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ABBREVIATIONS 
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DLE Discoid lupus erythematosus 
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F Fibrin 

FDA Food and Drug administration 

Fg Fibrinogen 

FII Factor II 

FIIa Factor II activated 

FIX Factor IX 

FIXa Factor IX activated 

FOCE First Order Conditional Estimation 

FVII Factor VII 
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FVIIIa Factor VIII activated 
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FXa Factor X activated 
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FXIa Factor XI activated 

FXII Factor XII 

FXIIa Factor XII activated 

GINsim Gene Interaction Network simulation 
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ICOS Inducible T-cell COStimulator 
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IIV Inter Individual Variabilty 
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ISI International sensitivity index 
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PREFACE 

The treatment of complex diseases represents currently a major challenge. In this 

context systems pharmacology (SP) is an emergent discipline that provides an 

opportunity to get deeper insights in this type of diseases by integrating different areas 

of knowledge including biology, pharmacology, pharmacometrics, statistics, and 

computational modelling.  

Nowadays, SP has relevance throughout the entire process of drug development, since it 

has been able to show that systems computational models allow increasing the 

understanding of different mechanisms of action and regulatory processes, 

demonstrating their usefulness for organizing large biological data sets and extracting 

significant information. These models are useful for (i) the identification and validation 

of new therapeutic targets, (ii) the discovery of new biomarkers, (iii) patient 

stratification, (iv) dose individualization, (v) the identification of new sources of 

variability and (vi) the prediction of toxicity and adverse effects.  

In this thesis, different types of mechanistic models were explored showing its 

capabilities and drawbacks.  

The Introduction section provides a brief description and uses of systems pharmacology 

models.  

Chapter 1 presents a systems pharmacology model for Systemic Lupus Erythematosus. 

This model, based in Boolean equations, allows identifying different patient 

subpopulations according to their molecular alterations, predicting the variability in the 

progression of the disease and designing individualized drug therapies with a high 

likelihood of success. 

In Chapter 2 two systems pharmacology models for coagulation cascade published in 

the literature are implemented and reproduced. Then, experimental data obtained from 

the literature was incorporated in both models to reproduce coagulation tests. Finally, a 

semi-mechanistic pharmacokinetic/pharmacodynamic (PKPD) model was built to fit 

this experimental data. 

Chapter 1 and Chapter 2 provide an overview of the characteristics of the disease or 

biological system and their therapeutic alternatives as well as the description of the 
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information and methodology used to develop the SP models, together with the 

corresponding results. 

On the other hand, Chapter 3 discusses the impact of considering exposure at the target 

site with regard to systemic concentrations, a piece of information that usually remains 

forgotten in mechanistic modelling. 

The General Discussion highlights the most relevant aspects of the three chapters, 

followed by the Conclusions section, which summarizes the main findings of this thesis. 

Finally, in the Annex, an article of a systems pharmacology model developed for 

inflammatory bowled disease, recently published in PLOS ONE journal is enclosed. 
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SYSTEMS PHARMACOLOGY 

In the last years, drug development is becoming more challenging and costly. Despite 

the advances in scientific knowledge, the gap between bench discovery and bedside 

application is increasing; in fact, less than 10% of the drugs starting a phase 1 clinical 

program are finally approved by the FDA (Food and Drug Administration). This 

percentage is even lower in oncology or cardiovascular diseases among others
a
 (Figure 

1). Additionally, the cost of bringing a new drug to market is estimated to be around 

$1.7 billion
b
. As a consequence, regulatory agencies like FDA proposed several 

initiatives for optimizing drug development. 

  

Figure 1. Phase transition success of drugs during drug development and the likelihood of approval from phase I by 

disease. NDA (New drug application), BLA (Biologic license application). 

One of these initiatives was the Critical Path Initiative launched by the FDA in March 

2004. This initiative aimed to modernize the scientific and technical tools for evaluating 

and predicting the safety, effectiveness and manufacturability of innovative medical 

products and thus accelerate the drug development process.  

                                                 
a
https://www.bio.org/sites/default/files/Clinical%20Development%20Success%20Rates%202006-2015%20-

%20BIO,%20Biomedtracker,%20Amplion%202016.pdf 
b
 http://www2.bain.com/bainweb/PDFs/cms/Marketing/rebuilding_big_pharma.pdf 
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These strategies and tools were summarized in the report “Innovation/Stagnation: 

Challenge and Opportunity on the Critical Path to New Medical Products”
c
. In addition 

to this report, an opportunity list
d
 with specific tasks for driving this modernization was 

provided. This opportunity list was subsequently divided into six broad topic areas 

(Figure 2).  

 

Figure 2. Translational research consists on transfer the discoveries into preclinical and clinical analysis whereas 

critical path research is focused on improving the drug development process. The FDA released an opportunity list to 

facilitate this process. It is divided into six different areas.  

The focus of the current thesis is the third challenge area, bioinformatics. This area aims 

to improve drug development efficacy and predictability of results through the 

application of mathematics, statistics and computational analysis.  

One opportunity suggested within the bioinformatics area was “Model-based drug 

development”. Defined as “a mathematical and statistical approach that constructs, 

validates, and utilizes different type of models to facilitate drug development”
1
, this 

approach is also known as pharmacometrics. Pharmacometrics includes: (i) population 

pharmacokinetic/ pharmacodynamic (popPKPD) models, (ii) disease models, (iii) 

                                                 
c
http://wayback.archive-it.org/7993/20180125142845/https://www.fda.gov/downloads/ScienceResearch/ 

SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/UCM077254.pdf 
d
http://wayback.archive-it.org/7993/20180125035449/https://www.fda.gov/downloads/ScienceResearch/ 

SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/UCM077258.pdf 
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evaluation and formal validation methodologies and (iv) optimized design of clinical 

trials. Additionally, through simulation exercises, is possible to understand biologic 

systems as well as explore possible dosage scenarios. This definition of 

pharmacometrics establishes links between other challenging areas as can be seen from 

figure 2. 

Currently, most public and private institutions consider pharmacometrics a fundamental 

element within any drug development program as it aims to reduce the time and the cost 

of bringing a new drug to the market significantly. Furthermore, a properly evaluated 

and validated popPKPD model can be used to (i) establish individualized dosage 

regimens, (ii) explore different scenarios and (iii) reuse the acquired knowledge and 

apply to different conditions and situations, among others. 

Although the predictive capacity of popPKPD models is contrasted and confirmed in the 

context of interpolation, prediction of the clinical outcome in complex scenarios is 

associated with a big uncertainty. For example, the emergence of immuno-oncology 

drugs has resulted in a revolution, becoming to cease different tumors that years ago 

were devastating, like melanoma. However, some part of the population does not 

respond to the treatment. The possibility to anticipate which type of patients are going 

to respond as well as discover the reason of this lack of response opening the possibility 

to an alternative treatment has an extraordinary repercussion. Besides the need of 

patient stratification, the difficulty to identify the best candidates for combination 

treatments, identification of predictive biomarkers and new therapeutic targets 

represents additional complexities. These needs/challenges could not be accomplished 

just by applying or developing data-driven popPKPD modelling, and thus a new 

discipline has emerged, systems pharmacology (SP) (Figure 3). 
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Figure 3. Differences between pharmacometrics and systems pharmacology. 

Frequently, systems pharmacology term is associated with pharmacometrics. As Figure 

4 shows, these disciplines are complementary and they are connected by the 

translational nexus. The aim of systems pharmacology is bridging together systems 

biology, engineering and pharmacokinetic/ pharmacodynamic (PKPD) modelling to 

understand the mechanism of action of drugs and therefore, making possible the 

interpretation of drug efficacy and adverse events
2
. 

 

Figure 4. The relationship between PKPD modelling and systems pharmacology during new drug development and 

patient use. 
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As it is represented in Figure 4, systems pharmacology discipline has relevance during 

all drug development process because allows: (i) identifying and validating new targets, 

(ii) discovering new biomarkers, (iii) stratifying patients, (iv) individualizing dosage 

regimens, (v) identifying response variability sources, and (vi) predicting toxicity and 

adverse events.  

The combination of pharmacometrics and systems pharmacology during the last decade 

has recently led to “Model Informed Drug Discovery and Development” (MID3), which 

is defined as “a quantitative framework for prediction and extrapolation, centered on 

knowledge and inference generated from integrated models of compound, mechanism 

and disease level data and aimed at improving the quality, efficiency and cost 

effectiveness of decision making”
3
.  

 

1. Pharmacometrics and systems pharmacology approaches 

There are two main strategies for data analysis and integration of knowledge (Figure 5), 

the bottom up and the top down approaches
4
. The distinction lies in the way in which 

the system is view. The bottom-up approach joins small systems to derive complex 

biological systems. In this type of approach, the individual elements of the system are 

first specified in great detail, conferring a maximum level of granularity. On the 

contrary, the top-down approach consists of breaking down a top-level system to get 

insights of the sub-systems. It is considered data-driven and represents the approach 

followed by most semi-mechanistic popPKPD models. One disadvantage of this 

approach is that sometimes the models may lack interpretability regarding mechanisms.   

Generally, SP models use the bottom-up approach, allowing building exhaustive 

computational structures based on the knowledge of the physiologic systems and 

integrating different types of information obtained from diverse sources. Furthermore, 

they are not limited by quantitative and longitudinal data as it will be discussed below.  
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Figure 5. Bottom-up approach vs top-down approach. Adapted from Shalhoub et al.5 

 

2. Types of systems pharmacology models 

Generalizing, we can distinguish between two types of systems pharmacology models
6
 

which are not mutually exclusive: (i) (semi-) qualitative networks based on Boolean 

operators and, (ii) quantitative models based on ordinary differential equations (ODEs) 

and algebraic equations. 

Boolean networks 

Boolean networks were introduced by Kauffman in 1969
7
. A network is a way of 

representing related data which is composed of nodes that are the network components 

(molecules, proteins, genes…) and the relationships between these nodes
6
. Through this 

type of networks, it is possible to represent complex biological processes. 

In this type of models, the nodes (elements) only can assume two states, activated or 

inactivated, represented by logic values “1” or “0”, respectively. The connections 

(relationships) are built through the Boolean operators “AND”, “OR”, and “NOT”. 

Once the nodes and the relationships are identified, the Boolean equations are built. 

Each node has its Boolean equation, through its state is calculated. 
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o Updating methods: synchronous/ asynchronous 

In Boolean models, time is a discrete entity that specifies the instances in which the 

state of the nodes may change. In each time step, the state of each node is updated and it 

is determined by the states of the nodes regulating it according to the corresponding 

Boolean equation.  

They are two strategies that differ in the way in which the nodes are updated (as it is 

explained in Figure 6), the synchronous or asynchronous updating methods
8
. In the 

synchronous method, the state of the nodes at time t is calculated just by the states of its 

regulatory nodes at time t-1. On the other hand, with the asynchronous method, the state 

of a node at time t is updated according to the last update (time t-1 or t if it has already 

been updated) of its regulatory nodes. In both cases, the order in which the nodes are 

updated at each step is selected randomly. However, when using the synchronous 

method, the output at time t always depends on the state of the nodes at time t-1, 

obtaining the same output in each time step. Contrary, when using the asynchronous 

method the output may vary depending on the updated order in time t, thus introducing 

stochasticity in the model (as can be seen in Figure 6).  
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Figure 6. Explanation of the synchronous and asynchronous updating methods. Adapted from Irurzun-Arana I. et al.9 
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o Attractors 

The behavior of a Boolean network is explored by means of simulations, once the initial 

conditions of the system are specified. The system eventually results in a set of stable 

states called attractors. Attractors can be classified in different groups: (i) a fixed-point 

if it consists of only one state, (ii) a simple cycle if it is composed by more than one 

state that oscillates in a cycle or (iii) a complex attractor if the set of states oscillate 

irregularly
10

. Usually, large-scale or highly interconnected networks using the 

asynchronous method converge into complex attractors.  

o Models 

The development of Boolean network models in the area of pharmacology is recent and 

still scarce. Some examples are summarized in Table 1. As we can observe, they 

represent complex networks in which a great number of nodes and relationships are 

involved.  

Our research group has developed recently two Boolean networks corresponding to 

systemic lupus erythematosus
11

 and inflammatory bowel diseases
12

, the former as a part 

of the current Ph.D. thesis. 

Usually, this type of models can be built with qualitative or discrete data, that is when 

the quantitative and longitudinal data is limited and parameter estimation is not 

possible. Furthermore, they can be used as the starting point in the development of 

quantitative models. For example, Chudasama et al.
13

 built a Boolean network of signal 

transduction pathways in multiple myeloma cells, and they converted it into an ODEs 

based model in order study bortezomib effects on signal transduction in multiple 

myeloma cells. Years later, Ramakrishnan and Mager
14

, extended Chudasama et al. 

model adding additional signaling pathways. Also, the model was converted to a 

quantitative model to evaluate the heterogeneity in the pharmacological response to 

bortezomib. 
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o Tools 

As can be seen in Table 1, there are different tools and software packages to develop 

and explore Boolean networks. The following provides a brief description of some of 

them: 

SPIDDOR: Systems Pharmacology for effIcient Drug Development On R
35

 (SPIDDOR) 

is an R package to perform Boolean modelling. It was developed in our laboratory. This 

software, allows (i) simulating activation profiles with corresponding confidence 

intervals, (ii) performing attractor analysis, (iii) including perturbations in the system 

and, (iv) making sensitivity analysis. It has implemented synchronous and asynchronous 

updating methods. Furthermore, this tool offers the possibility to introduce new types of 

regulatory interactions, like up-regulation or down-regulation, as well as 

polymorphisms.  

Cell Net Analyzer: Cell Net Analyzer
36

 is a Matlab toolbox which provides a graphical 

user interface and allows structural analysis of different types of cellular networks 

(metabolic, signaling and regulatory).  

BoolNet: BoolNet
37

 is an R package that allows analyzing Boolean networks using 

synchronous and asynchronous updating schemes, as well as probabilistic Boolean 

Networks. It also includes different methods to identify attractors. The nodes can be 

temporarily knocked out and overexpressed. 

Cell Collective: Cell collective
38

 is a software which is implemented in Java and the 

simulation tool is based on ChemChains. This web-based platform
e
 allows scientists 

over the world to share experimental data to build mathematical models of biological 

processes. Cell Collective is formed by (i) biological databases from different resources, 

like Uniprot, WikiPathways, among others which contain information about data 

experiments, (ii) a software which allows performing simulations with dynamical 

models, (iii) the first repository for qualitative models, (iv) the option to use Systems 

Biology Markup Language (SBML) to facilitate the exchange between investigation 

groups, and (v) tools for visualization and analysis different types of networks. 

GINsim: Gene Interaction Network simulation (GINsim)
39

 is a user-friendly modelling 

software for logical networks analysis which can include perturbations. The software 

                                                 
e
 http://www.thecellcollective.org 
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was presented in 2006
40

 but currently, there are different versions. It is composed by a 

graphical user interface, a simulation core and a graph analysis toolbox. The main 

advantages of GINsim are the possibility of multilevel modelling and the updating 

schemes that can be used are synchronous, asynchronous and mixed schemes. 

SQUAD: SQUAD 
41

 is a software which is written in Java version 1.6. Before using 

SQUAD, the topology (nodes and their relationships representation) of the network has 

to be established. SQUAD accepts different types of input formats, but they included 

the possibility of using CellDesigner
f
, which is a graphical tool to build and edit 

biological networks. Once the network is loaded into SQUAD, it converts the network 

into a discrete dynamical system and identifies all stable states of the network. Then, it 

is converted into a continuous dynamical system using the steady states found in the 

discrete model. Finally, simulations with or without perturbations can be performed. 

o CoLoMoTo consortium 

CoLoMoTo (Consortium for Logical Models and Tools)
g
 is a consortium formed by 

different research groups working in the field of logical modelling. It comprises 

modelers as well as tools developers. A priority in this consortium is to define standards 

for (i) model representation and interchange, (ii) methods comparison, (iii) models and 

(iv) tools. 

Quantitative models 

Quantitative systems pharmacology is described as the quantitative analysis of dynamic 

interactions between drugs and biologic systems to discover how the drugs modulate the 

dynamics of biologic components in molecular and cellular networks and the impact of 

these perturbations in human physiopathology
42

. 

Quantitative systems pharmacology models are mechanistic models which describe 

physiologic processes through ODEs. For that, extensive knowledge of the parameters 

involved in the processes is needed
6
. These models are a great tool to enhance the 

understanding of different mechanisms of action and regulation processes, 

demonstrating its utility to organize large dimension data sets allowing to obtain 

relevant information
43

. 

                                                 
f
 http://www.celldesigner.org/ 

g
 http://www.colomoto.org/ 
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o Models 

In the last decade, the development of quantitative systems pharmacology (QSP) models 

has increased
44

. Some examples are shown in Table 2. These models describe dynamic 

systems through mathematical equations that characterize biological mechanisms. Some 

of them present similarities to mechanistic PKPD models, in fact, there are still some 

controversies when it comes to distinguishing between them.  

Table 2. Examples of QSP models published in the literature.   

Author(s) Pathway/Disease Tool Year Ref 

Wajima et al. Coagulation Matlab 2009 45 

Peterson & Riggs Calcium homeostasis and bone remodelling Berkeley Madonna 2010 46 

Benson et al.  Nerve growth factor pathway Simbiology 2013 47 

Demin et al. 5-Lipoxygenase Inhibitors DBSolve  2013 48 

Nayak et al. Coagulation Simbiology 2014 49 

Lu et al. Lipoprotein Metabolism Matlab 2014 50 

Gadkar et al. 
Mechanisms of action of statin and anti-

PCSK9 therapies 
Simbiology 2014 51 

Benson et al. 
Development of fatty acid amide hydrolase 

inhibitors for pain 
Simbiology 2014 52 

Toni et al. 
Nerve growth factor signaling through p75 and 

TrkA receptors 
Simbiology 2014 53 

Sharan & Woo 

The relationship between circulating 

angiogenic factors dynamics and in vivo 
antitumor activity in response to anti-VEGF 

(vascular endothelial growth factor) agents 

Berkeley Madonna 2014 54 

Wronowska et al. Sphingolipid metabolism Simbiology 2015 55 

Garmaroudi et al. Nitric Oxide−Cyclic GMP Signaling Pathway Simbiology 2016 56 

Karelina et al. 
Effect of Anti-Interleukin Therapy on 
Eosinophils 

DBSolve 2016 57 

Gotta et al.  Drug-induced QTc interval prolongation NONMEM 2016 58 

Clausznitzer et al. Alzheimer Simbiology 2018 59 

Thiel et al. Drug efficacy of COX-2 and 5-LOX inhibitors MoBi 2018 60 

 

The lack of standardization to develop a QSP model, as well as the establishment of the 

most efficient tools, may hinder the use of this methodology in drug development. To 

overcome some of these limitations, the DDMoRe (Drug Disease Model Resources) 

project
h
 developed a specific language, called the Pharmacometrics Markup Language 

(PharmML). What aims this project is to establish a standard language for PKPD and 

QSP modelling, making easier the exchange and the reusability of the models between 

research groups. Moreover, it has a freely available repository to submit models and 

                                                 
h
 http://www.ddmore.eu/content/project 
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share them. Another repository to share models is BioModels Database
i
, a platform 

created in 2006. The published models are divided into two groups, manually curated or 

non-curated. One advantage of this type of resources is that they enhance models 

visibility.   

o Tools 

Matlab: Matlab®
j
 is a programming platform that allows analyzing data, developing 

algorithms and creating models and applications. 

Simbiology: Simbiology®
k
 is an application of Matlab that uses ODEs and stochastic 

solvers. It allows modelling, simulating, and analyzing dynamic systems and also using 

population data to estimate model parameters. 

MoBi: MoBi®
l
 is a systems biology software tool which can be used in R or Matlab and 

was developed by Bayer technologies. It is a potent tool for modelling and simulation of 

biological systems.  

NONMEM: NONMEM®
m

 (non-linear mixed effects modelling) is a software 

developed by Lewis B. Sheiner and Stuart L. Beal
61

 for popPK modelling. Nowadays, it 

can be used to fit different types of data and simulate data through mathematical 

models. 

Berkeley Madonna: Berkeley Madonna®
n
 is a software to solve differential equations. 

The new version has a graphical interface for constructing mathematical models instead 

of write equations.  

o ROSA 

Rosa & Co.
o
 is a company that was founded in 2002 by Ron Beaver. It is characterized 

by its knowledge in biology and therapeutic sciences, as well as its modelling expertise. 

This company developed PhysioPD research platform which allows incorporating PK or 

                                                 
i
 https://www.ebi.ac.uk/biomodels-main/termsofuse 

j
 https://es.mathworks.com/ 

k
 https://es.mathworks.com/products/simbiology.html 

l
 http://www.systems-biology.com/products/pk-sim.html 

m
 https://www.iconplc.com/innovation/nonmem/ 

n
 https://berkeley-madonna.myshopify.com/ 

o
 https://www.rosaandco.com/ 

https://en.wikipedia.org/wiki/Mixed_model
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PKPD models integrated with physiological models to perform clinical trials 

simulations, in other words, it allows generating QSP models.  

This platform can help the researcher in: (i) evaluate target mechanism of action, (ii) 

prioritize candidate targets, (iii) support lead compound selection, (iv) translate 

preclinical to clinical, (v) optimize therapy combinations among others.  

The PhysioPD platform provides support to models in several diseases like 

Schizophrenia
62

, Parkinson
63

, Psoriasis
64

, lymphoblastic leukemia
65

 and nervous 

systems central diseases
66

 among others.   

Since 2011 Rosa & Co. gives free webinars each month about aspects of research and 

drug development. These webinars are given by select speakers from academia, 

industry, Rosa client companies, and Rosa itself. 

As on every scientific discipline, there are still open issues with SP models regardless if 

they are based on Boolean operators or quantitative dynamics, as shown below. 

 

3. Systems pharmacology models validation 

Contrary to popPKPD models where currently there is a consensus on how to evaluate 

and validate a model properly, there is not general agreement on how to validate QSP 

models.  

One suggested strategy is the use of virtual populations
67

. A virtual population is a 

family of parameter sets that reflect the characteristics of a population which allows 

exploring parametric uncertainty and reproducing the variability in response to 

perturbation
68

.  

On the other hand, regarding Boolean networks validation, Balbás-Martínez et al.
12

 

performed model simulations with different simulated therapies comparing the 

simulation outcomes against the results reported from clinical trials
p
. 

 

 

                                                 
p
 https://www. clinicaltrials.gov/ 
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4. Systems pharmacology models reduction 

In order to obtain simpler and more manageable SP models, several reduction 

techniques can be applied to convert them into mechanistic PKPD like models: (i) time-

scale analysis, (ii) sensitivity analysis, (iii) lumping, (iv) balanced truncation, (v) 

singular value decomposition-based model reduction and (vi) miscellaneous methods, 

among others
47

.  

The first three methods are the most extensively used in systems pharmacology. 

Timescale analysis consists in the division of the system into different time scales 

depending on the speed of the reaction rates, defining slow and fast variables. 

This approach allows excluding one or other group of reactions and variables depending 

on the time scale of interest.  

Sensitivity analysis determines the influence of parameters and initial states on a 

specific output variable. Then, those species or parameters eliciting little or no effect on 

the output of interest might be removed.  

Finally, lumping is the most common method applied to this type of models. Through 

this method, several states of the model are lumped into a new pseudo-state, reducing 

the number of equations and parameters. Two different variants of this methodology 

have been described
69

: proper and improper lumping. Although both variants can 

provide a reduced version of the model, proper lumping is more appropriate and more 

often used in systems biology models as it preserves a clear physiological interpretation. 

In this case, the original states contribute to only one of the pseudo-states of the reduced 

system, while in improper lumping the original states can correspond to one or more 

lumped states. 

The work performed by Gulati
70

 et al. represents a good example. They developed in 

2009 a systems pharmacology model of coagulation process
45

. Years later they reduced 

the 62-state systems model to a 5-state model through proper lumping method, to 

describe the time course of a factor recovery after a snake bite, maintaining an 

appropriate mechanistic relationship.   
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5. Pharmacometrics and systems pharmacology in the world 

Conferences 

The first PAGE (Population Approach Group in Europe) meeting
q
 was held in 1992 in 

Basel, Switzerland. Every year it is held in a different European country.   

On the other hand, in 2005 ACOP (American Conference of Pharmacometrics) meeting
r
 

was held for the first time.  

WCOP (World Conference of Pharmacometrics)
s
 is a global meeting of 

pharmacometricians and was started in 2012 in Korea and it is held every four years. 

The last one was in Australia in 2016 and the next is going to take place in South 

Africa.  

PAGANZ (Population Approach Group of Australia and New Zealand)
t
  scientific 

meeting has been held every year in the Southern hemisphere. In 2019 will take place 

the 20
th

 meeting. 

The 1st APC (Asian Pharmacometrics Conference)
u
 was held in 2017 at Kyoto 

University in collaboration with the Professional Committee of Pharmacometrics in 

China (PCPC), Population Approach Group in Korea (PAGK), and Population 

Approach Group in Japan (PAGJa). 

The Iberoamerican Pharmacometrics Network Congress
v
 was held for the first time in 

2017 in Montevideo (Uruguay). This congress targets people from Latin America to 

promote pharmacometrics in this area. 

Journals 

There are several journals that published this type of models like the Journal of 

Pharmacokinetics and Pharmacodynamics, European Journal of Pharmaceutical 

Sciencies, Pharmaceutical Research, Journal of Pharmacology and Experimental 

Therapeutics, Clinical Pharmacology and Therapeutics, Plos One, Plos Computational 

Biology, Pharmacology Research and Perspectives, Cancer Research, Theoretical 

                                                 
q
 https://www.page-meeting.org/ 

r
 http://www.go-acop.org/ 

s
 https://go-wcop.org/ 

t
 https://www.paganz.org/ 

u
 http://www.pagja.org/apc-2017 

v
 http://www.redifar.org/events.html 

http://credif.cucei.udg.mx/en
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Biology and Medical Modelling and Bioinformatics among others, but they are not 

specific to this field.  

In 2012, the first number of the “open access” journal Clinical Pharmacology and 

Therapeutics: Pharmacometrics and Systems Pharmacology (CPT:PSP)
w
 was 

published. It is a cross-disciplinary journal which covers the following areas: 

pharmacometrics, systems pharmacology modelling, disease modelling and 

physiologically-based pharmacokinetics (PBPK).  

Society 

The International Society of Pharmacometrics (ISOP)
x
 was founded in 2012. The 

purpose of this organization is to promote and advance the discipline of 

pharmacometrics and broaden its impact.  

PAGANZ
y
 is an incorporated society founded on an interest in pharmacology and 

therapeutic applications using the population approach. 

American Society for Clinical Pharmacology and Therapeutics (ASCPT)
z
 is a society 

which was founded in 1900. By using clinical pharmacology and translational medicine 

disciplines, this society focuses on improving the understanding and use of existing 

drug therapies and developing safer and more effective treatments for the future. 

 

                                                 
w

 https://ascpt.onlinelibrary.wiley.com/journal/21638306/ 
x
 http://www.go-isop.org/ 

y
 https://www.paganz.org/ 

z
 https://www.ascpt.org/ 
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The current investigation is focused on systems pharmacology (SP) models covering 

development, implementation, and validation/exploration. 

The first objective was to develop a Boolean network model for Systemic Lupus 

Erythematosus integrating data from the literature and exploring the impact on the 

response of different therapeutic strategies. This work served as a proof of concept for 

the functionalities available in the tool SPIDDOR, which was internally developed. 

The second objective was related to quantitative SP models and consisted first in the 

implementation of two already (and competing) published models corresponding to the 

coagulation process using the tool Simbiology. Then a comparison of the outcomes 

between the two models was performed. Finally, the application of the SP models to 

predict/describe the time course of thrombin and the results of different coagulation 

tests obtained from healthy and trauma patients were evaluated. 

The third objective was to develop a semi-mechanistic PKPD model based on the 

coagulation systems pharmacology models to describe population data with high 

variability.   

The other objectives were related to the pharmacological responses. However, little 

attention is paid in SP modelling to drug exposure in the target organ. This aspect of 

therapeutics is also covered in this thesis. 
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SYSTEMIC LUPUS ERYTHEMATOSUS OVERVIEW 

1. Systemic Lupus Erythematosus definition 

Lupus is a severe and complex rheumatic disease which is classified in four main types: 

neonatal lupus erythematosus (NLE), discoid lupus erythematosus (DLE), drug-induced 

lupus (DIL) and systemic lupus erythematosus (SLE)
1
. 

This introduction is focused on SLE, which is the most common type of lupus
1
. SLE is 

a chronic inflammatory autoimmune disease that can affect any organ/tissue in the body 

and presents a great patient heterogeneity reflected in the clinical profiles and 

serological alterations with periods of relapses and remissions. This disease is 

characterized by the production of autoantibodies that are directed against nuclear 

antigens (autoantigens) generating tissue damage and inflammation.  

2. Epidemiology 

SLE incidence (number of new cases in a year) ranges from 1 to 10 per 100,000 people-

year and the prevalence (total individuals affected by the disease in a period) is about 20 

to 70 per 100,000 people
2
. This disease is up to 10 times more common in females than 

in males, being more frequent between 15 to 44 years
3
. Additionally, the incidence and 

prevalence in people of African or Asian background are approximately 2 to 3 times 

higher than in white populations. In the last decades, the life expectancy of SLE 

individuals has improved. However, the 15 to 20 years survival rate is still not greater 

than 80%
2
. 

3. Etiology 

The mechanisms causing the development of SLE remain largely unknown. However, 

some factors have been postulated to play a crucial role in SLE
4
. 

Genetic factors 

Several single-nucleotide polymorphisms (SNPs) are associated with SLE. Most of 

them are within non-coding DNA regions of immune response–related genes
4
.  
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Environmental factors 

Established environmental risk factors for SLE are silica exposure (crystalline silica or 

quartz), cigarette smoking and Epstein Barr virus (EBV) exposure. Less established 

environmental risk factors are metals, pesticides, persistent organic pollutants, asbestos, 

industrial chemicals and solvents, personal care products, UV radiation, and air 

pollution
5
.  

