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Abstract

Having an accurate model of the tissue structure of the brain is useful in studying the development and

progression of neurodegenerative diseases like dementia. Brain magnetic resonance images (MRI) can be

used to create such models, by detecting the tissue boundaries in the image and classifying each voxel as

a particular tissue. This is task known as image segmentation.

Many segmentation methods use a mixture-Markov random field probabilistic model for the image inten-

sities, which can then be used to determine the most likely segmentation of the image. This model consists

of normal distribution for the image intensities of each tissue, and a Markov random field (MRF) for the

prior distribution of tissue labels. The purpose of the MRF is to incorporate spatial dependence between

the labels of neighbouring voxels, adding smoothness to the segmentation to remove noise.

In this thesis, we develop and validatemethods to perform automatic tissue segmentation of brainMRI.We

specifically focus on the MRF component of the image model. This is used to model spatial dependence

between neighbouring tissue labels, which has the effect of spatial regularisation on the segmentations.

This thesis begins with a general introduction to mixture models, Markov random fields, and the combined

mixture-MRF model as it applies to image segmentation. Estimation of the tissue intensity parameters

and also of the segmentation using Expectation-Maximisation (EM) is explained, as well as effective

approximations required to accommodate the MRF’s intractable normalising constant.

First, the homogeneous Potts MRF is introduced. It is used ubiquitously for MRI segmentation. The

Potts model has one parameter that controls the strength of the MRF compared to the normal intensity

probabilities, and hence the smoothness of the resulting segmentation. In the literature and in practice,

this parameter is almost always fixed to a value chosen by manual tuning or with the use of training

data. When no training data is available, selection of an appropriate parameter value is subjective and

can affect the accuracy of the segmentation. We propose use of the maximum pseudolikelihood estimator

(Besag, 1986) to automatically determine the value of this parameter and show how to incorporate it into

the EM algorithm. The proposed method adaptively determines the amount of spatial regularisation on

a per-image basis, without needing training data or an anatomical atlas. The maximum pseudolikelihood

estimator (MPLE) is statistically consistent. It is also computationally tractable, involving only univari-

ate maximisation of a concave function, and a straightforward extension of EM. The proposed method is

demonstrated on real brain MRI and compared to various existing methods that require manual specifi-

cation of the smoothing parameter. It is also compared to the least-squares method of Derin and Elliott

i



ii

(1987) which has previously been used to automatically determine the smoothing parameter by Van Leem-

put et al. (1999b). The MPLE produces segmentations that are comparable or significantly more accurate

than these.

Next, the image model is extended to use the non-homogeneous Potts MRF, which has not been studied

in detail for tissue segmentation. While the homogeneous Potts MRF has one parameter that controls

global smoothness, the non-homogeneous MRF has multiple pairwise parameters that allow different

smoothness constraints depending on the specific neighbouring tissues. The MRF additionally has unary

parameters allowing for tissue-specific prior information to be incorporated. The role of each of these

parameters is studied in isolation and together. The previously proposed MPLE is applied to this MRF to

automatically determine the parameters. Themethod is applied to real brain images. Model selection using

pseudolikelihood information criterion (Forbes and Peyrard, 2003) suggests that the MRF with smoothing

parameters but without unary parameters is favoured. However, segmentation accuracy suggests that the

non-homogeneous PottsMRF (with various combinations of unary and smoothing parameters) is not more

beneficial than the homogeneous Potts MRF. A review of similar MRFs in the literature suggests that

the use of prior anatomical knowledge is required to constrain the parameters of the non-homogeneous

Potts MRF to tailor it for brain segmentation. Leaving all parameters free to be estimated can lead to

oversmoothing, particularly if a given tissue boundary is relatively rare compared to others.

Finally, the image model is extended to consider anisotropic MRFs. Based on the Potts MRF, these allow

for smoothing that can incorporate local features of the image in addition to the tissue labels. Drawing

from the principles of Perona-Malik diffusion (Perona andMalik, 1990), a model is designed and proposed

to smooth the segmentation tangentially along a detected edge but not across it, with strength proportional

to the detected edge strength. Similar anisotropic MRFs have been used for tissue segmentation before,

but are discriminative models requiring training data and different solution methods. The proposed model

is generative and may be estimated using Expectation-Maximisation and maximum pseudolikelihood es-

timation, thus requiring no training. The model MRF and two variants are applied to brain MRI, and their

segmentation accuracy compared to the homogeneous Potts MRF. The two supplementary MRFs under-

perform the homogeneous Potts MRF but demonstrate that the anisotropy is being appropriately applied.

The proposed MRF significantly outperforms the homogeneous Potts MRF and demonstrates anisotropic

smoothing as intended. Suggestions are made to further improve the framework and MRF to make better

use of the local image structure.

In summary the thesis comprises two main directions of research. First, automatic determination of MRF

parameters in themixture-Markov random field frameworkmay be achieved in a computationally tractable

manner using maximum pseudolikelihood, avoiding poor segmentations due to manual specification of

the spatial parameter. Second, different MRFs allow for finer control of smoothing on a tissue-specific or

even more local neighbourhood-specific level, and when properly specified may improve segmentation

accuracy.
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Chapter 1

Introduction

As we develop and then age, our brain changes continuously. Various substructures within the
brain may change in shape or size as part of healthy aging (Dennis and Thompson, 2013). On
the other hand, the presence of neurodegenerative diseases such as dementia can also affect
the brain. Having an accurate model of the brain is vital to studying the progression of such
diseases and how they differ from the processes of normal aging.

Clinically, qualitative measures are commonly used to diagnose and assess the severity of
neurological disorders. These are both time consuming and require and are dependent on rater
expertise/experience. With the rapid development and improvement of medical technology,
more accurate diagnoses can be found by including biomarkers from cerebrospinal fluid analyses
and images obtained by magnetic resonance imaging and positron emission tomography (Dubois
et al., 2007). Quantitative measurement of, for example, the volume of the hippocampus (Jack
et al., 1997, 2000; Schuff et al., 2009) or the thickness of the cortical wall (Thompson et al.,
2003) has the potential to better characterise the nature of dementia.

The challenge is obtaining accurate measurements of the brain and then accurately modelling it.
These models are constructed from medical images of the brain, such as magnetic resonance
images (MRI). Automated measurement of structures in the brain from MRI saves both time
and the need for a fully-trained expert, and can be highly reliable (Han et al., 2006).

Before such measurements can be taken, a reliable reconstruction of the brain from the MRI is
needed. In the brain, there are three main tissue types - cerebrospinal fluid (CSF), grey matter
(GM) and white matter (WM). Classifying each spatial location of the MRI to the underlying
tissue type being imaged there is known as a tissue segmentation of the brain. The underlying
tissue type at a given location may be inferred from the observed signal of the MRI there, as
well as prior anatomical knowledge. The task is made more difficult by the presence of artefacts
that can degrade the quality of the image, for example scanner noise, the machine’s bias field, or
patient motion. An example of an MRI and corresponding segmentation are shown in figure 1.1.

Segmentation of brain MRI is the primary focus of this thesis. In particular, we are interested in

1
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GM

CSF

WM

Figure 1.1: Brain tissue is primarily grey matter (GM), white matter (WM) or cerebrospinal
fluid (CSF). Left: an MRI. Right: corresponding tissue classification.

the use of probability models of brain MRI for segmentation, and the incorporation of adaptive
spatial regularisation into these models.

1.1 Background

1.1.1 Magnetic resonance imaging

An MRI machine has a strong static magnetic field in which the object to be imaged is placed,
causing the nuclear spins of the object to become aligned. This mostly corresponds to hydrogen
atoms in water present in the body. A radiofrequency field is briefly applied in the transverse
plane to the static field, causing the spins to align with it. When this field is removed, the
protons precess or relax back to their equilibrium position, producing a signal that is detected.
The static magnetic field has a physical gradient in field strength, allowing the physical location
of the signal to be inferred. In this way a signal is recorded from a dense grid of spatial locations
within and around the object to be imaged.

The image itself may be viewed as a set of measurements on a regular (square or cubic) grid,
either in 2D or 3D. Each cell of the grid is known as a pixel for a 2D image, or a voxel for
a 3D image (also called a volume). For example, colour images may have 3 integer values
at each pixel, being red, green and blue intensity values. For an MRI, each voxel contains
the signal strength at the corresponding point of real space. Different tissues have different
relaxation times, allowing them to be distinguished in the image. An MRI is typically a 3D
volume, consisting of many 2D slices (figure 1.2).

Depending on the imaging sequence used in the MRI, different types of image can be produced.
For example, a T1-weighted image shows CSF as the darkest tissue, white matter as the brightest,
and grey matter intermediate. In a T2-weighted image, CSF is the brightest tissue, grey matter
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Figure 1.2: Example slices of an MRI of the brain

Figure 1.3: T1 image (left) vs T2 image (right). In a T1 image, CSF is the darkest tissue,
followed by grey matter with white matter as the brightest. The order is reversed in a T2 image.

grey, and white matter dark (figure 1.3).

1.1.2 Brain MRI segmentation

A segmentation of the brain may mean multiple things:

• a tissue segmentation of the brain into major tissues such as cerebrospinal fluid, grey
matter, and white matter, dura, glial tissue, and so on.

• an anatomical segmentation of the brain into finer anatomical regions such as the hip-
pocampus, ventricles, thalamus, and so on.

This can be done manually, with semi-automatic, and fully-automatic methods. See (Despotović
et al., 2015; Balafar et al., 2010; Withey and Koles, 2008) for reviews.

Manual segmentation involves a technician or expert manually delineating the regions of interest
on the MRI. This can be extremely time-consuming. While manual segmentations are often
used as a ‘gold standard’, they can be subjective and suffering from poor inter- and intra-
rater reliability (Clarke et al., 1995; Collier et al., 2003). For example, Gurleyik and Haacke
(2002) reported an inter-observer error of as large as 16% for five experts performing manual
segmentation on the caudate nucleus. Even for one well-trained expert, segmentations can
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differ significantly depending on what segmentation protocol is used (Boccardi et al., 2011).
Additionally, it can take many man-hours to manually delineate tissues in each subject. Using
semi-automatic or fully-automatic methods has the advantage of restoring objectivity to the
segmentations while also saving manual labour.

Semi-automatic segmentation is that which is mostly automatic, but requires some manual input.
For example, a technician could click on regions of the MRI they know to be grey matter, white
matter, and CSF, and these are used to initialise a segmentation algorithm. These approaches
can greatly increase reliability of the segmentations (Yushkevich et al., 2006). However, methods
like this still require manual input, though much less than a full manual segmentation.

Related to semi-automatic segmentation methods are those that are fully automatic to run,
but require training data. Examples of these methods include neural networks and deep
learning-based approaches (Zhang et al., 2015; Moeskops et al., 2016; Litjens et al., 2017; Shen
et al., 2017, and the references therein). These methods can offer very promising results
and a good compromise between the accuracy of manual segmentation, and the convenience
and objectiveness of automatic segmentation. However, such methods still require training
data, typically comprised from images and their matching manual segmentations. They can
fail if a test image is presented that is significantly different from the training data (e.g. in
image contrast, or brain morphology). There is a need for methods that do not require manual
intervention, or extensive training data.

In this thesis, we focus on fully-automatic segmentation methods that do not require training data.
Automatic methods may largely be classified into those that use prior anatomical knowledge
(an atlas), and those that do not. However, combinations of these are also often used, and
many methods that do not require an atlas may still make use of one if available. An atlas is
typically a representative MRI, along with a hard or probabilistic labelling of it into tissues
or regions. For example, each voxel may have a probability associated with it to be white
matter, grey matter, or cerebrospinal fluid. An unlabelled input MRI is registered to the atlas
(possibly non-rigidly), aligning the two brains. The labels are propagated from the atlas onto
the registered input brain, which may then be transformed back into the original space. The
advantage of atlas-based methods is that the atlas may be labelled in finer detail than could be
inferred from the MRI alone. For example, two cortical walls pressed so closely as to appear
a single contiguous region based on the MRI alone, could be properly distinguished as two
separate walls.

However, the registration may easily fail if the unlabelled brain does not match the atlas closely
enough. Some examples of this can be seen in figure 1.4. If the brain to be segmented have
pathologies or injuries, there may not exist a mapping between it and the atlas. Another example
is the neonate brain, which changes significantly over a short period of time (Rutherford, 2002).
If the atlas selected for the brain does not match its current developmental state closely enough,
registration will fail. For this reason, we focus on fully-automatic brain MR segmentation that
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Figure 1.4: Examples of brains with injuries from cerebral palsy

Figure 1.5: MRI and histogram of its voxel intensities - overall and by tissue (from manual
segmentation)

does not require an atlas or prior training.

Segmentation methods that do not require an atlas make use of image intensities. Such methods
can be edge- and surface-based, for example active contours and level set methods (Tsai et al.,
2001; Vese and Chan, 2002). Edges in the image are located with intensity gradient information,
and used to define regions of interest. Such methods often also incorporate region-based metrics,
identifying regions in the image as having homogeneous intensity within each region (Wang
et al., 2009; Huang et al., 2009).

A large number of segmentation methods for the brain focus on the clustering of image intensities.
Figure 1.5 shows a T1 MRI and its corresponding intensity histogram, as well as the intensity
distribution of each of the three main tissues (determined by a manual segmentation of the
image). Since CSF is generally dark, WM is bright, and GM is in between, the most basic
approach is simply to threshold the image intensities to determine an image classification. This
can be quite subject to noise. More sophisticated clustering methods include k-means (Cocosco
et al., 2003; Vrooman et al., 2007) and fuzzy C-means (Ahmed et al., 2002).

However, the most common clustering method for brain tissue segmentation, and the focus
of this thesis, employs a Gaussian mixture model of the MRI intensities (we will cover this
in further detail in Chapter 2). On examining figure 1.5, the image intensities appear to be
well approximated by three overlapping Gaussian distributions, one per tissue type. In fact,
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Figure 1.6: EM fit from a Gaussian mixture model and corresponding segmentation

it has been shown that noise in tissue intensities is Rician, but may be approximated by a
Gaussian given the signal-to-noise ratio of MRI (Gudbjartsson and Patz, 1995). A mixture of
three Gaussians model may be fit to an MRI’s intensities, inducing a segmentation of the image
by assigning each voxel to the Gaussian it is most likely to belong to.

As can be seen (figure 1.6), this method is susceptible to noise in the image. All voxels with a
given intensity will be classified as the same tissue, even if entirely surrounded by a different
tissue. To address this, the segmentation can be smoothed. Morphological operators such as
openings and closings can be applied to the EM segmentation to remove isolated noise. However,
such operators are ‘blind’ to the image around them, and indiscriminately fill in all features of
the same size regardless of the surrounding image data.

An alternative is to incorporate the smoothness constraint into the image model itself, so that
smoothing is context-aware of the local intensity information. To do this, it is standard to use a
Markov Random Field (MRF) as a prior probability distribution over the tissue labels in the
mixture model. The Potts model for atomic spins from statistical mechanics (Potts, 1952) is
most commonly used. When considering the probability for a given voxel to be a given tissue
conditioned on the tissues of its neighbours, the Potts model prefers the majority tissue in the
neighbourhood. The Gaussian distribution of the intensities of each tissue is retained from the
standard mixture model. In this way, the smoothing of the Potts model is weighted by the
intensity probabilities, so that the smoothing is both intensity- and spatially-dependent. With
some modifications, Expectation-Maximisation can be adapted to handle the MRF (we will
show these details in Chapter 2).

This model - each tissue distributed according to a Gaussian, and the prior distribution of
the tissues with the Potts MRF - is ubiquitous in MR segmentation. Introduced for image
segmentation by Besag (1986), it is a component of common segmentation packages such as
NiftySeg (Cardoso et al., 2009, 2011), Expectation Maximisation Segmentation (Van Leemput
et al., 1999b), Atropos (Avants et al., 2011) and FAST (Zhang et al., 2001). From this basis
many extensions may be made; for example, one can add bias-field correction (Van Leemput
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(a) 0.1 (b) 0.3 (c) 1 (d) 5 (e) 10

Figure 1.7: Segmentations with various smoothing values β

et al., 1999a; Wells et al., 1996) or partial volume correction (Noe and Gee, 2001; Shattuck
et al., 2001; Van Leemput et al., 2003).

The Potts MRF has one non-negative parameter β that controls the strength of the smoothing.
This is typically set by manual tuning, or to arbitrarily-chosen values in the literature (for
example, β = 1.5 (Besag, 1986), β = 1 (Zhang et al., 2001; McLachlan et al., 1996), β = 0.7
(Owen, 1986; Ripley, 1986), β = 0.3 (Avants et al., 2011), β = 0.25 (Cardoso et al., 2009)).
Larger values correspond to stronger smoothing, while 0 corresponds to no smoothing. Mis-
specifying this parameter can lead to not enough smoothing, or too much (figure 1.7). In
addition, the value of β that is best for one MRI may not be the same as that for a different
MRI. An automatic method to determine the amount of smoothing, i.e. β, on a per-image basis
is of value, and could then be used in all methods based on the mixture-MRF formulation.

In addition, the Potts MRF is quite basic, with its single parameter β only allowing for the
same uniform smoothness across the entire image. In the brain, it is known that some tissue
boundaries are more convoluted than others (e.g. cortical folding vs the ventricle boundary).
MRFs that allow smoothing to be applied at different scales, for example on a per-tissue basis,
or incorporating further local image features, are worth investigating.

1.2 Aims

This thesis addresses the issues mentioned in the previous section through development of a fully-
automatic, three-dimensional brain MR segmentation algorithm that does not require training
data. We aim to segment the skull-stripped brain into the three primary tissues, cerebrospinal
fluid (CSF), grey matter (GM) and white matter (WM). Our segmentation method is based
on constructing a probability model for the MRI, which is then used to classify it into tissues.
Specifically, this thesis focuses on the Markov random field (MRF) prior probability distribution
over the tissue labels.

The thesis may be viewed as a study of adaptive spatial smoothing of brain MR segmentations
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using Markov random fields, where the smoothing is applied on a global, per-tissue, or local
level. There are two aspects to this, given below.

1.2.1 Automatic determination of the smoothing parameter

The standard method for probabilistic method uses a Gaussian distribution of intensities for
each tissue, and the Potts MRF for the tissue labels. The Potts MRF has one parameter that
determines the amount of smoothing to apply to the image, but there is no well-accepted,
principled method to determine the value of this parameter automatically, with manual tuning
being common.

The first aim of the thesis is to develop methods to automatically and adaptively determine the
smoothing parameter for the Potts MRF. The method should be computationally tractable,
should not require training data, and should be able to adjust the parameter on a per-image
basis.

There have been a number of attempts at automatically setting the smoothing parameter,
including Bayesian approaches (Woolrich et al., 2005; Woolrich and Behrens, 2006) and regression-
based estimators (Van Leemput et al., 1999b). The Bayesian approaches are computationally
intensive and slow, requiring many simulations of the desired Markov random field at each
iteration of the algorithm. The regression-based estimator does not have this drawback, but
relies on building a neighbourhood histogram of the image which is time-consuming, and suffers
additional limitations on its use.

The proposed method utilises the pseudolikelihood (Besag, 1975) and mean-field (Chandler,
1987) approximations in order to determine a suitable value for the smoothing parameter. The
method is computationally tractable and easy to interpret and understand. Additionally, the
method is a natural extension of the modified Expectation-Maximisation algorithm already used
in existing methods, so does not represent much implementational burden to incorporate into
existing methods.

We focus on segmentation of brain tissues only, i.e. we assume that the skull has already been
stripped in the images and artefacts such as bias-field already corrected. However, the image
model used in this thesis is common to many segmentation algorithms that can also perform
these tasks, and the methods developed in this thesis can be readily incorporated into these
algorithms.

Fully-automatic estimation of the smoothing parameter in the Potts MRF will be studied in
chapter 3. We hypothesise that estimation of the parameter individually for each image will
provide more accurate segmentations than setting it to the same fixed value for each image.
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1.2.2 Different types of MRF

The second aim of this thesis is to investigate the use of more complex forms of MRF in brain
segmentation. As previously mentioned, the Potts MRF can only apply the same smoothing
uniformly across the image. It may be advantageous to allow different tissue boundaries to be
smoothed to different degrees. For example, the GM-WM boundary of the cortical folds could
be permitted to be less smooth than the GM-CSF boundary of the ventricles. Additionally, the
standard Potts MRF cannot explicitly account for certain tissues being less prevalent than others.
In Chapter 4, we aim to use a more general form of the Potts MRF to enable tissue-specific
smoothing and control of tissue proportions. This allows both per-tissue smoothing and relative
tissue proportions to be controlled. Additionally, we will use the method developed in the first
aim to estimate the parameters of the MRF. We hypothesise that this MRF will allow greater
sensitivity to the different tissues when smoothing, and be able to adapt to images where the
tissue proportions are very different from each other.

It is also of interest to incorporate MRF smoothing on an even finer scale than the tissue
level. For example, local image features such as edge orientation and strength can be used
to further adjust the smoothing so as not to smooth away thin features such as the cortical
folds. In Chapter 5, we will develop and investigate MRF to achieve anisotropic smoothing, and
use the method developed in the first aim to estimate its parameters. We hypothesise use of
anisotropic MRFs will prevent thin features from being smoothed away, while still permitting
strong smoothing of noise in otherwise homogeneous regions.

1.3 Contributions

The key contributions of the thesis are

1. to demonstrate the effectiveness of MRF parameter estimation (by any method) as opposed
to fixing the spatial regularisation parameter to a manually-chosen constant. This results
in a fully-automatic intensity-based brain segmentation algorithm with adaptive spatial
regularisation. While maximum pseudolikelihood estimation in MRFs has been performed
before (e.g. Celeux et al. (2003)), it has not been studied in detail with regards to
neighbourhood size, choice of MRF approximation, or the form of the MRF itself when
applied to MR segmentation.

2. to specifically demonstrate the suitability of maximum pseudolikelihood estimation for
MRF parameter estimation in brain segmentation, as compared to other estimation
techniques. Maximum pseudolikelihood is more computationally tractable than existing
Bayesian methods (Woolrich et al., 2005; Woolrich and Behrens, 2006). It makes use
of quantities already calculated in the the MRF segmentation framework, so is modular
and straightforward to implement into methods that already use this framework, unlike
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the regression estimator of (Van Leemput et al., 1999b). Finally, results from real brain
datasets indicate that using maximum pseudolikelihood to automatically determine the
spatial regularisation is superior to the current methods which fix it, especially when no
atlas can be used.

3. to explore more complex MRF models (with parameter estimation) and assess their
suitability for/tailor them to brain MR segmentation. These MRFs can smooth on finer
scales: on a per-tissue basis (as studied in Chapter 4), and secondly, in local neighbourhoods
(as studied in Chapter 5). We use maximum pseudolikelihood to adaptively smooth with
these MRFs also.

1.4 Overview of the thesis

In chapter 2, we give the necessary mathematical and imaging background that will be used
throughout the remaining chapters.

In chapter 3, we consider the most common form of MRF used for brain segmentation, the
homogeneous Potts MRF, which requires one global smoothing parameter. We study and
compare two methods to automatically determine this parameter, least-squares estimation
and maximum pseudolikelihood estimation. We argue that the latter is ideal for brain MR
segmentation as it can easily be incorporated into existing methods, as it involves an optimisation
that is concave, computationally tractable, and uses quantities already calculated in existing
methods. We demonstrate its use on a real-brain dataset and show it has favourable performance
compared to existing fixed-parameter methods. Although the method itself is not new, we make
a detailed study of how the neighbourhood specification and approximation of the MRF are
related to segmentation accuracy. To our knowledge, a study focusing on these aspects has not
been presented before. The work of this chapter can be thought of as smoothing on a global
(image-wide) level.

In chapter 4, we consider smoothing on a per-tissue level, which may be more realistic for the
brain. We do this by considering the non-homogeneous Potts MRF, a generalisation of the
homogeneous Potts MRF of Chapter 3. We show how to automatically determine the model
parameters, comparing least-squares estimation with maximum pseudolikelihood estimation.
We focus on various forms of the non-homogeneous Potts MRF, separating out its unary and
pairwise terms and studying their effect on the resulting segmentation in detail. We demonstrate
the use of these MRFs on a real-brain dataset. This expands on existing work with a similar
per-tissue-smoothing MRF.

In chapter 5, we consider smoothing on a local neighbourhood level, by allowing local features
such as the presence, strength and orientation of edges to be incorporated into the MRF. As
before we show how to automatically determine the model parameters and demonstrate the
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algorithm on a real-brain dataset, showing promising results against the models considered thus
far. Incorporation of local features like this into the probability model is novel.
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Chapter 2

Mathematical background

2.1 Introduction

Throughout this thesis, the same general probability model is used to describe the intensities of
a brain MRI. This comprises of a Gaussian (normal) mixture model on the brain intensities,
and a Markov random field as the prior density for the brain tissue classification. The details of
the mixture model and MRF vary, but much of the underlying theory remains the same. In this
chapter, we cover the common basics of the image model used throughout the thesis.

The first part of the chapter covers the normal mixture model and how it is used for image
segmentation. The second part briefly covers Markov random fields, difficulties in working with
them and likelihood approximations used to mitigate those difficulties. The last part shows how
to incorporate a Markov random field into the normal mixture model for image segmentation.

2.2 Mixture models

Mixture models provide an important tool for statistical modelling and inference. A mixture
model is a density that is a linear combination of other densities. One advantage of using
a mixture model is that quite complex densities may be built up of simpler and well-known
component densities, which need not all be the same. Mixtures are particularly useful for
clustering applications. The resulting model can be used to calculate the probability that a given
observation (intensity) belongs to a particular mixture component (tissue type), providing a soft
classification of the data. This may be converted into a segmentation by e.g. assigning each pixel
to the mixture component it has the highest posterior probability of belonging to. McLachlan
and Peel (2000) provide an extensive treatment of the theory of finite mixture models.

Let Yi (i = 1, . . . , n) be a random sample of size n, where Yi is a p-dimensional random
vector and has probability density function (pdf) f(yi). Let yi be a realisation of Yi, and let

13
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y = (yT
1 , . . . ,y

T
n )T denote the entire observed data.

The random vector yi is said to have come from a g-component mixture if its pdf takes the form

f(yi; Θ) =
g∑

j=1
πjfj(yi; θj), (2.1)

where component j has pdf fj with parameters θj, and Θ are the elements of (θ1
T , . . . ,θg

T )T

known a priori to be distinct. It is not necessary that fj be of the same form (e.g. all Gaussian).
The mixing proportions πj (j = 1, . . . , g) are non-negative and sum to one.

It is assumed that each observation belongs to one component of the mixture, but it is not
necessarily known which. It is helpful to introduce latent (unobserved) random variables
Z = (Z1, . . . ,Zn) indicating the component of the mixture each observation belongs to, and
correspondingly zi being a realisation of Zi. Each Zi is a vector of length g consisting of exactly
one 1 in the jth position and all other elements 0. Let the jth element of Zi be Zij. Then
observation i is said to be in component j if and only if Zij = 1. Alternatively, we may write
that Zi = ej, where ej is the vector that is 1 in the jth position and 0 elsewhere.

In a standard mixture model, we assume Zi are independently and identically distributed
according to p(zi; Ψ). To arrive at the pdf f(yi) in (2.1), we suppose that Zi are drawn from
the multinomial distribution with probabilities Ψ = (π1, . . . , πg). That is, p(Zi = ej) = πj,
and the parameters to be estimated are Ψ = (π1, . . . , πg−1) (as the proportions sum to 1, this
determines πg). In this formulation, we may identify fj(yi) with f(yi|Zi = ej), which we will
usually write as f(yi|ej) for brevity.

2.2.1 Expectation-maximisation

Observing only y, we wish to estimate the mixture parameters Θ and mixing proportions Ψ
For clustering and classification applications we may also wish to retrieve the latent variables z.
Expectation-Maximisation (EM) (Dempster et al., 1977) can be used to search for maximum
likelihood estimates for the tissue means and covariance matrices and mixing proportions. Only
the main equations are shown here; for their derivations, see Appendix A.

Since Zij = 1 for exactly one j and is 0 for all others and Zi are assumed independent, the
marginal density of the class labels is

p(z; Ψ) =
n∏

i=1

g∏
j=1

π
zij

j . (2.2)
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We also assume that the observed values Yi are independent given their labels Zi, so that

f(y|z; Θ) =
n∏

i=1
f(yi|zi; Θ)

=
n∏

i=1

g∏
j=1

f(yi|Zi = ej; θj)zij .

(2.3)

Combining (2.3) and (2.2) yields the joint likelihood:

L(Θ,Ψ; Y ,Z) = f(y, z; Θ,Ψ) =
n∏

i=1

g∏
j=1

(πjf(yi|ej; θj))zij . (2.4)

The Q-function, being the expectation of the log-likelihood, is then

Q(Θ,Ψ|Θ(t),Ψ(t)) =
n∑

i=1

g∑
j=1

E
[
zij|y; Θ(t),Ψ(t)

]
(log πj

(t) + log f(yi|ej; Θ(t)),

where (t) indicates values at the t-th iteration.

On the E-step, the expected label values given the data are calculated:

τij
(t) = E

[
zij|y; Θ(t),Ψ(t)

]
= πj

(t)f(yi|ej; θj
(t))∑g

j=1 πj
(t)f(yi|ej; θj

(t))
. (2.5)

The quantities τij also happen to be the posterior probability that observation i belongs to
component j of the mixture, p(Zi = j|y; Θ(t),Ψ(t)).

On the M-step, the Q-function is maximised with respect to the parameters Θ and Ψ, yielding:

πj
(t+1) =

∑n
i=1 τij

(t)

n
.

Θ(t+1) = arg max
Θ

∂Q

∂Θ

(2.6)

The E and M steps are repeated until a stop condition has been satisfied. Common stop
conditions are the convergence of the parameter values or the convergence of the observed-data
log-likelihood. The observed-data likelihood is given by

f(y; Θ,Ψ) =
∑

z

f(y|z; Θ̂)p(z; Ψ̂).

2.2.2 Normal mixture models

In the context of brain MRI segmentation, Yi represents the intensity of an n-pixel MRI at
voxel i. This is typically scalar, though if a multichannel image is taken it will be a vector
(e.g. simultaneous or co-registered PET-MR, or T1 and T2-weighted MRI). Each observation Yi
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Figure 2.1: Axial MRI slice and intensity histogram, with tissue intensity distributions from a
manual segmentation

represents measurements at a single pixel, and the sample Y consists of the measurements at
all pixels of a single image (possibly multi-channel), as opposed to Yi being an entire image of a
subject and Y being a images of many subjects.

We are concerned with segmentation of the brain into CSF, GM and WM only (not including
bone, background etc) so have g = 3. The unobserved variables Zi give the tissue label at each
pixel, and zi represents a particular segmentation of the image.

Figure 2.1 shows a brain MRI and the intensity histogram of the brain voxel intensities. It also
shows the intensity distribution of each tissue, where the tissues are determined by an expert
manual segmentation. The distribution is trimodal, with one mode corresponding to each of
the tissues. CSF has the lowest average intensity, followed by grey matter, and then white
matter. Each tissue’s intensity distribution appears to be normally distributed. In fact, use
of a 3-component normal mixture model for brain MRI segmentation is standard. The skull
may be stripped from the image beforehand using various techniques so that only brain tissue is
included. Multiple Gaussians per tissue are also sometimes used (Ashburner and Friston, 1997).

We will assume each mixture component f(yi|Zi = ej) to be Gaussian with parameters mean
µj and covariance matrix Σj:

f(yi; Θ) =
g∑

j=1
πjφ(yi; µj,Σj),

where φ is the Gaussian pdf. For a normal mixture model, the M-step for the mean and
covariance matrix is (see Appendix A for the derivation):

µj
(t+1) =

∑n
i=1 τij

(t)yi∑n
i=1 τij

(t)

Σj
(t+1) =

∑n
i=1 τij

(t)(yi − µj
(t+1))T (yi − µj

(t+1))∑n
i=1 τij

(t) .

(2.7)



2.3. MARKOV RANDOM FIELDS 17

A mixture model is only identifiable up to the labels j; for example, switching the parameters
and mixing proportions of components 1 and 2 will yield the same density. This is generally
restored by imposing some constraint on the parameters. For example, for scalar yi (as we will
deal with in this thesis),

µ1 ≤ µ2 ≤ .. ≤ µ3.

In this thesis our example datasets consist of T1 MR images; this convention is equivalent to
having j = 1 for CSF, j = 2 for GM and j = 3 for WM.

2.2.3 Image segmentation

The aim of image segmentation is not so much to determine the tissue parameters Θ, but
rather to determine the underlying segmentation ẑ. Once estimates for the parameters have
been determined, they can be used to calculate the posterior probability that each observation
i belongs to a particular class j, i.e. τij. The class memberships zi (i.e. the hard image
segmentation into tissue classes) may be estimated for each voxel by

ẑi = arg max
ej ,j=1,...,g

p(Zi = ej|Yi; Θ(t),Ψ(t)) = arg max
j

τij
(t). (2.8)

2.3 Markov Random Fields

The standard mixture model assumes that all voxel labels are independent. This leads to the
classification rule (2.8), which will assign all voxels that have the same intensity, the same tissue
label. This can be a problem with noisy images - isolated bright or dark pixels will be classified
purely according to their intensity, even if they are located in regions of opposite brightness.
This can lead to segmentations that are themselves quite noisy, as can be seen in figure 2.2.

In practice, tissue labels are not independent. Rather, a pixel’s label should depend on the
labels and intensities of its neighbouring pixels. It is more likely that an isolated bright pixel in
a dark image region should belong to the same tissue as its dark neighbours, than a component
with bright mean intensity.

There have been various attempts to incorporate spatial smoothness into intensity-based
segmentation. The most basic involve convolving the pixel intensities with e.g. a Gaussian kernel
before fitting a standard Gaussian mixture. This smooths the intensities, reducing noise. The
problem with this is that noise and edges are smoothed uniformly, so that sharpness around
legitimate boundaries of tissues is lost. Also, the Gaussian mixture still assumes that each voxel
is independent of the others. Rather than incorporating the spatial dependence into the model
itself, this modifies the observations (image intensities) prior to fitting in order to make the
model more applicable.
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(a) MRI (b) EM segmentation (c) intensity thresholds on the image
histogram

Figure 2.2: Segmentation with a 3-component Gaussian mixture model is susceptible to image
noise.

Another alternative to pre-processing the input image y, is post-processing the output seg-
mentation z instead. After the segmentation is obtained, morphological operations such as
dilations and erosions may be used to fill in small holes in the segmentation and smooth the
tissue boundaries. This suffers from similar problems to preprocessing - in particular, the sulci
and gyri forming the convoluted boundary of the brain can be of sufficiently small size in the
image that they are smoothed as well as the noise.

A more elegant option is to incorporate the spatial dependence directly into the probability
model itself. The voxel intensity Yi could be allowed to depend on the intensities and/or labels
of its neighbours. This would be a suitable model for image blurring, where the observation at
location i is corrupted by observations from nearby locations, or where observations are made on
a coarser grid than the underlying location lattice. More suited to our situation is to allow each
voxel’s label (rather than intensity) to depend on the labels and/or intensities of its neighbours.
This encodes the statement that locations in close proximity are more likely to be of the same
tissue.

We will proceed by allowing each voxel’s label Zi to depend on the labels of its neighbours. We
still assume that Yi|Zi, the intensities given their labels, are conditionally independent, but
relax the assumption of independence between Zi. A suitable way to capture the dependence of
each pixels on its neighbours is through a Markov random field.

Let us represent a set of variables by an undirected graph: each variable is a vertex, while an
edge between variables indicates dependence between these variables. Vertices that are not
directly connected by an edge should depend on each other only through intermediate nodes
that form a path between the vertices. A Markov random field is a probability distribution
that encapsulates the dependencies in the graph. For a more extensive treatment, as well as
analogues for directed and hierarchical graphs, see (Koller and Friedman, 2009; Lauritzen, 1996).



2.3. MARKOV RANDOM FIELDS 19

For a concise review of statistical inference for MRFs, see (Stoehr, 2017).

More formally, let (V,E) be the vertices and edges of an undirected graph, and Xi, i ∈ V

be random variables, one per vertex. First, we define the notion of conditional independence
(Dawid, 1980): we say that a variable Xi is conditionally independent of Xj given Xm, written
Xi ⊥⊥ Xj|Xm, if the conditional probability p(Xi|Xj, Xm) is a function of only Xm. For a subset
of vertices A, let the notation XA denote Xi such that i ∈ A. Let ∂i denote the set of neighbours
of vertex i; that is, all vertices that are connected by an edge to i. Then, X∂i denotes the
variables that depend on Xi. The random variables form a Markov random field if the following
properties are satisfied:

• Pairwise Markov property: two variables corresponding to vertices that are not connected
are conditionally independent given the rest of the variables. For any i and m not
connected by an edge,

Xi ⊥⊥ Xm|XV \{i,m}.

• Local Markov property: a variable (vertex) is conditionally independent of all other
variables (vertices) not including its neighbours, given its neighbours. For any i,

Xi ⊥⊥ XV \({i}∪∂i)|X∂i.

• Global Markov property: disjoint sets of variables are independent giving a separating
subset. For any sets of vertices A, B and S such that S separates A from B,

XA ⊥⊥ XB|XS.

A subset of vertices S is said to separate other sets A and B, if removing S from the graph
disconnects A and B into separate connected components. Equivalently, every (if any)
path from A to B passes through S.

It can be shown that for an undirected graph, the global property implies the local, which implies
the pairwise (Lauritzen, 1996, proposition 3.4). However, they are not in general equivalent. In
the context of image segmentation, Xi = Zi and V is the set of voxels in the image.

2.3.1 Hammersley-Clifford theorem

It is usually more convenient to define dependences between variables locally, i.e. the pdf of
each node given its neighbours p(Zi = zi|Z∂i = z∂i) is given. We will shorten this to p(zi|z∂i)
for convenience of notation in the remainder of the thesis. We assume p(zi|z∂i) belongs to the
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exponential family. It is common to write it as

p(zi|z∂i; Ψ) = exp(−Ui(zi|z∂i; Ψ))
Ci

Ci =
g∑

k=1
exp(−Ui(ek|z∂i; Ψ)),

(2.9)

where the negative sign is by convention. The function Ui is often called a potential.

Given a set of local conditional pdfs, two questions occur:

• What is the corresponding joint density p(z)?
• Under what conditions are p(zi|z∂i) even compatible with each other?
• If they are compatible, does p(z) satisfy the Markov properties?

The answers to these questions are addressed in Besag (1974). First, it is assumed that p is
positive, i.e. all realisations z have positive probability. Then, the joint density may be found
by taking the product of conditionals, normalised to sum to one (see (2.2) of Besag (1974)):

p(z; Ψ) = 1
C

n∏
i=1

p(zi|z∂i; Ψ),

C =
∑

all possible z′

n∏
i=1

p(z′
i|z′

∂i; Ψ)
(2.10)

where z∂i denotes all zm that zi depends on i.e. all the neighbours of i, and Ψ are the parameters
of the MRF. We will omit the dependence on Ψ unless relevant for ease of notation.

