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PREFACE

The treatment of complex diseases represents currently a major challenge. In this
context systems pharmacology (SP) is an emergent discipline that provides an
opportunity to get deeper insights in this type of diseases by integrating different areas
of knowledge including biology, pharmacology, pharmacometrics, statistics, and

computational modelling.

Nowadays, SP has relevance throughout the entire process of drug development, since it
has been able to show that systems computational models allow increasing the
understanding of different mechanisms of action and regulatory processes,
demonstrating their usefulness for organizing large biological data sets and extracting
significant information. These models are useful for (i) the identification and validation
of new therapeutic targets, (ii) the discovery of new biomarkers, (iii) patient
stratification, (iv) dose individualization, (v) the identification of new sources of
variability and (vi) the prediction of toxicity and adverse effects.

In this thesis, different types of mechanistic models were explored showing its

capabilities and drawbacks.

The Introduction section provides a brief description and uses of systems pharmacology

models.

Chapter 1 presents a systems pharmacology model for Systemic Lupus Erythematosus.
This model, based in Boolean equations, allows identifying different patient
subpopulations according to their molecular alterations, predicting the variability in the
progression of the disease and designing individualized drug therapies with a high

likelihood of success.

In Chapter 2 two systems pharmacology models for coagulation cascade published in
the literature are implemented and reproduced. Then, experimental data obtained from
the literature was incorporated in both models to reproduce coagulation tests. Finally, a
semi-mechanistic pharmacokinetic/pharmacodynamic (PKPD) model was built to fit

this experimental data.

Chapter 1 and Chapter 2 provide an overview of the characteristics of the disease or

biological system and their therapeutic alternatives as well as the description of the

5



information and methodology used to develop the SP models, together with the

corresponding results.

On the other hand, Chapter 3 discusses the impact of considering exposure at the target
site with regard to systemic concentrations, a piece of information that usually remains

forgotten in mechanistic modelling.

The General Discussion highlights the most relevant aspects of the three chapters,

followed by the Conclusions section, which summarizes the main findings of this thesis.

Finally, in the Annex, an article of a systems pharmacology model developed for

inflammatory bowled disease, recently published in PLOS ONE journal is enclosed.









INTRODUCTION






Introduction

SYSTEMS PHARMACOLOGY

In the last years, drug development is becoming more challenging and costly. Despite
the advances in scientific knowledge, the gap between bench discovery and bedside
application is increasing; in fact, less than 10% of the drugs starting a phase 1 clinical
program are finally approved by the FDA (Food and Drug Administration). This
percentage is even lower in oncology or cardiovascular diseases among others® (Figure
1). Additionally, the cost of bringing a new drug to market is estimated to be around
$1.7 billion”. As a consequence, regulatory agencies like FDA proposed several

initiatives for optimizing drug development.

Phase Transition Success
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— — — —
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Figure 1. Phase transition success of drugs during drug development and the likelihood of approval from phase | by
disease. NDA (New drug application), BLA (Biologic license application).

One of these initiatives was the Critical Path Initiative launched by the FDA in March
2004. This initiative aimed to modernize the scientific and technical tools for evaluating
and predicting the safety, effectiveness and manufacturability of innovative medical

products and thus accelerate the drug development process.

®https://www.bio.org/sites/default/files/Clinical%20Development%20Success¥%20Rates%202006-2015%20-
%20B10,%20Biomedtracker,%20Amplion%202016.pdf
b http://www2.bain.com/bainweb/PDFs/cms/Marketing/rebuilding_big_pharma.pdf

11



Introduction

These strategies and tools were summarized in the report “Innovation/Stagnation:
Challenge and Opportunity on the Critical Path to New Medical Products ™. In addition
to this report, an opportunity list" with specific tasks for driving this modernization was
provided. This opportunity list was subsequently divided into six broad topic areas
(Figure 2).

Translational Research
( N

)

Target Preclinical . . Approval &

. Clinical Development Launch

Discovery Development :
Preparation

N —_
kCriticaI Path Research J
7Z_X

& Priority Public Health Challenges A
1. Better Evaluation Tools 4. Moving Manufacturing into the
* Qualifying new biomarkers 21st Centuty
* New imaging techniques
¢ Improving predictions of human 5. Developing Products to Address
responses from disease models Urgent Public Health Needs
. Rapid pathogen identification
2. Streamlining Clinical Trials 0 Zmeimrpoadingie demes
* Advancing innovative trial maslkels
designs
* Improving measurement of 6. At-Risk Populations (Pediatrics)

patient responses
¢ Streamlining and automating
clinical trials

3. Harnessing Bioinformatics

- J

Figure 2. Translational research consists on transfer the discoveries into preclinical and clinical analysis whereas
critical path research is focused on improving the drug development process. The FDA released an opportunity list to
facilitate this process. It is divided into six different areas.

The focus of the current thesis is the third challenge area, bioinformatics. This area aims
to improve drug development efficacy and predictability of results through the

application of mathematics, statistics and computational analysis.

One opportunity suggested within the bioinformatics area was “Model-based drug
development”. Defined as “a mathematical and statistical approach that constructs,
validates, and utilizes different type of models to facilitate drug development™, this
approach is also known as pharmacometrics. Pharmacometrics includes: (i) population

pharmacokinetic/ pharmacodynamic (popPKPD) models, (ii) disease models, (iii)

‘http://wayback.archive-it.org/7993/20180125142845/https://www.fda.gov/downloads/ScienceResearch/
SpecialTopics/CriticalPathinitiative/CriticalPathOpportunitiesReports/UCMO077254.pdf
dhttp:llwayback.archive-it.0rg/7993/20180125035449/https://www.fda.gov/downIoads/ScienceResearch/
SpecialTopics/CriticalPathinitiative/CriticalPathOpportunitiesReports/UCMO077258.pdf
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evaluation and formal validation methodologies and (iv) optimized design of clinical
trials. Additionally, through simulation exercises, is possible to understand biologic
systems as well as explore possible dosage scenarios. This definition of
pharmacometrics establishes links between other challenging areas as can be seen from

figure 2.

Currently, most public and private institutions consider pharmacometrics a fundamental
element within any drug development program as it aims to reduce the time and the cost
of bringing a new drug to the market significantly. Furthermore, a properly evaluated
and validated popPKPD model can be used to (i) establish individualized dosage
regimens, (ii) explore different scenarios and (iii) reuse the acquired knowledge and

apply to different conditions and situations, among others.

Although the predictive capacity of popPKPD models is contrasted and confirmed in the
context of interpolation, prediction of the clinical outcome in complex scenarios is
associated with a big uncertainty. For example, the emergence of immuno-oncology
drugs has resulted in a revolution, becoming to cease different tumors that years ago
were devastating, like melanoma. However, some part of the population does not
respond to the treatment. The possibility to anticipate which type of patients are going
to respond as well as discover the reason of this lack of response opening the possibility
to an alternative treatment has an extraordinary repercussion. Besides the need of
patient stratification, the difficulty to identify the best candidates for combination
treatments, identification of predictive biomarkers and new therapeutic targets
represents additional complexities. These needs/challenges could not be accomplished
just by applying or developing data-driven popPKPD modelling, and thus a new
discipline has emerged, systems pharmacology (SP) (Figure 3).
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Figure 3. Differences between pharmacometrics and systems pharmacology.

Frequently, systems pharmacology term is associated with pharmacometrics. As Figure

4 shows, these disciplines are complementary and they are connected by the

translational nexus. The aim of systems pharmacology is bridging together systems

biology, engineering and pharmacokinetic/ pharmacodynamic (PKPD) modelling to

understand the mechanism of action of drugs and therefore, making possible the

interpretation of drug efficacy and adverse events®.
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As it is represented in Figure 4, systems pharmacology discipline has relevance during
all drug development process because allows: (i) identifying and validating new targets,
(if) discovering new biomarkers, (iii) stratifying patients, (iv) individualizing dosage
regimens, (v) identifying response variability sources, and (vi) predicting toxicity and

adverse events.

The combination of pharmacometrics and systems pharmacology during the last decade
has recently led to “Model Informed Drug Discovery and Development” (MID3), which
is defined as “a quantitative framework for prediction and extrapolation, centered on
knowledge and inference generated from integrated models of compound, mechanism
and disease level data and aimed at improving the quality, efficiency and cost

effectiveness of decision making™.

1. Pharmacometrics and systems pharmacology approaches

There are two main strategies for data analysis and integration of knowledge (Figure 5),
the bottom up and the top down approaches®. The distinction lies in the way in which
the system is view. The bottom-up approach joins small systems to derive complex
biological systems. In this type of approach, the individual elements of the system are
first specified in great detail, conferring a maximum level of granularity. On the
contrary, the top-down approach consists of breaking down a top-level system to get
insights of the sub-systems. It is considered data-driven and represents the approach
followed by most semi-mechanistic popPKPD models. One disadvantage of this

approach is that sometimes the models may lack interpretability regarding mechanisms.

Generally, SP models use the bottom-up approach, allowing building exhaustive
computational structures based on the knowledge of the physiologic systems and
integrating different types of information obtained from diverse sources. Furthermore,

they are not limited by quantitative and longitudinal data as it will be discussed below.
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Funtional molecules

ORGAN

Pathways

CELL

RNA Proteins Metabolites

MOLECULE

Figure 5. Bottom-up approach vs top-down approach. Adapted from Shalhoub et al.

2. Types of systems pharmacology models

Generalizing, we can distinguish between two types of systems pharmacology models®
which are not mutually exclusive: (i) (semi-) qualitative networks based on Boolean

operators and, (ii) quantitative models based on ordinary differential equations (ODES)

and algebraic equations.

Boolean networks were introduced by Kauffman in 1969’. A network is a way of
representing related data which is composed of nodes that are the network components
(molecules, proteins, genes...) and the relationships between these nodes®. Through this

Boolean networks

type of networks, it is possible to represent complex biological processes.

In this type of models, the nodes (elements) only can assume two states, activated or
inactivated, represented by logic values “1” or “0”, respectively. The connections
(relationships) are built through the Boolean operators “AND”, “OR”, and “NOT”.
Once the nodes and the relationships are identified, the Boolean equations are built.

Each node has its Boolean equation, through its state is calculated.

16
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o Updating methods: synchronous/ asynchronous

In Boolean models, time is a discrete entity that specifies the instances in which the
state of the nodes may change. In each time step, the state of each node is updated and it
is determined by the states of the nodes regulating it according to the corresponding

Boolean equation.

They are two strategies that differ in the way in which the nodes are updated (as it is
explained in Figure 6), the synchronous or asynchronous updating methods®. In the
synchronous method, the state of the nodes at time t is calculated just by the states of its
regulatory nodes at time t-1. On the other hand, with the asynchronous method, the state
of a node at time t is updated according to the last update (time t-1 or t if it has already
been updated) of its regulatory nodes. In both cases, the order in which the nodes are
updated at each step is selected randomly. However, when using the synchronous
method, the output at time t always depends on the state of the nodes at time t-1,
obtaining the same output in each time step. Contrary, when using the asynchronous
method the output may vary depending on the updated order in time t, thus introducing

stochasticity in the model (as can be seen in Figure 6).
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o Attractors

The behavior of a Boolean network is explored by means of simulations, once the initial
conditions of the system are specified. The system eventually results in a set of stable
states called attractors. Attractors can be classified in different groups: (i) a fixed-point
if it consists of only one state, (ii) a simple cycle if it is composed by more than one
state that oscillates in a cycle or (iii) a complex attractor if the set of states oscillate
irregularly™. Usually, large-scale or highly interconnected networks using the

asynchronous method converge into complex attractors.
o Models

The development of Boolean network models in the area of pharmacology is recent and
still scarce. Some examples are summarized in Table 1. As we can observe, they
represent complex networks in which a great number of nodes and relationships are

involved.

Our research group has developed recently two Boolean networks corresponding to
systemic lupus erythematosus™ and inflammatory bowel diseases™, the former as a part
of the current Ph.D. thesis.

Usually, this type of models can be built with qualitative or discrete data, that is when
the quantitative and longitudinal data is limited and parameter estimation is not
possible. Furthermore, they can be used as the starting point in the development of
quantitative models. For example, Chudasama et al.™ built a Boolean network of signal
transduction pathways in multiple myeloma cells, and they converted it into an ODEs
based model in order study bortezomib effects on signal transduction in multiple
myeloma cells. Years later, Ramakrishnan and Mager'*, extended Chudasama et al.
model adding additional signaling pathways. Also, the model was converted to a
quantitative model to evaluate the heterogeneity in the pharmacological response to
bortezomib.
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o Tools

As can be seen in Table 1, there are different tools and software packages to develop
and explore Boolean networks. The following provides a brief description of some of
them:

SPIDDOR: Systems Pharmacology for efflcient Drug Development On R* (SPIDDOR)
is an R package to perform Boolean modelling. It was developed in our laboratory. This
software, allows (i) simulating activation profiles with corresponding confidence
intervals, (ii) performing attractor analysis, (iii) including perturbations in the system
and, (iv) making sensitivity analysis. It has implemented synchronous and asynchronous
updating methods. Furthermore, this tool offers the possibility to introduce new types of
regulatory interactions, like up-regulation or down-regulation, as well as

polymorphisms.

Cell Net Analyzer: Cell Net Analyzer® is a Matlab toolbox which provides a graphical
user interface and allows structural analysis of different types of cellular networks

(metabolic, signaling and regulatory).

BoolNet: BoolNet® is an R package that allows analyzing Boolean networks using
synchronous and asynchronous updating schemes, as well as probabilistic Boolean
Networks. It also includes different methods to identify attractors. The nodes can be

temporarily knocked out and overexpressed.

Cell Collective: Cell collective® is a software which is implemented in Java and the
simulation tool is based on ChemChains. This web-based platform® allows scientists
over the world to share experimental data to build mathematical models of biological
processes. Cell Collective is formed by (i) biological databases from different resources,
like Uniprot, WikiPathways, among others which contain information about data
experiments, (ii) a software which allows performing simulations with dynamical
models, (iii) the first repository for qualitative models, (iv) the option to use Systems
Biology Markup Language (SBML) to facilitate the exchange between investigation

groups, and (V) tools for visualization and analysis different types of networks.

GINsim: Gene Interaction Network simulation (GINsim)* is a user-friendly modelling

software for logical networks analysis which can include perturbations. The software

® http:/iwww.thecellcollective.org
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was presented in 2006 but currently, there are different versions. It is composed by a
graphical user interface, a simulation core and a graph analysis toolbox. The main
advantages of GINsim are the possibility of multilevel modelling and the updating

schemes that can be used are synchronous, asynchronous and mixed schemes.

SQUAD: SQUAD * is a software which is written in Java version 1.6. Before using
SQUAD, the topology (nodes and their relationships representation) of the network has
to be established. SQUAD accepts different types of input formats, but they included
the possibility of using CellDesigner’, which is a graphical tool to build and edit
biological networks. Once the network is loaded into SQUAD, it converts the network
into a discrete dynamical system and identifies all stable states of the network. Then, it
is converted into a continuous dynamical system using the steady states found in the
discrete model. Finally, simulations with or without perturbations can be performed.

o CoLoMoTo consortium

CoLoMoTo (Consortium for Logical Models and Tools)? is a consortium formed by
different research groups working in the field of logical modelling. It comprises
modelers as well as tools developers. A priority in this consortium is to define standards
for (i) model representation and interchange, (ii) methods comparison, (iii) models and

(iv) tools.

Quantitative models

Quantitative systems pharmacology is described as the quantitative analysis of dynamic
interactions between drugs and biologic systems to discover how the drugs modulate the
dynamics of biologic components in molecular and cellular networks and the impact of

these perturbations in human physiopathology™.

Quantitative systems pharmacology models are mechanistic models which describe
physiologic processes through ODEs. For that, extensive knowledge of the parameters
involved in the processes is needed®. These models are a great tool to enhance the
understanding of different mechanisms of action and regulation processes,
demonstrating its utility to organize large dimension data sets allowing to obtain

relevant information®.

f http://iwww.celldesigner.org/
9 http:/iwww.colomoto.org/
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o Models

In the last decade, the development of quantitative systems pharmacology (QSP) models
has increased*’. Some examples are shown in Table 2. These models describe dynamic
systems through mathematical equations that characterize biological mechanisms. Some

of them present similarities to mechanistic PKPD models, in fact, there are still some

controversies when it comes to distinguishing between them.

Table 2. Examples of QSP models published in the literature.

Author(s) Pathway/Disease Tool Year Ref
Wajima et al. Coagulation Matlab 2009 ®
Peterson & Riggs Calcium homeostasis and bone remodelling Berkeley Madonna 2010 46
Benson et al. Nerve growth factor pathway Simbiology 2013 a
Demin et al. 5-Lipoxygenase Inhibitors DBSolve 2013 8
Nayak et al. Coagulation Simbiology 2014 9
Luetal. Lipoprotein Metabolism Matlab 2014 %0

Mechanisms of action of statin and anti- _— 51
Gadkar et al. PCSKO therapies Simbiology 2014
Benson et al. pe\_/e_lopment of_fatty acid amide hydrolase Simbiology 2014 52
inhibitors for pain
. Nerve growth factor signaling through p75 and __ 53
Toni et al. TrkA receptors Simbiology 2014
The relationship between circulating
angiogenic factors dynamics and in vivo 54
Sharan & Woo antitumor activity in response to anti-VEGF Berkeley Madonna 2014
(vascular endothelial growth factor) agents
Wronowska et al. Sphingolipid metabolism Simbiology 2015 %
Garmaroudi et al. Nitric Oxide—Cyclic GMP Signaling Pathway Simbiology 2016 56

. Effect of Anti-Interleukin Therapy on 57
Karelina et al. Eosinaphils DBSolve 2016
Gotta et al. Drug-induced QTc interval prolongation NONMEM 2016 58
Clausznitzer et al. Alzheimer Simbiology 2018 5
Thiel et al. Drug efficacy of COX-2 and 5-LOX inhibitors ~ MoBi 2018 €0

The lack of standardization to develop a QSP model, as well as the establishment of the
most efficient tools, may hinder the use of this methodology in drug development. To
overcome some of these limitations, the DDMoRe (Drug Disease Model Resources)
project” developed a specific language, called the Pharmacometrics Markup Language
(PharmML). What aims this project is to establish a standard language for PKPD and
QSP modelling, making easier the exchange and the reusability of the models between
research groups. Moreover, it has a freely available repository to submit models and

h http://www.ddmore.eu/content/project
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share them. Another repository to share models is BioModels Database', a platform
created in 2006. The published models are divided into two groups, manually curated or
non-curated. One advantage of this type of resources is that they enhance models

visibility.
o Tools

Matlab: Matlab® is a programming platform that allows analyzing data, developing

algorithms and creating models and applications.