Immunoregulatory factors 

It has been found that SLE patients exhibit several immune alterations. Major 

histocompatibility complex (MHCII) expression in dendritic cells (DCs) of SLE 

patients have found to be upregulated
6
. Regarding T cells several costimulatory 

molecules are overexpressed, for examples the cytotoxic T-lymphocyte–associated 

antigen 4 (CTL4)
7
, CD44

8
, programmed cell death-1 (PD1)

9 
 while others are 

underexpressed like CD3ζ chain or p65
10

 protein. Additionally, cytokines are also 

altered in SLE like interleukin 2 (IL-2)
10

, IL-4
11

, IL-10
12

, IL-6
13

, interferon γ (IFNγ)
14

, 

tumor necrosis factor α (TNFα)
15

 among others. 

Hormones and sex 

Females are more affected than males by SLE in a ratio of 9:1. This data suggests that 

steroids like estrogens can contribute to SLE pathogenesis. Several studies have found a 

correlation between early menarche, exogenous hormone use and surgical menopause 

and risk of SLE development
16,17

. On the other hand, it has been observed that oral 

contraceptives do not affect disease activity
18

. Contrary, hormone therapy increases 

significantly mild/moderate flares
19,20

.   

Epigenetic factors 

Several factors like some medications, diet, previous infections among others may result 

in epigenetic alterations. It has been seen that these alterations could be involved in the 

dysregulation of signaling molecules and receptors in SLE
21,22

.  

4. Diagnosis 

Besides being a very complex disease, SLE is characterized by its heterogeneity. In fact, 

SLE is one of the most challenging diseases to diagnose by the clinicians due to the 

diverse clinical manifestations that the patients can present. The American College of  
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Rheumatology (ACR) made a list of symptoms in 1982 which was updated in 1997 

(summarized in Figure 1). This list shows eleven criteria of which four are required for 

a formal diagnosis of SLE. 

 

Figure 1. Diagnosis criteria for SLE by the American College of Rheumatology. 
 

Considering this, there are 330 potential different types of SLE patients, and lot more if 

all the subcategories of the manifestations are considered. As a consequence SLE 

represents a big challenge for clinicians. 

5. Treatment 

Currently, the standard treatment consists of antimalarial drugs, non-steroidal anti-

inflammatories, corticosteroids, cytotoxic and immunosuppressive drugs depending on 

disease severity, symptoms and involved organs (Table 1). None of these treatments are 

healing, but they prevent and treat relapses reducing organic damage. The only 

immunologic drug approved by the FDA so far is Belimumab which is a monoclonal 

antibody (mAb) targeted to a factor localized in B lymphocytes.  
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Targeted therapies 

In the last years, several pharmaceutical companies have made major efforts to run 

clinical trials involving new biologic drugs to treat SLE patients that exhibited poor 

response to standard therapies. In Table 2 are listed several biologic drugs which are in 

different development phases. The main goal of these therapies is to induce disease 

remission and reestablish self-tolerance.  

Table 2. Targeted therapies in SLE. 

Drug Target Developer Phase ClinicalTrials.gov ID 

Atacicept B cells EMD Serono Phase 2 NCT01972568 

AMG557 B7H2  Amgen Phase 1 NCT01683695 

Blisibimod BAFF Anthera Pharmaceuticals Phase 3 NCT02514967 

Tabalumab BAFF Eli Lilly and Company Phase 3 NCT01205438 

Rituximab CD20 GlaxoSmithKline Phase 3 NCT03312907 

Epratuzumab CD22 UCB Pharma Phase 3 NCT01261793 

Lulizumab Pegol CD28 Bristol-Myers Squibb Phase 2 NCT02265744 

CDP7657 CD40L UCB Pharma Phase 1 NCT01093911 

Abatacept CD80 / CD86 Bristol-Myers Squibb Phase 2 NCT02270957 

AGS-009 IFNα Argos Therapeutics Phase 1 NCT00960362 

Sifalimumab IFNα MedImmune LLC Phase 2 NCT01283139 

Anifrolumab IFNα receptor 1 AstraZeneca Phase 3 NCT02446912 

Ustekinumab IL12 / IL23 
Janssen Research & Development, 
LLC 

Phase 3 NCT03517722 

NNC0114_0006 IL21 Novo Nordisk A/S Phase 1 NCT01689025 

ALX_0061 IL6 Ablynx Phase 2 NCT02437890 

Sirukumab IL6 Centocor Research & Development Phase 1 NCT01702740 

Tocilizumab IL6 receptor 
National Institute of Arthritis and 
Musculoskeletal and Skin Diseases  

Phase 1 NCT00046774 

Rontalizumab IFNα Genentech Inc. Phase 2 NCT00962832 

 

6. Modelling efforts applied to SLE 

In most cases, PK data belonging to clinical trials are analyzed through non-

compartmental analysis (obtaining data descriptors such area under the concentration vs 

time curve (AUC) or maximum concentration drug (CMAX)). However, some drugs have 
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been analyzed by model-based compartmental analysis (estimating a set of parameters 

from data to describe and interpret the PK profiles), as it can be seen in Table 3.  

During the clinical trial some pharmacodynamic data is also collected, as it is shown in 

Table 3. However, PKPD models that link drug concentrations with a response/effect 

are still scarce in SLE.  

Table 3. Pharmacometric efforts performed in SLE. 

Drug Target Pharmacokinetics Pharmacodynamics Year Ref 

AMG 811 IFNγ A two-compartment model with linear 
elimination 

TMDD model (relationship 
between the AMG 811 and IFNγ 
serum concentrations) 

2015 32 

Atacicept 
BLyS and 

APRIL 

Non-compartmental 

 Mature B cells 
 Anti-dsDNA 
 Ig levels 
 C3 levels 

2009 33 

Non-compartimental 

 Mature B cells 
 Anti-dsDNA 
 Ig levels 
 C3 levels 

2010 34 

Belimumab BLyS 

Non-compartimental 
 

Biologic biomarkers: 
 CD20+ B cells and CD38+ 

plasmacytoid cells 
 AntiDNAs ab and ANAS, Igs, 

Complement 
 SELENA SLEDAI score 

2008 35 

Two-compartment linear model - 2013 

36 

One compartment linear model with 
first order absorption  and elimination 
Multiple dose 

- 2013 
37 

Blisibimod BLyS Non-compartimental 
 B cells 
 IgD+ CD27- naive cells 
 IgD+ CD27- memory cells 

2015 38 

Rituximab CD20 Serum rituximab levels 
 CD19 lymphocytes as an 

indicator of B cell depletion 
 For the efficacy: SLAM score 

2004 39 

Sifalimumab IFNα 

Two- compartment linear model with 
first order elimination 

- 2013 40 

Two- compartment linear model with 
first order elimination 

- 2016 41 

PF-04236921 IL6 
A two-compartment model with first 
order absorption and linear elimination 

Mechanism‐based indirect 
response model 

2018 42 

 

Regarding systems pharmacology in SLE, our research group has built an exhaustive 

model of the co-stimulation pathway in SLE disease
43

 (a part of the current Ph.D. 
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thesis). This model consists of a Boolean network including 52 nodes and 296 

interactions between them. As will be seen below, by perturbing the network nodes, it 

was possible to identify which could be the alterations that match reported observations 

in SLE patients. Additionally, SLE patients are grouped according to their molecular 

alterations to find if there are indeed different subpopulations of patients that may 

require different treatments. 



Overview 

50 
 

7. REFERENCES 

1. Maidhof, W. & Hilas, O. Lupus: an overview of the disease and management 

options. P T 37, 240–9 (2012). 

2. Pons-Estel, G. J., Alarcón, G. S., Scofield, L., Reinlib, L. & Cooper, G. S. 

Understanding the Epidemiology and Progression of Systemic Lupus 

Erythematosus. Semin. Arthritis Rheum. 39, 257–268 (2010). 

3. Cervera, R. et al. Morbidity and mortality in systemic lupus erythematosus 

during a 10-year period: A comparison of early and late manifestations in a 

cohort of 1,000 patients. Medicine (Baltimore). 82, 299–308 (2003). 

4. Tsokos, G. C. Systemic Lupus Erythematosus. N. Engl. J. Med. 365, 2110–2121 

(2011). 

5. Kamen, D. L. Environmental Influences on Systemic Lupus Erythematosus 

Expression. Rheum. Dis. Clin. North Am. 40, 401–412 (2014). 

6. Gottenberg, J. E. & Chiocchia, G. Dendritic cells and interferon-mediated 

autoimmunity. Biochimie 89, 856–871 (2007). 

7. Jury, E. C. et al. Abnormal CTLA-4 function in T cells from patients with 

systemic lupus erythematosus. Eur. J. Immunol. 40, 569–78 (2010). 

8. Crispín, J. C. et al. Expression of CD44 variant isoforms CD44v3 and CD44v6 is 

increased on T cells from patients with systemic lupus erythematosus and is 

correlated with disease activity. Arthritis Rheum. 62, 1431–1437 (2010). 

9. Jiao, Q. et al. Upregulated PD-1 expression is associated with the development of 

systemic lupus erythematosus, but not the PD-1.1 Allele of the PDCD1 gene. Int. 

J. Genomics 2014, 10–12 (2014). 

10. Moulton, V. R. & Tsokos, G. C. Abnormalities of T cell signaling in systemic 

lupus erythematosus. Arthritis Res. Ther. 13, 207 (2011). 

11. Sugimoto, K. et al. Decreased IL-4 producing CD4+ T cells in patients with 

active systemic lupus erythematosus-relation to IL-12R expression. 

Autoimmunity 35, 381–7 (2002). 



Chapter 1 

 

51 

 

12. Park, Y. B. et al. Elevated interleukin-10 levels correlated with disease activity in 

systemic lupus erythematosus. Clin. Exp. Rheumatol. 16, 283–8 

13. Linker-Israeli, M. et al. Elevated levels of endogenous IL-6 in systemic lupus 

erythematosus. A putative role in pathogenesis. J. Immunol. 147, 117–23 (1991). 

14. Harigai, M. et al. Excessive Production of IFN-  in Patients with Systemic Lupus 

Erythematosus and Its Contribution to Induction of B Lymphocyte Stimulator/B 

Cell-Activating Factor/TNF Ligand Superfamily-13B. J. Immunol. 181, 2211–

2219 (2008). 

15. Ou, J.-N., Wiedeman, A. E. & Stevens, A. M. TNF-α and TGF-β counter-

regulate PD-L1 expression on monocytes in systemic lupus erythematosus. Sci. 

Rep. 2, 295 (2012). 

16. Costenbader, K. H., Feskanich, D., Stampfer, M. J. & Karlson, E. W. 

Reproductive and menopausal factors and risk of systemic lupus erythematosus 

in women. Arthritis Rheum. 56, 1251–1262 (2007). 

17. Lateef, A. & Petri, M. Hormone replacement and contraceptive therapy in 

autoimmune diseases. J. Autoimmun. 38, J170–J176 (2012). 

18. Rojas-Villarraga, A., Torres-Gonzalez, J.-V. & Ruiz-Sternberg, Á.-M. Safety of 

Hormonal Replacement Therapy and Oral Contraceptives in Systemic Lupus 

Erythematosus: A Systematic Review and Meta-Analysis. PLoS One 9, e104303 

(2014). 

19. Petri, M. Sex hormones and systemic lupus erythematosus. Lupus 17, 412–415 

(2008). 

20. Ramsey-Goldman, R. Does hormone replacement therapy affect disease activity 

in patients with systemic lupus erythematosus? Nat. Clin. Pract. Rheumatol. 1, 

72–73 (2005). 

21. Hedrich, C. M. & Tsokos, G. C. Epigenetic mechanisms in systemic lupus 

erythematosus and other autoimmune diseases. Trends Mol. Med. 17, 714–724 

(2011). 

22. Hedrich, C. M., Mäbert, K., Rauen, T. & Tsokos, G. C. DNA methylation in 



Overview 

52 
 

systemic lupus erythematosus. Epigenomics 9, 505–525 (2017). 

23. Lee, S.-J., Silverman, E. & Bargman, J. M. The role of antimalarial agents in the 

treatment of SLE and lupus nephritis. Nat. Rev. Nephrol. 7, 718–729 (2011). 

24. østensen, M. & Villiger, P. M. Nonsteroidal anti-inflammatory drugs in systemic 

lupus erythematosus. Lupus 9, 566–572 (2000). 

25. Chatham, W. W. & Kimberly, R. P. Treatment of lupus with corticosteroids. 

Lupus 10, 140–147 (2001). 

26. Takada, K., Illei, G. G. & Boumpas, D. T. Cyclophosphamide for the treatment 

of systemic lupus erythematosus. Lupus 10, 154–161 (2001). 

27. Bertsias, G. et al. EULAR recommendations for the management of systemic 

lupus erythematosus. Report of a Task Force of the EULAR Standing Committee 

for International Clinical Studies Including Therapeutics. Ann. Rheum. Dis. 67, 

195–205 (2008). 

28. Griffiths, B. & Emery, P. The treatment of lupus with cyclosporin A. Lupus 10, 

165–170 (2001). 

29. Gaubitz, M., Schorat,  a, Schotte, H., Kern, P. & Domschke, W. Mycophenolate 

mofetil for the treatment of systemic lupus erythematosus: an open pilot trial. 

Lupus 8, 731–736 (1999). 

30. Yap, D. Y. et al. Pilot 24 month study to compare mycophenolate mofetil and 

tacrolimus in the treatment of membranous lupus nephritis with nephrotic 

syndrome. Nephrology 17, 352–357 (2012). 

31. Askanase, A. D., Yazdany, J. & Molta, C. T. Post-marketing experiences with 

belimumab in the treatment of SLE patients. Rheum. Dis. Clin. North Am. 40, 

507–517 (2014). 

32. Chen, P. et al. Pharmacokinetic and Pharmacodynamic Relationship of AMG 

811, An Anti-IFN-γ IgG1 Monoclonal Antibody, in Patients with Systemic 

Lupus Erythematosus. Pharm. Res. 32, 640–653 (2014). 

33. Pena-Rossi, C. et al. An exploratory dose escalating study investigating the 



Chapter 1 

 

53 

 

safety, Tolerability In, pharmacokinetics and pharmacodynamics of intravenous 

atacicept in patients with systemic lupus erythematosus. Lupus 18, 547–55 

(2009). 

34. Nestorov, I., Papasouliotis, O., Pena Rossi, C. & Munafo, A. Pharmacokinetics 

and immunoglobulin response of subcutaneous and intravenous atacicept in 

patients with systemic lupus erythematosus. J. Pharm. Sci. 99, 524–538 (2010). 

35. Furie, R. et al. Biologic activity and safety of belimumab, a neutralizing anti-B-

lymphocyte stimulator (BLyS) monoclonal antibody: a phase I trial in patients 

with systemic lupus erythematosus. Arthritis Res. Ther. 10, R109 (2008). 

36. Struemper, H., Chen, C. & Cai, W. Population pharmacokinetics of belimumab 

following intravenous administration in patients with systemic lupus 

erythematosus. J. Clin. Pharmacol. 53, 711–720 (2013). 

37. Cai, W. W. et al. Bioavailability, pharmacokinetics, and safety of belimumab 

administered subcutaneously in healthy subjects. Clin. Pharmacol. Drug Dev. 2, 

349–357 (2013). 

38. Stohl, W. et al. Treatment of systemic lupus erythematosus patients with the 

BAFF antagonist ‘peptibody’ blisibimod (AMG 623/A-623): Results from 

randomized, double-blind phase 1a and phase 1b trials. Arthritis Res. Ther. 17, 1–

14 (2015). 

39. Looney, R. J. et al. B cell depletion as a novel treatment for systemic lupus 

erythematosus: A phase I/II dose-escalation trial of rituximab. Arthritis Rheum. 

50, 2580–2589 (2004). 

40. Narwal, R., Roskos, L. K. & Robbie, G. J. Population pharmacokinetics of 

sifalimumab, an investigational anti-interferon-?? monoclonal antibody, in 

systemic lupus erythematosus. Clin. Pharmacokinet. 52, 1017–1027 (2013). 

41. Zheng, B., Yu, X.-Q., Greth, W. & Robbie, G. J. Population pharmacokinetic 

analysis of sifalimumab from a clinical phase IIb trial in systemic lupus 

erythematosus patients. Br. J. Clin. Pharmacol. 81, 918–928 (2016). 

42. Li, C., Shoji, S. & Beebe, J. Pharmacokinetics and C-reactive protein modelling 



Overview 

54 
 

of anti-interleukin-6 antibody (PF-04236921) in healthy volunteers and patients 

with autoimmune disease. Br. J. Clin. Pharmacol. 84, 2059–2074 (2018). 

43. Ruiz-Cerdá, M. L. et al. Towards patient stratification and treatment in the 

autoimmune disease lupus erythematosus using a systems pharmacology 

approach. Eur. J. Pharm. Sci. 94, 46–58 (2015). 



 

 

 

Towards patient stratification and 

treatment in the autoimmune 

disease lupus erythematosus using 

a systems pharmacology approach 

 

M. Leire Ruiz-Cerdáa,1, Itziar Irurzun-Aranaa,1, Ignacio González-Garciaa,b, 

Chuanpu Huc, Honghui Zhouc, An Vermeulend, Iñaki F.Trocóniza,1 and José 

David Gómez-Mantillaa,1 

European Journal of Pharmaceutical Sciences 94 (2016) 46–58 

(doi: https://doi.org/10.1016/j.ejps.2016.04.010) 

 

a Pharmacometrics & Systems Pharmacology, Department of Pharmacy and 

Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona 

310890, Spain 

b Pharmacy and Pharmaceutical Technology Department, University of Valencia, 

Valencia, Spain 

c Clinical Pharmacology and Pharmacometrics, Janssen Research and Development, 

LLC, Spring House, PA 19477, USA 

d Janssen Research and Development, a division of Janssen Pharmaceutica NV, 

Beerse B-2340, Belgium 

1 These authors contributed equally to this work 

https://www.sciencedirect.com/science/article/pii/S0928098716301117?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0928098716301117?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0928098716301117?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0928098716301117?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0928098716301117?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0928098716301117?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0928098716301117?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0928098716301117?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0928098716301117?via%3Dihub#!




 

 

ABSTRACT 

Drug development in Systemic Lupus Erythematosus (SLE) has been hindered by poor 

translation from successful preclinical experiments to clinical efficacy. This lack of 

success has been attributed to the high heterogeneity of SLE patients and to the lack of 

understanding of disease physiopathology. Modelling approaches could be useful for 

supporting the identification of targets, biomarkers and patient subpopulations with 

differential response to drugs. However, the use of traditional quantitative models based 

on differential equations is not justifiable by the sparse data available. Boolean 

Networks models are less demanding on the required data to be implemented and can 

provide insights into the dynamics of biological networks. This methodology allows the 

integration of all the available knowledge into a single framework to evaluate the 

behavior of the system under different conditions and test hypotheses about unknown 

aspects of the disease. In this proof-of-concept study, we explored the potential of a 

Systems Pharmacology model based on Boolean Networks to support drug development 

in SLE. We focused the analysis on the antigen presentation by the antigen presenting 

cells (APC) to the T-cells to evaluate the reach of this methodology in a medium size 

network before full implementation of the whole SLE pathway. The heterogeneity of 

SLE patients was replicated using this methodology simulating subjects with distinct 

pathway alterations. A perturbation analysis of the network coupled with clustering 

analysis showed potential to identify drug targets, optimal combinatorial regimens and 

subpopulations of responders and non-responders to drug treatment. We propose this 

approach as a first step towards the development of more quantitative platforms to 

address the current challenges in drug development for complex diseases. 
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1. INTRODUCTION 

Systemic Lupus Erythematosus (SLE) is a chronic multiorgan relapsing-remitting 

autoimmune disease which is characterized by the production of autoantibodies that can 

affect the majority of organs
1
. These autoantigens are suspected to be products of  

defective apoptosis, necrosis or NETosis (formation of Neutrophil Extracellular Traps 

[NETs]) of the body cells
2
 and can be classified according their molecular structure

3
 

(Table 1). The incidence of SLE is about 1 to 10 per 100,000 person/years and the 

prevalence 20 to 70 per 100,000 people. SLE cases have been reported in all continents 

but the incidence and prevalence in people of African or Asian background are 

approximately 2 to 3 times higher than in white populations, being more frequent 

among women than men (90% or more of patients are women).  The 5-year survival rate 

among SLE patients has shifted from 50% in 1950 to 90% after the 1970s, but the 15 to 

20 years survival rate is still approximately 80%
44

. Among the factors that have been 

associated to the development of SLE are genetic, epigenetic, environmental, hormonal, 

and immunoregulatory among others
5
, but the underlying mechanisms of the disease 

remain largely unknown.  

Table 1. Type of autoantigens in SLE and definition 

Type Autoantigen Definition 

DNA antigens dsDNA  double-stranded DNA 

Nucleosomes Fundamental subunit of chromatin 

Non-DNA antigens Ro Ribonucleoprotein complex 

La RNA-binding protein 

Sm Nuclear particles consisting of several different 

polypeptides 

NMDA receptor N-methyl-D-aspartate receptor 

Phospholipids A lipid with one or more phosphate groups 
attached to it 

α-Actinin Cytoskeletal actin-binding protein and a member 

of the spectrin superfamily 

C1q Subunit of the C1 complement component 

 

SLE is a complex disease involving different signaling pathways and characterized by a 

high clinical heterogeneity among patients. Currently, a patient has to exhibit at least 
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four out of eleven symptoms to be diagnosed with SLE. Symptoms include malar rash, 

photosensitivity, kidney disorder, blood disorder, abnormal antinuclear antibodies 

among others
5
. This gives an idea about the magnitude of different possible 

combinations of clinical manifestations in SLE. Additionally, more than 40 genes have 

been reported as predisposing to SLE. It is expected that SLE patients with different 

genetic backgrounds or different autoantigens will show different molecular alterations 

in their immune response. It seems reasonable to think that the pharmacological 

treatment of SLE should be personalized and probably should target more than one 

signaling pathway. Yet, current approaches follow the standard paradigm testing single 

drug hitting single specific targets while clinical trials has also been characterized by the 

lack of patient stratification prior to the studies.  

The standard treatment for SLE consists of nonsteroidal anti-inflammatory drugs 

(NSAIDs), antimalarials, glucocorticoids, cytotoxic agents and immunosuppressive 

agents
5–7

. To date, only one monoclonal antibody (belimumab) has been approved by 

the FDA for SLE, which is used for mild to moderate SLE disease, in patients which do 

not present active lupus nephritis or central nervous system disease
8
. SLE treatment 

attempts to prevent and treat flares and reduce organ damage or other associated 

problems. SLE therapy depends on the symptoms and the tissue damage experienced by 

the patient. Several laboratories have investigated different compounds targeting 

different components of the immune response; several are still in development phases 

while others have not shown therapeutic success. Most of these research compounds 

have exhibited promising results in the preclinical development but this has not been 

translated into effective drugs for the treatment of SLE. Currently treatment of SLE is 

far from optimal and requires new paradigms in drug development, speeding selection 

and validation of active compounds and most promising drug combinations. 

At the moment, there are not computational tools able to evaluate the effect of a drug in 

a “SLE like” system; target validation/invalidation have been made through costly 

empirical experiments and modelling have been limited to description of drug 

Pharmacokinetics (PK) and modest attempts to link SLE severity scores to drug 

exposure
9,10

. In the last years, Systems Pharmacology has emerged as a new 

translational tool to study complex biological systems
11–18

, with the aim of integrating 

information from different sources into a system level model that can be used for 

different purposes during the whole drug development pipeline, including target 
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identification and validation/invalidation, patient stratification, biomarkers 

identification, dosing selection, identification of sources of variability and prediction of 

toxicity and adverse effects
11,19–26

. Due to the heterogeneity in SLE patients and the 

complexity of the disease, a Systems Pharmacology approach can support the drug 

development chain by identifying different patient subpopulations according to their 

molecular alterations and thus, predict the progression of the different patient 

subpopulations, allowing the design of individualized drug therapies with high 

likelihood of success.
 

In this work we propose a systems pharmacology model for the study of SLE 

pathogenesis and therapeutics than can be expanded or reduced to assess different 

questions during the drug development pipeline. In the SLE arena there are scarce 

longitudinal data, definitely not enough to build up and validate a mechanistic and 

predictive disease model. Therefore, in this initial attempt we modelled part of the 

immune response to autoantigens by a Boolean network, which is a logical model 

composed by several components (represented as nodes) and the interactions between 

them. The nodes of the network in a Boolean model present only two states, activated or 

deactivated, and the interactions between nodes can be: activation, inhibition, 

upregulation or downregulation. The main advantage of Boolean dynamic models is that 

they require far less parametrization than other quantitative models, capturing the 

essential dynamics of a system and allowing feasible scalability to larger systems
27

.  
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Figure 1. Assumed physiopathology of SLE 

For an unknown reason the body recognizes normal endogenous molecules as antigens, triggering an immune response. These autoantigens are recognized by the receptor of the antigen presenting cell (CD4+ type), 

processed and then expressed by the MHCII molecule which presents the autoantigen to the Th0 cell. APC molecules interact with their respective ligands on Th0 cell which triggers intracellular signals that will result 

in activation of Th0 cell. Once activated, depending on the cytokine environment and costimulation signals, it can differentiate into Th1, Th2, Th17 or Treg. Th2 cells interact with B cells which after maturation 

produce autoantibodies against these autoantigens. Subsequently, the immune complement and several macrophages and neutrophils recognize these autoantibodies attached to the autoantigens leading to a coordinated 

attack against tissues expressing those autoantigens causing tissue injury and damage. 
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Figure 1 illustrates a summary of the different molecular pathways present in SLE 

pathogenesis. In the current investigation we have focused our modelling efforts on the 

network involving the antigen presentation by the antigen presenting cells (APC) to the 

T cells. Several development programs are targeting molecules located in this stage and 

many of the alterations reported in SLE patients are present at this stage of the network.  

The aims of this study were first to develop and evaluate the above mentioned network 

based on literature survey. Second to identify plausible altered pathways of the immune 

response that may explain the observed heterogeneous alterations in SLE patients, in 

order to classify SLE patients according to their molecular alterations. After a 

methodology for patient stratification was proposed, we aimed to use this information in 

the design of optimal therapy for each patient subpopulation. 
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2. METHODS 

2.1 Literature search, selection, annotation and system representation 

The network model is based on an exhaustive bibliographic review focused on the 

essential components of the antigen presentation. The review covered research in 

humans, including in vitro, ex vivo or in vivo studies. In few cases animal data were 

included to connect nodes of critical pathways when no human data was available. The 

review included around 300 papers published between 1993 and 2015. Medical Subject 

Headings (MeSH) terms were focused on: (i) relevant network components (nodes) 

involved in the pathogenesis of the autoimmune diseases, (ii) nodes that have been 

reported to be altered in SLE and (iii) nodes that directly affect the expression of the 

nodes selected in (i) and (ii). Only references with direct experimental evidence or 

widely accepted and cited in the literature were included. 

The information from the literature review was annotated in a central repository. 

Annotation was key in developing these systems pharmacology models, it included: (i) 

identification of the main elements (i.e., cytokines, membrane receptors….) of the co-

stimulation process, (ii) description of the functional interrelationship between these 

elements and their neighbors and (iii) identification of alteration of these elements in 

SLE patients. Figure 2a-b takes the Tumor Necrosis Factor alpha (TNFα) node as 

example to illustrate the processes of a) data extraction based on numerical data 

obtained from graphic evidence, and b) annotation and storage in a central repository. 

The same process was performed for all the nodes in the network. 

Once the annotation was finalized, a graphical representation of the system was 

performed including all selected nodes and the corresponding inter-relationships and 

other relevant properties of the system of interest (Figure 3). Figure 2c provides a 

reduced version of a graphical representation of our system. 
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Figure 2. Development and implementation of a Boolean network model for SLE 

a) An exhaustive literature review was performed aiming to find direct experimental evidence of relationships between nodes, using 

a multi-user online system based on Mendeley software.  b) That information was annotated and structured in a table, which 

contains all the relationships between all the nodes, including link to bibliographic support to ensure traceability. c)  A schematic 

representation of the relationships between the nodes was obtained using yEd Graph Editor. An illustrative example shows the 

relationships between TNFα regulator nodes and TNFα, different types of interaction were displayed by different connectors. d) 

Examples of four different types of interaction between nodes (activation, inhibition, upregulation and downregulation) and their 

corresponding Boolean expressions (Boolean operators shown in red). The final Boolean equation for each node was built 

considering all the available data simultaneously, inhibition was prioritized over activation unless it was proved otherwise in the 

bibliography. e) The Boolean equations were implemented into the R language according to Irurzun-Arana 201528. 

* Adapted from Van der Poll et al. 199729 

** Adapted from Takahashi et al. 200930 
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Figure 3. Graphical representation of SLE network 

Nodes are represented with different shapes and colors depending on the nature and cellular location. Four types of relationships 

between nodes were represented by different edge colors or endings. Illustration made using yEd Graph Editor. 
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2.2 Boolean network building  

The qualitative graphical representation of the system was transformed into a semi-

quantitative framework using a methodology based on Boolean networks
22,31

, which 

was introduced by Kauffman
32

. These logic models assume only two possible states for 

the nodes of the network: ON represented by 1, or OFF represented by 0. When a node 

of the system is ON, it means that it is activated whereas if the node is OFF it implies 

that it is deactivated or in basal state. The future state of the nodes is calculated based on 

the current states of its regulator nodes (the nodes that control its 

activation/deactivation) through Boolean equations. These equations are combinations 

of the logic operators AND, OR and NOT. Additionally, the ∩ notation was used to 

model the nodes that need longer activation times of its regulator nodes to be activated.  