As to whether a given joint pdf forms a valid Markov random field, the Hammserley-Clifford
gives the sufficient and necessary conditions. It was first proven by Hammersley and Clifford in
an unpublished manuscript (Hammersley and Clifford, 1971), and later proved more generally
and concisely by Besag (Besag, 1974). A positive p(z) forms a valid Markov random field
(satisfies the Markov properties) if and only if it factorises over the cliques of its underlying
graph.

A clique of a graph is a fully-connected subset of vertices. All the cliques of a 2D grid/lattice
where each node has 4 neighbours, or where each node has 8 neighbours, are shown in Figure 2.3.
For a pdf to factorise over cliques of a graph means that it can be written

p(z) = 1
C

∏
cliques c

ψc(zc),

where each c is a clique, zc are all zi such that i is in c, and C is a normalising constant. The
clique potentials ψc may depend on z only through those zi where i is in the clique c. In general,
this factorisation is not unique. For example, suppose ψc was defined over pairwise neighbours
only in the 8-neighbour lattice of figure 2.3. Then p(z) could be factorised such that each
clique c consisted of two nodes only (pairwise neighbours). Alternatively, the graph could be
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Figure 2.3: All clique shapes for a regular 2D lattice with 4 and 8 neighbours (left and right
respectively). The maximal cliques are of size 2 (4 neighbours) or 4 (8 neighbours).

decomposed into cliques of size 4, and then ψc would be obtained by multiplying all the pairwise
potentials together. What is important is that p can be decomposed into a product of functions
over cliques.

In summary, the Hammersley-Clifford theorem allows us to define a potential over the local cliques
of a graph which is often more convenient, while guaranteeing that the resulting (normalised)
product is a valid joint pdf for an MRF.

As an example, in image segmentation, one can imagine each voxel to be a node of a regular
lattice as demonstrated in figure 2.3 for a 2D image. The property that each voxel’s label should
depend on its neighbours’ labels can be encoded by defining a conditional pdf

p(Zi = ej|z∂i) = exp(βuij)∑g
k=1 exp(βuik) , (2.11)

where uij = ∑
m∈∂i zmj is the number of neighbours of voxel i that share the same label j. When

the parameter β is positive, this pdf encodes that it is more likely for a voxel to take the same
label as that of the majority of its neighbours. This is the Potts model of statistical mechanics
(or the Ising model, when there are only 2 labels) and is the most common form of MRF used
in image segmentation (Besag, 1986); we will explore it in detail in Chapter 3.

By exploiting the binary nature of zij we may rewrite (2.11) as

p(zi|z∂i) =
exp(β∑g

j=1 zijuij)∑g
k=1 exp(βuik) ,

so that by (2.10) the joint pdf is given by

p(z) = 1
C

exp(β
n∑

i=1

g∑
j=1

zijuij)

= 1
C

exp(2β
∑

i,m neighbours

g∑
j=1

zijzmj),
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where the factor of 2 is because the neighbours are double-counted. It can be seen that this
decomposes into a product over pairwise cliques {i,m}:

φ{i,m}(zi, zm) = exp(2βzT
i zm).

Hence, p(z) forms a valid MRF.

In this thesis we will consider MRFs that have non-zero clique potentials for singletons and
adjacent pairs of voxels only as opposed to tuples or higher, as these quickly become intractable.
For a thorough review on image applications of MRFs, see (Li, 2009), or (Winkler, 2012) for a
more probabilistic approach.

2.3.2 Likelihood approximations

There are generally four different tasks one wishes to achieve with an MRF:

• sampling from it,
• estimating its parameters,
• finding a maximum-likelihood realisation z (possibly given observations y).

However, all of these are hampered by calculation of the MRF’s normalising constant (also
called the partition function) C in (2.10).

C =
∑

all possible z′

n∏
i=1

p(z′
i|z′

∂i)

The normalising constant involves a sum over all possible states of z. For an n-voxel image with
g colours, there are gn possible images. For a typical brain MRI, g = 3 and n is in the millions.
This makes calculation of C intractable.

When it comes to sampling, the primary methods are based on Gibbs sampling (Geman and
Geman, 1984), including the Swendsen-Wang method (Swendsen and Wang, 1987), and Wolff’s
algorithm (Wolff, 1989). As these are based on Gibbs sampling, they operate on the local
probabilities p(zi|z∂i) rather than the intractable joint density.

We are mainly focused on the problems of parameter estimation and inferring z from observations
y. Most approaches focus on replacing p(z) with an approximation p̃(z) that is more tractable to
compute, before proceeding These include the pseudolikelihood and mean-field approximations,
and are a major focus of this thesis.
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2.3.2.1 Pseudolikelihood approximation

The pseudolikelihood (PL) approximation was introduced in Besag (1975) and applied in the
context of imaging in Besag (1986). It is a type of composite likelihood as studied by (Lindsay,
1988; Varin, 2008), whereby a joint likelihood is approximated by a product of more tractable
marginal or conditional likelihoods. For a review of the different forms of composite likelihood, see
Varin et al. (2011); we focus on Besag’s pseudolikelihood. Besag’s pseudolikelihood approximates
p(z) as the product of the conditional probabilities p(zi|z∂i):

p(z; Ψ) ≈ p̃(z; Ψ) =
n∏

i=1
p(zi|z∂i; Ψ)

= 1
C̃(z; Ψ)

n∏
i=1

exp(−Ui(zi|z∂i; Ψ))

C̃(z; Ψ) =
n∏

i=1

g∑
k=1

exp(−Ui(ek|z∂i; Ψ))

(2.12)

Comparing the pseudolikelihood to the full likelihood (2.10),

p(z; Ψ) = 1
C(Ψ)

n∏
i=1

exp(−Ui(zi|z∂i; Ψ)),

C(Ψ) =
∑
z′

n∏
i=1

exp(−Ui(z′
i|z′

∂i; Ψ)),

it can be seen that the pseudolikelihood replaces the global normalising constant C (a sum over
gn terms) with a product of local normalising constants Ci. Since each Ci is a sum over only g
terms, the pseudolikelihood is computationally tractable. However, while the global constant
C depends only on the parameters Ψ, the pseudolikelihood constant C̃ also depends on the
realisation z.

Besag’s pseudolikelihood approximates the likelihood as a product of conditionals over the
individual voxels. For this reason it was termed point-pseudolikelihood by Qian and Titterington
(1992), who also studied line- and block-versions. In this thesis, ‘pseudolikelihood’ refers to
the point-pseudolikelihood unless otherwise specified. Rydén and Titterington (1998) showed
how the pseudolikelihood could be used in conjunction with Gibbs sampling to sample from an
MRF.

2.3.2.2 Mean-field approximation

An alternative though similar approximation to the pseudolikelihood approximation is the
mean-field approximation of the likelihood. Mean field theory originated in statistical mechanics
as a tool to study phase transitions in interacting systems. For an extensive treatment, see
Chandler (1987). The core idea is to replace interaction terms with their expected or mean
values in order to decouple them. There are multiple mean-field approximations for a given



24 CHAPTER 2. MATHEMATICAL BACKGROUND

MRF, e.g. each neighbour zm is replaced by its mean value, or where pairwise interactions zT
i zm

are replaced by their mean values, but we focus on the former only:

p(z) ≈ p̃(z) =
n∏

i=1
p(zi|〈z∂i〉)

=
n∏

i=1

exp(−Ui(zi|〈z∂i〉))∑g
k=1 exp(−Ui(ek|〈z∂i〉))

.

(2.13)

Here, 〈·〉 is the expected value with respect to p̃MF , and 〈z∂i〉 is shorthand for 〈zm〉 such that
m ∈ ∂i. Note that while zi is binary in nature ∈ {0, 1}g, 〈z∂i〉 is continuous ∈ [0, 1]g with∑g

j=1 〈zi〉j = 1.

The mean values 〈zi〉 may be found by solving the fixed-point or self-consistency equations
(Zhang, 1992)

〈zi〉 =
g∑

j=1
ejp(Zi = ej|〈z∂i〉) (2.14)

where the right-hand side is exactly the expectation of zi under p(·|〈z∂i〉). Brouwer’s fixed-point
theorem guarantees existence of at least one solution to this equation, and iteration of the above
equation typically leads to one of the solutions (Wu and Doerschuk, 1995).

Alternatively, the mean-field approximation may be justified by searching for a factorisable
p̃(z) that minimises its Kullback-Leibler divergence to the true pdf p(z). Let F be the class of
factorisable densities of the form p̃(z) = ∏n

i=1 pi(zi). The desired approximation is

arg min
p̃∈F

Ep̃

[
log

(
p̃(z)
p(z)

)]
, (2.15)

where the expectation is taken with respect to the candidate pdf p̃. It can be shown that solving
this equation yields exactly the previous self-consistency equations (Hofmann and Buhmann,
1997, section 4.1).

When the MRF is hidden, there are two choices when trying to approximate the joint likelihood
f(y, z). Either p(z) or p(z|y) may be approximated, from which the other can be derived.
Approximating the marginal density p(z) yields the equations already shown (2.14). However,
note that one solution to these equations is the uniform solution 〈zi〉 = 1

g
for all i. Celeux

et al. (2003), Example 1 claims this solution is unique for β < g
|∂i| and g ≤ 4 where |∂i| is the

neighbourhood size (the proof’s existence is mentioned but it is not given). This degenerate
solution is not of interest as it prohibits estimation of the MRF parameters, being independent
of them. Thus, it is preferable to use the mean-field approximation for p(z|y), as noted by
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(Celeux et al., 2003; Archer and Titterington, 2002). This yields the equations

〈zi〉 =
g∑

j=1
ejp(ej|yi, 〈z∂i〉)

=
g∑

j=1
ej

f(yi|ej)p(ej|〈z∂i〉)∑g
k=1 f(yi|ek)p(ek|〈z∂i〉)

. (2.16)

It can be seen that the mean-field (MF) approximation (2.13) is very similar the the pseudolike-
lihood approximation (2.12), except that the mean-field approximation uses the expected values
for the neighbours 〈z∂i〉, while the pseudolikelihood approximation uses the discrete values z∂i.
Since both approximations are tractable, they simplify the problems of sampling, parameter
estimation, and estimation of z.

2.4 Expectation-Maximisation for a mixture-MRF
model

Our image model now consists of voxel intensities that are normally distributed given the voxel
label, and labels that are distributed according to a Markov random field. We wish to retrieve
the maximum-likelihood segmentation z while also fitting the unknown parameters, when only
the MRI y is observed. As for a standard mixture model, the hidden nature of z makes the
problem suitable for Expectation Maximisation. The image model is (exploiting the binary
nature of zij to write f(y|z) and p(z)):

f(y|z; Θ) =
n∏

i=1

g∏
j=1

f(yi|Zi = ej; Θ)zij

f(yi|ej; Θ) = φ(yi; µj,Σj) ∼ N (µj,Σj)

p(z; Ψ) = 1
C

n∏
i=1

g∏
j=1

exp(−Ui(ej|z∂i; Ψ))zij .

This model is often termed ‘GMM-MRF’ or ‘GMM-HMRF’ (Gaussian mixture model (hidden)
Markov random field).

The joint likelihood is

f(y, z; Θ,Ψ) = f(y|z; Θ)p(z; Ψ)

= 1
C

n∏
i=1

g∏
j=1

(φ(yi; µj,Σj) exp(−Ui(zi|z∂i; Ψ)))zij .
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The Q-function is then

Q(Θ,Ψ|Θ(t),Ψ(t)) =
 n∑

i=1

g∑
j=1

E
[
zij|y; Θ(t),Ψ(t)

]
log fj(yi;µj,Σj) − E

[
zijUi(ej|z∂i; Ψ)|y; Θ(t),Ψ(t)

]
− logC(Ψ).

(2.17)
There are two problems to be dealt with here. First, the normalising constant C is not tractable
to calculate. The problem can be avoided if the MRF parameters Ψ are held fixed rather than
estimated, as then C need not be computed. In fact, it is very common to do this in image
segmentation for this reason; we will return to this in Chapter 3. The second problem is that
the expectations cannot be computed due to the dependence of each voxel on its neighbours.

The natural solution based on the theory presented thus far is to replace p(z) with the
pseudolikelihood or mean-field approximations p̃(z):

p̃P L(z) =
n∏

i=1

exp(−Ui(zi|z∂i))
Ci(z∂i)

p̃MF (z) =
n∏

i=1

exp(−Ui(zi|〈z∂i〉))
Ci(〈z∂i〉)

,

where the dependence of the pixel-wise normalising constant Ci on its neighbours is written
for emphasis. In what follows, we will use the pseudolikelihood approximation. The mean-field
approximation is identical except that the neighbours z∂i are replaced with the mean values
〈z∂i〉. For the most part there is no difference in theory; we will point out when there is. Since
the approximations p̃(z) replace C by a product of Ci, this resolves the difficulty in computing
C in the Q-function.

The second difficulty was computation of the expectations in (2.17). If the mean-field approxi-
mation is used, the replacement of Z∂i with 〈z∂i〉, which are constants, uncouples each term in
p̃(z) and hence the computation is straightforward:

E
[
zij|y; Θ(t),Ψ(t)

]
= Pr(Zi = ej|y; Θ(t),Ψ(t))

= φ(yi; µj
(t),Σj

(t))p̃(ej; Ψ(t))
f(yi; Θ(t))

= φ(yi; µj
(t),Σj

(t))p(ej|〈z∂i〉; Ψ(t))∑g
k=1 φ(yi; µk

(t),Σk
(t))p(ej|〈z∂i〉; Ψ(t))

(2.18)

The second expectation in (2.17) simplifies to

E
[
zijUi(ej|〈z∂i〉; Ψ|y; Θ(t),Ψ(t))

]
= E [zij|·]Ui(ej|〈z∂i〉; Ψ|y; Θ(t),Ψ(t)),

and the quantity E [zij|·] is calculated as previously. It is interesting to note that the expectation
(2.18) is identical to calculation of the mean-field approximation 〈zi〉 (2.16), as both compute the
same expectation. The only difference is that the mean-field approximation should be computed
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iteratively with the results used to updated the mean-field values. The E-step is computed
simultaneously, treating 〈zi〉 as the fixed neighbour values.

If the pseudolikelihood approximation is used, then calculation of the marginal probability
Pr(Zi = ej) is intractable as each voxel still depends on its neighbours. Following (Kay and
Titterington, 1986; Kay, 1986), this can be resolved by replacing the expectation under p(zi) with
p(zi|z∂i

(t)) where z∂i
(t) is the current best estimate for the neighbours. The expectations then

proceed identically to when the mean-field approximation is used, except that the mean-field
neighbours 〈z∂i〉 are replaced with the current best (discrete) approximation z∂i

(t).

With these modifications, the Q-function becomes

Q(Θ,Ψ|Θ(t),Ψ(t)) =
n∑

i=1

g∑
j=1

E
[
zij|y, z∂i

(t); Θ(t),Ψ(t)
](

log fj(yi;µj,Σj) − Ui(ej|z∂i
(t); Θ)

− logCi(Ψ)
)

Ci(Ψ) =
g∑

k=1
exp(−Ui(ek|z∂i

(t); Ψ)).

By replacing z∂i with z∂i
(t) the dependence between voxels is decoupled, so the expectations

may be computed:

E
[
zij|y, z∂i

(t)Θ(t),Ψ(t)
]

= τij
(t) = p(ej|z∂i

(t),Ψ(t))φ(yi; µj
(t),Σj

(t))∑g
k=1 p(ek|z∂i

(t),Ψ(t))φ(yi; µk
(t),Σk

(t))
. (2.19)

Comparing this to the E-step of the standard mixture model, the equations are the same, except
that πj = Pr(Zi = ej) of the standard mixture model has been replaced with p(ej|z∂i

(t)). The
M-step then proceeds identically to the standard mixture model, with the new τij as defined
above.

2.4.1 Approximating z

The final piece to the algorithm is how to determine values z(t) to be used for z∂i
(t) in computing

the expectations. The MAP estimate

ẑMAP = arg max
z

p(z|y) = arg max
z

f(y|z)p(z).

is intractable given the dependence between neighbouring zi and that the maximisation must
be over all z simultaneously. Thus we return to using approximations of p(z). These reduce the
simultaneous estimate of z to pointwise estimates.

If the mean-field approximation is being used, then the fixed-point equation (2.16) may be
iterated to find 〈zi〉 from the mean-field approximation of p(z). However, as suggested by Celeux
et al. (2003), it is more advantageous to use the mean-field approximation of the posterior
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p(z|y). The self-consistency equations (2.16) become

〈zi〉(t+1) =
g∑

j=1
ej Pr(Zi = ej|y)

=
g∑

j=1
ej

f(yi|Zi = ej)p(Zi = ej|〈z∂i〉(t,t+1))∑g
k=1 f(yi|Zi = ek)p(Zi = ek|〈z∂i〉(t,t+1))

.

(2.20)

The superscript (t, t+ 1) means to use the most recent value of 〈zm〉, be it from the previous or
current iteration (depending on whether that voxel has been updated yet). This is identical to
the τij calculation (2.19), except that it is performed sequentially with 〈z∂i〉 always consisting
of the most-recently computed values. The scheme is guaranteed to converge to a fixed point
(Wu and Doerschuk, 1995).

Another popular alternative is to use Iterated Conditional Modes (Besag, 1986). Rather than
performing the maximisation over all voxels simultaneously, Besag proposed to update each
voxel sequentially according to the mode of its conditional likelihood:

zi
(t+1) = arg max

ej

Pr(Zi = ej|y, z∂i
(t,t+1))

= arg max
ej

f(yi|Zi = ej)p(Zi = ej|z∂i
(t,t+1))

(2.21)

ICM will converge to a (possibly local) maximum of the posterior probability, as

p(z|y) = p(zi, z−i|y) = p(zi|y, z−i)p(z−i|y) = p(zi|y, z∂i)p(z−i|y), (2.22)

and p(zi|y, z∂i) is the quantity ICM maximises for each i. Here z−i means all zm such that
m 6= i. In practice Besag found the algorithm to converge very quickly (in the sense that the
number of voxels changing per iteration decreased rapidly), often in less than 10 cycles. It is of
interest to note that ICM is very similar to the mean-field procedure, except that ICM uses
the mode as the estimate, while the mean-field procedure uses the mean. In addition, ICM is
equivalent to the standard classification rule used in EM (2.8), except that the in (2.8) the τij

quantities are calculated simultaneously rather than sequentially.

A variation of ICM, termed “Iterated Conditional Expectations” (ICE), was proposed by Owen
(Owen, 1986, Owen (1989)). The aim of ICE was to avoid the hard assignation of labels (2.21),
since this will treat (for example) a voxel with probability 51% to be a particular label the same
as a voxel with probability 99% to be a particular label. ICE uses soft neighbours (expected
values) rather than hard thresholding to update the posterior probabilities. This turns out to
be exactly the mean-field update.

The ICM and MF updates should be performed sequentially over the voxels. However, a slight
computational saving can be made by employing Besag’s “coding sets” (Besag, 1974). This
method was developed for parameter estimation of MRFs; we will cover that aspect in the next
chapter. It can also be used in sequential voxel-update operations. It is applicable to any MRF
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Figure 2.4: Coding sets for a two-dimensional image grid with 4 neighbours (orthogonal only)
and 8 (orthogonal and diagonal). No pixels in a given set are neighbours.

whose underlying graph can be partitioned into subsets such that no two elements of the same
subset are neighbours. That is, all nodes in a given subset are mutually independent, given their
neighbours. Examples are shown in figure 2.4 for the two-dimensional 4- and 8-neighbour cases,
where each subset is represented by a different symbol. No two pixels in the same subset are
neighbours. Thus, every pixel in a given coding set may be updated simultaneously, which is the
same as updating them sequentially since all neighbours remain un-updated. The coding sets
are visited sequentially, updating all voxels in each set simultaneously. We show coding schemes
for three-dimensional images with various neighbourhood configurations in Appendix B.

2.5 Algorithm

The elements described so far define a family of EM-like algorithms as described in Celeux et al.
(2003). They are used to perform image segmentation using a mixture model with an MRF
prior. They all fit in a general algorithm consisting of three core steps, with minor variations at
each step. On iteration t:

1. (C-step) Form an estimate of the current labels z(t) to be used as neighbours; either
discrete (for the pseudolikelihood approximation) or continuous (for the mean-field ap-
proximation).

2. (E-step) Calculate τij
(t) using (2.19), using z(t) from the C-step where needed for z∂i

(t):

τij
(t) = p(Zi = ej|z∂i

(t),Ψ(t−1))φ(yi; µj
(t−1),Σj

(t−1))∑g
k=1 p(Zi = ek|z∂i

(t),Ψ(t−1))φ(yi; µk
(t−1),Σk

(t−1))
.

3. (M-step) Maximise Q with respect to Θ to obtain the intensity parameters. The update
equations for the mixture parameters remain the same (with the new definition of τij):

µj
(t) =

∑n
i=1 τij

(t)yi∑n
i=1 τij

(t)

Σj
(t) =

∑n
i=1 τij

(t)(yi − µj
(t))T (yi − µj

(t))∑n
i=1 τij

(t) .

These steps are repeated until the parameters or observed log-likelihood stop changing up to
some relative tolerance. The observed log-likelihood f(y) cannot be found exactly, but can be
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approximated by using the pseudolikelihood or mean-field versions of p(z):

log L(Θ,Ψ; y, z) =
n∑

i=1

g∑
j=1

zij(log fj(yi; µj,Σj) + log p(ej|z∂i,Ψ)).

On the C-step, the ICM or ICE/mean-field algorithms (2.21) and (2.20) are be used to find the
current estimate of the tissue labels. Alternatively, each zi

(t+1) may be sampled multinomially
from the current posterior density i.e. τij, j = 1, . . . , g for each i, as in Gibbs sampling.

Many other methods instead treat z(t) from the C-step as the true values of z and maximise
the joint log-likelihood rather than the Q-function, thus skipping the E-step. This algorithm
corresponds to ‘C-M’ in the framework described, though in the literature is usually referred to as
‘restoration-maximisation’. When the C-step uses ICM, this is the procedure described by Besag
(1986), though he primarily focuses on the case where the parameters are known and no M-step
is required. However, some authors found that treating z(t) as truth and omitting the E-step
lead to bias in the intensity parameter estimates and image segmentations/reconstructions
(Titterington, 1984; Little and Rubin, 1983; Qian and Titterington, 1991). Rather, z(t) should
only be used to approximate the neighbours z∂i rather than being treated as truth.

When the ‘C-M’ algorithm uses the mean-field update in the C-step, this is the procedure
described by Zhang (1992). Although this method also treats the z(t) from the C-step as truth
in the M-step, it is worth noting that the mean-field C-step produces 〈zi〉 that are the same as
the τij produced in the E-step. The only difference is that the former is performed sequentially
while the latter is performed simultaneously.

One further set of variations consists of reordering the steps E-C-M. The posterior probabilities
τij of the E-step are used to generate a realisation z(t) in the C-step. This realisation is then used
as truth in the M-step, maximising the joint log-likelihood rather than the Q-function. When
ICM is used in the C-step, this is Celeux and Govaert (1992)’s Classification EM algorithm.
When one cycle of Gibbs sampling is used in the C-step, this is Celeux and Diebolt (1985)’s
Stochastic EM algorithm. When multiple realisations are generated in the C-step with the
average parameter estimate over these realisations taken in the M-step, this is the approach
favoured by Qian and Titterington (1991).

Celeux et al. (2003) explored many of the variations, finding CEM with Gibbs sampling on the
C-step and using the mean-field approximation to be superior to other options.

While these algorithms work and are commonly used in practice, there appear to be no
convergence guarantees on the modified E-M algorithm using pseudolikelihood or mean-field
theory. As previously established, so long as the C-step is performed sequentially, both the
mean-field and ICM versions are guaranteed to converge. However, the monotonic increase
and convergence of the observed log-likelihood by maximising Q does not hold in general. Gao
and Song (Gao and Song, 2011) showed that these properties are preserved, but only if the
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pseudolikelihood consists of a product of marginal likelihoods e.g. ∏i p(zi), not conditional
likelihoods ∏i p(zi|z∂i). The reliance on and need for an estimate z(t) is the cause of the problem,
as the expected values are somewhat reliant on the current realisation.

2.6 Conclusion

In this chapter we have given a brief overview of the following topics, with focus on their use in
image segmentation:

• Gaussian mixture models and their solution by Expectation Maximisation,
• Markov random fields and pseudolikelihood/mean-field approximations to improve

tractability,
• a combined Gaussian mixture model with MRF prior, and how it may be solved using

EM in combination with the pseudolikelihood or mean-field approximation.

Future chapters will draw on these elements, with different specific forms of MRF.
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Chapter 3

Homogeneous Potts MRF

3.1 Introduction

Tissue segmentation provides valuable information for brain tissue analysis, enabling study of
how the volume and shape of various brain structures are affected by injury, stroke or disease.
Fully-automated methods to segment grey matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) save the many man-hours required to manually segment MRI, and avoid problems
such as inter- and intra-observer bias.

As outlined in Chapter 1, there are many techniques to segment the brain. One very popular
method for segmentation of the brain is to use a mixture-MRF to model the MRI. Each tissue’s
voxel intensities are assumed to have a Gaussian distribution, while the tissues themselves use a
Markov random field as a prior to incorporate spatial dependence, smoothing the segmentation
and eliminating noise.

Introduced to the field of image segmentation by Besag (1986), the Potts model from statistical
mechanics (Potts, 1952) is ubiquitous as the specific choice of MRF in the model. A Gaussian
mixture with the Potts MRF as a prior is used in many major segmentation tools and pipelines
that are considered gold standards in automatic segmentation. These include FAST (Zhang
et al., 2001) and Niftyseg (Cardoso et al., 2009), and Atropos (Avants et al., 2011). Even when
an MRF is used only as a post-hoc smoother rather than incorporated into the probability model
itself, the Potts MRF is used. This is the case in the leading and commonly-used atlas-based
segmentation pipeline FreeSurfer (Ashburner and Friston, 2005).

In the Potts MRF, a parameter β is used to control the spatial regularisation applied by the
MRF. It is very common in image segmentation to fix β a priori rather than estimating it.
However, there is no clear method to determine an appropriate value. Rather, β has been
determined by manual tuning, in order to obtain a (subjective) visually suitable result. In the
field of MR segmentation, all of the commonly-used segmentation software packages previously
mentioned require the user to specify β, but also set a default value that has been configured by

33
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the developers. FAST uses β = 1, NiftySeg uses β = 0.25, while Atropos uses β = 0.3.

If β is set inappropriately, the resulting segmentation could retain too much noise, or could be
so smooth as to obscure important fine brain features. Determining an appropriate β value is
image dependent and often subjective. In addition, as we will see, the appropriate β value is not
necessarily fixed from patient to patient or image to image, particularly in MRI where small
changes in machines and acquisition parameters affect the reconstructed image. Automatic
estimation of β removes the need to guess appropriate smoothing values, and recognises that
different parameter values may be needed for each individual image.

In this chapter, we introduce and validate a method to adaptively determine the level of spatial
smoothing in the Potts model on a per-image basis. This is done in a fully-automatic fashion
rather than requiring manual tuning. We achieve this by statistical estimation of the underlying
smoothing value in the Potts model for each image. This must be achieved in a tractable
manner. In this chapter we explore the use of the maximum pseudolikelihood estimator (MPLE)
(Besag, 1974) for the Potts MRF in MR segmentation. Parameter estimation in this way has
been performed before, e.g. (Celeux et al., 2003), but rarely in brain MR segmentation. We
compare it to the least-squares estimator implemented in the software ‘Expectation Maximisation
Segmentation’ (EMS) (Van Leemput et al., 1999b) as well as common default fixed values.
Additionally, we show that choosing the “wrong” values for the MRF parameters can lead to a
severe loss of segmentation accuracy. The primary contributions of this chapter are

• the comparison of estimation with the MPLE against commonly-used fixed parameter
values or the least-squares estimator, in the context of brain segmentation.

• the systematic and detailed study of how the MPLE performs under different neighbour-
hood size and MRF approximations.

3.1.1 Aim

Aim 1 is to develop a method to adaptively determine the amount of spatial regularisation
applied in mixture-MRF segmentation with the simplified Potts MRF. The desired properties
are:

• Property 1: The method should be able to adapt to the characteristics of each individual
image, as some images may require less smoothing than others. Thus, it should operate
on a per-image basis.

• Property 2: The method should not require training data, though may be able to make use
of it if available. This will allow it to be robust to images dissimilar to those in the training
set (particularly pertinent as it is unclear what “dissimilar” means for a Potts MRF). This
also removes the need to obtain training data - images with manual segmentations, or
segmentations that will be treated as ground truth.
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Aim 2 pertains to the practical aspects of the developed method:

• Property 3: The method should be computationally tractable.
• Property 4: The method should be straightforward to incorporate into existing segmenta-

tion algorithms. While the mixture-Potts image model is very common throughout MR
segmentation, it is often only the basis of a more sophisticated algorithm. For example,
it has been extended to incorporate bias-field correction (Van Leemput et al., 1999a;
Zhang et al., 2001), partial-volume estimation (Noe and Gee, 2001; Shattuck et al., 2001;
Van Leemput et al., 2003), as well as the use of anatomical priors (Van Leemput et al.,
1999b; Cardoso et al., 2011). If the parameter estimation method is modular, it can easily
be inserted into these methods without much additional work.

In this chapter, we will see that the maximum pseudolikelihood estimator satisfies all desired
properties in the first two aims, making it particularly suited to MR segmentation.

Aim 3 is to validate the method on real data to determine if and in what circumstances
automatic determination of β can be of value. We will also compare the method to existing
mixture-MRF algorithms: NiftySeg (Cardoso et al., 2009), Atropos (Avants et al., 2011), and
FAST (Zhang et al., 2001), which all use fixed β values, and EMS (Van Leemput et al., 1999b),
which uses the least-squares estimator.

3.2 Background

3.2.1 Potts MRF

The Potts model (Potts, 1952) is used almost exclusively as a prior for the tissue labels in image
segmentation. It originated from the field of statistical mechanics as a many-state extension
to the Ising model (Ising, 1925). The Ising model is a model of ferromagnetism, giving the
probability of particular configurations of magnetic spins in a lattice. Each site can have one of
two states, or spins (g = 2). This is akin to each voxel taking one of two labels, a binary image.
The Potts model is an extension that allows each site to have g > 2 states; for us, an image
with more than two tissue labels. Use of this model in image segmentation and restoration was
popularised by Besag (1986). The simplified form - the homogeneous Potts field in the absence
of an external field - is the one most commonly used in imaging. Recalling that Zi indicates the
label of voxel i of which there are g possibilities, the local conditional form of the Potts MRF is:

p(Zi = ej|z∂i; β) ∝ exp(βuij), j = 1, . . . , g

uij =
∑

m∈∂i

zmj

δim

β ≥ 0,

(3.1)
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(a) 0.1 (b) 0.3 (c) 1.0 (d) 5.0

Figure 3.1: Example Potts MRFs with various smoothing values β and 4 neighbours

where δim is the distance between voxels i and m. The term uij is the number of neighbours
of voxel i that have label j (scaled by their distance to i). Thus the Potts MRF assigns the
log-probability of each voxel’s label to be proportional to the number of neighbours matching
that label. The parameter β controls the strength of this relationship.

The joint distribution can be written

p(z) = 1
C

n∏
i=1

g∏
j=1

exp(βuij)zij , where

C =
∑
z′

n∏
i=1

g∏
j=1

exp(βuij))z′
ij .

(3.2)

It is also common to see the joint distribution written in terms of pairwise potentials:

p(z) = 1
C̃

exp(β̃
∑
i,m

neighbours

zT
i zm

δim

),

where the sum is over all voxel pairs that are neighbours and zT
i zm is 1 if voxel i’s label matches

its neighbour m’s, and 0 otherwise. This form has β̃ = 2β because each neighbour pair is
double-counted in the previous equation.

The normalising constant C consists of a sum over all gn possible label configurations z′, which
is intractable. The pointwise pseudolikelihood and mean-field approximations, discussed in the
previous chapter, are often used in place of p(z).

3.2.2 Spatial regularisation parameter

The primary focus of this chapter is on the spatial regularisation parameter β. In the original
context of ferromagnetism models, β is the inverse of the system’s thermodynamic temperature,
β = 1

kBT
, where kB is Boltzmann’s constant and T is the absolute temperature of the system.

When β is small, the system is disordered (not magnetic); the dependence between neighbouring
sites is weak. When β is large and positive (as the temperature lowers), the material exhibits
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(a) original MRI (b) 0.1 (c) 0.3 (d) 1 (e) 5

Figure 3.2: Segmentations with various smoothing values β
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Figure 3.3: Example pixel configurations with two labels, A and B.

ferromagnetism. In statistical mechanics the focus is typically on studying critical temperatures
(β values) at which the material transitions from one state to the other - for magnetism, this is
known as the Curie temperature.

In image segmentation, β controls the strength of the spatial dependence between neighbours;
it is constrained to be non-negative (a negative β would encourage neighbouring voxels to
have different labels to each other). Figure 3.1 shows examples of the Potts MRF at various β
values. If β = 0, neighbours are independent; each label is equally likely and independent of its
neighbours. When β = ∞, the model becomes a majority-voting system, where the label of
pixel i is purely determined by the label of the majority of its neighbours. Intermediate values
trade off between the two.

When the Potts prior is combined with the Gaussian probabilities over each tissue label’s
intensities, the probability of a voxel having a given label given its intensity and neighbouring
labels is

p(Zi = ej|z∂i, yi) ∝ exp(βuij)f(yi|ej)

It is evident that β acts to control the balance of intensity and spatial information. When β = 0,
only the intensity distribution contributes to the label and not a voxel’s neighbours. When
As β gets larger, the MRF has higher precedence over the intensities, producing, smoother
segmentations than at lower values of β. In this way, β may be thought of as a spatial
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regularisation parameter. This can be seen in figure 3.2, which shows segmentations produced by
the EM algorithm described in the previous chapter, at various β values. At β = 0, one retrieves
the standard Gaussian mixture model, but with fixed mixing proportions Pr(Zi = ej) = 1

g
.

Choice of β can be critical in order to smooth noise without blurring features of interest.
Consider figure 3.3, which shows a voxel marked ‘?’ and the labels of its neighbouring voxels.
The question is what label to assign voxel ‘?’. Suppose there are two labels for an image - ‘A’
(dark) and ‘B’ (light). The left-hand neighbourhood shows an isolated voxel of noise that should
be smoothed by the MRF. Denoting voxel ‘?’ by the subscript i, its probability to have either
label is

p(Zi = A|yi) ∝ exp(8β)f(yi|A)

p(Zi = B|yi) ∝ exp(0β)f(yi|B)

Since voxel ‘?’ is light in colour, f(yi|B) is large compared to f(yi|A). However, the MRF
probability exp(βuij) is higher for label B than A. A sufficiently large β will overcome the
intensity pdf to assign voxel ‘?’ to label ‘A’ with high probability.

On the other hand, consider the right-hand neighbourhood, which shows a thin line. Here,

p(Zi = A|yi) ∝ exp(6β)f(yi|A)

p(Zi = B|yi) ∝ exp(2β)f(yi|B)

Depending on the resolution of the MRI, it is likely that we wish to preserve this feature, as it
could represent some fine anatomical region in the brain (for example, extrasulcal CSF between
cortical folds). If β is too large, the MRF probability will dominate and label ‘A’ will be
assigned, obscuring the feature. Thus β must be selected sufficiently large to remove noise as in
the left-hand neighbourhood, but not so large as to oversmooth the right-hand neighbourhood.
Clearly, this also depends on the intensity distribution f(yi|zi) and its spread compared to that
of p(zi|z∂i); there is no immediately obvious method to select β.

3.2.3 Related work

Here we briefly discuss methods to determine or set β in two different fields - the statistical
literature from which much of the theory and methods originated, and the medical imaging
literature. The application of methods from the former to the latter requires consideration
of ease of implementation as well as computational efficiency, given the large size of medical
images.

3.2.3.1 Fixed-parameter segmentation

For the reasons mentioned previously, it is common to have β fixed, with the value chosen
manually.
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The founding statistical papers on image restoration all used small two-dimensional images to
demonstrate the methods. Besag (1986) found β = 1.5 worked well for 6-label synthetic images.
Jubb and Jennison (1991) used β = 4 on very noisy synthetic binary images but mentioned β = 1
to be a good general value. Owen (1986) suggested a smaller value of β = 0.7 for binary images
with convoluted edges (the example used was a map of the coastline of northern Scotland). All
examples used a 2D neighbourhood consisting of the 8 immediately orthogonal and diagonal
neighbours. All of these values were tuned manually.

In medical image segmentation, it is perhaps even more common to use fixed β values. In papers
making use of the mixture-Potts formulation use of β = 1 is popular (McLachlan et al., 1996;
Jubb and Jennison, 1991; Zhang et al., 2001). Many of the leading, publicly-available software
packages for MRI segmentation implement a mixture-MRF model as the basis of their image
segmentation pipelines, with fixed β values.

The ‘FAST’ tool from the Oxford Centre for Functional MRI of the Brain’s software library
(Zhang et al., 2001) uses β = 1 for a neighbourhood consisting of the orthogonal neighbours
only (6 for a 3D MRI). Its implementation uses β = 0.1 for all neighbours in the 3 × 3 × 3
neighbourhood centred on the pixel of interest (26 neighbours for a 3D MRI). Advanced
Normalization Tools’ ‘Atropos’ (Avants et al., 2011) uses β = 0.3 with 26 neighbours.

NiftySeg, developed at University College London, has two main segmentation algorithms. The
first (seg_EM) uses a default fixed β = 0.25. The second (seg_LoAd) uses a more advanced form
of the Potts model. It requires use of an anatomical atlas to further split the tissue classes:
CSF into external CSF (between the sulci and gyri) and internal CSF (in the ventricles), GM
into deep GM (within the brain) and cortical GM (forming the folds on the outer boundary of
the brain). It uses β = 0.5 for tissues anatomically likely to be near each other - for example,
internal CSF with deep GM - and β = 0.3 for tissues anatomically unlikely to be near each
other - for example, internal CSF with cortical GM. We will explore this form of tissue-based
smoothing in Chapter 4.

Two other major segmentation tools merit mention. SPM (Ashburner and Friston, 2005, 1997)
and FreeSurfer (Fischl et al., 2002) use mixtures to represent the image intensities, but do not
use MRFs in the label priors. Rather, these are atlas-driven methods that rely on registering the
input brain to that of a brain that is already labelled (an “atlas”) in order to propagate tissue
labels, using the image intensities to aid the process. Both of these allow an MRF to be used to
smooth the segmentation after it has been obtained, but these MRFs are not incorporated into
the image model and are not given intensity information.

3.2.3.2 MRF parameter estimation

When it comes to automatic estimation of β, there is a large disconnect between the statistical
and medical imaging worlds. While MRF parameter estimation has been extensively investigated
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in the statistical field, little of it has been implemented in the corresponding medical imaging
segmentation software. This is partly due to the fact that the statistical papers were largely
written before modern advances in computing power. These papers tended to focus more
on statistical aspects of the estimators (e.g. asymptotic behaviour and efficiency; recovery of
parameter values); images used as demonstrations were typically two-dimensional, artificial
or simulated, binary (two-colour), and less than 256x256 pixels. On the other hand, medical
images are three-dimensional, may have many classes, and typically contain millions of voxels.
Additionally, the focus is not so much on asymptotic behaviour or recovery of β as the true
underlying value is irrelevant to the application, but on accuracy of the segmentation z.
Investigating whether a method can be successfully transferred into medical image segmentation
requires careful consideration.