Simbiology: Simbiology®* is an application of Matlab that uses ODEs and stochastic
solvers. It allows modelling, simulating, and analyzing dynamic systems and also using

population data to estimate model parameters.

MoBi: MoBi®' is a systems biology software tool which can be used in R or Matlab and
was developed by Bayer technologies. It is a potent tool for modelling and simulation of

biological systems.

NONMEM: NONMEM®" (non-linear mixed effects modelling) is a software

developed by Lewis B. Sheiner and Stuart L. Beal®*

for popPK modelling. Nowadays, it
can be used to fit different types of data and simulate data through mathematical

models.

Berkeley Madonna: Berkeley Madonna®" is a software to solve differential equations.
The new version has a graphical interface for constructing mathematical models instead

of write equations.
o ROSA

Rosa & Co.° is a company that was founded in 2002 by Ron Beaver. It is characterized
by its knowledge in biology and therapeutic sciences, as well as its modelling expertise.

This company developed PhysioPD research platform which allows incorporating PK or

" https://www.ebi.ac.uk/biomodels-main/termsofuse

! https://es.mathworks.com/

K https://es.mathworks.com/products/simbiology.html

! http://www.systems-biology.com/products/pk-sim.html
™ https://www.iconplc.com/innovation/nonmem/

" https://berkeley-madonna.myshopify.com/

° https://www.rosaandco.com/
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PKPD models integrated with physiological models to perform clinical trials

simulations, in other words, it allows generating QSP models.

This platform can help the researcher in: (i) evaluate target mechanism of action, (ii)
prioritize candidate targets, (iii) support lead compound selection, (iv) translate

preclinical to clinical, (v) optimize therapy combinations among others.

The PhysioPD platform provides support to models in several diseases like
Schizophrenia®, Parkinson®, Psoriasis®*, lymphoblastic leukemia® and nervous

systems central diseases®® among others.

Since 2011 Rosa & Co. gives free webinars each month about aspects of research and
drug development. These webinars are given by select speakers from academia,
industry, Rosa client companies, and Rosa itself.

As on every scientific discipline, there are still open issues with SP models regardless if

they are based on Boolean operators or quantitative dynamics, as shown below.

3. Systems pharmacology models validation

Contrary to popPKPD models where currently there is a consensus on how to evaluate
and validate a model properly, there is not general agreement on how to validate QSP
models.

One suggested strategy is the use of virtual populations®’. A virtual population is a
family of parameter sets that reflect the characteristics of a population which allows
exploring parametric uncertainty and reproducing the variability in response to

perturbation®®.

On the other hand, regarding Boolean networks validation, Balbas-Martinez et al.'?

performed model simulations with different simulated therapies comparing the

simulation outcomes against the results reported from clinical trials®.

P https://www. clinicaltrials.gov/
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4. Systems pharmacology models reduction

In order to obtain simpler and more manageable SP models, several reduction
techniques can be applied to convert them into mechanistic PKPD like models: (i) time-
scale analysis, (i) sensitivity analysis, (iii) lumping, (iv) balanced truncation, (v)
singular value decomposition-based model reduction and (vi) miscellaneous methods,

among others®’.

The first three methods are the most extensively used in systems pharmacology.
Timescale analysis consists in the division of the system into different time scales
depending on the speed of the reaction rates, definingslow and fast variables.
This approach allows excluding one or other group of reactions and variables depending
on the time scale of interest.

Sensitivity analysis determines the influence of parameters and initial states on a
specific output variable. Then, those species or parameters eliciting little or no effect on

the output of interest might be removed.

Finally, lumping is the most common method applied to this type of models. Through
this method, several states of the model are lumped into a new pseudo-state, reducing
the number of equations and parameters. Two different variants of this methodology
have been described®: proper and improper lumping. Although both variants can
provide a reduced version of the model, proper lumping is more appropriate and more
often used in systems biology models as it preserves a clear physiological interpretation.
In this case, the original states contribute to only one of the pseudo-states of the reduced
system, while in improper lumping the original states can correspond to one or more

lumped states.

The work performed by Gulati” et al. represents a good example. They developed in
2009 a systems pharmacology model of coagulation process®. Years later they reduced
the 62-state systems model to a 5-state model through proper lumping method, to
describe the time course of a factor recovery after a snake bite, maintaining an

appropriate mechanistic relationship.
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5. Pharmacometrics and systems pharmacology in the world

Conferences

The first PAGE (Population Approach Group in Europe) meeting® was held in 1992 in

Basel, Switzerland. Every year it is held in a different European country.

On the other hand, in 2005 ACOP (American Conference of Pharmacometrics) meeting'

was held for the first time.

WCOP (World Conference of Pharmacometrics)® is a global meeting of
pharmacometricians and was started in 2012 in Korea and it is held every four years.
The last one was in Australia in 2016 and the next is going to take place in South
Africa.

PAGANZ (Population Approach Group of Australia and New Zealand)' scientific
meeting has been held every year in the Southern hemisphere. In 2019 will take place

the 20™ meeting.

The 1st APC (Asian Pharmacometrics Conference)! was held in 2017 at Kyoto
University in collaboration with the Professional Committee of Pharmacometrics in
China (PCPC), Population Approach Group in Korea (PAGK), and Population
Approach Group in Japan (PAGJa).

The Iberoamerican Pharmacometrics Network Congress’ was held for the first time in
2017 in Montevideo (Uruguay). This congress targets people from Latin America to

promote pharmacometrics in this area.
Journals

There are several journals that published this type of models like the Journal of
Pharmacokinetics and Pharmacodynamics, European Journal of Pharmaceutical
Sciencies, Pharmaceutical Research, Journal of Pharmacology and Experimental
Therapeutics, Clinical Pharmacology and Therapeutics, Plos One, Plos Computational

Biology, Pharmacology Research and Perspectives, Cancer Research, Theoretical

9 https://www.page-meeting.org/

" http://www.go-acop.org/

® https://go-wcop.org/

! https://www.paganz.org/

Y http://www.pagja.org/apc-2017

¥ http://www.redifar.org/events.html
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Biology and Medical Modelling and Bioinformatics among others, but they are not

specific to this field.

In 2012, the first number of the “open access” journal Clinical Pharmacology and
Therapeutics: Pharmacometrics and Systems Pharmacology (CPT:PSP)" was
published. It is a cross-disciplinary journal which covers the following areas:
pharmacometrics, systems pharmacology modelling, disease modelling and

physiologically-based pharmacokinetics (PBPK).

Society

The International Society of Pharmacometrics (ISOP)* was founded in 2012. The
purpose of this organization is to promote and advance the discipline of

pharmacometrics and broaden its impact.

PAGANZY is an incorporated society founded on an interest in pharmacology and

therapeutic applications using the population approach.

American Society for Clinical Pharmacology and Therapeutics (ASCPT)? is a society
which was founded in 1900. By using clinical pharmacology and translational medicine
disciplines, this society focuses on improving the understanding and use of existing

drug therapies and developing safer and more effective treatments for the future.

" https://ascpt.onlinelibrary.wiley.com/journal/21638306/
* http://www.go-isop.org/

Y https://www.paganz.org/

? https://www.ascpt.org/
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Objectives

The current investigation is focused on systems pharmacology (SP) models covering

development, implementation, and validation/exploration.

The first objective was to develop a Boolean network model for Systemic Lupus
Erythematosus integrating data from the literature and exploring the impact on the
response of different therapeutic strategies. This work served as a proof of concept for

the functionalities available in the tool SPIDDOR, which was internally developed.

The second objective was related to quantitative SP models and consisted first in the
implementation of two already (and competing) published models corresponding to the
coagulation process using the tool Simbiology. Then a comparison of the outcomes
between the two models was performed. Finally, the application of the SP models to
predict/describe the time course of thrombin and the results of different coagulation

tests obtained from healthy and trauma patients were evaluated.

The third objective was to develop a semi-mechanistic PKPD model based on the
coagulation systems pharmacology models to describe population data with high

variability.

The other objectives were related to the pharmacological responses. However, little
attention is paid in SP modelling to drug exposure in the target organ. This aspect of

therapeutics is also covered in this thesis.

39






CHAPTER






Chapter 1

SYSTEMIC LUPUS ERYTHEMATOSUS OVERVIEW

1. Systemic Lupus Erythematosus definition
Lupus is a severe and complex rheumatic disease which is classified in four main types:
neonatal lupus erythematosus (NLE), discoid lupus erythematosus (DLE), drug-induced

lupus (DIL) and systemic lupus erythematosus (SLE)®.

This introduction is focused on SLE, which is the most common type of lupus®. SLE is
a chronic inflammatory autoimmune disease that can affect any organ/tissue in the body
and presents a great patient heterogeneity reflected in the clinical profiles and
serological alterations with periods of relapses and remissions. This disease is
characterized by the production of autoantibodies that are directed against nuclear

antigens (autoantigens) generating tissue damage and inflammation.

2. Epidemiology

SLE incidence (number of new cases in a year) ranges from 1 to 10 per 100,000 people-
year and the prevalence (total individuals affected by the disease in a period) is about 20
to 70 per 100,000 people®. This disease is up to 10 times more common in females than
in males, being more frequent between 15 to 44 years®. Additionally, the incidence and
prevalence in people of African or Asian background are approximately 2 to 3 times
higher than in white populations. In the last decades, the life expectancy of SLE
individuals has improved. However, the 15 to 20 years survival rate is still not greater
than 80%°.

3. Etiology
The mechanisms causing the development of SLE remain largely unknown. However,

some factors have been postulated to play a crucial role in SLE*,

Genetic factors

Several single-nucleotide polymorphisms (SNPs) are associated with SLE. Most of

them are within non-coding DNA regions of immune response—related genes”.
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Environmental factors

Established environmental risk factors for SLE are silica exposure (crystalline silica or
quartz), cigarette smoking and Epstein Barr virus (EBV) exposure. Less established
environmental risk factors are metals, pesticides, persistent organic pollutants, asbestos,
industrial chemicals and solvents, personal care products, UV radiation, and air

pollution®.

Immunorequlatory factors

It has been found that SLE patients exhibit several immune alterations. Major
histocompatibility complex (MHCII) expression in dendritic cells (DCs) of SLE
patients have found to be upregulated®. Regarding T cells several costimulatory
molecules are overexpressed, for examples the cytotoxic T-lymphocyte—associated
antigen 4 (CTL4)’, CD44® programmed cell death-1 (PD1)° while others are
underexpressed like CD3( chain or p65™ protein. Additionally, cytokines are also
altered in SLE like interleukin 2 (1L-2)%, IL-4", 1L-10", I1L-6, interferon y (IFNy)',

tumor necrosis factor o (TNFa)™ among others.

Hormones and sex

Females are more affected than males by SLE in a ratio of 9:1. This data suggests that
steroids like estrogens can contribute to SLE pathogenesis. Several studies have found a
correlation between early menarche, exogenous hormone use and surgical menopause
and risk of SLE development’®’. On the other hand, it has been observed that oral
contraceptives do not affect disease activity'®. Contrary, hormone therapy increases

significantly mild/moderate flares*®?°.

Epigenetic factors

Several factors like some medications, diet, previous infections among others may result
in epigenetic alterations. It has been seen that these alterations could be involved in the

dysregulation of signaling molecules and receptors in SLE?*?2.

4. Diagnosis
Besides being a very complex disease, SLE is characterized by its heterogeneity. In fact,
SLE is one of the most challenging diseases to diagnose by the clinicians due to the

diverse clinical manifestations that the patients can present. The American College of
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Rheumatology (ACR) made a list of symptoms in 1982 which was updated in 1997
(summarized in Figure 1). This list shows eleven criteria of which four are required for
a formal diagnosis of SLE.

Neurologic disorder

* Seizures
* Psychosis

Photosensitivity

Oral ulcers <& \ Malar rash

«#—— Discoid rash

Pleuritis or [
pericarditis ) % { Hematologic disorder
/| \ * Hemolytic anemia with reticulocytosis
* Leukopenia
* Lyphopenia
* Thrombocytopenia

proteinuria 1\

Renal disorder —@ g ‘
* Persistent \
it |

« Cellular casts Positive antinuclear

8§ % A antibody
Immunologic disorder —/ u / Nonerosive

. Anr%-L.)N/\ arthritis
* Anti-SM

* Positive finding of

antiphospholipid antibodies ‘

Figure 1. Diagnosis criteria for SLE by the American College of Rheumatology.

Considering this, there are 330 potential different types of SLE patients, and lot more if
all the subcategories of the manifestations are considered. As a consequence SLE

represents a big challenge for clinicians.

5. Treatment

Currently, the standard treatment consists of antimalarial drugs, non-steroidal anti-
inflammatories, corticosteroids, cytotoxic and immunosuppressive drugs depending on
disease severity, symptoms and involved organs (Table 1). None of these treatments are
healing, but they prevent and treat relapses reducing organic damage. The only
immunologic drug approved by the FDA so far is Belimumab which is a monoclonal

antibody (mADb) targeted to a factor localized in B lymphocytes.
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Targeted therapies

In the last years, several pharmaceutical companies have made major efforts to run
clinical trials involving new biologic drugs to treat SLE patients that exhibited poor
response to standard therapies. In Table 2 are listed several biologic drugs which are in
different development phases. The main goal of these therapies is to induce disease

remission and reestablish self-tolerance.

Table 2. Targeted therapies in SLE.

Drug Target Developer Phase ClinicalTrials.gov ID
Atacicept B cells EMD Serono Phase 2 NCT01972568
AMG557 B7H2 Amgen Phase 1 NCT01683695
Blisibimod BAFF Anthera Pharmaceuticals Phase 3 NCT02514967
Tabalumab BAFF Eli Lilly and Company Phase 3 NCT01205438
Rituximab CD20 GlaxoSmithKline Phase 3 NCT03312907
Epratuzumab CD22 UCB Pharma Phase 3 NCT01261793
Lulizumab Pegol = CD28 Bristol-Myers Squibb Phase 2 NCT02265744
CDP7657 CD40L UCB Pharma Phase 1 NCT01093911
Abatacept CD80 / CD86 Bristol-Myers Squibb Phase 2 NCT02270957
AGS-009 IFNa Argos Therapeutics Phase 1 NCT00960362
Sifalimumab [FNa MedImmune LLC Phase 2 NCT01283139
Anifrolumab IFNa receptor 1 AstraZeneca Phase 3 NCT02446912
Ustekinumab IL12 /1123 {a]flcssen Research & Development, Phase 3 NCT03517722
NNC0114_0006 IL21 Novo Nordisk A/S Phase 1 NCT01689025
ALX 0061 IL6 Ablynx Phase 2 NCT02437890
Sirukumab IL6 Centocor Research & Development Phase 1 NCT01702740
Tocilizumab IL6 receptor National Institute of Arthritis and - py ;e q NCT00046774
Rontalizumab [FNa Genentech Inc. Phase 2 NCT00962832

6. Modelling efforts applied to SLE
In most cases, PK data belonging to clinical trials are analyzed through non-
compartmental analysis (obtaining data descriptors such area under the concentration vs

time curve (AUC) or maximum concentration drug (Cwax)). However, some drugs have
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been analyzed by model-based compartmental analysis (estimating a set of parameters

from data to describe and interpret the PK profiles), as it can be seen in Table 3.

During the clinical trial some pharmacodynamic data is also collected, as it is shown in

Table 3. However, PKPD models that link drug concentrations with a response/effect

are still scarce in SLE.

Table 3. Pharmacometric efforts performed in SLE.