The building of the Boolean functions followed two main steps: (i) equation definition 

(Supplementary data 1), and (ii) implementation in the R environment. Figure 2d shows 

an example of how the graphical representation shown in Figure 2c for the TNFα node 

was defined as a Boolean equation. The interactions between the nodes were classified 

in four different types: activation, inhibition, upregulation and downregulation. We 

introduced the upregulation and downregulation concepts because we were not able to 

capture all the information found in the literature only by using activation/inhibition 

interactions. An upregulation prolongs the activation of a node for a given number of 

time steps only when the node is already activated by its regulator nodes, whereas a 

downregulation inhibits the node once it is activated, producing a lessen in the 

expression of the component. Table 2 lists some examples of Boolean equations 

depending on the regulatory relationships (activation, inhibition, upregulation, 

downregulation) found in the literature and included in the current network.  

The set of the defined Boolean expressions was implemented in R (Figure 2e) and forms 

part of a R framework
28

 with several features as described in Supplementary Methods. 

We have developed a simulation algorithm to perform an analysis of the co-stimulation 

process, and in the following, we briefly describe how the system was initialized and 

perturbed, and how the signals were propagated and integrated.  
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Table 2. Examples to create Boolean equations 

Type Example Explanation 

Activation T0_P65 = T0_ZAP70 T0_P65 needs T0_ZAP70 to be activated. 

T0_CA2 = T0_ZAP70 OR T0_SYK T0_CA2 needs only one of the two 
activators. If T0_ZAP70 is activated then 
T0_CA2 will be activated. 

T0_ZAP70 = APC_MHCII AND T0_TCR AND T0_CD3Z T0_ZAP70 needs the three activators 
activated. If one of them is not activated 
then T0_ZAP70 will not be activated. 

 

Longer time required 
for activation 

T0_CTLA4 =  ∩T0_ACT  T0_CTLA4 requires additional time for 

expression in the T cell surface. 

  

Upregulation IL5 = Th2 OR  (IL5 AND T0_ICOS AND APC_B7H2) IL5 can be upregulated by the activation of 
T0_ICOS and APC_B7H2. By themselves, they 
are not able to activate IL5, so in the 
Boolean equation is necessary IL5 presence. 

 

Downregulation IL17 = Th17 AND IL6 AND TGFb AND IL23 OR (IL17 

AND T0_ICOS AND APC_B7H2) AND NOT (IL17 AND 

T0_CD27) 

The activation of the Th17 together with 
IL6, TGFβ and IL23 activate the node IL17. 
T0_ICOS with APC_B7H2 upregulate IL17. If 
IL17 is activated and T0_CD27 becomes 
activated, activation of IL17 decreases over 
time. 

 

In these models, there is no explicit notion of time, and the evolution of the Boolean 

network is studied using the concept of a time step, defined as the instance in which all 

the nodes in a network are updated based on the corresponding logic equations. To 

determine the state of a node in a time step, the random asynchronous updating method 

is used
31,33,34

. This method computes the Boolean function of a node according to the 

last update of their regulator nodes (occurring either at previous or current time steps). 

The order in which the nodes are updated is selected randomly at each time step. 

Therefore, if for example node X depends on nodes A, B and C, the state of node X at 

time step 𝑡 + 1 can be represented as: 𝑋𝑡+1 =  𝐹(𝐴𝑡𝑢, 𝐵𝑡𝑢, 𝐶𝑡𝑢) being F, the 

corresponding Boolean function, 𝑡𝑢 the time step of the last update for nodes A, B and 

C which could be 𝑡 or 𝑡 + 1. Consequently, the same initial conditions may lead to 

different outcomes of the network dynamics. This method induces variability into the 

model and constitutes a more realistic representation of the biology as it assumes that 

biological processes of a system have aleatory timescales.  

The initial conditions of our model (Table 3) are chosen in correspondence with the 

biological information found in the literature. At time step zero, all the nodes were set to 

0 except the antigen and constitutive nodes. From time step one, the state of the nodes 
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depended on the state of its regulating nodes except antigen node which was kept 

activated to simulate continuous production of autoantigen as it is assumed in an 

autoimmune disease. At each time step and for each element (node) of the system the 

signal will be either 0 (OFF status) or 1 (ON status).  

Table 3. Simulation initial conditions 

Conditions Th1- Polarizing Th2- Polarizing FcRγ chain translocation 

1. Th1-Th2-polarizing FcRγ translocation + + + 

2.Th1-Th2-polarizing + + - 

3.Th1-polarizing FcRγ translocation + - + 

4.Th1-polarizing + - - 

5.Th2-polarizing FcRγ translocation - + + 

6.Th2-polarizing - + - 

7. Unpolarized FcRγ translocation - - + 

8. Unpolarized  - - - 

 

2.3 Simulations 

The SLE network inferred from the literature was simulated under continuous 

autoantigen exposure with asynchronous updating and the learned Boolean functions. 

First, we simulated the evolution of the network during 40 time steps, 30 of antigen 

exposure and 10 of washout, to obtain the relative activation profiles of the system 

nodes. Simulations consisted of 5000 random node updates per time step. Then, the 

average of the 5000 status (“0” or “1”) was calculated per node and time step. These 

profiles show the evolution of the nodes by plotting the fraction of simulations in which 

the node was in ON state at a given time step. Previous tests showed that running more 

than 5000 simulations and 30 time steps did not change the average of the dynamic 

trajectory of the network. We simulated different types and combinations of 

autoantigens, and also, the replacement of T0_CD3ζ chain by T0_FcRγ chain, a 

translocation observed in many SLE patients
35

. Depending on the type of antigen or the 

presence of the translocation of the FcRγ chain, 8 different initial conditions (Table 3) 

were studied initially.  
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Additional simulations were performed to accomplish different objectives as network 

validation (Supplementary Figure 1), attractor search or to explore system behavior 

under different type of perturbations. 

 

2.3.1 Attractor analysis 

To analyze the effect of perturbations or different initial conditions on the network 

dynamics, we studied the variations of the network attractor states. For any initial 

condition, the system eventually evolves into a limited set of stable states known as 

attractors
33,36,37

. An attractor can be a fixed-point if it consists on only one state, a 

simple cycle if it is composed by more than one state that oscillate in a cycle or a 

complex attractor if the set of states oscillate irregularly.  

Generally, large-scale or highly interconnected networks (like the one presented in this 

paper) converge into complex attractors when the asynchronous updating scheme is 

used. However, the interpretation of this type of attractors is not always easy due to the 

high number of stable states involved in them. An approach to overcome this problem is 

to generate the probability that a given node is in ON state inside the complex attractor. 

For example, for the “unpolarized” initial condition (Table 3) of the SLE model we 

found an attractor consisting of 7711 states, and we summarized all the information 

from the attractor state by including the activation probabilities of all the nodes in these 

7711 states in a single vector.  

As expected, identification of the exact attractor state was quite expensive regarding 

computational time. Alternatively, we found that the probabilities of being ON of the 

nodes almost did not change if we calculate the exact attractor or if we use an 

approximation, running the attractor search algorithm only 40 times during 5000 time 

steps, reducing computational times considerably. For more details about attractor 

identification see Supplementary Methods. 
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2.3.2 Network Perturbations and Clustering 

The attractors of the system, and consequently, the activation probabilities of the nodes, 

may change when perturbations are introduced in the system. We introduced knockouts 

and over-expressions of single nodes in order to analyze which alterations could affect 

those stable patterns. A knockout of a node implies the deactivation of a component 

during all the simulation, whereas an over-expression generates a persistent activation 

of a node once it is activated for the first time.  

The expression of 23 nodes of the network has been reported as altered in SLE patients 

(Supplementary Table 1). However, none of these alterations is shared among all SLE 

patients, and to our knowledge, there is no report of an SLE patient exhibiting all 

alterations. We attempted to simulate different individuals able to exhibit alterations in 

some of these 23 nodes. We simulated individuals with perturbations (knockouts or 

over-expressions) in each of the nodes of the network and checked which of these 

perturbations led to alterations in the activation pattern of the 23 nodes reported as 

altered in SLE patients. In the current investigation we limited our exploration to 

univariate perturbations (i.e., no combination of perturbed nodes in any simulation). We 

calculated the attractor of the system in normal conditions and evaluated how this 

attractor changed under each perturbation. If the activation level of a node in an 

attractor was decreased due to inclusion of a perturbation, it means that the perturbation 

caused a lower activation of the component compared to normal conditions. Conversely, 

if the activation probability of a node was increased due to a perturbation, it means that 

the perturbation caused a higher activation of the component compared to normal 

conditions. The ratio between the probabilities obtained in perturbed and unperturbed 

conditions were calculated to serve as input to the clustering analysis. We referred to 

this ratio as Perturbation Index (PI) of the nodes. 

Hierarchical clustering methods determine clusters of similar items based on their 

distance and build a hierarchical structure, normally illustrated as a dendrogram. A 

hierarchical clustering method
38

 was applied after the perturbation analysis to group the 

perturbed nodes that caused similar “lupus-like” manifestations on the network. We 

used the Euclidean distance to measure the similarities in the “lupus-like” alterations 

produced by the network perturbations, which are reflected in the PI of the nodes, and 

we employed the average-linkage strategy to merge the clusters of perturbed nodes 
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between each other. For a more detailed description of this process see Supplementary 

Methods. The objective of the clustering method is to group potential SLE patients 

according to the alterations in the attractor steady states that they share, in order to find 

different patient subpopulations that may require different treatments. Results of the 

clustering exercise are summarized as heatmaps in which the color indicates the effect 

of each perturbation compared to an unperturbed simulation, complemented by 

dendrograms to identify the perturbation clusters. Only the alterations elicited on any of 

the 23 nodes that have been reported as altered in SLE were considered for distance 

calculations in the cluster analysis. 

 

2.3.3 Evaluation of Therapeutic Targets  

Simulations of several potential treatments were performed following the assumption 

that receptor binding is complete and immediate. Two types of treatment were 

simulated: (i) inhibition of different signaling pathways or cytokines, driven by node 

knockouts or (ii) induction of certain molecules to upregulate a pathway using a 

constant activation of the node. Different doses of anti-ICOS treatment were simulated 

including a variable probability of inhibition in each time step in which the therapy was 

active. 
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3. RESULTS 

After the process of bibliographic review, nodes selection, data annotation and 

description of the Boolean equations, the antigen presentation network model (Figure 3) 

consisted of 52 nodes (Supplementary Table 2), and contained 296 interactions between 

the nodes describing activation, inhibition, upregulation or downregulation processes. 

From de 52 nodes of the network, 23 have been reported as altered in SLE patients, 7 as 

downregulated and 16 as upregulated (Supplementary Table 1). The Boolean equations 

that control the network dynamics are listed in Table 4 and the biological explanation 

for these equations is presented in Supplementary data 1.  

 

Table 4. Boolean equations 

APC_AR = Ag 

APC_MHCII = (Ag & APC_AR) 

T0_TCR = 1 

APC_B71 = (APC_MHCII & T0_TCR & Ag) 

APC_B72 = (APC_MHCII & T0_TCR & Ag) 

T0_NOTCH3 = 1 

T0_NOTCH1_2 = 1 

APC_DLL = APC_AR & Ag_DLL 

APC_JAGGED = APC_AR & Ag_JAGGED 

APC_CD40 = Ag_DLL & T0_TCR & APC_MHCII 

T0_CD40L = ((APC_MHCII & T0_TCR & Ag & T0_ICOS & APC_B7H2) | ((T0_CD40L & Th1 & (IL2 | IL12)) &! 

(∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_CD40L𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

Th1𝑡−𝑖 & (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL2𝑡−𝑖|∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL12𝑡−𝑖))) | ((T0_CD40L & T0_CD28 & 

(APC_B71 | APC_B72)) (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_CD40L𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_CD28 & (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B71𝑡−𝑖 | 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B72𝑡−𝑖)))) &! ((APC_CD40 & T0_CD40L &! Th1) | (T0_CD40L & IL4)) 

T0_ICOS = (T0_TCR & APC_MHCII & Ag) | TNFa | ((T0_ICOS & ( T0_CD28 & (APC_B71 | APC_B72))) &! 

(∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ICOS𝑡−𝑖  & (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_CD28𝑡−𝑖 & (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B71𝑡−𝑖 | ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B72𝑡−𝑖)))) | ((T0_ICOS & 

(IL12 | IL23) &! IL4) &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ICOS𝑡−𝑖 & (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL12𝑡−𝑖 | ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL23𝑡−𝑖))) 

APC_B7H2 =(T0_ICOS & IFNG) &! (APC_B7H2 & IL10) 

T0_CD44 = T0_ACT 

T0_CD28 = ! ( ∩𝑖=1
𝑇𝐻𝑅_𝐶𝑇𝐿𝐴4_max _𝐶𝐷28=2 T0_CTLA4𝑡−𝑖 | (T0_CD28 & ∩𝑖=1

𝑇𝐻𝑅_𝑇𝑁𝐹𝑎_𝑚𝑎𝑥=3 TNFa𝑡−𝑖)) 

T0_CTLA4 = ∩𝑖=1
𝑇𝐻𝑅_𝑇0_𝐴𝐶𝑇_max _𝐶𝑇𝐿𝐴4=2 T0_ACT𝑡−𝑖 

T0_OX40 = ∩𝑖=1
𝑇𝐻𝑅_𝑇0_𝐴𝐶𝑇_max _𝑂𝑋40=2 T0_ACT𝑡−𝑖 | TNFa | (T0_OX40 & IL2 &! (∩𝑖=1

𝑢𝑝𝑟𝑒𝑔=4
T0_OX40𝑡−𝑖  & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL2𝑡−𝑖)) | ((T0_OX40 & T0_CD28 & (APC_B71 | APC_B72)) &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_OX40𝑡−𝑖  & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_CD28𝑡−𝑖  & (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B71𝑡−𝑖  | ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B72𝑡−𝑖))) 

APC_OX40L = APC_CD40 & T0_CD40L & APC_MHCII 

APC_B7H1 = (∩𝑖=1
𝑇𝐻𝑅_𝑇0_𝐴𝐶𝑇_max _𝐵7𝐻1=2 T0_ACT𝑡−𝑖| IFNG | (APC_B7H1 & TNFa &! (∩𝑖=1

𝑢𝑝𝑟𝑒𝑔=4
APC_B7H1𝑡−𝑖 & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

TNFa𝑡−𝑖)) | (APC_B7H1 & IL12 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B7H1𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL12𝑡−𝑖)) | (APC_B7H1 & IL4 

&! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B7H1𝑡−𝑖& ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL4𝑡−𝑖))) &! (APC_B7H1 & TGFb) 
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Table 4. Boolean equations (continued) 

APC_B7DC = ∩𝑖=1
𝑇𝐻𝑅_𝑇0_𝐴𝐶𝑇_max _𝐵7𝐷𝐶=2 T0_ACT𝑡−𝑖 | (APC_B7DC & GMCSF &! (∩𝑖=1

𝑢𝑝𝑟𝑒𝑔=4
APC_B7DC𝑡−𝑖  & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

GMCSF𝑡−𝑖)) | (APC_B7DC & IL12 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B7DC𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL12𝑡−𝑖)) | (APC_B7DC & IL4 

&! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B7DC𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL4𝑡−𝑖)) | (APC_B7DC & IL13 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B7DC𝑡−𝑖  & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL13𝑡−𝑖)) 

T0_PD1 = ∩𝑖=1
𝑇𝐻𝑅_𝑇0_𝐴𝐶𝑇_max _𝑃𝐷1=2 T0_PD1𝑡−𝑖 | (T0_PD1 & TNFa &! (∩𝑖=1

𝑢𝑝𝑟𝑒𝑔=4
T0_PD1𝑡−𝑖 & ∩𝑖=1

𝑢𝑝𝑟𝑒𝑔=4
TNFa𝑡−𝑖)) 

T0_CD27= T0_ACT &! ∩𝑖=1
𝑇𝐻𝑅_𝑇0_𝐴𝐶𝑇_max _𝐶𝐷27=4 T0_CD27𝑡−𝑖 

T0_ZAP70 = APC_MHCII & T0_TCR & T0_CD3Z 

T0_SYK = APC_MHCII & Ag & T0_TCR & T0_FcRG 

T0_cfos = T0_ZAP70 

T0_CD3Z = (APC_MHCII & Ag & T0_TCR & T0_CD45) &! T0_FcRG 

T0_CA2 = T0_ZAP70 | T0_SYK 

T0_FcRG = APC_MHCII & Ag & T0_TCR & Lupus 

T0_P65 = T0_ZAP70 

T0_CD45 = 1 

T0_ACT = ((APC_MHCII & T0_TCR & (T0_CD28 & (APC_B71 | APC_B72))) | (T0_ACT & T0_ICOS & 

APC_B7H2 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ACT𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ICOS & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B7H2𝑡−𝑖)) | (T0_ACT & T0_CD40L & 

APC_CD40 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ACT𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_CD40L𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_CD40𝑡−𝑖)) | (T0_ACT & T0_OX40 

& APC_OX40L &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ACT𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_OX40𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_OX40L𝑡−𝑖))) &! ((T0_CTLA4 & 

(APC_B71 | APC_B72)) | (T0_PD1 & (APC_B7DC | APC_B7H1))) 

Th1 = ((T0_ACT & APC_CD40 & T0_CD40L & IL12 & IFNG) | (Th1 & T0_CD44 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

Th1𝑡−𝑖  & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_CD44𝑡−𝑖))) &! (Th1 & Treg) &! Th2 &! TGFb 

Th2 = (T0_ACT & (T0_CD28 & (APC_B71 | APC_B72)) & IL4) &! (Th2 & (Treg | T0_CD44)) &! IL12 &! TGFb 

Th17 = (((T0_ACT & TGFb & (IL21 | IL6 | IL23)) | (Th17 & T0_ICOS & APC_B7H2 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

Th17𝑡−𝑖  & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ICOS𝑡−𝑖  & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B7H2𝑡−𝑖)) | (Th17 & T0_CD40L & APC_CD40 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

Th17𝑡−𝑖 & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_CD40L𝑡−𝑖  & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_CD40𝑡−𝑖))) &! (Treg &! (IL21 | IL6))) &! (IL12 | IFNG | IL4) 

Tfh = (T0_ACT & IL12 & IL21 & IL6) | ((Tfh & APC_CD40 & T0_CD40L & T0_ICOS & APC_B7H2) &! 

(∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

Tfh𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_CD40𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_CD40L𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ICOS𝑡−𝑖 & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B7H2𝑡−𝑖)) 

Treg = ((T0_ACT & TGFb) | (Treg & T0_PD1 & APC_B7H1 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

Treg𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_PD1𝑡−𝑖  & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B7H1𝑡−𝑖))) &! (IL6 | IL21) 

IL2 = T0_ACT & T0_cfos & T0_P65 & T0_CA2 &! (T0_CTLA4 & (APC_B71 | APC_B72)) 

IL4 = (Th2 | (T0_ACT & APC_JAGGED & T0_NOTCH1_2) | ((IL4 & T0_ICOS & APC_B7H2) &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL4𝑡−𝑖 

& ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ICOS𝑡−𝑖  & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

𝐴𝑃𝐶_𝐵7𝐻2𝑡−𝑖)) | ((IL4 & APC_OX40L & T0_OX40) &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL4𝑡−𝑖  & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_OX40L𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_OX40𝑡−𝑖)) | (IL4 & T0_CD27 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL4𝑡−𝑖 & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_CD27𝑡−𝑖))) &! (IL4 & (T0_PD1 & APC_B7DC)) 

IL6 = ((T0_CD28 & (APC_B71 | APC_B72)) | (∩𝑖=1
𝑇𝐻𝑅_𝐴𝑃𝐶_𝐶𝐷40_max _𝐼𝐿6=2 APC_CD40𝑡−𝑖 & T0_CD40L) | (TGFb & 

IL23)) &! (IL4 | IL10) 

IL10 = (Treg | Th2 | (IL10 & T0_ICOS & APC_B7H2 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL10𝑡−𝑖  & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ICOS𝑡−𝑖  & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B7H2𝑡−𝑖)) | (IL10 & TNFa &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL10𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

TNFa𝑡−𝑖)) | (IL10 & IL2 &! 

(∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL10𝑡−𝑖  & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL2𝑡−𝑖))) &! (T0_OX40 & APC_OX40L) &! (IL10 & (T0_PD1 & (APC_B7H1 | 

APC_B7DC))) 

IL12 = ((APC_MHCII & T0_TCR & APC_DLL & T0_NOTCH3 & APC_CD40 & T0_CD40L) | (IL12 & T0_ICOS 

&! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL12𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ICOS𝑡−𝑖))) &! IL10 

IL13 = Th2 | (T0_ACT & Th1 & IL18) 
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Table 4. Boolean equations (continued) 

IL17 = ((Th17 & IL6 & TGFb & IL23) | (IL17 & T0_ICOS & APC_B7H2 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL17𝑡−𝑖  & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ICOS𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B7H2𝑡−𝑖))) &! (IL17 & T0_CD27) 

IL18 = 1 

IL21 = Tfh | Th17 | ((T0_ACT & IL6) &! IL4 &! IFNG &! TGFb) | (IL21 & T0_CD27 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL21𝑡−𝑖 & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_CD27𝑡−𝑖)) 

IL23 = Ag_DLL 

IL27 = Ag_DLL 

TNFa = (((Ag_DLL & IFNG) | IL2 | GMCSF | TGFb) | ((TNFa & T0_ICOS & APC_B7H2) &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

TNFa𝑡−𝑖 & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ICOS𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B7H2𝑡−𝑖))) &! IL10 &! (TNFa & IL4) 

TGFb = Treg 

IFNG = ((T0_ACT | Th1) | (IFNG & T0_CD40L & APC_CD40 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IFNG𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_CD40L𝑡−𝑖 & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_CD40𝑡−𝑖)) | (IFNG & T0_ICOS & APC_B7H2 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IFNG𝑡−𝑖  & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

T0_ICOS𝑡−𝑖 & 

∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

APC_B7H2𝑡−𝑖)) | (IFNG & IL12 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IFNG𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL12𝑡−𝑖))) &! Th2 &! IL10 &! (IFNG & 

T0_PD1 & (APC_B7H1 | APC_B7DC)) 

GMCSF = (Th1 | (GMCSF & IL12 &! (∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

GMCSF𝑡−𝑖 & ∩𝑖=1
𝑢𝑝𝑟𝑒𝑔=4

IL12𝑡−𝑖))) &! (IL27) &! (GMCSF & IL6) 

 

3.1 Network dynamics simulations 

The dynamic evolution of the network after antigen exposure can be captured by the 

semi-quantitative activation profiles of network nodes (Figure 4). Under the same initial 

conditions, different nodes exhibited different levels of relative activation and different 

patterns of oscillation. The immune system triggers different responses depending on 

the type of antigen; bacteria and viruses provoke Th1 responses while parasites or 

allergens trigger Th2 responses
39

. Due the molecular structure of the antigens involved 

in SLE, the majority of the examples are done simulating Th1 polarizing antigens. 

Accordingly, in the simulations the activation profile for most nodes was dependent on 

the antigen type, but this dependency varied among nodes. In general, differences in 

activation profiles due to antigen type were larger for interleukins and smaller for early 

signals of activation (CD80, CD86, T-cell activation). Another condition that was 

studied was the FcRγ chain translocation, which is an alteration observed in some SLE 

patients. Simulations under this alteration produced considerable changes in the profiles 

of some nodes like Interleukin 2 (IL-2), while expression of most nodes remains 

unaltered under this condition. For some nodes like TNFα, alterations in its activation 

profiles due to FcRγ chain translocation were evident only for certain antigen types 

(Figure 4).  
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Figure 4. Differential expression of selected nodes for different conditions of antigen exposure and translocation of FcRγ chain. 

Chronic immune response against four different types of antigens (blue for Th1 like antigen, orange for Th2 like antigen, red for 

other types of antigens and green when Th1 and Th2 like antigens are present) was simulated. Lower panel displays the impact of 

FcRγ chain translocation on node expression. 

 

3.2. Perturbation analysis and clustering 

We performed a perturbation analysis to identify the simulated perturbations (node 

blockage or over-expression) that could lead to alterations exhibited in SLE patients, 

represented as increased or decreased activation of the 23 nodes that have been reported 

as altered in SLE patients. Figure 5a shows under the presence of a Th1 antigen, which 

knockouts produced attractors with a (i) higher activation than the unperturbed 

simulation for any of the 16 nodes that have been reported as upregulated in SLE 

patients (TNFα, APC_MHCII, T0_PD1,..., T0_CA2), (ii) lower activation for any of the 

7 nodes that have been reported as downregulated in SLE (IL4, APC_B7H1,...Treg). 

Similar analysis was performed to identify which node over-expressions could lead to 

higher or lower activation probabilities of the nodes that have been reported as altered in 

SLE (Figure 5b). The heatmaps were combined with a hierarchical clustering method to 

arrange the columns according to the lupus-like manifestations that they triggered. 

Nodes that caused similar alterations are clustered together as it is shown in the 

dendrograms on top of each heatmap. Heatmaps and clusters resulted from simulation 

on other conditions are included in Supplementary Figure 2. 
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Figure 5. Clustering of perturbations according to “SLE like” alterations 

Heatmaps indicate the effect of single perturbations on the nodes that have been reported as altered in SLE. The numeric scale in the 

legend represents different values of the nodes Perturbation Index (PI) under different perturbations. A value of 2 represents PIs 

greater than 2, a value of 1 PIs between 1.25 and 2, the 0 substitutes PIs close to 1, the -1 indicates PIs between 0.8 and 0.5, and the 

-2 PIs smaller than 0.5. Two types of perturbations were simulated, node knockouts (a) and node over-expressions (b). Each 

heatmap contains 23 rows, one for each node that has been reported as altered in SLE. Most perturbations did not trigger 

considerable changes in those 23 nodes (represented by a 0 in the numeric scale and indicated in black or absent from the heatmap). 

Some perturbations led to a higher activation of the 23 nodes (represented by a 1 or 2 in the numeric scale and indicated in orange in 

the heatmaps) while the lower activation of the 23 nodes were more common (represented by a -1 or -2 in the numeric scale and in 

blue in the heatmap). Perturbations were clustered according to the SLE like alterations that they provoked as can be seen in the blue 

and orange blocks in the heatmaps. Results shown are for Th1 type antigen conditions. Other conditions are in Supplemental Figure 

2. The * in the nodes of the columns denotes that they are reported to be altered in SLE. 

 

3.3. Evaluation of therapeutic targets 

Perturbations clustered together not only triggered similar “SLE like” alterations but it 

was found that they also tended to respond similarly to simulated treatment. Figure 6 

shows the effect of three perturbations (knockouts of TNFα, Programmed death-ligand 

1 (B7H1), and Programmed cell death protein 1 (PD1), that were clustered together 

because they trigger upregulations in nodes that have been reported as altered in SLE 

(TNFα, IFNγ, and APC_OX40L). The figure also shows the effect of two different 

treatments (targeting components of this network that have been used in clinical trials, 
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i.e. anti-TNFα and anti-ICOS) on the three nodes TNFα, IFNγ, and APC_OX40L in the 

presence of the above mentioned alterations.  

 

Figure 6. Anti-ICOS and anti-TNFα simulated treatments 

Simulation of drug/treatment in individuals exhibiting  “SLE-like” alterations in TNFα, IFNγ and APC_OX40L activation 

probability due to three different underlying alterations, TNFα, APC_B7H1 and T0_PD1 knockouts (grouped from the cluster 

analysis).  Anti-ICOS treatment had different effect on the three clustered perturbations while anti-TNFα showed no effect on 

activation levels of IFNγ or APC_OX40L. 

 

Simulations showed that anti-TNFα treatment decreased only the levels of TNFα. 

Moreover, this treatment even led to higher expression of IFNγ and APC_OX40L under 

the three studied perturbations. Treatment with anti-ICOS reverted the over-expression 

found in IFNγ and TNFα, however for the case of APC_OX40L, the response elicited 

was not optimal since that node was completely shut-down, despite a 40% activation 

was seen in the control condition (“Normal”).  

Another interesting possibility is the inclusion of inhibition strength on the analysis 

(Figure 7). Although, this network is not yet a quantitative tool, it can evaluate what 

would be the required target engagement and exposure level of a monoclonal antibody 

(mAb) to effectively block a molecular pathway and potentially decrease the appearance 

of “SLE like” alterations. As drug target engagement can be measured experimentally 

using human cells, this information could be easily included in the model. This analysis 
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would be of special interest in cases in which mAbs against the same targets but from 

different manufactures exhibit different clinical efficacy
40

. 

 

Figure 7. Effect of different levels of anti-ICOS treatment 

Different levels of inhibition of T0_ICOS node were simulated (25%, 50%, 75% and 100% inhibition) in order to test its effect on 

IFNγ and TNFα nodes activation in a study subject with a knockout on T0_PD1 molecule (KO:PD1). It can be observed that higher 

levels of inhibition led to lower activation of the perturbed condition in both IFNγ and TNFα nodes, making the activation 

probability of these nodes similar to normal conditions when using the highest anti-ICOS treatment. Higher levels of inhibition on 

APC_OX40L node however, create an excessive downregulation of the node which suggests that the lowest anti-ICOS treatment 

may be more adequate. 
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4. DISCUSSION 

In the current work we present a systems pharmacology model based on Boolean 

networks for the processes involved in the antigen presentation by the APC to the T 

cells, in the context of the autoimmune disease SLE. Technical aspects regarding model 

implementation and coding can be obtained from elsewhere
28

. Here we provide a 

comprehensive workflow to help in developing and apply this type of discrete models in 

the area of early drug development.  

The motivation to embark on this project comes from the complexity of the immune 

system and the lack of longitudinal data for most of its main components, hampering the 

development of (semi-) mechanistic pharmacokinetic/ pharmacodynamic (PK/PD) 

models based on ordinary differential equations. In fact there are recent examples in 

literature where the population PK/PD approach has been applied to analyze data from 

clinical trials in SLE
9,10

. In those cases, no more than two biomarkers were considered 

as representative of a positive signal of the drug effects. From a proof of concept point 

of view such strategy is justified, but given the complexity of SLE disease (and of many 

others), it seems insufficient to face the current challenges in developing new 

therapeutic strategies: (i) identify poor and non-responders, (ii) target identification, or 

(iii) rational search of drug combinations. 

