2015) and several other suitable agricultural areas mainly in the highly productive 

tropical regions (Laurance 2015), as well as in developing economies with high energy demands (e.g., 

China) (Qin et al. 2018). 

 

GHGs—including CO2, methane (CH4), nitrous oxide (N2O), and carbon monoxide (CO)—as well 

as air pollutants—including ammonia (NH3), volatile organic compounds (VOC), particulate matter 

(PM), nitrogen oxides (NOx), and sulfur oxides (SOx) (Zhang et al. 2016)—are emitted during the 

replacement of original systems (Searchinger et al. 2008), cultivation and processing of feedstocks 

(Snyder et al. 2009), transportation of biofuels to fuel stations, and final use of biofuels (Creutzig et 

al. 2015). For instance, the emission of N2O during the cultivation of crops with high nitrogen 

demands can offset CO2 savings, as its global warming potential is 296 times larger than an equal 
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mass of CO2 (Crutzen et al. 2008). Air pollution not only contributes to climate change, but also, 

directly and indirectly, impact species, ecosystems , and humans (e.g., through poisoning, acid rain, 

ozone layer depletion, tropospheric ozone formation, and changes in regional weather patterns) 

(Heijungs et al. 1992). In fact, Tessum et al. (2014) show that replacing conventional gasoline with 

corn ethanol in USA light-duty transportation can increase environmental health impacts by 80% 

from increased levels of O3 and PM. 

 

Box 3. The controversial GHG emissions of biofuels 

In biofuel production systems, GHGs are emitted as a result of land-use changes (Fargione et al. 2008), as well 

as during the cultivation of feedstocks (Snyder et al. 2009), their harvesting, and their processing into biofuels 

(i.e., CO2 emissions through soil disturbance, heterotrophic respiration, biomass combustion, and the use of 

energy-intensive processes) (DeCicco 2013). Further CO2 emissions occur as a result of the production and 

transportation of inputs required for biofuel production (e.g., fertilizers), the transport of biofuels to fuel 

stations, and the final burning of biofuels for energy production (Hill et al. 2006). Other GHGs, including CH4, 

N2O, and CO are additionally emitted during the production and use of biofuels (Zhang et al. 2016). Currently, 

the accounting of GHGs derived from biofuel production as well as the definitive role of biofuel in climate 

change mitigation, remain controversial (Creutzig et al. 2015). However, in relation to CO2 emissions, some 

consensus exists:  

• To offset the CO2 emitted by biofuel production, the carbon uptake during cultivation should be higher 

than the counterfactual reference system (Searchinger 2010). For instance, in Southeast Asia, it would take 

between 86 and 423 years to fix the CO2 emitted when lowland rainforests and peatland rainforests are, 

respectively, transformed into oil palm plantations (Fargione et al. 2008). Even in systems with lower 

carbon stocks (e.g., grasslands), carbon emissions would be substantial. Searchinger et al. (2015) estimate 

that in 99.4% of Africa’s wet savannas more than 10 years would be needed to fix the CO2 emitted 

following their replacement by second generation biofuels. 

• CO2 emissions can decrease through the use of carbon-efficient cultivation and conversion practices and 

technologies. This includes the use of systems with lower fertilizer use (e.g., soybean cultivation would 

need fewer fertilizers than maize) (Hill et al. 2006), the avoidance of detrimental soil management practices 

that drive carbon losses (e.g., reduced soil tillage) (Paustian et al. 2000), and the optimization of energy-

intensive processes for feedstock harvesting and conversion into biofuels (e.g., use of anaerobic digestion 

for nutrient recycling and energy production in microalgal production systems) (González-González et al. 

2018). 

• Carbon can be additionally captured and sequestered in long-term geological scales, for instance, using 

systems of bioenergy with carbon capture and storage (BECCS) (Popp et al. 2017). 
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In the face of future agricultural expansion, alternatives that do not compete with food production or 

with biodiversity, and with fewer direct and indirect impacts on biodiversity and ecosystem services 

are needed to replace fossil fuels (Box 4, Fig. 2). Second generation biofuels, based on the 

transformation of the abundant lignin and cellulose found in non-food plants such as Miscanthus 

(Heaton et al. 2008) and Jatropha (Silitonga et al. 2011, van Eijck et al. 2014), as well as in organic 

wastes (Naik et al. 2010), could lower competition with prime agricultural lands used for food 

production, as well as decrease the use of water, fertilizers, and pesticides (Eisentraut 2010). The 

cultivation of second generation biofuels (e.g., willow, poplar, Eucalyptus, Miscanthus, and 

switchgrass) could, however, compete with important areas for biodiversity conservation (Beringer 

et al. 2011), become invasive (Barney and DiTomaso 2008), drive soil water depletion in dry areas 

(Yimam et al. 2014)—e.g., Eucalyptus plantations in Australia (Robinson et al. 2006) and Miscanthus 

plantations in the Midwest USA) (Vanloocke et al. 2010)—and emit considerable amounts of air 

pollutants including PM, NOx, SOx, NH3, and VOCs (Thakrar et al. 2017). Further negative impacts 

on key ecosystem services (e.g., water availability, disease and pest control, pollination, soil and 

water quality) would be expected when replacing forests and grasslands with second generation 

biofuels (Holland et al. 2015). Additionally, indirect land-use changes would likely occur if demands 

for forest biomass increase, which would create incentives for further deforestation, particularly in 

tropical regions (Phalan 2009). 

 

Box 4. Future agricultural expansion, biofuels, and biodiversity 

 

Current species extinction rates are estimated at between 100 (Ceballos et al. 2015) and 1,000 times greater 

(Rockström et al. 2009) than those found in fossil records. For vertebrates, around 25% of mammal species, 

13% of birds and 42% of amphibians are currently classified under some extinction threat category (IUCN 

2016), and average losses in global population abundances are calculated at 58% between 1970 and 2012 

(WWF 2016). Additionally, 20–50% of the original extent of nine of the 14 world’s biomes has been 

transformed into croplands, with a notable loss of tropical dry forests, temperate grasslands, temperate 

broadleaf forests and Mediterranean forests (MEA 2005). As biodiversity continues to be negatively impacted 

by human activities—as a result of land-use change, fragmentation of native ecosystems, pollution, occurrence 

of invasive species, and climate change (MEA 2005)—not only will more species risk extinction, but also 

ecosystem resilience will decrease, affecting the provision of multiple ecosystem services and ultimately the 

human wellbeing (Costanza et al. 1997). 