Drug Target Pharmacokinetics Pharmacodynamics Year Ref
AMG 811 IFNy } s TMDD model (relationship
A two cqmpartment model with linear between the AMG 811 and IFNy 2015 32
elimination .
serum concentrations)
e Mature B cells
Non-compartmental * Anti-dsDNA 2009 33
o Iglevels
) BLyS and e (3levels
Atacicept APRIL
e Mature B cells
Non-compartimental * Anti-dsDNA 2010 34
o Iglevels
e (3levels
Biologic biomarkers:
e (CD20+ B cells and CD38+
Non-compartimental plasmacytoid cells 2008 35
o AntiDNAs ab and ANAS, Igs,
Complement
e SELENA SLEDAI score
Belimumab BLyS 36
Two-compartment linear model 2013
One compartment linear model with 37
first order absorption and elimination 2013
Multiple dose
e Bcells
Blisibimod BLyS Non-compartimental e IgD+ CD27- naive cells 2015 38
e [gD+ CD27- memory cells
e (D19 lymphocytes as an
Rituximab CD20  Serum rituximab levels indicator of B cell depletion 2004 39
o For the efficacy: SLAM score
'ljwo- compal.'tn.lent. linear model with 2013 40
first order elimination
Sifalimumab IFNa
'ljwo- compal.'tn.lent. linear model with 2016 41
first order elimination
PF-04236921 L6 A two-compartment model with first Mechanism-based indirect 2018 42

order absorption and linear elimination

response model

Regarding systems pharmacology in SLE, our research group has built an exhaustive

model of the co-stimulation pathway in SLE disease® (a part of the current Ph.D.
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thesis). This model consists of a Boolean network including 52 nodes and 296
interactions between them. As will be seen below, by perturbing the network nodes, it
was possible to identify which could be the alterations that match reported observations
in SLE patients. Additionally, SLE patients are grouped according to their molecular
alterations to find if there are indeed different subpopulations of patients that may

require different treatments.
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ABSTRACT

Drug development in Systemic Lupus Erythematosus (SLE) has been hindered by poor
translation from successful preclinical experiments to clinical efficacy. This lack of
success has been attributed to the high heterogeneity of SLE patients and to the lack of
understanding of disease physiopathology. Modelling approaches could be useful for
supporting the identification of targets, biomarkers and patient subpopulations with
differential response to drugs. However, the use of traditional quantitative models based
on differential equations is not justifiable by the sparse data available. Boolean
Networks models are less demanding on the required data to be implemented and can
provide insights into the dynamics of biological networks. This methodology allows the
integration of all the available knowledge into a single framework to evaluate the
behavior of the system under different conditions and test hypotheses about unknown
aspects of the disease. In this proof-of-concept study, we explored the potential of a
Systems Pharmacology model based on Boolean Networks to support drug development
in SLE. We focused the analysis on the antigen presentation by the antigen presenting
cells (APC) to the T-cells to evaluate the reach of this methodology in a medium size
network before full implementation of the whole SLE pathway. The heterogeneity of
SLE patients was replicated using this methodology simulating subjects with distinct
pathway alterations. A perturbation analysis of the network coupled with clustering
analysis showed potential to identify drug targets, optimal combinatorial regimens and
subpopulations of responders and non-responders to drug treatment. We propose this
approach as a first step towards the development of more quantitative platforms to

address the current challenges in drug development for complex diseases.
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1. INTRODUCTION

Systemic Lupus Erythematosus (SLE) is a chronic multiorgan relapsing-remitting
autoimmune disease which is characterized by the production of autoantibodies that can
affect the majority of organs'. These autoantigens are suspected to be products of
defective apoptosis, necrosis or NETosis (formation of Neutrophil Extracellular Traps
[NETSs]) of the body cells* and can be classified according their molecular structure®
(Table 1). The incidence of SLE is about 1 to 10 per 100,000 person/years and the
prevalence 20 to 70 per 100,000 people. SLE cases have been reported in all continents
but the incidence and prevalence in people of African or Asian background are
approximately 2 to 3 times higher than in white populations, being more frequent
among women than men (90% or more of patients are women). The 5-year survival rate
among SLE patients has shifted from 50% in 1950 to 90% after the 1970s, but the 15 to
20 years survival rate is still approximately 80%*. Among the factors that have been
associated to the development of SLE are genetic, epigenetic, environmental, hormonal,
and immunoregulatory among others®, but the underlying mechanisms of the disease

remain largely unknown.

Table 1. Type of autoantigens in SLE and definition

Type Autoantigen Definition
DNA antigens dsDNA double-stranded DNA
Nucleosomes Fundamental subunit of chromatin
Non-DNA antigens Ro Ribonucleoprotein complex
La RNA-binding protein
Sm Nuclear particles consisting of several different
polypeptides
NMDA receptor N-methyl-D-aspartate receptor
Phospholipids A lipid with one or more phosphate groups

attached to it

a-Actinin Cytoskeletal actin-binding protein and a member
of the spectrin superfamily

Clq Subunit of the C1 complement component

SLE is a complex disease involving different signaling pathways and characterized by a

high clinical heterogeneity among patients. Currently, a patient has to exhibit at least
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four out of eleven symptoms to be diagnosed with SLE. Symptoms include malar rash,
photosensitivity, kidney disorder, blood disorder, abnormal antinuclear antibodies
among others’. This gives an idea about the magnitude of different possible
combinations of clinical manifestations in SLE. Additionally, more than 40 genes have
been reported as predisposing to SLE. It is expected that SLE patients with different
genetic backgrounds or different autoantigens will show different molecular alterations
in their immune response. It seems reasonable to think that the pharmacological
treatment of SLE should be personalized and probably should target more than one
signaling pathway. Yet, current approaches follow the standard paradigm testing single
drug hitting single specific targets while clinical trials has also been characterized by the
lack of patient stratification prior to the studies.

The standard treatment for SLE consists of nonsteroidal anti-inflammatory drugs
(NSAIDs), antimalarials, glucocorticoids, cytotoxic agents and immunosuppressive
agents® . To date, only one monoclonal antibody (belimumab) has been approved by
the FDA for SLE, which is used for mild to moderate SLE disease, in patients which do
not present active lupus nephritis or central nervous system disease®. SLE treatment
attempts to prevent and treat flares and reduce organ damage or other associated
problems. SLE therapy depends on the symptoms and the tissue damage experienced by
the patient. Several laboratories have investigated different compounds targeting
different components of the immune response; several are still in development phases
while others have not shown therapeutic success. Most of these research compounds
have exhibited promising results in the preclinical development but this has not been
translated into effective drugs for the treatment of SLE. Currently treatment of SLE is
far from optimal and requires new paradigms in drug development, speeding selection

and validation of active compounds and most promising drug combinations.

At the moment, there are not computational tools able to evaluate the effect of a drug in
a “SLE like” system; target validation/invalidation have been made through costly
empirical experiments and modelling have been limited to description of drug
Pharmacokinetics (PK) and modest attempts to link SLE severity scores to drug

9,10

exposure In the last years, Systems Pharmacology has emerged as a new

translational tool to study complex biological systems™

, with the aim of integrating
information from different sources into a system level model that can be used for

different purposes during the whole drug development pipeline, including target
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identification and validation/invalidation, patient stratification, biomarkers
identification, dosing selection, identification of sources of variability and prediction of
toxicity and adverse effects’***?®. Due to the heterogeneity in SLE patients and the
complexity of the disease, a Systems Pharmacology approach can support the drug
development chain by identifying different patient subpopulations according to their
molecular alterations and thus, predict the progression of the different patient
subpopulations, allowing the design of individualized drug therapies with high

likelihood of success.

In this work we propose a systems pharmacology model for the study of SLE
pathogenesis and therapeutics than can be expanded or reduced to assess different
questions during the drug development pipeline. In the SLE arena there are scarce
longitudinal data, definitely not enough to build up and validate a mechanistic and
predictive disease model. Therefore, in this initial attempt we modelled part of the
immune response to autoantigens by a Boolean network, which is a logical model
composed by several components (represented as nodes) and the interactions between
them. The nodes of the network in a Boolean model present only two states, activated or
deactivated, and the interactions between nodes can be: activation, inhibition,
upregulation or downregulation. The main advantage of Boolean dynamic models is that
they require far less parametrization than other quantitative models, capturing the

essential dynamics of a system and allowing feasible scalability to larger systems?’.

61



Systems Pharmacology in SLE

Autoantigens
)
o000
9 O

Autoantigen /

generation Tissue
Damage

Autoantibody
production

~N

m Autoantibodiey

L4

21 IL6

Oluz

Costimulation 7

TGFb
IL10

Figure 1. Assumed physiopathology of SLE
For an unknown reason the body recognizes normal endogenous molecules as antigens, triggering an immune response. These autoantigens are recognized by the receptor of the antigen presenting cell (CD4+ type),

processed and then expressed by the MHCII molecule which presents the autoantigen to the ThO cell. APC molecules interact with their respective ligands on ThO cell which triggers intracellular signals that will result
in activation of ThO cell. Once activated, depending on the cytokine environment and costimulation signals, it can differentiate into Th1, Th2, Th17 or Treg. Th2 cells interact with B cells which after maturation
produce autoantibodies against these autoantigens. Subsequently, the immune complement and several macrophages and neutrophils recognize these autoantibodies attached to the autoantigens leading to a coordinated

attack against tissues expressing those autoantigens causing tissue injury and damage.

62



Chapter 1

Figure 1 illustrates a summary of the different molecular pathways present in SLE
pathogenesis. In the current investigation we have focused our modelling efforts on the
network involving the antigen presentation by the antigen presenting cells (APC) to the
T cells. Several development programs are targeting molecules located in this stage and

many of the alterations reported in SLE patients are present at this stage of the network.

The aims of this study were first to develop and evaluate the above mentioned network
based on literature survey. Second to identify plausible altered pathways of the immune
response that may explain the observed heterogeneous alterations in SLE patients, in
order to classify SLE patients according to their molecular alterations. After a
methodology for patient stratification was proposed, we aimed to use this information in

the design of optimal therapy for each patient subpopulation.
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2. METHODS

2.1 Literature search, selection, annotation and system representation
The network model is based on an exhaustive bibliographic review focused on the
essential components of the antigen presentation. The review covered research in
humans, including in vitro, ex vivo or in vivo studies. In few cases animal data were
included to connect nodes of critical pathways when no human data was available. The
review included around 300 papers published between 1993 and 2015. Medical Subject
Headings (MeSH) terms were focused on: (i) relevant network components (nodes)
involved in the pathogenesis of the autoimmune diseases, (ii) nodes that have been
reported to be altered in SLE and (iii) nodes that directly affect the expression of the
nodes selected in (i) and (ii). Only references with direct experimental evidence or
widely accepted and cited in the literature were included.

The information from the literature review was annotated in a central repository.
Annotation was key in developing these systems pharmacology models, it included: (i)
identification of the main elements (i.e., cytokines, membrane receptors....) of the co-
stimulation process, (ii) description of the functional interrelationship between these
elements and their neighbors and (iii) identification of alteration of these elements in
SLE patients. Figure 2a-b takes the Tumor Necrosis Factor alpha (TNFa) node as
example to illustrate the processes of a) data extraction based on numerical data
obtained from graphic evidence, and b) annotation and storage in a central repository.
The same process was performed for all the nodes in the network.

Once the annotation was finalized, a graphical representation of the system was
performed including all selected nodes and the corresponding inter-relationships and
other relevant properties of the system of interest (Figure 3). Figure 2c provides a

reduced version of a graphical representation of our system.
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Figure 2. Development and implementation of a Boolean network model for SLE
a) An exhaustive literature review was performed aiming to find direct experimental evidence of relationships between nodes, using

a multi-user online system based on Mendeley software.
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** Adapted from Takahashi et al. 2009%

TNFa = ((Ag_DLL AND IFNG) OR IL2 OR GMCSF OR
TGFb) OR (TNFa AND TO_ICOS AND APC_B7H2)

AND NOT IL10 AND NOT (TNFa AND IL4)

b) That information was annotated and structured in a table, which
contains all the relationships between all the nodes, including link to bibliographic support to ensure traceability. ¢) A schematic
representation of the relationships between the nodes was obtained using yEd Graph Editor. An illustrative example shows the
relationships between TNFa regulator nodes and TNFa, different types of interaction were displayed by different connectors. d)
Examples of four different types of interaction between nodes (activation, inhibition, upregulation and downregulation) and their
corresponding Boolean expressions (Boolean operators shown in red). The final Boolean equation for each node was built
considering all the available data simultaneously, inhibition was prioritized over activation unless it was proved otherwise in the
bibliography. e) The Boolean equations were implemented into the R language according to Irurzun-Arana 2015%.
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Figure 3. Graphical representation of SLE network

Nodes are represented with different shapes and colors depending on the nature and cellular location. Four types of relationships
between nodes were represented by different edge colors or endings. lllustration made using yEd Graph Editor.
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2.2 Boolean network building

The qualitative graphical representation of the system was transformed into a semi-

2231 \which

quantitative framework using a methodology based on Boolean networks
was introduced by Kauffman®. These logic models assume only two possible states for
the nodes of the network: ON represented by 1, or OFF represented by 0. When a node
of the system is ON, it means that it is activated whereas if the node is OFF it implies
that it is deactivated or in basal state. The future state of the nodes is calculated based on
the current states of its regulator nodes (the nodes that control its
activation/deactivation) through Boolean equations. These equations are combinations
of the logic operators AND, OR and NOT. Additionally, the n notation was used to

model the nodes that need longer activation times of its regulator nodes to be activated.

The building of the Boolean functions followed two main steps: (i) equation definition
(Supplementary data 1), and (ii) implementation in the R environment. Figure 2d shows
an example of how the graphical representation shown in Figure 2¢ for the TNFo node
was defined as a Boolean equation. The interactions between the nodes were classified
in four different types: activation, inhibition, upregulation and downregulation. We
introduced the upregulation and downregulation concepts because we were not able to
capture all the information found in the literature only by using activation/inhibition
interactions. An upregulation prolongs the activation of a node for a given number of
time steps only when the node is already activated by its regulator nodes, whereas a
downregulation inhibits the node once it is activated, producing a lessen in the
expression of the component. Table 2 lists some examples of Boolean equations
depending on the regulatory relationships (activation, inhibition, upregulation,

downregulation) found in the literature and included in the current network.

The set of the defined Boolean expressions was implemented in R (Figure 2e) and forms
part of a R framework®® with several features as described in Supplementary Methods.
We have developed a simulation algorithm to perform an analysis of the co-stimulation
process, and in the following, we briefly describe how the system was initialized and

perturbed, and how the signals were propagated and integrated.
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Table 2. Examples to create Boolean equations

Type

Example

Explanation

Activation

Longer time required
for activation

Upregulation

Downregulation

TO_P65 =T0_ZAP70
TO_CA2 =T0_ZAP70 OR TO_SYK

TO_ZAP70 = APC_MHCII AND TO_TCR AND T0_CD3Z

TO_CTLA4 = NTO_ACT

IL5 = Th2 OR (IL5 AND T0_ICOS AND APC_B7H2)

IL17 = Th17 AND IL6 AND TGFb AND IL23 OR (IL17
AND TO0_ICOS AND APC_B7H2) AND NOT (IL17 AND
T0_CD27)

TO_P65 needs TO_ZAP70 to be activated.

TO_CA2 needs only one of the two
activators. If TO_ZAP70 is activated then
TO0_CA2 will be activated.

TO_ZAP70 needs the three activators
activated. If one of them is not activated
then TO_ZAP70 will not be activated.

TO_CTLA4 requires additional time for

expression in the T cell surface.

IL5 can be upregulated by the activation of
TO_ICOS and APC_B7H2. By themselves, they
are not able to activate IL5, so in the
Boolean equation is necessary IL5 presence.

The activation of the Th17 together with
IL6, TGFB and IL23 activate the node IL17.
TO_ICOS with APC_B7H2 upregulate IL17. If
IL17 is activated and TO_CD27 becomes
activated, activation of IL17 decreases over

time.

In these models, there is no explicit notion of time, and the evolution of the Boolean
network is studied using the concept of a time step, defined as the instance in which all
the nodes in a network are updated based on the corresponding logic equations. To
determine the state of a node in a time step, the random asynchronous updating method
is used®**34, This method computes the Boolean function of a node according to the
last update of their regulator nodes (occurring either at previous or current time steps).
The order in which the nodes are updated is selected randomly at each time step.
Therefore, if for example node X depends on nodes A, B and C, the state of node X at
time step t+1 can be represented as: X*l = F(4A™, B™ C*™)being F, the
corresponding Boolean function, tu the time step of the last update for nodes A, B and
C which could be t or t + 1. Consequently, the same initial conditions may lead to
different outcomes of the network dynamics. This method induces variability into the
model and constitutes a more realistic representation of the biology as it assumes that

biological processes of a system have aleatory timescales.

The initial conditions of our model (Table 3) are chosen in correspondence with the
biological information found in the literature. At time step zero, all the nodes were set to

0 except the antigen and constitutive nodes. From time step one, the state of the nodes
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depended on the state of its regulating nodes except antigen node which was kept
activated to simulate continuous production of autoantigen as it is assumed in an
autoimmune disease. At each time step and for each element (node) of the system the
signal will be either 0 (OFF status) or 1 (ON status).

Table 3. Simulation initial conditions

Conditions Thl- Polarizing Th2- Polarizing FcRy chain translocation
1. Th1-Th2-polarizing FcRy translocation + + +
2.Th1-Th2-polarizing + +

3.Thl-polarizing FcRy translocation + - +
4.Thl-polarizing +

5.Th2-polarizing FcRy translocation - + +
6.Th2-polarizing - +

7. Unpolarized FcRy translocation - - +

8. Unpolarized

2.3 Simulations

The SLE network inferred from the literature was simulated under continuous
autoantigen exposure with asynchronous updating and the learned Boolean functions.
First, we simulated the evolution of the network during 40 time steps, 30 of antigen
exposure and 10 of washout, to obtain the relative activation profiles of the system
nodes. Simulations consisted of 5000 random node updates per time step. Then, the
average of the 5000 status (“0” or “1”’) was calculated per node and time step. These
profiles show the evolution of the nodes by plotting the fraction of simulations in which
the node was in ON state at a given time step. Previous tests showed that running more
than 5000 simulations and 30 time steps did not change the average of the dynamic
trajectory of the network. We simulated different types and combinations of
autoantigens, and also, the replacement of TO CD3( chain by TO FcRy chain, a
translocation observed in many SLE patients®. Depending on the type of antigen or the
presence of the translocation of the FcRy chain, 8 different initial conditions (Table 3)

were studied initially.
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Additional simulations were performed to accomplish different objectives as network
validation (Supplementary Figure 1), attractor search or to explore system behavior
under different type of perturbations.

2.3.1 Attractor analysis

To analyze the effect of perturbations or different initial conditions on the network
dynamics, we studied the variations of the network attractor states. For any initial
condition, the system eventually evolves into a limited set of stable states known as
attractors®**®*". An attractor can be a fixed-point if it consists on only one state, a
simple cycle if it is composed by more than one state that oscillate in a cycle or a
complex attractor if the set of states oscillate irregularly.