Our system pharmacology model should not be viewed as a competitor of traditional 

PK/PD models and systems biology models, but rather a tool in between to bring 

together different views of handling in vivo systems.  

SLE is characterized by its clinical heterogeneity, most likely, this pathology comprises 

patients with different underlying alterations and different types of autoantigens, and 

therefore, treatment success may vary greatly among patients. Few attempts have been 

made in clinical phenotyping and endotyping before clinical trials in SLE patients, even 

knowing that treatment success has been low in highly heterogeneous populations for 

other diseases
41

. In this work, we have simulated different alterations of the immune 

system that triggered molecular alterations similar to those reported for SLE patients. 

However, as the present model  covers only a subsection of the whole SLE pathway, the 

“SLE like” alterations were  restricted to molecular alterations of the antigen 

presentation process described for SLE patients, and not yet to SLE clinical 
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manifestations. Figure 5 shows how the same “SLE like” alterations can be provoked by 

different underlying univariate alterations (perturbations) and Figure 6 shows how the 

effect of drug treatment to control these “SLE like” alterations could be different 

depending on the underlying alteration (provoking perturbation). Furthermore, these 

examples were made simulating only one type of antigen (Th1 antigen). In 

Supplemental Figure 3 it can be seen that the same “SLE like” alteration may be 

triggered by different initial conditions. For example TNFα was upregulated between 

others by a downregulation of T0_PD1 when a Th1 like antigen was simulated (Figure 

5). The same TNFα upregulation was triggered by a downregulation of T0_CTLA4 

under a Th2 antigen simulation or by an over-expression of T0_CD40L under a 

simultaneous Th1 and Th2 antigen stimulation. In total 34 combinations of antigen type 

and underlying perturbation triggered an over-expression of TNFα.  Therefore, response 

to treatment intended to control such “SLE like” alterations may also vary significantly 

depending on the underlying perturbation. This systems pharmacology approach may 

help to identify groups of patients that share alterations in the same molecular pathways, 

and could respond similarly to equal treatments, maximizing the treatment success in 

clinical trials by patient stratification.  

Only 12 perturbations in the network were able to provoke upregulations of the 16 

nodes that have been reported as upregulated in SLE patients, this is a surprisingly low 

number compared to the 112 perturbations that were tested (52 node blockages and 52 

node over-expressions).  Similarly 22 perturbations led to downregulations of the 6 

nodes that have been reported as downregulated in SLE patients. Most of these 22 

perturbations were downregulations of nodes involved in the initial stages of the 

immune response, triggering a blockage of the response, impeding the activation of all 

nodes except the constitutive ones. Therefore such perturbations should not be 

considered as a good replication of a “SLE like” alteration. Consequently, it can be said 

that few system perturbations triggered “SLE like” alterations under Th1 antigen 

conditions. This result was also observed for other antigen exposure conditions 

(Supplementary Figure 2). 

This work evaluated the relationship between: (i) system perturbation (ii) ”SLE like” 

alteration and (iii) response to therapy. The analysis was performed in an univariate 

way, meaning that underlying alterations (node perturbation) were simulated 

individually and no combination of perturbations were tested, mainly because of the 
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large number of possible combinations of perturbations, more than 12000 combinations 

for a bivariate perturbation analysis and exponentially more for three or more 

simultaneous alterations. The fact that most nodes perturbations did not affect 

significantly the network evolution agrees with similar observations in other works of 

systems biology
42

. Besides, it makes sense that critical processes as the immune 

response are not totally dependent on individual nodes and redundant mechanisms 

assure a functional physiology in case of single molecular defects. 

Apart from target identification, drug development can also benefit from rapid target 

invalidation, avoiding costly clinical trials of predictable inefficacious drugs. The model 

presented in this work could be useful in this regard, for example an anti-TNFα 

treatment which has been successfully used in other autoimmune diseases has not 

shown clinical efficacy in SLE. This model,  although  incomplete, showed that anti-

TNFα was ineffective in controlling most “SLE like” alterations and only controlled 

TNFα levels, results that are in agreement with the clinical data that suggest that anti-

TNFα treatment is only efficacious in SLE patients with alterations related to high 

levels of TNFα
43

. Again, this type of analysis will be valid and relevant once the whole 

network is finished.  

It must be highlighted that despite the promising applicability of this approach, the full 

potential of this tool cannot be asses until the whole SLE pathway is included in the 

network. In the same way, full model validation is not possible at this stage because 

activation of many nodes is also regulated by other molecules, critical to the immune 

physiopathology of SLE but not yet included in the model. This project was done to 

evaluate if a systems pharmacology approach can contribute to tackle the current 

challenges in drug development. Evidently, these challenges can be pursued by different 

types of models of different complexities, with advantages and disadvantages for each 

alternative. We consider that the present work support the use of Boolean networks as 

the right beginning to support target validation/invalidation, identification of biomarkers 

and patient stratification in early stages of drug development for autoimmune diseases. 

This is especially relevant considering the complexity of the immune system and all the 

technical challenges of estimating hundreds of parameters for a quantitative model, 

including the generation of reliable human data. Boolean networks are easily and 

quickly implemented, flexible and scalable to larger systems. Furthermore, this model 

can also identify in which subsections of the network it is worth to undertake deeper 
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quantitative analysis or to include further knowledge about gene expression promoters 

or polymorphisms.  

Despite the advantages of this approach to study processes in which there is a general 

lack of robust data, there are several limitations that must be considered. Boolean 

networks are restrained to computing simple logic operations and do not capture 

temporal details that may be required for modeling certain aspects of regulatory 

networks. Additionally, the process of annotation and translation of literature into 

Boolean equation is very time consuming and susceptible to multiple interpretation, also 

the type of data necessary to perform fine validation of these networks are not easily 

accessible, especially from human subjects. However, these models can be used as a 

first attempt to understand the general dynamical properties of complex biological 

systems. 
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5. CONCLUSIONS 

Heterogeneity of SLE manifestations can be modeled by different underlying altered 

pathways of the immune system using a systems pharmacology approach based on 

Boolean networks. The model seems appropriate to make the best use of the few 

available data in complex diseases. The reach of this approach was explored. This work 

constitutes a satisfactory proof of concept of this methodology and the evaluation 

justifies the expansion of the current model to include the whole SLE pathway in the 

network. These models are promising as research tools to support early stages of drug 

development focused on target validation/invalidation, identification of biomarkers and 

patient stratification.  
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SUPPLEMENTARY MATERIAL 

Supplementary data 1: Boolean equations Justification 

APC_MHCII = (Ag & APC_AR) 

The autoantigen is recognized by the receptor on the APC, it is processed and the MHCII activates to 

present the autoantigen to the Th0 cell
1
. 

 

T0_TCR = 1 

T0_TCR has a constitutive expression, in other words, it is always activated
2
.  

 

APC_B71 / APC_B72 = (APC_MHCII & T0_TCR & Ag) 

On most APC populations, B7-2 is expressed constitutively at low levels and is rapidly upregulated, 

whereas B7-1 is expressed after activation
3
. 

 

T0_NOTCH3 = 1 

Constitutive expression. 

 

T0_NOTCH1_2 = 1 

Constitutive expression. 

 

APC_DLL = APC_AR & Ag_DLL 

Members of the DLL family of Notch ligands are expressed on APC in response to microbial stimuli that 

promote TH1-cell induction by APC
4
. 

 

APC_JAGGED = APC_AR & Ag_JAGGED 

Expression of Jagged family members is induced on APC by Th2 promoting microbial and pro-

inflammatory stimuli
4
. 

 

APC_CD40 = Ag_DLL & T0_TCR & APC_MHCII 

Some antigens (like LPS) can promote the expression of APC_CD40 in APC while some antigens do 

not
5
. 
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T0_CD40L = ((APC_MHCII & T0_TCR & Ag & T0_ICOS & APC_B7H2) | ((T0_CD40L & Th1 & 

(IL2 | IL12)) &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐂𝐃𝟒𝟎𝐋𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝐡𝟏𝒕−𝒊 & (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟐𝒕−𝒊|∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟏𝟐𝒕−𝒊))) 

| ((T0_CD40L & T0_CD28 & (APC_B71 | APC_B72)) (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐂𝐃𝟒𝟎𝐋𝒕−𝒊 & 

∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐂𝐃𝟐𝟖 & (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝟏𝒕−𝒊 | ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝟐𝒕−𝒊)))) &! ((APC_CD40 & 

T0_CD40L &! Th1) | (T0_CD40L & IL4)) 

T0_CD40L expression on activated T cells occurs in two phases, one between 0 and 24 hours after 

activation and the other after 24 hours, which is regulated by the cytokines IL4 (represses T0_CD40L 

expression) and IL12 (sustains T0_CD40L expression). ICOS cross-linking with its receptor, 

APC_B7H2, results in the expression of T0_CD40L
6
. Furthermore it has been seen that IL2 induce 

T0_CD40L on previously activated CD4 cells
7
 and the activation of the molecules T0_CD28 and 

APC_B71 or APC_B72, enhance CD40L expression
8
. T0_CD40L is internalized after contact with its 

receptor CD40  but when Th1 is present, T0_CD40L expression is more important than its 

internalization
9
. 

 

T0_ICOS = (T0_TCR & APC_MHCII & Ag) | TNFa | (( T0_ICOS & ( T0_CD28 & (APC_B71 | 

APC_B72))) &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐈𝐂𝐎𝐒𝒕−𝒊 & (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐂𝐃𝟐𝟖𝒕−𝒊 & (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝟏𝒕−𝒊 | 

∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝟐𝒕−𝒊)))) | ((T0_ICOS & (IL12 | IL23) &! IL4) &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐈𝐂𝐎𝐒𝒕−𝒊 & 

(∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟏𝟐𝒕−𝒊 | ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟐𝟑𝒕−𝒊))) 

ICOS is not expressed constitutively on naive T cells but is induced rapidly on T cells after TCR 

engagement
3,6

. Also TNFa can promote T0_ICOS expression on T cells when stimulation via TCR/CD3 

complex is weak
10

. The activation of the nodes T0_CD28 and APC_B71 or APC_B72 upregulates 

T0_ICOS expression
11,12

. IL-12 and IL-23 enhance ICOS expression on activated Th cells, but IL4 reduce 

the upregulatory effects of these interleukins
13

. 

 

APC_B7H2 =(T0_ICOS & IFNG) &! (APC_B7H2 & IL10) 

IFNG increased APC_B7H2 expression after incubation for 24 hours
14

. APC_B7H2 expression may be 

negatively regulated by IL-10
15

. 

 

T0_CD44 = T0_ACT 

Th0 activation, allows T0_CD44 recognizes and binds hyaluronan, activating the node T0_CD44
16

. 

 

T0_CD28 = ! ( ∩𝒊=𝟏
𝑻𝑯𝑹_𝑪𝑻𝑳𝑨𝟒_𝐦𝐚𝐱 _𝑪𝑫𝟐𝟖=𝟐 𝐓𝟎_𝐂𝐓𝐋𝐀𝟒𝒕−𝒊 | (T0_CD28 & ∩𝒊=𝟏

𝑻𝑯𝑹_𝑻𝑵𝑭𝒂_𝒎𝒂𝒙=𝟑 𝐓𝐍𝐅𝐚𝒕−𝒊)) 

CD28 is constitutively expressed on the surface of T cells, whereas CTLA-4 expression is rapidly 

upregulated following T cell activation
8,12

. CTLA-4 is then capable of directly competing with CD28 for 

binding of B7. CTLA-4 may also exert a direct negative effect on CD28 signaling, mediated by the 

binding of the phosphatases PP2A and SHP-2
17

. TNFa downregulates CD28 expression when the levels 

of the TNFa are high
18

. 

 

T0_CTLA4 = ∩𝒊=𝟏
𝑻𝑯𝑹_𝑻𝟎_𝑨𝑪𝑻_𝐦𝐚𝐱 _𝑪𝑻𝑳𝑨𝟒=𝟐 𝐓𝟎_𝐀𝐂𝐓𝒕−𝒊 

T0_CTLA4 expression is rapidly upregulated following T cell activation, but it is located in the 

intracellular compartment, so some time is required to express this molecule in the T cell surface
12,17,19

. 
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T0_OX40 = ∩𝒊=𝟏
𝑻𝑯𝑹_𝑻𝟎_𝑨𝑪𝑻_𝐦𝐚𝐱 _𝑶𝑿𝟒𝟎=𝟐 𝐓𝟎_𝐀𝐂𝐓𝒕−𝒊 | TNFa | (T0_OX40 & IL2 &! (∩𝒊=𝟏

𝒖𝒑𝒓𝒆𝒈=𝟒
𝐓𝟎_𝐎𝐗𝟒𝟎𝒕−𝒊  

& ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟐𝒕−𝒊)) | ((T0_OX40 & T0_CD28 & (APC_B71 | APC_B72)) &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐎𝐗𝟒𝟎𝒕−𝒊  

& ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐂𝐃𝟐𝟖𝒕−𝒊  & (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝟏𝒕−𝒊  | ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝟐𝒕−𝒊))) 

The optimal expression of T0_OX40 occurs 24-48 hours after the activation of naïve T cells and requires 

strong TCR ligation, CD28 engagement and IL-2/IL-2R signaling
20

. On the other hand, exogenous TNF 

can promote the expression of T0_OX40, on T cells when stimulation via the TCR/CD3 complex is 

relatively weak
10

. 

 

APC_OX40L = APC_CD40 & T0_CD40L & APC_MHCII 

APC_OX40L is not constitutively expressed but can be induced on professional antigen- presenting cells 

(APC) following antigen recognition by APC_MHCII
21

 and also, the expression of OX40L is dependent 

upon signaling through CD40
22

. 

 

APC_B7H1 = (∩𝒊=𝟏
𝑻𝑯𝑹_𝑻𝟎_𝑨𝑪𝑻_𝐦𝐚𝐱 _𝑩𝟕𝑯𝟏=𝟐 𝐓𝟎_𝐀𝐂𝐓𝒕−𝒊| IFNG | (APC_B7H1 & TNFa &! 

(∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐇𝟏𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝐍𝐅𝐚𝒕−𝒊)) | (APC_B7H1 & IL12 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐇𝟏𝒕−𝒊 & 

∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟏𝟐𝒕−𝒊)) | (APC_B7H1 & IL4 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐇𝟏𝒕−𝒊& ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟒𝒕−𝒊))) &! 

(APC_B7H1 & TGFb) 

APC_B7H1 is activated after activation
23

, and is rapidly activated upon IFNG treatment
24

. TNF-a has 

been associated with increased APC_B7H1 expression, while TGF-b suppressed induction of the 

APC_B7H1 in healthy control cells
25

. On the other hand, the addition of IL12 or IL4 led to up-regulate 

APC_B7H1 ligand
26

. 

 

APC_B7DC = ∩𝒊=𝟏
𝑻𝑯𝑹_𝑻𝟎_𝑨𝑪𝑻_𝐦𝐚𝐱 _𝑩𝟕𝑫𝑪=𝟐 𝐓𝟎_𝐀𝐂𝐓𝒕−𝒊 | ( APC_B7DC & GMCSF &! 

(∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐃𝐂𝒕−𝒊 &  ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐆𝐌𝐂𝐒𝐅𝒕−𝒊)) | (APC_B7DC & IL12 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐃𝐂𝒕−𝒊 

& ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟏𝟐𝒕−𝒊)) | ( APC_B7DC & IL4 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐃𝐂𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟒𝒕−𝒊)) | 

(APC_B7DC & IL13 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐃𝐂𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟏𝟑𝒕−𝒊)) 

The interleukins IL-4 and IL-13 upregulate APC_B7DC
27

; In other study, the addition of IL-12 or IL-4 

led to further up-regulation of APC_B7DC
26

. 

 

T0_PD1 = ∩𝒊=𝟏
𝑻𝑯𝑹_𝑻𝟎_𝑨𝑪𝑻_𝐦𝐚𝐱 _𝑷𝑫𝟏=𝟐 𝐓𝟎_𝐏𝐃𝟏𝒕−𝒊| (T0_PD1 & TNFa &! (∩𝒊=𝟏

𝒖𝒑𝒓𝒆𝒈=𝟒
𝐓𝟎_𝐏𝐃𝟏𝒕−𝒊 & 

∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝐍𝐅𝐚𝒕−𝒊)) 

PD-1 is highly upregulated following TCR stimulation
19,23

. Exogenous TNF can promote the expression 

of T0_PD-1 on T cells when stimulation via the TCR/CD3 complex is relatively weak
10

. 

 

T0_CD27= T0_ACT &! ∩𝒊=𝟏
𝑻𝑯𝑹_𝑻𝟎_𝑨𝑪𝑻_𝐦𝐚𝐱 _𝑪𝑫𝟐𝟕=𝟒 𝐓𝟎_𝐂𝐃𝟐𝟕𝒕−𝒊 

T cell activation via TCR/CD3 complex, induces T0_CD27 expression
28

. However, in humans, T0_CD27 

expression distinguishes between naive and effector/memory stages of T cells; The differentiation into 

effector T cells is accompanied by loss of T0_CD27 expression
29

. 
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T0_ZAP70 = APC_MHCII & T0_TCR & T0_CD3Z 

Once the antigen is present to the T cell by the APC_MHCII, T0_TCR becomes activated and the 

T0_CD3ζ chain recruits the zeta associated protein of 70 kDa (T0_ZAP70) kinase
30

. 

 

T0_SYK = APC_MHCII & Ag & T0_TCR & T0_FcRG 

Upon stimulation of SLE T cells, the T0_FcRG chain recruits the spleen tyrosine kinase (T0_Syk) instead 

of the normally recruited ZAP70
30

. 

T0_cfos = T0_ZAP70 

When T0_ZAP70 is activated, then it phosphorylates other molecules, thus transmitting the signal 

downstream into three distinct pathways. One of these pathways is Ras-MAPK cascade, which induces 

and activates T0_cfos protein, a component of the transcription factor Activated protein 1 (AP1)
30

. 

 

T0_CD3Z = (APC_MHCII & Ag & T0_TCR & T0_CD45) &! T0_FcRG 

Once APC_MHCII and T0_TCR are activated by the presence of the antigen, T0_CD45 is the responsible 

to remove inhibitory phosphates from the Src family lymphocyte kinase (Lck), and the T0_CD3Z chain is 

phosphorylated, resulting in their activation
30

. 

 

T0_CA2 = T0_ZAP70 | T0_SYK 

When T0_ZAP70 is activated, then it phosphorylates other molecules, thus transmitting the signal 

downstream into three distinct pathways. After phosphorylation of some molecules,  inositol 

trisphosphate leads to opening of the calcium channels, increased intracellular calcium concentrations and 

activation of the phosphatase calcineurin, which dephosphorylates and activates the transcription factor 

Nuclear factor of activated T cells (NFAT), one of the pathways to transmit the signal downstream
30

. 

 

T0_FcRG = APC_MHCII & Ag & T0_TCR & Lupus 

SLE T cells display a unique rewiring of the surface T0_TCR-CD3 complex wherein expression of the 

T0_CD3Z chain is decreased in cells from a majority of patients. The lack of the T0_CD3Z chain in the 

T0_TCR-CD3 complex is structurally and functionally replaced by the homologous Fc receptor gamma 

(T0_FcRG) chain
30

. 

 

T0_P65 = T0_ZAP70 

When T0_ZAP70 is activated, then it phosphorylates other molecules, thus transmitting the signal 

downstream into three distinct pathways. Other pathway is the NFkB pathway, which after some signals 

activates; NF-κB is a heterodimer of the p65/p50 subunits
30

. 

 

T0_CD45 = 1 

Constitutive expression. 
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T0_ACT = ((APC_MHCII & T0_TCR & (T0_CD28 & (APC_B71 | APC_B72))) | (T0_ACT & 

T0_ICOS & APC_B7H2 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐀𝐂𝐓𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐈𝐂𝐎𝐒 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐇𝟐𝒕−𝒊)) 

| (T0_ACT & T0_CD40L & APC_CD40 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐀𝐂𝐓𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐂𝐃𝟒𝟎𝐋𝒕−𝒊 & 

∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐂𝐃𝟒𝟎𝒕−𝒊)) | (T0_ACT & T0_OX40 & APC_OX40L &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐀𝐂𝐓𝒕−𝒊 & 

∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐎𝐗𝟒𝟎𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐎𝐗𝟒𝟎𝐋𝒕−𝒊))) &! ((T0_CTLA4 & (APC_B71 | APC_B72)) | 

(T0_PD1 & (APC_B7DC | APC_B7H1))) 

T0_ACT needs two signals to activate. The first one is provided by the interaction of the APC_MHCII 

with T0_TCR and the second by the interaction of the T0_CD28 with APC_B71 or APC_B72. This 

signal augments and sustains a T cell response
3,31

. Other molecules enhance T0_ACT expression, like the 

interaction of T0_CD40L with APC_CD40
32

, T0_OX40 with APC_OX40L
33

 and T0_ICOS with 

APC_B7H2
3,34

. However the interaction of T0_CTLA4   with APC_B71 or APC_B72
3,27,35

 and the 

interaction of T0_PD1 with APC_B7H1 or APC_B7DC
24,36

, deliver a negative signal, inhibiting 

T0_ACT. 

 

Th1 = ((T0_ACT & APC_CD40 & T0_CD40L & IL12 & IFNG) | (Th1 & T0_CD44 &! 

(∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝐡𝟏𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐂𝐃𝟒𝟒𝒕−𝒊))) &! (Th1 & Treg) &! Th2 &! TGFb 

T0_CD40L is necessary to Th1 development, this could be because the lack of T0_CD40L fail to produce 

IL12 cytokine from the APC, and IL12 and IFNG are required for Th1 differentiation
4,32

. Furthermore 

Guan et al. found that in CD44-/- mice, Th1 immune response was down-regulated
37

, so CD44 has an 

influence in Th1 differentiation. 

Contrary Treg have an inhibitory effect on Th1 proliferation, reducing the magnitude of the immune 

response
38

 and on the other hand Th2 cell differentiation and Th2 cytokine secretion inhibits Th1 

development
39

; TGFb also blocks Th1 differentiation in mice
40

. Some of these studies are performed in 

mice, but it has been found that differentiation of Th1 and Th2 cells follows similar rules in humans as in 

mice
41

. 

 

Th2 = (T0_ACT & (T0_CD28 & (APC_B71 | APC_B72)) & IL4) &! (Th2 & (Treg | T0_CD44)) &! 

IL12 &! TGFb 

It has been seen that T0_CD28 is necessary for Th2 development
32

; also IL4 promotes Th2 

differentiation
4
. As same as in the Th1, Tregs inhibit the proliferation of the Th2 cells, reducing the 

magnitude of the immune response, moreover in the case of the Th2 cell, Tregs also enhance its 

apoptosis
38

, but in this case, Guan et al. found that in CD44-/- mice, Th2 immune response was up-

regulated
37

, so CD44 has a negative influence in Th1 differentiation. Furthermore, IL-12
39

 and TGFb
39

 

inhibits Th2 development. Some of these studies are performed in mice, but it has been found that 

differentiation of Th1 and Th2 cells follows similar rules in humans as in mice
41

. 

 

Th17 = (((T0_ACT & TGFb & (IL21 | IL6 | IL23)) | (Th17 & T0_ICOS & APC_B7H2 &! 

(∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝐡𝟏𝟕𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐈𝐂𝐎𝐒𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐇𝟐𝒕−𝒊)) | (Th17 & T0_CD40L & 

APC_CD40 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝐡𝟏𝟕𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐂𝐃𝟒𝟎𝐋𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐂𝐃𝟒𝟎𝒕−𝒊))) &! (Treg 

&! (IL21 | IL6))) &! (IL12 | IFNG | IL4) 

Once Th0 is activated, in the presence of TGF-β plus IL-6 or IL-21 or IL23, the Treg developmental 

pathway is abrogated, and instead T cells develop into Th17 cells
41,42

. Gao et al.
15

 study demonstrates that 

T0_ICOS–APC_B7H2 interaction is critical for Th17. Also development of Th17 critically depends on 

APC_CD40–T0_CD40L cross-talk
43

. However IL-12, IFN-γ, and IL-4 can inhibit Th17 differentiation in 

humans
41

. 
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Tfh = (T0_ACT & IL12 & IL21 & IL6) | ((Tfh & APC_CD40 & T0_CD40L & T0_ICOS & 

APC_B7H2) &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝐟𝐡𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐂𝐃𝟒𝟎𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐂𝐃𝟒𝟎𝐋𝒕−𝒊 & 

∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐈𝐂𝐎𝐒𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐇𝟐𝒕−𝒊)) 

The cytokines IL21, IL6 and IL12 are necessary for Tfh generation
44,45

. Also, Bossaller et al.
46

 have found 

that human T0_ICOS and T0_CD40L deficiency results in a significant reduction of circulating Tfh cells, 

so these costimulation molecules upregulates Tfh expression. 

Treg = ((T0_ACT & TGFb) | (Treg & T0_PD1 & APC_B7H1 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝐫𝐞𝐠𝒕−𝒊 & 

∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐏𝐃𝟏𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐇𝟏𝒕−𝒊))) &! (IL6 | IL21) 

Once Th0 is activated and the cytokine TGFb is present, Th0 differentiates to Treg
47

. Furthermore, Yao et 

al. found that the cross-linking between APC_B7H1 with T0_PD1 enhances and sustains Treg 

expression
48

. However IL6, which is a pro-inflammatory cytokine, inhibits Treg differentiation
49

. Also the 

cytokine IL21 can inhibit its differentiation
50

. 

 

IL2 = T0_ACT & T0_cfos & T0_P65 & T0_CA2 &! (T0_CTLA4 & (APC_B71 | APC_B72)) 

T0_P65, T0_cfos and T0_CA2 are components involved in the routes which mediate IL2 transcription
30

. 

T0_CTLA4 inhibits IL2 synthesis and progression through the cell cycle and terminates T cell responses
3
. 

 

IL4 = (Th2 | (T0_ACT & APC_JAGGED & T0_NOTCH1_2) | ((IL4 & T0_ICOS & APC_B7H2) 

&! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟒𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐈𝐂𝐎𝐒𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝑨𝑷𝑪_𝑩𝟕𝑯𝟐𝒕−𝒊)) | ((IL4 & APC_OX40L & 

T0_OX40) &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟒𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐎𝐗𝟒𝟎𝐋𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐎𝐗𝟒𝟎𝒕−𝒊)) | (IL4 & 

T0_CD27 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟒𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐂𝐃𝟐𝟕𝒕−𝒊))) &! (IL4 & (T0_PD1 & APC_B7DC)) 

Th2-cell lineage produces IL4
4,6

. Human ICOS deficiency significantly reduces the production of 

cytokine IL4
51

. Also T0_OX40 ligation with its ligand (APC_OX40L) increases four times the expression 

of IL-4
52

 and IL-4 expression is increased upon CD27 costimulation
53

. However, in the presence of 

APC_B7DC IL4 production is markedly reduced
36

. 

 

IL6 = ((T0_CD28 & (APC_B71 | APC_B72)) | (∩𝒊=𝟏
𝑻𝑯𝑹_𝑨𝑷𝑪_𝑪𝑫𝟒𝟎_𝐦𝐚𝐱 _𝑰𝑳𝟔=𝟐 𝐀𝐏𝐂_𝐂𝐃𝟒𝟎𝒕−𝒊 & T0_CD40L) 

| (TGFb & IL23)) &! (IL4 | IL10) 

IL6 has a dose-dependent effect in response to T0_CD28
54

. It has been seen that APC_CD40 acts to 

trigger IL6 release from dendritic cells (DC)
43,55

, on the other hand it has found seen that  IL-6 production 

was mostly dependent on TGF-b and IL-23
56

. However IL4 and IL10 cytokines suppressed IL6 

secretion
57–59

. 

 

IL10 = (Treg | Th2 | (IL10 & T0_ICOS & APC_B7H2 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟏𝟎𝒕−𝒊 & 

∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐈𝐂𝐎𝐒𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐇𝟐𝒕−𝒊)) | (IL10 & TNFa &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟏𝟎𝒕−𝒊 & 

∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝐍𝐅𝐚𝒕−𝒊)) | (IL10 & IL2 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟏𝟎𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟐𝒕−𝒊))) &! (T0_OX40 & 

APC_OX40L) &! (IL10 & (T0_PD1 & (APC_B7H1 | APC_B7DC))) 

Although Treg cells are the main producers of IL10 it has been seen that it can be produced by Th2 

cells
60

. T0_ICOS activation upregulates IL10 production
51

, TNFa
61

 and IL2
62

 also induce the secretion of 

IL10. On the other hand OX40L inhibits its generation
63

 and in the presence of APC_B7H1 or 

APC_B7DC the secretion of IL10 is decreased
24,36,64

. 
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IL12 = ((APC_MHCII & T0_TCR & APC_DLL & T0_NOTCH3 & APC_CD40 & T0_CD40L) | 

(IL12 & T0_ICOS &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟏𝟐𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐈𝐂𝐎𝐒𝒕−𝒊))) &! IL10 

Certain antigens, like LPS, promotes IL12 enhance
65

. Furthermore IL-12 has been found to be secreted by 

DC upon antigen-specific interaction with T cells. The antigen-driven induction of IL-12 secretion 

requires interaction via peptide/ MHC class II-TCR and APC_CD40- T0_CD40 ligand molecules
66

 and 

also others researchers have found that APC_CD40 and T0_CD40L interaction is essential for IL12 

production by dendritic cells
32,67,68

. T0_ICOS enhance the induction of IL12
51

 (Takahashi et al., 2009) 

However, Ria and et al. found that IL-10 produced by Th2 cells appears to be solely responsible for the 

inhibition of Th1-induced IL-12 secretion
66

.  

 

IL13 = Th2 | (T0_ACT & Th1 & IL18) 

Th2 cell lineage produces IL13 cytokine
4,6

, however, when Th1 cells are stimulated with IL18, they 

produce IL-13
69

. 

 

IL17 = ((Th17 & IL6 & TGFb & IL23) | (IL17 & T0_ICOS & APC_B7H2 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟏𝟕𝒕−𝒊 & 

∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐈𝐂𝐎𝐒𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐇𝟐𝒕−𝒊))) &! (IL17 & T0_CD27) 

Th17 lineage cells produces IL17 cytokine
42

 together with IL6, TGFb and IL23
56

. Moreover, Takahashi 

and et al.
51

 found that in T0_ICOS deficient patients, the IL17 secretion was imparied. On the other hand, 

IL17 expression is dramatically reduced in Th17 upon T0_CD27 costimulation
70

. 