 

Increases in food and energy demands are expected to drive further pressures on biodiversity and ecosystem 

services, particularly when using biofuels derived from food crops (Correa et al. 2017). Currently, around 34% 
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of global terrestrial lands are used for agriculture, including 1.6 × 109 ha of rainfed and irrigated croplands, 

and 3.4 × 109 ha of pastures used for animal grazing (Alexandratos and Bruinsma 2012). At a population 

projection of around 9,000 million people by 2050, it is expected that food demands will increase by more than 

60% from 2006 levels (FAO 2016), which could lead to an expansion of around 70 million ha for croplands, 

assuming that yields rise within current production systems (Alexandratos and Bruinsma 2012). This 

expansion is expected to occur mostly in tropical developing countries, placing additional pressures on tropical 

ecosystems (Laurance 2015).  

 

Biofuel production systems that compete with agricultural lands are not only likely to threaten food production 

(Fischer et al. 2009), but also are expected to magnify the environmental pressures and impacts on biodiversity 

and ecosystem services (Liu et al. 2015). 

 

Intercropping biofuels in agricultural areas or timber plantations would also help in reducing 

competition with food production (Tilman et al. 2009). However, they could disturb native species 

that make use of the plantations depending on management practices (Robertson et al. 2012) and, 

under some conditions, drive losses in soil carbon stocks. For instance, Strickland et al. (2015) found 

that intercropping switchgrass within Pinus taeda plantations can reduce soil carbon during the first 

years following switchgrass planting. 

 

While using wastes for biofuel production does not directly compete with agricultural or biodiverse 

lands, they could impact biodiversity and ecosystem services. For instance, the extraction of 

agricultural and forestry wastes can decrease soil carbon stocks and fertility in cultivation areas 

(Anderson‐Teixeira et al. 2009), negatively impact species that make use of decaying biomass (Riffell 

et al. 2011), and indirectly drive deforestation as demand for biomass increases (Phalan 2009). On 

the other hand, the use of plantations of native perennials on low-biodiversity or degraded lands could 

enhance the provision of several ecosystem services including carbon storage and pollination 

(Werling et al. 2014), as well as reduce the use of fertilizers and pesticides compared to conventional 

crops, allow the persistence of grassland or shrubland species, and reduce competition with food crops 

(Tilman et al. 2009). 
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Figure 2. Magnification of pressures and impacts on biodiversity and ecosystem services exerted by the combined expansion of 

agriculture and first generation biofuels for meeting food and energy demands. Pressures are defined as anthropogenic factors that 

induce environmental impacts, based on the DPSIR framework (Kristensen 2004). 

 

Third generation biofuels are mainly based on the use of microalgae (Box 5). This technology can be 

optimized to produce several types of biofuels, including biodiesel, bioethanol, biogas, and 

biohydrogen (Schenk et al. 2008). Because of high microalgal biomass productivities, microalgal 

systems require significantly less cultivation area to meet the same amount of energy compared to 

first and second generation biofuel crops (Table 1), particularly in areas with high solar radiation and 

high mean annual temperatures (Correa et al. 2017). They do not require fertile soils, and so are not 

expected to drive direct or indirect land-use changes within agricultural areas or biodiverse regions 

(Usher et al. 2014). Several strains can be cultivated in brackish water or seawater (Maeda et al. 

2018), reducing competition with freshwater, and their dependence on environmental pollutants such 

as pesticides is lower compared to other terrestrial crops (Smith et al. 2010). Furthermore, microalgal 

production systems can make use of residual CO2 from industries (because supplementing algae 

production systems with CO2 increases algal growth) and nutrients from wastewater, helping in 

carbon capture (Sayre 2010) and water remediation (Mu et al. 2014).  
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Although several potential environmental impacts of large-scale microalgal production systems 

remain unclear (e.g., carbon balances, nutrient use, invasiveness potential, pollution of aquatic 

ecosystems) (Slade and Bauen 2013), the development of more efficient cultivation and processing 

technologies that make use of renewable energy sources can improve the net GHG balances of 

microalgal production systems (Collet et al. 2014). Furthermore, the recycling of culture media (Yang 

et al. 2011) and biomass residues (e.g., after lipids are extracted for biodiesel production), can reduce 

the use of freshwater (Gerbens-Leenes et al. 2014) and fertilizers (González-González et al. 2018), 

while decreasing the risk of polluting aquatics ecosystems (Usher et al. 2014), and the cultivation of 

microalgae with low invasiveness potential can avoid unintended ecological changes in surrounding 

aquatic environments (Committee on the Sustainable Development of Algal Biofuels et al. 2012). 

 

Box 5. Microalgal biofuel production: Higher productivities per unit area than other biofuel production 

crops 

 

Prokaryotic (i.e., cyanobacteria) and eukaryotic microalgae (e.g., green algae, red algae, and diatoms) can be 

cultivated for producing biogas, bioethanol, biodiesel, and biohydrogen (Mata et al. 2010). Other products, 

including biochar, high-value compounds for human consumption, as well as fertilizer or animal feed can also 

be produced from microalgae (Brennan and Owende 2010). 

 

Algae growth requires CO2, light, and a growing medium with inorganic salts (i.e., water with nutrients such 

as nitrogen, phosphorus, iron, and silicon) (Chisti 2007). Maximum productivities are achieved at high light 

intensities and constant high temperatures (usually between 20 and 30°C) (Chisti 2007), and at a pH optimal 

to each microalgal strain (Schenk et al. 2008). Biomass productivities increase when supplemented with CO2 

(Nascimento et al. 2015), and when growth conditions are optimized to control algal grazers (Narala et al. 

2016) and enhance biomass and lipid productivities (Ravindran et al. 2017). 

 

Microalgae are among the most productive photosynthetic organisms on Earth (Chisti 2007). Estimates on 

lipid productivities range from 2,100 L ha-1 y-1 when cultivating Spirogyra sp. in urban wastewater ponds in 

India (Ramachandra et al. 2013) to 136,900 L ha-1 y-1 if growing species with high oil content in 

photobioreactors (Chisti 2007). According to Lundquist et al. (2010) in theoretical optimal conditions biomass 

yields could reach 290 t ha-1 y-1 within the continental USA (i.e., oil yields equal to 126,000 L ha-1 y-1), assuming 

conversion efficiencies of 10% from solar energy into biomass, high annual irradiances (i.e., at 7,500 MJ m-2 

y-1 in Yuma, Arizona) and cell lipid contents at around 40%. More conservative maximum oil yields are 

estimated at between 24,000 and 27,000 L ha-1 y-1, which could be achieved within tropical countries with high 

solar irradiance (Moody et al. 2014). For instance, when cultivating Scenedesmus dimorphus under subtropical 

conditions (Brisbane, Australia) it is possible to produce 72 t ha-1 y-1 of dry biomass, equivalent to around 

19,400 L ha-1 y-1 (based on cell lipid contents at around 25% and oil densities at 930 kg m-3) (Schenk 2016). 
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This means that the land footprint of microalgal production systems would be substantially lower compared to 

any other biofuel production system, including first generation biofuels (Correa et al. 2017). 