Generally, large-scale or highly interconnected networks (like the one presented in this
paper) converge into complex attractors when the asynchronous updating scheme is
used. However, the interpretation of this type of attractors is not always easy due to the
high number of stable states involved in them. An approach to overcome this problem is
to generate the probability that a given node is in ON state inside the complex attractor.
For example, for the “unpolarized” initial condition (Table 3) of the SLE model we
found an attractor consisting of 7711 states, and we summarized all the information
from the attractor state by including the activation probabilities of all the nodes in these

7711 states in a single vector.

As expected, identification of the exact attractor state was quite expensive regarding
computational time. Alternatively, we found that the probabilities of being ON of the
nodes almost did not change if we calculate the exact attractor or if we use an
approximation, running the attractor search algorithm only 40 times during 5000 time
steps, reducing computational times considerably. For more details about attractor
identification see Supplementary Methods.

71



Systems Pharmacology in SLE

2.3.2 Network Perturbations and Clustering

The attractors of the system, and consequently, the activation probabilities of the nodes,
may change when perturbations are introduced in the system. We introduced knockouts
and over-expressions of single nodes in order to analyze which alterations could affect
those stable patterns. A knockout of a node implies the deactivation of a component
during all the simulation, whereas an over-expression generates a persistent activation

of a node once it is activated for the first time.

The expression of 23 nodes of the network has been reported as altered in SLE patients
(Supplementary Table 1). However, none of these alterations is shared among all SLE
patients, and to our knowledge, there is no report of an SLE patient exhibiting all
alterations. We attempted to simulate different individuals able to exhibit alterations in
some of these 23 nodes. We simulated individuals with perturbations (knockouts or
over-expressions) in each of the nodes of the network and checked which of these
perturbations led to alterations in the activation pattern of the 23 nodes reported as
altered in SLE patients. In the current investigation we limited our exploration to
univariate perturbations (i.e., no combination of perturbed nodes in any simulation). We
calculated the attractor of the system in normal conditions and evaluated how this
attractor changed under each perturbation. If the activation level of a node in an
attractor was decreased due to inclusion of a perturbation, it means that the perturbation
caused a lower activation of the component compared to normal conditions. Conversely,
if the activation probability of a node was increased due to a perturbation, it means that
the perturbation caused a higher activation of the component compared to normal
conditions. The ratio between the probabilities obtained in perturbed and unperturbed
conditions were calculated to serve as input to the clustering analysis. We referred to

this ratio as Perturbation Index (PI) of the nodes.

Hierarchical clustering methods determine clusters of similar items based on their
distance and build a hierarchical structure, normally illustrated as a dendrogram. A
hierarchical clustering method® was applied after the perturbation analysis to group the
perturbed nodes that caused similar “lupus-like” manifestations on the network. We
used the Euclidean distance to measure the similarities in the “lupus-like” alterations
produced by the network perturbations, which are reflected in the PI of the nodes, and

we employed the average-linkage strategy to merge the clusters of perturbed nodes
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between each other. For a more detailed description of this process see Supplementary
Methods. The objective of the clustering method is to group potential SLE patients
according to the alterations in the attractor steady states that they share, in order to find
different patient subpopulations that may require different treatments. Results of the
clustering exercise are summarized as heatmaps in which the color indicates the effect
of each perturbation compared to an unperturbed simulation, complemented by
dendrograms to identify the perturbation clusters. Only the alterations elicited on any of
the 23 nodes that have been reported as altered in SLE were considered for distance

calculations in the cluster analysis.

2.3.3 Evaluation of Therapeutic Targets

Simulations of several potential treatments were performed following the assumption
that receptor binding is complete and immediate. Two types of treatment were
simulated: (i) inhibition of different signaling pathways or cytokines, driven by node
knockouts or (ii) induction of certain molecules to upregulate a pathway using a
constant activation of the node. Different doses of anti-ICOS treatment were simulated
including a variable probability of inhibition in each time step in which the therapy was

active.
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3. RESULTS

After the process of bibliographic review, nodes selection, data annotation and
description of the Boolean equations, the antigen presentation network model (Figure 3)
consisted of 52 nodes (Supplementary Table 2), and contained 296 interactions between
the nodes describing activation, inhibition, upregulation or downregulation processes.
From de 52 nodes of the network, 23 have been reported as altered in SLE patients, 7 as
downregulated and 16 as upregulated (Supplementary Table 1). The Boolean equations
that control the network dynamics are listed in Table 4 and the biological explanation

for these equations is presented in Supplementary data 1.

Table 4. Boolean equations

APC_AR = Ag

APC_MHCII = (Ag & APC_AR)

TO TCR=1

APC_B71 = (APC_MHCII & TO_TCR & Ag)

APC_B72 = (APC_MHCII & TO_TCR & Ag)

TO_NOTCH3 =1

TO_NOTCH1 2=1

APC_DLL = APC_AR & Ag_DLL

APC_JAGGED = APC_AR & Ag_JAGGED

APC_CD40=Ag_DLL & TO_TCR & APC_MHCII

TO_CDA40L = ((APC_MHCII & TO_TCR & Ag & T0_ICOS & APC_B7H2) | ((TO_CD40L & Th1 & (IL2 | 1L12)) &!
(NIP7e9=* TO_CD40L ™ & NYPTe9™* Th1t=i & (NP7~ IL2¢- NPT~ [L12¢-1))) | ((TO_CD40L & TO_CD28 &
(APC_BT71| APC_B72)) (n“preg *T0_CD40L: ™ & n¥PT¢9=* T0_CD28 & (N{]°9=* APC_B71¢! |

NYPTeI=% ApC_B72t71)))) &! ((APC_CD40 & TO_CD40L &! Thi) | (TO_CD40L & IL4))

i=1

TO_ICOS = (TO_TCR & APC_MHCII & Ag) | TNFa | ((TO_ICOS & ( TO_CD28 & (APC_B71 | APC_B72))) &!
(NiPTe9=* TO_ICOS ™! & (N¥P7°9=* T0_CD28! ! & (N;F79™* APC_B71¢~! | niP7¢9=* APC_B72¢7Y)))) | ((TO_ICOS &
(IL12 [ 1L23) &! IL4) &! (N P7°97* TO_ICOSt ! & (M7= L2t | nPre9™* [L23¢-1Y))

APC_B7H2 =(T0_ICOS & IFNG) &! (APC_B7H2 & 1L10)

TO_CD44 =TO_ACT

TO CD28 = ! (nTHR CTLA4 max_CD28=2 10 T A4t~ | (TO_CD28 & nTHR TNFamax=3 pNp,t-i))

TO CTLA4 = r‘THR,TO,ACT,max,CTLA‘l— 2 TO ACTt i

TO_OX40 = NHR-TO-ACT.max 0X40=2 1 ACTE~! | TNFa | (TO_OX40 & IL2 &! (n!P7°9=* T0_0X40"~ &
NiPTeo=* 1L2¢-1)) | ((TO_OXA40 & TO_CD28 & (APC_B71| APC_B72)) &! (n¥*1°9~* T0_0X40'~! &

i=1

NiPreo=* 10_cD28 & (NF°9™ APC_B71¢-1 | niPT9™* APC_B72¢71)))

APC_OX40L = APC_CD40 & TO_CD40L & APC_MHCII

APC_B7HL1 = (n[HR-T0-ACT-max BTH1=2 1) ACT!=i| IFNG | (APC_B7H1 & TNFa &! (n}#7°9=* APC_B7H1!™' &
NiPTeI=* TNFat~1)) | (APC_B7H1 & IL12 &! (n¥P7°9™* APC_B7H1¢~! & NiP1°97* [L12¢71)) | (APC_B7HL & IL4

=1

&! (NiPTe9=* APC_B7H1 & NPT*9=* [L4¢-1))) &! (APC_BT7H1 & TGFb)
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Table 4. Boolean equations (continued)

APC_B7DC = n[HR-T0-ACT.max B7DC=2 1 ACT!=! | (APC_B7DC & GMCSF &! (n'F1°9=* APC_B7DC!™! &
NPTeI=* GMCSF1) | (APC_B7DC & IL12 &! (n¥P7°9=* APC_B7DC~! & n'PT°9=* [L12¢-1)) | (APC_B7DC & L4

& (NPTe9=* APC_B7DCt! & NiPT¢9™* IL4t-1)) | (APC_B7DC & IL13 &! (n¥*7°9~* APC_B7DC! ! &

=1
NUPres= 11 13t-1))

TO_PD1 = n[HR-TO-ACT.max PD1=2 1 pp1¢-i| (TO_PD1 & TNFa &! (N:P7%9~* To_PD1¢~! & NP7 %9=* TNFat~!))

=1
TO_CD27= TO_ACT &! nHR-TO-ACT-max_CD27=4 10 cpp7t-i

TO_ZAP70 = APC_MHCII & TO_TCR & T0_CD3Z

TO_SYK = APC_MHCII & Ag & TO_TCR & TO_FcRG

TO cfos=TO0_ZAP70

TO_CD3Z = (APC_MHCII & Ag & TO_TCR & TO_CD45) &! TO_FcRG

TO_CA2 =T0_ZAP70|TO_SYK

TO_FcRG = APC_MHCII & Ag & TO_TCR & Lupus

TO_P65=T0_ZAP70

TO CD45=1

TO_ACT = ((APC_MHCII & TO_TCR & (T0_CD28 & (APC_B71 | APC_B72))) | (TO_ACT & T0_ICOS &
APC_BT7H2 &! (n!?7°9=* TO_ACT*~! & NP9~ T0_ICOS & NP7 *9=* APC_B7H2¢")) | (TO_ACT & TO_CD40L &

=1
APC_CD40 &! (n{?79=* T0_ACT*~ & N¥P7°9=* T0_CD40L! ! & NPT*9=* APC_CD40~%)) | (TO_ACT & TO_OX40

& APC_OX40L &! (NP1°9=* TO_ACT! ! & NiPTe9™* T0_0X40t~! & NiPT°9=* APC_OX40L!~1))) &! ((TO_CTLA4 &
(APC_B71 | APC_BT72)) | (TO_PD1 & (APC_B7DC | APC_B7H1)))

Thl = ((TO_ACT & APC_CD40 & TO_CD40L & IL12 & IFNG) | (Th1 & T0O_CD44 &! (n*7°9~* Th1t~i &
NPTe9=* T0_CD44t~1))) &! (Thl & Treg) &! Th2 &! TGFb

i=1

Th2 = (TO_ACT & (TO_CD28 & (APC_B71 | APC_B72)) & IL4) &! (Th2 & (Treg | TO_CD44)) &! IL12 &! TGFb

Th17 = ((TO_ACT & TGFb & (IL21 | IL6 | IL23)) | (Th17 & TO_ICOS & APC_B7H2 &! (n!7*9~* Th17t-1 &

=1

NiPTeI=* T0_1C0St & N}PT9=* APC_B7H2t™Y)) | (Th17 & TO_CDA40L & APC_CDA40 &! (n¥*7°9~* Th17t~1 &

=1

NiPre9=* T0_CD4OL! ! & NiPT°9™* APC_CD40'Y))) &! (Treg &! (IL21 | IL6))) &! (IL12 | IFNG | IL4)

Tfh = (TO_ACT & IL12 & I1L21 & IL6) | ((Tfh & APC_CD40 & TO_CD40L & T0_ICOS & APC_B7H2) &!
(NiPre9=% Teht=! & NPT°9™* APC_CD40t ! & N{PT°9™* T0_CD40L: ™ & NPT~ T0_ICOS ! &
NiPres=* ApC_B7H2:Y))

Treg = (TO_ACT & TGFb) | (Treg & TO_PD1 & APC_B7H1 &! (N{Z7°9~* Tregt~! & ni1°9=* T0_PD1:"' &
NUPTe9=* ApC_B7H1t"1))) &! (IL6 | 1L21)

i=1

IL2 = TO_ACT & TO_cfos & TO_P65 & TO_CA2 &! (TO_CTLA4 & (APC_B71 | APC_B72))

IL4 = (Th2 | (TO_ACT & APC_JAGGED & TO_NOTCH1_2) | ((IL4 & TO_ICOS & APC_B7H2) &! (n'P7*9=* [L4t~
& NYPTe9=4 1o 1C0S Tt & NIPT9=* APC_B7H2'Y)) | ((IL4 & APC_OX40L & TO_OX40) &! (NP7°9=* L4t-1 &
NiPTeI=* APC_OX40LE~E & NYPTe9* TO_0X40t71)) | (IL4 & TO_CD27 &! (N¥P1¢97* L4t &

NIPTeg=4 to_cp27t-1))) &! (IL4 & (TO_PD1 & APC_B7DC))

i=1

IL6 = ((TO_CD28 & (APC_B71 | APC_B72)) | (n]FR-APC-CD40.max IL6=2 Apc D40~ & TO_CD4OL) | (TGFb &
IL23)) &! (IL4 | IL10)

IL10 = (Treg | Th2 | (IL10 & TO_ICOS & APC_B7H2 &! (n;#7°9=* IL10¢ & ni#79~* T0_ICOS ! &
NiPTeI=* APC_B7H271)) | (IL10 & TNFa &! (Ni#79=* IL10¢ & n'P7*9=* TNFat~i)) | (IL10 & IL2 &!
(NIPTe9=* L1081 & NIPTe9=* [L2t1))) &1 (TO_OX40 & APC_OX40L) &! (IL10 & (TO_PD1 & (APC_B7H1 |

APC_B7DC)))

IL12 = ((APC_MHCII & TO_TCR & APC_DLL & TO_NOTCH3 & APC_CD40 & TO_CD40L) | (IL12 & TO_ICOS

upreg=4 —i upreg=4 —i
&I (NIPTe9=* L1271 & NPT°9=* T_ICOSt ™)) &! IL10

IL13 = Th2 | (TO_ACT & Thl & IL18)
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Table 4. Boolean equations (continued)

IL17 = ((Th17 & IL6 & TGFb & 1L23) | (IL17 & TO_ICOS & APC_B7H2 &! (n*P1°9~* [L17¢-1 &
NPTeI=4 10_1C0St & NiPTe9™* APC_B7H2EY))) &! (IL17 & TO_CD27)

IL18=1

IL21 = Tfh | Th17 | (TO_ACT & IL6) &! IL4 &! IFNG &! TGFb) | (IL21 & TO_CD27 &! (n!*7*9~* IL.21t71 &

=1
NPred=t 7o_cp27tt))

IL23 = Ag_DLL

IL27 = Ag_DLL

TNFa = (((Ag_DLL & IFNG) | IL2 | GMCSF | TGFb) | ((TNFa & TO_ICOS & APC_BT7H2) &! (n{#7°9~* TNFa‘~! &
NPTeI=4 70_1C0St & NiPTe9™* APC_B7H2tY))) &! IL10 &! (TNFa & IL4)

i=1

TGFb = Treg

IFNG = ((TO_ACT | Th1) | (IFNG & TO_CD40L & APC_CD40 &! (n!P7°9=* [ENGt~! & n!P7°9=* T0_CD40L¢ ! &
NiPre9=* APC_CD40t7Y) | (IFNG & TO_ICOS & APC_B7H2 &! (n!P7*9=* IFNG*~! & i1 °9=* T0_ICOS ! &

NiPTeI=* APC_B7H271)) | (IFNG & IL12 &! (N!P7*9=* IFNGE ! & niPTe9™* [L12¢671))) &! Th2 &! IL10 &! (IFNG &
TO_PD1 & (APC_B7H1 | APC_B7DC))

GMCSF = (Thl | (GMCSF & IL12 &! (nP1°9™* GMCSFt~ & niPTe9=* IL12¢-1))) &! (IL27) &! (GMCSF & IL6)

3.1 Network dynamics simulations

The dynamic evolution of the network after antigen exposure can be captured by the
semi-quantitative activation profiles of network nodes (Figure 4). Under the same initial
conditions, different nodes exhibited different levels of relative activation and different
patterns of oscillation. The immune system triggers different responses depending on
the type of antigen; bacteria and viruses provoke Thl responses while parasites or
allergens trigger Th2 responses®. Due the molecular structure of the antigens involved
in SLE, the majority of the examples are done simulating Thl polarizing antigens.
Accordingly, in the simulations the activation profile for most nodes was dependent on
the antigen type, but this dependency varied among nodes. In general, differences in
activation profiles due to antigen type were larger for interleukins and smaller for early
signals of activation (CD80, CD86, T-cell activation). Another condition that was
studied was the FcRy chain translocation, which is an alteration observed in some SLE
patients. Simulations under this alteration produced considerable changes in the profiles
of some nodes like Interleukin 2 (IL-2), while expression of most nodes remains
unaltered under this condition. For some nodes like TNFa, alterations in its activation
profiles due to FcRy chain translocation were evident only for certain antigen types

(Figure 4).
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Figure 4. Differential expression of selected nodes for different conditions of antigen exposure and translocation of FcRy chain.
Chronic immune response against four different types of antigens (blue for Thl like antigen, orange for Th2 like antigen, red for
other types of antigens and green when Thl and Th2 like antigens are present) was simulated. Lower panel displays the impact of

FcRy chain translocation on node expression.