Traditional statistical approaches to MRF parameter estimation fall broadly into two classes
- stochastic or deterministic. In general, they aim to find maximum-likelihood estimates of
the MRF parameters. Stochastic approaches are typically quite slow as they rely on repeated
sampling, while deterministic approaches can become stuck in local maxima.

Stochastic approaches typically use Markov Chain Monte Carlo (MCMC) and in particular
Gibbs sampling in order to generate samples from the MRF. These are used to calculate
expectations empirically, which are used within e.g. a gradient descent algorithm (Younes, 1991;
Jalobeanu et al., 2002) or EM (Qian and Titterington, 1991) to find approximate maximum-
likelihood estimates. While these can produce estimates that are more accurate than likelihood
approximations, they are computationally expensive. This is because they require many samples
to be drawn on each iteration.

Deterministic options focus on replacing the MRF probability with a tractable approximation,
and maximising that. A precursor to these approaches is the ‘coding method’ of Besag (1974).
Here, the image voxels are divided into ‘coding sets’ such that no two voxels in a given set are
neighbours (see section 2.4.1 and Appendix B for further detail). Within each coding set, the
pseudolikelihood is the true likelihood. Thus, the maximum-pseudolikelihood estimate for each
coding set is the maximum-likelihood estimate. Since the pseudolikelihood is computationally
tractable, an estimate is readily obtained for each coding set. However, as mentioned by Besag,
it is unclear how the estimates should be combined. Possolo (1986) showed that the estimate
for each coding set is statistically consistent (converges to the true parameter) as the lattice
becomes infinitely large. However in practice, with finite-size lattices, the estimates may differ
significantly between coding sets, making averaging unsatisfactory (Kashyap and Chellappa,
1983).

The coding method was later extending to maximisation of the point-pseudolikelihood over
the entire image (Besag, 1975). Qian and Titterington (1992) extended this to investigate and
compare maximisation of the point-, line- and block-pseudolikelihoods, demonstrated on small
(64x64 pixel) two-dimensional satellite images. This can be combined with simulated annealing
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as described in Lakshmanan and Derin (1989). Maximising the pseudolikelihood and mean-field
approximations was also investigated by Dunmur and Titterington (1998) and found to be
superior to simple thresholding (which is what the standard mixture model amounts to), though
only for binary-coloured, small images. Alternatively there is the histogram estimator (also
known as the least-squares estimator); this was originally developed for binary images and is
analogous to logistic regression (Possolo, 1986) and later extended to multi-labelled images
(Derin and Elliott, 1987; Gurelli and Onural, 1994; Borges, 1999).

As mentioned, very few of these methods for automatically determining β have been incorporated
into medical image segmentation. The few examples include use of MCMC approaches in
segmentation of satellite images (Pereyra et al., 2013) and functional MRI (Woolrich et al.,
2005). However, MCMC is not generally computationally tractable due to the large number of
simulations required, so does not satisfy property 3 defined in the Aims.

In terms of deterministic approaches, Woolrich and Behrens (2006) used approximate variational
Bayes for segmentation of functional MRI, which is computationally tractable and also uses the
Potts MRF. However, in order to achieve this, the discrete tissue labels must be approximated
by continuous versions (a logistic transform of a Gaussian Markov random field). The MRF is
no longer the same as the Potts model. This inhibits straightforward incorporation into existing
methods (Property 4 defined in the Aims).

The least-squares estimator of Derin and Elliott (1987) was studied for the Potts MRF in
brain segmentation by Van Leemput et al. (1999b) and made available in the ‘Expectation
Maximisation Segmentation’ tool. It involves a least-squares regression, but must first construct
a neighbourhood histogram of the image at each iteration. As we will see, this restricts its use
and potentially introduces bias into the estimates.

On the other hand, methods that make use of likelihood approximations (e.g. mean-field
or pseudolikelihood) and simply maximise them with respect to the MRF parameters are
computationally tractable, but have not been extensively studied in MR segmentation. Chaari
et al. (2013) used maximum pseudolikelihood estimation with the mean-field approximation
with application to brain fMRI (each voxel classified into two classes). In this work the brain
was first subdivided into 600 anatomical regions before fitting a mixture-MRF to each individual
region (a much smaller number of voxels), so the suitedness of MPL to segmentation of large
datasets in particular was notaddressed In the remainder of this chapter, we will show that
maximum-pseudolikelihood (or mean-field approximation) methods are particularly suited to be
adapted into the existing mixture-MRF model for MRI segmentation of the whole brain volume
simultaneously.

In this chapter, we focus on maximum-pseudolikelihood estimators (where we use this term to
also include the mean-field approximation, making clear when a particular form is meant). The
pseudolikelihood estimator is computationally tractable (property 3 defined in the Aims), is
applied to individual images separately (property 1), and does not need training data (property
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2). It seems particularly suited to large three-dimensional medical images and has not been
applied to them before. Additionally, we will see that it is particularly well-suited to be
incorporated into the existing EM framework ubiquitously used for mixture-MRF segmentation
(property 4). We also choose the least-squares estimator for comparison, as a method that has
already been applied to MR segmentation with code made openly available.

3.3 Method

The image model is the same as that presented in the previous chapter. Let Y = (Y1, . . . , Yn)
be random variables where Yi is the intensity of voxel i in an n-voxel MR volume. We consider
the case of a single-channel MRI, i.e. Yi is scalar, though the theory is readily applied to
a multichannel/multivariate case. Let g be the number of tissue classes. We use g = 3:
cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM). Let Z = (Z1, . . . ,Zn) be
random variables giving the tissue classification or label of each voxel. Zi indicates the tissue
label of voxel i. Let ej be the indicator vector with a 1 in the jth position and 0 elsewhere.
Zi = ej if and only if voxel i is tissue j. The set of voxels that neighbour voxel i is denoted
∂i, and z∂i are the labels of all such neighbours. Lowercase letters e.g. yi and zi are used to
represent realisations of Yi and Zi.

The distribution of the intensities given their label is written f(yi|Zi = ej), or just f(yi|ej). In
this thesis, we assume the intensities of voxels to be independently and normally distributed,
given their label. The labels are distributed according to the Potts MRF (3.1) and (3.2).

Yi|(Zi = ej) ∼ N (µj, σ
2
j )

Z ∼ Potts(β), β ≥ 0.

The joint log-likelihood is approximated using the pseudolikelihood or mean-field approximations,

f(y, z; Θ, β) =
n∏

i=1

g∏
j=1

(
φ(yi;µj, σ

2
j ) exp(βuij)∑g

k=1 exp(βuik)

)zij

where Θ = (µ1, . . . , µg, σ
2
1, . . . , σ

2
j ) are the intensity parameters, and φ is the normal probability

density function.

In fitting the image model to an MRI, we need to determine the optimal mixture and MRF
parameters, as well as recover the optimal segmentation. As described in the previous chapter,
EM combined with the pseudolikelihood or mean-field approximations is used to determine
estimates of the Gaussian intensity parameters and segmentation. We now focus specifically
on two methods for estimation of β: maximum pseudolikelihood (including the mean-field
variant), and the least-squares estimator. The former has not been studied for medical image
segmentation, while the latter is chosen for comparison as it has been implemented and made
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openly available in this context (Van Leemput et al., 1999b).

3.3.1 Maximum Pseudolikelihood Estimation

The pseudolikelihood and mean-field approximations are used in the EM algorithm to make
computation of the MRF tractable. These approximations are given by:

p̃(z) =
n∏

i=1

g∏
j=1

(
exp(βuij)∑g

k=1 exp(βuik)

)zij

.

The pseudolikelihood approximation (Besag, 1986) calculates the number of neighbours as

uij =
∑

m∈∂i

zmj

δim

.

The mean-field approximation of the likelihood for the Potts MRF (Zhang, 1992) uses the same
equation but replaces the discrete zmj with their expected values under the approximation:

uij =
∑

m∈∂i

〈zmj〉
δim

,

where 〈zij〉 satisfies

〈zij〉 = exp(βuij)∑g
k=1 exp(βuik)

or
〈zmj〉 = exp(βuij)f(yi|Zi = ej)∑g

k=1 exp(βuik)f(yi|Zi = ek) . (3.3)

The former version is a mean-field approximation to p(z) only. We use the latter, the mean-field
approximation for p(z|y). Not incorporating the intensity information into the mean-field
approximation can lead to biased results or a trivial approximation (Celeux et al., 2003; Archer
and Titterington, 2002).

Since these approximations are the same up to choice of the neighbours zmj, we refer to both
as the “pseudolikelihood approximation” for convenience, and will make clear if a statement
applies to only one of the approximations.

Since the pseudolikelihood and mean-field approximations are already used when solving a
fixed-β mixture-Potts model with EM (as outlined in Chapter 2), it is natural to consider
maximising the pseudolikelihood or mean-field approximation of the likelihood to determine
an estimate for β. Here, we will use the term ‘maximum pseudolikelihood’ (MPL) to mean
maximisation of either the pseudolikelihood (PL) or mean-field (MF) approximations of the
likelihood, as they differ only in the calculation of the neighbours uij. Where applicable we will
make clear if a particular approximation is meant.
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The pseudolikelihood for the Potts MRF is

p̃(z; β) =
n∏

i=1

g∏
j=1

(
exp(βuij)∑g

k=1 exp(βuik)

)zij

,

where calculation of the neighbour counts uij depends on the particular approximation used.

The maximum pseudolikelihood estimator (MPLE), suggested by Besag (1975), estimates β
simply by maximising the log-pseudolikelihood.

β̂MP L = arg max
β

n∑
i=1

g∑
j=1

zij

(
βuij − log(

g∑
k=1

exp(βuik))
)
. (3.4)

To extend this to the case of a hidden MRF, the log joint-pseudolikelihood f(y|z)p̃(z) may be
maximised instead. Since the intensity component does not depend on β, this is equivalent to
(3.4). In the context of EM, one may maximise the Q-function. Again, the intensity component
is constant with respect to β, so this becomes:

β̂MP LQ = arg max
β

n∑
i=1

g∑
j=1

τij
(t)
(
βuij

(t) − log(
g∑

k=1
exp(βuik

(t)))
)
. (3.5)

In the above, τij
(t) are calculated on the E-step while the neighbours uij

(t) are calculated on the
C-step.

A proof of consistency for the maximum pseudolikelihood estimate for a visible MRF (i.e., z

is observed) as the lattice size n tends to infinity was sketched in Besag (1975) and proved
rigorously by Geman and Graffigne (1986). It has also been shown that the maximum-likelihood
estimate for a hidden MRF (z is hidden and only y is observed) is consistent (Comets and
Gidas, 1992). However, we are unaware of any similar proofs for the maximum-pseudolikelihood
estimate for a hidden MRF.

An MRF that is log-linear in its parameters has concave log-pseudolikelihood and Q-function
with respect to the parameters, and its gradient/Hessian are obtainable in closed form. Thus it
is amenable to maximisation by e.g. gradient ascent.

3.3.1.1 Concavity

To see that the Q-function is concave, consider a general MRF with conditional probability

p(zi|z∂i; Ψ) = exp(−Ui(zi|z∂i; Ψ))
Ci(Ψ)

Ci(Ψ) =
g∑

k=1
exp(−Ui(ek|z∂i; Ψ)).
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We assume only that Ui is linear in its parameters Ψ. The Hessian (denoted ∇2
Ψ) is

∇2
Ψ log p(zi|z∂i; Ψ) = −∇2

ΨUi(zi|z∂i; Ψ) − ∇2
Ψ logCi(Ψ)

= −∇2
Ψ logCi(Ψ)

(3.6)

since Ui is linear in Ψ.

The (conditional) Fisher information matrix under p(zi|z∂i) is the negative expectation of the
Hessian:

Ii(Ψ) = −EZi|Z∂i=z∂i

[
∇2 log p(Zi|z∂i; Ψ)

]
= EZi|Z∂i=z∂i

[
∇2

Ψ logCi(Ψ)
]

= ∇2
Ψ logCi(Ψ),

where the last line follows because Ci does not depend on zi, only z∂i and Ψ. Thus,

∇2
Ψ log p(zi|z∂i; Ψ) = −Ii(Ψ). (3.7)

In particular, this is independent of the value of zi, only depending on z∂i. Since the Fisher
information matrix is always positive semi-definite, the Hessian of the log-conditional probability
is negative semi-definite.

The Q-function for a Gaussian mixture using such an MRF is

n∑
i=1

g∑
j=1

τij
(t)(log φ(yi;µj, σ

2
j ) + log p(ej|z∂i

(t); Ψ)) (3.8)

Using (3.7), the Hessian of the Q-function is:

∇2
Ψ

n∑
i=1

g∑
j=1

τij
(t) log p(ej|z∂i

(t); Ψ)) = −
n∑

i=1

g∑
j=1

τij
(t)Ii(Ψ) = −

n∑
i=1

Ii(Ψ),

where the last line follows since ∑g
j=1 τij

(t) = 1 and ∇2 log p(ej|z∂i) does not depend on j.
The last line is the sum of negative semi-definite matrices and hence is also negative semi-
definite. Thus the Q-function is negative semi-definite. Similarly, the log-pseudolikelihood
and log-joint likelihood (using the pseudolikelihood) can be shown to be negative semidefinite.
This is independent on whether uij are calculated using the mean-field or pseudolikelihood
approximations.

Since the Potts MRF has Ui = −βuij with Ψ = β, it is log-linear with respect to β. By the
above, the Q-function is concave with respect to β, though this is not necessarily strict.
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3.3.1.2 Gradient

Furthermore, the gradient of the Q function (or log-pseudolikelihood) with respect to β is
obtainable in closed-form, making it suited to gradient descent algorithms. Here we derive an
explicit expression for the gradient of the Q-function with respect to β for a log-linear MRF.
Starting from the log conditional probability,

∇Ψ log p(zi|z∂i; Ψ) = −∇ΨUi(zi|z∂i; Ψ) − ∇Ψ logCi(Ψ)

= −∇ΨUi(zi|z∂i; Ψ) − ∇ΨCi(Ψ)
Ci(Ψ)

= −∇ΨUi(zi|z∂i; Ψ) +
g∑

k=1

∇ΨUi(ek|z∂i; Ψ) exp(−Ui(ek|z∂i; Ψ))
Ci(Ψ)

= −∇ΨUi(zi|z∂i; Ψ) +
g∑

k=1
∇ΨUi(ek|z∂i; Ψ)p(ek|z∂i; Ψ).

The gradient of the Q-function (3.8) is then

n∑
i=1

g∑
j=1

τij
(t)∇Ψ log p(ej|z∂i

(t); Ψ) =
n∑

i=1

g∑
j=1

τij
(t)
(

−∇ΨUi(ej|z∂i
(t)) +

g∑
k=1

∇ΨUi(ek|z∂i
(t))p(ek|z∂i)

)

=
n∑

i=1

g∑
j=1

∇ΨUi(ej|uij
(t))

(
−τij

(t) + p(ej|z∂i
(t))
)
,

(3.9)
where the last line follows as the sum with respect to k does not depend on j, and ∑g

j=1 τij
(t) = 1.

For the gradient of the joint log-likelihood, τij
(t) is replaced by zij. From this last equation, we

see that one way to maximise the Q-function is to equate the prior probability p(Zi = ej|z∂i) to
the posterior probability p(Zi = ej|yi) for each pixel. In the EM algorithm, this is done for the
current segmentation by adjusting the parameters. It is interesting to note that the mean-field
equations (3.3) are the same, except that these seek to find zi for the current parameters.

For the Potts MRF, the gradient of the Q-function is

∇βQ(y, z; Θ, β) =
n∑

i=1

g∑
j=1

τij
(t)(uij

(t) −
g∑

k=1
uij

(t)p(ek|z∂i
(t); β)). (3.10)

The only terms that need to be recomputed during the β optimisation are the probabilities
p(ek|z∂i; β), as the neighbour terms uik are fixed.

3.3.2 Least-squares estimate

The least-squares estimator (LSE) is an alternative method to estimate log-linear MRF parame-
ters. It was first suggested for binary MRFs by Possolo (1986), called the “logit estimator” due
to its similarity to use of minimum chi-square estimation in logistic regression (Berkson, 1949).
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It was independently put forward for multi-valued MRFs by Derin and Elliott (1987), termed the
“histogram estimator”. Variants of this estimator and their properties were studied further in
e.g. (Gurelli and Onural, 1994; Gurelli, 1996; Borges, 1999). The term “least-squares estimator”
arose in the field of brain MRI segmentation when the estimator was used by Van Leemput
et al. (1999b).

Suppose the MRF can be written

exp(−Ui(ej|z∂i; Ψ)) = exp(−Vi(ej|z∂i)T Ψ), (3.11)

where Vi is a |Ψ| × 1 vector of coefficients for each parameter. For the Potts MRF, Vi is the
scalar −uij and Ψ = β.

In essence, the estimator aims to minimise the difference between empirical and expected
neighbourhood ratios. From Bayes’ rule,

p(zi|z∂i)
p(zi, z∂i)

= 1
p(z∂i)

,

where the dependency of p on Ψ has been dropped for ease of notation. As the right-hand side
does not depend on the value of zi itself, it can be seen that

p(ej|z∂i)
p(ej, z∂i)

= p(ek|z∂i)
p(ek, z∂i)

for any labels j and k with the same neighbourhood labels z∂i. Substituting p(zi|z∂i) in the
log-linear form (3.11), rearranging, and taking the logarithm yields

exp(−Vi(ej|z∂i)T Ψ)
p(ej, z∂i)

= exp(−Vi(ek|z∂i)T Ψ)
p(ek, z∂i)

(−Vi(ej|z∂i) + Vi(ek|z∂i))T Ψ = log
(
p(ej, z∂i)
p(ek, z∂i)

)
.

(3.12)

Each neighbourhood z∂i and pair of tissues (j, k) yields an equation of the above form. The
resulting system is generally overdetermined and may be solved using ordinary least-squares
regression, provided the right-hand side may be estimated or evaluated.

The right hand side has terms such as p(ej, z∂i). This is the probability of seeing a voxel with
label j and neighbourhood labels z∂i. In Derin and Elliott (1987), the ratio p(ej, z∂i)/p(ek, z∂i)
is estimated by N(j, z∂i)/N(k, z∂i), where N(j, z∂i) is the number of times the neighbourhood
z∂i occurs in the image with centre pixel of label j. One consequence of this is that if N(j, z∂i)
or N(k, z∂i) = 0, the neighbourhood and centre combination cannot be used in the system of
equations. A given set of neighbours z∂i must appear with at least two different centre labels j
and k in order to contribute to the system of equations.
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For the Potts MRF, the LSE is determined by the least-squares solution to

β(uij − uik) = log
(
N(j, z∂i)
N(k, z∂i)

)
, (3.13)

For each distinct neighbourhood z∂i, up to
(

g
2

)
equations may be added to the system (one per

unique (j, k) pair). Overall, one equation per unique (j, k, z∂i) tuple where j and k are labels
and z∂i is a neighbourhood configuration may be added.

Consistency for the LSE has been established for the Ising model (Possolo, 1986; Guyon and
Künsch, 1992), but not for the Potts model (g > 2). Several variants of the LSE exist, though
these have only been defined for Ising models (g = 2). Possolo (1986) used weighted least-squares
to solve the system instead of ordinary least-squares. For an Ising model, there is only one
equation per neighbourhood and the right-hand side is simply log(q/(1 − q)) where q = p(e1|z∂i)
is the probability of seeing the neighbourhood with one label as opposed to the other as the
centre voxel.

Gurelli and Onural (1994) and Gurelli (1996) constructed an estimate for the right-hand side
that minimises mean bias assuming N(1, z∂i) is binomially distributed with parameter q, over a
range of possible q. However, this requires computation of an estimate for each N(1, z∂i) and
N(0, z∂i) combination, which are stored in a lookup table and used throughout the algorithm.
For a large image, this is not feasible. In addition, estimates are still not available when
N(j, z∂i) = 0 for some j.

Borges (1999) devised an estimate of log(q/(1 − q)) that its minimised mean square error under
similar assumptions to the minimum-bias version of Gurelli and Onural. Remarkably, the
resulting integrals were analytically solvable, resulting in a closed-form estimate that is valid
even when N(j, z∂i) = 0. However this estimate has not been derived when g > 2.

A further consideration for the LSE is that there is no simple analogue for a hidden MRF.
Following the derivation for the visible MRF,

f(yi, zi, z∂i) = f(yi|zi, z∂i)p(zi|z∂i)p(z∂i)

= f(yi|zi)p(zi|z∂i)p(z∂i),

where the last line follows as yi depends on zi only. From this the following relation may be
derived for a given fixed neighbourhood z∂i with any two centre labels ej or ek, or any two
centre intensities yi or y′

i:
p(ej|z∂i)
p(ek|z∂i)

= f(yi, ej, z∂i)f(y′
i|ek)

f(y′
i, ek, z∂i)f(yi|ej)

.

From this the corresponding system of equations, analogous to (3.12), is

− Ui(ej|z∂i) + Ui(ek|z∂i) = log
(
f(yi, ej, z∂i)f(y′

i|ek)
f(y′

i, ek, z∂i)f(yi|ej)

)
. (3.14)
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As before, the left-hand-side is linear in the MRF parameters, allowing the system to be
solved by least-squares. However, an estimate of f(yi, zi, z∂i) must be found. In practice, the
intensities yi are discrete and take on a finite number of allowable values (e.g. 0 to 4095 for
12-bit integers), so a histogram-type method can be performed as earlier. However, given the
large number of possible (yi, zi) combinations, it is unlikely for these to occur enough times for
each neighbourhood z∂i to provide realistic estimates.

3.3.3 Algorithm

The algorithm is the same as that described in section 2.5, which itself follows the presentation
of Celeux et al. (2003). An additional step is added to the M-step to estimate β. Namely, on
iteration t:

1. (C-step) Form an estimate of the current labels z(t) to be used as neighbours; either
discrete (for the pseudolikelihood approximation) or continuous (for the mean-field ap-
proximation). The pseudolikelihood version uses the Iterated Conditional Modes (ICM)
update

zi
(t+1) = ej where j = arg max

k
exp(βuij

(t,t+1))φ(yi;µk
(t−1), σ2

k
(t−1)),

where φ is the pdf of the normal distribution. The mean-field version uses the mean-field
update

〈zi〉(t+1) =
g∑

j=1
ej

exp(βuij
(t,t−1))φ(yi;µj

(t−1), σ2
j

(t−1))∑g
k=1 exp(βuik

(t,t−1))φ(yi;µk
(t−1), σ2

k
(t−1))

These updates should be performed sequentially. To save time, we divide the voxels
into coding sets (see Appendix B) and update each set simultaneously, visiting them
sequentially.

2. (E-step) Calculate τij
(t), using z(t) from the C-step to compute the neighbour term uij:

τij
(t) =

exp(β(t−1)uij
(t))φ(yi;µj

(t−1), σ2
j

(t−1))∑g
k=1 exp(β(t−1)uik

(t))φ(yi;µk
(t−1), σ2

k
(t−1))

.

3. (M-step) Maximise Q with respect to Θ to obtain the intensity parameters.

µj
(t) =

∑n
i=1 τij

(t)yi∑n
i=1 τij

(t)

Σj
(t) =

∑n
i=1 τij

(t)(yi − µj
(t))2∑n

i=1 τij
(t) .

Then update β using either the MPL or LS estimators.

For the MPLE, numerically maximise the univariate, concave Q-function with respect to
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β, using the gradient (3.10) as necessary:

β̂MP L = arg max
β

n∑
i=1

g∑
j=1

τij
(t)(βuij

(t) − log(
g∑

k=1
exp(βuik

(t)))).

For the LSE, first count how many times each combination of centre and surrounding
label configurations (zi, z∂i) occur in order to obtain estimates for N(zi, z∂i). One way
to do this is to map each neighbourhood to an integer by appending the centre label to
that of its neighbours in a fixed, predefined order. This corresponds to a base-g integer of
length |z∂i| + 1 where |z∂i| is the number of neighbours.

For example, if g = 3 and a voxel has label ‘2’ and its north, east, south, west, top, and
bottom neighbours are ‘1’, ‘1’, ‘2’, ‘3’, ‘3’, ‘2’, this can be represented as the base-3 integer
‘1001221’, decreasing each label by 1 to ensure that every integer from 0 to g|z∂i|+1 − 1
represents a (centre, neighbourhood) combination and vice-versa. These integers may be
used as indexes into a frequency table.

Once the frequency table is computed, it is used to construct the right-hand side of the
system of equations (3.13):

β(uij − uik) = log
(
N(j, z∂i)
N(k, z∂i)

)
,

where there is one equation for each unique (j, k, z∂i), and discarding all equations for
which N(j, z∂i) or N(k, z∂i) is zero. Finally, the above system is solved for β using
least-squares.

These steps are repeated until the relative change in approximate observed log-likelihood falls
below a pre-specified tolerance (1e-5 in these experiments), or it decreases. The approximate
observed-data log-likelihood is given by

log f(y) ≈
n∑

i=1
log

 g∑
j=1

φ(yi|ej;µj
(t), σ2

j
(t))p(ej|z∂i

(t); Ψ(t))
 .

EM on a standard mixture model guarantees an increase in the observed log-likelihood and the
Q function. Gao and Song (2011) proved the ascent property holds when the pseudolikelihood
is a product of marginal likelihoods, but not for conditional likelihoods. However, as far as we
are aware, there is no analogous result for pseudolikelihoods that are products of conditionals;
thus, it is possible that the Q-function and observed log-likelihood may decrease.

We initialise the algorithm by fitting a standard normal mixture model with 3 components
to the image (i.e., without the MRF). This yields an initial segmentation to be used as the
neighbours, as well as means and standard deviations. Where β is to be estimated by LS or
MPL, it is derived from this initial segmentation.
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3.4 Experiments

We perform a number of experiments to investigate the value of estimation of β by maximum
pseudolikelihood. We list our aims, hypotheses and corresponding experiments briefly here,
and explain them in further detail in the corresponding sections. In general, experiments are
performed by segmenting a dataset of real brain MRI with the EM algorithm, with or without
β estimation.

Optimal configuration for the MPLE
Aim: determine the best choice (in terms of segmentation accuracy) of MRF approximation
and neighbourhood size to be used with the MPLE.
Experiment: We compare segmentations obtained using MPL estimation with all combinations
of MRF approximation (mean-field or pseudolikelihood) and various neighbourhood sizes (6, 18
and 26 neighbours).
Hypothesis: The mean-field approximation will allow greater sensitivity to voxels that are
not strongly allocated into one particular class, resulting in higher segmentation accuracy.
Similarly, larger neighbourhoods should increase the accuracy of the estimation due to more
local information being available.

MRF estimation
Aims:

• compare estimation of β to fixing it to commonly-used default values.
• compare the MPLE to the LSE.

Experiment: We compare segmentations with the same configuration as Atropos, NiftySeg,
and FAST (which use fixed β) to segmentations using the MPLE and LSE where the LSE is
comparable to EMS.
Hypothesis: We expect estimation of β to yield more accurate results to fixed-β methods in
general. MPLE segmentations may be more accurate than the LS estimations as they can take
into account the fact that the MRF is hidden, while the LSE cannot.

Grid search
Aims:

• Study the dependence of segmentation accuracy on β.
• Determine whether MPLE can recover the (or a) fixed-β value that produces the highest

segmentation accuracy.

Experiment: We select some example subjects and perform a grid search over a wide range β
values, and compare these to the MPLE segmentations.
Hypothesis: The grid search, by its nature, should yield some segmentations with the same
or higher accuracy than MPLE. However, we expect the corresponding fixed-β values to differ
by image, and that the MPLE is able to estimate β near these values (or achieve a similar
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segmentation accuracy). We expect segmentation accuracy to decrease drastically as β increases
due to oversmoothing.

The experiments were evaluated on images from the Internet Brain Segmentation Repository
(IBSR) (Rohlfing, 2012).1 The dataset used consists of T1-weighted coronal MR volumes of 18
normal subjects of ages 7 to 71. Each volume consists of 128 coronal slices spaced at 1.5mm with
in-plane resolution varying from 0.84 × 0.84mm to 1.00 × 1.00mm. This dataset also contains
manual segmentations to compare the automatic segmentations to. The images are already
skull-stripped with bias-correction already performed, so no further preprocessing was done.
That is, all non-brain voxels (such as skull, fat) are already removed from the image as we wish
to concentrate on segmentation of the brain only.

The most relevant way to evaluate performance of the various segmentation algorithms is to
measure the accuracy of the resulting MR segmentation against some reference or ‘ground truth’
image. Maximisation of the observed-data log-likelihood and accuracy of the β estimates are
not relevant to the application; in any case, the former cannot be evaluated exactly, and the
‘true’ parameter estimates for the latter cannot be not known. For brain segmentation, the
ground truth image would consist of the underlying true physical boundaries of the tissues in
the brain, discretised by the image grid. However, the true underlying tissue boundaries cannot
be found non-destructively and without moving the brain from the position in which it was
imaged. Rather, the ‘ground truth’ will generally take the form of the MR image manually
segmented by an expert.

By its nature, manual segmentation can be subjective, depending on the experience of the expert
as well as the protocols used to segment the brain. For example, imagine a thin pipe-like feature
that is thinner than one voxel. Thus, a given voxel may contain the entire pipe-like feature and
also some surrounding tissue of a different type. The nature of a hard segmentation is that each
voxel may be counted as only one tissue type. One protocol may stipulate that such a voxel
should be classified as the surrounding tissue (being the majority), while another may stipulate
that it should be classified as the tissue of the pipe-like feature. Thus though we use expert
manual segmentations as ‘ground truths’ from which to evaluate accuracy, it is important to
remember that even the expert segmentations may differ slightly between experts.

As reference segmentations are hard (each voxel has exactly one tissue), any segmentations
we wish to evaluate must also be hard. EM procedures produce a soft segmentation, giving
the posterior probability of each voxel to be each particular tissue. We convert these to hard
segmentations by assigning voxel to the tissue with the largest posterior probability.

Performance against the manual segmentations will be evaluated by two metrics, segmentation
accuracy and Dice similarity. Let A and B represent two segmentations, being sets of indices
for each tissue. That is, Aj, j = 1, . . . , g are non-intersecting subsets of the indices 1, . . . , n

1The MR brain data sets and their manual segmentations were provided by the Center for Morphometric
Analysis at the Massachusetts General Hospital and are available at http://www.cma.mgh.harvard.edu/ibsr/.

http://www.cma.mgh.harvard.edu/ibsr/
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whose union is the entire brain, where i ∈ Aj implies that voxel i is assigned to tissue j in
segmentation A.

The segmentation accuracy is quantified as the overall percentage of voxels correctly classified.
Since the reference and test segmentations have the same number of voxels (all of the brain
voxels), this is well-defined.

accuracy(A,B) = |A ∩B|
|A|

.

The Dice similarity coefficient (commonly called ‘Dice score’ or ‘Dice index’) (Dice, 1945) is
used to compare segmentations on a tissue-by-tissue basis. The Dice coefficient for a given
tissue between two segmentations A and B is given by the number of correctly-classified voxels
divided by the average area classified (of that tissue):

Dice(Aj, Bj) = 2|Aj ∩Bj|
|Aj| + |Bj|

.

It ranges from 0 to 1, with 1 meaning a perfect match between the two segmentations of that
tissue. The reason for using Dice coefficient for each tissue rather than accuracy is that the
number of voxels classified as a particular tissue may not be equal between the two segmentations,
whereas the number of overall voxels in the brain (used for the accuracy) is.

3.4.1 Choice of approximation and neighbourhood size

The aim of this experiment is to determine the optimum configuration (in terms of segmen-
tation accuracy) for the MPL estimation. In particular, we choose between different MRF
approximations and different neighbourhood sizes.

Existing algorithms use various combinations of MRF approximation and neighbourhood size.
Atropos and FAST use the pseudolikelihood approximation, while NiftySeg uses the mean-field
approximation. The mean-field approximation retains the probability that a given voxel belongs
to any class, while the pseudolikelihood does not due to the need to threshold these probabilities.
This allows voxel states to propagate further, and may help for voxels that are not decidedly in
one tissue class or the other (e.g. with intermediate intensity). For this reason we hypothesise
that the mean-field approximation to outperform the pseudolikelihood approximation.

We consider different types of neighbourhood in a 3 × 3 × 3-voxel vicinity about voxel i. We
compare neighbourhoods with the 6 orthogonal neighbours, 18 in-plane neighbours, and full
26 neighbours figure 3.4. Atropos uses all 26 neighbours of the 3x3x3 cube, while FAST and
NiftySeg use 6. Use of all 26 neighbours may yield more accurate results as it permits more
local information to be used in distinguishing between different neighbourhoods. However, use
of 6 neighbours is far more common in the literature and in practice (e.g. Zhang et al. (2001);
Van Leemput et al. (1999a)). It is likely that this for computational efficiency in calculating the
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Figure 3.4: Neighbourhoods in a 3x3x3 cube with 6, 18 and 26 neighbours. Each point represents
a voxel while lines connecting them indicate these two voxels are neighbours.

neighbourhood statistics of each voxel.

We test all combinations of MRF approximation with all combinations of neighbourhood size;
these are shown in table 3.1. The reason every combination of neighbourhood size and MRF
approximation is tested together rather than independently is to examine if they interact. Based
on the results of this experiment, we select a neighbourhood size and MRF approximation to
use with MPL for the remainder of the experiments.

Table 3.1: Experiment summary: MRF neighbourhood size and approximation configurations
using MPLE

neighbourhood size MRF approximation

6 MF
6 PL
18 MF
18 PL
26 MF
26 PL

3.4.2 MRF estimation

Now we compare estimation of β using maximum pseudolikelihood (MPL) and using least-
squares (LS) to fixing it to commonly-used default values. Maximum pseudolikelihood estimation
has not previously been used in this context. Least-squares estimation is included as it is the
method as presented by Van Leemput et al. (1999b) for brain segmentation (though that paper
used a more general form of the Potts MRF). The common fixed β values we compare to are 1
as used by FAST (Zhang et al., 2001), 0.25 as used by NiftySeg’s seg_EM program (Cardoso
et al., 2009), and 0.3 as used by Atropos (Avants et al., 2011). We use the neighbourhood size of
6 and the pseudolikelihood approximation for MPL as determined by the results of the previous
experiment. For the least-squares approximation, we match the EMS settings as specified in
Van Leemput et al. (1999a), using the pseudolikelihood approximation with a neighbourhood
size of 6. As well as comparing estimation of β to fixed β, we are interested in comparing the
least-squares estimator to the maximum pseudolikelihood estimator. For the MPL estimator we
used the PL approximation and 6 neighbours as determined by the previous experiment.



3.4. EXPERIMENTS 55

We note that FAST, NiftySeg and Atropos all have the capability to incorporate an atlas prior
and tend to be used with one, hence it could be that their default β values were chosen with
this in mind. However, there is no way to tell if this is the case and if so, how to adjust the
defaults for the case of no atlas. Hence, we use the default values as-is.

Given the vast range of fixed β values used as defaults, we expect that the corresponding
segmentations will have differences in accuracy across the dataset. The algorithms that estimate
β should be able to adjust to the various images, resulting in higher segmentation accuracy.

Table 3.2: Experiment summary: comparison of various mixture-MRF algorithms.

method neighbourhood size MRF approximation β

Atropos 26 PL 0.3
FAST 6 PL 1
NiftySeg 6 MF 0.25
LS 6 PL estimated
MPL 6 PL estimated

3.4.3 Grid search

To further examine how choice of β affects the segmentation, we pick 2 random subjects from the
dataset and perform a grid search over fixed β values. From this, the sensitivity of segmentation
accuracy with respect to β may be studied. It is anticipated that the response of accuracy
to β will be most variable for small β variables, after which the accuracy will degrade due to
oversmoothing.

We also wish to see whether maximum pseudolikelihood estimation can recover the most accurate
value(s) of β, or whether it can achieve a similar accuracy to the highest obtained in the grid
search.

All subjects were segmented with the PL approximation and 6 neighbours (using the same
configuration as MPL from the previous experiment for comparability), and fixed β values
ranging from 0.00 to 100.00 at various increments (see table 3.3).

Table 3.3: Fixed β values used for grid search

range (inclusive) increment

0.00 to 1.00 0.05
1.00 to 2.50 0.10
2.50 to 5.00 0.25
5.00 to 10.00 1.00
10.00 to 100.00 10.00
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Figure 3.5: Mean accuracy for different MRF approximations under different neighbourhood sizes
using MPLE (left); paired differences by subjects against pseudolikelihood with neighbourhood
size 6 (right). Neighbourhood size (X) axis is categorical, not numeric.

3.5 Results

3.5.1 Choice of approximation and neighbourhood size

Table 3.4: Comparison of different MRF approximation and neighbourhood size combinations
using MPL, ordered by accuracy decreasing. Estimated β̂, accuracy and Dice similarities are
means over all subjects.

approximation neighbourhood size β̂ accuracy Dice (CSF) Dice (GM) Dice (WM)

PL 6 1.88 0.812 0.625 0.843 0.820
PL 18 0.68 0.809 0.614 0.839 0.827
MF 6 1.93 0.806 0.609 0.836 0.825
MF 18 0.68 0.800 0.592 0.829 0.829
PL 26 0.49 0.800 0.581 0.826 0.841
MF 26 0.48 0.783 0.554 0.810 0.841

Table 3.5: ANOVA of mixed-effects model of accuracy against neighbourhood size (categorical)
and MRF approximation), controlling for subject random effects.

Sum Sq Mean Sq NumDF DenDF F Pr(>F)

neighbourhood size 0.006 0.003 2 87.0 29.410 <0.001*
MRF approximation 0.003 0.003 1 87.0 29.282 <0.001*

Table 3.4 shows the mean segmentation accuracy for various combinations of MRF approxi-
mation and neighbourhood size. These are also shown in figure 3.5 (left) to assess the overall
trends. However, the data comprises repeated measures as each subject is segmented with all
combinations of MRF approximation and neighbourhood size. Hence in figure 3.5 (right) we
show the difference in accuracy relative to a baseline of the pseudolikelihood approximation
with a neighbourhood size of 6.

From figure 3.5 it can be seen that the mean-field approximation performs worse in terms of
accuracy compared the pseudolikelihood approximation for all neighbourhood sizes. It can also
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Figure 3.6: Main effects plot - average accuracy for different neighbourhood sizes, and paired
difference in accuracy relative to size 6.
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Figure 3.7: Main effects plot - average accuracy for MF and PL approximations, and paired
difference in accuracy relative to the PL approximation.
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Figure 3.8: Estimated β values for various configurations. Neighbourhood size (X) axis is
categorical, not numeric.
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Table 3.6: Post-hoc pairwise comparisons of accuracy for different neighbourhood sizes combi-
nations using Tukey’s method.