 

1. Identifying and implementing sustainable biofuel production alternatives 

If humankind is to halt further biodiversity losses and overall environmental degradation while 

limiting global warming (IPCC 2015), the identification and implementation of biofuel production 

systems must ensure that overall socioeconomic and environmental benefits are achieved (Fig. 3). 

Price competitiveness, affordability (Demirbas 2009), and reliability in comparison to fossil fuels 

(Zah and Ruddy 2009) are essential for the deployment of biofuel production systems. Systems that 

are able to meet biofuel production targets (i.e., based on their high production levels or the 

availability of feedstocks), as well as those able to meet socioeconomic targets (Hunsberger et al. 

2017) (e.g., welfare improvement in biofuel producing countries and local communities) (Singh 2013) 

(Box 6), could be preferred over others. Furthermore, biofuel production systems with lower 

environmental impacts (Demirbas 2009), or even environmental benefits, could contribute to achieve 

targets in carbon emission reductions, biodiversity conservation, and provision of ecosystem services 

(Tilman et al. 2009). These systems would need to provide large net GHG savings (including the 

avoidance of depleting existing carbon stocks in biomass and soil) (Tilman et al. 2006), avoid 

competition with agricultural lands (Tilman et al. 2009), avoid direct or indirect land-use changes in 

biodiverse areas (Correa et al. 2017), have low water footprints (Gerbens-Leenes et al. 2012), and 

minimize pollution (Hill et al. 2006), soil degradation (McLaughlin and Walsh 1998), and 

invasiveness potential (Raghu et al. 2011). Systems that maintain biodiversity and ecosystem services 

in the broader landscape (i.e., within and outside plantations) (Koh et al. 2009) could reduce regional 

biodiversity losses (Wiens et al. 2011) while maintaining ecosystems services (Werling et al. 2014). 
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Table 1. Cultivation area (thousand km2) for fulfilling total transport energy demands for biggest energy consuming countries in 2016 (i.e., countries that account for 80% of world’s total transport energy 

consumption), based on first (1G), second (2G), and third generation (3G) biofuels. The percentage of cultivation area (%) in relation to each country’s land area is included. See Supplementary 

Information for details on calculations and Correa et al. (2017) for comparisons with other countries. 

Country 

1G biofuels 2G biofuels 3G biofuels 

Ethanol Biodiesel Ethanol Biodiesel Biodiesel 

Wheat Maize Sugarcane Soybean Rapeseed Oil palm Switchgrass Miscanthus Jatropha Microalgae 

Area % Area % Area % Area % Area % Area % Area % Area % Area % Area % 

United States 10,094 106 2,987 31 1,922 20 14,119 149 11,014 116 - - 3,524 37 1,153 12 4,681 49 622 7 

China 2,905 31 2,422 26 1,009 11 11,515 122 4,997 53 1,242 13 1,679 18 549 6 2,229 24 353 4 

Russia 2,003 12 989 6 - - 5,000 30 2,574 15 - - 531 3 174 1 - - 157 1 

India 1,483 47 1,624 51 306 10 5,707 180 2,412 76 - - - - - - 673 21 66 2 

Brazil 1,629 19 800 9 265 3 1,934 23 2,096 25 390 5 - - - - 620 7 61 1 

Japan 938 251 1,308 350 308 82 3,019 809 1,609 431 - - 408 109 133 36 - - 83 22 

Canada 948 10 294 3 - - 1,455 15 934 9 - - 344 3 113 1 - - 108 1 

Germany 372 104 277 78 - - 1,811 508 496 139 - - 322 90 105 30 - - 89 25 

Mexico 503 26 751 38 174 9 2,370 121 1,573 80 222 11 - - - - 396 20 39 2 

Indonesia - - 457 24 200 11 2,228 117 - - 155 8 - - - - 353 19 36 2 

Saudi Arabia 374 20 377 20 - - - - - - - - - - - - 342 18 33 2 

Iran 1,256 77 309 19 135 8 1,388 85 798 49 - - 252 16 83 5 335 21 34 2 

France 319 58 235 43 - - 1,102 201 416 76 - - 248 45 81 15 - - 52 10 

United Kingdom 261 107 - - - - - - 374 153 - - 231 95 76 31 - - 68 28 

Italy 462 154 182 60 - - 728 242 479 159 - - 203 68 67 22 - - 35 12 

South Korea 546 544 343 341 - - 1,457 1450 1,118 1113 - - 199 199 65 65 - - 43 43 

Australia 824 11 232 3 97 1 1,096 14 805 10 - - 185 2 61 1 246 3 22 0 

Spain 510 101 131 26 181 36 763 151 471 93 - - 174 34 57 11 - - 27 5 

Turkey 498 64 150 19 - - 451 58 246 32 - - 150 19 49 6 - - 25 3 

Thailand 1,246 241 280 54 83 16 1,104 213 - - 76 15 - - - - 188 36 21 4 

Malaysia - - 149 45 163 49 - - - - 64 19 - - - - 161 49 17 5 

South Africa 281 23 192 16 69 6 766 63 443 36 - - - - - - 141 11 14 1 

Egypt 146 15 117 12 39 4 399 40 - - - - 105 11 34 3 140 14 13 1 
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Figure 3. Criteria to be considered when evaluating the socioeconomic and environmental benefits of biofuel production systems. 

 

Box 6. The social impacts of first generation biofuels 

 

Biofuel production has been linked to a wide range of negative socioeconomic impacts, closely related to those 

exerted by large-scale farming systems. Controversies exist on the actual benefits of agricultural and biofuel 

expansion in developing countries, where rural poverty and informal land tenure are prevalent (Lawry et al. 

2017). While the production of biofuels can bring economic incentives to developing nations and help in 

poverty alleviation through the creation of jobs (Ewing and Msangi 2009), it can negatively impact land rights 

(Phalan 2009), drive rises in land prices, as well as alienate, marginalize, and displace locals (Obidzinski et al. 

2012). Biofuels have additionally been related to increases in food prices (To and Grafton 2015), directly 

affecting smallholder farmers and urban dwellers in developing economies (Wodon and Zaman 2009) that 

depend on external agricultural markets for surviving (De Hoyos and Medvedev 2011). 