3.2. Perturbation analysis and clustering

We performed a perturbation analysis to identify the simulated perturbations (node
blockage or over-expression) that could lead to alterations exhibited in SLE patients,
represented as increased or decreased activation of the 23 nodes that have been reported
as altered in SLE patients. Figure 5a shows under the presence of a Th1 antigen, which
knockouts produced attractors with a (i) higher activation than the unperturbed
simulation for any of the 16 nodes that have been reported as upregulated in SLE
patients (TNFa, APC_MHCII, TO PDI,..., TO CA2), (ii) lower activation for any of the
7 nodes that have been reported as downregulated in SLE (IL4, APC_B7H1,...Treg).
Similar analysis was performed to identify which node over-expressions could lead to
higher or lower activation probabilities of the nodes that have been reported as altered in
SLE (Figure 5b). The heatmaps were combined with a hierarchical clustering method to
arrange the columns according to the lupus-like manifestations that they triggered.
Nodes that caused similar alterations are clustered together as it is shown in the
dendrograms on top of each heatmap. Heatmaps and clusters resulted from simulation

on other conditions are included in Supplementary Figure 2.
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a) Downregulated nodes b) Upregulated nodes

A

_T|
\

< 5 S oo
I, . © I 2o b =
z x - +
5, .20063 <5835 528208 o
e @ 0 C I O F !N O O © a 9T =
QAL z 8 O T T T oook oy EZ
o ZZooodd oid o oo oo e ITEIEL
A FFLYFFFRFFRSDSISFFFRFRFRF .... _
e I EEEEE
’ . APC_MHCII
APC_MHCII =.. N = S || .
TO_PD1 -
1 e | 2
o w To_svk [Ji] o w To_svk [l L]
34 o) 3z IFNG
E c TO_CTLA4 ..‘ E c TO_CTLA4
S = 3= TO_OX40 1
2% To_ox40 [l || 3= X !
g2 apcoxaoL 0 @y apcoxdoL
oo L8 = -1 IL6
= e =e wro [l
IL10
TO_CD44 T0_CD44 0
TO_FeRG To_rera [
L7 17
IL23 -1 i2: i
TO_CA2 To_ca2 i}
-] IL4 k-] IL4 -1
Q w O w .
& APC_B7H1 & o APC_BTH1
= IL2 =n L2
S e 2c
o= o.E
2 " TO_cfos 2 E @ TO_cfos -
c % TO_P65 c g TO_P65 .2
-] TO_CD3Z 28 T0_CD3Z .
o c = 22 Y
[=] Treg . (=] Treg -

Figure 5. Clustering of perturbations according to “SLE like” alterations

Heatmaps indicate the effect of single perturbations on the nodes that have been reported as altered in SLE. The numeric scale in the
legend represents different values of the nodes Perturbation Index (Pl) under different perturbations. A value of 2 represents Pls
greater than 2, a value of 1 Pls between 1.25 and 2, the 0 substitutes Pls close to 1, the -1 indicates Pls between 0.8 and 0.5, and the
-2 Pls smaller than 0.5. Two types of perturbations were simulated, node knockouts (a) and node over-expressions (b). Each
heatmap contains 23 rows, one for each node that has been reported as altered in SLE. Most perturbations did not trigger
considerable changes in those 23 nodes (represented by a 0 in the numeric scale and indicated in black or absent from the heatmap).
Some perturbations led to a higher activation of the 23 nodes (represented by a 1 or 2 in the numeric scale and indicated in orange in
the heatmaps) while the lower activation of the 23 nodes were more common (represented by a -1 or -2 in the numeric scale and in
blue in the heatmap). Perturbations were clustered according to the SLE like alterations that they provoked as can be seen in the blue
and orange blocks in the heatmaps. Results shown are for Th1 type antigen conditions. Other conditions are in Supplemental Figure
2. The * in the nodes of the columns denotes that they are reported to be altered in SLE.

3.3. Evaluation of therapeutic targets

Perturbations clustered together not only triggered similar “SLE like” alterations but it
was found that they also tended to respond similarly to simulated treatment. Figure 6
shows the effect of three perturbations (knockouts of TNFa, Programmed death-ligand
1 (B7H1), and Programmed cell death protein 1 (PD1), that were clustered together
because they trigger upregulations in nodes that have been reported as altered in SLE
(TNFa, IFNy, and APC_OX40L). The figure also shows the effect of two different

treatments (targeting components of this network that have been used in clinical trials,
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i.e. anti-TNFa and anti-ICOS) on the three nodes TNFa, IFNy, and APC_OX40L in the

presence of the above mentioned alterations.
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Figure 6. Anti-ICOS and anti-TNFa simulated treatments

10¥X0” OdY

Simulation of drug/treatment in individuals exhibiting “SLE-like” alterations in TNFa, IFNy and APC_OX40L activation
probability due to three different underlying alterations, TNFa, APC_B7H1 and TO PD1 knockouts (grouped from the cluster
analysis). Anti-ICOS treatment had different effect on the three clustered perturbations while anti-TNFa showed no effect on
activation levels of IFNy or APC_OX40L.

Simulations showed that anti-TNFa treatment decreased only the levels of TNFa.
Moreover, this treatment even led to higher expression of IFNy and APC_OX40L under
the three studied perturbations. Treatment with anti-ICOS reverted the over-expression
found in IFNy and TNFa, however for the case of APC_OX40L, the response elicited
was not optimal since that node was completely shut-down, despite a 40% activation

was seen in the control condition (“Normal”).

Another interesting possibility is the inclusion of inhibition strength on the analysis
(Figure 7). Although, this network is not yet a quantitative tool, it can evaluate what
would be the required target engagement and exposure level of a monoclonal antibody
(mADb) to effectively block a molecular pathway and potentially decrease the appearance
of “SLE like” alterations. As drug target engagement can be measured experimentally

using human cells, this information could be easily included in the model. This analysis
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would be of special interest in cases in which mAbs against the same targets but from

different manufactures exhibit different clinical efficacy.
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Figure 7. Effect of different levels of anti-ICOS treatment

Different levels of inhibition of TO_ICOS node were simulated (25%, 50%, 75% and 100% inhibition) in order to test its effect on
IFNy and TNFa nodes activation in a study subject with a knockout on TO_PD1 molecule (KO:PD1). It can be observed that higher
levels of inhibition led to lower activation of the perturbed condition in both IFNy and TNFa nodes, making the activation
probability of these nodes similar to normal conditions when using the highest anti-ICOS treatment. Higher levels of inhibition on
APC_OX40L node however, create an excessive downregulation of the node which suggests that the lowest anti-ICOS treatment

may be more adequate.
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4. DISCUSSION

In the current work we present a systems pharmacology model based on Boolean
networks for the processes involved in the antigen presentation by the APC to the T
cells, in the context of the autoimmune disease SLE. Technical aspects regarding model
implementation and coding can be obtained from elsewhere?®. Here we provide a
comprehensive workflow to help in developing and apply this type of discrete models in

the area of early drug development.

The motivation to embark on this project comes from the complexity of the immune
system and the lack of longitudinal data for most of its main components, hampering the
development of (semi-) mechanistic pharmacokinetic/ pharmacodynamic (PK/PD)
models based on ordinary differential equations. In fact there are recent examples in
literature where the population PK/PD approach has been applied to analyze data from
clinical trials in SLE®™. In those cases, no more than two biomarkers were considered
as representative of a positive signal of the drug effects. From a proof of concept point
of view such strategy is justified, but given the complexity of SLE disease (and of many
others), it seems insufficient to face the current challenges in developing new
therapeutic strategies: (i) identify poor and non-responders, (ii) target identification, or

(iii) rational search of drug combinations.

Our system pharmacology model should not be viewed as a competitor of traditional
PK/PD models and systems biology models, but rather a tool in between to bring

together different views of handling in vivo systems.

SLE is characterized by its clinical heterogeneity, most likely, this pathology comprises
patients with different underlying alterations and different types of autoantigens, and
therefore, treatment success may vary greatly among patients. Few attempts have been
made in clinical phenotyping and endotyping before clinical trials in SLE patients, even
knowing that treatment success has been low in highly heterogeneous populations for
other diseases™. In this work, we have simulated different alterations of the immune
system that triggered molecular alterations similar to those reported for SLE patients.
However, as the present model covers only a subsection of the whole SLE pathway, the
“SLE like” alterations were restricted to molecular alterations of the antigen

presentation process described for SLE patients, and not yet to SLE clinical
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manifestations. Figure 5 shows how the same “SLE like” alterations can be provoked by
different underlying univariate alterations (perturbations) and Figure 6 shows how the
effect of drug treatment to control these “SLE like” alterations could be different
depending on the underlying alteration (provoking perturbation). Furthermore, these
examples were made simulating only one type of antigen (Thl antigen). In
Supplemental Figure 3 it can be seen that the same “SLE like” alteration may be
triggered by different initial conditions. For example TNFa was upregulated between
others by a downregulation of TO_PD1 when a Thl like antigen was simulated (Figure
5). The same TNFa upregulation was triggered by a downregulation of TO CTLA4
under a Th2 antigen simulation or by an over-expression of TO_CD40L under a
simultaneous Thl and Th2 antigen stimulation. In total 34 combinations of antigen type
and underlying perturbation triggered an over-expression of TNFa. Therefore, response
to treatment intended to control such “SLE like” alterations may also vary significantly
depending on the underlying perturbation. This systems pharmacology approach may
help to identify groups of patients that share alterations in the same molecular pathways,
and could respond similarly to equal treatments, maximizing the treatment success in

clinical trials by patient stratification.

Only 12 perturbations in the network were able to provoke upregulations of the 16
nodes that have been reported as upregulated in SLE patients, this is a surprisingly low
number compared to the 112 perturbations that were tested (52 node blockages and 52
node over-expressions). Similarly 22 perturbations led to downregulations of the 6
nodes that have been reported as downregulated in SLE patients. Most of these 22
perturbations were downregulations of nodes involved in the initial stages of the
immune response, triggering a blockage of the response, impeding the activation of all
nodes except the constitutive ones. Therefore such perturbations should not be
considered as a good replication of a “SLE like” alteration. Consequently, it can be said
that few system perturbations triggered “SLE like” alterations under Thl antigen
conditions. This result was also observed for other antigen exposure conditions

(Supplementary Figure 2).

This work evaluated the relationship between: (i) system perturbation (ii) ”SLE like”
alteration and (iii) response to therapy. The analysis was performed in an univariate
way, meaning that underlying alterations (node perturbation) were simulated

individually and no combination of perturbations were tested, mainly because of the
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large number of possible combinations of perturbations, more than 12000 combinations
for a bivariate perturbation analysis and exponentially more for three or more
simultaneous alterations. The fact that most nodes perturbations did not affect
significantly the network evolution agrees with similar observations in other works of
systems biology**. Besides, it makes sense that critical processes as the immune
response are not totally dependent on individual nodes and redundant mechanisms
assure a functional physiology in case of single molecular defects.

Apart from target identification, drug development can also benefit from rapid target
invalidation, avoiding costly clinical trials of predictable inefficacious drugs. The model
presented in this work could be useful in this regard, for example an anti-TNFa
treatment which has been successfully used in other autoimmune diseases has not
shown clinical efficacy in SLE. This model, although incomplete, showed that anti-
TNFa was ineffective in controlling most “SLE like” alterations and only controlled
TNFa levels, results that are in agreement with the clinical data that suggest that anti-
TNFa treatment is only efficacious in SLE patients with alterations related to high
levels of TNFo®. Again, this type of analysis will be valid and relevant once the whole

network is finished.

It must be highlighted that despite the promising applicability of this approach, the full
potential of this tool cannot be asses until the whole SLE pathway is included in the
network. In the same way, full model validation is not possible at this stage because
activation of many nodes is also regulated by other molecules, critical to the immune
physiopathology of SLE but not yet included in the model. This project was done to
evaluate if a systems pharmacology approach can contribute to tackle the current
challenges in drug development. Evidently, these challenges can be pursued by different
types of models of different complexities, with advantages and disadvantages for each
alternative. We consider that the present work support the use of Boolean networks as
the right beginning to support target validation/invalidation, identification of biomarkers
and patient stratification in early stages of drug development for autoimmune diseases.
This is especially relevant considering the complexity of the immune system and all the
technical challenges of estimating hundreds of parameters for a quantitative model,
including the generation of reliable human data. Boolean networks are easily and
quickly implemented, flexible and scalable to larger systems. Furthermore, this model

can also identify in which subsections of the network it is worth to undertake deeper
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quantitative analysis or to include further knowledge about gene expression promoters

or polymorphisms.

Despite the advantages of this approach to study processes in which there is a general
lack of robust data, there are several limitations that must be considered. Boolean
networks are restrained to computing simple logic operations and do not capture
temporal details that may be required for modeling certain aspects of regulatory
networks. Additionally, the process of annotation and translation of literature into
Boolean equation is very time consuming and susceptible to multiple interpretation, also
the type of data necessary to perform fine validation of these networks are not easily
accessible, especially from human subjects. However, these models can be used as a
first attempt to understand the general dynamical properties of complex biological
systems.
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5. CONCLUSIONS

Heterogeneity of SLE manifestations can be modeled by different underlying altered
pathways of the immune system using a systems pharmacology approach based on
Boolean networks. The model seems appropriate to make the best use of the few
available data in complex diseases. The reach of this approach was explored. This work
constitutes a satisfactory proof of concept of this methodology and the evaluation
justifies the expansion of the current model to include the whole SLE pathway in the
network. These models are promising as research tools to support early stages of drug
development focused on target validation/invalidation, identification of biomarkers and

patient stratification.
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SUPPLEMENTARY MATERIAL

Supplementary data 1: Boolean equations Justification

APC_MHCII = (Ag & APC_AR)

The autoantigen is recognized by the receptor on the APC, it is processed and the MHCII activates to
present the autoantigen to the ThO cell®.

TO_ TCR=1

TO_TCR has a constitutive expression, in other words, it is always activated?.

APC B71/APC_B72 = (APC_MHCII & TO_TCR & Ag)

On most APC populations, B7-2 is expressed constitutively at low levels and is rapidly upregulated,
whereas B7-1 is expressed after activation®.

TO NOTCH3 =1
Constitutive expression.

TO NOTCH1 2=1
Constitutive expression.

APC DLL = APC_AR & Ag_DLL

Members of the DLL family of Notch ligands are expressed on APC in response to microbial stimuli that
promote TH1-cell induction by APC*.

APC_JAGGED = APC_AR & Ag_JAGGED

Expression of Jagged family members is induced on APC by Th2 promoting microbial and pro-
inflammatory stimuli®.

APC_CD40 =Ag_DLL & TO_TCR & APC_MHCII

Some antigens (like LPS) can promote the expression of APC_CD40 in APC while some antigens do
not”.
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TO_CD40L = ((APC_MHCII & TO_TCR & Ag & TO_ICOS & APC_B7H2) | ((TO_CD40L & Thl &
(IL2 [ IL12)) &! (N}*7°97* T0_CD4O0L! & NiPreI™ “Th1t & (NIPTea=4 L2t-i|n1Pred=* [L12t-E))
| ((TO_CD40L & TO_CD28 & (APC_B71 | APC_B72)) (n*~*T0_CD40L" &
niPre9=* 10_CD28 & (NWI°9~* APC_B71:% | n¥1°9~* APC_B72!7)))) &! ((APC_CD40 &
TO_CD40L &! Th1) | (TO_CD40L & IL4))

TO_CD40L expression on activated T cells occurs in two phases, one between 0 and 24 hours after
activation and the other after 24 hours, which is regulated by the cytokines IL4 (represses TO_CD40L
expression) and IL12 (sustains TO_CD40L expression). ICOS cross-linking with its receptor,
APC_B7H?2, results in the expression of TO_CD40L°. Furthermore it has been seen that IL2 induce
TO_CD40L on previously activated CD4 cells’ and the activation of the molecules TO_CD28 and
APC_B71 or APC_B72, enhance CD40L expression®. TO_CD40L is internalized after contact with its
receptor CD40 but when Thl is present, TO_CD40L expression is more important than its
internalization®.

TO_1COS = (TO_TCR & APC_MHCII & Ag) | TNFa | (( TO_ICOS & ( T0_CD28 & (APC_B71 |
APC_B72))) &! (niPres= *T0.1COS' & (NiP1e9=*To_CD28!" & (NI°9~* APC_B71% |
niPred=* Apc_B72t7%))) | ((TO_ICOS & (IL12 | 1L23) &! IL4) &! (nPr9~* To_ICoS' &
(n“””’g * L1287 | nMPTe9t [L23))

ICOS is not expressed constitutively on naive T cells but is induced rapidly on T cells after TCR
engagement®®. Also TNFa can promote TO_ICOS expression on T cells when stimulation via TCR/CD3
complex is weak™. The activation of the nodes TO_CD28 and APC_B71 or APC_B72 upregulates
TO_ICOS expression***2. IL-12 and 1L-23 enhance 1COS expression on activated Th cells, but IL4 reduce
the upregulatory effects of these interleukins®.

APC_B7H2 =(T0_ICOS & IFNG) &! (APC_B7H2 & IL10)

IFNG increased APC_B7H2 expression after incubation for 24 hours'*. APC_B7H2 expression may be
negatively regulated by 1L-10.

TO_CD44 =T0_ACT

ThO activation, allows TO_CD44 recognizes and binds hyaluronan, activating the node T0_CD44.

TO CD28 =1 (nTHR CTLA4_max _CD28=2 TO CTLA4t i I (TO CD28 & nTHR TNFa_max=3 TNFat 1))

CD28 is constitutively expressed on the surface of T cells, whereas CTLA-4 expression is rapidly
upregulated following T cell activation®'?. CTLA-4 is then capable of directly competing with CD28 for
binding of B7. CTLA-4 may also exert a direct negative effect on CD28 signaling, mediated by the
binding of the phosphatases PP2A and SHP-2'". TNFa downregulates CD28 expression when the levels
of the TNFa are high'®.

TO_CTLA4 - nl?'zl-llR_TO_ACT_max_CTLA4—:2 TO_ACTt—i

TO_CTLA4 expression is rapidly upregulated following T cell activation, but it is located in the
intracellular compartment, so some time is required to express this molecule in the T cell surface'>*"**,
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T0_OX40 = NJARTOACT max_0X40=2 79 ACT!~i | TNFa | (TO_OX40 & IL2 &! (N7°9~* T0_0X40'"
& NiPred=* IL2t-%) | ((TO_OX40 & TO_CD28 & (APC_B71 | APC_B72)) &! (n¥*7°9~* T0_0X40'~

i=1
& NiPTe9=* T0_CD28! & (NP1°9=* APC_B71¢ | n71°=* APC_B727)

The optimal expression of TO_OX40 occurs 24-48 hours after the activation of naive T cells and requires
strong TCR ligation, CD28 engagement and IL-2/IL-2R signaling®. On the other hand, exogenous TNF
can promote the expression of TO_OX40, on T cells when stimulation via the TCR/CD3 complex is
relatively weak™.