Comparison Estimate p

6 - 18 0.005 0.117
6 - 26 0.018 <0.001*
18 - 26 0.013 <0.001*

Table 3.7: Post-hoc pairwise comparison of accuracy for different MRF approximations using
Tukey’s method.

Comparison Estimate p

MF - PL -0.011 <0.001*

be seen that in general, the accuracy decreases as the neighbourhood size increases. There
appears to be no interaction between the two. A mixed-effects model was fitted to test for an
effect of neighbourhood size (as a categorical variable, not numeric) and MRF approximation on
accuracy, with a random intercept permitted for each subject. No interaction term was included.
The model is shown in table 3.5. Segmentation accuracy was found to differ significantly
depending on neighbourhood size and MRF approximation (p < 0.05); the fitted effects and
per-subject paired differences can be seen in figures 3.6, 3.7.

Post-hoc pairwise comparisons were performed between the various neighbourhood sizes and
MRF approximations independently, using Tukey’s method to adjust for multiple comparisons
(tables 3.6, 3.7). Estimated marginal means of the fixed effects are shown (i.e. predictions
are made over a grid of the other covariate and averaged to marginalise them). The mean-
field approximation performed significantly worse than the pseudolikelihood approximation,
and 26 neighbours performed significantly worse than 6 or 18 neighbours. Thus, we use the
pseudolikelihood approximation with 6 neighbours for MPL for the remainder of the experiments.
We chose 6 neighbours instead of 18 for computational efficiency and because it achieved higher
average accuracy than 18 neighbours (though not significant).

In terms of β values, from figure 3.8 it can be seen that the choice of approximation makes very
little difference to the estimated values, both in terms of spread and location. However, it is
clear that a higher number of neighbours is associated with a lower estimated β value. We will
investigate this relationship further in section 3.6.1.2.

3.5.2 MRF estimation

Table 3.8 and figures 3.9, 3.10 show the average accuracy and Dice scores achieved across the
dataset by the various algorithms. Estimation of the MRF yielded higher accuracy than any
of the fixed-β comparisons, though we acknowledge that as NiftySeg, FAST and Atropos are
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Figure 3.9: Segmentation metrics (accuracy or Dice coefficient) for the various methods.
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Figure 3.10: Paired differences in accuracy/Dice, relative to MPL.
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Table 3.8: Average performance for different algorithms, ordered by accuracy decreasing.

algorithm neighbourhood
size

β approxi-
mation

accuracy Dice (CSF) Dice (GM) Dice (WM)

LS 6 2.14 PL 0.813 0.628 0.843 0.818
MPL 6 1.88 PL 0.812 0.625 0.843 0.820
FAST 6 1.00 PL 0.808 0.602 0.835 0.837

Atropos 26 0.30 PL 0.796 0.566 0.819 0.854
NiftySeg 6 0.25 MF 0.727 0.446 0.727 0.878

Table 3.9: Mixed-effects model of segmentation accuracy by algorithm, controlling for subject
blocking.

Sum Sq Mean Sq NumDF DenDF F Pr(>F)

algorithm 0.097 0.024 4 68.0 48.670 <0.001*

usually used with atlas priors, their default fixed β values may not have been selected for the
case of no atlas. In terms of per-tissue Dice score, it seems that gains in Dice coefficient for WM
are generally offset by losses in Dice for GM and CSF and vice-versa. All methods had difficulty
accurately segmenting CSF compared to other tissues. All algorithms achieved relatively similar
overall accuracy except for NiftySeg, which clearly had the lowest accuracy. A mixed-effects
model was fit to accuracy against algorithm controlling for repeated subjects and is shown in
table 3.9. Post-hoc comparisons with Tukey’s method (table 3.10) showed that NiftySeg was
significantly worse than all other methods; all other methods were not significantly different to
each other in accuracy.

Comparing both estimated-β methods, least-squares had slightly higher average accuracy than
MPL estimation though this was not significant. Both methods had very similar Dice coefficients
and overall accuracy. Both algorithms yielded estimated β values larger than one (figure 3.11).
The least-squares estimates were more widely spread over the dataset.

1.5

2.0

2.5

3.0

LS MPL
estimation method

β

Figure 3.11: Range of estimated β values
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Table 3.10: Post-hoc pairwise comparisons for differences in accuracy for different algorithms
using Tukey’s method. Only significant differences are shown.

Comparison Estimate p

Atropos - NiftySeg 0.069 <0.001*
FAST - NiftySeg 0.081 <0.001*

LS - NiftySeg 0.086 <0.001*
MPL - NiftySeg 0.085 <0.001*

Table 3.11: β values for various algorithms, ordered by accuracy decreasing.

IBSR_10
algorithm β accuracy

grid-search 2.10 0.847
LS 2.02 0.846

MPL 1.80 0.845
FAST 1.00 0.832

Atropos 0.30 0.817
NiftySeg 0.25 0.767

IBSR_17
algorithm β accuracy

grid-search 0.75 0.795
FAST 1.00 0.793
MPL 2.06 0.781

LS 2.18 0.781
Atropos 0.30 0.777
NiftySeg 0.25 0.701

3.5.3 Grid search

Figure 3.12 shows the accuracy obtained for segmentations performed with fixed β values as
defined in table 3.3, for 2 randomly-selected subjects. For small β, the accuracy appears to
be lowest when β = 0, gradually increasing. Maximum accuracy is attained before β = 10,
after which it appears to plateau, even as β becomes very large. Table 3.11 shows the fixed β
at which the maximum segmentation accuracy was attained (if there were multiple, it is the
smallest such). As we will see later, it is possible to reach a point where changing increasing β
further cannot change the label assignation any more; this occurs when every voxel matches the
majority label in its neighbourhood.

Figure 3.12 and table 3.11 also show the β and segmentation accuracy of other algorithms of
interest. The reason the Atropos and NiftySeg points do not lie on the corresponding fixed-β
line is because they use a different neighbourhood size (Atropos has 26 neighbours) or MRF
approximation (NiftySeg uses MF) to that used to perform the grid search (6 neighbours, PL
approximation). The reason MPL and LS do not have the same accuracy as their corresponding
fixed-β counterparts is due to the fact that for MPL and LS, β is not held fixed; it can change
on each iteration. This produces a resulting change in segmentation accuracy. As expected, the
highest accuracy was obtained by the grid-search. However, the two estimated-β methods (MPL
and LS) had close to this accuracy. FAST (β = 1) was the closest to the maximum accuracy
within the fixed-β methods, and also had β closest to the grid-search maximum β of the fixed-β
methods.
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Figure 3.12: Accuracy for various fixed beta values (X axis) and subjects (one per row). Different
β limits (columns) are shown to emphasise various behaviours. Several fixed-β algorithms are
shown for comparison.
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3.6 Discussion

3.6.1 Choice of approximation and neighbourhood size

As the effects of MRF approximation and neighbourhood size were found to be independent of
each other, we will address them separately.

3.6.1.1 MRF approximation

It was expected that the mean-field approximation should produce higher accuracy than the
pseudolikelihood approximation. This is because the mean-field approximation retains more
information about the neighbour states than the pseudolikelihood approximation - that is, it
retains posterior label probabilities while the pseudolikelihood approximation thresholds them.
The mean-field approximation also has the property of being optimal in the sense of minimising
Kullback-Leibler divergence to the true MRF pdf in the class of factorisable functions, which
includes pseudolikelihood. It also fits with the ethos of Expectation-Maximisation, which is to
use expected values of the class labels rather than actual realisations. Thus, it is surprising to
notice that the pseudolikelihood segmentation had significantly higher overall accuracy than the
corresponding mean-field segmentation. It is unclear why this is the case.

3.6.1.2 Neighbourhood size

It was expected that additional neighbours would help to distinguish different neighbourhoods
that be identical with fewer neighbours, leading to greater sensitivity of the MRF and thus higher
accuracy. For example, in figure 3.13 two different image features are shown: one is a flat surface
as for an interface between two tissues, while the other has one isolated voxel of a different
tissue label to the rest. The 6-neighbour MRF cannot distinguish between these features, but
they should be treated differently - the flat surface is more likely a feature to preserve, while
the isolated voxel is more likely a feature to smooth. In 26-connectivity, these surfaces would
be distinguished from each other. Instead, the accuracy decreases as the neighbourhood size
increases, which was unexpected.

Figure 3.14 shows a mid-slice of the PL segmentation for subject IBSR_18 with different
neighbourhood sizes. As the neighbourhood size increases, it appears that there is more CSF
and WM and less GM in the resulting segmentations. Some small isolated areas of WM in the
6-neighbour segmentation have merged to become smoother in the 26-neighbour segmentation
at the expense of grey matter which seems eroded. It is unclear why this is, except that the
different numbers of neighbours have shifted the tissue means such that the tissue boundaries
have changed.
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Figure 3.13: Two different 3x3x3 neighbourhoods that the 6-neighbourhood MRF cannot
distinguish between.

(a) 6 neighbours (b) 18 neighbours (c) 26 neighbours

Figure 3.14: Mid-brain slice of segmentations of subject IBSR_18 with the PL approximation.

The estimated β for each neighbourhood size decreases as the number of neighbours increases.
It is also much more variable for smaller neighbourhoods. Let ui(zi) indicate the number of
voxels in voxel i’s neighbourhood that match its label. The vector of ui(zi) for all i is a sufficient
statistic for the tissue labels zi for the Potts MRF. As the neighbourhood size increases, so does
the ui(zi), due to there being more voxels in the neighbourhood. In order to maintain a similar
influence of the MRF relative to the intensity pdf, the MRF exponent βui(zi) should remain
roughly constant across neighbourhood sizes. Thus, it is unsurprising that as the neighbourhood
size increases, β decreases in response.

Table 3.12: Average number of matching-label neighbours in MPL segmentations, relative to
the weighted neighbourhood size.

neighbourhood size (weighted) MRF approximation average ui(zi)

6 (5.2) MF 4.7 (89%)
6 (5.2) PL 4.7 (90%)
18 (12.3) MF 10.6 (86%)
18 (12.3) PL 10.7 (87%)
26 (16.0) MF 13.5 (84%)
26 (16.0) PL 13.6 (85%)

We compute the mean ui(zi) for each image, denoted ui(zi), and compare this to the weighted
neighbourhood size in table 3.12. The weighted neighbourhood size is the number of neighbours
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Figure 3.15: Estimated and fitted β values with MPL.

weighted by inverse distance, i.e. ∑
m∈∂i

1
δim

; this is the same as the number of matching
neighbours if the entire neighbourhood were of one label. The average number of matching
neighbours are all quite high relative to the weighted neighbourhood size, reflecting that an MRI
is largely homogeneous in nature. As the neighbourhood size increases, the average number of
matching neighbours decreases slightly since there are more possible neighbourhoods, reducing
the likelihood of the all-homogeneous neighbourhood.

Table 3.13: Mixed linear regression: 1/β against average number of matching neighbours and
MRF approximation with a fixed intercept and per-subject random intercepts. The marginal
R2 is 0.95. The estimate for “MRF approximation” is additive for the PL approximation.

Coefficient (95% CI) Test statistic df p-value

ui(zi) 0.17 (0.2, 0.18) F = 3739.7 1, 88.1 <0.01*
MRF approximation -0.01 (-0.1, 0.03) F = 0.4 1, 88.0 0.51

Intercept -0.29 (-0.4, -0.21) T = -7.3 61.8 <0.01*

Figure 3.15 shows 1/β against the ui(zi) for each image. This shows an approximately linear
relationship with no apparent difference between MRF approximations. A linear regression
of 1/β against ui(zi) controlling for MRF approximation and random per-subject intercepts
yielded a linear relationship with no difference between MRF approximations (table 3.13). The
marginal R2 as defined by Nakagawa and Schielzeth (2013) is used to assess model fit, being
the proportion of the total variance explained by the fixed effects only. This yields a very high
R2 = 0.95, supporting the strength of the linearity. However, the global intercept was non-zero,
so it cannot be said that βui(zi) remains constant across neighbourhood size.

The E-step described to fit the mixture-MRF model is approximate. It does not perform a full
marginalisation of the latent variables z due to the large number of possible states, and the
intractability of calculating the MRF normalising constant for each of them. Instead, the E-step
makes use of a realisation z(t) and computes the expectation of each voxel individually, using
the realisation as neighbours. Thus, the current segmentation may have undue influence in the
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algorithm; the result is biased due to the need for it in the E-step. More neighbours could mean
that the segmentation (i.e.the MRF) is biases the results even more.

Another possible cause for this unexpected result could lie with the use of coding sets to
implement the MRF update. Ideally a fully-asynchronous update should be used (e.g. visiting
voxels in a random and different order every iteration). Coding sets are commonly used to
greatly improve computational efficiency. It could be that the effect of using a coding scheme to
update is increased with larger neighbourhoods.

In summary, it appears that adding extra neighbours is negatively associated with segmentation
accuracy for the MPL estimator. This turns out to be beneficial, as computing neighbour label
counts uij with only 6 neighbours is more efficient than with 26 neighbours.

3.6.2 MRF estimation

3.6.2.1 Qualitative comparison of segmentations

With the exception of NiftySeg, all the segmentation accuracies are quite similar at approximately
80%. While the difference in accuracies between methods may seem small so as to be insignificant,
one must consider that the majority of the brain is homogeneous in intensity, and easily classified
by intensity. It is primarily along the tissue borders that differences will be seen due to slightly
different decision boundaries between methods, and in voxels of noise. These make up a relative
small proportion of the brain, hence small percentage point differences in accuracy can translate
to noticeable qualitative differences in segmentations. In addition in a clinical context, changes
due to (for example) aging may only be very small per year and localised to particular regions
of the brain, so application-specific metrics may yield more noticeable differences.

Figure 3.16 shows sample segmentations produced by the various methods, alongside the manual
segmentation. Both relatively poorly- and well-segmented subjects are shown (IBSR_01 and
IBSR_11 respectively). All segmentation methods had difficulty segmenting sub-cortical grey
matter such as the thalamus and basal ganglia; for example, they are absent in subject IBSR_09,
merged into the insula for IBSR_01, and present but diminished for IBSR_11. Sub-cortical grey
matter structures typically have indistinct boundaries and intensity closer to white matter, and
cannot be segmented based on intensity alone; atlas-based approaches are needed to properly
segment these regions (Pohl et al., 2005). As a result, grey matter volumes were lower those of
the corresponding manual segmentation (figure 3.17), with the additional volume being mostly
allocated to WM. Splitting the Dice metrics into sub-cortical and cortical GM may elucidate
the difference in methods more clearly, but these labellings were not available.

It can also be seen that all segmentations produced significantly more CSF (in percentage
volume) than the manual segmentation. This is particularly so for the NiftySeg segmentations; we
examine the reason in the next section. Examining the sample segmentations, this additional CSF
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(a) IBSR_01
manual

(b) Atropos
β = 0.30

acc ≈ 0.74

(c) FAST
β = 1.00

acc ≈ 0.73

(d) LS
β = 1.98

acc ≈ 0.72

(e) MPL
β = 2.03

acc ≈ 0.72

(f) NiftySeg
β = 0.25

acc ≈ 0.70

(g) IBSR_09
manual

(h) Atropos
β = 0.30

acc ≈ 0.80

(i) FAST
β = 1.00

acc ≈ 0.83

(j) LS
β = 1.89

acc ≈ 0.85

(k) MPL
β = 1.78

acc ≈ 0.85

(l) NiftySeg
β = 0.25

acc ≈ 0.72

(m) IBSR_11
manual

(n) Atropos
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(o) FAST
β = 1.00

acc ≈ 0.84

(p) LS
β = 2.20

acc ≈ 0.87

(q) MPL
β = 2.02

acc ≈ 0.87

(r) NiftySeg
β = 0.25

acc ≈ 0.74

Figure 3.16: Example segmentations for subjects (in rows) by various methods (in columns)
and the manual segmentation, with β value and segmentation accuracy (‘acc’). Low accuracy
(IBSR_01) and high-accuracy (IBSR_11) subjects are shown. The highest-accuracy method for
each subject is in bold.
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Figure 3.17: Difference in tissue volume (as a percentage of brain volume) relative to manual
segmentations

Figure 3.18: MRI of subject IBSR_09 and grey matter region according to the manual segmen-
tation. CSF in the sulci the brain appears to be classified as GM (green arrows). The intensity
of deep-GM structures (blue circle) is much lighter than the cortical GM.
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appears to be sulcal CSF - between the folds of the cortical surface. The manual segmentations
from the IBSR dataset consider sulcal CSF voxels to be classified as grey matter since they
typically occupy less than a voxel, which others may consider to be CSF (Valverde et al., 2015).
However, all algorithms tested have classified these voxels as CSF, as the intensity is noticeably
darker than the remainder of the CSF (figure 3.18). This is reflected in the poor Dice coefficients
for CSF. There is a corresponding negative effect on the Dice coefficients for GM due to the
shift in tissue boundary. Ideally, the manual segmentations could be adjusted to include sulcal
CSF, or such voxels could be excluded from the Dice scores. However, as we lacked a manual
accurate classification of sulcal CSF, we could not do this. This speaks somewhat to the need for
an automated segmentation algorithm to avoid differences in manual protocol between brains
and ensure consistency of segmentations. Alternatively, use of an additional co-registered MRI
taken with a different sequence would help (such as a T2 scan, on which CSF is much more
visible). Then the intensities would be vectors consisting of the T1 and T2 intensity at each
voxel rather than scalars.

3.6.2.2 Value of β estimation

The two estimated-β methods, LS and MPL, had the highest two overall accuracies. This
suggests that estimation of β is desirable to fixing it. Though FAST (β = 1, 6 neighbours)
and Atropos (β = 0.3, 26 neighbours) did not perform significantly worse than LS or MPL,
NiftySeg (β = 0.25, 6 neighbours) did. While fixing β saves the computation of estimation and
e.g. β = 1 as with FAST seems reasonable for this dataset, there is no way to know a priori
that β = 1 is suitable for the dataset. The value of estimation is help to avoid the situation of
an inappropriate β being chosen (for this dataset, an example is NiftySeg’s β = 0.25).

NiftySeg significantly underperforms the other methods. We note that it has the lowest β
of all the fixed-β methods (Atropos has similar β = 0.3, but a much higher neighbourhood
size; as discussed previously, there is evidence for a linear relationship between the two). As
β approaches 0, the mixture-MRF model reduces to a standard Gaussian mixture model with
a multinomial prior with fixed equal mixing proportions for each tissue. The fixed and equal
mixing proportions bias the segmentation to have equal tissue volumes, which is not realistic.
This is particularly noticeable in CSF, which takes up a relatively small proportion of the brain:
an average of 8% in these examples, based on the manual segmentations. Even if sulcal CSF
were added to the manual segmentations, CSF still takes well less than 1/3 of the brain volume.
Indeed, when examining the tissue volumes in figure 3.17 it can be seen that NiftySeg has much
larger CSF proportion than any of the other segmentations. Upon examining the NiftySeg
segmentations in figure 3.16 it can be seen that the sulcal CSF is much thicker than produced
by the other algorithms. It is also reflected in the lowest Dice coefficient for CSF of all the
methods. In this case, the issue is not so much under-smoothing (through β being too small),
but in the forcing of equal tissue proportions in the tissue prior as β approaches 0.
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Examining the estimated β values, MPL (1.9) and LS (2.1) produced the highest values, on
average, being greater than 1. Figure 3.11 shows the range of estimated β values (for 6 neighbours)
over the dataset. These values are all far larger than the comparable 6-neighbour fixed-β values
used by FAST (β = 1) and NiftySeg (β = 0.25), yet FAST’s performance was comparable while
NiftySeg’s was worse. Atropos’ β = 0.3 is much lower than the corresponding (PL, 26 neighbours)
estimated β = 0.49 found in the MPL configuration experiment (table 3.4), yet attains almost
identical segmentation accuracy (≈ 80%). This suggests that the response of segmentation
accuracy to β may be relatively flat in a region near the maximum pseudolikelihood value, yet
sensitive as β approaches 0. We verify this trend in the grid-search experiment (section 3.6.3).

On the other hand, we also note that the estimated β values might be high because of the need
for an approximate E-step in the EM algorithm. Since the latent variables z are not completely
marginalised out (we must condition on z∂i

(t)), the segmentation of the C-step can affect the
estimated β value in the M-step, which will in turn affect the segmentation in the next C-step
and so on. Since the majority of neighbourhoods in a segmentation are homogeneous, the MPLE
can favour a high β. If β increases, ICM (in the C-step) will favour a smoother segmentation,
and so on.

The estimated β values are very variable over the dataset. The range in β values are ∆β = 0.62
for MPL and ∆β = 1.44 for LS, which are relatively large considering the significant difference
in accuracy results between e.g. β = 1 for FAST and β = 0.25 for NiftySeg which differ by only
∆β = 0.75. This further justifies the need for β to be adjusted on an individual per-image basis,
as the estimated β values differ greatly.

We must also acknowledge that FAST, NiftySeg and Atropos are typically used with a co-
registered anatomical atlas to aid the segmentation. This gives the probability πij that each
voxel i is a given tissue j. It is usually constructed from a number of manually-segmented brain
MRI that are co-registered to give a probabilistic map of brain tissue. The atlas is incorporated
by multiplying it through the tissue prior and renormalising. Since these tools were designed
primarily for use with an atlas (though also work without one), it could be that the default β
values were selected based on test cases with atlases. Since the atlas probability is multiplied by
the MRF probability, β can have less effect than when there is no atlas, so the algorithm may
be more robust to mis-specifying it. Correspondingly, the segmentation accuracy may be much
flatter with respect to β when an atlas is used, so that a large range of different β will produce
comparable accuracies.

The problem with requiring an atlas is that it must be registered to the image to be segmented
in order to be effective, and this is of itself a difficult task. In addition, if the input brain has
pathologies or if the atlas brain is quite different to the input brain (e.g. due to age differences),
the atlas can misguide the segmentation (see Pagnozzi et al. (2015) for examples of this).
Automatic selection of β is thus even more important, since there is no atlas to mitigate “poor”
values of β.
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3.6.2.3 Comparison of estimators

The two estimators discussed - the MPLE and LSE - were selected for different reasons. The
LSE is the only estimator that has been used in tissue segmentation to automatically determine
β with no training data (Van Leemput et al., 1999b). It was implemented and made available
as the “Expectation Maximisation Segmentation” package (Van Leemput, 2001). The MRF
used is a different form of the Potts MRF (we will study it in Chapter 4), but the derivation of
the estimator is the same. The MPLE is chosen because it satisfies the properties defined in the
Aims well.

We found no significant difference in accuracy between the MPL and LS methods. Given
this, we prefer the MPL estimator to the LS estimator. Both estimators satisfy properties
1 and 2: they estimate β on a per-image basis and do not require training data or an atlas
(though an atlas can be incorporated by multiplying the MRF probabilities by the atlas and
re-normalising). However, the MPLE better fulfils properties 3 (computational tractability) and
4 (straightforwardness of implementation). In addition, it is more interpretable.

For the MPLE, the Q-function is concave with respect to β, has gradient readily available in
closed-form, and consists of a univariate maximisation only, so is computationally cheap to
optimise. Thus MPLE is computationally tractable. In addition, the Q-function has already
been computed as part of the E-M algorithm, regardless of whether β is estimated or not
(namely, the terms τij

(t) and uij
(t)). Since τij

(t) and uij
(t) do not change with β (they use the

fixed β(t−1)), there is no additional computation required to do the optimisation besides the
optimisation itself. This makes the MPLE particularly suited for implementation into existing
segmentation algorithms that use the mixture-Potts image model (such as FAST, NiftySeg, and
Atropos); only an additional maximisation in the M-step need be added, and all terms required
have already been computed.

By contrast, the LSE requires computation of the neighbourhood counts N(j, z∂i) for each
label j and neighbourhood z∂i before the regression is performed, though the regression itself
is computationally cheap. As the neighbourhood size increases this can become unviable.
Additionally, the LSE has no mean-field analogue like the pseudolikelihood does. Counting
neighbourhood frequencies N(zi, z∂i) requires discrete labels, hence is incompatible with the
mean-field approximation. Both these aspects make it difficult to incorporate the LSE into
existing algorithms; if it uses the mean-field approximation, this must be thresholded in order
to count the neighbourhoods. The neighbourhood counts themselves must also be computed, as
they would not normally be if β were fixed.

The LSE may also be very sensitive to the current segmentation. A given neighbourhood z∂i

must appear with at least two different centre labels j and k in order to contribute to the
system of equations. This has two implications: first, it is possible that there are insufficient
different neighbourhood and centre voxel combinations to provide enough equations for the LSE
estimator to be used. However, this is unlikely with only one parameter to be estimated. Second,
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neighbourhoods that are rare in the segmentation may have similar influence to those that are
common. The majority of neighbourhoods in an MRI have all neighbours as well as the centre
voxel of the same tissue label, for example z∂i are all GM and j is GM. If there are no occurrences
of z∂i all being GM but k being a different tissue (as for an isolated voxel of noise), then the
all-GM z∂i cannot be used to determine β. For an image with no noise, this may be the case
for the all-CSF, all-GM, and all-WM neighbourhoods. Then the homogeneous neighbourhoods
could not influence the β estimate, despite making up the vast majority of neighbourhoods in
the image. This leaves β to be determined by a minority of neighbourhoods. Suppose on the
next iteration, a single all-GM neighbourhood is changed such that the neighbours are still all
GM, but the centre is WM. Suddenly, this neighbourhood may contribute to the β estimate with
N(GM, z∂i) very large and N(WM, z∂i) = 1. Thus the addition of even a single neighbourhood
may alter the estimate significantly.

Another consideration is that the LSE can only be found using the prior MRF probability
p̃(z). It cannot also incorporate the intensity distribution f(y|z) due to the need to empirically
estimate f(yi, ej, z∂i) in the right-hand side of the system of equations ((3.14)). On the other
hand, the MPLE can incorporate this information by maximising the joint log-pseudolikelihood
f(y|z)p̃(z) or Q-function instead of simply p̃(z). For the MPLE, maximisation of the MRF
pseudolikelihood alone is inferior to maximising the joint pseudolikelihood/Q-function (Archer
and Titterington, 2002), since it does not use all available information. It could be that the
same applies to the LSE.

In terms of interpretability, the MPLE is straightforward and fits with the existing goals of
EM: it maximises an approximation to the likelihood (or Q function). This is exactly the
M-step for β. If a given neighbourhood appears many times in the image, it has more weight in
the log-likelihood (though given that the majority of neighbourhoods in a natural image are
homogeneous and therefore are more likely under a higher β, this could lead to oversmoothing).

The LSE does not maximise likelihood, but rather matches observed to expected neighbourhood
ratios. Gurelli and Onural (Gurelli and Onural, 1994) proposed that for the Ising MRF (g = 2),
the LS estimator corresponds to maximising the log-pseudolikelihood of distinct neighbourhood
configurations separately, and combining these estimates through least-squares. However this
does not generalise to g > 2. A given neighbourhood may contribute up to 3 separate equations
of the form (3.13) with g = 3 labels, and this will not in general each give the same β for that
neighbourhood.

In our experiments, we found β values were generally higher for LS than MPL figure 3.11.
This does not appear to have resulted in the LS segmentations being particularly oversmooth
compared to the MPL segmentations, though the β values do not appear significantly higher.
While a strong presence of homogeneous neighbourhoods drives β higher under MPL estimation
as just discussed, it is unclear how these affect the LS estimate.

Guyon and Künsch (1992) showed that asymptotically, the MPLE and LS estimators for the
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(a) manual (b) β = 0 (c) βGS = 2.10 (d) β = 50

(e) manual (f) β = 0 (g) βGS = 0.75 (h) β = 50

Figure 3.19: Manual segmentation and segmentations produced for various fixed β values. βGS

is the fixed β with the highest segmentation accuracy from the grid search. Subjects IBSR_10
(top) and IBSR_17 (bottom).

visible Ising MRF (g = 2) are equivalent, if weighted least squares is used for the latter with
carefully-chosen weights. As far as we are aware, there is no analogue for the Potts MRF (g > 2),
nor for a hidden MRF.

3.6.3 Grid search

Figure 3.12 shows the accuracy-vs-β curve of the two subjects examined, and figure 3.19 shows
selected segmentations at small, high, and the maximum-accuracy β from the grid search
(denoted βGS). For the two subjects examined, accuracy is lowest when β is small and increases
quickly, reaching a maximum by β = 2.5 before decreasing and plateauing. Accuracies above 90%
are never achieved, which shows that the mixture-Potts MRF alone cannot perfectly segment
the brain; this is not surprising due to difficult regions such as the sub-cortical grey matter, and
given that the brain is a complex structure that cannot be fully captured by a Markov random
field.

It appears that over-estimating β is preferable to under-estimating it. Rather than continually
decreasing, the accuracy asymptotes as β becomes large. The loss in accuracy when β is higher
than βGS is not nearly as much as when β is comparably lower.

First we consider behaviour for small β. As discussed for NiftySeg, as β approaches 0 the
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model approaches a standard mixture model with fixed mixing proportions of 1/3. As CSF in
particular makes up well less than 1/3 of the brain, it is over-emphasised, leading to a loss of
accuracy. This can be seen in the segmentations for β = 0, figure 3.19c and figure 3.19g, where
there is considerably more CSF than the manual segmentation.

The fixed β values attaining the highest accuracy, βGS, were 2.10 and 0.75. These are quite
variable, suggesting that a single value of β is not appropriate for all images in a dataset.

As expected, the method that used β closest to the grid-search value attained closest to the
highest accuracy. For subject IBSR_10 (βGS = 2.10), this was the two estimated-β methods.
For subject IBSR_17 (βGS = 0.75), this was FAST. Here, the two estimated-β methods both
over-estimated β. On the other hand, we note that neither method is maximising segmentation
accuracy directly, as this is not typically available. MPL uses log-pseudolikelihood as a proxy
for accuracy, while LS matches ratios of neighbourhood statistics. In light of this, it is not
surprising that these methods do not always achieve the highest accuracy. The key point is
that while estimation of β does not always yield the highest-accuracy β, it yields values that
attain near the accuracy maximum, and avoids choosing values that are significantly worse
(e.g. NiftySeg’s β = 0.25 for these images).

It is curious to see that the accuracy asymptotes as β becomes larger. Initially we had expected
that as β became large, the accuracy would drop dramatically due to oversmoothing (i.e. the
entire segmentation becomes uniformly one label, which has high MRF likelihood). Instead, the
segmentations are still brain-like, and even have small isolated circles of tissue (for example in
IBSR_17’s β = 50 segmentation, figure 3.19h). We infer that past a certain point the value
of β does not matter; the same segmentation will be obtained regardless of its value (given
a particular set of starting parameters). This segmentation comprises a local maximum in
which every voxel is of the same tissue label as its neighbourhood majority. Referring back to
IBSR_17’s β = 50 segmentation, although there are isolated dots of tissue, they are convex in
shape.

To see this, we fix the intensity parameters and segmentation, and consider β at which a given
voxel i changes from one label to the other. In particular, we show that as β becomes large, the
voxel must eventually be classified to the label of its neighbourhood majority. Suppose that the
neighbourhood majority is label j, i.e. uij > uik∀j 6= k (if uij = uik, then the MRF probability
to be tissue k or j is the same regardless of β, so is decided by intensity alone). Suppose also
that voxel i has label k, not the neighbourhood majority. For voxel i to remain label k, its
posterior probability to be label k must dominate all other labels, i.e.

exp(βuik)φik > exp(βuij)φij, (3.15)

where φik is shorthand for the Normal intensity density φ(yi;µk, σ
2
k). Rearranging for β,

log φik

φij

> β(uij − uik).
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Since uij is the neighbourhood majority, uij − uik > 0 and so

β < log φik

φij

/(uij − uik).

The above must be satisfied in order for voxel i to remain label k. But as β becomes large,
it must eventually violate the constraint, as the right-hand-side does not depend on β. Thus
eventually all voxels must eventually be classified as their neighbourhood majority.

In the special case that there are more than one labels that are the equal neighbourhood majority,
for example 3 neighbours of GM and 3 neighbours of CSF, the discrimination rule (3.15) is
independent of β, and the label of that voxel is determined by intensity alone.

This is why the accuracy asymptotes as β becomes large - the segmentation eventually reaches
a point where every voxel has been classified to its neighbourhood majority (or determined by
intensity in the case of an equal majority), and cannot change any further. An example is seen
in the β = 50 segmentations in figure 3.19. Of course, this ‘asymptotic’ segmentation is only
local, and depends on the initialisation.

3.7 Conclusion

We have studied the Potts MRF as a prior for mixture-MRF brain MRI segmentation, and how
it may be solved using Expectation-Maximisation. This forms the basis for most of the current
popular intensity-based segmentation tools such as FAST, NiftySeg and Atropos. Atlas-based
tool FreeSurfer also makes use of the Potts MRF as a post-hoc segmentation smoother. These
tools all require the operator to specify a value for the Potts MRF smoothing parameter β and
offer default values, all different to each other. It is not clear which value to use on a given image,
and we have demonstrated that segmentation accuracy can varying greatly depending on the
choice. In addition, FAST, NiftySeg and Atropos are commonly used with an anatomical atlas
where the effect of β may be lessened. It is unclear whether the default values are selected for
use with or without an atlas, and how to adjust them. For this reason, β should be determined
automatically.

In this chapter we aimed to develop a way to automatically specify β for the Potts MRF on a
per-image basis (property 1) that does not require training data (property 2), is computationally
tractable (property 3), and straightforward to implement into existing algorithms (property 4).
We proposed use of the maximum pseudolikelihood estimator of Besag (1974) for this purpose.
Use of MPL estimation of β is novel in brain MRI segmentation. The MPLE satisfies the
first two properties by design. The Q function and pseudolikelihood are concave with respect
to β and the gradient is readily computable in closed-form, making the maximisation itself
computationally cheap. Our method simply implements the M step of the EM algorithm for
the β parameter as well as the intensity parameters, whereas existing methods do this for
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the intensity parameters only. Existing methods already make use of the pseudolikelihood
approximation even when β is fixed. This in particular makes the MPLE simple to implement
into existing methods, as all quantities required to perform the maximisation have already been
computed. Thus, it satisfies properties 3 and 4.

We have investigated the effect of neighbourhood size and likelihood approximation on seg-
mentation accuracy when used with the MPLE. We found the smallest neighbourhood of 6
neighbours to be ideal, as additional neighbours appear to unduly influence the MRF due to the
E-step being approximate rather than exact. Use of only 6 neighbours instead of 26 simplifies
computation of the MRF. Unexpectedly, the pseudolikelihood approximation was found to be
more accurate than the mean-field approximation.

The third aim of the chapter was to validate the method on real data and compare it to existing
methods. To demonstrate the value of β estimation, we have compared segmentations using the
MPLE to various standard fixed-β values: 0.25 (NiftySeg), 0.3 (Atropos), and 1 (FAST) on a real
dataset of brains. We found estimation to produce significantly more accurate segmentations
than NiftySeg, and slightly though not significantly more accurate segmentations than FAST or
Atropos. The estimated β values ranged from 1.5 to 2.1. These were all larger than the largest
fixed value (FAST at β = 1), suggesting that the common fixed-β values may not be appropriate.
Thus estimating β will do no worse, and may do better than, existing fixed-β methods.

To further examine the role of β, we performed a grid search over fixed β values for two subjects.
While there exist some fixed-β value(s) that attain higher accuracy than MPL, these are variable;
there is no reason to expect the same value to work for all images. Also, there is no way to find
these optimal (in terms of segmentation accuracy) values without manual tuning and without a
manual segmentation to compare accuracy against. MPL is a reasonable alternative that does
not require training data or manual tuning. It always attained close to the maximum accuracy
found from the grid search, while avoiding “poor” β values.

The grid search also revealed that choosing β “too low” can result in segmentations with much
lower accuracy than choosing it “too high”. When β is too low, tissues with low proportions
such as CSF are over-emphasised. On the other hand, the accuracy curve seems to be relatively
flat with respect to β at and after the maximum-accuracy value. As β becomes large, the
segmentation converges to one in which every voxel is classified to the same label as the majority
of its neighbours. The particular segmentation will depend on the initialisation. While this
oversmoothing does cause a loss of accuracy, it is not nearly as much as when β is too small.

We also compared the MPLE with the least-squares estimator (LSE), as investigated in Van Leem-
put et al. (1999b) for a different form of the Potts MRF. This estimator, like the MPLE, is
statistically consistent as the image size goes to infinity for an observed MRF. It is the only case
known to the authors where parameter estimation for the Potts MRF has been implemented
and made readily available for brain MRI segmentation. The segmentations produced with the
LSE had higher accuracy compared to MPLE, though not significantly different to MPLE. As
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both estimators produce similar accuracies, we prefer the MPLE for a number of reasons:

• The LSE matches local neighbourhood frequency ratios to theoretical ratios. This is not
easily interpretable in a global sense, as maximum likelihood is.

• The LSE cannot be applied in as many situations as MPLE. It cannot be used with
the mean-field approximation, due to the need to approximate p(j, z∂i) by empirical
frequencies. It also cannot incorporate the intensity probabilities.

• A given neighbourhood must appear with at least two different centre labels in order to
form an equation; otherwise, it is omitted. This is not necessarily guaranteed. The effect
of omitting neighbourhoods from the system of equations is not clear.

• Although the least-squares estimation itself is computationally efficient, in order to set up
the equations the neighbourhood frequencies p(j, z∂i) must be calculated for the current
segmentation. As the neighbourhood size increases, this becomes more cumbersome.

On the other hand, the MPLE does not require calculation of any additional quantities before
the maximisation is performed, as the pseudolikelihood is already calculated as part of the
existing EM algorithm.

In conclusion, we have presented a method for automatic spatial regularisation in brain MRI
segmentation using the MPLE, which has not been considered for this purpose before. We
strongly advocate for estimation of β using MPLE:

• It produces segmentations no worse than standard fixed-β methods, and sometimes better
if β is fixed to an inappropriate value.

• For a given (visible) segmentation, the MPL estimator is known to be consistent.
• It falls naturally within the EM framework - the Q-function (making use of pseudolikeli-

hood) is maximised with respect to β in the M-step, along with the other parameters.
• The Q-function with a fixed segmentation is concave with respect to β. The gradient

is readily available in closed-form and computationally tractable due to use of an MRF
approximation. The resulting maximisation is univariate and concave, hence does not add
noticeable additional computational burden.

• MPL is very readily incorporated into the existing methods using this mixture-Potts
model with β fixed. This is because the Q-function is already calculated in such methods,
so does not need to be re-calculated for the maximisation.
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Chapter 4

Non-homogeneous Potts MRF

4.1 Introduction

The single-beta Potts MRF is widely used in MRI segmentation to incorporate spatial smoothness
into the image model. Its single smoothing parameter β has a straightforward interpretation:
larger is smoother; smaller is less smooth. Because of this, it is often tuned manually. However,
as we have shown in the previous chapter, it is preferable to automatically determine β; manually
specifying it can result in poor segmentations. An additional disadvantage is that this smoothing
is applied globally across the segmentation. As a result, the MRF may oversmooth parts of the
brain while undersmoothing others. This can be a particular issue in MRI, where signal-to-noise
ratio is often non-uniform and tissue composition can be heterogeneous, resulting in variable
contrast.