 

However, it has been proposed that several of the impacts attributed to biofuel production rely on the weak 

governance of developing nations to protect small landholders (Singh 2013). Several governance 

mechanisms—e.g., policies that promote the diversification of land production while preventing deforestation 

(Sawyer 2008), or the implementation of certification schemes aimed at increasing social welfare in local 

communities (Scarlat and Dallemand 2011)—can help to reduce the reported negative socioeconomic impacts 

of biofuel production in the developing world (Van der Horst and Vermeylen 2011). In the face of future 

increased energy and food demands, the use of non-food crops for biofuel production would be expected to 

reduce these impacts. 
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To facilitate the identification of sustainable biofuel production systems, a number of key knowledge 

gaps must be addressed: 

 

i) Development and standardization of indicators (Smeets and Weterings 1999) for assessing 

the socioeconomic and environmental impacts of biofuel production alternatives. For biofuels, 

multiple indicators have been proposed in relation to soil and water quality, GHGs, air quality, 

and productivity (McBride et al. 2011), and in relation to social well-being, energy security, 

trade, profitability, and social acceptability (Dale et al. 2013). However, a more 

comprehensive development of some indicators, including those related to biodiversity and 

ecosystem services (de Souza et al. 2018, Gasparatos et al. 2018), would improve the 

understanding of the overall environmental impacts of biofuel production, and facilitate the 

assessment of biofuel production sustainability (Gasparatos et al. 2018). The standardization 

of indicators, which simplifies their selection and use, would benefit from the participation of 

stakeholders (i.e., academy, government, industries, non-governmental organizations, and 

communities) (Dale et al. 2017) and the understanding of the causal relationships between 

indicators and biophysical, socioeconomic, and governance drivers (Florin et al. 2014). 

 

ii) Development of standardized assessments on the environmental impacts exerted by biofuel 

production systems. This includes the development of life-cycle assessments (LCA) that make 

use of the same system boundaries (e.g., well-to-wheel studies that consider cultivation, 

biofuel production, and final use of biofuels by consumers), impact categories, and functional 

units (Bradley et al. 2015). These standardized assessments would facilitate objective and 

measurable comparisons between different studies, as well as the development of meta-

analysis on the environmental impacts of several biofuel production alternatives (Quinn and 

Davis 2015). For instance, Harris et al. (2015) report that there are insufficient empirical 

assessments to determine the impacts of second generation biofuels on GHG emissions; while 

Tu et al. (2017) indicate the need to harmonize assumptions, data sources, and calculation 

procedures in LCA, for the development of meta-analyses able to draw valid conclusions on 

the overall environmental impacts of microalgal production systems. 

 

iii) Development of case studies that consider multiple socioeconomic and environmental 

objectives (e.g., taking into account targets in energy and food production, biodiversity 

conservation, and provision of multiple ecosystem services) in several locations. Techniques 

for identifying multiple objective solutions include multi-criteria decision analysis (MCDA) 

(Malczewski and Rinner 2015), multi-agent systems (MASs) (Ghadimi et al. 2017), and 
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integer linear programming (Beyer et al. 2016). These studies require the participation of 

stakeholders for defining objectives, environmental indicators, criteria (Kurka and Blackwood 

2013), and their weights (e.g., through analytical hierarchy process AHP) (De Lange et al. 

2012). Furthermore, they would help to identify the synergies and trade-offs among objectives 

and criteria, for instance, between land and water requirements (Bonsch et al. 2016), between 

biodiversity and climate change mitigation (Hof et al. 2018), or among deforestation, CO2 

emissions, nitrogen losses, water withdrawals, and food prices (Humpenöder et al. 2018). The 

robustness and uncertainty of models and results can be shown through the development of 

sensitivity analyses (Pianosi et al. 2016). To date, several frameworks have been developed 

to facilitate the inclusion of multiple objectives in biofuel decision making. For instance, 

Zhang et al. (2010) developed a multi-objective and spatially explicit framework for biofuel 

production in Michigan, based on GIS, biomass yields, and trade-offs among biofuels and 

ecosystem services; Perimenis et al. (2011) developed a support tool for helping decision 

makers in selecting more sustainable biofuel production alternatives in Germany; and Garcia 

and You (2018) developed a framework to select the most sustainable bioethanol production 

alternative based global life-cycle environmental impacts (i.e., land-use change and GHG 

emissions) and production costs. Expanding on this work by developing detailed case studies 

that consider a broad range of objectives and impacts would establish an evidence-base for 

informing policy and planning decisions. 

 

iv) Improved estimation of potential biofuel production at fine spatial scales, accounting for a 

wide range of factors that can impact both feasibility and yield (Searle and Malins 2015). 

Biofuel production is limited by the availability of lands for the cultivation of feedstocks 

(Slade et al. 2014), and the availability of the several resources involved in their production, 

including freshwater (Hammond and Li 2016) and nutrients (e.g., nitrogen and phosphorus) 

(Hein and Leemans 2012). For instance, potential global bioenergy production from wastes, 

including agricultural and forestry residues, would be lower compared to energy crops (i.e., 

25–221 EJ vs. 22–1272 EJ y-1) (Slade et al. 2014) and may be further constrained after taking 

into account environmental considerations for maintaining soil fertility, carbon stocks and 

biodiversity associated with decaying biomass (Beringer et al. 2011). The understanding of 

these limits and uncertainties can help decision makers choose biofuel production alternatives 

able to meet substantial amounts of fuel demands. 

 

v) Development of standardized and integrated global assessments of the impacts of biofuel 

production considering complex socioeconomic and ecological systems (e.g., integrated 
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assessment modeling IAM) (Liu et al. 2015). These assessments would facilitate the 

understanding of the complex actual and potential impacts of biofuel production alternatives 

at multiple spatial and temporal scales. For instance, based on the Shared Socio-Economic 

Pathways (SSEPs) Popp et al. (2017) suggest that high levels of bioenergy production 

modeled on second generation biofuels can be achieved with low impacts on ecosystems, if 

future demand for agricultural commodities remains low, if agricultural productivity 

increases, and if globalized trade is maintained.  

2. Economic profitability: A current barrier to the deployment of more 

sustainable biofuel production systems 

Economic profitability is the main barrier to the deployment of several more sustainable biofuel 

production systems. Currently, the lowest biofuel production costs are achieved by first generation 

biofuels, particularly for sugarcane bioethanol in Brazil and maize bioethanol in the USA, helped in 

part by government subsidies (Carriquiry et al. 2014). High costs for converting lignocellulosic 

feedstocks into biofuels (Carriquiry et al. 2014) and high capital and operational costs for setting up 

microalgal production systems (Ruiz et al. 2016), reduce the economic competitiveness of 

lignocellulosic and microalgal biofuel production systems. While production costs for sugarcane in 

Brazil and maize in the USA have been calculated at between US$ 5–9 and US$ 9–20 GJ-1, 

respectively, estimated production costs for lignocellulosic feedstocks and microalgal systems (i.e., 

often based on assumptions about production technologies and production costs) can range between 

US$ 19–62 and US$ 13–8,949 GJ-1, respectively (Carriquiry et al. 2014). For comparison, an oil price 

of US$ 100 barrel-1—a price which has only been exceeded in 20% of months in the past decade (EIA 

2018)—is equivalent to US$ 17.12 GJ-1 (Low Heat Value LHV). In order to be competitive, more 

sustainable biofuel production alternatives must approach cost equivalence with its competitors. 