 

IL18 = 1 

Constitutive expression. 

 

IL21 = Tfh | Th17 | ((T0_ACT & IL6) &! IL4 &! IFNG &! TGFb) | (IL21 & T0_CD27 &! 

(∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟐𝟏𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐂𝐃𝟐𝟕𝒕−𝒊)) 

Tfh and  Th17 cells secrete IL21 cytokine
42,44

. When Suto et al.
71

 stimulated naive CD4+ T cells with 

anti-CD3mAb/anti-CD28mAb in the presence of IL6, anti–IL4 mAb, and anti–IFNG mAb with or 

without TGFb, they found that IL6 together with the blocking antibodies to IL-4 and IFNG strongly 

induced the development of IL21 – producing CD4 + T cells; Diehl et al.
72

 also show that IL6 increased 

IL21 production by human CD4+ T cells. On the other hand T0_CD27 costimulation increased IL21 

expression
53

. 

 

IL23 = Ag_DLL 

Some pathogens and Toll-like receptor agonists, like LPS, CpG and Polyl:C, enhance expression of the 

p40, p35, and p19 subunits, resulting in the release of bioactive IL-23
73

. 

 

IL27 = Ag_DLL 

Some pathogens and Toll-like receptor agonists, like LPS, CpG and Polyl:C, enhance expression of the 

p40, p35, and p19 subunits, resulting in the release of bioactive IL-27; The production of this cytokine 

can be further augmented by T cell CD40L/CD40 interactions that drive potent positive feedback 

responses for DC activation
73

. 

 

https://paperpile.com/c/Hd1UO9/70n8R


Systems Pharmacology in SLE 

 

100 
 

TNFa = (((Ag_DLL & IFNG) | IL2 | GMCSF | TGFb) | ((TNFa & T0_ICOS & APC_B7H2) &! 

(∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝐍𝐅𝐚𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐈𝐂𝐎𝐒𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐇𝟐𝒕−𝒊))) &! IL10 &! (TNFa & IL4) 

IFNG augments TNFa production in response to LPS (antigen) stimulation
61

. Also IL-2, GMCSF and 

TGFb have been reported to induce TNF release
61,74

. Human ICOS deficiency significantly reduces the 

expression of cytokine TNFa
51

. However, treatment with IL10 causes significant reductions in TNFa
65

. 

Furthermore its production is attenuated by IL-4
74

. 

 

TGFb = Treg 

TGFb is produced by Treg cells
42 and other multiple lineages of leukocytes and stromal cells, but they are 

not included on the network. 

 

IFNG = ((T0_ACT | Th1) | (IFNG & T0_CD40L & APC_CD40 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐅𝐍𝐆𝒕−𝒊 & 

∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐂𝐃𝟒𝟎𝐋𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐂𝐃𝟒𝟎𝒕−𝒊)) | (IFNG & T0_ICOS & APC_B7H2 &! 

(∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐅𝐍𝐆𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐓𝟎_𝐈𝐂𝐎𝐒𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐀𝐏𝐂_𝐁𝟕𝐇𝟐𝒕−𝒊)) | (IFNG & IL12 &! 

(∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐅𝐍𝐆𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟏𝟐𝒕−𝒊))) &! Th2 &! IL10 &! (IFNG & T0_PD1 & (APC_B7H1 | 

APC_B7DC)) 

The IFNG genes are transcribed in naïve T cells within 3 to 24 hours after initial activation
4
. Also, Th1 

cells produce IFNG
6
. Howland et al. found that in the absence of T0_CD40L, T cells had a selective 

defect in IFNG production, but the addition of IL-12 enhanced IFNG production
32

 also, Takahashi et al. 

showed T0_ICOS expression enhances IFNG expression
51

. On the other hand, Th2 inhibits IFN-g 

secretion
75

 and in the presence of T0_PD1,  APC_B7H1 and APC_B7DC the secretion of IFNG is 

decreased
23,24,36,64

. 

 

GMCSF = (Th1 | (GMCSF & IL12 &! (∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐆𝐌𝐂𝐒𝐅𝒕−𝒊 & ∩𝒊=𝟏
𝒖𝒑𝒓𝒆𝒈=𝟒

𝐈𝐋𝟏𝟐𝒕−𝒊))) &! (IL27) &! 

(GMCSF & IL6) 

GMCSF is promoted by the Th1 cells. Noster et al.
76

 have found that the addition of IL12 enhances 

significatively GMCSF production; while other interleukins like IL27 or IL6 inhibits or downregulate 

GMCSF expression respectively in humans 

.
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Supplementary Methods 

R framework 

In order to minimize the effort to implement models, run simulations and analyze the 

results, we developed a framework consisting on a series of R and C++ scripts to 

perform Boolean modeling of Systems Biology or Pharmacology networks. The main 

features of this framework are: a parallelized simulation algorithm, an attractor search 

algorithm, a perturbation analysis method and its graphical representation and the 

clustering of the perturbation analysis result.  To facilitate execution from R Studio 

because of its user-friendly interface, we used the Rcpp R package to communicate 

from R to the C++ algorithm and get the result back to the R environment again. The 

algorithms written in R use additional R packages like data.table and corrplot (Wie, 

2013).  

The framework is called AutoImmune Targeting On R (AITOR), although it can be 

implemented for any other disease or biological network. Another manuscript with all 

the details about the AITOR framework is being prepared for publication and it will be 

soon available. 

Attractor analysis 

The attractor search was computed via exhaustive repetitions of the simulation 

algorithm. Because of the large-scale network, the estimation of the attractor is very 

slow if computed in the R environment. We coded the simulation algorithm on C++ in 

order to increase the simulation speed in 60 fold. To guarantee that all attractors of a 

network with n nodes are found, it is necessary to test all the 2
n
 possible states as initial 

states. Due to the exponential relationship, this search becomes unmanageable at around 

30 nodes (Hopfensitz et al., 2012). Fortunately, we were not interested in testing all the 

possible start states, as we defined a few possible initial conditions for our SLE 

networks (Table 3).  

To obtain all the attractor states a great computing effort is required because some of 

these states very rarely occur. However, we found that the activation probabilities of the 

nodes almost did not change if those “unusual” states were ignored, suggesting that 

these rare states can be excluded from the analysis to decrease the number of repetitions 

needed for the attractor search algorithm. Therefore, the 8 initial conditions of the SLE 

https://paperpile.com/c/Hd1UO9/wIjq4
https://paperpile.com/c/Hd1UO9/wIjq4
https://paperpile.com/c/Hd1UO9/81RTw
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network were evolved for 5000 time steps in asynchronous mode and repeated 40 times 

in order to obtain a satisfactory approximation of the activation probabilities of the 

system nodes. 

Hierarchical clustering 

The result of the univariate perturbation analysis is a square matrix in which the number 

of rows and columns is equal to the number of nodes in the network. The value in each 

cell of the matrix corresponds to the Perturbation Index (PI) of the “row node” under a 

perturbation from the “column node”. We transformed  the resulting matrix to store only 

5 possible values: a value of 2 represents PIs greater than 2, a 1 indicates PIs between 

1.25 and 2, the 0 substitutes PIs close to 1, the -1 indicates PIs between 0.5 and 0.8 and 

the -2 PIs smaller than 0.5. Values of 1 and 2 are used to represent perturbations that 

cause a higher activation of the nodes in the system. On the contrary, values of -1 and -2 

indicate lower activations of the nodes. 

To group the system perturbations according to the lupus-like alterations that they 

provoked the next steps were followed: i) A new matrix was created in which the 

number of rows and columns was equal to the number of nodes in the network (52). ii) 

For each node, we listed all the alterations that they provoked on the 23 nodes that have 

been reported as altered in SLE (“SLE like” alterations), that is, we summed the number 

of 2,1,-1 and -2 that each node provokes. iii) The value in each cell of the matrix was 

filled with the ratio between the number of “SLE like” alterations that the “column” and 

“row” node shared over the number of “SLE like” alterations provoked by the “row” 

perturbation. For example, if a perturbation on node A provoked 4 “SLE like” 

alterations, a perturbation in node B led to 5 “SLE like” alterations and both 

perturbation shared 3 of those “SLE like” alterations, a value of 3
4⁄  =0.75 was stored in 

the row A column B position of the matrix, while a value of 3
5⁄  =0.6 was stored in the 

row B column A position. The diagonal of this matrix is a vector of of 1s. iv) Rows and 

columns of nodes which perturbations did not provoke any “SLE like” alteration were 

removed from the matrix. v) Hierarchical clustering analysis was applied over the 

outcome matrix of the previous step.  
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We used the Euclidean metric to measure distance between the alterations that each 

node shared with the rest of the nodes of the network. For the previous example, the 

distance between the alterations that node A and B shared is: 

𝐷(𝐴, 𝐵) = √∑  𝑛
𝑖=1 (𝐵𝑖 − 𝐴𝑖)2  = √(1 − 0.6)2 + (0.75 − 1)2 = 0.4717, where n is the 

number of nodes in the network (2 for this example). 

All these operations can be computed in the R framework automatically with the help of 

the R scripts that the group developed. 
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Supplementary Table 1 

Supplementary table 1. Altered nodes in SLE 

Node Alteration in SLE patients Reference 

APC_MHCII Upregulated 
77

 

APC_B7H1 (PDL1) Downregulated 
25,78

 

APC_OX40L Upregulated 
33,79

 

T0_CTLA4 Upregulated 
80

 

T0_CD44 Upregulated 
81

 

T0_PD1 Upregulated 
82

 

T0_ICOS Upregulated 
83

 

T0_OX40 Upregulated 
63,84

 

T0_CD3Z Downregulated 
30,85

 

T0_FcRG Upregulated 
30,85,86

 

T0_SYK Upregulated 
30

 

T0_cfos Downregulated 
30,87

 

T0_CA2 Upregulated 
30

 

T0_P65 Downregulated 
30,88

 

IL2 Downregulated 
30

 

IL4 Downregulated 
89

 

IL10 Upregulated 
90

 

IL6 Upregulated 
91

 

IFNG Upregulated 
92,93

 

TNFa Upregulated 
25

 

IL23 Upregulated 
94

 

IL17 Upregulated 
95

 

Treg Downregulated 
96
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Supplementary Table 2 

Supplementary table 2. Node localization, type and function. 

Name Localization Type Function Reference 

Antigen   Autoantigen in SLE. 97 

Antigen 

receptor 
APC 

Surface 

molecule 
Antigen receptor in the Antigen Presenting Cell.  

MHCII APC 
Surface 

molecule 

The main function of MHCII (major histocompatibility 

complex class II) molecule is to present processed 

antigens to CD4 (+) T-lymphocytes. It is critical for the 

initiation of the antigen-specific immune response. 

98 

B71 APC 
Surface 

molecule 

B71 (CD80) is a B7 family member that has dual 

specificity for the stimulatory receptor CD28 and the 

inhibitory receptor CTLA-4. 

3 

B72 APC 
Surface 

molecule 

B72 (CD86) is a B7 family member, that has dual 

specificity for the stimulatory receptor CD28 and the 

inhibitory receptor CTLA-4. 

3 

DLL APC 
Surface 

molecule 

DLL is expressed on APC in response to bacteria, viruses 

and TLR-ligands that promote TH1-cell induction by 

APC. 

4 

JAGGED APC 
Surface 

molecule 

JAGGED is expressed on APC in response to parasites and 

allergens that promote TH2-cell induction by APC. 
4 

CD40 APC 
Surface 

molecule 

CD40 is a type I transmembrane protein of the TNFR 

superfamily. CD40-CD40L engagement on the surface of 

DCs promotes their cytokine production, the induction of 

costimulatory molecules on their surface, and facilitates 

the cross-presentation of antigen. 

99 

B7H1 APC 
Surface 

molecule 

B7H1 (Programmed death-ligand 1) and B7DC 

(Programmed death-ligand 2) strongly inhibit both T-cell 

proliferation and cytokine production even in the 

presence of strong B7–CD28 signals. 

3 

B7DC APC 
Surface 

molecule 

B7H1 (Programmed death-ligand 1) and B7DC 

(Programmed death-ligand 2) strongly inhibit both T-cell 

proliferation and cytokine production even in the 

presence of strong B7–CD28 signals. 

3 

B7H2 APC 
Surface 

molecule 

B7H2 (ICOS ligand) is a member of the CD28/CD152 

receptor family. ICOS-B7H2 engagement, enhances T cell 

proliferation, secretion of cytokines, and up-regulation of 

cell surface molecules. 

51 

OX40L APC 
Surface 

molecule 

OX40L (CD252) is a member of the TNFR/TNF 

superfamily and is expressed on activated CD4. It 

regulates cytokine production from T cells and 

modulates cytokine receptor signaling. 

21 

TCR T cell 
Surface 

molecule 

TCR (T cell receptor) recognizes the antigen presented 

by the MHCII molecule. 
100 

T0_ACT  Th0 activated Th0 activated.  
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Supplementary Table 2 (continued) 

NOTCH1_2 T cell 
Surface 

molecule 

Notch1 or notch2 have been implicated in Th2-cell 

differentiation. 
4 

NOTCH3 T cells 
Surface 

molecule 
Notch3 has been implicated in Th1-cell differentiation. 4 

CD27 T cell 
Surface 

molecule 

CD27 is a lymphocyte-specific member of the TNFR 

which is expressed in T cells after activation via 

TCR/CD3 complex. 

28 

CD28 T cell 
Surface 

molecule 

CD28 delivers signals important for T cell activation and 

survival. 
12 

CTLA4 T cell 
Surface 

molecule 

CTLA-4 (cytotoxic T lymphocyte associated protein 4) 

inhibits T cell responses and regulates peripheral T cell 

tolerance. 

12 

CD45 T cell 
Surface 

molecule 

CD45 (lymphocyte common antigen) acts as a positive 

regulator of Src family protein tyrosine kinases. 
101 

CD44 T cell 
Surface 

molecule 

CD44 is a transmembrane glycoprotein. It acts as a co-

stimulus for T cell activation in association with 

triggering through the TCR. 

102 

CD40L T cell 
Surface 

molecule 

CD40L (CD154) is a type II transmembrane protein of 

the TNF superfamily. CD40-CD40L engagement on the 

surface of DCs promotes their cytokine production, the 

induction of costimulatory molecules on their surface, 

and facilitates the cross-presentation of antigen. 

99 

PD1 T cell 
Surface 

molecule 

PD1 (Programmed cell death protein 1) is an inhibitory 

molecule expressed by activated T cells. Engagement of 

PD1 by B7H1 (PDL1) or B7DC (PDL2) inhibits TCR-

mediated proliferation and cytokine production by 

previously activated T cells. 

3 

ICOS T cell 
Surface 

molecule 

ICOS (Inducible T-cell costimulator) enhances T cell 

proliferation, secretion of cytokines, and upregulation of 

cell surface molecules. 

51 

OX40 T cell 
Surface 

molecule 

OX40 (CD134) is a member of the TNFR/TNF 

superfamily and is expressed on activated CD4. OX40 

Regulates cytokine production from antigen-presenting 

cells and modulates cytokine receptor signaling. 

Promotes division and survival of conventional T cells, 

augmenting the clonal expansion of effector and memory 

populations. 

21 

CD3Z T cell 
Intracellular 

molecule 

CD3ζ (T-cell receptor T3 zeta chain) mediates 

intracellular signaling through ZAP70. 
85 

FcRG T cell 
Intracellular 

molecule 

FcRγ (Fc receptor gamma) mediates intracellular 

signaling through SYK. 
85 

ZAP70 T cell 
Intracellular 

molecule 

ZAP70 (Zeta-chain-associated protein kinase 70) 

mediates intracellular signaling. 
30 

SYK T cell 
Intracellular 

molecule 

Syk (Spleen Tyrosine Kinase) mediates TCR signaling 

independently of CD45 and of Lck. 
101 

cfos T cell 
Intracellular 

molecule 
cfos is a component of the AP1 transcription factor. 30 



Systems Pharmacology in SLE 

 

108 
 

Supplementary Table 2 (continued) 

CA2 T cell 
Intracellular 

molecule 
CA2 (Calcium) is present in NFAT transcription factor. 30 

P65 T cell 
Intracellular 

molecule 
p65 is a subunit of NF-κB transcription factor. 30 

IL2  Cytokine 
IL-2 (Interleukin 2) plays a crucial role in immune 

activation and homeostasis. 
103 

Th2  
Differentiated 

T cell 

Th2 cells evoke strong antibody responses (including 

those of the IgE class) and eosinophil accumulation, but 

inhibit several functions of phagocytic cells (phagocyte-

independent inflammation). 

104 

IL4  Cytokine 
IL-4 (Interleukin 4) has an important role in regulating 

antibody production. 
105 

IL10  Cytokine 

IL-10 (Interleukin 10) modulates expression of 

cytokines, soluble mediators and cell surface molecules 

by cells of myeloid origin, with important consequences 

for their ability to activate and sustain immune and 

inflammatory responses. 

106 

IL13  Cytokine 

IL-13 (Interleukin 13) induces immunoglobulin 

production and proliferation of B cells and the 

differentiation of cells of the monocytic lineage. 

107 

IL6  Cytokine 

IL-6 (Interleukin 6) is a pleiotropic cytokine which 

induces terminal differentiation of B lymphocytes into 

antibody-forming cells and the differentiation of T cells 

into effector cells. IL-6 also has multiple potent 

proinflammatory effects. 

108 

IL12  Cytokine 

IL-12 (Interleukin 12) induces cytokine production (IFN-

γ) acts as a growth factor for activated NK and T cells, 

enhances the cytotoxic activity of NK cells, and favors 

cytotoxic T lymphocyte generation. 

109 

IFNG  Cytokine 

IFN-γ (Interferon gamma) is the chief cytokine involved 

in the protective immune response against 

mycobacterial infection. 

110 

Th1  
Differentiated 

T cell 

Th1 cells evoke cell-mediated immunity and phagocyte-

dependent inflammation. 
104 

TNFa  Cytokine 

TNFα (tumor necrosis factor alpha) provokes 

inflammation, necrosis, cell proliferation, differentiation, 

and apoptosis. 

111 

TGFb  Cytokine 

TGFβ (transforming growth factor beta) regulates the 

proliferation and differentiation of cells, embryonic 

development, wound healing, and angiogenesis. 

112 

IL21  Cytokine 
IL-21 (Interleukin 21) modulates the functions of T, B, 

and NK cells. It is also a potent antitumor agent. 
113 

IL23  Cytokine 

IL-23 (Interleukin 23) is a proinflammatory cytokine 

which is involved in differentiation of Th17 cells in a pro-

inflammatory context. 

114 

Th17  
Differentiated 

T cell 

Th17 cells are potent inducers of tissue inflammation 

and have been associated with the pathogenesis of many 

experimental autoimmune diseases. 

42 
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Supplementary Table 2 (continued) 

IL17  Cytokine 

IL-17 (Interleukin 17) family plays a crucial role in host 

defense against microbial organisms and in the 

development of inflammatory diseases. 

115 

GMCSF  Cytokine 

GM-CSF (Granulocyte macrophage colony stimulating 

factor) is an important hematopoietic growth factor and 

immune modulator. 

116 

Treg  
Differentiated 

T cell 

Treg (regulatory T cells) prevents autoimmune diseases 

by establishing and maintaining immunologic self-

tolerance. 

117 

Tfh  
Differentiated 

T cell 

Tfh (T follicular helper cells) specialize in providing 

cognate help to B cells and are fundamentally required 

for the generation of T cell–dependent B cell responses. 

118 

IL18  Cytokine 
IL-18 (Interleukin 18) is a proinflammatory cytokine 

which induces IFN-γ and Th1 responses. 
119 

IL27  Cytokine 

IL-27 (Interleukin 27) is a heterodimeric cytokine of the 

IL-12 family that plays an important role in the 

regulation of T and B cells responses. 

120 
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Supplementary Figure 1 

 

Supplementary Figure 1.Network validation  

It must be highlighted that despite the promising applicability of this approach, the full potential of this tool cannot be asses until the 

whole SLE pathway is included in the network. In the same way, full model validation is not possible at this stage because 

expression of many nodes is also regulated by other molecules, critical to the immune physiopathology of SLE but not yet included 

in the model. Because of that validation attempts of this network were limited to early signals of immune activation in normal and 

perturbed conditions. Activation profiles of nodes from ex vivo (left) and in silico (right) were similar. The greatest difference was 

on the onset of activation that is immediate in the ex vivo conditions because T-cells are cultured directly with the antigen while in 

the simulations a time-step for Antigen APC encounter and other for APC migration to lymph nodes were included. Although, 

agreement between simulations and results from clinical trials may also be considered part of validation, the full effect of a 

treatment cannot be evaluated in the model until the network is completed. Furthermore, at the moment only one mAb has been 

approved for the treatment of SLE (Belimumab) under certain conditions, therefore there is only one usable example to validate and 

effective treatment, unfortunately the target of Belimumab (B-cell activating factor) is not yet included in this model. 
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Supplementary Figure 2 

 

Supplementary Figure 2. Clustering of perturbations according to “SLE like” alterations. 

 Clustering of perturbations according to “SLE like” alterations depending on different initial conditions. Heatmaps indicate the 

effect of single perturbations on the nodes that have been reported as altered in SLE. Two types of perturbations were simulated, 

node knockouts (left) and node over-expressions (right). Each heatmap contains 23 rows, one for each node that has been reported 

as altered in SLE. Most perturbations did not trigger considerable changes in those 23 nodes (indicated in black or absent from the 

heatmap). Some perturbations led to upregulations of the 23 nodes (represented in orange) while downregulation of the 23 nodes 

were more common (blue). Perturbations were clustered according to SLE like alterations that they provoked as can be seen in the 

blue and orange blocks in the heatmaps. Th2 and Th1-Th2 antigen simulation grouped the majority of the alterations reported in 

SLE while perturbation in simulation under unpolarized antigen conditions were not able to reproduce these alterations. 
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Supplementary Figure 3 

 

Supplementary Figure 3. TNFα alteration triggered by different initial conditions. 

TNFα alteration may be triggered by different initial conditions (knockouts in grey and over-expressions in green). TNFα was 

upregulated by a downregulation of T0_PD1 when a Th1 like antigen was simulated. The same TNFα upregulation was triggered by 

a downregulation of T0_CTLA4, IL4 or IL10 under a Th2 antigen simulation; or IL4 under a Th1-Th2 antigen simulation. Also, 

TNFα was upregulated by an over-expression of IL2 or IFN-γ under a Th1 antigen simulation; IL2 under a Th2 antigen simulation; 

APC_B7H2, T0_CD40L, IL-2 or IFN-γ under a Th1-Th2 antigen simulation; or Th2 or IFN-γ when an unpolarized simulation was 

made. 
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COAGULATION OVERVIEW 

1. Coagulation generalities 

Hemostasis is a defense mechanism of the body that encompasses the processes by 

which a hemorrhagic process ceases. The hemostasis is divided into primary hemostasis 

and secondary hemostasis
1
. 

Primary hemostasis 

This process corresponds with platelet activation, aggregation and platelet plug 

formation at the site of injury. 

Secondary hemostasis 

This process consists of coagulation cascade activation by which the insoluble fibrin 

clot is formed. Both processes, primary and secondary hemostasis occurs 

simultaneously.  

 

2. Coagulation mechanisms  

Several bibliographical sources show that coagulation is regulated by different 

pathways, the intrinsic, extrinsic and common pathways. This theory is known as the 

classic model of coagulation
2
.  Although it is very useful to interpret the results obtained 

from some “in vitro” coagulation tests like prothrombin time (PT) or activated partial 

thromboplastin time (aPTT), it fails to explain the coagulation process taking place “in 

vivo”. Currently, the so called cellular model of coagulation is the most accepted 

theory
3
, which divides the coagulation into three simultaneous steps which happen in 

different cell surfaces. 

Classic model: 

The classic model of coagulation consists of two different pathways, the intrinsic and 

the extrinsic pathways that converge in the common pathway by which the fibrin clot is 

formed (Figure 1)
2
.  
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Figure 1. Representation of the coagulation process according to the classic model of coagulation. TF (tissue factor), 

FXII (factor XII), FXIIa (activated factor XII), Pk (prekallikrein), K (kallikrein), FXI (factor XI), FXIa (activated 

factor XI), FIX (factor IX), FIXa (activated factor IX),  FVIIIa (activated factor VIII), FVII (factor VII), FVIIa 

(activated factor VII), FX (factor X), FXa (activated factor X),  FII ( factor II, prothrombin), FIIa (activated factor II, 

thrombin), Fg (fibrinogen) and F (fibrin). 

(i) Extrinsic pathway: It begins as a response triggered by a tissue injury which 

induces the binding between the extravascular tissue factor (TF) and the 

circulating factor VII (FVII), forming a complex which in turn will activate 

factor X (FX). 

 

(ii) Intrinsic pathway: This pathway begins when the blood comes in contact 

with a negatively charged system, activating the FXII. Then, the activated 

FXII (FXIIa) promotes the activation of prekallikrein (Pk) protein to 

kallikrein (K) and further reciprocal activation of FXII by kallikrein results 

in coagulation cascade activation. Then, the FXIIa acts on FXI to form FXIa, 

which activates FIX. After that, FIXa binds to FVIIIa to form the tenase 

complex (FIXa: FVIIIa) which will activate FX.  

 

(iii) Common pathway: Once the FX is activated by one of the previous 

pathways, FXa converts prothrombin (FII) into thrombin (FIIa), which by 

several processes will transform circulating fibrinogen (Fg) into insoluble 

fibrin (F), forming a stable clot in the injury site. 

Cellular model: 

The cellular model proposed by Hoffman in 2003
3
 will be explained later in the chapter. 
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3. Coagulation regulation 

The coagulation system also has several regulation/control mechanisms to keep 

hemostasis, where the following endogenous anticoagulants
2
 play a key role:  

(i) Antithrombin III (ATIII): This small protein can bind to activated factors FIIa, 

FXa, and FIXa and inactivate them. The action of certain drugs can enhance 

the activity of this protein as heparins.   

 

(ii) Tissue factor pathway inhibitor (TFPI): This anticoagulant is a polypeptide 

able to inhibit FXa reversible, through the formation of the corresponding 

complex (FXa-TFPI). This complex inhibits FVIIa-TF complex, blocking 

coagulation initiation.  

 

(iii) Protein C system: This system is formed by protein C, thrombomodulin, 

activated protein C (APC) and protein S. APC and protein S form a complex 

with a proteolytic capacity which breaks the peptide bonds from FVa and 

FVIIIa that have pro-coagulant properties.  

 

4. Coagulation tests  

Some of the most relevant in vitro coagulation tests are: (i) prothrombin time (PT), (ii) 

activated partial thromboplastin time (aPTT) and (iii) calibrated automated 

thrombogram (CAT)
4
. 

Prothrombin time 

PT, introduced by Armand Quick in 1935
5
, is one of the most used tests in clinical 

practice. It evaluates the extrinsic and common pathways of the coagulation, i.e., the 

activity of the factors VII, V, XII and fibrinogen. It is expressed in seconds, quantifying 

the time required for clot formation in a citrated plasma (blood + sodium citrate) sample 

obtained from a patient after adding thromboplastin (tissue factor (TF) + phospholipids) 

and calcium.  

PT represents the test of choice to monitor oral anticoagulant therapy. The main 

disadvantage is that the PT values obtained from the same sample can vary largely 

across laboratories due to the different sensitivities of the thromboplastin reagents. To 
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overcome this limitation, the international normalized ratio (INR) was introduced
6
. INR 

is described in equation 1 as follows: 

𝐼𝑁𝑅 = (
𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑃𝑇

𝑚𝑒𝑎𝑛 𝑃𝑇
)

𝐼𝑆𝐼

  Equation 1 

where patient PT is the PT value corresponding to the blood sample of interest obtained 

from a particular laboratory, mean PT is the mean of the PT values from 20 healthy 

individuals blood samples of both sexes measured in the same laboratory, and ISI is the 

international sensitivity index, which is given by the manufacturer.  

The normal PT value in the healthy population ranges from 10 to20 seconds, and the 

value of INR can vary between 0.8-1.2
aa

.  

Activated partial thromboplastin time 

aPTT test was introduced by Langdell in 1953
7
. This test evaluates the intrinsic and 

common pathways of the coagulation process. As well as PT, aPTT quantifies the time 

required for clot formation measured in seconds, but the procedure is different. First, 

partial thromboplastin reagent (phospholipids without TF) is added to a citrated plasma 

sample of the patient. Then, the plasma sample is incubated with a surface contact 

activator, which can be kaolin, ellagic acid, celite among others, to obtain a controlled 

activation. Finally, calcium chloride is added. Normal values range between 30-45 

seconds
bb

. This test is widely used to monitor the effect of heparins treatment
8
.  

Furthermore, it has been observed that people with short aPTT have more possibilities 

to suffer thromboembolic events
9,10

.  

Calibrated automated thrombogram 

Thrombin generation assay (TGA) was introduced by MacFarlane and Biggs in 1953
11

. 

They measured thrombin concentration over the time in whole blood. However, the 

procedure resulted too laborious and time consuming. On the other hand, in the same 

year, Pitney and Dacie
12

 performed the test in plasma. Several years later, Hemker et 

al
13

 in 2003, developed the calibrated automated thrombogram (CAT) which improved 

the efficiency and accuracy of the previous tests.  

                                                 
aa

 https://www.fda.gov/downloads/ICECI/Inspections/IOM/UCM135835.pdf 
bb

 https://www.fda.gov/downloads/ICECI/Inspections/IOM/UCM135835.pdf 
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This test measures the concentration of thrombin produced over time after the addition 

of TF to a plasma sample. The resultant thrombogram, as well as the parameters which 

describe the curve
14

, are represented in Figure 2. This test is used to analyze thrombotic 

or hemorrhagic disorders. The main disadvantage is that it requires about an hour to be 

completed limiting its application in urgent care. 

 

Figure 2. Representation of the curve obtained with the CAT method and thrombin curve parameters. 