APC_OX40L = APC_CD40 & TO_CD40L & APC_MHCII

APC_OX40L is not constitutively expressed but can be induced on professional antigen- presenting cells
(APC) following antigen recognition by APC_MHCII? and also, the expression of OX40L is dependent
upon signaling through CD40%.

APC_B7H1 = (njARTOACT.max B7HI=2 1o ACT!"{ IFNG | (APC_B7H1 & TNFa &!
(NiPre9=* APC_B7H1'"i & N'P7°9~* TNFa'~})) | (APC_B7H1 & IL12 &! (n}¥7°9~* APC_ B7H1' &
niPred=t L12t-Y) | (APC_B7H1 & IL4 &! (Ni¥1°9=* APC_B7H1'"i& n!P1°9~* [L4t-1))) &!
(APC_B7H1 & TGFb)

APC_B7H1 is activated after activation?, and is rapidly activated upon IFNG treatment®. TNF-a has
been associated with increased APC_B7HL1 expression, while TGF-b suppressed induction of the
APC_B7H1 in healthy control cells?®®. On the other hand, the addition of IL12 or IL4 led to up-regulate
APC_BT7H1 ligand®.

APC_B7DC = nJHRTOACT.maxB7DC=219 ACcT!® | ( APC_B7DC & GMCSF &!
(NiP7°9=* APC_B7DC'™* & NiP7*9~* GMCSF'~%)) | (APC_B7DC & 1L12 &! (ni¥1*9~* APC_B7DC' ™
& niPred=tL12t-i) | ( APC_B7DC & IL4 &! (N®7°9=* APC_B7DC'™ & niP1e9=* L4t-)) |

(APC_B7DC & IL13 &! (n7°9~* APC_B7DC' " & n'P1°9~* [L13t7))

The interleukins IL-4 and IL-13 upregulate APC_B7DC?; In other study, the addition of IL-12 or IL-4
led to further up-regulation of APC_B7DC?.

TO_PD1 = nIARTOACTmaxPD1=21g pp1t-i| (TO_PD1 & TNFa &' (N1*~*T0_PD1"! &
niPred=* TNFat-i))

PD-1 is highly upregulated following TCR stimulation'®**. Exogenous TNF can promote the expression
of TO_PD-1 on T cells when stimulation via the TCR/CD3 complex is relatively weak™.

TO_CD27= TO_ACT &! nJHR-TO-ACT.max_(D27=4 1 cp27t-t
T cell activation via TCR/CD3 complex, induces TO_CD27 expression®®. However, in humans, T0_CD27

expression distinguishes between naive and effector/memory stages of T cells; The differentiation into
effector T cells is accompanied by loss of TO_CD27 expression®.
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TO_ZAP70 =APC_MHCII & TO_TCR & T0_CD3Z

Once the antigen is present to the T cell by the APC_MHCII, TO_TCR becomes activated and the
TO_CD3( chain recruits the zeta associated protein of 70 kDa (T0_ZAP70) kinase™®.

TO_SYK =APC_MHCIl & Ag & TO_TCR & TO_FcRG

Upon stimulation of SLE T cells, the TO_FcRG chain recruits the spleen tyrosine kinase (T0O_Syk) instead
of the normally recruited ZAP70%.

TO_cfos = TO_ZAPT70

When TO_ZAP70 is activated, then it phosphorylates other molecules, thus transmitting the signal
downstream into three distinct pathways. One of these pathways is Ras-MAPK cascade, which induces
and activates TO_cfos protein, a component of the transcription factor Activated protein 1 (AP1)*.

T0_CD3Z = (APC_MHCII & Ag & TO_TCR & T0_CD45) &! T0_FcRG

Once APC_MHCII and TO_TCR are activated by the presence of the antigen, TO_CDA45 is the responsible
to remove inhibitory phosphates from the Src family lymphocyte kinase (Lck), and the TO_CD3Z chain is
phosphorylated, resulting in their activation®.

TO CA2=TO0_ZAP70 | TO_SYK

When TO_ZAP70 is activated, then it phosphorylates other molecules, thus transmitting the signal
downstream into three distinct pathways. After phosphorylation of some molecules, inositol
trisphosphate leads to opening of the calcium channels, increased intracellular calcium concentrations and
activation of the phosphatase calcineurin, which dephosphorylates and activates the transcription factor
Nuclear factor of activated T cells (NFAT), one of the pathways to transmit the signal downstream®.

TO_FcRG = APC_MHCII & Ag & TO_TCR & Lupus

SLE T cells display a unique rewiring of the surface TO_TCR-CD3 complex wherein expression of the
TO_CD3Z chain is decreased in cells from a majority of patients. The lack of the TO_CD3Z chain in the
TO_TCR-CD3 complex is structurally and functionally replaced by the homologous Fc receptor gamma
(TO_FcRG) chain®.

TO_P65=TO0_ZAP70

When TO_ZAP70 is activated, then it phosphorylates other molecules, thus transmitting the signal
downstream into three distinct pathways. Other pathway is the NFKkB pathway, which after some signals
activates; NF-kB is a heterodimer of the p65/p50 subunits®.

TO CD45=1

Constitutive expression.
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TO_ACT = ((APC_MHCII & TO_TCR & (T0_CD28 & (APC_B71 | APC_B72))) | (TO_ACT &
TO_ICOS & APC_B7H2 &! (n¥7°9~* T0_ACT*! & n¥P7*9~* T0_ICOS & NiP]*9~* APC_B7H2'™))
| (TO_ACT & T0_CD40L & APC_CD40 &! (ni*1°9~* To_ACT* & ni?7*9~* TO_CD40L" ' &
NiPre9=* APC_CD40'%)) | (TO_ACT & T0_OX40 & APC_OX40L &! (N7*9~* To_ACT' &
NiPre9=* 70_0X40t & NPI9~* APC_0X40L'%)) &! ((TO_CTLA4 & (APC_B71 | APC_B72)) |
(TO_PD1 & (APC_B7DC | APC_B7H1)))

TO_ACT needs two signals to activate. The first one is provided by the interaction of the APC_MHCII
with TO_TCR and the second by the interaction of the TO_CD28 with APC_B71 or APC_B72. This
signal augments and sustains a T cell response®®!. Other molecules enhance TO_ACT expression, like the
interaction of TO_CD40L with APC_CD40% T0 _OX40 with APC_OX40L* and TO_ICOS with
APC_B7H2%3*, However the interaction of TO_ CTLA4  with APC_B71 or APC_B72**"* and the
interaction of TO_PD1 with APC_B7H1 or APC_B7DC*%, deliver a negative signal, inhibiting
TO_ACT.

Thl = ((TO_ACT & APC CD40 & TO CD40OL & IL12 & IFNG) | (Thl & TO CD44 &!
(NIPre9=* Th1t-i & NP7°97* TO_CD44' 7)) &! (Thl & Treg) &! Th2 &! TGFb

TO_CD40L is necessary to Th1l development, this could be because the lack of TO_CD40L fail to produce
IL12 cytokine from the APC, and 1L12 and IFNG are required for Thi differentiation®*2. Furthermore
Guan et al. found that in CD44-/- mice, Thl immune response was down-regulated®’, so CD44 has an
influence in Thl differentiation.

Contrary Treg have an inhibitory effect on Thl proliferation, reducing the magnitude of the immune
response® and on the other hand Th2 cell differentiation and Th2 cytokine secretion inhibits Thl
development®; TGFb also blocks Thil differentiation in mice*. Some of these studies are performed in
micezubut it has been found that differentiation of Th1 and Th2 cells follows similar rules in humans as in
mice™.

Th2 = (TO_ACT & (T0_CD28 & (APC_B71 | APC_B72)) & IL4) &! (Th2 & (Treg | TO_CD44)) &!
IL12 &! TGFb

It has been seen that TO CD28 is necessary for Th2 development®; also IL4 promotes Th2
differentiation®. As same as in the Thi, Tregs inhibit the proliferation of the Th2 cells, reducing the
magnitude of the immune response, moreover in the case of the Th2 cell, Tregs also enhance its
apoptosis®, but in this case, Guan et al. found that in CD44-/- mice, Th2 immune response was up-
regulated®, so CD44 has a negative influence in Thl differentiation. Furthermore, 1L-12* and TGFb*
inhibits Th2 development. Some of these studies are performed in mice, but it has been found that
differentiation of Th1 and Th2 cells follows similar rules in humans as in mice®".

Thi7 = (((TO_ACT & TGFb & (IL21 | IL6 | 1L23)) | (Th17 & T0_ICOS & APC_B7H2 &!
(NIP1°9=* Th17t1 & NP7°9~* T0_1COSt & Ni*1°9=* APC_B7H2!™)) | (Th17 & TO_CD40L &
APC_CD40 &! (N{?1°9~* Th17'* & n}*7°9~* TO_CD40L: " & N*1°9~* APC_CD4071))) &! (Treg

&! (IL21 | IL6))) &! (IL12 | IFNG | IL4)

Once ThO is activated, in the presence of TGF-p plus IL-6 or IL-21 or 1L23, the Treg developmental
pathway is abrogated, and instead T cells develop into Th17 cells***?. Gao et al.” study demonstrates that
TO_ICOS-APC_B7H2 interaction is critical for Th17. Also development of Th17 critically depends on
APC_CB40—TO_CD4OL cross-talk*®. However IL-12, IFN-y, and IL-4 can inhibit Th17 differentiation in
humans™.
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Tfh = (TO_ACT & IL12 & IL21 & IL6) | (Tfh & APC_CD40 & TO_CD4OL & T0_ICOS &
APC_BTH2) & (NZ{*~*Tfh™! & n2;*"~* APC.CD40"" & n?*’~* To_CD40L™" &
niPres=t 10_1COS' & NiP1*9=* APC_B7H2!™Y))

The cytokines 1L21, IL6 and 1L12 are necessary for Tfh generation***. Also, Bossaller et al.* have found
that human TO_ICOS and TO_CD40L deficiency results in a significant reduction of circulating Tth cells,
so these costimulation molecules upregulates Tfh expression.

Treg = ((TO_ACT & TGFb) | (Treg & TO PD1 & APC_B7H1 &! (n'i‘ff"’g:‘l Tregt™ &
niPre9=* 70_PD17 & NI*1°9* APC_B7H1'")))) &! (IL6 | IL21)

Once ThO is activated and the cytokine TGFb is present, ThO differentiates to Treg*’. Furthermore, Yao et
al. found that the cross-linking between APC_B7H1 with TO_PD1 enhances and sustains Treg
expression®®. However IL6, which is a pro-inflammatory cytokine, inhibits Treg differentiation*®. Also the
cytokine IL21 can inhibit its differentiation®.

IL2=TO_ACT & TO_cfos & TO_P65 & TO_CA2 &! (TO_CTLA4 & (APC_B71| APC_B72))

TO_P65, TO_cfos and TO_CA2 are components involved in the routes which mediate IL2 transcription®.
TO_CTLAA4 inhibits IL2 synthesis and progression through the cell cycle and terminates T cell responses®.

IL4 = (Th2 | (TO_ACT & APC_JAGGED & TO_NOTCH1_2) | ((IL4 & TO_ICOS & APC_B7H2)

&! (NIPre9= L4t & nP7e9~* 10_1C0S ! & NiP1*9™* APC_B7H2'Y) | (IL4 & APC_OX40L &
TO_OX40) &! (NP79~* L4t~ & N!P1°9=* APC_OX40L & niP7*9™* T0_0X40'Y) | (IL4 &
T0_CD27 &! (Ni27°9~* 1.4t~ & n*1°9~* T0_CD27'7))) &! (IL4 & (TO_PD1 & APC_B7DC))
Th2-cell lineage produces 1L4*°. Human ICOS deficiency significantly reduces the production of
cytokine IL4%. Also TO_OX40 ligation with its ligand (APC_OX40L) increases four times the expression
of 1L-4% and IL-4 expression is increased upon CD27 costimulation®. However, in the presence of
APC_B7DC IL4 production is markedly reduced*®.

IL6 = ((TO_CD28 & (APC_B71| APC_B72)) | (njHR-APC-CD40.max IL6=2 Apc D40~ & TO_CDA4OL)
| (TGFb & 1L.23)) &! (1L4 | I1L10)

IL6 has a dose-dependent effect in response to TO_CD28. It has been seen that APC_CDA40 acts to
trigger I1L6 release from dendritic cells (DC)**°, on the other hand it has found seen that 1L-6 production
was mostly dependent on TGF-b and IL-23%. However IL4 and IL10 cytokines suppressed IL6
secretion®” .

IL10 = (Treg | Th2 | (IL10 & TO_ICOS & APC_B7H2 &' (n1*~*L10""i&

=1

NiPTe9=* 7o 1COS' & NM¥1°9* APC_B7H2'™Y)) | (IL10 & TNFa &! (n#1*~*1L10t &

NiPre9=t TNFal™)) | (IL10 & IL2 &! (NP1*97* IL10ti & niP7*9™* [L2t-) &! (TO_OX40 &

APC_OX40L) &! (IL10 & (TO_PD1 & (APC_B7H1 | APC_B7DC)))

Although Treg cells are the main producers of IL10 it has been seen that it can be produced by Th2
cells®. TO_ICOS activation upregulates 1L10 production®!, TNFa®! and IL2% also induce the secretion of
IL10. On the other hand OX40L inhibits its generation® and in the presence of APC_B7H1 or
APC_B7DC the secretion of 1L10 is decreased***,
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IL12 = ((APC_MHCII & TO_TCR & APC_DLL & TO_NOTCH3 & APC_CD40 & T0O_CD40L) |
(IL12 & TO_ICOS &! (N¥Pr9=* [L12¢7% & n¥P1°9* T0_1C0S ) &! 1L10

Certain antigens, like LPS, promotes IL12 enhance®. Furthermore 1L-12 has been found to be secreted by
DC upon antigen-specific interaction with T cells. The antigen-driven induction of IL-12 secretion
requires interaction via peptide/ MHC class 11-TCR and APC_CD40- T0_CD40 ligand molecules®® and
also others researchers have found that APC_CD40 and TO_CD40L interaction is essential for 1L12
production by dendritic cells**®"%. T0_ICOS enhance the induction of IL12°* (Takahashi et al., 2009)
However, Ria and et al. found that IL-10 produced by Th2 cells appears to be solely responsible for the
inhibition of Thl-induced IL-12 secretion®.

IL13=Th2 | (TO_ACT & Thl & IL18)

Th2 cell lineage produces IL13 cytokine*®, however, when Thi cells are stimulated with 1L18, they
produce 1L-13%.

IL17 = ((Th17 & IL6 & TGFb & 1L.23) | (IL17 & TO_ICOS & APC_B7H2 &! (n{¥1°9~* IL17"" &

NiPred=* 10_1COS' & NiP7*9=* APC_B7H2'™%)) &! (IL17 & T0O_CD27)
Th17 lineage cells produces IL17 cytokine*® together with IL6, TGFb and 1L23%. Moreover, Takahashi
and et al.>* found that in TO_ICOS deficient patients, the IL17 secretion was imparied. On the other hand,
IL17 expression is dramatically reduced in Th17 upon TO_CD27 costimulation.

IL18=1

Constitutive expression.

IL21 = Tfh | Thl7 | ((TO_ACT & IL6) &! IL4 &! IFNG &! TGFb) | (IL21 & T0_CD27 &!
(NIPTe9=* L2141 & NIPT°9=* To_CD27'Y))

Tfh and Thi7 cells secrete I1L21 cytokine®*. When Suto et al.” stimulated naive CD4+ T cells with
anti-CD3mAb/anti-CD28mAb in the presence of IL6, anti—IL4 mAb, and anti-IFNG mAb with or
without TGFb, they found that IL6 together with the blocking antibodies to IL-4 and IFNG strongly
induced the development of 1L21 — producing CD4 + T cells; Diehl et al.” also show that IL6 increased
IL21 production by human CD4+ T cells. On the other hand TO_CD27 costimulation increased IL21
expression®.

IL23 = Ag_DLL

Some pathogens and Toll-like receptor agonists, like LPS, CpG and Polyl:C, enhance expression of the
p40, p35, and p19 subunits, resulting in the release of bioactive 1L-23".

IL27 = Ag_DLL

Some pathogens and Toll-like receptor agonists, like LPS, CpG and Polyl:C, enhance expression of the
p40, p35, and p19 subunits, resulting in the release of bioactive IL-27; The production of this cytokine
can be further augmented by T cell CD40L/CD40 interactions that drive potent positive feedback
responses for DC activation”.
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TNFa = (((Ag_DLL & IFNG) | IL2 | GMCSF | TGFb) | ((TNFa & TO_ICOS & APC B7H2) &!
(NIP7°9=* TNFa'~! & N¥P7°9~* T0_1C0S' & N}*71°9=* APC_B7H2!%))) &! IL10 &! (TNFa & IL4)
IFNG augments TNFa production in response to LPS (antigen) stimulation®. Also IL-2, GMCSF and
TGFb have been reported to induce TNF release® ™. Human ICOS deficiency significantly reduces the
expression of cytokine TNFa>'. However, treatment with 1L10 causes significant reductions in TNFa®.
Furthermore its production is attenuated by I1L-4",

TGFb = Treg

TGFb is produced by Treg cells* and other multiple lineages of leukocytes and stromal cells, but they are
not included on the network.