 

The cost-effectiveness of more sustainable biofuel production alternatives is expected to benefit from 

increased scale efficiencies and learning rates as biofuel production farms enlarge and production 

technologies evolve. Historical trends show significant cost reductions that several biofuel production 

systems—including bioethanol production from sugarcane in Brazil and from maize in the USA—

have experienced as the industry matured, which is also expected to occur for more sustainable 

biofuel production alternatives (Daugaard et al. 2015). For second generation biofuels, the 

development of more cost-effective conversion technologies based on the transformation of 

lignocellulosic feedstocks is needed (Alonso et al. 2017). For microalgal production, the cultivation 
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of highly productive microalgal strains (Chisti 2007) and the co-location with inexpensive CO2 and 

nutrient sources (i.e., co-locating microalgal cultivation systems with CO2 from industries and 

nutrients from wastewater) improve the profitability of microalgal production systems (Judd et al. 

2017), particularly for open ponds (Box 7) (Slade and Bauen 2013). Reductions in production costs 

between 35% and 86% can be achieved if CO2 from industries and nutrients from wastewater are 

obtained for free (Judd et al. 2017). Additionally, more efficient cultivation methods (e.g., using less 

energy-intensive mixing techniques for promoting microalgal growth) (Kumar et al. 2015), along 

with low-cost harvesting and de-watering methods (Slade and Bauen 2013) and the development of 

profitable co-products (e.g., animal feed and biogas) (Peng et al. 2018), can increase both the 

profitability and sustainability of microalgal biofuel production (Zhu et al. 2015). For instance, the 

defatted residues that remain after lipids are extracted for biodiesel production, can be used as a 

substrate for biogas generation and for nutrient recycling (i.e., following anaerobic digestion) 

(González-González et al. 2018); this biogas can either be sold or used as a source of energy and CO2 

for algae cultivation, reducing energy costs and increasing microalgal growth, while nutrient 

recycling reduces the dependence on fertilizers (Uggetti et al. 2014). 

 

Box 7. Microalgal cultivation systems (open ponds and photobioreactors) 

 

Microalgal cultivation systems include open ponds, photobioreactors, and fermenters (Zhu 2015). Raceway 

ponds are the most widely used type of open ponds and consist on a closed recirculation channel, built in 

concrete or with plastic covering the earth, usually with a depth between 15 and 30 cm, in which algae and 

growth medium are mixed by paddlewheels (Schenk et al. 2008). Microalgae concentrations are low, CO2 can 

be added to the water for maximal productivity, and the temperature is not controlled although evaporation 

helps to cool the medium (Chisti 2007). Compared to photobioreactors, this system experiences higher water 

losses through evaporation, is less efficient in CO2 uptake, and is more prone to contamination by other 

microorganisms, which results in reduced yields (Brennan and Owende 2010), but is considered a more cost-

effective option for biofuel production (Slade and Bauen 2013). 

 

Photobioreactors can consist of a series of plates, tubes, bags, columns or domes set in particular arrangements 

that maximize sunlight uptake. Algae concentrations are usually higher than in open ponds, the light intensity 

can be better optimized, the temperature can be controlled (though energy or water use increase) and CO2 can 

be injected at several intervals in order to ensure continuous carbon uptake, leading to higher biomass yields 

than those obtained in open ponds (Schenk et al. 2008). However, setup costs may be ten times higher than 

those necessary for the construction of open ponds (Schenk et al. 2008), hence are considered less cost-

effective to date (Slade and Bauen 2013). 
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Hybrid systems are based on the initial growth of microalgae in photobioreactors, avoiding contamination from 

other microorganisms, followed by their cultivation in open ponds (Dickinson et al. 2017) (Fig. 4). 

 

 

 

Figure 4. UQ Algae Energy Farm at Pinjarra Hills, Brisbane, Australia (Algae Biotechnology Laboratory, University of Queensland). 

Cultivation is based on open ponds (a) following initial growth in sealed bags and a series of smaller ponds (b). 

Several strategies can facilitate the transition of transport systems based on fossil fuels and first 

generation biofuels to systems based on sustainable biofuels and electricity (Fig. 5) (Mathiesen et al. 

2015). In the short term, the development and commercialization of high-value products can provide 

profits and enable scaling of production. For lignocellulosic biomass, a biorefinery system, in which 

value-added products such as bio-oil, biochar, and other bio-based chemicals can be produced, is 

expected to increase the profitability of second generation biofuels (De Bhowmick et al. 2018). 

Similarly, for microalgal production systems, a biorefinery-based production model (Doshi et al. 

2017), in which different types of biofuels are produced (e.g., biogas and biodiesel) (González-

González et al. 2018) or high-value products for food consumption and animal feed (e.g., omega-3 

fatty acids, pigments, proteins, and fishmeal) are produced along with biofuels (Ruiz et al. 2016), can 

increase the profitability of microalgal biofuel production. 

 

Several policies can be implemented to promote the deployment of more sustainable biofuel 

production systems, as has already occurred for first generation biofuels in the USA, Brazil, Europe, 

and other economies (Sorda et al. 2010). They include: 

 

i) The introduction of biofuel blending mandates that require sustainable biofuel production 

methods, following a comprehensive evaluation of their socioeconomic and environmental 

benefits (Noh et al. 2016). For instance, by 2020 the European Union aims to meet 10% of 

total transport energy demands using renewables based on the use of biofuels that do not drive 
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direct or indirect land-use changes in biodiverse and carbon-rich regions, and that additionally 

deliver GHG savings of at least 35% in comparison to fossil fuels (and from 2018, of at least 

60%), considering the cultivation, processing, and transport of biofuels (EU 2015). The 

development of these mandates should consider synergies and trade-offs among biofuel 

production, socioeconomic, and environmental goals; for instance, among biofuel cultivation, 

restoration of degraded lands (Machovina and Feeley 2017), ecosystem services (Baumber 

2017), and biodiversity conservation (Essl et al. 2018). 

 

ii) The taxation or subsidizing of energy systems based on their environmental impacts. This 

would include the elimination of fossil fuel subsidies, the implementation of disincentives to 

less sustainable biofuels (e.g., through carbon taxation schemes) (Macaluso et al. 2018) and 

the subsidizing of more sustainable biofuel production alternatives while the subsidies for first 

generation biofuels gradually decrease (Eggert and Greaker 2014). This can boost the 

deployment of promising more sustainable biofuel production systems while they become 

economically competitive (Scarlat et al. 2015).  