The full or non-homogeneous Potts MRF allows smoothing to be determined on a per-tissue
basis, allowing for finer control. The Potts MRF allows a different smoothing β to be set
depending on which two tissues are neighbours. For example, the grey matter-white matter
cortical boundary along the sulci and gyri of the brain is typically much more convoluted than
the CSF-white matter boundary along the ventricles. The Potts MRF can allow for smoothing
to be less strong along the former boundary than the latter.

The single-beta Potts MRF consists of a pairwise component only (counting whether a voxel
and its neighbour are of the same label). This means that it cannot account for unequal tissue
proportions as a standard mixture model can. The full Potts MRF has a unary component
akin to the mixing proportion of a standard mixture model, while retaining the smoothing
component. Separation of the proportion (unary) and smoothing (pairwise) parameters may
improve the sensitivity of the smoothing parameters so that they are not affected by large
homogeneous regions of the brain.

Since the full Potts MRF has many more parameters to estimate (one per pair of tissues for
the smoothing, and one per tissue for the tissue proportions), it is not reasonable to manually
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specify the parameters - they must be determined automatically. Possibly for this reason, the
full Potts MRF has not been widely used in brain segmentation. Van Leemput et al. (1999b)
used an MRF similar to the full Potts MRF for brain segmentation with estimation via the
least-squares estimator. However, it was not identifiable, and had many more parameters than
the version we present here. Cardoso et al. (2011) also used a form of the full Potts MRF
that was simplified to have only two smoothing parameters, chosen manually. Forbes et al.
(2013) introduces the full Potts MRF with maximum pseudolikelihood estimation for spatial
disease risk mapping, which is later used in brain lesion segmentation by their students and
collaborators (Maggia et al., 2016; Kabir et al., 2007; Menze et al., 2015). However, while all
papers mention the full Potts MRF and the potential of its use for brain MRI segmentation,
they reduce the model to the single-beta MRF in application.

In this chapter, we make a detailed study of the full Potts MRF, various parametrisations of it,
and various methods of parameter estimation, applying all of these to brain MRI segmentation
to compare their performance. In particular, we separate out the unary (mixing proportion)
and pairwise (tissue-wise smoothing) components of the MRF potential and examine their
roles in detail, experimenting with various combinations of these. We show how maximum
pseudolikelihood estimation (MPLE) is used to adaptively determine the MRF parameters.
We also derive the corresponding least-squares estimator (LSE), similar to Van Leemput et al.
(1999b), and compare it to the MPLE. The properties that made MPLE preferable to the LSE
for the single-beta MRF are largely preserved for the full Potts MRF:

• The Q function is negative-semidefinite, with gradient available in closed-form.
• The maximisation does not require new quantities (such as neighbourhood frequencies) to

be calculated as the least-squares estimator does.
• The MPLE can be used in more scenarios than the LSE and is less prone to problems of

missing neighbourhoods or lack of neighbourhood diversity.

We also discuss how the parameters might be constrained using prior knowledge to improve the
MRF.

As already mentioned, the use of the full Potts MRF with MPL for parameter estimation is not
novel (Forbes et al., 2013). However, while the full Potts MRF has been discussed for brain
segmentation before (Maggia et al., 2016; Kabir et al., 2007; Menze et al., 2015), it has not
been used (in all such papers the single-beta form was used). This may have been because these
papers were focused on the application rather than the method; as we will discover, the full
Potts MRF with no prior constraints on or training of the parameters is not necessarily suitable
for segmentation. By contrast, we concentrate specifically on the full Potts MRF with a detailed
study of its various parametrisations and a focus on model selection. In addition, we focus on
the estimation method, comparing the MPLE to the LSE.
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4.1.1 Aim

The aims of this chapter are:

• To study the use of the full Potts MRF in a fully-automatic segmentation method for
brain MRI.

• To study how the full Potts MRF may be used to more finely tailor the MRF prior to
brain segmentation, with regards to controlling for the relative frequency of tissues and
neighbouring tissues.

• To study various parameterisations of the full Potts MRF and which is most suited to
brain segmentation, with respect to both practical outcomes and standard statistical
model selection metrics.

• To compare estimation of the parameters of this MRF using the MPLE to the LSE.

4.2 Background

The image model is still a mixture-MRF model: intensities yi, i = 1, . . . , n are normally
distributed for each tissue, and the tissue labels zi, i = 1, . . . , n are distributed according to
a Markov random field. Recall g is the number of tissue labels, and zi is a vector of length
g indicating which label voxel i takes; zi = ej means that voxel i has label j. Here ej is the
indicator vector of 0s everywhere except in the jth position which has a 1. In this chapter, the
normal distribution for the intensity conditioned on tissue remains unchanged; we focus rather
on different forms of the MRF than the single-beta Potts model.

4.2.1 Non-homogeneous Potts MRF

The full Potts model was introduced and briefly discussed for image restoration by Besag (1986);
however, he did not use the full form but the simplified single-beta version. The full Potts MRF
has local conditional potential given by:

p(Zi = ej|z∂i) ∝ exp(αj −
g∑

k=1
k 6=j

βjkuik)

α1 = 0

uik =
∑

m∈∂i

zmk

δim

βjk = βkj

βjk > 0

(4.1)
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As with the single-beta MRF, uik denotes the number of neighbours of voxel i with the label k,
scaled by the distance between the voxels. The model parameters are the unary parameters
αj and the smoothing parameters βjk. For reasons explained below, we constrain α1 = 0 and
βjk = βkj , so that the model parameters Ψ consist of αj where j = 2, . . . , g with α1 = 0 and βjk

where 1 ≤ j < k ≤ g, giving a total of (g − 1) +
(

g
2

)
parameters.

The unary parameters αj are related to the relative proportions of the label j in the image,
though are not the same unless β = 0. Then, the model because a standard normal mixture
model with spatially independent multinomial prior with probabilities πj = exp(αj). These
parameters depend only on zij so do not perform any smoothing. Similar to the standard
mixture model, only g − 1 parameters are required for an MRF with g labels as αj are only
unique up to an additive constant. To see this, set α̃j = γ + αj where γ is a constant and
j = 1, . . . , g. Then exp(α̃j) = exp(γ) exp(αj) and the constant exp(γ) is cancelled out in the
denominator. Without loss of generality we set α1 = 0, but retain it in the model equations for
ease of notation and interpretation. The reason to include the αj parameters into the model
is that the β parameters control the smoothness of the interface between different tissues, but
cannot directly allow for different base proportions of these tissues. Alternatively, the terms
exp(αj) may be thought of as multiplying prior knowledge of the tissue proportions by the
smoothing portion of the MRF.

The pairwise term over the neighbours gives a penalty for neighbouring voxels that do not
match voxel i’s label (compared to the single-beta MRF, which encourages neighbouring voxels
to be of the same label). The parameters βjk control the penalty for labels j and k co-occurring
in the same neighbourhood. These may be used to enforce anatomical constraints on tissues
unlikely to appear adjacent to each other. For the model to be a valid MRF, we must have
βjk = βkj, as pairwise potentials must be symmetric. As with the single-beta MRF, the larger
and more positive βjk becomes, the more tissue j and k are penalised from co-occurring in the
same neighbourhood.

The single-beta MRF may be recovered by allowing all the smoothing parameters to be the
same, i.e. βjk = β ∀ j, k and setting αj = 0 ∀ j. Then

exp(−
∑
j 6=k

βjkuik) = exp(−β
∑
j 6=k

uik) = exp(−β(|∂i| − uij)) ∝ exp(βuij),

where |∂i| is the number of neighbours and the constant exp(−β|∂i|) is cancelled out in the
numerator and denominator.

It will often be convenient to write (4.1) in matrix form. Let α be the length-g vector
(0, . . . , αg)T (recall that α1 = 0).. Let B be a g × g symmetric matrix, where Bjk = βjk for
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j < k, Bjk = βjk = βkj for j > k and Bjj = 0. For example, with g = 3 tissues,

B =


0 β12 β13

β12 0 β23

β13 β23 0

 .

There are
(

g
2

)
unique βjk parameters. Then, the conditional pdf may be written

p(zi|z∂i; Ψ) = zT
i α − zT

i Bui

Ci

, where

Ci =
g∑

j=1
exp(eT

j α − eT
j Bui)

(4.2)

In the above we have introduced the notation ui for the vector of neighbour counts
(ui1, ui2, . . . , uig)T .

4.2.2 Related work

4.2.2.1 Similar MRFs

In this chapter, we focus on models where the pairwise parameters depend only on the class of
the voxel and its neighbours. This reduces the number of pairwise parameters

(
g
2

)
, very few

compared to the number of voxels. A number of MRFs similar to the non-homogeneous Potts
model are used in other application areas, often with pairwise parameters that depend on the
direction of the neighbour, or the position of the neighbours.

Texture segmentation is the task of identifying regions of different texture in an image - for
example, grass, leather, wood. One way to achieve this is by use of a hidden Markov random
field with directional parameters. For example, Derin and Elliott (1987) use the MRF

p(zi|z∂i) ∝ exp(zT
i α+βhzT

i (zE+zW )+βvzT
i (zN +zS)+βd1z

T
i (zNE+zSW )+βd2z

T
i (zNW +zSE)),

where zE is the east neighbour, zW is the west neighbour, βh is the horizontal parameter, and
so on. The set of parameters can be used to characterise particular textures. For example, a
texture consisting of vertical stripes may low or even negative βh, encouraging a pixel to be
a different label than its horizontal neighbour, and a high βv, encouraging a pixel to take the
same label as its vertical neighbour. The parameters should be learned on various textures in
order to distinguish between them. In the mentioned paper, least squares estimation was used.
Manjunath and Chellappa (1991) used a similar formulation but with a Gaussian MRF over
the image intensities rather than underlying labels. We will consider directional MRFs of this
nature in the next chapter.

Another MRF with a similar form is the Boltzmann machine (Ackley et al., 1985). These are a



84 CHAPTER 4. NON-HOMOGENEOUS POTTS MRF

type of neural network that also form an MRF. Observations i, called “units”, are binary-valued.
In our notation, zi1 = 1 corresponds to unit i being off, while zi2 = 1 corresponds to it being
on. The probability of the system is given by

p(z) ∝ exp(−(
n∑

i=1
αizi2 +

∑
i<m

βimzT
i zm))

Here the αi parameters, known as the bias of unit i, are specific to each unit (compared to
our αj which are specific only to the value at each i). Likewise, there is one parameter βim

for each pair of units; these are the connection strengths. Unlike our neighbourhood structure,
for a Boltzmann machine, every unit can be a neighbour to every other unit. The connection
strengths or weights βim are typically learned based on training data, with a value of zero
meaning no connection between the ith and mth units.

4.2.2.2 Brain segmentation

The full Potts MRF is not commonly used in brain segmentation, possibly due to the fact that
parameter estimation is difficult and often not performed. Manually tuning the parameters is
difficult given the number of parameters and their non-intuitive interaction.

Van Leemput et al. (1999b) used the MRF

p(zi|z∂i; Ψ) ∝ πij exp(−zT
i GuG

i − zT
i HuH

i ), (4.3)

where the g × g matrices G and H are not constrained to be symmetric, nor do they have
0 on the diagonal. For the moment, assume πij = 1. Here uG

i is the neighbour count for the
in-plane (east, west, south and north) neighbours while uH

i is the neighbour count for the top
and bottom neighbours. These are not distance-weighted. It is broadly similar to the full Potts
MRF, except that:

• Rather than a single matrix of B parameters, there is a different one for the within-slice
neighbours (G) than the between-slice neighbours (H), to account for a difference in
resolution. We handle this by use of distance scaling in the neighbour counts. Van
Leemput et al. found that G and H were roughly the same, due to the isotropic spacing
of the images used.

• The matrices G and H are not constrained to be symmetric, so do not form a valid
MRF. An MRF must have non-directional relationships between voxels, i.e. the pairwise
potential should be the same for voxels (i,m) as (m, i).

• The diagonal elements of G and H fill the role of zT
i α.

While the full Potts MRF uses g − 1 αj parameters and
(

g
2

)
βjk parameters making (g−1)(g+2)

2 in
total, the version used in Van Leemput et al. (1999b) has strictly more parameters: 2g2. The
non-symmetry of G and H , while causing the prior to no longer be an MRF, do not practically
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affect the segmentations. The parameters are only identifiable up to the sum (Gjk + Gkj), but
the individual parameter values themselves do not matter to the segmentation. The parameter
matrices were estimated using the least-squares estimator.

The elements of G and H were constrained to reflect anatomical prior knowledge. If this
was not done, it was found that the MRF oversmoothed the segmentation. For example, the
authors wished a voxel surrounded by CSF and GM to have the same (prior) probability to
be either, leaving the classification decision up to the intensity pdf rather than the MRF. To
do this, the constraints GCSF,CSF = GCSF,GM and GGM, CSF = GGM, GM were imposed. Similar
constraints were imposed for GM and WM. However, given that Gjk represents the penalty
(or bonus) for tissue j to occur next to tissue k, the diagonal elements Gjj should ideally be
negative to encourage homogeneous regions of tissue, while the Gjk should be positive in order
for smoothing to occur along the j-k boundary or 0 to disable smoothing along this boundary.
In order to have the CSF-GM boundary decided on intensity alone, one should instead set
GCSF,GM = GGM,CSF = 0.

Finally, a registered anatomical atlas was incorporated such that πij in the equation above
reflects the atlas probability that voxel i is tissue j. We can consider this as the Potts MRF
with voxel-specific αij parameters rather than merely tissue-specific αj parameters, i.e.

πij = exp(αij).

In this thesis, the primary aim is to focus on applications where no atlas information is available.
However, the MRFs we study can all be used with an atlas prior by multiplying them through
as above.

Forbes et al. (2013) presents the full Potts MRF with maximum pseudolikelihood estimation, as
we intend to in this chapter. The application is to spatial disease risk mapping. In practice, they
use the single-beta form of the Potts MRF, though they mention that the full B matrix could
be estimated on training data or tuned by an expert (e.g., by constraining some parameters to
be multiples of others based on a priori knowledge). The full Potts MRF is also mentioned
in a number of brain lesion segmentation application papers (Maggia et al., 2016; Kabir et al.,
2007; Menze et al., 2015) with reference to this paper. The methods are similar to brain
tissue segmentation but include an extra tissue class for lesions. Detail is brief (as the papers
focus on the application), but while they mention the full Potts MRF, it is implied that the
single-beta MRF is used (with MPL estimation). While we present the same model as Forbes
et al. (2013) and also with MPL estimation, we apply the full model rather than (in addition
to) the single-beta form and specifically focus on model specification and selection. We also
compare MPL estimation with least-squares estimation.

Cardoso et al. (2011) used the Potts MRF with multiple smoothing parameters βjk and no
unary parameters (αj = 0). The smoothing parameters were not estimated. Instead the βjk

penalties were set to 0.5 if tissues j and k were “anatomically plausible”, and 3 if they were
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“anatomically implausible”. To enable this, an anatomical atlas was used to further subdivide
the tissue classes: CSF into internal CSF (e.g. the ventricles) and external CSF (e.g. on the
outside boundary of the brain), and GM into deep GM and cortical GM. Then, tissue pairs
may be graded on whether they are anatomically likely to appear next to each other or not: for
example, deep grey-matter is unlikely to border external CSF, but is likely to border internal
CSF. If CSF and GM were not further split in this way, such grading would not be possible, as
any two of CSF, GM, or WM are likely to share a boundary in a healthy brain.

Wels et al. (2011) used an MRF with unary parameters αj and one smoothing parameter β
fixed to 1, which was further weighted by the difference in the neighbouring voxel intensities
(we will study this form of local anisotropic smoothing in Chapter 4). The αj parameters were
fixed to prior tissue probabilities learned from a probabilistic atlas; however, rather the prior
being specific to each voxel and tissue, they were only dependent on the tissue, i.e.

αj = log(π̃j),

where π̃j is the atlas-learned probability that any voxel is tissue j. In a way, this is similar
to the mixing proportions/multinomial prior probabilities of a standard spatially independent
mixture model.

The difference of our work to both of these cases (Cardoso et al. (2011) and Wels et al. (2011)) is
that none of our parameters are pre-determined, or require an atlas or training data to determine.
Rather, all parameters are estimated from the current best segmentation and observed data
(voxel intensities). We wish to see if the full Potts MRF is a better tissue prior than the
single-beta MRF of the previous chapter, when both do not have atlas information.

Roche and Forbes (2014) replaced the labels zi with continuous versions representing tissue
concentrations, in order to explicitly handle partial volume effects. For example, zi = (1/2, 0, 1/2)
corresponds to a voxel that is comprised of 50% CSF and 50% WM in the underlying tissue,
so that the observed intensity is a mixture of these. On the surface it may seem that this
is equivalent to our formulation of a single discrete label per voxel and conditional intensity
distribution given that label, but it is not. In our formulation, given zi, the observed intensity
is drawn from a single normal distribution with parameters corresponding to zi’s single class.
In the continuous formulation, the observed intensity at each voxel arises from a mixture of
normal distributions according to the mixing proportions in zi. Their MRF is (after a change of
notation)

exp(−zT
i Azi − β

∑
m∈∂i

|zi − zm|2), (4.4)

where A is a g × g matrix with the same structure as our B. The pairwise component is quite
different to our zT

i zm, being more suited to measuring the distance between the continuous zi

and zm. Because of the way the zi variables are formulated, A may be interpreted similarly
to our B matrix. They fixed the A matrix to values learned from training data. Our model
is quite different to this (as are the other details of their model and solution method), but we
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mention the MRF as A can be interpreted as smoothing between tissue classes, and we also
observe an artefact in the segmentations arising from this that those authors did. We will
discuss it further in section 4.6.1.2.

4.3 Method

First, we briefly restate the image model used. Then, we give the full Potts MRF and various
special cases of it that are used to study the effects of its various parameters. We show how to
estimate the parameters with maximum pseudolikelihood and derive the gradient. Then, we
show how to form the least-squares estimate for the parameters, for comparison to the method
of Van Leemput et al. (1999b). Finally, we outline how to solve the model for the mixture and
MRF parameters and segmentation using Expectation-Maximisation.

The image model is the same as that presented in the previous chapter. Let Y = (Y1, . . . , Yn)
be random variables where Yi is the intensity of voxel i in an n-voxel MR volume. We consider
the case of a single-channel MRI, i.e. Yi is scalar, though the theory is readily applied to
a multichannel/multivariate case. Let g be the number of tissue classes. We use g = 3:
cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM). Let Z = (Z1, . . . ,Zn) be
random variables giving the tissue classification or label of each voxel. Zi indicates the tissue
label of voxel i. Let ej be the indicator vector with a 1 in the jth position and 0 elsewhere.
Zi = ej if and only if voxel i is tissue j. The set of voxels that neighbour voxel i is denoted
∂i, and z∂i are the labels of all such neighbours. Lowercase letters e.g. yi and zi are used to
represent realisations of Yi and Zi.

The intensities are assumed Normally distributed given their label. The labels are distributed
according to the Potts MRF.

Yi|(Zi = ej) ∼ N (µj, σ
2
j )

Z ∼ Potts(Ψ).

However, we consider a number of forms of the full Potts MRF to examine and dissociate the
effects of the various parameters. The EM algorithm is used to solve for the intensity and MRF
parameters as described previously. This is described in section 2.5.

4.3.1 Choice of MRF

We consider a number of forms of the Potts MRF to examine and dissociate the effects of the
various parameters. They are summarised in table 4.1. Throughout, we use α and “alpha” to
refer to the unary parameters of the MRF that are spatially independent, and β, B or “beta”
to refer to the pairwise parameters that are spatially dependent and enable smoothing.

First, the full Potts MRF, called the “alpha-multi-beta” model, retains all α and β parameters
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for the greatest flexibility of all models considered:

p(Zi = ej|z∂i) ∝ exp(αj −
g∑

k=1
k 6=j

βjkuik) = exp(eT
j α − eT

j Bui)

α1 = 0

βjk > 0

Ψ = (α2, . . . , αg, βjk such that j < k)T

(4.5)

By disabling the αj parameters we obtain the “multi-beta” model which is most similar to that
used by Van Leemput et al. (1999b) and Cardoso et al. (2011):

p(Zi = ej|z∂i) ∝ exp(−
g∑

k=1
k 6=j

βjkuik) = exp(−eT
j Bui)

βjk > 0

Ψ = (βjk such that j < k)T

(4.6)

By setting all βjk to the same value β and disabling the αj parameters, we recover the single-beta
model of the previous chapter for comparison:

p(Zi = ej|z∂i) ∝ exp(βuij) = exp(βeT
j ui)

β > 0

Ψ = β

(4.7)

We also consider the single-beta MRF with additional αj parameters to see if these can account
for different tissue proportions. This yields the “alpha-single-beta” model:

p(Zi = ej|z∂i) ∝ exp(αj + βuij) = exp(eT
j α + βeT

j ui)

β > 0

Ψ = β

(4.8)

By comparing the models with a single smoothing β to those with multiple βjk we can examine
if the finer level of smoothing is beneficial. By comparing the models with and without αj

parameters, we can examine if a unary potential is needed beyond the smoothing portion of the
MRF.

For the alpha-multi-beta and alpha-single-beta models, we also investigate setting the α

parameters to the log-proportions of each tissue type (normalised so that α1 = 0), i.e.

exp(αj) =
n∑

i=1
τij/

n∑
i=1

τi1.
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The reason to use τij rather than zij is that ideally, τij has been marginalised over all realisations
z in the E-step (though in practice, the E-step is only approximate). This update is analogous
to how the mixing proportion parameters πj are set in a standard mixture model. However
unlike the standard mixture model, this is not the same as maximising Q with respect to αj.

The motivation is to view the unary potential as a prior probability for each tissue class, similar
to Wels et al. (2011). In this way we can view the MRF as the product of a spatially independent
tissue prior with a spatially-depending smoothing MRF. However, unlike Wels et al. (2011)
where αj are determined from an atlas, we explore determining them from the data so as not to
rely on an atlas. Our aim is to test if constraining the αj parameters to reflect class proportions
and leaving the pairwise parameters to smooth the segmentation is preferable to leaving all of
them unconstrained.

We call these models “fixed-alpha-single-beta” and “fixed-alpha-multi-beta”. The term “fixed”
is not in the sense of being fixed to a constant throughout the segmentation, but rather as fixed
to the logarithm of the current tissue proportions, which will change in each iteration.

Table 4.1: Summary of MRFs

potential p(ej|z∂i; Ψ) ∝ Ψ |Ψ|

single-beta exp(−βeT
j ui) β 1

multi-beta exp(−eT
j Bui) (βjk such that j < k)T

(
g
2

)
alpha-single-beta exp(eT

j α − βeT
j ui) (α2, . . . , αg, β)T (g − 1) + 1

alpha-multi-beta exp(eT
j α − eT

j Bui) (α2, . . . , αg,
βjk such that j < k)T

(g − 1) +
(

g
2

)
fixed-alpha-single-beta exp(eT

j α − βeT
j ui)

αj = log(∑n
i=1 τij/

∑
i τi1)

β 1

fixed-alpha-multi-beta exp(eT
j α − eT

j Bui)
αj = log(∑n

i=1 τij/
∑

i τi1)
(βjk such that j < k)T

(
g
2

)

We determine the parameters Ψ using maximum pseudolikelihood estimation. We also derive
the corresponding least-squares estimators and use this for comparison, akin to Van Leemput
et al. (1999b).

4.3.1.1 Model selection

The Akaike or Bayesian information criteria (AIC and BIC respectively) cannot be computed
for an MRF as the true maximum-likelihood estimates of the parameters are not known. Even
if they are, the observed-data likelihood f(y) cannot be computed due to the intractability of
the MRF. Ji and Seymour (1996) proposed a pseudolikelihood information criterion (PLIC) for
visible MRFs that is, in essence, the BIC with p(z) replaced by the pseudolikelihood. For a
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hidden MRF, Forbes and Peyrard (2003) derived an analogous PLIC:

PLIC = 2 log f(y; Θ̂, Ψ̂) − |Ψ| log(n). (4.9)

With this sign convention, the model with the highest PLIC is selected. The likelihood f(y) is
computed using the pseudolikelihood or mean-field approximation, at the estimated parameter
values Ψ̂ and Θ̂ and estimated segmentation ẑ. The neighbours ẑ∂i are taken from the estimated
segmentation ẑ. When ICM is used to produce these the PLIC of Stanford and Raftery (2002)
is recovered.

4.3.2 Maximum pseudolikelihood estimation

In what follows, we use the alpha-multi-beta Potts MRF as it is the most general form. The
pseudolikelihood approximation to p(z) is given by

p̃(z; Ψ) =
n∏

i=1

exp(zT
i α − zT

i Bui)
exp(∑g

k=1 eT
k α − eT

k Bui)
,

where
ui =

∑
m∈∂i

δ−1
imzm,

and δim is the distance between voxels i and m. The mean-field approximation is the same, but
the neighbours are calculated via

ui =
∑

m∈∂i

δ−1
im〈zm〉,

where 〈zm〉 satisfies either

〈zi〉 = p(zi|z∂i)∑g
k=1 p(ek|z∂i)

or
〈zi〉 = p(zi|z∂i)f(yi|zi)∑g

k=1 p(ek|z∂i)f(yi|ek)

depending on if p(z) or p(z|y) is to be approximated. We use the latter as justified by Celeux
et al. (2003) and Archer and Titterington (2002).

Maximum pseudolikelihood estimation determines Ψ by optimising the Q-function with respect
to them.

Ψ = arg max
Ψ

n∑
i=1

g∑
j=1

τij(log p(zi|z∂i; Ψ) − log(
g∑

k=1
p(ek|z∂i; Ψ)))

where τij are the (approximate) posterior probabilities p(zi|yi), calculated using (4.15). For
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example, for the alpha-multi-beta potential:

Ψ = arg max
α,B

n∑
i=1

g∑
j=1

τij(zT
i α − zT

i Bui − log(
g∑

k=1
exp(eT

k α − eT
k Bui)).

We will retain our previous convention of using “pseudolikelihood” in the sense of “maximum
pseudolikelihood” to mean either approximation, and make it explicit when we wish to reference
one or the other.

By the same argument presented in section 3.3.1.1, the Q-function is negative semi-definite with
respect to Ψ.

4.3.2.1 Gradient

The gradient of the Q-function may be obtained in closed form, making it amenable to gradient
descent algorithms. It was derived previously (3.9) as:

∇ΨQ(y, z; Θ,Ψ) =
n∑

i=1

g∑
j=1

∇ΨUi(ej|z∂i
(t); Ψ)

(
−τij

(t) + p(ej|z∂i
(t); Ψ)

)
,

where Ui(ej|z∂i) is −eT
j α + eT

j Bui for the alpha-multi-beta model, and a simplified version for
the others (the negative is from the convention of writing the MRF probability as exp(−Ui(·))).

For the α parameters, it is convenient to take derivatives with respect to α even though α1 = 0;
the first element of the resulting gradient vector is ignored. Now

∇αUi(ej|z∂i
(t)) = −ej,

so that
∇αQ(y, z; Θ,Ψ) =

n∑
i=1

g∑
j=1

−ej

(
−τij

(t) + p(ej|z∂i
(t); Ψ)

)
,

=
n∑

i=1
τi

(t) − pi
(t),

where τi
(t) = (τi1

(t), τi2
(t), . . . , τig

(t))T is voxel i’s posterior probability to be each tissue label, and
similarly pi = (p(e1|z∂i

(t)), p(e2|z∂i
(t)), . . . , p(eg|z∂i

(t))T is voxel i’s prior or MRF probability
to take each tissue label. As α1 = 0, we only consider elements 2 to g of the above gradient
vector; however, it is convenient to write it with the full α.

For B in the alpha-multi-beta and multi-beta potentials, since B is symmetric, we only give
the derivatives for βjk where j < k. We write

B = B′ + B′T ,

where B′ is the upper-diagonal matrix with (B′)jk = βjk for j < k, and all other entries are 0.
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Then
Ui(ej|z∂i) = −eT

j α + eT
j (B′ + B′T )ui

and
∇B′Ui(ej|z∂i

(t)) = ejui
(t)T + ui

(t)eT
j

The derivative with respect to βjk where j < k is found by the (j, k)th element of

∇B′Q(y, z; Θ,Ψ) =
n∑

i=1

g∑
j=1

(
ejui

(t)T + ui
(t)eT

j

) (
−τij

(t) + p(ej|z∂i
(t); Ψ)

)

Through tedious algebra, it can be shown that

∇B′Q(y, z; Θ,Ψ) = (−τ (t) + p)T u(t) + u(t)T (−τ (t) + p),

where

• τ (t) is the n× g matrix with (τ (t))ij = τij
(t),

• u(t) is the n× g matrix with (u(t))ij = uij
(t),

• p is the n× g matrix with (p)ij = p(ej|z∂i
(t); Ψ),

and we only consider the (j, k)th element with j < k for the derivative with respect to βjk. For
MRFs with only one β parameter, the β part of Ui(·) is −βuij, so

∇βQ(y, z; Θ,Ψ) =
n∑

i=1

g∑
j=1

−uij
(t)
(
−τij

(t) + p(ej|z∂i
(t); Ψ)

)
,

Finally, the derivatives are:

∇αQ(y, z; Θ,Ψ) =
n∑

i=1
τi

(t) − pi
(t) (alpha-single-beta,alpha-multi-beta)

∇B′Q(y, z; Θ,Ψ) = (−τ (t) + p)T u(t) + u(t)T (−τ (t) + p) (alpha-multi-beta, multi-beta)

∇βQ(y, z; Θ,Ψ) =
n∑

i=1

g∑
j=1

−uij
(t)
(
−τij

(t) + p(ej|z∂i
(t); Ψ)

)
(single-beta, alpha-single-beta)

where the appropriate equations are used depending on the parameters of the model. These
have been written in this way to emphasise that they can be achieved by straight-forward matrix
multiplications and additions, or in the case of a single β, element-wise matrix multiplication.
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4.3.3 Least-squares estimation

Least-squares estimation can be applied to MRFs that are log-linear in their parameters. Suppose
the MRF can be written

exp(−Ui(ej|z∂i; Ψ)) = exp(−Vi(ej|z∂i)T Ψ),

where Vi is a |Ψ| × 1 vector of coefficients for each parameter. From Bayes’ rule,

p(zi|z∂i)
p(zi, z∂i)

= 1
p(z∂i)

,

where the dependency of p on Ψ has been dropped for ease of notation. As the right-hand side
does not depend on the value of zi itself, it can be seen that

p(Zi = ej|z∂i)
p(ej, z∂i)

= p(Zi = ek|z∂i)
p(ek, z∂i)

for any distinct labels j and k with the same neighbourhood z∂i. Rearranging and substituting
p(zi|z∂i) yields

p(ej, z∂i)
p(ek, z∂i)

= p(ej|z∂i)
p(ek|z∂i)

= exp(−Vi(ej|z∂i)T Ψ + Vi(ek|z∂i)T Ψ)

(−Vi(ej|z∂i) + Vi(ek|z∂i))T Ψ = log
(
p(ej, z∂i)
p(ek, z∂i)

) (4.10)

The right-hand side is estimated by

log
(
p(ej, z∂i)
p(ek, z∂i)

)
≈ log N(j, z∂i)

N(k, z∂i)

where N(j, z∂i) is the number of times the neighbourhood z∂i occurs with centre label j in
the current segmentation. Up to

(
g
2

)
equations for each neighbourhood may be added to the

equation, which can then be solved for Ψ using least-squares regression.

For the single-beta MRF and the β component of the alpha-single-beta MRF,

Vi(ej|z∂i) = −uij. (4.11)

For the α component of the alpha-single-beta and alpha-multi-beta MRFs,

Vi(ej|z∂i) = −ej, (4.12)

without the first component since α1 = 0. For the smoothing parameters βjk in the multi-beta
and alpha-multi-beta MRFs, we flatten the upper half of B (not including the diagonal) into a
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vector:
Ψ = (β12, β13, . . . , β1g, β23, . . . , β2g, . . . , β(g−1)(g))T

Then Vi(er|z∂i) is a
(

g
2

)
vector whose elements are


uik if the corresponding βjk has j = r,

uij if the corresponding βjk has k = r,

0 otherwise.

For example, when g = 3 we have

Ψ = (β12, β13, β23)T

Vi(e1|z∂i) = (ui2, ui3, 0)T

Vi(e2|z∂i) = (ui1, 0, ui3)T

Vi(e3|z∂i) = ( 0, ui1, ui2)T

(4.13)

To create the full Vi for a given MRF, the appropriate α and (β or B) coefficients are
concatenated from (4.11), (4.12) and (4.13), remembering to omit the α1 coefficient.

4.3.4 Algorithm

The algorithm used is unchanged from the previous chapter; we repeat it here for clarity.
We use Expectation-Maximisation to estimate the MRF and intensity parameters, using the
pseudolikelihood or mean-field approximation in the Q-function for computational tractability.
The Q function is given by

Q(Θ,Ψ|Θ(t),Ψ(t)) =
n∑

i=1

g∑
j=1

τij
(t)(log φ(yi;µj, σ

2
j ) + log p(ej|z∂i; Ψ)) (4.14)

On iteration t:

1. (C-step) Form an estimate of the current labels z(t) to be used as neighbours; either
discrete (for the pseudolikelihood approximation) or continuous (for the mean-field ap-
proximation). The pseudolikelihood version uses the Iterated Conditional Modes (ICM)
update

zi
(t+1) = ej where j = arg max

k
p(ej|z∂i

(t,t+1); Ψ)φ(yi;µk
(t−1), σ2

k
(t−1)).

The mean-field version uses the mean-field update

〈zi〉(t+1) =
g∑

j=1
ej

p(ej|z∂i
(t,t−1); Ψ)φ(yi;µj

(t−1), σ2
j

(t−1))∑g
k=1 p(ek|z∂i

(t,t−1); Ψ)φ(yi;µk
(t−1), σ2

k
(t−1))
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These updates should be performed sequentially. To save time, we divide the voxels
into coding sets (see Appendix B) and update each set simultaneously, visiting them
sequentially.

2. (E-step) Calculate τij
(t), using z(t) from the C-step to compute the neighbour term uij:

τij
(t) =

p(ej|z∂i
(t); Ψ(t))φ(yi;µj

(t−1), σ2
j

(t−1))∑g
k=1 p(ek|z∂i

(t); Ψ(t))φ(yi;µk
(t−1), σ2

k
(t−1))

. (4.15)

3. (M-step) Maximise Q with respect to Θ to obtain the intensity parameters.

µj
(t) =

∑n
i=1 τij

(t)yi∑n
i=1 τij

(t)

Σj
(t) =

∑n
i=1 τij

(t)(yi − µj
(t))2∑n

i=1 τij
(t) .

Then, update Ψ using either the MPL or LS estimators.

For the MPLE, numerically maximise the negative semi-definite Q-function with respect
to Ψ, using the gradient (alpha-single-beta,alpha-multi-beta) as necessary.

For the LSE, first construct the neighbourhood histogram N(zi, z∂i) as described in
section 2.5. Once the frequency table is computed, it is used to construct the right-hand
side of the system of equations (4.10). The left-hand side is constructed using (4.11),
(4.12) and (4.13). The system can then be solved using linear least-squares regression for
Ψ.

These steps are repeated until the relative change in approximate observed log-likelihood falls
below a pre-specified tolerance (1e-5 in these experiments), or it decreases. This is

log f(y) ≈
n∑

i=1
log

 g∑
j=1

φ(yi|ej;µj
(t), σ2

j
(t))p(ej|z∂i

(t); Ψ(t))
 .

EM on a standard mixture model guarantees an increase in the observed log-likelihood and Q;
however, since we use an approximate E-step and a likelihood approximation for p(z) rather
than the true likelihood, we no longer have this guarantee.

We initialise the algorithm by fitting a standard normal mixture model with 3 components
to the image (i.e., without the MRF). This yields an initial segmentation to be used as the
neighbours, as well as means and standard deviations. The initial MRF parameters Ψ(0) are
estimated from this initial segmentation.
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4.4 Experiments

Our aim is to compare the full MRF to the commonly-used single-beta MRF to see if the more
specific smoothing and addition of unary potentials is advantageous. Overall, we compare each
of the single-beta, alpha-single-beta, multi-beta, and full alpha-multi-beta MRFs using both
MPL and LS estimators. We also allow the αj parameters to be free, or constrain them to
log-tissue proportions. The reason for using these variants of the full Potts MRF is to separate
out the effect of the pairwise (smoothing) and unary (proportion) parameters. The experiments
are outlined in table 4.2.

The closest analogue to Van Leemput et al. (1999b) is the alpha-multi-beta model with LS
estimation. There is no comparable method that uses the full MRF while fixing the parameters
except for Cardoso et al. (2011), but this requires use of an atlas in order to further split GM into
cortical- and deep-GM, and CSF into internal- and external-CSF, and we do not use an atlas
in this work. Hence, we do not compare to any fixed-parameter methods. For the single-beta
MRF, we have already found that estimation yields segmentations not significantly different
from popular fixed-β methods, and in some cases significantly better (particularly if the fixed β
is mis-specified). The same reasoning applies here.

In our second experiment, we emulate Wels et al. (2011) in setting αj to the log-proportion of
voxels in class j at each iteration relative to class 1:

αj
(t) = log(π̃j/π̃1)

π̃j =
n∑

i=1
τij

(t)/n.

In Wels et al. (2011), π̃j were determined through an anatomical atlas. We instead experiment
with determining these directly from the current segmentation. The motivation behind this is
to the view tissue prior as

p(ej|z∂i) ∝ π̃j exp(−eT
j Bui),

i.e. the product of prior knowledge about the tissue proportions π̃j, and an MRF that is
used exclusively for smoothing. These models are termed the “fixed-alpha-single-beta” and
“fixed-alpha-multi-beta” MRFs. We estimate their parameters with MPLE only.

For these experiments we use a neighbourhood size of 6 with the pseudolikelihood approximation,
as determined in the previous chapter. All images were segmented with both MPL and LS for
each MRF.

The algorithm was evaluated on images from the Internet Brain Segmentation Repository (IBSR)
(Rohlfing, 2012).1 The dataset used consists of T1-weighted coronal MR volumes of 18 normal
subjects of ages 7 to 71. Each volume consists of 128 coronal slices spaced at 1.5mm with

1The MR brain data sets and their manual segmentations were provided by the Center for Morphometric
Analysis at the Massachusetts General Hospital and are available at http://www.cma.mgh.harvard.edu/ibsr/.

http://www.cma.mgh.harvard.edu/ibsr/
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Table 4.2: Experiment summary. A neighbourhood of size 6 was used with the pseudolikelihood
approximation. All images were segmented with both MPL and LS for each MRF.

MRF Parameters (g = 3)
single-beta Ψ = β

alpha-single-beta Ψ = (α2, α3, β)T

multi-beta Ψ = (β12, β13, β23)T

alpha-multi-beta Ψ = (α2, α3, β12, β13, β23)T

fixed-alpha-single-beta Ψ = β αj = log(∑n
i=1 τij/

∑n
i=1 τi1) (j > 2)

fixed-alpha-multi-beta Ψ = (β12, β13, β23)T αj = log(∑n
i=1 τij/

∑n
i=1 τi1) (j > 2)

in-plane resolution varying from 0.84 × 0.84mm to 1.00 × 1.00mm. This dataset also contains
manual segmentations to compare the automatic segmentations to. The images are already
skull-stripped with bias-correction already performed, so no further preprocessing was done.
That is, all non-brain voxels (such as skull, fat) are already removed from the image as we wish
to concentrate on segmentation of the brain only.