The test can be performed in platelet-poor plasma (PPP) or platelet-rich plasma (PRP)
4
. 

When PPP is used, procoagulant phospholipids, normally in a concentration of 4 μM to 

enhance TF effects have to be added to the sample. Contrary, when the sample is PRP, 

the platelets are responsible for TF amplification. In both cases, TF concentration can 

vary depending on the laboratory. The shape of the curve depends on the experimental 

conditions (the type of plasma, phospholipid concentration, and TF concentration) and 

the lack of standardization of reference ranges of those conditions makes it difficult the 

comparison between curves generated from different experiments. 

Differences between PT and aPTT tests and TGA 

PT and aPTT CAT 

Evaluates the extrinsic, intrinsic and common pathways, quantifying the 

time required for clot formation 

Quantitative evaluation of thrombin formation 

Allow predicting bleeding in patients  

They have been standardized for monitoring therapy: 

• PT: vitamin K antagonist 

• aPTT: heparins 

Distinguished between hemorrhagic or thrombotic conditions 

 

Not suited to represent the balance of coagulation that occurs “in vivo” Reveals the endogenous thrombin levels in plasma 

Minutes to complete About 1 hour to complete 
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5. Coagulation alterations 

The coagulation system is regulated by a strict homeostatic control to keep the balance 

between pro- and anticoagulant activities. A disorder in this balance will lead to 

hemorrhagic or thrombotic diseases respectively. Coagulation diseases can be divided 

into hereditary or acquired disorders. Hereditary disorders are genetic diseases, 

generally caused by chromosomal and gene mutations and pass from generation to 

generation. While acquired disorders are caused by risk factors like smoking, 

pregnancy, obesity, immobility among others. Table 1 lists some bleeding as well as 

some thrombotic disorders. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

 

131 

 

Table 1. Coagulation disorders. (BP) Birth prevalence. (P) Prevalence. 

COAGULATION DISORDERS 

 

DISEASE PREVALENCE 
COAGULATION TESTS 

PT aPTT 

BLEEDING DISORDERS 

HEREDITARY Haemophilia A (BP) 1 in 4,000 to 5,000 males
cc

 Normal Prolonged15 

 
Haemophilia B (BP) 1 in 20,000 males Normal Normal/prolonged16 

 
 von Willebrand disease (P) 1 in 100 to10,000

dd
 Normal17 Normal/prolonged17 

 
Factor V deficiency (P) 1 in 1,000,000

ee
 Prolonged18 Prolonged18 

 
Factor VII deficiency (P) 1 in 300,000 to 500,000

ff
 Prolonged19 Prolonged19 

 
Factor X deficiency (P) 1 in 1,000,000

gg
 Prolonged20 Prolonged20 

 
Factor XIII deficiency (P) 1 to 3 in 1,000,000

hh
 Normal21 Normal21 

 
Prothrombin deficiency (P) 1 in 2,000,000

ii
 Prolonged22 Normal/prolonged22 

 
Afibrinogenemia (BP) 1 in 1,000,000

jj
 No clot detected23 No clot detected23 

ACQUIRED 
Disseminated intravascular 
coagulation 

Unknown Normal/prolonged24 Normal/prolonged24 

 Vitamin K deficiency Unknown Normal/prolonged25 Normal26 

 Liver disease Unknown Normal/prolonged25 Prolonged26 

THROMBOTIC DISORDERS 

HEREDITARY Protein C deficiency (P) 1 in 500
kk

 - - 

 
Protein S deficiency (P) 1 in 500

ll
 - - 

 
Antithrombin III deficiency (P) 1 in 2,000 to 3,000

mm
 Normal/reduced27 Reduced27 

 
Factor V Leiden 

3 - 8 % of people with 

European ancestry
nn

 
Normal Normal 

 
Prothrombin mutation (P) 1 in 50

oo
 Normal Normal 

ACQUIRED 
Antiphospholipid antibody 

syndrome 

Antiphospholipid antibodies in 
1% to 5% of young healthy 

control subjects
pp

 

- - 

 Increased levels of factors 

VIII, IX, XI or fibrinogen 
Unknown - - 

 
Fibrinolysis defects Unknown - - 

 
Homozygous homocystinuria (P) 1 in 200,000 to 335,000 - - 

 

                                                 
cc

 https://ghr.nlm.nih.gov/condition/hemophilia#statistics 
dd

 https://ghr.nlm.nih.gov/condition/von-willebrand-disease#statistics 
ee

 https://ghr.nlm.nih.gov/condition/factor-v-deficiency#statistics 
ff

 https://ghr.nlm.nih.gov/condition/factor-vii-deficiency#statistics 
gg

 https://ghr.nlm.nih.gov/condition/factor-x-deficiency#statistics 
hh

 https://ghr.nlm.nih.gov/condition/factor-xiii-deficiency#statistics 
ii

 https://ghr.nlm.nih.gov/condition/prothrombin-deficiency#statistics 
jj

 https://ghr.nlm.nih.gov/condition/congenital-afibrinogenemia#statistics 
kk

 https://ghr.nlm.nih.gov/condition/protein-c-deficiency#statistics 
ll

 https://ghr.nlm.nih.gov/condition/protein-s-deficiency#statistics 
mm

 https://ghr.nlm.nih.gov/condition/hereditary-antithrombin-deficiency#statistics 
nn

 https://ghr.nlm.nih.gov/condition/factor-v-leiden-thrombophilia#statistics 
oo

 https://ghr.nlm.nih.gov/condition/prothrombin-thrombophilia#statistics 
pp

 https://ghr.nlm.nih.gov/condition/antiphospholipid-syndrome#statistics 
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6. Therapeutic alternatives 

Treatments for bleeding disorders 

Due to the fact that most bleeding disorders are caused by some factor deficiencies, 

usually the treatment consists on the supplementation of those factors that are lacking or 

reduced. Although treatments are not curative, they help to alleviate the symptoms and 

reducing the bleeding risk
28

. Currently, the treatments involving factor concentrates are 

very safe and are indicated for a wide variety of bleeding disorders (including those 

under the category of rare diseases). Coagulation factor plasma concentrates are derived 

from human plasma and are available for FI, FVII, FVIII, FXI and FXIII
qq

. 

Additionally, it is possible to synthesize recombinant factor VIII and recombinant factor 

VIIa using recombinant technology
29

. Also, coagulation factors can be administered in 

combination, for example prothrombin complex concentrate is composed of factors II, 

VII, IX and X
rr
.  

When the factor required is not available as plasma concentrate, fresh frozen plasma is 

administered to the patient
30

. Another possibility is the administration of a 

cryoprecipitate which contains factor VIII, fibrinogen and other coagulation proteins. 

The advantage concerning fresh frozen plasma is that as it is concentrated, the 

administered volume is less, but the disadvantage is that not all coagulation factors are 

contained, being only suitable for a few deficiencies.  

The use of desmopressin, a synthetic hormone, increases factor VIII and von Willebrand 

factor levels, and it is used to treat patients with mild to moderate haemophilia A and 

von Willebrand disease
31

.  

Vitamin K can be used in patients with deficiency of vitamin K dependent factors but it 

is not always effective.  

Finally, antifibrinolytic drugs can be used in bleeding disorders. Usually, they are used 

in minor surgeries like dental operations and to control excessive menstrual bleeding. 

Two examples are tranexamic acid and aminocaproic acid
32

.  

All these options are summarized in Table 2. 

                                                 
qq https://www.wfh.org/en/sslpage.aspx?pid=668 
rr https://www.wfh.org/en/sslpage.aspx?pid=668 
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Table 2. Options for hemorrhagic disorders. 

ANTIHEMORRHAGIC TREATMENT 

Option Description 

FI, FVII, FVIII, FXI and FXIII As plasma concentrate 

FVIII and FVIIa Recombinant technology 

Fresh frozen plasma The factor required is not available as plasma concentrated 

Cryoprecipitate Contains factor VIII, fibrinogen and other coagulation proteins 

Desmopressin Increases factor VIII levels 

Vitamin K Increase vitamin K dependent factors 

Antifibrinolytic drugs Tranexamic acid and aminocaproic acid 

 

Treatments for thrombotic disorders 

Treatments used in thrombotic disorders are summarized in Table 3
33,34

. The mechanism 

of action of vitamin K antagonist drugs is the inhibition of vitamin K epoxide reductase, 

inhibiting initially the proteins C and S and later, inhibiting the coagulation factors II, 

VII, IX and X. For this reason, when a rapid anticoagulation effect is needed, they are 

administered together with rapid acting parenteral anticoagulant, normally heparins. 

Warfarin is the most used anticoagulant drug in venous thromboembolism. On the other 

hand, heparins bind to ATIII enhancing its activation and thus inhibiting coagulation. 

They are divided into unfractionated heparin (UH) and low molecular weight heparins 

(LMWH). Heparins can be administered parentally or subcutaneously and they are used 

in prophylaxis, for example in pre-operatory and post-operatory thrombosis or patients 

with venous thromboembolism. LMWHs are more predictable dose-response than UH. 

Finally, the most recent drugs are the new oral anticoagulants which are directed against 

two coagulation activated factors: factors IIa and Xa. Among the advantages of these 

new drugs are that they do not have a narrow therapeutic margin and they do not need to 

be monitored.  
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Table 3. Possible treatments for thrombotic disorders whit their respective indications. UH (unfractionated heparin), LMWH (low molecular weight heparins), DIC (disseminated intravascular 

coagulation), DVT (deep vein thrombosis), PE(pulmonary embolism).  

ANTICOAGULATION TREATMENT 

Drug Mechanism of action Indications Laboratory 

monitoring 

Vitamin K antagonists 

Warfarin Vitamin K antagonists inhibit vitamin K-epoxide reductase thus 

decreasing the reduced form of vitamin K (VKH2). Therefore, 

inhibiting the synthesis of biologically active forms of vitamin 

k-dependent coagulation factors (II, VII, IX and X) and 

regulator proteins S and C   

 Prophylaxis /treatment of venous thrombosis  

 Pulmonary embolism 

 Atrial fibrillation     

 Cardiac valve replacement 

 Myocardial infarction 

PT, INR 

Acenocoumarol  Treatment of deep vein thrombosis and myocardial infarction 

 Prevention of cerebral embolism, pulmonary embolism, and transient ischemic attacks. 

PT, INR 

Heparins 

Unfractionated 

heparin 

UH binds reversibly to the natural anticoagulant ATIII, 

accelerating the rate at which ATIII inactivates thrombin and 

factor Xa 

 Treatment of venous thromboembolism 

 Thromboprophylaxis in general surgery and trauma 

 Venous Thromboembolism in Pediatric Patients 

 Cardioversion of Atrial Fibrillation 

 Arterial Thromboembolism 

 DIC … 

aPPT 

 LMWH Enoxaparin As well as UH, LMWH bind to ATIII to 

enhance its activity 

 Prophylaxis of deep vein thrombosis in abdominal surgery, hip replacement surgery, knee replacement 
surgery, or medical patients with severely restricted mobility during acute illness  

 Inpatient treatment of acute DVT with or without pulmonary embolism  

  Prophylaxis of ischemic complications of unstable angina  

 Treatment of acute ST-segment elevation myocardial infarction  

Anti-Xa level 

Dalteparin Anti-Xa level 

Tinzaparin Anti-Xa level 

New oral anticoagulants 

Xa inhibitors Apixaban Direct inhibition of FXa, blocking the 

conversion of prothrombin to thrombin 

 Reduction of risk of stroke and systemic embolism in patients with non-valvular atrial fibrillation Not required 

Rivaroxaban   Reduction of risk of stroke and systemic embolism in patients with non-valvular atrial fibrillation 

 Treatment of DVT and pulmonary embolism 

 Prophylaxis of DVT following hip or knee replacement surgery 

Not required 

Edoxaban  Reduction of risk of stroke and systemic embolism in patients with non-valvular atrial fibrillation 

 Treatment of DVT and PE 

Not required 

IIa inhibitors Dabigatran Direct inhibition of FIIa, blocking the 

conversion of fibrinogen to fibrin 

 Reduction of risk of stroke and systemic embolism in patients with non-valvular atrial fibrillation 

 Treatment of DVT and pulmonary embolism in patients who have been treated with a parenteral 

anticoagulant for 5-10  

 Prophylaxis of DVT and PE in patients who have undergone hip replacement surgery  

Not required 
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1. INTRODUCTION 

Hemostasis is the physiologic response that involves the processes by which a 

hemorrhagic process ceases. The hemostasis is divided into primary and secondary 

hemostasis
1
. After a blood vessel injury, the vessel is constricted to reduce blood flow, 

and circulating platelets adhere to the vessel wall at the lesion site where they are 

aggregated and activated (primary hemostasis)
2
. In the surface of these activated 

platelets take place several enzymatic reactions by which the coagulation factors are 

activated to form the insoluble fibrin clot. This process is known as coagulation cascade 

(secondary hemostasis)
2
.  

The “in vivo” coagulation process can be explained by the cellular model proposed by 

Hoffman
3–5

. This model is composed of three consecutive steps occurring in different 

cellular surfaces (Figure 1).  

 

Figure 1. Representation of the coagulation process according to the cellular model of coagulation. TF (tissue factor), 

FXII (factor XII), FXIIa (activated factor XII), FXI (factor XI), FXIa (activated factor XI), FIX (factor IX), FIXa 

(activated factor IX),  FVIIIa (activated factor VIII), FVII (factor VII), FVIIa (activated factor VII), FX (factor X), 

FXa (activated factor X),  FII ( factor II, prothrombin), FIIa (activated factor II, thrombin) and Fg (fibrinogen). 

 

(i) The initiation phase takes place on the surface of cells that contain the tissue 

factor (TF), like fibroblasts or macrophages among others. The TF is a 

protein able to initiate the coagulation cascade. On the other hand, some 

coagulation factors like factor VII (FVII), FX, FII can permeate through 

tissue spaces leaving the vascular space, coming in contact with TF in the 

extravascular space generating a little thrombin burst.  

 

(ii) The amplification phase starts after a tissue injury with vessel damage. 

Because of the lesion, the components that were not able to permeate 

through tissue spaces like FVIII, platelets and so on, can now pass to the 
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extravascular space establishing contact with the small amounts of thrombin 

generated in the initiation phase. This thrombin has several functions like 

platelet activation, FV and FXI activation. 

 

(iii) Finally, in the propagation phase, which occurs on the surface of activated 

platelets through the activation of different factors, the amount of thrombin 

necessary to form the coagulation clot is generated. 

However, the classic model of coagulation, which divides the process into extrinsic, 

intrinsic and common pathways is more appropriated to explained the prothrombin 

time
6
 (PT) and the activated partial thromboplastin time

7
 (aPTT) “in vitro” coagulation 

tests. These tests are the most used measurements of coagulation activity in the clinical 

setting, measuring the time between the addition of activators to a plasma sample and 

the sufficient production of thrombin. Although these tests have a huge diagnostic 

value, they are not able to characterize all thrombin formation process during 

coagulation. In fact, they only identify the thrombin generated in the initiation phase, 

ignoring more than 90% of the thrombin formed
8
. To overcome this limitation, the 

thrombin generation assay (TGA) introduced by MacFarlane and Biggs in 1953
9
 or the 

calibrated automated thrombogram (CAT) by Hemker et al.
10

 in 2003, measure the 

amount of thrombin produced over time after the addition of TF to a blood or plasma 

sample, respectively. This test, contrary to PT and aPTT, provides information about the 

amplification and propagation phases of the hemostatic system. The main limitation is 

that it is not well standardized and thus, the possibly different experimental conditions 

make difficult the comparison between patient’s thrombin profiles in different 

experiments. 

Due to the large numbers of components involved in the coagulation cascade and the 

different possible experimental conditions that can be used in coagulation tests, the 

development of mathematical models can be very useful to explore and predict different 

scenarios to better adjust and personalize patient treatments.  
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Modelling approaches: 

Several models for part or whole blood coagulation process have been developed and 

are available in the literature
11–22

. Through this type of models, it is possible to simulate 

the time profiles of the different components of the coagulation cascade and reproduce 

the endpoints of PT, aPTT and TGA tests. Also, they allow simulating different type of 

patients and therapies. 

Systems pharmacology (SP) models are based on the bottom-up approach (Figure 2), 

which builds an exhaustive computational structure based on the knowledge available of 

the physiologic system. The main advantage of these models is that they are not limited 

by the type of data, which can be qualitative or quantitative, longitudinal or not, from 

one or different experiments, with the same or different experimental conditions
23

. Once 

built, they represent a very useful tool to understand in silico, how the system behaves 

under different perturbations as polymorphisms or potential treatment. In addition, they 

serve as the starting point to develop other types of models
24,25

 that constitute a reduced 

version of the full model but maintaining the principal mechanisms involved. However, 

when fitting experimental data, and due to the elevated number of processes involved, 

in most cases it is not possible to estimate all the parameters defined in the model, being 

necessary to fix some from the literature. Furthermore, the obtaining of measures 

characterizing all the processes involved represents an unaffordable enterprise.  

On the other spectrum of the modeling paradigm, the population pharmacokinetic-

pharmacodynamic (PKPD) models describe the observed data accurately through 

simpler models where all model parameters are identifiable. These models follow a top-

down approach (Figure 2), which treats the whole organism as a single system 

incorporating possible covariates
26

. One of the limitations of this type of models is that 

they lack of deep mechanistic characterization of the physiologic processes limiting 

their application outside of controlled disease and treatment scenarios.  

Compared to the previous type of models a better option is the development of semi-

mechanistic PKPD models that, besides to provide good data description, their structure 

resembles the mechanism of the key processes. Usually, this type of models uses the 

middle-out approach (Figure 2), which includes the most relevant components of the 

system in order to describe the available clinical data
27

 accurately.  
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Figure 2. Different modelling perspectives regard to data requirements and mechanistic structure. Top-down 

approach, top-down approach and middle out approach. 

 

The first objective in this article was to implement and evaluate two SP models found in 

the literature for the whole coagulation process
19,21

. Because an unavoidable step is the 

evaluation of these SP models and their capacity to mimic the pathophysiological 

behavior, the second objective was to evaluate the performance of both models 

concerning longitudinal data of FIIa available in literature
28

. Finally, a more 

manageable model able to reproduce the clinical data including inter-individual 

variability and covariate effects was built based on clinical data gathered from the 

literature.  



Chapter 2 

 

143 

 

2. METHODS 

Literature search of quantitative systems pharmacology models for 

coagulation 

Several coagulation models were identified through a systematic search in PubMed 

database. These models describe the whole coagulation process or characterize parts of 

coagulation cascade to describe the time courses of some coagulation factors or blood 

coagulation tests
11–22

. Among the first group, two models were finally selected which 

characterize the entire coagulation network based on the inclusion of the relevant 

components and reactions
19,21

. 

Model implementation and evaluation 

Both models were implemented using SimBiology (v. 5.6) software, which is a 

MATLAB (MathWorks, v. 2017a) toolbox
29

.  

The model developed by Wajima and co-authors
19

 (referred to hereafter as model 1) 

was established in a way that longitudinal profiles of the coagulation factors can be 

generated, and the results according to the PT or aPTT tests can be calculated under 

different experimental in silico scenarios.  

The model consists of 51 components and 48 reactions. The components include 

coagulation factors, coagulation activators, natural anticoagulants, the vitamin K and its 

reduced and oxidized forms. The effect of the anticoagulant drugs warfarin, 

unfractionated heparin (UFH) and low molecular weight heparins (LMWHs) were 

simulated. A scheme of the model can be seen in supplementary material Figure S1A. 

The dynamics of the system was described by algebraic and ordinary differential 

equations (ODEs) resembling mechanisms of synthesis, degradation, activation, and 

complex formation. Warfarin effect was incorporated using an IMAX model and heparin 

effect using complex formation, resulting in the removal of the participating factors. An 

example of FIIa is presented below (Figure 3): 
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Figure 3. Corresponding ODE for the FIIa indicating the different types of reaction. v and k parameters represent 

Vmax and km Michaelis-Menten constants and they are expressed in h-1 and nM respectively. pII is the production 

rate of FII based on a turn-over model expressed in nM. dIIa is the degradation rate constant of FIIa. Complex 

formation is a stoichiometric reaction in which the components are assumed to combine in a molar ratio of 1:1 and 

are dived by the parameter c, which is expressed in nM·h. [ ] denotes concentration and (0) initial concentration. 

Tmod (thrombomodulin), VKH2 (vitamin K hydroquinone) and AT (antithrombin III). 

In the supplementary tables 2, 3 and 4 of Wajima, et al. article
19

 parameters values, 

initial conditions for each component and degradation rate constants respectively are 

presented.  

The model by Nayak and co-authors
21

 (referred to hereafter as model 2 ) was built to 

match in-house in vitro calibrated automated thrombogram (CAT) and aPTT data and 

therefore synthesis or degradation rates are not considered. This model consists of 61 

components and 62 reactions as it is shown in supplementary material Figure S1B. 

Model equations are based in association-dissociation kinetics and reactions of first and 

second order. The example for FIIa is presented below in Figure 4. 
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Figure 4. Corresponding ODE for FIIa in model 2. k1, k2, k3 and k4are rate constant of second order and k5 of first 

order. [ ] denotes concentration. Tmod (thrombomodulin), and ATIII (antithrombin III). 

 

In the supporting information of Nayak, et al. article
21

 is possible to find parameter 

values as well as the initial concentration of the model components. 

In both models, the parameters were taken from the literature to later be adjusted based 

on the assumption of 30% fibrinogen reduction occurred at 10-15 seconds in PT test 

simulation and at 27-39 seconds in the aPTT test simulation for standard plasma 

samples in the case of model 1 or to fit in-house in vitro data in the case of model 2. 

Once implemented, the models were curated analyzing whether or not they were 

capable of reproducing the key quantitative results shown in the original publications. 

Clinical data  

To explore the performance of the two systems pharmacology models described above, 

beyond the conditions used in the original publications, the dataset available from 

Menezes and co-workers
28

, which includes raw individual longitudinal data of thrombin 

measured in 20 normal subjects and 40 patients with trauma, was integrated. Additional 

information gathered from each subject during the study was the baseline activation 

percentage of factors II, V, VII, VIII, IX, X, and ATIII, and the PT and aPTT values. 
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Simulations 

For all the patients, CAT profiles, PT (implemented only in model 2) and aPTT values 

were obtained simulating with the two selected models. In case of the factors measured 

in each of the subjects (see above), their initial concentrations were calculated 

converting the reported percentage into concentration using the initial concentrations of 

the original models. Table 1 shows this conversion. For initial concentrations per 

individual check supplementary material table S2 and S3. Initial conditions for factors 

and proteins that were not reported in the experimental data of Menezes, et al.
28

 article, 

were assumed to have a 100% activity percentage. 

Table 1. Mean blood factors percentage transformed into concentrations (nM). 

 II V VII VIII IX X ATIII 

Mean activation 
percentage from 
normal subjects 
reported in Menezes et 
al. article 

78.7% 50.65% 81.6% 32.5% 115.2% 74.6% 83.3% 

Mean activation 
percentage from 
trauma patients 
reported in Menezes et 
al. article 

76.6% 48.32% 124.7% 114.57% 104.77% 75.65 87.67% 

Initial conditions from 
model 1 

1394.4 26.7 10 0.7 89.6 174.3 - 

Normal mean blood 
factors concentration 

1097.39 13.52 8.16 0.23 103.21 130.02 - 

Trauma mean blood 
factors concentration 

1068.11 12.90 12.47 0.80 93.8784 131.85795 - 

Initial conditions from 
model 2 

1400 20 10 0.7 90 160 3400 

Normal mean blood 
factors concentration 

1101.8 10.13 8.16 0.23 103.68 119.36 2832.2 

Trauma mean blood 
factors concentration 

1072.4 9.67 12.47 0.80 94.29 121.04 2980.95 

The initial conditions to simulate the different coagulation tests are summarized in 

Table 2. To generate thrombin profiles TF concentration was set to the corresponding 

value used in Menezes, et al.
28

. Moreover, the parameters quantifying endogenous 

production rates of all components of the system were set to 0. 

PT and aPTT values were calculated as the time at which 30% of the fibrinogen was 

transformed to fibrin
19,21

. Initial concentrations of all components of the models were 

diluted by one third as described in Wajima, et al. and Nayak, et al articles
19,21

. 

Additionally, the endogenous production rates of all components were set to 0. In the 
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case of aPTT test simulation, the initial concentrations for XIa and XI were set to 0.148 

× XI(0) and 0.339 × XI(0), respectively, where XI(0) is the physiologic concentration of 

factor XI in a plasma sample.  

Table 2. Initial conditions for coagulation tests simulations. FXI(0) factor XI initial concentration.  

Test/Initial condition TF CA Model components 

CAT 0.005 nM 0 nM Initial concentration  

PT 100 nM 0 nM Initial concentration/3 

aPTT 0 nM 100nM Initial concentration/3 

FXI=FXI(0) ×0.339 

FXIa=FXI(0) ×0.148 

 

Semi-mechanistic PKPD model building 

Data analysis 

Thrombin concentration versus time profiles were described based on the population 

approach using Nonlinear Mixed Effect Models (NONMEM) version 7.4
30

 and First 

Order Conditional Estimation (FOCE) method with INTERACTION option. Data 

corresponding to normal subjects and trauma patients were analyzed simultaneously. 

The observed data recorded at times greater than 25 minutes were excluded from the 

analysis due to experimental noise. Also, trauma patient 2818 was ignored in the 

analysis as the associated time profile corresponded to an outlier. 

Thrombin experimental data in normal scale as well as logarithmically transformed 

were used for the analysis. Between subject variability (BSV) was modelled 

exponentially and residual variability was modelled considering an additive error for 

time >15 min and a combined error for times < 15 min. 

Model building 

Models were based on ordinary differential equations and resulted in a simplified 

version of the systems pharmacology models 1 and 2 which were used as a guide to 

maintain the mechanistic perspective in the current evaluation. 

In the following, the first model fit to the data is described as an example. Figure 5 

shows both the schematic and mathematical representation of the model. 
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The first model probed was the simplest one, where the tissue factor directly activates 

thrombin synthesis. 

 

Figure 5. Schematic and mathematical model representation. kdegTF is the degradation constant of TF, ksynIIa is the 

synthesis constant of FIIa and kdegIIa is the degradation constant of FIIa. 

The model assumes that TF (i) is degraded through a first order process characterized by 

the first order rate constant kdegTF, and (ii) triggers the activation of factor II, represented 

by the first order rate constant ksynIIa. The process governed by the first order rate 

constant kdegIIa represents the degradation of FIIa. 

Model selection 

The log-likelihood ratio test was performed to compare nested models and assist in 

model selection. It is based on the minimum objective function value (OFV) provided 

by NONMEM
30

 for each run. The OFV is approximately equal to -2 times the logarithm 

of the likelihood of the data and the difference in OFV between two nested models is 

approximately χ
2
 distributed. On the other hand, to compare non-nested models the 

Akaike Information Criteria (AIC) was used, which was calculated as 

AIC = −2LL+2×NP, where NP is the number of parameters in the model
31

. Other criteria 

used in the choice of the final model were the precision of parameter estimates and the 

results for model performance by visual inspection of goodness-of-fit plots (GOFs)
32

. 

Covariate selection 

Once the base population model for thrombin profiles of normal subjects and trauma 

patients was developed, a covariate analysis was performed. As the supplementary 

material of Menezes, et al
28

 paper reported blood factors percentage of factors V, VII, 

VIII, IX, X and ATIII, they were considered for inclusion as covariates in the model. 

Additionally, the disease condition (normal or trauma) was also considered as 

categorical covariate. 

Covariate selection was performed using the stepwise covariate modelling (SCM) 

implemented in the Perl-speaks-Nonmem (PsN) software (v.4.4.8)
33

 with a level of 

𝑑𝑇𝐹

𝑑𝑡
 = -k

degTF
 · TF 

𝑑𝐹𝐼𝐼𝑎

𝑑𝑡
 = k

synIIa
 · TF - k

degIIa
 · FIIa 
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significance of 0.05 during the forward inclusion and of 0.01 during the backward 

deletion.  

Model evaluation 

Thrombin model was evaluated through visual predictive checks (VPCs). A total of 500 

datasets with the same characteristics as the original dataset were simulated. The 5
th

, 

50
th

 and 95
th

 percentiles of simulated observations in each dataset were computed. Then, 

the 90% confidence interval of each calculated percentile was obtained and plotted 

against the 5
th

, 50
th

 and 95
th

 of raw thrombin data. On the other hand, parameter 

estimates precision was obtained from the analysis of 500 bootstrap datasets using PsN 

software
33

. 
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3. RESULTS 

Model implementation and evaluation of the implementation 

Both models were satisfactorily implemented, as shown by the exact reproduction of the 

results presented in both manuscripts (Figure 6). The rest of the graphics that appear in 

the articles along with their simulated version obtained in the current evaluation are 

shown supplementary material S4.  

 

Figure 6. Graphical representation for the simulated profiles from Wajima et al. and Nayak et al. articles and their 

respective representation after implementation using Simbiology. A. Graphics obtained from Wajima, et al. article. B. 

Simulations performed with Simbiology with model 1. C. Graphics obtained from Nakay, et al. article. D. 

Simulations performed with Simbiology with model 2. 
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Clinical data integration in the models and simulation  

CAT simulations 

Figure 7 shows the thrombin raw data reported by Menezes et al.
28

, for normal subjects 

(upper panel) and trauma patients (lower panel). The blue line represents the mean of 

the raw data. In general, the values of thrombin are higher in trauma patients concerning 

normal individuals. In panel 7B the subject with a profile considered to be outlier is 

highlighted in red. 

The corresponding simulated profiles using (i) the mean values obtained with the 

reported percentage of activation for factors II, V, VII, VIII, IX, X, and ATIII (Table 1) 

and (ii) the initial conditions reported in each model for the rest of components, appear 

superimposed in Figure 7.  

As it can be observed, there are apparent discrepancies between the mean of the 

observed and simulated profiles. 