 

iii) The implementation of financial and market-based mechanisms for promoting the 

development of sustainable biofuel production alternatives. For instance, the use of contracts 

for difference (CFDs), in which biofuel producers enter a 10-year contract with governments 

following reverse auctions, has been proposed as a more cost-effective alternative for 

financing the setup of ultralow-carbon biofuels in California in comparison to capital grants 

(Pavlenko et al. 2017). Other mechanisms include the integration of novel and more 

sustainable biofuel production systems with carbon markets (Ayadi et al. 2016) and 

sustainability certifications schemes (Scarlat and Dallemand 2011), which can increase their 

profitability based on environmental advantages (e.g., reductions in GHG emissions) 

compared to less sustainable energy production alternatives. 

 

iv) The development and strengthening of partnerships between governments, universities, and 

industries, for promoting research and innovation aimed at developing more profitable and 

sustainable biofuel production alternatives (Youngs and Somerville 2017). 
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Figure 5. Strategies for promoting the implementation of more sustainable biofuel production alternatives in the short and long term. 

3. Articulation of policies at the global, national, and regional level 

The transition to a more sustainable transport sector can be fostered through the development of 

strategic policies that promote the adoption of sustainable biofuel production alternatives, able to 

reduce environmental impacts and halt competition with food production (Witcover et al. 2013). The 

articulation of policies at global, regional, national, and local scales is a necessary step for guiding 

the implementation of sustainable biofuels (Fig. 6). The development of an updated global roadmap 

on sustainable biofuels (IEA 2011), could guide nations in implementing policies in accordance with 

global multi-objective targets while balancing local socioeconomic and environmental needs (de LT 

Oliveira et al. 2017). Because the impacts of several biofuel systems are still a matter of debate, this 

roadmap must be subject to adjustments as new evidence on the impacts of biofuels is established 

(i.e., through the development of an adaptive framework on the global and local socioeconomic and 

environmental impacts of biofuels) (Gasparatos et al. 2013). At the global scale the biofuel industry 

can be supported through the development of international standards to facilitate accreditation of fuel 

sustainability (Scarlat and Dallemand 2011), markets to support international trade of sustainable 

biofuels (Proskurina et al. 2018), and trade agreements to ensure that pricing of sustainable biofuels 

remains competitive (Poletti and Sicurelli 2016). Furthermore, the development of international 

agreements based on sustainability goals (e.g., the Paris Agreement, to which most countries are 

signatories), provides strong incentive and justification for fostering the growth of more sustainable 

biofuel production systems. 
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National energy policy is fundamental to drive the transition to sustainable biofuels (Scarlat et al. 

2015). National mandates on biofuel blends based on stringent biofuel sustainability standards 

(Stattman et al. 2018), can encourage the implementation of sustainable biofuels. The gradual 

replacement of fossil fuels and first generation biofuels can be facilitated through: (i) National-level 

policies that provide disincentives to fossil fuel and unsustainable biofuel production (e.g., through 

carbon taxation schemes) (Macaluso et al. 2018), and (ii) national-level incentive programs that 

promote sustainable biofuels, including the subsidizing of sustainable biofuel production, the 

development of financial and market-based mechanisms mediated by governments in favor of 

sustainable biofuels (Pavlenko et al. 2017), and the funding of applied research to develop cost-

effective and sustainable biofuels (Cortez et al. 2014).  

 

Regional level policy is critical to ensure that the growth of the biofuel industry occurs in a strategic 

way, avoiding biodiversity impacts, competition for agricultural land, non-sustainable use of 

resources (e.g., freshwater), and negative socioeconomic impacts (de LT Oliveira et al. 2017). 

Regional policy can also manage trade-offs among multiple stakeholders and potential conflicts 

among industries (Gasparatos et al. 2015), as well as help to regulate the growth of biofuels and 

certificate sustainable biofuels (Scarlat and Dallemand 2011). 

 

 

Figure 6. Articulation of policies at the global, national, regional, and local scale towards the implementation of sustainable biofuels. 

GLOBAL SCALE

• Development of a global roadmap on sustainable biofuels.

• Development of an adaptive framework on the socioeconomic and environmental 

impacts of biofuels.

• Development of international sustainability standards.

• Strengthening of markets and trade agreements for sustainable biofuels.

• Development of international sustainability agreements.

NATIONAL SCALE

• Implementation of mandates on sustainable biofuel blends.

• Taxation/subsidizing of biofuels based on their sustainability.

• Development of financial and market-based mechanisms to favor

sustainable biofuels.

• Research funding for developing cost-effective and sustainable biofuels.

REGIONAL AND LOCAL SCALE

• Management of trade-offs among industries, regulation in biofuel growth,

certification of sustainable biofuels.



  

213 

 

4. CONCLUSIONS 

Bioenergy production is expected to increase from 9.7 × 106 to 4.6 × 107 GJ d-1 between 2016 and 

2040 (IEA 2017), and how biofuels are produced will determine their overall environmental impacts. 

The implementation of more sustainable biofuel production systems, which currently include 

sustainably sourced wastes, native perennial crop, and microalgal production systems produced on 

low-biodiversity or degraded lands, could reduce the magnitude of the several socioeconomic and 

environmental impacts exerted by first generation biofuels, mainly in terms of reduced competition 

with food production and biodiversity. The sustainability of these and other novel biofuel production 

alternatives must be carefully assessed before their widespread adoption, based on global 

socioeconomic and environmental targets (e.g., poverty reduction, climate change mitigation, 

biodiversity conservation, freshwater provision, and reduction of eutrophication). The development 

of robust assessments that consider the social and environmental impacts of biofuel production are 

needed to inform choices and implement more sustainable biofuel production alternatives. This could 

involve, for example, the development and standardization of environmental indicators, the 

development of standardized assessments on the environmental impacts exerted by biofuel 

production systems, the development of detailed case studies that consider multiple socioeconomic 

and environmental objectives, improved estimations of potential biofuel production feasibility and 

yield, and the development of integrated assessments to understand the socioeconomic and ecological 

implications of biofuel production alternatives. Technological improvements are expected to improve 

the profitability of more sustainable biofuel production alternatives over time, currently estimated at 

between US$ 19–62 for lignocellulosic feedstocks and US$ 13–8,949 GJ-1 for microalgal production 

systems (Carriquiry et al. 2014). Meanwhile, several policies (i.e., mandates, taxation, subsidizing, 

financial and market-based mechanisms, and applied research partnerships) can foster the 

development and adoption of more sustainable biofuel production systems. These policies should be 

articulated at the global, national, and regional levels. Third generation biofuels are a key technology 

for meeting long-term transport energy demands while reducing land-use changes. In Russia, India, 

Brazil, Canada, Mexico, Indonesia, Saudi Arabia, Iran, Australia, South Africa, and Egypt, microalgal 

cultivation would require less than 2% of each country’s land area for fulfilling their current domestic 

transport energy demands. 
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1. Cultivation area for fulfilling transport energy demands in 2016 

The following formula was used to calculate biodiesel yields per feedstock within countries. Based 

on Correa et al. (2017): 

 

𝐵 =
𝑌 ∗ 𝑃

𝐷
∗ 0.81 

 

Where 𝐵 is each country’s average biodiesel yield per crop (L ha-1 y-1), 𝑌 is each country’s average 

crop yield between 2010 and 2017 (t ha-1 y-1) (i.e., for food crops) (FAO 2019), 𝑃 is the proportion of 

lipids in the seeds, 𝐷 is the oil density of seeds (t L-1) (Table S1), and 0.81 is the product of the 

assumed oil extraction efficiency (0.9) and lipid conversion efficiency into biodiesel (0.9). 