Performance against the manual segmentations is evaluated by two metrics, segmentation
accuracy and Dice similarity. Let A and B represent two segmentations, being sets of indices
for each tissue. That is, Aj, j = 1, . . . , g are non-intersecting subsets of the indices 1, . . . , n
whose union is the entire brain, where i ∈ Aj implies that voxel i is assigned to tissue j in
segmentation A.

The segmentation accuracy is quantified as the overall percentage of voxels correctly classified.
Since the reference and test segmentations have the same number of voxels (all of the brain
voxels), this is well-defined.

accuracy(A,B) = |A ∩B|
|A|

.

The Dice similarity coefficient (commonly called ‘Dice score’ or ‘Dice index’) (Dice, 1945) is
used to compare segmentations on a tissue-by-tissue basis. The Dice coefficient for a given
tissue between two segmentations A and B is given by the number of correctly-classified voxels
divided by the average area classified (of that tissue):

Dice(Aj, Bj) = 2|Aj ∩Bj|
|Aj| + |Bj|

.

It ranges from 0 to 1, with 1 meaning a perfect match between the two segmentations of that
tissue. The reason for using Dice coefficient for each tissue rather than accuracy is that the
number of voxels classified as a particular tissue may not be equal between the two segmentations,
whereas the number of overall voxels in the brain (used for the accuracy) is.
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4.5 Results

A large number of least-squares segmentations did not complete due to errors in the regression.
This occurred exclusively in MRFs with multiple smoothing parameters and was due to the
coefficient matrix of the system of equations being singular. These are shown in table 4.3.
For this reason, we only include potentials estimated with least-squares if all subjects were
successfully segmented in future results. All MPL segmentations completed successfully. This
might be another reason that the full Potts MRF is not often used for tissue segmentation; to our
knowledge, only the least-squares estimator has been proposed for MRF parameter estimation
in tissue segmentation (without requiring extensive sampling as with MCMC approaches, or
training data).

Table 4.3: Number of subjects (out of 18) successfully segmented using the least-squares
estimator.

MRF number successfully segmented

alpha-single-beta 18
single-beta 18

alpha-multi-beta 6
multi-beta 9

4.5.1 Model selection

We consider the value of the various MRFs using two metrics (table 4.4):

• pseudolikelihood information criterion (PLIC), and
• accuracy/Dice coefficient.

While the former is more appropriate for model selection, the latter is of more practical interest.
The highest PLIC is desirable according to the definition in (4.9). We only consider the MPL-
estimated methods, as not all LS methods completed successfully. In addition, the PLIC should
be evaluated at the maximum-(pseudo)likelihood estimates, and the LS method does not attempt
to maximise pseudolikelihood. For the same reason, the fixed-αj MRFs were not included.

From table 4.4 it can be seen that the multi-beta model has the highest PLIC, followed by
single-beta. It appears that addition of the αj parameters is not called for, nor is fixing them to
the log-class proportions (which reduces the number of parameters). Also, multiple smoothing
parameters βjk has higher PLIC than just one β.

On the other hand, if only the segmentation accuracy is considered (figure 4.1 and table 4.4),
fixing the αj to the log-class proportions produces the most accurate segmentations. Having the
αj parameters with no constraints is not beneficial. Additionally, a single smoothing parameter
gives higher accuracy than multiple. In terms of specific tissue Dice scores, the same trend
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Table 4.4: Model selection. Average PLIC evaluated at MPL estimates (left); average accuracy
(right), decreasing.

MRF PLIC

multi-beta -8306583
single-beta -8315326

alpha-multi-beta -8342722
alpha-single-beta -8364843

fixed-alpha-single-beta -8618450
fixed-alpha-multi-beta -8618656

MRF accuracy

fixed-alpha-single-beta 0.819
fixed-alpha-multi-beta 0.819

single-beta 0.812
multi-beta 0.810

alpha-single-beta 0.807
alpha-multi-beta 0.802

noted in the previous chapter is also present here: gains in CSF and GM come at the expense
of WM, and vice-versa.

Figure 4.2 shows the paired difference in accuracy for each MRF potential compared to the
single-beta MRF. Overall, it appears that the only model worth using over the single-beta MRF
are those with α fixed to the tissue proportions. However, these two models also have extremely
variable performance relative to the single-beta MRF in CSF in particular, ranging from 0.08
worse to almost 0.15 better (again, largely offset by the opposite trend in WM so that the
overall gain in accuracy is much more moderate by comparison).

A mixed-effects model was fit to accuracy against MRF potential controlling for repeated subjects
and is shown in table 4.5, showing significant differences in accuracy depending on the MRF
used. Post-hoc comparisons with Tukey’s method (table 4.6 shows the significant differences)
showed that the fixed-α methods performed significantly better than their counterparts with
unconstrained α, while the unconstrained alpha-multi-beta performed significantly worse than
single-beta.

Table 4.5: Mixed-effects model of segmentation accuracy for different MRFs using MPL,
controlling for subject blocking.

Sum Sq Mean Sq NumDF DenDF F Pr(>F)

MRF 0.004 0.001 5 85.0 7.953 <0.001*

Table 4.6: Post-hoc pairwise comparisons for differences in accuracy using Tukey’s method.
Only significant differences are shown.

Comparison Estimate p

amb - fixed-amb -0.016 <0.001*
amb - fixed-asb -0.017 <0.001*

amb - sb -0.010 0.032*
asb - fixed-amb -0.012 0.008*
asb - fixed-asb -0.012 0.007*
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Figure 4.1: Segmentation metrics (accuracy or Dice coefficient) for the various MRFs using
MPL.
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Figure 4.2: Paired differences in accuracy/Dice, relative to the single-beta MRF.

Table 4.7: Comparison of accuracy and Dice coefficient between LS and MPL for those MRF
potentials where LS succeeded on every subject.

MRF accuracy Dice (CSF) Dice (GM) Dice (WM)
LS MPL LS MPL LS MPL LS MPL

alpha-single-beta 0.816 0.807 0.672 0.616 0.853 0.839 0.779 0.813
single-beta 0.813 0.812 0.628 0.625 0.843 0.843 0.818 0.820

4.5.2 Comparison of estimators

It is difficult to compare the MPLE to the LSE due to the LSE often failing to find estimates
for βjk. Only comparisons on the single-beta and alpha-single-beta models may be made.
Table 4.7 compares the accuracy and Dice coefficients for these MRFs. Overall, using the LSE
produces segmentations with higher accuracy than with the MPLE, except in white matter.
Interestingly, using MPL the single-beta model has the higher accuracy, while with the LSE the
alpha-single-beta model has the higher accuracy.
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Figure 4.3: Tissue proportions compared to exp(αj) (normalised to sum to 1).

4.5.3 Parameter values

While the main aim is to explore the efficacy of the different MRFs with regards to segmentation
accuracy, it is also of interest to examine the estimated parameter values.

First, we explore the validity of fixing αj to the tissue proportions by examining whether the
unconstrained models had a correspondence between exp(αj) and the tissue proportions. The
tissue proportions from the final segmentation are plotted against the proportions derived from
the final α parameters in figure 4.3. The derived proportions are given by

π∗
j = exp(αj)

(∑g
k=1 exp(αk)) ,

that is, exp(αj) normalised to sum to 1 to account for α1 = 0. The tissue proportions from the
segmentation are calculated by

π̃j =
∑n

i=1 zij

n
.

It appears that tissue proportion may have an inverse relationship with π̃j. If the β parameters
were omitted (set to 0), then the model would be a standard normal mixture no spatial
dependence, and we would have π̃j = π∗

j . Introduction of smoothing parameter(s) clearly breaks
this correspondence.

Figure 4.4 show the β values for the different MRF potentials with multiple βjk. In this figure
βjk have been converted to indicate the associated tissues (1=CSF; 2=GM; 3=WM), e.g. β12

applies to CSF and GM. The graph also displays the β values for the same model fitted with
only a single β value. The MPL values only are shown, since the LS estimator could not always
determine estimates for βjk.

When αj fixed to log-tissue proportions, the β and βjk estimates are both higher and much more
variable than when they are unconstrained. For all multi-beta models, β13 for the CSF-WM
boundary is much higher than the other two βjk, which remain close to the corresponding
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Figure 4.4: βjk values estimated by MPL for various potentials; one line per subject. The β
values for the corresponding model with only a single β are shown as horizontal lines.

single-β value. It appears that allowing for tissue-specific βjk has allowed greater sensitivity for
CSF-WM in particular.

4.6 Discussion

4.6.1 Model selection

Since the LSE often failed to find estimates for βjk, we only consider the MPL segmentations in
model selection. Figure 4.5 shows sample segmentations using MPL for various subjects. For all
brains, we found relatively little difference between the MRFs within each subject, being mostly
present in small isolated regions of tissue or thin features being smoothed or preserved. As in
the previous chapter, the deep-grey matter regions were poorly segmented in all subjects due to
lack of an anatomical atlas to inform the algorithm. GM was also oversmoothed in the cortical
folds in most segmentations. Segmentations with αj fixed to log-tissue proportions seem to have
less CSF and more GM, which is oversmoothed, regardless of whether one β or multiple βjk are
used.

All segmentations suffer from the same partial-volume problem noted in the previous chapter:
on the boundary of dark CSF and bright WM, a thin border of GM is retained. The intensity
of such voxels is intermediate to CSF and WM, matching GM. The smoothing portion of the
MRF should give these voxels much higher probability to be CSF or WM than GM due to few
neighbours being GM. It appears that the corresponding smoothing parameters are not strong
enough for the MRF probability to overcome the difference in intensity probability, and if they
were stronger they would oversmooth the rest of the brain. Alternatively, the neighbourhood
may not be large enough to capture a majority of CSF and WM neighbours as opposed to GM,
particularly if the shell of GM surrounding the ventricle extends vertically (giving the top and
bottom neighbours of the 6 available as GM).
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4.6.1.1 Unary parameters

When selecting a model to use, a decision must be made as to the most important objective of
the segmentation task: to achieve highest segmentation accuracy, or to favour models that are
statistically justifiable.

PLIC favours a model without the unary parameters. In addition, if αj must be used, they should
not be fixed to the log-tissue proportions. This last is unsurprising as the log-tissue proportions
are not the maximum pseudolikelihood estimates for αj unless there is no smoothing component
to the MRF, so the base pseudolikelihood of these models suffers and is not sufficiently offset by
having fewer parameters. In fact, as evidenced by figure 4.3, unconstrained exp(αj) are not at
all equivalent to tissue proportions and may even be inversely proportional to them. This is the
opposite trend than if αj were constrained or if there were no smoothing parameters.

Despite PLIC placing the fixed-αj models as the worst options, these achieve the highest overall
accuracy, though not significantly more than the single-beta model of the previous chapter. This
highlights that pseudolikelihood and accuracy are different objective functions. Although the
fixed-αj models may not be statistically desirable, they may be a closer match to the underlying
physical model.

Figure 4.6 shows the tissue proportions of the automatic segmentations compared to the manual
segmentation. Models with constrained αj have tissue proportions that are quite different to
the other models. While all the MRFs with unconstrained parameters had too much CSF, the
two models with constrained-α were able to match the manual segmentation more closely. On
the other hand, the GM and WM proportions were respectively much higher and lower than
those of the manual segmentations and unconstrained models. In particular, the GM seems to
be very oversmoothed in these segmentations as can be seen in figure 4.5. The fact that the
fixed-αj MRFs have higher overall accuracy overall compared to the other MRFs could be an
artefact of the manual segmentations for the IBSR dataset labelling extra-sulcal CSF as GM
(Valverde et al., 2015). Though fixing αj achieved higher segmentation accuracy, too many fine
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features are lost in the GM.

Overall, it does not appear worth including αj parameters compared to the standard single-beta
MRF. When unconstrained, these models achieve lower accuracy than the standard single-beta
MRF, with the difference being significant for the alpha-multi-beta MRF. When constrained,
the models achieve higher accuracy but not significantly, and visual inspection of the resulting
segmentations reveals that GM is undesirably oversmoothed. While fixing αj to log-class
proportions can significantly change the resulting tissue proportions, it appears that they must
be constrained using external anatomical knowledge (e.g. derived from an atlas as in Wels et al.
(2011)) to be useful.

4.6.1.2 Smoothing parameters

In terms of whether to use a single smoothing parameter β or multiple βjk, again PLIC suggests
to use multiple, while segmentation accuracy suggests to use only one. We deduce that while
having tissue-specific smoothing parameters induces a higher probability between the MRF
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prior and the data (i.e. higher PLIC), this doesn’t match the underlying anatomical model,
resulting in a loss of accuracy.

When talking about βjk for specific j and k, we remind the reader that we use the convention of
1=CSF, 2=GM, 3=WM (in increasing order of intensity). Examining the βjk values in figure 4.4,
we see that β12 (CSF-GM) and β23 (GM-WM) do not change much in value compared to if only
a single β value had been used. However, β13 (CSF-WM) becomes much larger. It is also of
interest to note that the proportion of neighbour pairs that are CSF and WM, is very low in all
the resulting segmentations (figure 4.7). The likelihood for the full Potts MRF can be written

p(z) ∝ exp(
g∑

j=1
αjnj −

∑
j 6=k

βjknjk),

where nj = ∑n
i=1 zij is the number of voxels with label j, and njk = ∑n

i=1 zijuik is the number of
(distance-weighted) neighbouring voxel pairs with labels j and k.

It is unclear why a low n13 and high β13 should be associated with each other; a low (or zero)
β13 would maximise p(z) given it must be non-negative, in the absence of an intensity pdf. The
inclusion of the intensity pdf must constrain the parameter values such that this does not occur.

Another possibility is that due to n13 being very small, the gradient of β13 on the Q-function is
much lower than the other βjk parameters, so its individual value operates on a different scale.
Figure 4.7 shows the proportion of neighbour pairs in the image that consist of two different
tissues. The proportion of CSF neighbouring WM (n13 normalised) is significantly lower than
all the other pairs. The MRF probability (and Q function) will thus be relatively insensitive to
the value of β13, so the fact that it is so much larger than the other βjk may not be practically
meaningful.

Another consequence of a high β13 is that CSF and WM are prohibited from being in the same
neighbourhood due to the large penalty. However, it is unclear whether a high β13 causes n13 to
be low, is caused by n13 being low, or both. It is possible that since the E-step is approximate
and very dependent on the current segmentation, there is an undesirable feedback loop between
the C-step and M-steps. That is, since the current segmentation has a low occurrence of CSF
and WM neighbouring each other, the estimated β13 is higher; but since β13 is higher, even
fewer instances of CSF and WM occur in the next segmentation, which feeds into the next β13

and so on. This can be seen in figure 4.7, where the proportion of CSF-WM voxel pairs in the
manual segmentation is much higher than in any of the automatic segmentations.

Recall the MRF of Roche and Forbes (2014) (4.4), which has a unary potential

exp(−zT
i Azi),

that can be largely interpreted in the same way as our pairwise potential, due to the way their
zi are formulated. The A matrix serves the same purpose as our B matrix. They fixed the
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Figure 4.9: Example segmentation from which βjk cannot be estimated using LS. CSF and WM
never appear in the same orthogonal/6-neighbour neighbourhood, except when GM is in the
centre.

A matrix to values learned from training data. They also found that the parameter in A

corresponding to CSF and WM was very large. For them, this caused an artificial shell of GM
around the ventricles, as we observe also. They mentioned that this might be addressed by
introduction of a spatially-varying prior, presumably meaning an anatomical atlas.

When only one β parameter is used, the feedback problem is somewhat abated as β cannot be
so specific. This can be seen in figure 4.8, which shows the proportion of (CSF, WM) voxel
pairs by MRF potential. It can be seen that all MRFs with a single β parameter have more
(CSF, WM) voxel pairs than those with multiple βjk parameters. This is likely to be due to the
high β13 in multi-beta models.

4.6.2 Comparison of estimators

The LSE often failed to find an estimate for the MRF parameters. This happened exclusively in
models with multiple βjk parameters. On closer examination of such a case, it was noted that
the matrix of coefficients in the system of equations (4.10) was singular.

In particular, it was common for the column corresponding to β13 to be entirely 0, leaving this
parameter unable to be estimated. This parameter corresponds to the CSF-WM boundary,
which is not as common as the other boundaries in a human brain. Figure 4.9 shows the manual
segmentation for one subject for which the multi-beta LS estimation failed, alongside the LS
segmentation at that point. At this point in the segmentation procedure, there were very few
neighbourhoods that had both CSF and WM present in the same neighbourhood, and all of
these had GM in the centre. A typical example is the mis-classified thin strip of GM surrounding
the ventricles between CSF and WM, arising as a consequence of partial volume effects.

To see how a scarcity of (CSF, WM) neighbours can cause its corresponding column of coefficients
to be zero, consider the LS equations corresponding to the βjk parameters for a neighbourhood
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z∂i with g = 3:
−ui2 + ui1 −ui3 ui3

−ui2 −ui3 + ui1 ui2

−ui1 ui1 −ui3 + ui2



β12

β13

β23

 =


logN(1, z∂i)/N(2, z∂i)
logN(1, z∂i)/N(3, z∂i)
logN(2, z∂i)/N(3, z∂i)

 .

Recall that 1=CSF, 2=GM and 3=WM. Since a given neighbourhood must occur with two
different centre labels in order to be included in the system of equations, and all neighbourhoods
with both CSF and WM only had GM in the centre, no such neighbourhoods were represented
in the system of equations. Assume a neighbourhood is present in the system of equations. The
first equation of the three possible requires that neighbourhood to appear at least once with
CSF in the centre, and at least once with GM in the centre. The coefficient for β13 is −ui3,
i.e. the number of WM neighbours. However, since CSF does not appear with WM in the same
neighbourhood unless GM is in the centre, we must have no WM neighbours (ui3 = 0) in order
to have N(1, z∂i) = N(CSF, z∂i) > 0. This leaves a coefficient of 0 for β13.

Likewise, the second equation requires the neighbourhood to appear with both CSF and WM in
the centre, and the coefficient is −ui3 + ui1. In order to have N(CSF, z∂i) > 0 we must have no
WM neighbours (ui(WM) = ui3 = 0) and in order to have N(WM, z∂i) > 0 we must have no CSF
neighbours (ui(CSF) = ui1 = 0), thus the coefficient of β13 is again 0. Similar reasoning shows
that the coefficient of β13 in the third equation is also 0.

As a result, the matrix of equations is singular and β13 cannot be estimated. This could be
avoided if the mean-field approximation were used to compute the uij since these are rarely
0; however, then it becomes unclear how to count N(j, z∂i). It might also be avoided if the
neighbourhood size was increased so that given tissue combinations occurred more frequently in
the same neighbourhood, but this would also necessarily reduce the probability of a given z∂i

occurring at least once with two different centre voxels.

Another alternative is to use the minimum mean-square error version of the LSE, derived by
Borges (1999) for a binary MRF. This variant derives an estimate for the right-hand side of the
LS equations, being (for a binary MRF with labels 0 and 1) log p/(1 − p) where p is p(1, z∂i)
and 1 − p = p(0, z∂i). It is derived by minimising the square error of the estimate assuming
that N(1, z∂i) is binomially distributed for a given z∂i with parameter p. Since p is unknown,
this error is integrated over the range of p which is assumed uniformly distributed on [0, 1].
The entire quantity is then minimised with respect to the estimate. Remarkably, the resulting
equation has a closed-form solution and is computable even when the neighbourhood does not
appear with a given centre tissue, or indeed when the neighbourhood is not present in the image
at all. However, the estimator has not been extended to an MRF with more than two labels.

Overall, even though the LSE produced higher accuracy segmentations on the single-beta and
alpha-single-beta models than MPL, we cannot recommend it due to this inherent instability.
The MPLE does not suffer this problem, as it only requires a single pair of neighbours to be
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CSF and WM in order for β13 to be present in the likelihood.

4.7 Conclusion

In this chapter we have studied different forms of the full Potts MRF for use as a prior in
mixture-MRF brain MRI segmentation, as an alternative to the simplified single-beta Potts
MRF of the previous chapter. The aim was to enable finer control of the smoothing applied
by the MRF, by changing the single β parameter to multiple βjk parameters that relate to the
boundary between tissues j and k. Additionally, incorporation of spatially-independent unary
parameters αj that depend only a voxel’s own label was thought to give the MRF flexibility to
adjust for imbalanced tissue proportions. Alternatively, by constraining αj to match the current
log-tissue proportions, the MRF can be viewed as a tissue prior multiplied by a pairwise MRF
for spatial regularity.

To separate the effects of the various parameters, we compared the single-beta MRF of the
previous chapter to various forms of the full Potts MRF: with αj enabled, disabled, or fixed
to log-tissue proportions, and with a single smoothing parameter β or multiple tissue-specific
smoothing parameters βjk.

We extended the work of the previous chapter to show how maximum pseudolikelihood estimation
could be applied to such models. The MPLE retains its desirable features: its Hessian is negative
semi-definite, so any local maximum in Ψ for a given segmentation z is also a global maximum
(though possibly not unique). Its gradient is available in closed form for ease of use with numerical
optimisers. The objective function is the Q-function which has already been calculated as part
of EM; it does not require additional computation to set up the optimisation. We also showed
how to use the least-squares estimator to estimate the MRF parameters. This approach the
same as that implemented by Van Leemput et al. (1999b), though with a slightly different MRF.

When comparing estimators, we found that the LSE often fails to form a solvable system of
equations when multiple βjk parameters are used. This was due to the very low occurrence of
CSF and WM as neighbours with different centre voxel labels, so that the coefficient of the
corresponding β13 was never non-zero, and the system was under-determined. By contrast, the
MPLE only requires at least one occurrence of CSF and WM in the entire image in order to find
an estimate for β13. This extreme dependence of the LSE on the segmentation’s neighbourhood
profile makes less preferable to the MPLE. In future work, one option may be to use the
minimum mean-square error variant of the LSE developed by Borges (1999), extending it to
more than 2 tissue labels. Even then, the neighbourhood counts N(j, z∂i) must be calculated
which represents an extra computational burden over the MPLE. However, when the LSE was
successful (for the single-beta and alpha-single-beta MRFs), it produced segmentations more
accurate than MPLE, though not significantly so.
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PLIC and segmentation accuracy were used to aid in model selection. PLIC favoured multiple
βjk over a single β and not to use any αj parameters, particularly not fixed to log-tissue
proportions. Segmentation accuracy recommended the opposite: constraining αj and using a
single β gave the highest accuracy. However, no MRF was significantly more accurate than the
standard single-beta MRF.

Use of unconstrained αj does not benefit the segmentation accuracy at all. Constraining αj to
log-tissue proportions produced segmentations with tissue proportions that were quite different
to the other MRFs, with CSF more closely matching the manual segmentation, but much more
GM. The resulting loss of definition of the cortical folds is such that use of constrained αj is not
worth the higher accuracy (which may be an artefact of the IBSR manual segmentations being
oversmooth). Constraining αj may still be of worth, but these should incorporate external prior
knowledge of tissue proportions as in Wels et al. (2011) rather than being determined directly
from the current segmentation.

A similar effect was noticed with the smoothing parameters. Although use of multiple βjk

parameters may be beneficial in allowing more specific smoothing, the reliance of the E-step
on the current segmentation and subsequent feedback loop with the M-step bias them too
much. In particular it appears that if a given tissue combination is relatively rare, this drives
the corresponding βjk

(t) parameter higher, which further inhibits that tissue combination from
appearing, which feeds back into the next βjk

(t+1) estimate. This was noticed along the CSF-WM
boundary with β13 being very high compared to the other βjk and preventing partial-volume
voxels on this boundary from being classified as anything other than GM.

Overall, we believe that while multiple αj and βjk parameters can be beneficial, they must be
constrained using prior and external anatomical knowledge in order to be most effective. That is,
they should be used to impose constraints on the segmentation rather than allowing themselves
to be driven by it. This may be one reason that papers such as (Maggia et al., 2016; Kabir
et al., 2007; Menze et al., 2015) mention the full Potts MRF but only use the single-beta MRF.
Incorporating such knowledge requires use of an anatomical atlas. For example, αj can fixed to
constant expected log-tissue proportions rather than being allowed to vary throughout as in
Wels et al. (2011). Alternatively voxel-specific αij may be used to incorporate an anatomical
atlas, being equivalent to multiplying the MRF by the atlas. Cardoso et al. (2011) demonstrated
how βjk constraints may be imposed on tissue pairs anatomically unlikely to neighbour each
other by splitting each tissue into more specific sub-classes using an atlas.

In the absence of prior anatomical knowledge, or when an atlas cannot be used due to e.g. brain
injury, the single-beta MRF is preferred for its simplicity and interpretability, and given no
other MRF produced significantly more accurate segmentations.
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Chapter 5

Anisotropic MRFs

5.1 Introduction

Using the Potts MRF prior for the tissue labels acts to smooth the segmentation. The forms
of MRF considered up to now have a pairwise term that treats each neighbour of the same
tissue label identically. For example, in the single-beta MRF, all neighbours of the same colour
as the centre voxel contribute β/δim to that pixel’s MRF potential. In this way, the MRF is
directionally isotropic (up to a distance rescaling).

In previous chapters, it was found that the Potts MRF can sometimes oversmooth the image,
with narrow sulci and gyri on the cortical surface being filled in. This happened regardless
of whether a single or multiple smoothing parameters were used, but was exacerbated with
the latter. While multiple smoothing parameters can enable finer control over specific tissue
boundaries, they must be constrained using e.g. an anatomical atlas. When the parameters are
unconstrained, the model is almost entirely driven by the data rather than imposing a constraint
on it due to the use of an approximate E-step in the EM algorithm. We seek to compromise
between these extremes, avoiding the problem of many unconstrained parameters while still
allowing the smoothing to be variable across the image.

One solution is to only use a single smoothing parameter β, but weight it for each voxel pair
to modulate the amount of smoothing. Rather than the weight depending only on the tissue
classification of the neighbours as in the previous chapter, we allow it to incorporate of neighbour
direction and other local image information. If the dependence of these weights on the image
characteristics is defined generatively, no extra parameters need to be estimated. This avoids the
extreme dependence of parameter values on the current segmentation noted with the multi-beta
MRFs, while still allowing β to vary across the image.

In this chapter, we present a framework for incorporating local image characteristics into the
MRF prior. In particular, we incorporate information about edge strength and orientation
in the local neighbourhood in order to smooth along edges, but not across them. Our choice
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of MRF potential is inspired by diffusion-based image smoothing and Perona-Malik diffusion
(Perona and Malik, 1990).

We begin by stating the problem to motivate the desired properties of the MRF potential. A
brief overview of anisotropic and Perona-Malik-based diffusion is given. This along with the
desired properties lead naturally to a number of choices for anisotropic MRF prior. These
MRFs are then utilised within the EM framework already presented to segment brain MRI. We
compare the properties of the different anisotropic MRFs, as well as their performance against
the single-beta MRF. We also incorporate parameter estimation.

The advantages of the work presented here are:

• we provide a generic framework to incorporate edge orientation and strength into an
anisotropic MRF potential;

• the anisotropy is incorporated into the MRF itself rather than as a pre- or post-processing
step;

• the smoothing parameter β is determined automatically through maximum pseudolikeli-
hood estimation rather than fixed and tuned manually.

5.1.1 Aim

We seek to design an MRF potential that incorporates information about the strength and
orientation of local image features (in this case, tissue boundaries or edges) and retains them
rather than smoothing across them.

Recall that the image model consists of a mixture model, with each voxel’s intensity yi normally
distributed given its label zi. The label zi is distributed according to a Markov random field,
dependent on the labels of its neighbours, z∂i.

Yi|Zi = j ∼ N (µj, σ
2
j )

Zi|Z∂i ∼ MRF(Ψ)

The conditional probability for a voxel to be a particular tissue is

p(zi|z∂i; Ψ) ∝ exp(−Ui(zi|z∂i; Ψ)) (5.1)

The potential Ui can consist of a unary term which depends only on zi and is spatially
independent, and a pairwise term depending on voxel pairs (zi, zm), m ∈ ∂i. The pairwise
term is used to smooth the segmentation, while the unary term can be used to incorporate
spatially-independent prior knowledge with the smoothing.
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We will write the MRF potential as

Ui(zi|z∂i) = Wi(zi) +
∑

m∈∂i

Wim(zi, zm),

where Wi is the unary term and Wim is the pairwise term. The single-beta MRF has

Wi(zi) = 0

Wim(zi, zm) = − 1
δim

βzT
i zm.

The full Potts MRF has
Wi(zi) = −zT

i α

Wim(zi, zm) = 1
δim

zT
i Bzm.

In this chapter we aim to extend the pairwise term Wim to also incorporate local image edge
strength and orientation. We will use the pairwise term of the single-beta model as a base due
to its simplicity, modifying it to weight β for each neighbour to adjust the amount of smoothing
applied. Because of this weighting, there is no need for tissue-specific parameters βjk.

To this end, we allow the pairwise term to access image intensity, writing it as

Wim(zi, zm, yi, ym) = − 1
δim

βwim(zi, zm, yi, ym)zT
i zm, (5.2)

where the function wim(·) ∈ [0, 1] determines how strongly voxel m contributes to the conditional
probability. If wim = 0, voxel m does not influence the label of voxel i. If wim = 1, voxel m
contributes the same amount as the original single-beta model. Hence wim should range from 1
for neighbours that are within the feature we wish to retain, to 0 for neighbours without.

We concern ourselves with the detection of edges in the brain (surfaces in 3D). A voxel deemed
to be “across” an edge should not contribute to the local tissue majority, while one “along”
or tangent to an edge should contribute as it originally did. This should help the MRF to
distinguish whether a thin strip of tissue should be smoothed as noise, or preserved as a feature.

Suppose at a given pixel, an edge is detected with orientation v ∈ Rd, where d is the dimension
of the image. Additionally, suppose we have some measure of the strength of the edge λ ∈ [0,∞),
where λ = 0 means “no edge”, and larger positive values represent how “strong” an edge is.
Let im denote the vector from voxel i to voxel m. Also, given two vectors a and b, let a ⊥ b

denote that a and b are perpendicular and a ‖ b that they are parallel. The criteria stated so
far translate to the following desired properties of wim:

• If there is a strong edge, voxels along the edge should have weight 1 while those across
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the edge should have weight 0:

λ “large” =⇒ wim ≈

1, im ‖ v

0, im ⊥ v
(P1)

• If there is no or a weak detected edge, standard isotropic smoothing should occur:

λ “small” =⇒ wim ≈ 1 ∀m ∈ ∂i (P2)

The first property ensures that in regions where an edge is detected, only neighbours along the
edge, as opposed to across it, count towards the neighbourhood tissue majority. The second
property states that if there is no detected edge in the neighbourhood, then the standard
single-beta MRF can be used.

5.2 Background

5.2.1 Image-based diffusion

In order to find wim that weights neighbours anisotropically, downweighting those across edges,
we draw inspiration from the field of diffusion-based image smoothing. We give a brief overview
of Perona-Malik diffusion, only touching on aspects that will directly motivate the choice of
wim. For further details, see Perona and Malik (1990) and Weickert (1998).

One way to smooth a noisy image is to convolve it with a Gaussian kernel. That is, the
intensity at each pixel is replaced by the weighted sum of its own intensity and intensities in
its neighbourhood, with the weights corresponding to a Gaussian or discretised version of it.
Smoothing in this way is directionally isotropic since the Gaussian kernel is symmetric. This
effectively smooths noise from images, but also smooths across image boundaries, blurring them.

Gaussian smoothing can be understood as a diffusion process on the image intensities. Let
I(x, t) represent the image at time t and at spatial location x. The MRI is observed at time 0,
and we only observe the value of I at spatial locations corresponding to the pixel grid. That
is, our vector of observed intensities y is such that yi = I(x, 0) where x corresponds to the
coordinates of voxel i. The following equation is the heat equation with the initial value equal
to the observed image:

∂tI = div (D∇I) ,

I(x, t = 0) = original image,
(5.3)

where the diffusion tensor D is a d-dimensional symmetric positive-definite matrix, and d is
the dimension of the image. D itself may be a function of the pixel location and time.

When D is the identity matrix, (5.3) becomes the standard heat equation. The solution to
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(a) Original image (b) Gaussian (c) Perona-Malik

Figure 5.1: Examples of isotropic (Gaussian) and anisotropic (Perona-Malik) image diffusion.

this equation at time t is the convolution of I with a Gaussian with diagonal covariance matrix
2tId where Id is the identity matrix. This smooths equally at all pixels and isotropically in all
directions, including across edges.

5.2.2 Perona-Malik diffusion

The incorporation of anisotropic smoothing into the above framework was pioneered by Perona
and Malik (Perona and Malik, 1990). They allowed D to vary with the pixel position x,
considering D = w(x, t)Id. The diffusivity function w(x, t) provides the strength of smoothing
to be performed at location x. The idea is that w should approach 0 at or near image edges, and
1 away from edges. This corresponds to no smoothing at and near image edges, and isotropic
smoothing away from edges, preventing them from being blurred. Figure 5.1 shows the difference
between Gaussian (isotropic) smoothing and Perona-Malik (anisotropic) smoothing. Gaussian
diffusion blurs all features including the edges (quite noticeable on the GM-CSF interface), while
anisotropic diffusion preserves these while still blurring the homogeneous regions.

Perona and Malik proposed that w be a function of the magnitude of the image gradient at
location x, that is w(x, t) = w(|∇It(x)|). Here ∇It(x) is the gradient of the image after
diffusion at time t, at location x. We omit the dependence on t for clarity in what follows. The
reason for using the image gradient is that sharp edges are typically recognised as a sudden
change in image intensity at the edge. This corresponds to a large image gradient magnitude
near an edge. The two functions proposed were:

wP M1(|∇I|) = exp(−(|∇I|/κ)2)

wP M2(|∇I|) =
(
1 + (|∇I|/κ)2

)−1
.

(5.4)

The difference between the two is in the rate at which the diffusion coefficient decays to 0; it
takes longer in the inverse version (see figure 5.2). In a homogeneous patch of the image, |∇I|
approaches 0, as would be expected away from an edge. Both wP M1 and wP M2 approach 1 so
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Figure 5.2: Comparison of Perona-Malik functions.

that isotropic smoothing is performed. Near an edge |∇I| is large and both functions approach
0, preventing smoothing.

It can be shown that Perona-Malik diffusion smooths edges with |∇I| < κ, and sharpens edges
with |∇I| > κ. The parameter κ acts as a soft threshold of sorts, distinguishing gradient jumps
due to noise from those due to true edges. The larger it is, the higher the image gradient must
be in order to be preserved. Perona and Malik (1990) suggested to use the 90% quantile of |∇I|
for κ. Black et al. (1998) suggested to use the median absolute deviation (MAD) of the gradient
magnitude, which is a more robust, consistent estimator of the standard deviation (Rousseeuw
and Leroy, 2005) (much like the median is to the mean). Boykov and Funka-Lea (2006) and
Wels (2010) set it to σj , being the (current estimate of the) standard deviation of the intensities
of tissue j.

Perona-Malik diffusion achieves the type of anisotropic smoothing outlined in the aims. A
natural way to proceed is to set wim to one of the Perona-Malik functions, where the gradient is
along the direction im.

5.2.3 Related work

There are a number of existing related works using MRFs that incorporate local image features.
In general, these either apply the MRF separately after a standard mixture has been applied
rather than incorporating it directly (Ward et al., 2017, Bériault et al. (2013)), or can be seen
as examples of specific wim but do not consider the design of the MRF in the same detail as
presented here (Pagnozzi et al., 2015, Wels (2010)). Additionally, these works either omit β
(Pagnozzi et al., 2015), or manually tune it (Wels, 2010), or set it by optimising segmentation
accuracy on training data (Ward et al., 2017). In our case, we aim to develop methods that can
be used in situations when no training data is available. There is also no reason to believe the



5.2. BACKGROUND 119

Figure 5.3: a) Example of a Susceptibility Weighted Image showing veins (dark intensity). b)
Anisotropic MRF segmentation incorporating Frangi filter. c) Frangi’s ”vesselness” filter. From
(Bériault et al., 2013).

same fixed value for β will work optimally for all images, as found in Chapter 3, nor what this
value should be if so; hence, we estimate β.

5.2.3.1 Vein segmentation

An anisotropic MRF has been previously used in vein segmentation from brain MRI (Ward et al.,
2017). Specific MRI sequences are used to obtain images showing blood vessels in the brain
(figure 5.3). A standard (i.e. not with MRF) 2-component Gaussian mixture with components
“vein” and “not vein” was fit to the intensities. After this, an anisotropic MRF was applied
using Iterated Conditional Modes (Besag, 1986) on the resulting segmentation to refine it. The
MRF made use of the Frangi filter (Frangi et al., 1998) which itself uses the smoothed image
Hessian, effective at detecting tubular structures in 3D, lines in 2D. The Frangi filter produces a
“vesselness” measure between 0 and 1, as well the orientation of the proposed vessel at each voxel.
Ward et al. incorporated it into the MRF by setting wim to be the dot product of neighbour
m’s direction from i with the vein direction. The “vesselness” strength itself was not used.
Parameters of the model were estimated using cross-validation against segmentation accuracy
on training data. The difference of this work to ours is that we incorporate the MRF directly
into the mixture model. We also concentrate on the case where no training data is available, so
the parameters must be estimated directly from the image being segmented.

Anisotropic MRFs have also been used to segment connective tissue in the optic nerve (Grau
et al., 2006). Like brain vein segmentation, the MRF is designed to detect tubular features. It
makes use of the image structure matrix (derived from eigen-analysis of the image gradient’s
outer product with itself) rather than the Frangi filter. This work is closely related to the work
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Figure 5.4: Example of graph-cuts formulation, showing voxels connected to their neighbours
and 3 terminal nodes for the tissues. From (Song et al., 2006).

presented in this chapter, but is specific to detection of narrow tubular structures; our goal is
instead to preserve edges. Additionally, the MRF parameter β is tuned manually.

5.2.3.2 Brain segmentation

In the field of brain MRI segmentation, Pagnozzi et al. (2015) used an MRF that used local
image intensities as well as tissue labels. The MRF was designed to encourage neighbours of the
same tissue to have similar intensities. A neighbouring voxel with a different tissue and different
intensity to that being considered was not penalised. Conversely, a penalty would be applied for
a neighbour of the same tissue but different intensity. This proved better than the standard
single-beta MRF, though could unintentionally penalise noise voxels as the images were not
pre-smoothed. The parameter β was not explicitly included in the MRF, so is equivalent to
β = 1

2 in the formulation given here.1 A similar anisotropic MRF has also been used in Wels
(2010) and Wels et al. (2011), with the segmentation found using graph-cut segmentation.