 

Figure 7. CAT profiles of the experimental data for A normal subjects and B trauma patients. Black lines represent 

the individual raw data. Blue line the mean of the raw data, the orange and purple line the simulations obtained with 

model 1 and model 2 respectively. Red line represents the outlier. 
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Simulations obtained from model 1 provided profiles showing lower levels of thrombin 

for both type of patients. On the contrary, the results obtained after the application of 

model 2, pointed in the other direction, especially for normal subjects. In the trauma 

patients, the two mean curves are quite similar in magnitude but delayed in the case of 

the simulated profile. Supplementary material S5 shows the individual observed and 

simulated profiles. 

Table 3 lists the values of maximal thrombin levels in the studied scenarios (observed 

and simulated) where the differences seen in the full profiles are summarized. Relative 

errors (RE) were calculated as it is shown in equation 1. 

% RE =  
𝑆𝑖𝑚 𝑣𝑎𝑙𝑢𝑒 − 𝑅𝑒𝑓 𝑣𝑎𝑙𝑢𝑒

𝑅𝑒𝑓 𝑣𝑎𝑙𝑢𝑒
 x 100           Equation 1 

where Sim value represents the simulated thrombin peak obtained with model 1 or 

model 2 and Ref value the thrombin peak of Menezes, et al. mean data. 

Table 3. Thrombin peak concentration in different situations with corresponding relative errors. 

  Thrombin peak (nM) Relative error (%) 

Normal subjects 

Menezes 119.20 - 

Wajima 38.89 -67.37 

Nayak 228.38 91.59 

Trauma patients 

Menezes 202.81 - 

Wajima 67.16 -66.89 

Nayak 259.14 27.77 

 

Sensitivity analysis 

To explore the impact of the initial conditions of those coagulation factors that were not 

measured in the Menezes, et al., manuscript
19

 on the thrombin vs time profiles, a 

sensitivity analysis was performed. That univariate analysis consisted of simulating the 

thrombin profiles modifying the initial condition of each factor ±30% of the value 

originally reported
19,21

. 

Results shown in Figure 8 indicate that in general, the impact of initial conditions was 

negligible except for the TF in both models and TFPI in the case of model 2, but in any 

case not enough to explain the discrepancies represented in Figure 7. 
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Figure 8. Results from the sensitivity analysis, A (model 1), B (model 2). The top of each panel indicates the factor 

in which initial conditions were changed ±30% of the reported values in each model. 
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PT and aPTT simulations 

Figure 9 compares the PT and aPTT values reported by Menezes, et al.
28

 with those 

obtained from model 1 (PT and aPTT) and model 2 (aPTT). For the case of PT, mean 

simulated values agreed well with the mean of the observations for normal subjects and 

patients, being all the values within the normal range.  

aPTT resulted overpredicted in models 1 and 2 with respect the mean observed value in 

normal subjects and in patients with trauma as well, although both models predicted a 

reduction in aPTT in trauma patients with respect to normal subjects as seen with the 

mean observed values.  

 

Figure 9. Mean PT (upper) and aPTT (lower) values for normal subjects (left) and trauma patients (right). 

Histograms in blue, orange and purple represent observations, and simulated values form models 1 and 2, 

respectively. The red dotted dashed lines represent the range values of PT and aPTT metrics in normal subjects. 

Supplementary material S5 shows the individual PT and aPTT values obtained by 

simulation for normal subjects.  
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Modelling thrombin profiles 

General description of the data 

Figure 10 shows the individual thrombin vs time profiles with and without logarithmic 

transformation. A latency time, likely associated with all mechanisms preceding 

thrombin formation, was observed. In addition, a greater magnitude of noise from time 

25 min onwards was detected, justifying the decision to not consider those latter points 

for the analysis. 

 

Figure 10. Observed vs time profiles of thrombin (blue for normal subjects and red for trauma patients) used during 

the population pharmacokinetic/pharmacodynamics analysis shown in natural scale (left) and after logarithmic 

transformation (right). 

Table 4 provides a summary of the covariates gathered in the normal and patient 

population in Menezes et al. We can observe some differences between trauma and 

normal subjects, which only reach significance for FVIII, probably due to the large 

variability in the data. 

Table 4. Summary of coagulation factor values per subject condition. 

Factors 

(nM) 

Normal subjects Trauma patients Total individuals 

Median  Min-Max  Median  Min-Max  Median  Min-Max  

FII  1108.5  725.1-1338.06 1052.8  474.09-1784.83 1066.71 474.09-1784.83 

FV  11.61  8.81-25.63 12.95  0.27-25.63 12.54 0.27-25.63 

FVII  7.75  4.6-11.2 7.85  4.8-59.7 7.85 4.6-59.7 

FVIII 0.22 **** 0.15-0.34 0.55 **** 0.24-3.71 0.47 0.15-3.71 

FIX  102.59  53.76-136.19 85.57  26.88-178.30 93.63 26.88-178.30 

FX  129.85  78.44-162.1 129.85  61.01-207.42 129.85 61.01-207.42 

ATIII  2805  2244-3332 2907  1768-5100 2873 1768-5100 

**** p<0.0001 Significant differences between normal subjects and trauma patients. For the comparison a Wilcoxon test was used. 
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Figure 11 shows the scatterplot matrix of the covariates listed in Table 4, where for 

several pairs correlations showed values greater than 0.3
34

.  

 

Figure 11. Scatterplot matrix of the coagulation factors gathered for the subject population in Menezes and co-

authors.   
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Semi-mechanistic PKPD model for the coagulation process 

Figure 12 provides a schematic representation of the model finally selected between 

different candidates based on the previously described criteria for model selection. 

 

Figure 12. Schematic representation of the population pharmacokinetic/pharmacodynamic model selected describing 

the time course of thrombin levels “in vivo”. 

Briefly, the model assumes that once TF is present (i) a direct activation effect is 

triggered characterized by the second order rate constant ksynIIa and (ii) a second 

activation pathway is initiated which appears with a certain delay with respect to TF 

characterized by a chain of seven transit compartments and the second order rate 

constant ksynIIa2. In addition, the model includes a regulatory mechanism depending on 

the thrombin generated. 

 

The following set of differential equations represents mathematically the model shown 

in Figure 12: 

𝐝𝐓𝐅/𝐝𝐭 =  −𝐤𝐝𝐞𝐠𝐓𝐅 · 𝐓𝐅 

𝐝𝐓𝟏/𝐝𝐭 =  𝐤𝐭𝐫𝐚𝐧 · 𝐓𝐅 − 𝐤𝐭𝐫𝐚𝐧 · 𝐓𝟏 

𝐝𝐓𝟐/𝐝𝐭 =  𝐤𝐭𝐫𝐚𝐧 · 𝐓𝟏 − 𝐤𝐭𝐫𝐚𝐧 · 𝐓𝟐 

𝐝𝐓𝟑/𝐝𝐭 =  𝐤𝐭𝐫𝐚𝐧 · 𝐓𝟐 − 𝐤𝐭𝐫𝐚𝐧 · 𝐓𝟑 

𝐝𝐓𝟒/𝐝𝐭 =  𝐤𝐭𝐫𝐚𝐧 · 𝐓𝟑 − 𝐤𝐭𝐫𝐚𝐧 · 𝐓𝟒 

𝐝𝐓𝟓/𝐝𝐭 =  𝐤𝐭𝐫𝐚𝐧 · 𝐓𝟒 − 𝐤𝐭𝐫𝐚𝐧 · 𝐓𝟓 

𝐝𝐓𝟔/𝐝𝐭 =  𝐤𝐭𝐫𝐚𝐧 · 𝐓𝟓 − 𝐤𝐭𝐫𝐚𝐧 · 𝐓𝟔 

𝐝𝐓𝟕/𝐝𝐭 =  𝐤𝐭𝐫𝐚𝐧 · 𝐓𝟔 − 𝐤𝐭𝐫𝐚𝐧 · 𝐓𝟕 

𝐝𝐅𝐈𝐈/𝐝𝐭 = − 𝐤𝐬𝐲𝐧𝐈𝐈𝐚 · 𝐓𝐅 · 𝐅𝐈𝐈 · (𝟏 + 𝐅𝐈𝐈𝐚) − 𝐤𝐬𝐲𝐧𝐈𝐈𝐚𝟐 · 𝐓𝟕 · 𝐅𝐈𝐈 

𝐝𝐅𝐈𝐈𝐚/𝐝𝐭 = 𝐤𝐬𝐲𝐧𝐈𝐈𝐚 · 𝐓𝐅 · 𝐅𝐈𝐈 · (𝟏 + 𝐅𝐈𝐈𝐚) + 𝐤𝐬𝐲𝐧𝐈𝐈𝐚𝟐 · 𝐓𝟕 · 𝐅𝐈𝐈 − 𝐤𝐝𝐞𝐠𝐈𝐈𝐚 · 𝐅𝐈𝐈𝐚 
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where kdegTF is the first order degradation rate constant of TF, ktran is the first order rate 

constant of transfer between transit compartments, ksynIIa and ksynIIa2 are the second order 

rate constants of thrombin synthesis and kdegIIa is the first order degradation rate 

constant of FIIa. 

Once the final model was established the covariate study was performed to test 

significant effects. The set of continuous covariates tested for each parameter in the 

model were FII, FV, FVII, FVIII, FIX, FX and ATIII, exploring linear and nonlinear 

relationships. Also, patient condition (normal or trauma) was tested as categorical 

covariate. The selected full covariate model obtained in the forward-inclusion approach 

comprised the following covariate effects: FVIII on ksynIIa categorizing FVIII 

concentration and FX on ktran as continuous covariate. Since the categorical covariate, 

patient condition was significantly correlated with FVIII, its inclusion was tested 

separately. In this sense, patient condition resulted significant for ksynIIa, kdegIIa and ktran. 

Due to convergence problems in the estimation, we decided to estimate separately 

normal and trauma model parameters, and consequently, a substantial improvement of 

fit was shown compared with the base model, as reflected in the decrease of OFV and 

the diagnostics plots (data not shown).  

When comparing normal subject and trauma patient parameter estimates, a significant 

change was observed in the ksynIIa value. As abovementioned, FVIII covariate effect was 

shown to be significant for ksynIIa and correlated with patient condition, however, when 

the relationship between them was studied more deeply (Figure 13), no clear 

relationship was observed (probably due to the high variability on FVIII levels within 

the two populations), therefore the covariate was not included. 

 

Figure 13. Graphical representation of the relationship between ksynIIa parameter and FVIII for normal subjects (red) 

and trauma patients (blue). 



Modelling the coagulation cascade 

160 
 

Table 5 lists the estimates of model parameters and their corresponding precision 

represented by 95% confidence interval computed from the bootstrap analysis. It is 

worth noting that in none of the cases the 95% confidence intervals include the zero 

value, indicating that parameters were significant for the model. All estimates lie within 

the 95% confidence interval obtained by bootstrap, what denotes the model robustness. 

However, ksynIIa for normal subjects elicits a wide range, reflecting the poor precision in 

parameter estimation. The BSV was estimated for ksynIIa, kdegIIa, ktran and ksynIIa2, which 

ranged from 0.02 to 5.73, reflecting the high dispersion in the data. KdegTF parameter 

was fixed to 0 min
-1

 due to the slow degradation in vitro (0.05 h
-1

 = 0.0008 min
-1

)
19

 

assuming that TF concentrations were constant over the experiment.  

Table 5. Estimates for the final model parameters and their variability with their corresponding confidence intervals.  

Parameter Estimate 95%CI* BSV  95%CI* Shrinkage (%) 

kdegTF (min-1) 0 NA NA NA 0 

ksynIIa(nmol-1min-1) 

(Normal) 
0.0047 (0.0002-0.0179) 5.73 (2.11-39.94) 63 

ksynIIa (nmol-1min-1) 

(Trauma) 
0.15 (0.118-0.178) 0.26 (0.09-0.81) 25 

kdegIIa (min-1) 

(Normal) 
1.04 (0.949-1.139) 0.041 (0.02-0.06) 38 

kdegIIa (min-1) 

(Trauma) 
0.79 (0.744-0.856) 0.064 (0.04-0.08) 14 

ktran (min-1) 

(Normal) 
1.38 (1.24-1.53) 0.055 (0.03-0.07) 38 

ktran (min-1) 

(Trauma) 
1.8 (1.59-2.072) 0.176 (0.012-0.23) 14 

ksynIIa2(nmol-1min-1) 

 (Normal) 
46.7 (43.53-50.24) 0.02 (0.002-0.03) 41 

ksynIIa2(nmol-1min-1) 

 (Trauma) 
44.6 (39.89-49.92) 0.113 (0.06-0.15) 18 

Correlations  

BSVkdegIIa-BSVktran (normal) 

BSVktran-BSVsynIIa2(normal) 

BSVkdegIIa-BSVktran (trauma) 

BSVkdegIIa-BSV synIIa2(trauma) 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

     

-0.03 

0.015 

-0.07 

0.064 

- 

- 

- 

- 

- 

- 

- 

- 

Residual error 

(Time>15) 
2.06 (additive) (1.97-3.09) - - 2 

Residual error 

(Time<15) 

2.43 (additive) 

0.178 (proportional) 

(1.29-2.8) 

(0.14-0.21) 

- 

- 

- 

- 

2 

2 

*95% confidence interval calculated from 500 bootstrap datasets. 
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Figure 14 shows the individual observed and model predicted profiles indicating an 

excellent model performance at the individual level. 

 

Figure 14. Individual thrombin observations (red dots, normal subjects; blue dots, trauma patients) and individual 

model predictions (gray lines) versus time. 
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Figure 15 shows the goodness of fit plots and Figure 16 shows the results of the VPC 

corresponding to thrombin profile stratify by subject population (normal vs trauma). 

The model performs adequately in capturing the central trend, and the dispersion of the 

data.  

 

Figure 15. Goodness of fit plots corresponding to the selected semi-mechanistic model. Circles are the observed data 

(red normal and blue trauma). Black lines represent the perfect fit. Solid red lines represent a smooth curve through 

the data. 

 

Figure 16. Visual predictive checks corresponding to thrombin profiles in normal subjects and trauma patients. Red 

and blue dots represent thrombin observations; the solid red and blue lines correspond to the median of the observed 

data while the dashed red and blue lines the 5 and 95 percentiles of the observations. Shaded grey areas are the 90% 

predicted intervals for corresponding percentiles obtained from 500 simulated studies. 
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4. DISCUSSION 

The coagulation process is crucial for human life. For this reason, understanding the 

different elements and key players and the associated pathologies is needed to 

individualize the therapy and optimize the patient prognosis. In this sense, mathematical 

models are a very useful tool that can help to predict the coagulation dynamics and 

simulate different scenarios. 

 

The objective of this work was to implement and compare two systems pharmacology 

models publicly available to finally challenge them against raw data consisting on 

individual thrombin profiles measured “in vitro” from normal subjects and patients with 

trauma. To the best of our knowledge, this evaluation is the first time that the 

capabilities of two models from the point of view of describing individual data have 

been compared.  

 

Both models were adequately implemented in the Simbiology platform, as all the results 

shown in the original publications were reproduced almost exactly. However, 

disappointing results were obtained when simulated thrombin profiles generated from 

the two models were compared. Discrepancies were far from negligible questioning 

which model should be used in the future to explore in silico scenarios regarding drug 

development or patient management. Moreover, both models failed to describe raw 

thrombin time profiles. Noteworthy is the fact that the results from the local sensitivity 

analysis could not make the observed and simulated profiles closer.  

 

Different possibilities can be considered to explain those results. First, the systems 

pharmacology models were adjusted to describe ex-vivo experimental data, and 

therefore the experimental conditions should be controlled tightly and reported 

carefully. In this context, for example, one of the models can be used to calculate both 

PT and aPTT values, whereas for the other calculation of PT is not possible. The main 

differences regarding assumptions and structure of both systems pharmacology models 

are shown in the supplementary material S7. 
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The fact that none of the models could describe the full thrombin vs time profiles in the 

vast majority of the subjects might be explained by the use of typical parameters and 

typical initial conditions for the rest of coagulation factor not measured. Nevertheless, 

some results obtained during this evaluation deserve discussion. For example relative 

changes in aPTT found in trauma patients with respect normal subjects could be 

reproduced by both models.  

 

The outcome of our simulations motivated us to develop a semi-mechanistic PKPD 

model to describe thrombin concentration profiles over time after adding TF. The 

developed model successfully describes the experimental observations in normal 

subjects as well as in trauma patients. This resembles main mechanisms represented 

with much higher granularity in the models 1 and 2. 

 

In models 1 and 2 the conversion of prothrombin to thrombin is governed by the FXa 

and the complex Xa:Va reactions. In line with these models, the developed semi-

mechanistic model describes two different mechanisms for thrombin formation. The 

reaction ruled by the ksynIIa constant (responsible for a quick burst of thrombin) would 

correspond with the FXa reaction in models 1 and 2. On the other hand, the ksynIIa2 

constant, responsible for generating large thrombin concentrations, would correspond 

with Xa:Va reaction. These two mechanisms are in agreement with the cell-based model 

of the coagulation proposed by Hoffmann
4
, in which the first thrombin synthesis 

corresponds with the initiation phase and the second one with the propagation phase. 

Nevertheless, when relating parameter values, due to differences in the structure of the 

models, it is difficult to compare the estimates even though the mechanisms and 

involved entities are similar. The degradation rate constant of FIIa was the only 

parameter subject for comparison providing similar values for the developed model and 

model 1 (1.04 min
-1

 for normal subjects and 1.12 min
-1

, respectively). Moreover, Gulati, 

et al.
34

 obtained a comparable value for degradation rate constant of FIIa (0.97 min
-1

). 

These authors reduced Wajima, et al. systems pharmacology model
19

 through proper 

lumping to estimate parameters for describing fibrinogen concentrations vs time profiles 

obtained from venom-induced consumption coagulopathy patients data. 

 Regarding kdegTF parameter, it was fixed to 0 in our model because of the assumed slow 

degradation rate “in vitro” from model 1 (reflected by a half-life of 831 min) compared 
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to the length experimental procedure (40 min), therefore assuming constant TF 

concentrations over the experiment. 

 

However, our model presents some limitations. Firstly, the analysis was performed in a 

little fraction of population, including only normal subjects and trauma patients, with a 

high between-subject variability. This limitation inquiries model predictability and 

generalization. Nevertheless, the simulations performed with the VPC suggest that the 

model performs adequately and predicts well the raw data. The second limitation is that 

the model was built based on Menezes, et al. data, which only provided the 

concentration for some coagulation factors. The possibility of including the 

concentration of activated factors could represent an opportunity in order to discern 

between normal subjects and trauma patients, and therefore provide more accurate 

predictions depending on the patient condition.  

In conclusion, systems pharmacology models are very useful when understanding 

processes involve in biological systems. However, up-to-date they tend to fail at the 

time to describe and predict individual data. Nevertheless, their structure facilitates the 

development of mechanistic-based models that can be fit to the data providing 

meaningful and precise model parameters as well as adequate model predictions. This 

type of models can result very useful at the time to treat particular individuals 

personalizing their dosage.  

 



Modelling the coagulation cascade 

 

166 
 

5. REFERENCES 

1. Gale, A. Current understanding of hemostasis. Toxicol Pathol . 39, 273–280 (2011). 

2. Palta, S., Saroa, R. & Palta, A. Overview of the coagulation system. Indian J. Anaesth. 58, 515–

523 (2014). 

3. Hoffman, M. A cell-based model of coagulation and the role of factor VIIa. Blood Rev. 17, 51–55 

(2003). 

4. Hoffman, M. & Monroe, D. M. A cell-based model of hemostasis. Thromb. Haemost. 85, 958–65 

(2001). 

5. Hoffman, M. M. & Monroe, D. M. Rethinking the coagulation cascade. Curr. Hematol. Rep. 4, 

391–6 (2005). 

6. Quick AJ. The prothrombin time in haemophilia and in obstructive jaundice. J. Biol. Chem. 

109:73-4, (1935). 

7. LANGDELL, R. D., WAGNER, R. H. & BRINKHOUS, K. M. Effect of antihemophilic factor 

on one-stage clotting tests; a presumptive test for hemophilia and a simple one-stage 

antihemophilic factor assy procedure. J. Lab. Clin. Med. 41, 637–47 (1953). 

8. Lancé, M. D. A general review of major global coagulation assays: Thrombelastography, 

thrombin generation test and clot waveform analysis. Thromb. J. 13, 1–6 (2015). 

9. Macfarlane, R. & Biggs, R. A Thrombin Generation Test. The application in haemophilia and 

Thrombocytopenia. J. Clin. Pathol. 6, 3–9 (1953). 

10. Hemker, H. C. et al. Calibrated automated thrombin generation measurement in clotting plasma. 

Pathophysiol. Haemost. Thromb. 33, 4–15 (2003). 

11. Ataullakhanov, F. I. & Panteleev, M. A. Mathematical Modeling and Computer Simulation in 

Blood Coagulation. Pathophysiol. Haemost. Thromb. 34, 60–70 (2005). 

12. Qiao, Y., Liu, J. & Zeng, Y. A kinetic model for simulation of blood coagulation and inhibition in 

the intrinsic path. J. Med. Eng. Technol. 29, 70–74 (2005). 

13. Qiao, Y. H. et al. The kinetic model and simulation of blood coagulation—the kinetic influence 

of activated protein C. Med. Eng. Phys. 26, 341–347 (2004). 

14. Mann, K. G., Butenas, S. & Brummel, K. The dynamics of thrombin formation. Arterioscler. 

Thromb. Vasc. Biol. 23, 17–25 (2003). 

15. Chatterjee, M. S., Denney, W. S., Jing, H. & Diamond, S. L. Systems biology of coagulation 

initiation: Kinetics of thrombin generation in resting and activated human blood. PLoS Comput. 

Biol. 6, (2010). 

16. Zhou, X., Huntjens, D. R. H. & Gilissen, R. A. H. J. A systems pharmacology model for 

predicting effects of Factor Xa inhibitors in healthy subjects: Assessment of pharmacokinetics 

and binding kinetics. CPT Pharmacometrics Syst. Pharmacol. 4, 650–659 (2015). 

17. Hartmann, S., Biliouris, K., Lesko, L. J., Nowak-Göttl, U. & Trame, M. N. Quantitative Systems 

Pharmacology Model to Predict the Effects of Commonly Used Anticoagulants on the Human 

Coagulation Network. CPT Pharmacometrics Syst. Pharmacol. 5, 554–564 (2016). 

18. Mann, K. G., Brummel-Ziedins, K., Orfeo, T. & Butenas, S. Models of blood coagulation. Blood 

Cells, Mol. Dis. 36, 108–117 (2006). 

19. Wajima, T., Isbister, G. K. & Duffull, S. B. A comprehensive model for the humoral coagulation 

network in humans. Clin. Pharmacol. Ther. 86, 290–298 (2009). 



Chapter 2 

167 

 

20. Hockin, M. F., Jones, K. C., Everse, S. J. & Mann, K. G. A model for the stoichiometric 

regulation of blood coagulation. J. Biol. Chem. 277, 18322–18333 (2002). 

21. Nayak, S. et al. Using a Systems Pharmacology Model of the Blood Coagulation Network to 

Predict the Effects of Various Therapies on Biomarkers. CPT Pharmacometrics Syst. Pharmacol. 

4, 396–405 (2015). 

22. Lee, D. et al. A quantitative systems pharmacology model of blood coagulation network describes 

in vivo biomarker changes in non-bleeding subjects. J. Thromb. Haemost. 14, 2430–2445 (2016). 

23. Wang, R. S., Saadatpour, A. & Albert, R. Boolean modeling in systems biology: An overview of 

methodology and applications. Phys. Biol. 9, (2012). 

24. Chudasama, V. L., Ovacik, M. A., Abernethy, D. R. & Mager, D. E. Logic-Based and Cellular 

Pharmacodynamic Modeling of Bortezomib Responses in U266 Human Myeloma Cells. J. 

Pharmacol. Exp. Ther. 354, 448–458 (2015). 

25. Ramakrishnan, V. & Mager, D. E. Network-Based Analysis of Bortezomib Pharmacodynamic 

Heterogeneity in Multiple Myeloma Cells. J. Pharmacol. Exp. Ther. 365, 734–751 (2018). 

26. Bloomingdale, P., Nguyen, V. A., Niu, J. & Mager, D. E. Boolean network modeling in systems 

pharmacology. J. Pharmacokinet. Pharmacodyn. 45, 159–180 (2018). 

27. Tylutki, Z., Polak, S. & Wiśniowska, B. Top-down, Bottom-up and Middle-out Strategies for 

Drug Cardiac Safety Assessment via Modeling and Simulations. Curr. Pharmacol. Reports 2, 

171–177 (2016). 

28. Menezes, A. A., Vilardi, R. F., Arkin, A. P. & Cohen, M. J. Targeted clinical control of trauma 

patient coagulation through a thrombin dynamics model. Sci. Transl. Med. 9, 1–12 (2017). 

29. MATLAB and Statistics Toolbox Release 2017a, The MathWorks, Inc., Natick, Massachusetts, 

U. S. No Title. 

30. R., B. NONMEM Users Guide Introduction to NONMEM 7.4.0. ICON Development Solutions 

Ellicott City, MD 2011. 

31. H., A. FACTOR ANALYSIS AND AIC. PSYCHOMETRIK 52, 317–332 (1987). 

32. Mould, D. R. & Upton, R. N. Basic Concepts in Population Modeling, Simulation, and Model-

Based Drug Development—Part 2: Introduction to Pharmacokinetic Modeling Methods. CPT 

Pharmacometrics Syst. Pharmacol. 2, e38 (2013). 

33. Lindbom, L., Pihlgren, P., Jonsson, E. N. & Jonsson, N. PsN-Toolkit--a collection of computer 

intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput. 

Methods Programs Biomed. 79, 241–57 (2005). 

34. Gulati,  a, Isbister, G. K. & Duffull, S. B. Scale reduction of a systems coagulation model with an 

application to modeling pharmacokinetic-pharmacodynamic data. CPT pharmacometrics Syst. 

Pharmacol. 3, e90 (2014). 





Chapter 2 

169 

 

SUPPLEMENTARY MATERIAL 

Figure S1A. The scheme of the model for coagulation process developed by 

Wajima and co-authors (Adapted from the original article) 
19

. 
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Figure S1B. The scheme of the model for coagulation process developed by Nayak 

and co-authors.  