 

For Jatropha, a crop yield of 5.25 t ha-1 was considered, based on established plantations (5 years) 

under irrigation (El Bassam 2010). Jatropha curcas can be cultivated in tropical and subtropical 

regions, with cultivation limits at 30 ºN and 35 ºS (Brittaine and Lutaladio 2010).  

 

For microalgae, the 75th percentile of lipid yield estimates (L ha-1 y-1) was calculated within each 

country, based on Moody et al. (2014), and then multiplied by 0.81, which is the product of the 

assumed oil extraction efficiency (0.9) and lipid conversion efficiency into biodiesel (0.9). 

 

The following formula was used to calculate ethanol yields per feedstock within countries: 

 

𝐸 = 𝑌 ∗ 𝐶 

 

Where 𝐸 is each country’s average ethanol yield per crop (L ha-1 y-1), 𝑌 is each country’s average 

crop yield between 2010 and 2017 (t ha-1 y-1) (i.e., for food crops) (FAO 2019) and 𝐶 is the reported 

conversion efficiency from crop biomass into bioethanol (L t-1) (Table S2). 

Chapter 5. Supplementary Information 
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For Miscanthus and switchgrass, crop yields of 38.2 t ha-1 and 12.5 t ha-1 were respectively considered 

based on values obtained in the Midwest USA (Heaton et al. 2008). Miscanthus and switchgrass have 

been considered promising feedstocks for biofuel production in temperate areas (Heaton et al. 2008). 

For obtaining the cultivation area required to meet the total transport energy demands in 2016, the 

following formulas were used:  

 

𝐴 =
𝑇

𝐵𝑒
 

𝐴 =
𝑇

𝐸𝑒
 

 

Where 𝐴 is the cultivation area (ha) per crop, 𝑇 corresponds to transport energy demands within 

countries in 2016 (GJ y-1), 𝐵𝑒 is the average biodiesel yield per crop in units of energy (GJ ha-1 y-1), 

and 𝐸𝑒 is the average ethanol yield per crop in units of energy (GJ ha-1 y-1). Transport energy demands 

were converted from million tonnes of oil equivalent (MTOE) into GJ by multiplying by the 

conversion factor 4.1868 × 107 GJ MTOE-1 (IEA 2017). 𝐵𝑒  was obtained by multiplying the average 

biodiesel yields 𝐵  (L ha-1 y-1) by 0.0326 GJ L-1 (i.e., low heating value). 𝐸𝑒  was obtained by 

multiplying the average ethanol yields 𝐸  (L ha-1 y-1) by 0.0211 GJ L-1 (i.e., low heating value) 

(Hofstrand 2008). 

 

Table S1. Seed oil percentages (El Bassam 2010) and oil densities (at 15 - 25°C) (Firestone 2013).  

Crops Seed oil percentage Oil density (kg m-3)  

Jatropha 37 916  

Oil palm 26 920  

Rapeseed 45 910  

Soybean 21 919  

 

 

Table S2. Conversion efficiencies for ethanol production (Correa et al. 2017). 

Crops Efficiency conversion (L t-1 fresh biomass)  Reference 

Maize 417  El Bassam (2010), table 10.1 

Miscanthus 282  Zhuang et al. (2013) 

Sugarcane 83  de Vries et al. (2010) 

Switchgrass 282  Zhuang et al. (2013) 

Wheat 396  El Bassam (2010), table 10.1 
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Further environmental degradation can be halted if humanity is willing to implement more sustainable 

production systems (Liu et al. 2015, Griscom et al. 2017, Ripple et al. 2017). The replacement of 

fossil fuels by renewable energy sources is considered fundamental for limiting global warming while 

reaching global future energy demands (Creutzig et al. 2016, Ripple et al. 2017, Walsh et al. 2017). 

However, it is a challenge to identify and implement energy production systems that fulfill growing 

energy demands at the lowest environmental costs (Jacobson and Delucchi 2011, Creutzig et al. 

2015). 

 

This project aimed at increasing the understanding of the potential environmental impacts of 

microalgal biofuel production systems on biodiversity, focusing on vertebrates and comparing with 

food crops for biofuel production (i.e., first generation biofuels). It also aimed at determining the best 

locations for microalgal cultivation at global and regional scales, considering global and national 

current and future transport energy demands while decreasing direct competition with high-value 

agricultural lands and biodiverse areas. Finally, it aimed at providing considerations to identify and 

implement more sustainable biofuel production alternatives, including microalgal production 

systems, along with strategies for overcoming the current economic barriers that prevent their 

widespread adoption. 

1. Potential environmental impacts of microalgal production systems 

Liquid biofuels negatively impact biodiversity through a wide range of pressures that include direct 

and indirect land-use change, greenhouse gas emissions, pesticide and fertilizer pollution, water 

depletion, overexploitation of soils, invasive species and genetic pollution, emissions of air pollutants, 

and changes in factors that affect regional climate (e.g., alterations in albedo and evapotranspiration 

patterns). Compared to food crops (i.e., first generation biofuels), microalgal biofuel production 

systems could become a more sustainable biofuel production alternative, mainly in terms of reduced 

direct and indirect land-use change in areas with high agricultural and biodiversity value. This would 

result from its non-dependence on fertile soils and its higher biomass and lipid productivities per unit 

area. In fact, based on conservative microalgal lipid production estimates, and for producing the same 

SYNTHESIS AND CONCLUSIONS 
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amount of energy, microalgal biofuel production systems would in average need 12%, 30%, 3%, and 

22% the land needed to cultivate maize, sugarcane, soybeans, and oil palm, respectively. Additional 

benefits include their non-dependence on pesticides (Brennan and Owende 2010, Smith et al. 2010), 

and reduced water usage in comparison to food crops if water is recycled (Gerbens-Leenes et al. 2014, 

Béchet et al. 2017). 

 

Other pressures that directly and indirectly affect biodiversity can be reduced under the development 

and implementation of more sustainable microalgal production technologies. Reductions in the 

emission of CO2 and air pollutants (NOx, NH3, CO, VOC, PM, SOx, N2O) can be achieved through 

the optimization of biomass/lipid productivities per unit area (e.g., by cultivating more productive 

microalgal strains), the use of industrial CO2 sources and wastewater systems, the recycling nutrients 

and energy (e.g., through the implementation of biorefinery systems that make use of anaerobic 

digesters), and the implementation of less-energy intensive processes for microalgal harvesting and 

lipid extraction (Slade and Bauen 2013, Mu et al. 2014, Uggetti et al. 2014, González-González et al. 