Cardoso et al. (2011) used the multi-beta Potts MRF with constant β = 0.5 or 3 depending
on the particular tissues being considered. This β was further weighted by a per-voxel value
between 0 and 1 corresponding to whether the voxel was in the sulci and gyri of the brain or
not. The result was that MRF smoothing was weakened in these regions of the brain, which are
prone to oversmoothing. While this weighting is anisotropic across the image - it varies at each
voxel location, at a given voxel - the weight does not vary for each neighbour of a given voxel.
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5.2.3.3 Graph-cut segmentation

The idea of anisotropically weighting neighbours has been used in the graph-cuts approach
to image segmentation. Graph cuts minimises an energy over the image, rather than an a
probability model. However, the two are closely linked. The voxels of the image are represented
as nodes on a weighted graph, width edges between the nodes of neighbouring voxels. In
addition, three “hidden” terminal nodes are added - one for each tissue (GM, WM, CSF). All
voxels are connected by an edge to each of these (see figure 5.4). The weight on the edges
connecting the voxel nodes to the tissue nodes (“t-links” in figure 5.4) is an intensity fidelity
term, for example the conditional intensity probability − log f(yi|zi). The weight on the edges
between voxels (“n-links”) is associated with the log-MRF probability. Graph cut segmentation
aims to ‘cut’ edges such the total cost of cut edge weights is minimised, while ensuring that
every voxel node is connected to exactly one tissue node, and that no edges exist between voxel
nodes connected to different tissues. The segmentation is retrieved by associating each voxel
with the tissue node it is connected to.

Incorporation of anisotropic edge weights was done in (Song et al., 2006; Boykov and Funka-Lea,
2006). In Boykov and Funka-Lea (2006) the edge weights comprised a penalty on same-labelled
neighbours with very different intensities. In Song et al. (2006) the edge weights had a similar
intensity penalty based on the Lorentzian error norm. Additionally, they incorporated an edge
probability based on the image gradient between the neighbours (Malik et al., 2001). These
weights may be used in an MRF by setting the MRF potential to the edge weights. In particular
our derivation from the perspective of anisotropic smoothing yields the same pairwise term as
Boykov and Funka-Lea (2006) as one of its implementations.

One advantage of using a probability model rather than graph cuts is that the former is
generative, and provides posterior probabilities rather than just hard classifications. The
corresponding β or smoothing parameter in a graph cuts model weights the t-link and n-link
terms against each other. It must typically be set manually or with use of training data, whereas
the maximum-likelihood provides a natural framework for parameter estimation and can be
used when training data is not available. On the other hand, as graph-cut segmentation focuses
on minimising an energy, there are no intractable normalising constants; the MRF potential is
used as-is as an n-link weight.

Wels (Wels, 2010, chapter 2; Wels et al., 2011) used the same pairwise cost as Boykov and
Funka-Lea (2006) and incorporated it into an MRF, though did not explore it in the setting of
anisotropic diffusion, or consider related anisotropy-motivated MRFs. This pairwise cost was
chosen to enforce intensity homogeneity within tissue classes; we will derive the same term in
one of our examples by considering anisotropic smoothing. They also had a per-voxel term
in the MRF potential (akin to the α term in the multi-beta MRF previously presented), but

1Omitting β is equivalent to setting β = 1, but the pairwise potential in (Pagnozzi et al., 2015) is
1
2 Wim(zi, zm, yi, ym) with the 1/2 to counteract neighbours being double-counted; we have absorbed the
1/2 into our β.
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these were trained from a number of manually-labelled images or atlases. They did not explore
estimation of β but rather set it to β = 0.6 in (5.2).

To re-emphasise, the difference between our method and these is our estimation of β, along
with demonstration of how to modify the Potts MRF to incorporate neighbour-specific weights
designed to preserve edges.

5.3 Method

The MRF takes the form

p(zi|z∂i; Ψ) ∝ exp(Wi(zi) + β
∑

m∈∂i

1
δim

wimzT
i zm),

where wim is the anisotropic weight function. In the previous chapter, we found that including
unary potentials of the form Wi(zi) = zT

i α was not helpful unless α were constrained using
external information. For example, Wels et al. (2011) set αj to log-tissue proportions learned
from an external atlas. We found that doing the same but using log-tissue proportions from the
current segmentation had slightly higher accuracy than when they were omitted, but on visual
inspection of the algorithms was seen to cause severe oversmoothing of grey matter. Therefore
in this chapter, we omit unary potentials and set Wi(zi) = 0.

5.3.1 Choice of weight function

We incorporate ideas from anisotropic diffusion into the design of an anisotropic MRF potential by
using the Perona-Malik wim functions to weight each neighbour’s contribution to the smoothing.
Suppose at voxel i an edge is detected with direction v ∈ Rd and strength λ ∈ [0,∞), where
λ = 0 means “no edge”, and larger positive values represent how “strong” an edge is. We seek a
weight between neighbours i and m, wim ∈ [0, 1], such that

λ “large” =⇒ wim ≈

1, im ‖ v

0, im ⊥ v
(P1)

λ “small” =⇒ wim ≈ 1 ∀m ∈ ∂i (P2)

A natural choice for λ is one of the Perona-Malik functions wP M1 or wP M2, which we denote
wP M . The Perona-Malik functions determine the edge direction to be orthogonal to the local
image gradient, i.e. v is such that v · ∇I = 0. We will do likewise, except that we use ∇Is in
place of ∇I, being the gradient of the image after pre-smoothing with a Gaussian of standard
deviation s. Pre-smoothing is required to regularise the image gradient, which is otherwise
ill-posed; for further information, see (Weickert, 1998, Section 1.3). A small s is chosen, in order
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to perform a weak smoothing: enough to soften isolated voxels of noise while not affecting edge
sharpness overly much. We use s = 1 (a 1-voxel radius).

The Perona-Malik functions both approach 1 as the gradient (edge strength) approaches 0,
satisfying property (P2). To achieve directional anisotropy in (P1), the edge strength, edge
direction, and neighbour direction must be combined. Three MRF potentials are presented
below.

Isotropic Perona-Malik (PMiso):

wim = wP M(|∇Is
i |), (5.5)

where |∇Is
i | indicates the magnitude of the image gradient evaluated at voxel i. This is natural

approach of setting wim = wP M directly and is most like the original Perona-Malik diffusion.
wim varies with voxels i, but for a given i is the same for all neighbours m. As with Perona-Malik
diffusion, this process is anisotropic in that the diffusion coefficients vary at each voxel location,
but directionally isotropic as each neighbour at that location is treated equally. It is only the
strength of diffusion that varies at each voxel. Thus, this MRF does not satisfy (P1).

In effect, at each voxel the MRF becomes

p(zi|z∂i; y∂i) ∝ exp(β̃i

∑
m∈∂i

zT
i zm),

where β̃i = βwP M(|∇Is
i |). PMiso is akin to the single-beta MRF, where the β may change at

each voxel but not for each neighbour within that voxel’s neighbourhood. Although this MRF
does not satisfy (P1), we will use it to compare the difference between incorporating directional
anisotropy and not. To satisfy (P2), it is desirable to incorporate “true” directional anisotropy
into the diffusion.

Anisotropic Perona-Malik using the directional derivative (PM|∇Is· ˆim|):

wim = wP M(|∇Is · ˆim|), (5.6)

where ˆim is the unit vector pointing from voxel i to voxel m. This attempts to incorporate edge
orientation by replacing the image gradient with the directional image gradient. If ∇Is · ˆim = 0,
then m lies along an edge, and wim = 1 as requested by (P1). If m happens to lie directly in the
direction of the gradient, then it lies across the edge (im ⊥ v), and wim = wP M(|∇Is|). This
is approximately 1 when the gradient/edge is weak (|∇Is| ≈ 0), satisfying (P2). If the edge
is strong, |∇Is| is large and wP M approaches 0. This prohibits that neighbour from counting
towards the neighbourhood majority tissue, satisfying (P1).

One disadvantage of PM|∇Is· ˆim| is that it is symmetric. Suppose voxel i lies on an edge between
GM and WM, and its colour indicates it is likely to be GM (see figure 5.5). Neighbour m1,
nominally WM, has very little contribution to the MRF due to it being almost perpendicular
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Figure 5.5: Neighbourhood of voxel i showing an intensity edge and the orientation of the
gradient (∇Is) with two of the neighbours labelled.

to the edge direction, as desired. On the other hand, neither does neighbour m2 (nominally
GM) despite it being on the “same side” of the edge as pixel i, since its direction is also nearly
perpendicular to the edge.

Anisotropic Perona-Malik using intensity differences (PM|ys
m−ys

i |):

wim = wP M(|ys
m − ys

i |), (5.7)

where ys
i denotes the ith pixel of ys being the image pre-smoothed by a Gaussian kernel of size

s (again, this is for gradient regularisation). This alternative approximates the directional image
gradient by a forward difference. Perona and Malik (1990) suggested this form as a natural
discretisation of their diffusion problem. Since this is a forward difference, it is not symmetric.
In figure 5.5, |ys

m1 − ys
i | is large, so its contribution to the neighbourhood tissue label majority

is close to 0. On the other hand, |ys
m2 − ys

i | is small, so it retains close to its usual contribution
as the single-beta MRF.

General remarks

We choose the exponential form wP M1

wP M1 = exp(−
(

|ys
m − ys

i |
κ

)2

),

as this is the same pairwise edge weight used in the graph-cut formulation of (Boykov and
Funka-Lea, 2006, Wels (2010)). The potential used in Pagnozzi et al. (2015) is similar, but
the argument is not squared. Their motivation was to encourage homogeneity of intensities
within each tissue class. It is interesting to see that the different motivations - to smooth
anisotropically along edges, and to ensure intensity homogeneity within tissues - lead to the
same MRF potential. The exponential and inverse forms of the Perona-Malik functions are
quite similar in behaviour; either could be used, and the same comments apply to both.
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It is also worth noting that in Perona and Malik’s original paper (Perona and Malik, 1990,
Section VI-B), the authors relate their diffusion model to finding maxima with respect to the
image intensities, of a Markov random field over the image intensities, with fixed parameters
(namely, only κ). Perona and Malik show that there exists an energy function such that
minimising it by gradient descent with respect to I is equivalent to anisotropic diffusion, though
the form of the energy function itself is unknown. Their model does not have tissue labels as
in our segmentation problem, as the aim is to adjust image intensities, rather than use the
intensities to reduce the image to a very small number of tissue classes.

Finally, we do not give these choices of wim as the only options, or even ‘optimal’ ones; they
are natural suggestions arising from consideration Perona-Malik diffusion. A strong alternative
would be to use concepts from anisotropic diffusion in the style of Weickert (Weickert, 1998),
where the diffusion matrix D in (5.3) is not a scalar multiple of the identity matrix. Instead, it
is derived from the eigenvalues and eigenvectors of the image structure tensor ∇IT ∇I. The
structure tensor is a more sophisticated feature detector than the image gradient, as it is able to
distinguish between (e.g.) tubular structures vs. surfaces in three dimensions. For an example
of use of the structure matrix with Weickert’s coherence-enhancing filter in an anisotropic MRF
to segment tubular structures in the eye, see (Grau et al., 2006). Alternatively, other measures
of edge strength could be used. For example, the edge probability of (Malik et al., 2001) could
be incorporated as in (Song et al., 2006).

5.3.2 Parameter estimation

The MRF has two parameters: κ, and β. They are identifiable and serve different purposes: κ
is an intensity normalisation parameter that applies to y, while β is a spatial regularisation
parameter corresponding to the labels z and balancing the intensity probabilities with the
spatial probabilities.

As previously mentioned, existing literature fixes the value of β, either by using training data,
or arbitrarily (Pagnozzi et al., 2015, Wels (2010), Ward et al. (2017)). Alternatively, omitting
it, replacing it entirely by wim, sets β = 1. Instead, we estimate β, as there is no principled
or well-reasoned value to fix it to in absence of training data. For the single-beta MRF, fixing
β = 1 proved less effective than estimating it, and estimated values were found to be generally
greater than 1, implying a larger amount of smoothing is needed. Once the weights wim are
incorporated, the average neighbour counts ũij will generally be smaller than the corresponding
single-beta uij, since the weights are bounded by 0 and 1 and usually less than 1 unless the
image gradient is exactly 0. Therefore, if β = 1 was too small for the single-beta MRF, we
presume it will be here also. This justifies our choice to estimate β.

We use maximum pseudolikelihood to estimate β. As the MRF is still log-linear in β, it is concave
with respect to β for fixed ẑ and mixture parameters. We do not consider the least-squares
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estimator as we have in previous chapters, as it cannot be adapted for the weights wim.

The Perona-Malik functions both require a parameter κ to be specified. In this framework, the
parameter κ may be interpreted as an intensity normalisation parameter. It also determines
the rate at which the weights decay to 0 (see figure 5.2), with a larger value corresponding to
a slower decay. Boykov and Funka-Lea (2006) and Wels (2010) set it to σ̂j, being the current
estimate of the standard deviation of tissue j’s intensities. Perona and Malik (1990) suggested to
set κ to the 90% quantile of |∇I|. Black et al. (1998) suggested the median absolute deviation,
a robust estimate of the standard deviation of the gradient magnitude. Let ∂i be the gradient
magnitude of the image |∇I| at voxel i, and ∂ = (∂1, . . . , ∂n) be the length-n vector of gradient
magnitudes evaluated at each voxel. The median absolution deviation (MAD) is

MAD(∂) = 1.4826median(|∂i − median(∂)|), (5.8)

where the factor of 1.4826 is derived from the quantile function of the standard normal distribution
and is such that the MAD is a consistent estimator for the standard deviation. We followed
Black et al. (1998) and used the MAD as κ. We found that using the 90% quantile of |∇I| was
too high, such that wP M (|∇I|/κ) (and more so the other weight functions) was too insensitive,
varying very little across the image and thus acting as an isotropic weight.

5.3.3 Limitations

There are two limitations to this work that must be acknowledged. First, the parameter κ forms
part of the MRF parameters Ψ, yet we do not estimate it; rather, we fix it. Second, allowing
wim and hence the MRF to depend on the intensities yi and ym means we can no longer view
the MRF as p(zi|z∂i).

5.3.3.1 Intensity normalisation parameter κ

For these experiments, the intensity normalisation parameter κ was chosen to be the MAD of
the gradient magnitude in the image, as per (Black et al., 1998). Lower values correspond to a
faster decay of the neighbour weights towards zero as the intensity difference increases; higher
values slow the decay. Thus a lower value of κ penalises the difference in intensity more heavily
than a higher value, and causes the MRF to be more sensitive to the image gradient. On the
other hand, if it is too low, too much noise will be preserved.

It could be argued that κ should be estimated, as β is, using e.g. maximum pseudolikelihood.
The two parameters are identifiable: while they both control smoothing, κ smooths image
intensities (gradients) while β acts on tissue labels. However, due to the nonlinearity of κ in the
MRF potential, the problem is no longer concave should κ be estimated. Also, it was thought
that κ should not be allowed to vary throughout the iterations, as the intensities do not vary
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Figure 5.6: The underlying dependence graph for mixture-MRF segmentation. In the anisotropic
MRF, the additional solid red edges are added (only shown for the east and west neighbours).
See the text for further details.

throughout the iterations. Use of MPL would allow κ to change as the current segmentation
changed, and possibly feed back into the next iteration’s segmentation undesirably. Rather, we
think it should be viewed as an intensity normalisation constant than a parameter of the MRF.
Nevertheless, estimation of κ alongside β is worth further investigation.

5.3.3.2 Introduction of intensities into the MRF prior

All our choices of wim depend on yi and y∂i, where y∂i are the intensities at voxels neighbouring
voxel i, i.e. ym such thatm ∈ ∂i. These are used to calculate the various gradient approximations.
For example, in PM|ys

m−ys
i | wim depends on yi and ym, while in PMiso it depends on all of yi and

y∂i. By introducing the intensities into wim, we can no longer write

p(zi|z∂i; Ψ) ∝ exp(β
∑

m∈∂i

1
δim

wim(zi, zm)zT
i zm).

Rather, we have

p(zi|yiz∂i,y∂i; Ψ) ∝ exp(β
∑

m∈∂i

1
δim

wim(yi,y∂i)zT
i zm). (5.9)

For the intensity pdf, we have

f(yi|zi; Θ) =
g∑

j=1
zijφ(yi;µj, σ

2
j ). (5.10)

First, it is not clear that these two conditional distributions are compatible. Second,
p(zi|yi, z∂i,y∂i; Ψ) does not necessarily form an MRF.

To see this, consider Figure 5.6a which shows the undirected graphical model corresponding
to mixture-MRF segmentation with the Potts model. Every voxel has two nodes, one with an
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associated intensity yi and the other with associated label zi. An edge is drawn between nodes
that are conditionally dependent, e.g. for yi and zi

f(yi, zi|y−i, z−i) 6= f(yi|y−i, z−i)p(zi|y−i, z−i),

where y−i means all intensities ym except for m = i, and similarly for z−i. Now for the
mixture-MRF model with the Potts MRF,

p(zi|y−i, z−i) = p(zi|z∂i).

Separately, we note that

f(yi, zi|y−i, z−i) = f(yi|zi,y−i, z−i)p(zi|y−i, z−i)

= f(yi|zi)p(zi|z∂i).

The two variables Yi and Zi would be conditionally independent if f(yi|zi) were equal to
f(yi|y−i, z−i). However, since f(yi|zi) depends on the value of zi, this is not the case; thus,
there is an edge connecting yi and zi in the graph. Similarly, there are edges between zi and its
neighbours zm where m ∈ ∂i.

By the Hammersley-Clifford theorem this forms a valid MRF, because the joint distribution
f(y, z) may be decomposed (up to a normalising constant) into terms between pairwise cliques
(yi, zi) and zi, zm. The clique potential associated with the (yi, zi) is

g∏
j=1

f(yi|Zi = ej)zij

where f(yi|Zi = ej) is the normal probability density function with tissue j’s parameters. The
clique potential for (zi, zm) is

exp(βzT
i zm).

Figure 5.6b shows the undirected graphical model corresponding to the PM|ys
m−ys

i | “MRF”
presented in this chapter (the solid lines only). There are additional edges between zi and
the neighbouring ym with m ∈ ∂i due to the presence of wim(yi, ym) in the MRF potential.
For PM|∇Is· ˆim| and PMiso this graph has even more edges due to the gradient approximation
requiring all neighbouring intensity values. Since it is unclear if the conditional densities (5.9)
and (5.10) are compatible with each other, it is also unclear if an edge may be drawn between
yi and ym (dotted line).

If there is no edge, then the joint pdf cannot be decomposed into a product of terms over
cliques. This is because the smallest decomposition of the joint pdf must be over sets consisting
of four nodes {yi, ym, zi, zm}; smaller sets such as pairs and triples cannot be isolated in (5.9).
However, if there is no edge between yi and ym, the four nodes do not form a clique, which must
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be fully-connected. Hence, there exists no decomposition of the joint pdf into a product over
cliques, and by the Hammersley-Clifford theorem, f(y, z) does not form a valid MRF.

Previously mentioned existing work does not appear to recognise this inconsistency, with the
exception of Grau et al. (2006). They noted the difficulty of the coupling between z and y,
but viewed wim(yi,y∂i) as constants (one per voxel pair) rather than realisations of a random
variable. In all cases, they proceeded by using the EM algorithm with pseudolikelihood as has
been discussed in previous chapters, treating p(zi|z∂i,y∂i; Ψ) as if it were simply p(zi|z∂i; Ψ).

One possible solution is to discard the current conditional formulation and instead build up a
new MRF from clique potentials to satisfy the Hammersley-Clifford theorem. First, induce an
explicit dependency between voxels i and m. For example, one could explicitly incorporate a
blurring of intensities between the neighbouring voxels (in addition to the dependence between
neighbouring labels); (Besag, 1986, section 5.3) suggested an autonormal model might be used
for this purpose. Then, define the clique potential {yi, ym, zi, zm} as

ψ(yi, ym, zi, zm) = exp(β 1
δim

wim(yi, ym)zT
i zm + log(f(yi|zi)) + log(f(ym|zi)) + b(yi, ym)),

where b(yi, ym); represents the relationship (e.g. intensity blur) between yi and ym. Then, form
the pdf (up to a normalising constant)

f(y, z) ∝
∏

neighbours i,m

ψ(yi, ym, zi, zm).

This is a valid MRF, since it is a product of clique potentials with cliques of size 4.

From here, f(y, z) may be approximated by a pseudolikelihood or mean-field approximation.
There is some freedom in the choice of conditional pdf to be used here. For example,

fP L(y, z) ≈
∏

i

p(zi|y, z∂i)f(yi|y∂i, z)

or
fP L(y, z) ≈

∏
i

f(yi, zi|y∂i, z∂i)

are possibilities. The conditional probabilities must be derived. For example, to find
p(zi|y, z∂i) = p(zi|y, z−i), one can consider the difference in the joint pdf by change of just
voxel i from label j to k, and renormalising:

p(Zi = ej|y, z∂i)
p(Zi = ek|y, z∂i)

= f(y, z−i,Zi = ej)
f(y, z−i,Zi = ek)

g∑
j=1

p(Zi = ej|y, z∂i) = 1

These may not take the same form as the conditional densities (5.9) and (5.10).
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This is an approach that can be explored in future work. For now, we acknowledge this limitation
of the model and proceed with the EM algorithm as an approximation.

5.3.3.3 Discriminate random fields

Finally, we note the similarity between (5.9) and a conditional random field. A conditional
random field, introduced in (Lafferty et al., 2001), is an undirected graphical model of which the
MRF is a special case. They have since been extended to multi-dimensional lattice structures
where they are known as discriminative random fields (DRFs) (Kumar and Hebert, 2003, 2006).
In image analysis, they appear to be primarily used in foreground-background segmentation, i.e.
g = 2 (Blake et al., 2004; Boykov and Jolly, 2001). A DRF is the discriminative counterpart
to MRFs, which are generative. Other examples of discriminative models are support vector
machines, or neural networks. That is, a DRF constructs only p(z|y) without considering the
marginal or joint distributions; further, the functional dependence of z on y is learned rather
than specified. By contrast, the mixture-MRF approach specifies p(z) and p(y|z) to construct
the joint and posterior distributions. A DRF containing unary and pairwise potentials (as
studied in this thesis) takes the (local) form

p(zi|z∂i,y) ∝ exp(Ui(zi,y) +
∑

m∈∂i

Uim(zi, zm,y)).

The difference between a DRF and MRF is that the DRF allows the clique potentials to
depend on the observed data, not just the neighbours z∂i. A pseudolikelihood for p(z|y) may
be constructed analogously to an MRF by multiplying together the individual conditional
probabilities.

At first glance, it may appear that a DRF should be used for the work in this chapter due to
the similarities with (5.9). However, since a DRF is discriminative, the functional forms of the
potentials are not specified a priori and must be learned. For example, the unary potential is
written:

Ui(zi,y) = ψ(wT fi(y)),

where

• fi(y) is a feature vector computed at voxel i, such as the intensity, the image gradient,
information from an anatomical atlas. Whatever features thought to be relevant to the
application may be included.

• w is an unknown vector of weights for each feature that must be learned.
• ψ is a link function (similar to a generalised linear model), for example logit.

In this way the specific contribution of each feature to the pdf (i.e. the weights w) need
not be modelled explicitly, but is instead learned. Once learned (usually through maximum
pseudolikelihood), the weights w are fixed regardless of image, unlike our Ψ which may vary
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with each image. Then when the model is presented with a new image, the segmentation is
usually determined with graph-cuts or ICM.

Despite the striking similarities between the DRF and MRF, the key practical difference is
that the DRF requires labelled training data to learn the parameters. In contrast, our method
must estimate the parameters and segmentation at the same time from the single image to be
segmented. However, it is possible the work could be reformulated as a DRF were training data
available.

5.3.4 Algorithm

With this in mind, the algorithm used is almost the same as the previous chapter. We repeat
it here for clarity, explaining what changes are needed to incorporate the weights wim. Where
we previously had the MRF probability p(ej|z∂i; Ψ), we replace with the new probability
p(ej|z∂i, yi,y∂i; Ψ), though this is not strictly a valid MRF, nor is it a density over z only.
We use Expectation-Maximisation to estimate the MRF and intensity parameters, using the
pseudolikelihood or mean-field approximation in the Q-function for computational tractability.
The Q function is given by

Q(Θ,Ψ|Θ(t),Ψ(t)) =
n∑

i=1

g∑
j=1

τij
(t)(log φ(yi;µj, σ

2
j ) + log p(ej|z∂i, yi,y∂i; Ψ)) (5.11)

where

p(zi|z∂i; Ψ) =
exp(β∑m∈∂i

1
δim
wim(yi,y∂i;κ)zT

i zm)
Ci

Ci =
g∑

k=1
exp(β

∑
m∈∂i

1
δim

wim(yi,y∂i;κ)eT
k zm)

and the weights function is one of PM|ys
m−ys

i | (5.7), PM|∇Is· ˆim| (5.6), or PMiso (5.5), repeated
below.

PMiso : wim(yi,y∂i) = exp(−
(

|∇Is|
κ

)2

)

PM|∇Is· ˆim| : wim(yi,y∂i) = exp(−
(

|∇Is · ˆim|
κ

)2

)

PM|ys
m−ys

i | : wim(yi, ym) = exp(−
(

|ys
m − ys

i |
κ

)2

)

compared to
single-beta : wim = 1.

The weight κ is pre-set as the median absolute deviation of the image gradient (5.8).

Pre-smoothing of the image to obtain ys (or image gradient ∇Is) was performed with s = 1.
For PMiso and PM|∇Is· ˆim|, the gradient of the image is computed by convolution of the image
with an approximation to the first derivative of a Gaussian; this is equivalent to finding the
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gradient of the Gaussian-smoothed image. This process yields an approximation to the intensity
gradient vector at each voxel. For specific details, we refer the reader to Deriche (1993); the
Insight ToolKit software (Yoo et al., 2002) was used to perform this.

We note that as these weighting functions wim only depend on intensity gradient (which does
not change) and the fixed parameter κ, wim only needs to be calculated once at the start of the
algorithm for each pair of voxels. One may then compute the number of neighbours of voxel i
with label j as

ũij =
∑

m∈∂i

1
δim

wim(yi,y∂i)eT
j zm

and then compute p(ej|z∂i, yi,y∂i; Ψ) as

exp(βũij)∑g
k=1 exp(βũik) .

This is similar to simplified Potts MRF (i.e., the single-beta MRF) except for the neighbour
count having additional weights per neighbour (the single-beta MRF has wim = 1).

The rest of the algorithm proceeds as follows. On iteration t:

1. (C-step) Form an estimate of the current labels z(t) to be used as neighbours; either
discrete (for the pseudolikelihood approximation) or continuous (for the mean-field ap-
proximation). The pseudolikelihood version uses the Iterated Conditional Modes (ICM)
update

zi
(t+1) = ej where j = arg max

k
p(ej|z∂i

(t,t+1), yi,y∂i; Ψ)φ(yi;µk
(t−1), σ2

k
(t−1)).

The mean-field version uses the mean-field update

〈zi〉(t+1) =
g∑

j=1
ej

p(ej|z∂i
(t,t−1), yi,y∂i; Ψ)φ(yi;µj

(t−1), σ2
j

(t−1))∑g
k=1 p(ek|z∂i

(t,t−1), yi,y∂i; Ψ)φ(yi;µk
(t−1), σ2

k
(t−1))

These updates should be performed sequentially. To save time, we divide the voxels
into coding sets (see Appendix B) and update each set simultaneously, visiting them
sequentially.

2. (E-step) Calculate τij
(t), using z(t) from the C-step to compute the neighbour term uij:

τij
(t) =

p(ej|z∂i
(t), yi,y∂i; Ψ(t))φ(yi;µj

(t−1), σ2
j

(t−1))∑g
k=1 p(ek|z∂i

(t), yi,y∂i; Ψ(t))φ(yi;µk
(t−1), σ2

k
(t−1))

. (5.12)
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3. (M-step) Maximise Q with respect to Θ to obtain the intensity parameters.

µj
(t) =

∑n
i=1 τij

(t)yi∑n
i=1 τij

(t)

Σj
(t) =

∑n
i=1 τij

(t)(yi − µj
(t))2∑n

i=1 τij
(t) .

Then, update Ψ using maximum pseudolikelihood estimation. This amounts to numerically
maximising the concave Q-function with respect to β, using the gradient (3.9) as necessary.
The gradient equation for β is the same as that for the original single-beta MRF, with ũij

in place of uij.

These steps are repeated until the relative change in approximate observed log-likelihood falls
below a pre-specified tolerance (1e-5 in these experiments), or it decreases. This is

log f(y) ≈
n∏

i=1
log

 g∑
j=1

φ(yi|ej;µj
(t), σ2

j
(t))p(ej|z∂i

(t), yi,y∂i; Ψ(t))
 .

EM on a standard mixture model guarantees an increase in the observed log-likelihood and Q;
however, we no longer have this guarantee.

We initialise the algorithm by fitting a standard normal mixture model with 3 components
to the image (i.e., without the MRF). This yields an initial segmentation to be used as the
neighbours, as well as means and standard deviations. The initial β(0) is estimated from this
initial segmentation.

5.4 Experiments

Our aim is to see if any of the anisotropic MRF potentials PMiso, PM|ys
m−ys

i | and PM|∇Is· ˆim|

are effective at preserving edges that would otherwise be smoothed with the single-beta MRF.
We compare the segmentations arising from using each different potential, with parameter β
estimated using maximum pseudolikelihood estimation. We additionally compared estimating
β to setting it fixed to 1 (i.e. omitting it) to study the value of parameter estimation in the
anisotropic MRF setting. In these experiments we used the pseudolikelihood approximation
with a size-6 neighbourhood.

The images segmented were from the Internet Brain Segmentation Repository (IBSR) (Rohlfing,
2012).2 The dataset used consists of T1-weighted coronal MR volumes of 18 normal subjects of
ages 7 to 71. Each volume consists of 128 coronal slices spaced at 1.5mm with in-plane resolution
varying from 0.84 × 0.84mm to 1.00 × 1.00mm. This dataset also contains manual segmentations

2The MR brain data sets and their manual segmentations were provided by the Center for Morphometric
Analysis at the Massachusetts General Hospital and are available at http://www.cma.mgh.harvard.edu/ibsr/.

http://www.cma.mgh.harvard.edu/ibsr/
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to compare the automatic segmentations to. The images are already skull-stripped with bias-
correction already performed, so no additional preprocessing was done. That is, all non-brain
voxels (such as skull, fat) are already removed from the image as we wish to concentrate on
segmentation of the brain only.

Performance against the manual segmentations was evaluated using segmentation accuracy (for
overall accuracy) and Dice similarity (for per-tissue accuracy). Let A and B represent two
segmentations, being sets of indices for each tissue. That is, Aj, j = 1, . . . , g are non-intersecting
subsets of the indices 1, . . . , n whose union is the entire brain, where i ∈ Aj implies that voxel i
is assigned to tissue j in segmentation A.

The segmentation accuracy is the overall percentage of voxels correctly classified. Since the
reference and test segmentations have the same number of voxels (all of the brain voxels), this
is well-defined.

accuracy(A,B) = |A ∩B|
|A|

.

The Dice similarity coefficient (commonly called ‘Dice score’ or ‘Dice index’) (Dice, 1945) is
used to compare segmentations on a tissue-by-tissue basis. The Dice coefficient for a given
tissue between two segmentations A and B is given by the number of correctly-classified voxels
divided by the average area classified (of that tissue):

Dice(Aj, Bj) = 2|Aj ∩Bj|
|Aj| + |Bj|

.

Both measures range from 0 to 1, with 1 meaning a perfect match between the two segmentations
of that tissue and 0 meaning no match. The reason for using Dice coefficient for each tissue
rather than accuracy is that the number of voxels classified as a particular tissue may not be
equal between the two segmentations, whereas the number of overall voxels in the brain (used
for the accuracy) is.

5.5 Results

Table 5.1: Average accuracy and Dice for different MRF potentials

MRF β̂ (average) accuracy Dice (CSF) Dice (GM) Dice (WM)

PM|ys
m−ys

i | 4.38 0.818 0.634 0.846 0.829
single-beta 1.88 0.812 0.625 0.843 0.820
PM|∇Is· ˆim| 15.63 0.808 0.621 0.839 0.817

PMiso 135.15 0.803 0.600 0.832 0.827

Table 5.1 and figure 5.7 show the average accuracy and per-tissue Dice scores across the dataset
for each MRF potential. The PM|ys

m−ys
i | potential gave the best performance in all metrics. Use
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Table 5.2: Mixed-effects model of segmentation accuracy for different models using MPL,
controlling for subject blocking.

Sum Sq Mean Sq NumDF DenDF F Pr(>F)

MRF 0.002 0.001 3 51.1 52.321 <0.001*

Table 5.3: Post-hoc pairwise comparisons for differences in accuracy using Tukey’s method.
Only significant differences are shown.

Comparison Estimate p

PM|∇Is· ˆim| - PM|ys
m−ys

i | -0.010 <0.001*
PM|∇Is· ˆim| - PMiso 0.005 <0.001*

PM|∇Is· ˆim| - single-beta -0.004 0.016*
PM|ys

m−ys
i | - PMiso 0.015 <0.001*

PM|ys
m−ys

i | - single-beta 0.006 <0.001*
PMiso - single-beta -0.009 <0.001*

of an anisotropic MRF yielded a large improvement in CSF and GM, though at the cost of WM
segmentation (with the exception of the PM|ys

m−ys
i | potential).

Figure 5.8 shows the improvement in accuracy or Dice score of each anisotropic MRF relative to
the single-beta MRF. It appears that use of the PM|ys

m−ys
i | MRF is warranted over the single-beta

MRF, while the other anisotropic MRFs are worse. This was confirmed by a mixed-effects
model of segmentation accuracy against MRF, controlling for repeated subjects, which showed
a significant effect of choice of MRF (table 5.2). Pairwise comparisons were performed using
Tukey’s method and significant differences are shown in table 5.3. We are only interested in
comparison of the anisotropic MRFs to the single-beta MRF. We see that the PM|ys

m−ys
i | MRF

has significantly more accurate segmentations than the single-beta MRF, while the others are
significantly less accurate.

The estimated β values can be seen in table 5.1 and figure 5.9. All of the anisotropic MRFs had
higher β than the single-beta MRF, and the PMiso MRF very much so.

0

50

100

PM∇ys⋅im̂ PMiso PMym
s −yi

s single−beta

MRF

β

10

100

PM∇ys⋅im̂ PMiso PMym
s −yi

s single−beta

MRF

β

Figure 5.9: β values for various MRFs (see also Table 5.1). The same plot on the right-hand
side has a log10 scale on the Y axis.
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5.6 Discussion

Figure 5.10 shows some sample segmentations under the various potentials. As with all
previous chapters, there is difficulty with deep grey-matter structures, which can be resolved
by incorporating an anatomical atlas into the tissue prior. It is likely that the accuracy for all
segmentations suffers because the IBSR manual segmentations systematically label sulcal CSF
as WM (Valverde et al., 2015). However, as this mislabelling is consistent, we are still able to
compare the fine features of our segmentations.

5.6.1 Comparison of anisotropic potentials

We consider whether or not to use an anisotropic MRF potential, and if so, which one to
use. From the results seen in tbl:ch5.results.whichPotential, the PM|ys

m−ys
i | MRF has potential,

obtaining significantly higher segmentation accuracy overall, and higher Dice coefficient in each
tissue to the single-beta MRF. The other anisotropic potentials had significantly lower accuracy
than the single-beta MRF, and also had lower Dice coefficient in all tissues except in WM for
PMiso.

Figure 5.10 shows sample segmentations produced by the various potentials. The circles point
out some of the differences, in particular where the PM|ys

m−ys
i | potential has preserved features

that the single-beta potential has not. These features are typically thin and narrow, exactly
those features that the anisotropic MRFs were designed to preserve. For example, there are
many cases of WM in the GM cortical folds not being smoothed over or having the ends filled
in. The other anisotropic MRFs also generally preserve these features to varying extents. In
some cases the feature that has been preserved is not in the manual segmentation, for example
the extrasulcal CSF in subject IBSR_06. However, this is more an artefact of the intensity
parameters placing the CSF-GM boundary too high rather than the MRF. The anisotropic
MRFs merely attempt to ensure that long thin features are preserved, regardless of label.

As a specific example, Figure 5.11 shows the image region in the circle drawn on subject 1 in
figure 5.10. A thin strip of grey matter between the ventricles (CSF) has been preserved by the
PM|ys

m−ys
i | potential but not by the others. Again, we note that in the manual segmentation,

there is no strip of GM between the ventricles and suppose this to be a consequence of the
mixture model component estimating the tissue parameters such that the CSF-GM boundary is
too high in intensity. Nevertheless, figure 5.11 serves as a demonstrative example as to how the
different MRFs act anisotropically.

The figure shows the image intensities in the region, the directional gradient at each voxel
(the lengths of the arrows proportional to the gradient magnitude and the arrows themselves
indicating the direction), and the segmentations produced by the various potentials. The
numbers on the segmentations show the weights assigned to the neighbouring voxels when
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Figure 5.11: Zoomed-in portion of the circled area of subject 1, showing the raw intensities
(”y”), the directional gradient, and the segmentations produced by the various MRF potentials.
The red lines and numbers show the weights wim assigned to each neighbour relative to the
single-beta MRF (dotted red line). See the discussion for explanation.

considering what label to assign the centre voxel. The red lines also visualise the weights: the
dotted red line represents the weights for the single-beta MRF. For example, the single-beta
MRF has weights of 1 for each neighbour, so the dotted red line shows the discretisation of a
circle with radius 1. The solid red lines for the anisotropic MRFs show the weights for those
MRFs relative to the single-beta weights.

The PM|ys
m−ys

i | MRF has preserved the thin strip of grey matter between the ventricles (which are
darker CSF), while the other MRFs have not. The intensity of the centre voxel is intermediate
between GM and CSF due to the partial volume effect, but the normal probabilities with the
respective estimated tissue parameters still favour GM for this voxel. On the other hand, the
single-beta MRF (with any positive β) will prefer to label this voxel CSF rather than GM, being
the majority label in the neighbourhood. The value of β estimated for the single-beta MRF is
sufficiently large that CSF is chosen for the final voxel label upon combining the intensity and
MRF probabilities under the single-beta MRF.

As the intensity gradient magnitude is fairly weak in this region (compared to the magnitudes
over the entire image), PMiso also produces weights that are almost 1. Since these are isotropic,
the PMiso potential acts very much like the single-beta potential in this neighbourhood, and
likewise chooses CSF for the centre voxel.

One might expect the gradient-based potential PM|∇Is· ˆim| to succeed in detecting this feature.
However as can be seen from the gradient image, since the thin strip of GM is only one voxel
wide, it forms a narrow ridge running along the horizontal axis. As this represents a local
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maximum in vertical dimension, the gradient cannot detect it, and hence points horizontally
with a small magnitude. The small magnitude of the gradient causes the PM|∇Is· ˆim| potential
to be isotropic (as designed), so that again CSF is chosen for the centre voxel. Even if the
gradient magnitude were strong, the edge would incorrectly be detected as running vertically
due to the gradient direction. The PM|∇Is· ˆim| potential can detect edges, but not thin lines.
This symmetry may explain why it performs worse than the single-beta MRF overall.