IFNG = ((TO_ACT | Thl) | (IFNG & TO_CD40L & APC_CD40 &! (NiP1*~*IFNG &
niPre9=* To_cp4oL "t & NiPr°9* APC_CD40' ) | (IFNG & TO_ICOS & APC_B7H2 &!
(NIPTe9=* IENG & niPre9=* To_IcOS'™ & n*1°9=* APC_B7H2'™)) | (IFNG & IL12 &!
(NIPTe9=* IFNGE ! & n'P7*9~* IL1257%)) &! Th2 &! IL10 &! (IFNG & T0_PD1 & (APC_B7H1 |

APC_B7DC))

The IFNG genes are transcribed in naive T cells within 3 to 24 hours after initial activation®. Also, Thl
cells produce IFNG®. Howland et al. found that in the absence of TO_CDA40L, T cells had a selective
defect in IFNG production, but the addition of IL-12 enhanced IFNG production®? also, Takahashi et al.
showed TO_ICOS expression enhances IFNG expression®. On the other hand, Th2 inhibits IFN-g
secretion’ and in the presence of TO_PD1, APC_B7H1 and APC_B7DC the secretion of IFNG is
decreased®®**3%%4,

GMCSF = (Thl | (GMCSF & IL12 &! (n¥79~* GMCSF' ! & niP7*9~* IL12t7Y) &! (1L27) &!
(GMCSF & IL6)

GMCSF is promoted by the Thi cells. Noster et al.” have found that the addition of IL12 enhances
significatively GMCSF production; while other interleukins like IL27 or IL6 inhibits or downregulate
GMCSF expression respectively in humans
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Supplementary Methods

R framework

In order to minimize the effort to implement models, run simulations and analyze the
results, we developed a framework consisting on a series of R and C++ scripts to
perform Boolean modeling of Systems Biology or Pharmacology networks. The main
features of this framework are: a parallelized simulation algorithm, an attractor search
algorithm, a perturbation analysis method and its graphical representation and the
clustering of the perturbation analysis result. To facilitate execution from R Studio
because of its user-friendly interface, we used the Rcpp R package to communicate
from R to the C++ algorithm and get the result back to the R environment again. The
algorithms written in R use additional R packages like data.table and corrplot (Wie,
2013).

The framework is called Autolmmune Targeting On R (AITOR), although it can be
implemented for any other disease or biological network. Another manuscript with all
the details about the AITOR framework is being prepared for publication and it will be

soon available.

Attractor analysis

The attractor search was computed via exhaustive repetitions of the simulation
algorithm. Because of the large-scale network, the estimation of the attractor is very
slow if computed in the R environment. We coded the simulation algorithm on C++ in
order to increase the simulation speed in 60 fold. To guarantee that all attractors of a
network with n nodes are found, it is necessary to test all the 2" possible states as initial
states. Due to the exponential relationship, this search becomes unmanageable at around
30 nodes (Hopfensitz et al., 2012). Fortunately, we were not interested in testing all the
possible start states, as we defined a few possible initial conditions for our SLE
networks (Table 3).

To obtain all the attractor states a great computing effort is required because some of
these states very rarely occur. However, we found that the activation probabilities of the
nodes almost did not change if those “unusual” states were ignored, suggesting that
these rare states can be excluded from the analysis to decrease the number of repetitions

needed for the attractor search algorithm. Therefore, the 8 initial conditions of the SLE
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network were evolved for 5000 time steps in asynchronous mode and repeated 40 times
in order to obtain a satisfactory approximation of the activation probabilities of the
system nodes.

Hierarchical clustering

The result of the univariate perturbation analysis is a square matrix in which the number
of rows and columns is equal to the number of nodes in the network. The value in each
cell of the matrix corresponds to the Perturbation Index (PI) of the “row node” under a
perturbation from the “column node”. We transformed the resulting matrix to store only
5 possible values: a value of 2 represents Pls greater than 2, a 1 indicates Pls between
1.25 and 2, the 0 substitutes Pls close to 1, the -1 indicates Pls between 0.5 and 0.8 and
the -2 Pls smaller than 0.5. Values of 1 and 2 are used to represent perturbations that
cause a higher activation of the nodes in the system. On the contrary, values of -1 and -2

indicate lower activations of the nodes.

To group the system perturbations according to the lupus-like alterations that they
provoked the next steps were followed: i) A new matrix was created in which the
number of rows and columns was equal to the number of nodes in the network (52). ii)
For each node, we listed all the alterations that they provoked on the 23 nodes that have
been reported as altered in SLE (“SLE like” alterations), that is, we summed the number
of 2,1,-1 and -2 that each node provokes. iii) The value in each cell of the matrix was
filled with the ratio between the number of “SLE like” alterations that the “column” and
“row” node shared over the number of “SLE like” alterations provoked by the “row”
perturbation. For example, if a perturbation on node A provoked 4 “SLE like”
alterations, a perturbation in node B led to 5 “SLE like” alterations and both
perturbation shared 3 of those “SLE like” alterations, a value of 3/, =0.75 was stored in
the row A column B position of the matrix, while a value of 3/,=0.6 was stored in the
row B column A position. The diagonal of this matrix is a vector of of 1s. iv) Rows and
columns of nodes which perturbations did not provoke any “SLE like” alteration were
removed from the matrix. v) Hierarchical clustering analysis was applied over the

outcome matrix of the previous step.
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We used the Euclidean metric to measure distance between the alterations that each
node shared with the rest of the nodes of the network. For the previous example, the
distance  between the alterations that node A and B shared is:

D(A,B) =¥, (B;—A)? =(1—-0.6)2+ (0.75 — 1)2 = 0.4717, where n is the

number of nodes in the network (2 for this example).

All these operations can be computed in the R framework automatically with the help of
the R scripts that the group developed.
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Supplementary Table 1

Supplementary table 1. Altered nodes in SLE

Node Alteration in SLE patients Reference
APC_MHCII Upregulated i
APC_B7H1 (PDL1) Downregulated =
APC_OX40L Upregulated S
TO_CTLA4 Upregulated &0
TO_CD44 Upregulated s
TO_PD1 Upregulated £2
TO_ICOS Upregulated £s
TO_OX40 Upregulated Bl
TO_CD3z Downregulated e
TO_FcRG Upregulated Sosolte
TO_SYK Upregulated &®
TO_cfos Downregulated S
TO_CA2 Upregulated &
TO_P65 Downregulated Suss
1L2 Downregulated =0
IL4 Downregulated &
1L10 Upregulated 2
IL6 Upregulated o
IFNG Upregulated BEE
TNFa Upregulated =
IL23 Upregulated 9
IL17 Upregulated 2
Treg Downregulated %
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Supplementary Table 2

Supplementary table 2. Node localization, type and function.

Name Localization Type Function Reference
Antigen Autoantigen in SLE. 97
Antigen Surface

APC Antigen receptor in the Antigen Presenting Cell.
receptor molecule
The main function of MHCII (major histocompatibility
Surface complex class II) molecule is to present processed
MHCII APC o
molecule antigens to CD4 (+) T-lymphocytes. It is critical for the
initiation of the antigen-specific immune response.
B71 (CD80) is a B7 family member that has dual
Surface
B71 APC specificity for the stimulatory receptor CD28 and the 3
molecule
inhibitory receptor CTLA-4.
B72 (CD86) is a B7 family member, that has dual
Surface
B72 APC specificity for the stimulatory receptor CD28 and the 3
molecule
inhibitory receptor CTLA-4.
DLL is expressed on APC in response to bacteria, viruses
Surface
DLL APC and TLR-ligands that promote TH1-cell induction by 4
molecule
APC.
Surface JAGGED is expressed on APC in response to parasites and
JAGGED APC 4
molecule allergens that promote TH2-cell induction by APC.
CD40 is a type I transmembrane protein of the TNFR
Surf superfamily. CD40-CD40L engagement on the surface of
urface
CD40 APC DCs promotes their cytokine production, the induction of 99
molecule
costimulatory molecules on their surface, and facilitates
the cross-presentation of antigen.
B7H1 (Programmed death-ligand 1) and B7DC
Surface (Programmed death-ligand 2) strongly inhibit both T-cell
B7H1 APC g
molecule proliferation and cytokine production even in the
presence of strong B7-CD28 signals.
B7H1 (Programmed death-ligand 1) and B7DC
Surface (Programmed death-ligand 2) strongly inhibit both T-cell
B7DC APC 3
molecule proliferation and cytokine production even in the
presence of strong B7-CD28 signals.
B7H2 (ICOS ligand) is a member of the CD28/CD152
Surface receptor family. ICOS-B7H2 engagement, enhances T cell
B7H2 APC 51
molecule proliferation, secretion of cytokines, and up-regulation of
cell surface molecules.
0X40L (CD252) is a member of the TNFR/TNF
Surface superfamily and is expressed on activated CD4. It
0X40L APC 21
molecule regulates cytokine production from T cells and
modulates cytokine receptor signaling.
Surface TCR (T cell receptor) recognizes the antigen presented
TCR T cell 100
molecule by the MHCII molecule.
TO_ACT ThO activated  ThoO activated.
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Supplementary Table 2 (continued)

NOTCH1_2

NOTCH3

CD27

CD28

CTLA4

CD45

CD44

CD40L

PD1

ICOS

0X40

CD3Z

FcRG

ZAP70

SYK

cfos

T cell

T cells

T cell

T cell

T cell

T cell

T cell

T cell

T cell

T cell

T cell

T cell

T cell

T cell

T cell

T cell

Surface
molecule
Surface

molecule

Surface

molecule

Surface

molecule

Surface

molecule

Surface

molecule

Surface

molecule

Surface

molecule

Surface

molecule

Surface

molecule

Surface

molecule

Intracellular
molecule
Intracellular
molecule
Intracellular
molecule
Intracellular
molecule
Intracellular

molecule

Notch1 or notch2 have been implicated in Th2-cell

differentiation.
Notch3 has been implicated in Th1-cell differentiation.

CD27 is a lymphocyte-specific member of the TNFR
which is expressed in T cells after activation via
TCR/CD3 complex.

CD28 delivers signals important for T cell activation and
survival.

CTLA-4 (cytotoxic T lymphocyte associated protein 4)
inhibits T cell responses and regulates peripheral T cell
tolerance.

CD45 (lymphocyte common antigen) acts as a positive
regulator of Src family protein tyrosine kinases.

CD44 is a transmembrane glycoprotein. It acts as a co-
stimulus for T cell activation in association with
triggering through the TCR.

CD40L (CD154) is a type Il transmembrane protein of
the TNF superfamily. CD40-CD40L engagement on the
surface of DCs promotes their cytokine production, the
induction of costimulatory molecules on their surface,
and facilitates the cross-presentation of antigen.

PD1 (Programmed cell death protein 1) is an inhibitory
molecule expressed by activated T cells. Engagement of
PD1 by B7H1 (PDL1) or B7DC (PDL2) inhibits TCR-
mediated proliferation and cytokine production by
previously activated T cells.

ICOS (Inducible T-cell costimulator) enhances T cell
proliferation, secretion of cytokines, and upregulation of
cell surface molecules.

0X40 (CD134) is a member of the TNFR/TNF
superfamily and is expressed on activated CD4. 0X40
Regulates cytokine production from antigen-presenting
cells and modulates cytokine receptor signaling.
Promotes division and survival of conventional T cells,
augmenting the clonal expansion of effector and memory
populations.

CD3{ (T-cell receptor T3 zeta chain) mediates
intracellular signaling through ZAP70.

FcRy (Fc receptor gamma) mediates intracellular
signaling through SYK.

ZAP70 (Zeta-chain-associated protein kinase 70)
mediates intracellular signaling.

Syk (Spleen Tyrosine Kinase) mediates TCR signaling
independently of CD45 and of Lck.

cfos is a component of the AP1 transcription factor.
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Supplementary Table 2 (continued)

Intracellular
CA2 T cell
molecule
Intracellular
P65 T cell
molecule
IL2 Cytokine
Differentiated
Th2
T cell
IL4 Cytokine
IL10 Cytokine
IL13 Cytokine
IL6 Cytokine
IL12 Cytokine
IFNG Cytokine
Differentiated
Th1
T cell
TNFa Cytokine
TGFb Cytokine
IL21 Cytokine
IL23 Cytokine
Differentiated
Th17
T cell
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CAZ2 (Calcium) is present in NFAT transcription factor.

p65 is a subunit of NF-kB transcription factor.

IL-2 (Interleukin 2) plays a crucial role in immune
activation and homeostasis.

Th2 cells evoke strong antibody responses (including
those of the IgE class) and eosinophil accumulation, but
inhibit several functions of phagocytic cells (phagocyte-
independent inflammation).

IL-4 (Interleukin 4) has an important role in regulating
antibody production.

IL-10 (Interleukin 10) modulates expression of
cytokines, soluble mediators and cell surface molecules
by cells of myeloid origin, with important consequences
for their ability to activate and sustain immune and
inflammatory responses.

IL-13 (Interleukin 13) induces immunoglobulin
production and proliferation of B cells and the
differentiation of cells of the monocytic lineage.

IL-6 (Interleukin 6) is a pleiotropic cytokine which
induces terminal differentiation of B lymphocytes into
antibody-forming cells and the differentiation of T cells
into effector cells. IL-6 also has multiple potent
proinflammatory effects.

IL-12 (Interleukin 12) induces cytokine production (IFN-
Y) acts as a growth factor for activated NK and T cells,
enhances the cytotoxic activity of NK cells, and favors
cytotoxic T lymphocyte generation.

IFN-y (Interferon gamma) is the chief cytokine involved
in the protective immune response against
mycobacterial infection.

Th1 cells evoke cell-mediated immunity and phagocyte-
dependent inflammation.

TNFa (tumor necrosis factor alpha) provokes
inflammation, necrosis, cell proliferation, differentiation,
and apoptosis.

TGF (transforming growth factor beta) regulates the
proliferation and differentiation of cells, embryonic
development, wound healing, and angiogenesis.

IL-21 (Interleukin 21) modulates the functions of T, B,
and NK cells. It is also a potent antitumor agent.

IL-23 (Interleukin 23) is a proinflammatory cytokine
which is involved in differentiation of Th17 cells in a pro-
inflammatory context.

Th17 cells are potent inducers of tissue inflammation
and have been associated with the pathogenesis of many

experimental autoimmune diseases.
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Supplementary Table 2 (continued)

IL17 Cytokine
GMCSF Cytokine
Differentiated
Treg
T cell
Differentiated
Tfh
T cell
IL18 Cytokine
IL27 Cytokine

IL-17 (Interleukin 17) family plays a crucial role in host
defense against microbial organisms and in the
development of inflammatory diseases.

GM-CSF (Granulocyte macrophage colony stimulating
factor) is an important hematopoietic growth factor and
immune modulator.

Treg (regulatory T cells) prevents autoimmune diseases
by establishing and maintaining immunologic self-
tolerance.

Tth (T follicular helper cells) specialize in providing
cognate help to B cells and are fundamentally required
for the generation of T cell-dependent B cell responses.
IL-18 (Interleukin 18) is a proinflammatory cytokine
which induces IFN-y and Th1 responses.

IL-27 (Interleukin 27) is a heterodimeric cytokine of the
IL-12 family that plays an important role in the

regulation of T and B cells responses.
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Supplementary Figure 1

Literature Data ™
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Supplementary Figure 1.Network validation

It must be highlighted that despite the promising applicability of this approach, the full potential of this tool cannot be asses until the
whole SLE pathway is included in the network. In the same way, full model validation is not possible at this stage because
expression of many nodes is also regulated by other molecules, critical to the immune physiopathology of SLE but not yet included
in the model. Because of that validation attempts of this network were limited to early signals of immune activation in normal and
perturbed conditions. Activation profiles of nodes from ex vivo (left) and in silico (right) were similar. The greatest difference was
on the onset of activation that is immediate in the ex vivo conditions because T-cells are cultured directly with the antigen while in
the simulations a time-step for Antigen APC encounter and other for APC migration to lymph nodes were included. Although,
agreement between simulations and results from clinical trials may also be considered part of validation, the full effect of a
treatment cannot be evaluated in the model until the network is completed. Furthermore, at the moment only one mAb has been
approved for the treatment of SLE (Belimumab) under certain conditions, therefore there is only one usable example to validate and

T T
3 4

Time steps

Time steps

effective treatment, unfortunately the target of Belimumab (B-cell activating factor) is not yet included in this model.
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Supplementary Figure 2
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Supplementary Figure 2. Clustering of perturbations according to “SLE like” alterations.

Clustering of perturbations according to “SLE like” alterations depending on different initial conditions. Heatmaps indicate the
effect of single perturbations on the nodes that have been reported as altered in SLE. Two types of perturbations were simulated,
node knockouts (left) and node over-expressions (right). Each heatmap contains 23 rows, one for each node that has been reported
as altered in SLE. Most perturbations did not trigger considerable changes in those 23 nodes (indicated in black or absent from the
heatmap). Some perturbations led to upregulations of the 23 nodes (represented in orange) while downregulation of the 23 nodes
were more common (blue). Perturbations were clustered according to SLE like alterations that they provoked as can be seen in the
blue and orange blocks in the heatmaps. Th2 and Th1-Th2 antigen simulation grouped the majority of the alterations reported in
SLE while perturbation in simulation under unpolarized antigen conditions were not able to reproduce these alterations.
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Supplementary Figure 3
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Supplementary Figure 3. TNFa alteration triggered by different initial conditions.

TNFa alteration may be triggered by different initial conditions (knockouts in grey and over-expressions in green). TNFo was
upregulated by a downregulation of TO_PD1 when a Th1 like antigen was simulated. The same TNFa upregulation was triggered by
a downregulation of TO_CTLA4, IL4 or IL10 under a Th2 antigen simulation; or 1L4 under a Th1-Th2 antigen simulation. Also,
TNFa was upregulated by an over-expression of 1L2 or IFN-y under a Th1 antigen simulation; IL2 under a Th2 antigen simulation;
APC_B7H2, TO_CD40L, IL-2 or IFN-y under a Th1-Th2 antigen simulation; or Th2 or IFN-y when an unpolarized simulation was
made.
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Chapter 2

COAGULATION OVERVIEW

1. Coagulation generalities
Hemostasis is a defense mechanism of the body that encompasses the processes by
which a hemorrhagic process ceases. The hemostasis is divided into primary hemostasis

and secondary hemostasis®.