2018). Risks in fertilizer pollution and spread of invasive species can be reduced by recycling water 

(Usher et al. 2014, Correa et al. 2017). 

2. Best areas for microalgal production at global and national scales 

Substantial amounts of biodiesel can be produced in human-transformed dry coasts within tropical 

and subtropical regions in the world. These areas offer high lipid productivities and lowest direct 

competition with areas of high agricultural and biodiversity value, while decreasing direct 

competition with scarce freshwater resources. In contrast, first generation biofuels need agricultural 

lands, directly competing with food production and impacting areas of higher biodiversity (Hill et al. 

2006, Koh 2007, Fargione et al. 2010, Correa et al. 2017). There is a wide range in potential biodiesel 

production depending on several cultivation scenarios (e.g., from 5.85 × 1011 to 1.81 × 1011 L year-1, 

representing between 17% and 6% of transport energy demands in 2016 if using fresh, brackish or 

salt water, or if just using seawater adjacent to known industrial CO2 sources, respectively). Potential 

competition with humid areas better suited for agricultural production and with high biodiversity 

(e.g., Southeast Asia and Central America) could occur if fulfilling higher targets in transport energy 

demands by microalgal cultivation.  

 

For satisfying domestic transport energy demands, direct competition with high-value agricultural 

lands and biodiverse areas would be minimal for several countries. High microalgal productivities 
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and low competition with food production and biodiversity would occur in tropical and subtropical 

countries with available human-transformed dry lands compared to their domestic transport energy 

demands, where microalgal productivities are highest and agricultural and biodiversity value 

decrease. Most of these countries are located in the Middle East, Africa, and non-OECD Americas. 

In temperate countries, lower competition with areas of high biodiversity value is expected to occur, 

however, larger areas would be needed for producing the same amount of energy compared to the 

more productive subtropical and tropical regions. 

3. Best areas for future microalgal biofuel production in Colombia, Ecuador, 

Panama, and Venezuela 

Human-transformed dry lowlands offer the best conditions for growing significant amounts of 

microalgae at lowest direct competition with food production, biodiversity, and aboveground carbon 

storage, in contrast to first generation biofuels, which need more humid areas. Compared to oil palm 

and sugarcane—which are the most feasible and productive first generation biofuel production 

alternative in the region—microalgae would replace land-covers with lower biodiversity and 

aboveground biomass values (i.e., mostly croplands/natural vegetation mosaics, savannas, and 

grasslands, and not large areas of evergreen broadleaf forests). Furthermore, microalgal cultivation 

would need around half and one third the area needed by oil palm and sugarcane, respectively, for 

producing the same amount of energy. However, as targets in energy demands increase, microalgal 

biofuels would shift to more humid regions, increasing potential impacts with agriculture and 

biodiversity. 

4. Implementing more sustainable biofuel production alternatives 

Robust assessments are needed to identify and implement biofuel production systems that maximize 

socioeconomic and environmental benefits. This could be achieved after refining socioeconomic and 

environmental indicators, by developing standardized assessments (e.g., life-cycle assessments LCA) 

for allowing direct comparison among biofuel production alternatives, by developing case studies 

that consider multiple socioeconomic and environmental objectives, by improving estimations of 

biofuel production at fine spatial scales, and by developing assessments that integrate biofuel 

production systems with global socioeconomic and ecological systems. Increasing the economic 

competitiveness of novel and more sustainable biofuel production alternatives (e.g., sustainably 
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sourced wastes, native perennial crops, and microalgal production systems on low biodiversity or 

degraded lands) compared to fossil fuels and first generation biofuels, is a current challenge. The 

implementation of government incentives, partnerships between government, universities and 

industries, and market-based mechanisms, can help to gradually replace less sustainable biofuel 

production systems.  

5. Caveats and future work 

Further robust assessments (e.g., standardized life-cycle assessments and meta-analyses) on the 

overall environmental impacts of microalgal biofuel production in comparison to other biofuel 

production alternatives are required. These assessments would need to consider several microalgal 

biofuel production technologies (e.g., open ponds, photobioreactors, use of anaerobic digesters, 

several lipid extraction routes, colocation with wastewater systems and industrial CO2 sources, use 

of fresh/brackish and salt water, recycling of water) in several geographical locations (i.e., along 

temperate, subtropical and tropical humid and dry areas) and based on different microalgal strains, 

allowing a direct comparison with the environmental impacts exerted by alternative biofuel crops 

(e.g., food crops, perennial crops) produced in the same areas. Additional studies on costs and 

socioeconomic benefits of several biofuel production alternatives would facilitate the identification 

of optimal biofuel production systems and favor their implementation. 

 

The refinement of further GIS analyses on optimal areas for siting microalgal production farms could 

benefit from the inclusion of updated databases on nutrient and CO2 availability (e.g., considering 

wastewater sources and anaerobic digesters), updated databases on water availability and thresholds 

for water withdrawal, regional changes in labor costs and land costs, and ranges in productivity based 

on several microalgal strains and cultivation technologies (e.g., open ponds vs. photobioreactors). 

The use of updated databases on national and regional priority areas for agricultural development and 

biodiversity conservation can improve the selection of best areas for microalgal cultivation while 

decreasing direct competition with food production and biodiversity. The consideration of 

opportunity costs with other land-use priorities (e.g., industry, tourism, or provision of ecosystem 

services) can help to assess potential conflicts with socio-economic and environmental goals. Further 

regional and global assessments on best areas for siting biofuel production alternatives (i.e., including 

first, second and third generation biofuels), based on a set of global, regional, and national 

socioeconomic and environmental goals (e.g., targets in biofuel blends, food production, biodiversity 
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conservation, carbon storage, provision of water), can guide decision making for optimal multi-

objective land-use planning. 

 

Engaging with stakeholders involved in biofuel production, environmental protection, and policy 

development, can facilitate the identification and implementation of profitable and sustainable biofuel 

production systems. These systems should be able to meet socio-economic and environmental goals 

at local, regional, and global scales. The integration of views from biofuel producers can guide the 

development of socio-economic goals towards the adoption of profitable and equitable biofuel 

production alternatives, while the integration of views from the environmental sector can guide the 

development of systems that offer fewer environmental impacts or that improve the quality of the 

environment and ecosystem services. Finally, the participation of policy makers can facilitate the 

adoption of these sustainable biofuel production systems. Sharing the results of the thesis with 

bioenergy production stakeholders can promote the identification and adoption of more sustainable 

biofuels. 
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