Finally, we consider the PM|ys
m−ys

i | potential. As this is a one-sided finite difference approximation
to the gradient (as opposed to a central approximation), it does not suffer from the problem
of the vertical gradients cancelling each other out like the PM|∇Is· ˆim| potential did. As can be
seen from the figure, the north and south neighbours are downweighted due to their differing
intensity, while the east and west neighbours retain a higher weight (as does the south-east
neighbour). This MRF downweights the north and south neighbours sufficiently that GM is
correctly chosen for the centre voxel. We note that at this point of the algorithm, the west
neighbour in the PM|ys

m−ys
i | potential is already GM while it is CSF for all the other potentials,

which further increases the MRF probability for GM over CSF. However, this west voxel has
itself been classified as GM rather than CSF for the same reasons just explained. It is difficult
to isolate an instance where only a single voxel has been affected by the choice of MRF, due to
the spatial dependence of the MRF. If one voxel is affected differently by the different MRFs,
this flows on to the neighbours.

In summary, the PM|ys
m−ys

i | potential is able to detect edges by approximating the directional
gradient with a forward difference. Using this, it can successfully preserve thin features that
the single-beta MRF might otherwise smooth. The PM|∇Is· ˆim| potential performs poorly on
thin features that are local maxima in one direction. The PMiso potential is not directionally
isotropic, and can only disable smoothing entirely in regions of high intensity change, rather
tangent to the direction of that change.

5.6.2 Parameter values

From table 5.1 it can be seen that the anisotropic MRFs have higher estimated β than the
single-beta MRF. The weights wim are identically 1 for the single-beta MRF, and in general less
than 1 for the anisotropic MRFs. The “effective” number of neighbours for each voxel is thus
lower for an anisotropic MRF than for the single-beta MRF. On average, the estimated β is
increased to compensate (compared to the single-beta MRF).

The estimated β for the PMiso potential is extremely high. This is because this MRF essentially
“turns off” all neighbours in a neighbourhoods where the gradient magnitude is large (wim ≈ 0 ∀m
for such i). The only remaining neighbourhoods are those where the gradient magnitude is
locally small. By definition, this means that the intensities are locally very similar, and hence
the tissue labels are likely to be all of one tissue in such neighbourhoods. The maximum-
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likelihood β for a uniform (one-label) image is ∞. This explains why the estimated β is so
much higher for the PMiso potential - it is presented an almost uniform image over which to
maximise β, with non-uniform neighbourhoods being disabled by the weights. On the other
hand, the other anisotropic MRFs treat each neighbour differently and hence do not disable
entire neighbourhoods, avoiding this. However, the high β value for PMiso does not mean that
the resulting segmentations are oversmoothed as they would be on a single-beta MRF, due
to the low weights wim balancing out high values of β in neighbourhoods with strong edges.
This can be seen in figure 5.10 - the PMiso segmentations are not drastically smoother than the
others.

5.6.3 The intensity normalisation parameter κ

We briefly add to our previous discussion of κ. In the example shown in figure 5.11, the weights
were all close to 1, so the potentials (PMiso and PM|∇Is· ˆim|) did not act very differently from
the single-beta potential. We know that the lower κ is, the more sensitive the weight function is
to the image gradient, and the more harshly it will penalise “large” gradients. It could be that
the κ chosen, the median absolute deviation of the image gradient magnitude, was too large for
the PMiso and PM|∇Is· ˆim| potentials.

Anecdotally, it was noticed that decreasing κ (which decreases wim) led to an increase in the
estimated β values. By similar reasoning to why the anisotropic MRFs generally have higher β
than the single-beta MRF, it is likely that this was to preserve the average potential value. As κ
decreases, so do the neighbour weights (for a fixed intensity difference); β may increase so that
the value of Wim remains roughly constant. This does not necessarily mean that the accuracy is
unchanged by adjusting κ; κ controls the strength of the anisotropy in the neighbourhood, while
β controls the strength of the smoothing once the smoothing directions have been determined.
The parameter values affect how the MRF is applied locally, even if the global energy remains
similar.

5.6.4 Alternate anisotropic schemes

The potentials presented so far are all based off the functions used in Perona-Malik diffusion.
An alternative is to make use of anisotropic diffusion as developed by Weickert (Weickert, 1998).
This makes use of the image structure matrix, a discretised and regularised version of ∇IT ∇I.
The eigenvalues and eigenvectors of this matrix define an ellipsoid that summarise the local
gradient distribution of the image. They can be used to detect intensity jumps as with the
image gradient. However, the eigenvalues can also be used to distinguish between thin tubular
structures, edges, plates, and structureless noise. This provides much more information than
the image gradient. Frangi’s vesselness filter (Frangi et al., 1998) previously mentioned makes
use of the structure matrix to detect veins, being thin tubular structures.
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Weickert transforms the structure matrix eigenvalues to adjust the strength of diffusion in each
of the eigenvector directions anisotropically, creating a diffusion matrix. The PDE (5.3) is solved
with this diffusion matrix as D. How to incorporate this matrix in to the MRF with the local
tissue labels, image intensities and neighbour direction is not immediately clear. One possibility
is given by Grau et al. (2006) who uses

wim = ˆim
T
D ˆim,

where D has been constructed to detect thin cylinders (veins) and smooth along but not across
them.

5.7 Conclusion

We have presented a framework for replacing the standard single-beta MRF with one that uses
local image characteristics to smooth anisotropically rather than isotropically. We believe that
this method could be useful in preserving thin features that would otherwise be smoothed, for
example CSF or WM between the cortical folds.

Our primary contribution is to thoroughly define the specific properties that must be satisfied
by the MRF potential in order to achieve these aims (properties 1 and 2 described previously),
within that framework. We investigated 3 different options for choice of anisotropic potential
based on the Perona-Malik diffusion function, that allow these properties to be achieved. These
use the image gradient to detect the presence and direction of edges locally and incorporate
this into the model to smooth along image edges and not across them. The PM|ys

m−ys
i | MRF

potential was the most successful in this goal and produced more accurate segmentations than
the standard single-beta MRF. It achieved the aim of retaining only a single β parameter, but
allowing its strength to vary across the image without being heavily driven by the current
segmentation as we found in the multi-beta MRFs of Chapter 4.

Although the PM|ys
m−ys

i | MRF has been seen in similar works (Wels, 2010; Boykov and Funka-Lea,
2006), these fix the MRF spatial regularisation parameter β arbitrarily, or omit it from the MRF
potential. The second contribution of our work is to incorporate estimation of β. The advantage
of this is to avoid problems with under- or over-specifying β as was found in Chapter 3.

Although this work shows promising improvements in segmentation accuracy, there are still a
number of areas in which it could be improved. First, the “MRF” as defined does not form a
valid MRF nor prior probability over z (see section 5.3.3.2); we have outlined how this may be
rectified by incorporation of a dependence between intensities of neighbouring voxels.

Second, the intensity normalisation parameter κ can be adjusted to increase the sensitivity of
the MRF to the image features. We set it to the median absolute deviation of the gradient
magnitude following Black et al. (1998), but perhaps it could instead be estimated along with β.
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Third, the MRF itself does not need to take the form of the Perona-Malik functions, and may
be further tailored. For example, if an anatomical atlas were available, it could be incorporated
into the unary potential Wi(zi) which we omitted. Another option is to use the image structure
matrix in place of the image gradient to detect edges with greater specificity, e.g. surface that
form a tube in three dimensions as opposed to a plane; see section 5.6.4.
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Chapter 6

Conclusion

6.1 Summary and findings

This thesis has focused on fully-automatic segmentation of brain MRI using a mixture-MRF
model of the image intensities and spatial distribution. In particular, we have studied the
MRF component of the model, which can be used to incorporate spatial dependence between
neighbouring voxels, having the effect of smoothing the segmentation. We have used maximum
pseudolikelihood estimation as a means to automatically determine the MRF parameters rather
than needing to manually specify them as is standard. We began with the simplified Potts
model as it is commonly used as the MRF component for tissue segmentation and showed how
to use MPL estimation to determine its spatial regularisation parameter β. We then studied
more advanced MRFs that allowed for more specific control of the smoothing, and applied
MPLE to these.

In Chapter 2 we covered the mixture-MRF image model and showed how it may be solved for
the tissue intensity parameters and optimal segmentation using Expectation-Maximisation, with
fixed MRF parameters.

6.1.1 Homogeneous Potts MRF

In Chapter 3, we focused on the homogeneous Potts MRF (also called the “single-beta MRF”)
which is very commonly used for tissue segmentation in several software tools used in neuroimag-
ing (FAST (Zhang et al., 2001), Atropos (Avants et al., 2011), NiftySeg (Cardoso et al., 2009),
EMS (Van Leemput et al., 1999b)). Its smoothing parameter β is typically fixed to a value
that has been chosen by the developers of the software. It is very rare for β to be determined
in a full-automatic manner, and methods for this usually require appropriate training data.
We proposed use of maximum pseudolikelihood estimation to automatically determine the
smoothing parameter β based on the input image data only. This has only rarely been done

145
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before in brain MRI segmentation (Forbes et al. (2013) with related application papers (Maggia
et al., 2016; Kabir et al., 2007; Menze et al., 2015)), and in none of these was the suitability of
MPLE over other methods of estimation studied in detail. The least-squares estimator (LSE)
was also studied, being the only other previously published method we are aware of in which β
was automatically estimated on a per-image basis without requiring training data. We showed
that estimating β using MPLE requires only univariate maximisation of a concave function,
which itself was already computed even when β is fixed. This means that implementation of
MPLE into existing methods is only a small added computational and coding burden to existing
software.

A detailed study was performed using several variants of MPLE, comprising choice of approxi-
mation (mean-field or pseudolikelihood) with neighbourhood size (6, 18, or 26). As far as we are
aware, a study specifically on MRF configuration choices such as these for brain segmentation
has not been presented before. Through experiments on real brain MRI it was found that the
pseudolikelihood approximation was surprisingly better than the mean-field approximation.
This was unexpected, as the pseudolikelihood loses probabilistic information by thresholding
probabilities to obtain labels. It was also found that 6 neighbours was sufficient, and that extra
neighbours sometimes caused over-smoothing in the MRF, possibly due to the approximate
E-step.

The relationship between segmentation accuracy and fixed β was explored to determine the
value of estimation. By performing a grid-search over fixed β values, it was shown that choosing
β too low can cause significant losses in accuracy. Setting β too high can result in an over-
smooth segmentation, though there is an upper bound to β beyond which the segmentation
will not change, having reached a state in which all voxels labels are equal to their majority
neighbourhood label. The range of “acceptable” β values and the value attaining the highest
segmentation accuracy differed for each image, demonstrating that a single fixed β is not
generally appropriate for all images. By contrast, estimation of β (by either MPLE or LSE)
was able to select a reasonable value for each image, near the maximum accuracy.

Segmentations produced using MPLE to determine β were compared to segmentations using
popular fixed β values and also those with estimation using LS estimation. Estimation produced
more accurate segmentations than fixed β, sometimes significantly so. Comparison of MPLE
with LSE showed that neither estimator produced segmentations significantly more accurate
than the other. However, LSE requires computation of neighbourhood frequencies, which can be
prohibitively expensive as neighbourhood size increases. It is also less applicable than MPLE,
as it cannot take the intensity distribution into account and cannot be used with the mean-field
approximation. It relies heavily on the nature of the current segmentation in its construction,
and may counterintuitively prevent common neighbourhoods (e.g. homogeneous ones) from
contributing to the β estimate if they do not occur with multiple different labels in the centre.
For these reasons, we find that MPLE is better suited for MRF estimation in MRI segmentation.
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6.1.2 Non-homogeneous Potts MRF

In chapter 4, we studied different forms of the full Potts MRF for use as a prior in mixture-MRF
brain MRI segmentation, as an alternative to the simplified single-beta Potts MRF. This enabled
finer control of the smoothing applied by the MRF, on a tissue-specific level. Additionally,
incorporation of unary parameters was thought to adjust for imbalanced tissue proportions
allowing interpretation of the MRF as a tissue prior multiplied by a pairwise MRF for spatial
regularity.

Three new MRFs were proposed to replace the single-beta Potts MRF: alpha-multi-beta with
multiple unary and pairwise (smoothing) parameters, multi-beta with just multiple smoothing
parameters, and alpha-single-beta, with multiple unary and only a single smoothing parameter.
It was also proposed to constrain the unary parameters such they matched current tissue
portions rather than being free.

We showed how maximum pseudolikelihood estimation could be applied to these more complex
MRFs. The MPL estimator retains its desirable features: its Hessian is negative semi-definite, so
any local maximum in Ψ for a given segmentation z is also a global maximum (though possibly
not unique). The gradient of the Q-function was computed and shown to be simply calculable
by a small number of matrix multiplications and additions. We also derived the corresponding
least-squares estimates, building on existing work of Van Leemput et al. (1999b).

We found that LSE was not suitable for use with multiple smoothing parameters, as it was too
dependent on the occurrence of specific neighbourhoods in order for its underlying system of
equations to be defined. In particular, the rarity of different neighbourhoods containing CSF
and WM neighbouring each other meant that LSE often could not find an estimate for the
corresponding CSF-WM smoothing parameter.

The proposed MRFs — with no or multiple unary parameters, either free or constrained to
tissue proportions, and with single or multiple smoothing parameters — were used to segment
real brain MRI using maximum pseudolikelihood estimation to automatically determine the
parameters. The alpha-multi-beta and alpha-single-beta MRFs with unary potentials constrained
to tissue proportions produced the most accurate segmentations, and the same MRFs with
unconstrained unary potentials produced the least accurate segmentations. However, none of the
MRFs achieved significantly more accurate segmentations than the previously-used single-beta
MRF.

We investigated this further by calculating the tissue proportions from the segmentations with
unary potentials constrained to the tissue proportions, to see if they were effective in controlling
these proportions. It was found that segmentations with unary potentials fixed to tissue
proportions had different tissue proportions to the other MRFs with no or unconstrained unary
potentials, more closely matching the true CSF proportion. However, they produced too much
grey matter. On visual inspection it was seen that the grey matter was over-smooth. Hence
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despite achieving slightly higher accuracy than the single-beta MRF, they are not recommended.
Rather, they have shown that constraints on the unary potentials can affect the segmentations,
but may require external anatomical information for the constraints to be useful.

A similar conclusion was drawn when multiple smoothing parameters were used. Although
they may be beneficial in allowing more specific smoothing, the reliance of the E-step on the
current segmentation and subsequent feedback loop with the M-step biases them too much when
unconstrained. In particular, it was found that the generally low occurrence of CSF and WM in
the brain drove the corresponding parameter estimate higher, which in turn further prohibited
CSF and WM from occurring (though this is plausible in a healthy brain). This resulted in an
artificial shell of GM separating CSF from WM in the segmentations.

In conclusion, we found that the fully-parameterised Potts MRF may be used to further tailor
the tissue prior to brain segmentation, but requires use of specific anatomical knowledge to
impose constraints on the parameters. In the absence of these, the single-beta MRF should
be used. This conclusion has been hinted at in other publications (e.g. Maggia et al. (2016)
presents the full Potts MRF but only uses the single-beta MRF), but has not previously been
explicitly demonstrated.

6.1.3 Locally anisotropic models

In chapter 5, we presented a framework for incorporating local image features into the single-beta
MRF such that the MRF was anisotropic. We proposed three models, based on Perona-Malik
anisotropic diffusion, to demonstrate this framework that use various approximations to the
local image gradient in order to smooth along edges but not across them. The PM|ys

m−ys
i | model

used a forward difference approximation for the directional derivative, while the PM|∇Is· ˆim|

model used the directional derivative itself, and the PMiso model used the gradient magnitude.
These models have a single β parameter, avoiding the problems of the previous chapter, yet
still enable local smoothing, unlike the single-beta MRF. The parameter β is estimated with
maximum pseudolikelihood. It was expected that the PM|ys

m−ys
i | model would be most sensitive

to presence of local edges as it did not suffer from the symmetry problems of the PM|∇Is· ˆim|

and PMiso models. We found the PM|ys
m−ys

i | model to produce significantly more accurate
segmentations than the standard isotropic single-beta MRF, particularly when preserving thin
features. The PM|∇Is· ˆim| and PMiso models produced significantly less accurate segmentations
than the single-beta MRF, showing that the anisotropic potential does indeed have an effect,
and must be carefully designed.

6.2 Contributions

The novel contributions of this thesis are



6.2. CONTRIBUTIONS 149

• to undertake a study of parameter estimation in Markov random fields for image segmen-
tation,

• to provide a recipe for use of the maximum pseudolikelihood estimator in the EM algorithm
and demonstrating how it is particularly suitable for incorporation into existing fixed-
parameter algorithms,

• to perform an explicit comparison of MRF design choices (neighbourhood size and MRF
approximation) of the standard homogeneous Potts MRF with regards to segmentation
accuracy,

• to make a detailed comparison of various forms of the non-homogeneous Potts MRF with
MPL estimation (comparing it to the homogeneous Potts MRF) and apply this to brain
MRI segmentation,

• to develop anisotropic MRFs suited to preserving fine structures with parameter estima-
tion via maximum pseudolikelihood estimation to them, and apply these to brain MRI
segmentation.

We acknowledge that the thesis does not aim to provide a full pipeline for brain segmentation
(e.g. including brain extraction, bias field correction or registration), but rather to provide
modifications and improvements to the core mixture-MRF model that is used as a basis in many
of these pipelines. Specifically, we have shown how maximum pseudolikelihood estimation may
readily be added to any existing method that uses the mixture-Potts MRF. We have also made
numerous arguments as to why this should be done. We have studied the effects of various
configuration details (neighbourhood size, MRF approximation) specifically with respect to
brain segmentation which has not been detailed elsewhere.

The full Potts MRF has additional parameters that need to be specified compared to the
single-beta MRF. Since parameter estimation is not often done in segmentation, this means
that the full Potts MRF is rarely used; it is sometimes mentioned but typically reduced to the
single-beta MRF when applied. We have demonstrated how the full Potts MRF may be used
with maximum pseudolikelihood to specify the parameters and undertaken a detailed study of
how the various unary and pairwise parameters apply to brain segmentation. We found that
the full Potts MRF is not useful with unconstrained parameters compared to the homogeneous
Potts MRF. Though this has been hinted at in other papers (e.g. Maggia et al. (2016)), our
work provides an explicit demonstration supporting the claim. We have also given suggestions
as to how the parameters may be constrained using anatomical information and using maximum
pseudolikelihood to determine the specific values.

We have shown how to construct anisotropic MRF potentials using local image features and
how to estimate their parameters with maximum pseudolikelihood. While anisotropic MRFs
have been used previously for tissue segmentation, these are discriminative models that require
training to learn the dependence of the MRF on the image features. By drawing on Perona-Malik
diffusion we have provided a generative model whose parameters may be estimated without the
use of training data.
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6.3 Future work

There are a number of avenues to take to improve the accuracy of the image model used in the
thesis; the work of a researcher is never done. The model consists of two components: an MRF
over the tissue labels, and an intensity distribution given those labels. This thesis has very
much focused on the MRF component. There is also much scope to study how the intensity
distribution might be adjusted to better model the image.

6.3.1 Markov random field

The main limitation of maximum pseudolikelihood estimation was that the E-step of the
EM algorithm required the current estimate of the segmentation in order to approximate the
expectations. Thus the segmentation was not fully marginalised out, leading to an undesirable
dependence and feedback loop between C and M steps. The MRF parameters in particular
were strongly influenced by the current segmentation, which allowed them to feed back into the
next segmentation. This was observed in the multi-beta MRFs of chapter 4 in the CSF-WM
boundary. It also tends to result in slightly over-smooth segmentations, since segmentations
are mostly homogeneous which favours high β estimates. This dependence also means that the
algorithm requires a good initial starting segmentation.

Future work could focus on removing or lessening this dependence in the E-step. Celeux et al.
(2003) favoured a ‘simulated random fields’ variant of the EM algorithm. Here, the C-step did
not use ICM or mean-field updates to determine z, but instead simulated z using one cycle
of Gibbs sampling from the current distribution. This allowed the z flexibility to escape local
minima. We experimented with this but found the posterior distribution did not allow the
simulated z to change much from what would have been obtained with ICM. However, perhaps
multiple cycles of Gibbs sampling or use of MRF-specific algorithms such as those by Swendsen
and Wang (1987) or Wolff (1989) could be used here. The caveat is that the more sophisticated
the simulation method, the greater the computation time.

In terms of the MRFs themselves, in chapter 4 we studied the fully-parameterised Potts MRF to
allow finer control of tissue smoothing. These showed promise, but ultimately it was concluded
that the parameters need to be constrained with context-specific knowledge in order to have
greatest effect. We attempted to incorporate such constraints in the form of setting the unary
parameters to match log-tissue proportions as for a standard mixture model, but while this
helped to address over-segmentation of CSF, it compensated by over-segmenting GM instead.
Future work could study the form of the constraints in greater detail, and whether an anatomical
atlas is absolutely required to impose them or if they may be driven by the data. It could be
that setting some βjk to be equal or bounded by each other and likewise with αj could prove
beneficial.
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In chapter 5 we discovered our most promising MRF, the PM|ys
m−ys

i | MRF. However as we noted,
this is not truly a MRF p(zi|z∂i) but rather a distribution described by p(zi|z∂i,y∂i), and it is
not clear that this leads to a valid joint distribution of z and y. The basis of the EM algorithm
is the Q function being the expectation of the joint distribution. Use of EM for the image
model of chapter 5 may not have been valid. If the probabilities could be rectified to form a
valid joint distribution, the corresponding pseudolikelihood and EM algorithm could then be
applied appropriately. We have given a few suggestions in that chapter as to how this might be
achieved. However, treating this model and corresponding algorithms as approximate, it led to
better practical results than any other method considered.

Also, the anisotropic MRFs studied in chapter 5 were fairly basic; classical Perona-Malik diffusion
differs in strength at each voxel but is isotropic at each voxel. It is only because we introduced
a forward approximation to the image gradient that we obtained directional anisotropy in the
PM|ys

m−ys
i | potential. An extension of these MRFs would be to use “true” anisotropic diffusion in

the style of Weickert (1998) seems very promising as it would make use of the image structure
matrix rather than the image gradient.

6.3.2 Intensity distribution

The intensity component assumes that the tissue intensities are normally distributed given
the tissue label. However, this is only an approximation. The intensity distribution for a
given distribution is not the same across the brain. For example, it is known that sub-cortical
grey-matter has intensity closely matching that of white-matter (Pohl et al., 2005); for this
reason, none of our segmentations were able to accurately segment these regions. In this case,
an atlas may be used to guide the segmentation. Other works have addressed this by using a
mixture of multiple normal distributions per tissue (Ashburner and Friston, 2005). One further
possibility is to allow the means of the normal distributions to themselves vary slowly across
the image, explicitly incorporating the inhomogeneity into the image model (Pohl et al., 2004).

The single-beta Potts MRF is limited in that in only allows for gross control of the smoothness
in the segmentation, offering only one parameter to adjust this. An example of this was the
difficulty in classifying partial volume voxels, especially those that fell on the boundary of CSF
and WM thus having the intensity of GM. The use of a mixture model in combination with
an MRF should have enabled these voxels to be correctly classified. Given the neighbours of
such a voxel, the intensity distribution is a standard normal mixture with mixing proportions
determined by the MRF probabilities evaluated a that voxel. These mixing proportions should
favour CSF and WM over GM as they occur in the neighbourhood while GM does not. However,
it appears they were not strong enough to overcome the difference in intensity probability.
Having β higher can increase the importance of the spatial information to override the intensity
density, but would then cause over-smoothing in the rest of the segmentation. An alternative
way to deal with this problem could be to explicitly incorporate partial volume effects into the
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image model itself. Shattuck et al. (2001) used additional tissue classes for combined tissues, e.g.
“CSF/GM”, with probability derived by integrating normal densities over linear combinations of
the corresponding means:

f(yi|CSF/GM) =
∫ 1

0
φ(yi; sµCSF + (1 − s)µGM, σ

2) ds.

Another options is to allow the tissue labels zi to be continuous rather than discrete. Rather
than consisting of g − 1 0s and one 1, they are permitted to be in the range [0, 1] and sum to
1. In a standard mixture, each voxel may have only one label. With this continuous version,
each voxel may be fractionally composed of different labels. The difference is that in the former,
the marginal f(yi) is a linear combination of normal densities but f(yi|zi) is a single normal
density, while in the latter, f(yi|zi) is also a linear combination of normal densities. The MRF
is then also be modified, typically changing the zT

i zm term to |zi − zm|2. This approach is
demonstrated in (Choi et al., 1991; Nocera and Gee, 1997; Roche and Forbes, 2014), amongst
others.

Throughout this thesis we have assumed that the image intensity at each voxel yi is scalar.
However, the existence of many sequences to highlight various tissues in MRI means that there
are often multiple images available. For example, T2 provides good contrast for CSF and when
used together with T1, may improve overall segmentation accuracy. The techniques developed in
this these are all valid for vector yi, and this is an avenue worth investigating. The only change
required is to replace the univariate Gaussian intensity distributions with multivariate ones; the
corresponding update equations for EM are in Appendix A. However, additional challenges are
encountered as the images must be well registered.

Finally, we have assumed that the voxel intensities are conditionally independent given their
labels, which are allowed to be dependent. This cannot account for intensity blurring, where the
signal recorded at voxel i is contaminated by the signals at neighbouring tissues. Incorporating
conditional dependence of observed intensities can be achieved using an MRF, for example an
autoregressive model. This is quite common in the field of satellite image classification, and
techniques used in that field might be adapted for MRI segmentation.

6.4 Final remarks

Ultimately, I have shown the importance of automatically determining parameter values in MRFs
for image segmentation. I have championed the use of maximum pseudolikelihood estimation
for its simplicity and ease of implementation into EM. The ability to automatically determine
parameter values has enabled use of more sophisticated MRFs (with more parameters) to improve
the specificity of the MRF to brain tissue segmentation. I have conducted a detailed study into
which forms of MRF work better than others when no training data or anatomical atlases are
available, and of modelling choices such as neighbourhood structure and MRF approximation.
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Some proposed MRFs performed better than others (notably the anisotropic MRFs), but I hope
the work in this thesis will be used as a detailed record of successes, failures and suggestions to
aid future research in the area.
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Appendix A

Derivation of update equations for a
normal mixture model

We derive the update equations for the Expectation-Maximisation algorithm for a finite mixture
model with spatially independent labels. First we derive the update for the mixing proportions
with arbitrary component distributions. Then we give the update equations where the component
distributions are multivariate normal. The update equations are all given in (McLachlan and
Peel, 2000, Chapter3) without derivation.

As given in Chapter 2, let Yi, i = 1, . . . , n be n observations over a p-dimensional sample space.
These are assumed distributed according to a g-component mixture. Let component j of the
mixture (j = 1, . . . , g) be distributed according to the pdf

f(yi|Zi = ej; θj) = fj(yi; θj).

Each component density fj need not be the same. Let Θ be the parameters of Yi known a
priori to be distinct, (θT

1 , . . . ,θ
T
g )T .

Let Zi, i = 1, . . . , n indicate which component of the mixture each observation is from, where
zi is a vector of length g, with element j being 1 if and only if observation i is in class j and
0 otherwise. These are assumed independently and identically distributed according to the
multinomial distribution with probabilities π = (π1, . . . , πg).

A.1 Joint distribution

Due to the binary nature of Zij, its pdf may be written

f(zi; π) =
g∏

j=1
π

zij

j .
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Since Zi are independently distributed,

f(z; π) =
n∏

i=1

g∏
j=1

π
zij

j .

Similarly, the conditional distribution of the observed variables can be written

f(yi|zi; Θ) =
g∏

j=1
fj(yi; θj)zij .

Since Yi are assumed independent given Zi,

f(y|z; Θ) =
n∏

i=1

g∏
j=1

fj(yi; θj)zij .

The joint distribution is then

f(y, z; Θ,π) =
n∏

i=1

g∏
j=1

(πjfj(yi; θj))zij ,

and log-likelihood function is

log L(Θ,π; Y ,Z) =
n∑

i=1

g∑
j=1

zij(log πj + log fj(yi; θj)).

A.2 E-step

The Q function is obtained by taking the expectation of the log-likelihood with respect to Z

given Y ,Θ(t),π(t):

Q(Θ,π|Θ(t),π(t)) = EZ|Y ,Θ(t),π(t) [log L]

=
n∑

i=1

g∑
j=1

E
[
zij|Y ,Θ(t),π(t)

]
(log πj + log fj(yi; Θ)).

Now zij can take the values 1 or 0, so

E
[
zij|Y = y; Θ(t),π(t)

]
= 1 · Pr(Zi = ej|y; Θ(t),π(t)) + 0 · Pr(Zi 6= ej|y; Θ(t),π(t))

= Pr(Zi = ej|yi; Θ(t),π(t)) since Zi depends on Yi only

= f(yi|Zi = ej; Θ(t)) Pr(Zi = ej; π(t))
f(yi; Θ(t),π(t)) .

In the numerator, f(yi|Zi = ej,Θ(t)) is the pdf fj(yi; Θ(t)), while Pr(Zi = ej; π(t)) = πj
(t).
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This yields:

E
[
zij|Y = y; Θ(t),π(t)

]
= πj

(t)fj(yi; Θ(t))∑g
j=1 πj

(t)fj(yi; Θ(t)) .

We will write this value as τij
(t); note it does not depend on the parameters Θ and π, but only

on their values at iteration t. Hence the Q-function is

Q(Θ,π|Θ(t),π(t)) =
n∑

i=1

g∑
j=1

τij
(t)(log πj + log fj(yi; Θ))

τij
(t) = πj

(t)fj(yi; Θ(t))∑g
j=1 πj

(t)fj(yi; Θ(t)) .
(A.1)

A.3 M-step

To perform the M-step we maximise Q with respect to π and Θ.

A.3.1 Mixing proportions

We wish to maximise Q subject to ∑j πj = 1. This can be achieved using a Lagrange multiplier.
Let

L = Q(Θ,π|Θ(t),π(t)) + λ(
g∑

j=1
πj − 1).

Then taking the derivative and setting it equal to zero,

∂L

∂πk

= ∂

∂πk

n∑
i=1

g∑
j=1

τij
(t)(log πj + log fj(yi; θj)) + λ

∂

∂πk

(
∑

j

πj − 1)

=
n∑

i=1

τik
(t)

πk

+ λ

= 0.

Rearranging yields

πk = −
∑n

i=1 τik
(t)

λ
, ∀k ∈ {1, . . . , g} (A.2)
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Recalling that ∑g
j=1 πj = 1, we have that

1 = −
g∑

j=1

∑n
i=1 τij

(t)

λ

−λ =
g∑

j=1

n∑
i=1

τij
(t)

=
n∑

i=1

g∑
j=1

τij
(t)

=
n∑

i=1
1

= n,

since
g∑

j=1
τij

(t) =
g∑

j=1

πj
(t)fj(yi; θj

(t))∑g
h=1 πh

(t)fh(yi; θh
(t))

=
∑g

j=1 πj
(t)fj(yi; θj

(t))∑g
h=1 πh

(t)fh(yi; θh
(t))

= 1.

Substituting λ = −n into (A.2) yields

πj
(t+1) =

∑n
i=1 τij

(t)

n
, (A.3)

with τij
(t) given by (A.1). Note that this is independent of the component distributions in the

mixture, fj.

A.3.2 Gaussian components

The update equations for θj are obtained by maximising Q with respect to them. We now assume
that the component distributions fj are multivariate Gaussian with mean µj and covariance
matrix Σj and derive the update equations. The pdf of component j is:

fj(yi; θj) = det(2πΣj)− 1
2 exp(−1

2(yi − µj)T Σ−1
j (yi − µj)),

where θj = (µj,Σj). The Q function becomes (dropping constants that do not depend on the
parameters):

Q(Θ,π|Θ(t),π(t)) =
n∑

i=1

g∑
j=1

τij
(t)(log πj − 1

2 log(det Σj) − 1
2(yi − µj)T Σ−1

j (yi − µj))
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A.3.2.1 Mean

Taking the gradient of Q with respect to the mean µk yields

∇µk
Q = −1

2

n∑
i=1

τik
(t)∇µk

(yi − µk)T Σ−1
k (yi − µk),

where the the sum over j only has non-zero derivative for the kth term. Now1

∇µk
(yi − µk)T Σ−1

k (yi − µk) = (Σ−1
k + (Σ−1

k )T )(yi − µk)

= 2Σ−1
k (yi − µk) · (−1),

since Σk is symmetric, and hence so is Σ−1. Then

∇µk
Q =

n∑
i=1

τik
(t)Σ−1

k (yi − µk)

= Σ−1
k (

n∑
i=1

τik
(t)yi − τik

(t)µk)

= 0.

Rearranging yields

µk
(t+1) =

∑n
i=1 τik

(t)yi∑n
i=1 τik

(t) . (A.4)

A.3.2.2 Covariance

Taking the gradient of Q with respect to Σk yields

∇Σk
Q = −1

2

n∑
i=1

τik
(t)∇Σk

Q(log(det Σk) + (yi − µk)T Σ−1
k (yi − µk))

Now
∂

∂Σk

log det(Σk) = (ΣT
k )−1 = Σ−1

k as Σk = ΣT
k

and
∂

∂Σk

(yi − µk)T Σ−1
k (yi − µk)) = −Σ−T

k (yi − µk)T (yi − µk)Σ−T
k

= −Σ−1
k (yi − µk)T (yi − µk)Σ−1

k ,

so the derivative is

∂Q

∂Σk

= −1
2

n∑
i=1

τik
(t)(Σ−1

k − Σ−1
k (yi − µk)T (yi − µk)Σ−1

k ).

1The matrix cookboock (Petersen and Pedersen, 2012) is immensely useful here
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Setting the gradient equal to 0 and multiplying by Σk on the left and right yields

0 =
n∑

i=1
τik

(t)(Σk − (yi − µk)T (yi − µk))

= Σk

n∑
i=1

τik
(t) −

n∑
i=1

τik
(t)(yi − µk)T (yi − µk)

Σk =
∑n

i=1 τik
(t)(yi − µk)T (yi − µk)∑n

i=1 τik
(t) .

(A.5)

A.4 Summary

Restating (A.1), (A.3), (A.4) and (A.5), the update equations for a Gaussian mixture model are:

τij
(t) = πj

(t)fj(yi; Θ(t))∑g
j=1 πj

(t)fj(yi; Θ(t))

πj
(t+1) =

∑n
i=1 τij

(t)

n

µj
(t+1) =

∑n
i=1 τij

(t)yi∑n
i=1 τij

(t)

Σj
(t+1) =

∑n
i=1 τij

(t)(yi − µj
(t+1))T (yi − µj

(t+1))∑n
i=1 τij

(t) .

(A.6)

It should be noted that the update for the mixing proportions does not require fj to be Gaussian.

Following McLachlan and Peel (2000) (section 3.2), it is computationally convient to write:

Tj1 =
n∑

i=1
τij

(t)

Tj2 =
n∑

i=1
τij

(t)yi

Tj3 =
n∑

i=1
τij

(t)yiy
T
i ,

(A.7)

giving
πj

(t+1) = Tj1

n

µj
(t+1) = Tj2

Tj1

Σk
(t+1) =

Tj3 − Tj2T
T
j2/Tj1

Tj1
.

(A.8)
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To see the last line,

Σj
(t+1) =

∑n
i=1 τij

(t)(yi − µj
(t+1))T (yi − µj

(t+1))∑n
i=1 τij

(t)

=
∑n

i=1 τij
(t)yT

i yi − τij
(t)yT

i µj
(t+1) − τij

(t)(µj
(t+1))T yi + τij

(t)(µj
(t+1))T µj

(t+1)

Tj1

=
Tj3 − 2(µj

(t+1))T ∑n
i=1 τij

(t)yi + T T
j2Tj2/T

2
j1
∑n

i=1 τij
(t)

Tj1

=
Tj3 − 2(T T

j2/Tj1)Tj2 + T T
j2Tj2/T

2
j1 · Tj1

Tj1

=
Tj3 − 2T T

j2Tj2/Tj1 + T T
j2Tj2/Tj1

Tj1

=
Tj3 − T T

j2Tj2/Tj1

Tj1
.

.
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Appendix B

Coding schemes for three dimensional
images

Here we give the coding schemes used for three-dimensional neighbourhoods with 6 neighbours,
18, and 26 neighbours in a 3 × 3 × 3 cube. A coding scheme (Besag, 1974) is a partition of the
lattice (in our case, the voxel grid) into sets of vertices into sets such that no two elements in
the same set are neighbours. For quantities that should be calculated sequentially using the
updated values for each voxel’s neighbours at all times, coding schemes allow all voxels in a
given set to be updated simultaneously, with the sets visited sequentially. This is useful in
calculating Iterated Conditional Modes or mean-field updates. Note that coding schemes are
not necessarily unique. We believe the ones shown use the minimum number of voxel partitions
(though their arrangement is also not necessarily unique).

Visualising the three-dimensional schemes in two dimensions is difficult. To aid in this, we have
drawn a portion of the voxel grids in 2D slices, thowing three slices (since the neighbourhood is
3 × 3 × 3). Each coding set is associated with a particular symbol; every voxel in that set is
marked with that symbol. The schemes are periodic. To verify that the coding sets are valid,
pick a particular voxel and determine its neighbours; none of them should match the symbol of
that voxel. Repeat this for each symbol.

To aid in this, we outline the voxel (symbol) being considered in bold with a blue background.
In each slice displayed, we indicate its neighbours by shading them grey. One should verify that
none of the grey-shaded neighbours share the same symbol as the blue-shaded voxel. We repeat
this for each symbol/coding set.

B.1 6 neighbours

The 6-neighbourhood contains the orthogonal neighbours: north, east, south, west, top and
bottom. A coding scheme may be achieved by partitioning the voxels into two sets in a chess-
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Figure B.1: Coding scheme into 2 sets for 6-neighbourhood.

board pattern. This scheme is periodic within each slice, and should be shifted by 1 row (or
column) between slices. It is shown in Figure B.1.

B.2 18 neighbours

The 18-neighbourhood contains the orthogonal neighbours as well as the in-plane neighbours. A
coding scheme may be achieved by partitioning the voxels into four sets. The scheme is periodic
within each slice (a 2 × 2 grid). Between slices, it should be offset by one row and one column.
The scheme is periodic over a 2 × 2 × 2 cube. It is shown in Figure B.2.

B.3 26 neighbours

The 26-neighbourhood contains all neighbours of the 3 × 3 × 3 cube. A coding scheme may be
achieved by partitioning the voxels into eight sets. This scheme uses 4 symbols per slice, and is
periodic in a 2 × 2 grid within each slice. The symbols use alternate every slice. We show the
neighbourhoods first for “odd” slices (symbols !, #, ^, @) in Figure B.3 and then for “even”
slices (symbols x, o, ., *) in Figure B.4. These slices are alternated as-is.
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Figure B.2: Coding scheme into 4 sets for 18-neighbourhood.
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Figure B.3: Coding scheme into 8 sets for the 26-neighbourhood. The “odd” slice is in the
centre (symbols !, #, ^, @).
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Figure B.4: Coding scheme into 8 sets for the 26-neighbourhood. The “even” slice is in the
centre (symbols x, o, ., *).
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