Figure obtained from the original article
21

. 
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Table S2. Blood factors percentage transformed into concentration for Wajima, et 

al. model simulations 

ID II V VII VIII IX X ATIII 

14488 990.024 12.282 7.6 0.196 88.704 125.496 2448 
14489 1003.968 10.68 7 0.161 85.12 116.781 2244 
14490 1338.624 15.486 8.9 0.168 125.44 162.099 2686 
14491 1045.8 9.612 6.9 0.224 95.872 118.524 2380 
14492 725.088 14.151 4.6 0.224 53.76 78.435 2686 
14493 1199.184 15.219 10.4 0.287 115.584 149.898 3196 
14494 920.304 14.151 6.1 0.168 98.56 104.58 2482 
14495 1115.52 9.612 8.4 0.189 136.192 146.412 2788 
14496 1101.576 10.146 9 0.273 94.08 139.44 3196 
14497 976.08 10.947 7.9 0.147 79.744 125.496 2414 
14498 1338.624 10.413 11.2 0.287 110.208 155.127 3060 
14499 892.416 17.088 7.1 0.259 84.224 90.636 2958 
14500 1338.624 20.025 9.6 0.301 120.064 153.384 3264 
14501 1227.072 17.088 7.6 0.231 102.144 130.725 2822 
14502 1031.856 10.146 7.1 0.175 103.04 125.496 2924 
14503 1143.408 10.947 10.6 0.336 128.128 148.155 3196 
14504 1115.52 8.811 6.3 0.259 86.016 109.809 2754 
14505 1115.52 17.622 7 0.245 135.296 130.725 3332 
14506 1045.8 10.413 8.8 0.21 105.728 128.982 2550 
14507 1282.848 25.632 11.1 0.21 116.48 160.356 3264 
2543 1143.408 24.831 6.3 3.276 178.304 115.038 3230 
2575 1282.848 21.894 5.9 1.533 89.6 116.781 4080 
2580 864.528 19.224 4.8 3.717 95.872 87.15 2686 
2597 878.472 20.826 5.8 1.267 86.912 99.351 3366 
2624 864.528 13.083 5.4 0.469 78.848 76.692 2856 
2634 920.304 10.947 6.5 0.574 99.456 118.524 2788 
2665 1241.016 20.826 7.6 1.05 107.52 163.842 3808 
2668 1296.792 25.632 10.1 0.756 151.424 176.043 4080 
2675 641.424 0.267 9.8 0.448 59.136 95.865 2074 
2711 962.136 5.073 5.8 0.252 102.144 120.267 2312 
2714 1129.464 9.078 5.8 0.735 168.448 113.295 2924 
2716 906.36 13.35 8.3 1.841 84.224 102.837 2516 
2743 934.248 9.879 37.4 0.455 68.992 109.809 2618 
2751 1059.744 12.282 7.7 0.469 72.576 137.697 2550 
2771 1199.184 13.884 13.5 0.616 54.656 148.155 3298 
2772 948.192 7.743 7.9 0.539 77.952 111.552 2108 
2784 1213.128 22.428 4.9 0.238 94.08 170.814 3026 
2797 1310.736 22.695 59.7 0.728 163.072 205.674 5100 
2814 1157.352 13.083 8.5 0.49 59.136 148.155 3264 
2816 1045.8 17.088 7.7 0.903 106.624 142.926 2516 
2817 1003.968 8.01 7.8 0.469 51.968 153.384 2244 
2819 962.136 13.083 11.8 0.532 78.848 122.01 2788 
2827 474.096 0.534 13.5 0.287 26.88 61.005 1768 
2829 1087.632 7.209 7.1 0.518 60.032 130.725 2890 
2841 1031.856 8.544 18.3 0.539 88.704 111.552 3060 
2843 766.92 17.088 8.7 0.511 66.304 109.809 2720 
2860 934.248 12.816 23.3 0.63 65.408 95.865 3128 
2881 934.248 4.539 4.9 0.595 93.184 95.865 2720 
2883 1784.832 20.292 5 1.428 173.824 207.417 3196 
2885 1031.856 6.408 5.9 0.546 65.408 137.697 2516 
2892 1157.352 16.554 15.4 0.763 149.632 193.473 3400 
2924 1338.624 11.214 28.9 0.448 95.872 132.468 2686 
2767 1213.128 21.36 17.1 0.798 94.976 189.987 3264 
2818 1213.128 0.801 5.4 0.483 115.584 151.641 3434 
2830 1227.072 6.408 15.5 0.623 82.432 142.926 2550 
2840 1017.912 9.879 15.8 0.553 63.616 142.926 2788 
2872 1213.128 14.151 39.5 0.392 161.28 155.127 3298 
2878 1241.016 17.355 6.7 0.49 77.952 134.211 3128 
2895 1073.688 10.146 12 0.679 71.68 128.982 3162 
2901 1017.912 5.607 6.8 0.441 72.576 116.781 3298 
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Table S3. Blood factors percentage transformed into concentration for Nayak, et 

al. model simulations 

ID II V VII VIII IX X ATIII 

14488 994 9.2 7.6 0.196 89.1 115.2 2448 
14489 1008 8 7 0.161 85.5 107.2 2244 
14490 1344 11.6 8.9 0.168 126 148.8 2686 
14491 1050 7.2 6.9 0.224 96.3 108.8 2380 
14492 728 10.6 4.6 0.224 54 72 2686 
14493 1204 11.4 10.4 0.287 116.1 137.6 3196 
14494 924 10.6 6.1 0.168 99 96 2482 
14495 1120 7.2 8.4 0.189 136.8 134.4 2788 
14496 1106 7.6 9 0.273 94.5 128 3196 
14497 980 8.2 7.9 0.147 80.1 115.2 2414 
14498 1344 7.8 11.2 0.287 110.7 142.4 3060 
14499 896 12.8 7.1 0.259 84.6 83.2 2958 
14500 1344 15 9.6 0.301 120.6 140.8 3264 
14501 1232 12.8 7.6 0.231 102.6 120 2822 
14502 1036 7.6 7.1 0.175 103.5 115.2 2924 
14503 1148 8.2 10.6 0.336 128.7 136 3196 
14504 1120 6.6 6.3 0.259 86.4 100.8 2754 
14505 1120 13.2 7 0.245 135.9 120 3332 
14506 1050 7.8 8.8 0.21 106.2 118.4 2550 
14507 1288 19.2 11.1 0.21 117 147.2 3264 
2543 1148 18.6 6.3 3.276 179.1 105.6 3230 
2575 1288 16.4 5.9 1.533 90 107.2 4080 
2580 868 14.4 4.8 3.717 96.3 80 2686 
2597 882 15.6 5.8 1.267 87.3 91.2 3366 
2624 868 9.8 5.4 0.469 79.2 70.4 2856 
2634 924 8.2 6.5 0.574 99.9 108.8 2788 
2665 1246 15.6 7.6 1.05 108 150.4 3808 
2668 1302 19.2 10.1 0.756 152.1 161.6 4080 
2675 644 0.2 9.8 0.448 59.4 88 2074 
2711 966 3.8 5.8 0.252 102.6 110.4 2312 
2714 1134 6.8 5.8 0.735 169.2 104 2924 
2716 910 10 8.3 1.841 84.6 94.4 2516 
2743 938 7.4 37.4 0.455 69.3 100.8 2618 
2751 1064 9.2 7.7 0.469 72.9 126.4 2550 
2771 1204 10.4 13.5 0.616 54.9 136 3298 
2772 952 5.8 7.9 0.539 78.3 102.4 2108 
2784 1218 16.8 4.9 0.238 94.5 156.8 3026 
2797 1316 17 59.7 0.728 163.8 188.8 5100 
2814 1162 9.8 8.5 0.49 59.4 136 3264 
2816 1050 12.8 7.7 0.903 107.1 131.2 2516 
2817 1008 6 7.8 0.469 52.2 140.8 2244 
2819 966 9.8 11.8 0.532 79.2 112 2788 
2827 476 0.4 13.5 0.287 27 56 1768 
2829 1092 5.4 7.1 0.518 60.3 120 2890 
2841 1036 6.4 18.3 0.539 89.1 102.4 3060 
2843 770 12.8 8.7 0.511 66.6 100.8 2720 
2860 938 9.6 23.3 0.63 65.7 88 3128 
2881 938 3.4 4.9 0.595 93.6 88 2720 
2883 1792 15.2 5 1.428 174.6 190.4 3196 
2885 1036 4.8 5.9 0.546 65.7 126.4 2516 
2892 1162 12.4 15.4 0.763 150.3 177.6 3400 
2924 1344 8.4 28.9 0.448 96.3 121.6 2686 
2767 1218 16 17.1 0.798 95.4 174.4 3264 
2818 1218 0.6 5.4 0.483 116.1 139.2 3434 
2830 1232 4.8 15.5 0.623 82.8 131.2 2550 
2840 1022 7.4 15.8 0.553 63.9 131.2 2788 
2872 1218 10.6 39.5 0.392 162 142.4 3298 
2878 1246 13 6.7 0.49 78.3 123.2 3128 
2895 1078 7.6 12 0.679 72 118.4 3162 
2901 1022 4.2 6.8 0.441 72.9 107.2 3298 
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S.4 Graphic validation 

Wajima, et al. model: 

 The integral of fibrin in the PT test and in the aPTT test. The dotted lines show 

1,500 nmol/l·s of the integral of fibrin, which we take as the clotting point in the 

study. The clotting times are 11.8 s in the INR test simulation and 34.4 s 
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 The Simulated aPTT for Hemophilia A and Hemophilia B 
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 Time courses of warfarin plasma concentration, vitamin K–related compounds, 

vitamin K–dependent coagulation factors, and international normalized ratio 

(INR) after warfarin therapy. 
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 Time courses of warfarin plasma concentration, vitamin K–related compounds, 

vitamin K–dependent coagulation factors, and international normalized ratio 

(INR) after vitamin K therapy for excessive exposure to warfarin. 
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 Time courses of plasma concentrations of UFH and LMWH (enoxaparin), INR, 

and aPTT. 
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Nayak, et al. model: 

 TGAs for various concentration of FVIIa or FXa added to normal human plasma 

(NHP) or FVIII deficient plasma (8DP). The first column corresponds with 

experimental data, the second with Nayak’s model simulations and the third one 

with the simulations obtained with the implemented model in Simbiology.  
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S5. TGA simulations with individual initial conditions reported in Menezes, et al. 

article. 

Wajima, et al. model:  

Normal 
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Trauma 
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Nayak, et al. model: 

Normal 
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 Trauma  
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S6. PT and aPTT simulations with individual initial conditions in normal subjects 

with Wajima et al. model reported in Menezes, et al. article. 
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S7. Differences between Wajima, et al. model and Nayak, et al. model.  

Coagulation models 

 Wajima, et al. Nayak, et al. 

Approximation Bottom-up approach Bottom-up approach 

Components / 

Reactions 
51/48 61/62 

Parameters 134 87 

Equations type Activation: 

Complex formation: 

Degradation: 

Inhibition: 

Activation: k * [enzyme] * [inactivated factor] 

Complex formation: kon* A * B – koff * AB 

Output PT (INR), aPTT and factor profiles TGAs and aPTT 

Data for validation Snakebite data obtained from Tanos, et al. 

Measured PT and aPTT obtained from Pohl, et al. 

In-house data 

Assumptions • Model parameters were started with the values from the literature and adjusted based on the assumption of 30% fibrinogen 

reduction occurred at 10-15 seconds in INR test simulation and at 27-39 seconds in the aPTT test simulation for standard 

plasma samples. 

• The criteria for clotting was based on the integral of fibrin, being a value of 1500nmol/L·s the clotting point. 

• Each component was assumed to follow a first-order degradation rate with a degradation rate constant. 

• The inactivated factors and proteins were assumed to have natural production rates. 

• Complex formation was represented as a stoichiometric reaction in which the components are assumed to combine in a 

molar ratio of 1:1. 

• Extrinsic pathway activation was assumed to be initiated by exposing plasma to TF. 

• Intrinsic pathway activation was assumed to be initiated by plasma coming in contact with a negatively charged surface, 

which activates factor XII to XIIa. 

• The natural anticoagulant effects of AT-III without heparin acceleration are assumed to be included in the natural 

degradation rate for each factor. 

• The initial concentrations of all activated factors, complexes, and products were assumed, to be 0. 

• The model assumed a well-mixed system for in vitro experiments. 

• The criteria for clotting was based on the integral of fibrin, being a value of 

1500nmol/L·s the clotting point. 

• Extrinsic pathway activation was assumed to be initiated by exposing plasma to TF. 

• Intrinsic pathway activation was assumed to be initiated by plasma coming in contact 

with a negatively charged surface, which activates factor XII to XIIa. 

𝑉𝑚𝑎𝑥 · [𝑒𝑛𝑧𝑦𝑚𝑒]

𝑘𝑚 + [𝑒𝑛𝑧𝑦𝑚𝑒]
· [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟] 

 

 

[𝑓𝑎𝑐𝑡𝑜𝑟 1] · [𝑓𝑎𝑐𝑡𝑜𝑟 2]

𝑐
 

[𝑓𝑎𝑐𝑡𝑜𝑟 1] · [𝑓𝑎𝑐𝑡𝑜𝑟 2]

𝑐
 

 

 

 

−
𝑉𝑚𝑎𝑥 · [𝑒𝑛𝑧𝑦𝑚𝑒]

𝑘𝑚 + [𝑒𝑛𝑧𝑦𝑚𝑒]
· [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟] 

 1- 
𝐼𝑚𝑎𝑥·[𝐷𝑟𝑢𝑔]

𝐼𝐶50 + [𝐷𝑟𝑢𝑔]
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ABSTRACT 

Pharmacokinetic modeling is widely used to support decision making in translational 

medicine and patient care, traditionally using circulating drug exposure. The 

development of mechanistic computational models that integrate drug concentrations at 

the site of action making use of existing knowledge opens a new paradigm in optimal 

dosing. 
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MAIN TEXT 

In the current issue of Clinical Cancer Research, Ribba and colleagues
1
 applied the 

Model Informed Drug Discovery & Development (MID3) paradigm to optimize dosing 

regimens of Cergutuzumab amunaleukin (CEA-IL2v), a bivalent carcinoembryonic 

antigen (CEA)-specific antibody fused to a modified interleukin 2 (IL2) capable to 

activate the immune response in the tumor microenvironment. Their contribution, which 

relies on the fundamental premise that drug exposure represents the major driver of 

patient’s response (at least at early stages of the progression of the disease), goes far 

beyond the MID3 standards. 

In this commentary, we aim to bring the attention of the reader to the concepts of tumor 

exposure, mechanistic conceptualization of the system to treat, data integration, 

knowledge re-usability, and virtual scenarios. These concepts are key to understand and 

predict patient’s response in the tight frames of decision making during drug 

development, as illustrated in the commented manuscript
1
.  

The use of models to establish dosage regimens has been present in drug development 

and patient care during the last three decades. With the arrival of biologics, specifically 

monoclonal antibodies, these models have gained mechanistic insights leading to the 

term of target-mediated drug disposition (TMDD)
2
, accounting among other phenomena 

for time dependent pharmacokinetics. Indeed, the TMDD framework has been used by 

Ribba and colleagues
1
 to characterize the reduction of circulating drug exposure during 

treatment triggered by the increasing target levels. 

On the other hand, there is an arsenal of models linking systemic circulating drug 

exposure to response. One drawback of these approaches comes from the fact that tumor 

exposure is inferred from the time course of systemic drug levels and response, and 

therefore, variability in response due to target bioavailability cannot be accounted for 

(scenario a, Figure 1). Gathering tumor exposure appears as an obvious solution to 

overcome this important limitation, however, accessing tumor biopsies or intra-tumor 

microdialysis are not always possible. In the commented article, CEA-IL2v longitudinal 

tumor uptake was assessed through imaging data, which likely implied a significant 

amount of resources as indicated by the fact that a small cohort of 14 patients received 

89Zr-labeled CEA-IL2 and only three measurements up to eight hours post-dose were 

obtained per subject. The additional costs may pay off in the long term if this 
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methodology proves to be more precise to select the “optimal dosing regimen” for 

efficacy studies, therefore maximizing the chances of clinical success and reducing the 

alarming rates of late phases failure, one of the major hurdles in current oncology drug 

development. 

 

 

Figure 1. Expected impact of study design driving data availability and data processing approaches on attrition rates and 

therapeutic success in oncology drug development and patient care. (a) Circulating antibodies measurements coupled with semi-

mechanistic modeling efforts; (b) circulating antibodies and sparse tumor measurements coupled with semi-mechanistic modeling 

efforts using tumor uptake information to confirm target uptake; and (c) circulating antibodies and sparse tumor measurements 

coupled with mechanistic modeling efforts using publicly available computational tools and Bayesian modeling. TMDD, target 

mediated drug disposition 

 

It should be highlighted that those raw data would have been sufficient to simply 

confirm tumor access, but certainly it would have not permitted the prediction of 

exposure at the site of action in untested dosing scenarios (scenario b, Figure 1). How to 

deal with that type of information to get robust and trustful exposure predictions is a 

very relevant as well as a non–trivial question to answer related to extrapolation. We 

need scientifically sound tools to constrain prediction outcomes within reliable bounds, 

which can be achieved considering the system (tumor) as an entity with a dynamism 

governed by physiological processes, rather than a black box. This mechanistic 
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perspective is not exempted from complexities though, as it is quite data and 

computational demanding. 

Interestingly, the strategy followed by Ribba and colleagues
1
 minimized data and 

computation requirements upon the adaptation of a mechanistic computational model 

publicly available (scenario c, Figure 1). One fundamental property of mechanistic 

models is that processes (and their corresponding parameters) inherent to the system are 

isolated from those that are treatment-specific, therefore, enabling the integration of 

physicochemical characteristics of the compound, which are independent from the type 

of disease and its progression and frequently available from early stages of the 

discovery phase. This approach ensures and promotes model re-usability in other 

therapeutics, as well as it reduces the data acquisition needs permitting the use of sparse 

measurements in the target tissue.  

The results obtained by Ribba and colleagues
1
 using the above mechanistic approach 

and integrating data from different sources (intrinsic drug properties, temporal profiles 

of drug levels in peripheral blood and tumor, and immune cell counts) are impressive if 

one compares the lack of meaningful trends shown in panel E of their Figure 2 with the 

predictions generated and shown in bottom panels of their Figure 3. Given those results, 

it will not be surprising that the same modeling paradigm can be applied by others in the 

case of different antibodies and cancer indications.  

So far, the commentary has been focused on the drug development arena, however, this 

approach opens the avenue of translating MID3 efforts to model informed drug use in 

patient care. The authors made use of a powerful modeling technique, the Bayesian 

approach
3
. In brief, given a population model and individual (sparse) patient data, 

individual exposure profiles can be generated. Therefore, the modeling framework that 

Ribba and colleagues
1
 present in this journal should not be diluted in time, and we 

highly encourage to carry forward and re-use those computational tools at the time 

when patient data are gathered and the therapeutic is available for medicine 

personalization. 

Consequently, the end-product of the modeling effort we are discussing is the 

simulation outcome showing how a change in the dosing schema can overcome the 

reduced availability of circulating CEA-IL2v result of the model predicted peripheral 

target expansion. Focusing on drug exposure and leaving efficacy and toxicity apart, 
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there are at least two variables that need to be taken into consideration for dose 

optimization at the typical patient, which are dose level and dosing interval. The 

pharmacometric discipline provides tools to find, from a formal perspective, optimal 

dosing and design scenarios in order to extract the most from clinical trials. 

Nevertheless, publicly available information on these therapies indicates that one of the 

main obstacles in clinical phases of drug development of these compounds is dose 

selection and optimization, which is still mainly driven by classical maximum tolerated 

dose (MTD) schemas and non-compartmental analysis
4
. To the best of our knowledge, 

there is only one publication where pharmacokinetic/pharmacodynamic modeling 

efforts were undertaken to develop a translation model integrating information across 

the different phases of drug development to finally support decision making
5
 in the 

immune-oncology arena.  

To summarize, Ribba and colleagues
1
 have applied the MID3 paradigm during the 

clinical development program of a new immune modulator in oncology therapy. In their 

work, circulating levels of CEA-IL2v and imaging data were embedded in a 

computational modeling framework using publicly available information. This strategy, 

based on sparse data, allowed for an in silico optimization of dosing schedules with 

focus on tumor uptake as an alternate/complementary paradigm to MTD. It should not 

be ignored that selection of the right dosage regimen is ultimately driven by the balance 

between efficacy and toxicity. Remarkably, the authors found a strong positive 

correlation between predicted target levels and interleukin 2 receptor (IL2-R) positive 

cells, supporting drug mechanism of action and adding robustness to the developed 

model. Therefore, we are eager to see how tumor uptake drives CEA-IL2v patient’s 

response. 

In conclusion, the contribution of Ribba and colleagues highlights the enormous 

potential of modeling and simulation as a pillar in drug development and translational 

medicine supporting dosing optimization and decision making.  
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During the drug development process, especially in the context of complex diseases, it 

would be of a great help to have available tools facilitating key and relevant tasks, for 

example identifying (i) the right therapeutic targets for the addressed condition, (ii) 

underlying alterations involved in the disease etiopathogenesis and prognosis, (iii) 

different subpopulations of patients with specific treatment considerations, and (iv) key 

biomarkers that can assist in the decision making process by quickly and accurately 

predicting and evaluating the progression the disease of particular subjects. 

The Food and Drug Administration (FDA), has suggested some strategies and tools 

with the purpose of facilitating and accelerating the drug development process. 

One of these strategies describes the potential benefit of the use of 

pharmacometrics and systems pharmacology disciplines. Under the name of 

“Model Informed Drug Discovery and Development” (MID3), this strategy aims to 

enhance drug discovery productivity and efficiency targeting the abovementioned 

objectives using mathematical models throughout all the stages of the process1. 

Throughout this thesis, systems pharmacology and pharmacometrics were applied 

to different pathologies covering a broad spectrum of methodologies and 

objectives. On the one hand, systems pharmacology was used to develop a 

framework that could help to identify targets, biomarkers and patients 

subpopulations, especially in cases of complex diseases by linking the already 

available knowledge of complex biological systems with qualitative or quantitative 

pharmacology data. On the other hand, pharmacometrics allowed us to build a 

semi-mechanistic PKPD model to describe and predict experimental data, which, in 

the future, will serve to individualize treatments, explore different scenarios and 

predict drug behavior. 

Along the different chapters of this thesis, different qualitative and quantitative 

systems pharmacology models as well as semi-mechanistic PKPD models are 

shown and have been already discussed with special mention to their advantages 

and limitations. Therefore, in this section, a summary, general discussion and 

overview of the whole work is provided. 
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Systems pharmacology based on Boolean networks 

In Chapter 1, it is shown how, in cases of complex diseases with limited longitudinal or 

quantitative data, systems pharmacology based on Boolean networks represents an 

interesting and useful approach.  

Systemic Lupus Erythematosus (SLE) is a very complex autoimmune disease, which is 

characterized by a high between patient heterogeneity. Due to this heterogeneity, it 

would not seem reasonable to treat different patients with the same pharmacological 

treatment, as the expected outcome is difficult to predict and might vary significantly.  

For such a reason, and through a systems pharmacology approach applied to SLE 

disease, we tried to identify different subpopulations of patients in order to predict the 

likely progression, and thus, be able to develop individualized therapies that guarantee a 

high probability of therapeutic success.  

The first step in this type of approaches represents a literature survey integrating all the 

available knowledge. A great general interest in biomedicine on this disease was 

detected as a huge amount of available discrete data is found in the literature including 

several papers reporting alterations in patients, as well as public and private datasets 

from -omics experiments.  

In detail, this chapter aimed to build a systems pharmacology model based on Boolean 

networks to characterize the co-stimulation process in SLE disease. This model 

integrates all the available knowledge to group SLE patients according to their 

molecular alterations to find out whether there are, indeed, different subpopulations of 

patients that may require different treatments. 

The resultant network was composed of 52 components and 296 governing relationships 

between them which were divided into activation, deactivation, upregulation and 

downregulation processes. Twenty three out of 52 nodes had already been reported to be 

altered in SLE. Once the logic network was established, we can obtain semi-quantitative 

profiles and the attractors of the system. For the semi-quantitative profiles, we ran 5,000 

model simulations of 40 time steps (30 of antigen exposure and 10 of washout) and 

then, calculated the average of all simulations at each time step for all the nodes. For the 

attractor analysis, we ran 40 simulations with 5,000 time steps. In both cases, to mimic 
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biologic conditions and increase robustness on the results, we decided to incorporate 

variability by randomly updating the nodes in each time step (asynchronous method), 

which resulted in different progressions of the network. 

An interesting feature of this approach is that perturbations can be introduced in the 

network, recreating knockouts or upregulations by setting a node to 0 or 1, respectively. 

By perturbing all network components, it is possible to study which the most likely 

perturbations are that may cause SLE reported alterations, and then, apply a clustering 

analysis to group together underlying alterations according to the lupus-like 

manifestations they provoke. 

Those possibilities show important implications in the case of evaluating potential 

treatments. As we have already evaluated, different perturbations can lead to very 

similar alterations, which would either react similarly to the same treatments or, on the 

contrary, elicit different effects. 

The main limitation of this network is that it only describes a fraction of the immune 

response, and therefore, until all SLE pathways and immune alterations were included 

into the model we would not be able to assess its full potential. Moreover, the building 

process of the relationships between the nodes is challenging, because of the published 

controversial results, unsupported affirmations, questionable experiments and 

unanswered questions about the immune dynamics. Finally, another limitation that 

should be highlighted is that full model validation is not feasible at this stage because 

activation of many nodes is also regulated by other molecules, critical to the immune 

physiopathology of SLE, but not currently available for inclusion in the model. 

Nevertheless, these limitations suppose new opportunities to improve the already 

developed immune Boolean network in order to provide better assistance in drug 

development and clinical care in the case of SLE patients. 

 

Quantitative systems pharmacology 

In the previous chapter, a Boolean network was developed for SLE disease due to the 

limited longitudinal data available from the literature. On the contrary, when adequate 

longitudinal data is available, quantitative systems pharmacology models can be 
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developed that describes the full longitudinal profile of the elements and pathways 

involved in a disease.  

In Chapter 2, the objective was to develop a framework that could assist in the 

individualization/optimization of factor administration for patients with coagulation 

disorders undergoing surgery. To fulfill the previous goal, two quantitative systems 

pharmacology models for the coagulation cascade process
2,3

 found in the literature were 

presented, implemented and evaluated. Both models incorporated most of the 

components involved in the coagulation process and were developed using parameters 

searched in the literature and optimized to describe in-house data.  

In our case, both models were satisfactorily implemented and reproduced. The models 

were able to replicate factor profiles as well as different coagulation tests (TGA, PT and 

aPTT) results provided in the original publications. Nevertheless, one of the main 

advantages of modeling is the predictive performance required for study design and 

treatment optimization. To prove the model performance for both models with external 

data, experimental data was obtained from a published article. This data includes the 

percentage of activation for different factors, PT and aPTT tests results and longitudinal 

thrombin profiles for normal subjects and trauma patients
4
. It is noteworthy to highlight 

the high variability observed in the experimental data.  

After simulating and comparing the individual profiles as well as the mean population 

profiles obtained for the published and the simulated data, the models were deemed not 

to be good enough to describe the experimental data. This event points out the existing 

challenge for quantitative systems pharmacology models when dealing with data with 

high variability
5
. 

For this reason and keeping in mind the objective of this work, we decided to move 

from a systems pharmacology approach to a semi-mechanistic PKPD modelling (i.e., 

from a knowledge-driven to a data-driven modeling approach) reducing considerably 

the number of parameters achieving an identifiable model. 
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Semi-mechanistic PKPD modelling 

A semi-mechanistic population PKPD model for thrombin formation was developed 

according to the individual raw longitudinal data obtained from Menezes, et al.
4
.  

The semi-mechanistic model consists of three main compartments. The first one is the 

tissue factor (TF), which is the stimulus for initiating the coagulation process to form 

thrombin. The second one is the prothrombin, essential factor for thrombin formation. 

The last compartment is representative of the thrombin levels. The model incorporates 

two mechanisms for thrombin formation in accordance with the cellular model of 

coagulation by Hoffman, et al.
6
. One of them provokes a quick but weak burst of 

thrombin and the other one a large thrombin peak regulated by a transit compartment 

model. 

The model accurately describes the profiles of thrombin concentration over time after 

the addition of TF to plasma samples from normal subjects and trauma patients, as a 

main outcome of the coagulation process. The high variability between individuals and 

the typical profile are well captured by the model as shown by visual inspection of 

model simulations versus observations. 

The model allows differentiating thrombin dynamics between the two different 

populations included. The inclusion of more data and different patient conditions might 

enrich the proposed coagulation model, what would improve model performance and 

generalization. Consequently, it could be used in clinic to manage appropriately the 

administration of coagulation factors as treatment for several coagulopathies 

minimizing risks and improving the prognosis of these patients. 

The use of models to establish dosage regimens 

As we have seen previously, one of the aims that systems pharmacology and 

pharmacometrics address is treatment individualization to enhance patient response, 

improving efficacy and reducing toxicity. In Chapter 3, it is shown an approach that 

opens an avenue in the model informed drug use in patient care.  

Usually, pharmacokinetic models use blood drug concentrations to infer drug exposure 

in the site of action. In this chapter, we have presented a brief perspective discussing the 

impact of considering exposure at the target site concerning systemic concentrations. To 
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address this, we referred to Ribba, et al.
7
 article where a model for drug uptake by tumor 

tissue that integrates a target-mediated drug disposition approach (TMDD) was 

presented. The model was used to optimize dosing regimens in patients with advanced 

and/or metastatic solid carcinoembryonic antigen positive (CEA
+
) tumors, overcoming 

the increase in the synthesis of the target triggered by the therapeutic agents increasing 

its clearance and reducing tumor concentrations.  

In this contribution, a novel immunocytokine, which is formed by an antibody against 

CEA and a variant of interleukin 2 (IL2, not able to bind to IL2 receptor of the T 

regulatory cells), is presented. Once the drug is administered, it enhances the expansion 

of immune cells positive to IL2 receptor, resulting in faster depletion of available drug. 

For this reason, the incorporation of peripheral immune cells concentrations to the 

model allowed predicting the real drug uptake in the tumor cells, confirmed by 

intratumoral sparse measurements. Interestingly, the authors used for the model building 

publicly available models
8,9

 which emphasizes the importance of knowledge reusing 

that can be achieved using the model based approach. Below, a representation of the 

model developed by these authors is presented (Figure 1). As a result of this, the authors 

concluded through model simulations that increasing the dose or shortening the time 

interval between doses led to a higher drug uptake by the tumor.  

 

Figure 1. Model representation of drug uptake developed by Ribba, et al. 
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This example highlights the enormous potential of pharmacometrics modeling and 

simulation as a pillar in drug development and translational medicine, supporting dosing 

optimization and decision-making. 

In summary, this thesis constitutes an effort of learning and application of a broad 

spectrum of modeling techniques and tools from the qualitative and quantitative systems 

pharmacology models (knowledge-driven) to the PKPD models (data-driven) applied to 

both drug development and clinical care. Across the different chapters, we present 

examples on the application of these techniques to situations with limited longitudinal 

data (chapter 1), longitudinal data from the literature (chapter 2) and experimental data 

from plasma, imaging and scarce data from the site of action (chapter 3).  
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(1) A systems pharmacology model based on Boolean Network was built for the 

co-stimulation process, in the autoimmune disease Systems Lupus 

Erythematosus (SLE) disease, constituting proof of concept for this 

methodology in the context of Systems Pharmacology. The model allows 

identifying drug targets, optimal combinatorial regimens and subpopulations 

of responders and non-responders to drug treatment. 

 

(2) Two quantitative systems pharmacology models of coagulation process 

found in the literature were well implemented in Simbiology. Clinical data 

also found in the literature was simulated with both models. The models 

seem not to be appropriate to describe individual data due to the large 

number of parameters and equations making impossible the introduction of 

inter-individual variability in the models. 

 

(3) A semi-mechanistic PKPD model for coagulation process was successfully 

developed in order to describe individual clinical data. The model was able 

to describe individual thrombin profiles from normal subjects as well as 

trauma patients. 

 

(4) Considering drug exposure at the target site aside from systemic 

concentrations represent a powerful complement in drug development and 

translational medicine supporting dosing optimization and decision making. 
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(1) Un modelo de Farmacología de Sistemas basado en redes Boleanas fue 

construido para el proceso de la co-estimulación, en la enfermedad 

autoinmune Lupus Eritematoso Sistémico (LES), constituyendo una prueba 

de concepto de esta metodología en el contexto de la farmacología de 

sistemas. El modelo permite la identificación de dianas terapéuticas, 

regímenes óptimos en combinación y subpoblaciones de pacientes de 

respondedores y no respondedores al tratamiento farmacológico. 

 

(2) Dos modelos de farmacología de sistemas cuantitativos del proceso de la 

coagulación encontrados en la literatura fueron bien implementados en 

Simbiology. Los datos clínicos que también fueron encontrados en la 

literatura se simularon con ambos modelos. Los modelos parecen no ser 

apropiados para describir datos individuales debido a la gran cantidad de 

parámetros y ecuaciones que hacen imposible la introducción de la 

variabilidad interindividual en los modelos. 

 

(3) Se desarrolló con éxito un modelo PKPD semi-mecanístico para el proceso 

de coagulación con el fin de describir datos clínicos individuales. El modelo 

fue capaz de describir los perfiles de trombina individuales de sujetos 

normales y de pacientes con traumatismo encontrados en la literatura. 

 

(4) Considerar la exposición al fármaco en lugar de acción a parte de las 

concentraciones a nivel sistémico, representa un potente complemento en el 

desarrollo de fármacos y la medicina traslacional, apoyando la optimización 

de la dosificación y la toma de decisiones. 
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