Primary hemostasis

This process corresponds with platelet activation, aggregation and platelet plug

formation at the site of injury.

Secondary hemostasis

This process consists of coagulation cascade activation by which the insoluble fibrin
clot is formed. Both processes, primary and secondary hemostasis occurs

simultaneously.

2. Coagulation mechanisms

Several bibliographical sources show that coagulation is regulated by different
pathways, the intrinsic, extrinsic and common pathways. This theory is known as the
classic model of coagulation®. Although it is very useful to interpret the results obtained
from some “in vitro” coagulation tests like prothrombin time (PT) or activated partial
thromboplastin time (aPTT), it fails to explain the coagulation process taking place “in
vivo”. Currently, the so called cellular model of coagulation is the most accepted
theory®, which divides the coagulation into three simultaneous steps which happen in

different cell surfaces.

Classic model:

The classic model of coagulation consists of two different pathways, the intrinsic and
the extrinsic pathways that converge in the common pathway by which the fibrin clot is

formed (Figure 1)%
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Figure 1. Representation of the coagulation process according to the classic model of coagulation. TF (tissue factor),
FXI1 (factor X11), FXlla (activated factor XII), Pk (prekallikrein), K (kallikrein), FXI (factor XI), FXla (activated
factor XI), FIX (factor IX), FIXa (activated factor 1X), FVIlla (activated factor VIII), FVII (factor VII), FVIla
(activated factor VII), FX (factor X), FXa (activated factor X), FII (factor Il, prothrombin), Flla (activated factor II,
thrombin), Fg (fibrinogen) and F (fibrin).

(i)

(i)

(iii)

Extrinsic pathway: It begins as a response triggered by a tissue injury which
induces the binding between the extravascular tissue factor (TF) and the
circulating factor VII (FVII), forming a complex which in turn will activate
factor X (FX).

Intrinsic pathway: This pathway begins when the blood comes in contact
with a negatively charged system, activating the FXII. Then, the activated
FXII (FXlla) promotes the activation of prekallikrein (Pk) protein to
kallikrein (K) and further reciprocal activation of FXII by kallikrein results
in coagulation cascade activation. Then, the FXlla acts on FXI to form FXla,
which activates FIX. After that, FIXa binds to FVIlla to form the tenase
complex (FIXa: FVIlla) which will activate FX.

Common pathway: Once the FX is activated by one of the previous
pathways, FXa converts prothrombin (FII) into thrombin (Flla), which by
several processes will transform circulating fibrinogen (Fg) into insoluble

fibrin (F), forming a stable clot in the injury site.

Cellular model:

The cellular model proposed by Hoffman in 20032 will be explained later in the chapter.
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3. Coagulation regulation

The coagulation system also has several regulation/control mechanisms to keep

hemostasis, where the following endogenous anticoagulants® play a key role:

(i) Antithrombin 111 (ATHI): This small protein can bind to activated factors Flla,
FXa, and FIXa and inactivate them. The action of certain drugs can enhance

the activity of this protein as heparins.

(if) Tissue factor pathway inhibitor (TFPI): This anticoagulant is a polypeptide
able to inhibit FXa reversible, through the formation of the corresponding
complex (FXa-TFPI). This complex inhibits FVIla-TF complex, blocking

coagulation initiation.

(iii) Protein C system: This system is formed by protein C, thrombomodulin,
activated protein C (APC) and protein S. APC and protein S form a complex
with a proteolytic capacity which breaks the peptide bonds from FVa and

FVIlla that have pro-coagulant properties.

4. Coagulation tests

Some of the most relevant in vitro coagulation tests are: (i) prothrombin time (PT), (ii)
activated partial thromboplastin time (aPTT) and (iii) calibrated automated
thrombogram (CAT)*.

Prothrombin time

PT, introduced by Armand Quick in 1935° is one of the most used tests in clinical
practice. It evaluates the extrinsic and common pathways of the coagulation, i.e., the
activity of the factors VII, V, XII and fibrinogen. It is expressed in seconds, quantifying
the time required for clot formation in a citrated plasma (blood + sodium citrate) sample
obtained from a patient after adding thromboplastin (tissue factor (TF) + phospholipids)

and calcium.

PT represents the test of choice to monitor oral anticoagulant therapy. The main
disadvantage is that the PT values obtained from the same sample can vary largely

across laboratories due to the different sensitivities of the thromboplastin reagents. To
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overcome this limitation, the international normalized ratio (INR) was introduced®. INR

Is described in equation 1 as follows:

INR = ( Equation 1

patient PT)ISI
mean PT

where patient PT is the PT value corresponding to the blood sample of interest obtained
from a particular laboratory, mean PT is the mean of the PT values from 20 healthy
individuals blood samples of both sexes measured in the same laboratory, and ISl is the

international sensitivity index, which is given by the manufacturer.

The normal PT value in the healthy population ranges from 10 to20 seconds, and the
value of INR can vary between 0.8-1.2%,

Activated partial thromboplastin time

aPTT test was introduced by Langdell in 1953". This test evaluates the intrinsic and
common pathways of the coagulation process. As well as PT, aPTT quantifies the time
required for clot formation measured in seconds, but the procedure is different. First,
partial thromboplastin reagent (phospholipids without TF) is added to a citrated plasma
sample of the patient. Then, the plasma sample is incubated with a surface contact
activator, which can be kaolin, ellagic acid, celite among others, to obtain a controlled
activation. Finally, calcium chloride is added. Normal values range between 30-45
seconds™. This test is widely used to monitor the effect of heparins treatment®,
Furthermore, it has been observed that people with short aPTT have more possibilities

to suffer thromboembolic events®°.

Calibrated automated thrombogram

Thrombin generation assay (TGA) was introduced by MacFarlane and Biggs in 1953".
They measured thrombin concentration over the time in whole blood. However, the
procedure resulted too laborious and time consuming. On the other hand, in the same
year, Pitney and Dacie'® performed the test in plasma. Several years later, Hemker et
al® in 2003, developed the calibrated automated thrombogram (CAT) which improved

the efficiency and accuracy of the previous tests.

% https://www.fda.gov/downloads/ICECI/Inspections/IOM/UCM135835.pdf
bb https://www.fda.gov/downloads/ICECI/Inspections/IOM/UCM135835.pdf
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This test measures the concentration of thrombin produced over time after the addition
of TF to a plasma sample. The resultant thrombogram, as well as the parameters which
describe the curve, are represented in Figure 2. This test is used to analyze thrombotic
or hemorrhagic disorders. The main disadvantage is that it requires about an hour to be

completed limiting its application in urgent care.

Thrombin
peak

Thrombin
AUC

THROMBIN (nmol/L)

TIME (min)

Figure 2. Representation of the curve obtained with the CAT method and thrombin curve parameters.

The test can be performed in platelet-poor plasma (PPP) or platelet-rich plasma (PRP)”.
When PPP is used, procoagulant phospholipids, normally in a concentration of 4 uM to
enhance TF effects have to be added to the sample. Contrary, when the sample is PRP,
the platelets are responsible for TF amplification. In both cases, TF concentration can
vary depending on the laboratory. The shape of the curve depends on the experimental
conditions (the type of plasma, phospholipid concentration, and TF concentration) and
the lack of standardization of reference ranges of those conditions makes it difficult the

comparison between curves generated from different experiments.

Differences between PT and aPTT tests and TGA

PT and aPTT CAT

Evaluates the extrinsic, intrinsic and common pathways, quantifying the Quantitative evaluation of thrombin formation
time required for clot formation

Allow predicting bleeding in patients Distinguished between hemorrhagic or thrombotic conditions

They have been standardized for monitoring therapy:

g THROMBOTIC
[=]
. PT: vitamin K antagonist E
z NORMAL
- ]
. aPTT: heparins g
g HEMORRHAGIC
=
TIME (min)
Not suited to represent the balance of coagulation that occurs “in vivo” Reveals the endogenous thrombin levels in plasma
Minutes to complete About 1 hour to complete
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5. Coagulation alterations

The coagulation system is regulated by a strict homeostatic control to keep the balance
between pro- and anticoagulant activities. A disorder in this balance will lead to
hemorrhagic or thrombotic diseases respectively. Coagulation diseases can be divided
into hereditary or acquired disorders. Hereditary disorders are genetic diseases,
generally caused by chromosomal and gene mutations and pass from generation to
generation. While acquired disorders are caused by risk factors like smoking,
pregnancy, obesity, immobility among others. Table 1 lists some bleeding as well as
some thrombotic disorders.
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Table 1. Coagulation disorders. (BP) Birth prevalence. (P) Prevalence.

COAGULATION DISORDERS

COAGULATION TESTS

DISEASE PREVALENCE
PT aPTT
BLEEDING DISORDERS
HEREDITARY  Haemophilia A BP) 1 in 4,000 to 5,000 malescc Normal Prolonged®®
Haemophilia B (BP) 1 in 20,000 males Normal Normal/prolonged*®
von Willebrand disease (P) 1 in 100 tolo,ooodd Normal’ Normal/prolonged*’
Factor V deficiency (P)1in 1,000,000ee Prolonged® Prolonged®®
Factor VII deficiency (P) 1 in 300,000 to 5001000ff Prolonged® Prolonged"®
Factor X deficiency (P)Lin 1,000,000gg Prolonged® Prolonged®
Factor X111 deficiency (P)1to3in 1,000,ooohh Normal* Normal*
Prothrombin deficiency (P)Lin z,ooo,ooo” Prolonged® Normal/prolonged?®
Afibrinogenemia (BP) Lin LoooyoooJJ No clot detected® No clot detected®
Disseminated intravascular 2 2%
ACQUIRED coagulation Unknown Normal/prolonged Normal/prolonged
Vitamin K deficiency Unknown Normal/prolonged® Normal®
Liver disease Unknown Normal/prolonged® Prolonged®
THROMBOTIC DISORDERS
HEREDITARY  Protein C deficiency (P)1in 500kk - -
Protein S deficiency (P)1lin 500II - B
Antithrombin 111 deficiency (P) 1 in 2,000 to 3,ooomm Normal/reduced® Reduced?
. 3-8 % of people with
Factor V Leiden nn Normal Normal
European ancestry
Prothrombin mutation (P)1in 5000 Normal Normal
. . . Antiphospholipid antibodies in
ACQUIRED  AAntiphospholipid antibody 1% to 5% of young healthy ) .

syndrome

Increased levels of factors
VI, 1X, X1 or fibrinogen

Fibrinolysis defects

Homozygous homocystinuria

control subjectspp

Unknown
Unknown

(P) 1 in 200,000 to 335,000

e https://ghr.nim.nih.gov/condition/hemophilia#statistics

https://ghr.nim.nih.gov/condition/von-willebrand-disease#statistics

e https://ghr.nim.nih.gov/condition/factor-v-deficiency#statistics

https://ghr.nim.nih.gov/condition/factor-vii-deficiency#statistics

% https://ghr.nim.nih.gov/condition/factor-x-deficiency#statistics

hh . . .. .
~ https://ghr.nim.nih.gov/condition/factor-xiii-deficiency#statistics

. https://ghr.nim.nih.gov/condition/prothrombin-deficiency#statistics

I https://ghr.nim.nih.gov/condition/congenital-afibrinogenemiatstatistics

kk . . . . .
https://ghr.nim.nih.gov/condition/protein-c-deficiency#statistics

1l . . . . .
https://ghr.nim.nih.gov/condition/protein-s-deficiency#statistics

mm https://ghr.nim.nih.gov/condition/hereditary-antithrombin-deficiency#statistics

m https://ghr.nlm.nih.gov/condition/factor-v-leiden-thrombophilia#statistics

oo https://ghr.nim.nih.gov/condition/prothrombin-thrombophilia#statistics

PP https://ghr.nim.nih.gov/condition/antiphospholipid-syndrome#statistics
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6. Therapeutic alternatives

Treatments for bleeding disorders

Due to the fact that most bleeding disorders are caused by some factor deficiencies,
usually the treatment consists on the supplementation of those factors that are lacking or
reduced. Although treatments are not curative, they help to alleviate the symptoms and
reducing the bleeding risk?®®. Currently, the treatments involving factor concentrates are
very safe and are indicated for a wide variety of bleeding disorders (including those
under the category of rare diseases). Coagulation factor plasma concentrates are derived
from human plasma and are available for FI, FVII, FVII, FXI and FXIIN%,
Additionally, it is possible to synthesize recombinant factor V111 and recombinant factor
Vlla using recombinant technology®. Also, coagulation factors can be administered in
combination, for example prothrombin complex concentrate is composed of factors 11,
VII, IX and X".

When the factor required is not available as plasma concentrate, fresh frozen plasma is
administered to the patient®. Another possibility is the administration of a
cryoprecipitate which contains factor VIII, fibrinogen and other coagulation proteins.
The advantage concerning fresh frozen plasma is that as it is concentrated, the
administered volume is less, but the disadvantage is that not all coagulation factors are

contained, being only suitable for a few deficiencies.

The use of desmopressin, a synthetic hormone, increases factor VI and von Willebrand
factor levels, and it is used to treat patients with mild to moderate haemophilia A and

von Willebrand disease®.

Vitamin K can be used in patients with deficiency of vitamin K dependent factors but it

is not always effective.

Finally, antifibrinolytic drugs can be used in bleeding disorders. Usually, they are used
in minor surgeries like dental operations and to control excessive menstrual bleeding.

Two examples are tranexamic acid and aminocaproic acid™.

All these options are summarized in Table 2.

qq https://www.wfh.org/en/sslpage.aspx?pid=668
rr https://www.wfh.org/en/sslpage.aspx?pid=668
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Table 2. Options for hemorrhagic disorders.

ANTIHEMORRHAGIC TREATMENT

Option Description
FI, FVIIL, FVIII, FXI and FXIII As plasma concentrate
FVIll and FVIla Recombinant technology
Fresh frozen plasma The factor required is not available as plasma concentrated
Cryoprecipitate Contains factor V111, fibrinogen and other coagulation proteins
Desmopressin Increases factor VIII levels
Vitamin K Increase vitamin K dependent factors
Antifibrinolytic drugs Tranexamic acid and aminocaproic acid

Treatments for thrombotic disorders

Treatments used in thrombotic disorders are summarized in Table 3°33*. The mechanism
of action of vitamin K antagonist drugs is the inhibition of vitamin K epoxide reductase,
inhibiting initially the proteins C and S and later, inhibiting the coagulation factors I,
VII, IX and X. For this reason, when a rapid anticoagulation effect is needed, they are
administered together with rapid acting parenteral anticoagulant, normally heparins.
Warfarin is the most used anticoagulant drug in venous thromboembolism. On the other
hand, heparins bind to ATIII enhancing its activation and thus inhibiting coagulation.
They are divided into unfractionated heparin (UH) and low molecular weight heparins
(LMWH). Heparins can be administered parentally or subcutaneously and they are used
in prophylaxis, for example in pre-operatory and post-operatory thrombosis or patients
with venous thromboembolism. LMWHSs are more predictable dose-response than UH.
Finally, the most recent drugs are the new oral anticoagulants which are directed against
two coagulation activated factors: factors Ila and Xa. Among the advantages of these
new drugs are that they do not have a narrow therapeutic margin and they do not need to

be monitored.
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Table 3. Possible treatments for thrombotic disorders whit their respective indications. UH (unfractionated heparin), LMWH (low molecular weight heparins), DIC (disseminated intravascular
coagulation), DVT (deep vein thrombosis), PE(pulmonary embolism).

ANTICOAGULATION TREATMENT

Drug Mechanism of action Indications Labqratgry
monitoring

Vitamin K antagonists

Warfarin Vitamin K antagonists inhibit vitamin K-epoxide reductase thus e Prophylaxis /treatment of venous thrombosis PT, INR
e Pulmonary embolism

R . . . ) o o Atrial fibrillation
inhibiting the synthesis of biologically active forms of vitamin 4 cardiac valve replacement

k-dependent coagulation factors (I, VII, IX and X) and Myocardial infarction
Acenocoumarol . o Treatment of deep vein thrombosis and myocardial infarction PT, INR
regulator proteins S and C Prevention of cerebral embolism, pulmonary embolism, and transient ischemic attacks.

decreasing the reduced form of vitamin K (VKH2). Therefore,

Heparins
Unfractionated UH binds reversibly to the natural anticoagulant ATIIl, e Treatment of venous thromboembolism aPPT
hepari accelerating the rate at which ATIII inactivates thrombin and ~® Thromboprophylaxis in general surgery and trauma
eparin ¢ Venous Thromboembolism in Pediatric Patients
factor Xa e Cardioversion of Atrial Fibrillation
o Arterial Thromboembolism
e DIC ...
LMWH Enoxaparin As well as UH, LMWH bind to ATIII to e Prophylaxis of deep vein thrombosis in abdominal surgery, hip replacement surgery, knee replacement Anti-Xa level
. enhance its activity surgery, or medical patients with severely restricted mobility during acute illness )
Dalteparin o Inpatient treatment of acute DV'T with or without pulmonary embolism Anti-Xa level
. . o Prophylaxis of ischemic complications of unstable angina Anti-Xa level
Tinzaparin o Treatment of acute ST-segment elevation myocardial infarction
New oral anticoagulants
Xa inhibitors Apixaban Direct inhibition of FXa, blocking the ¢ Reduction of risk of stroke and systemic embolism in patients with non-valvular atrial fibrillation Not required
Rivaroxaban conversion of prothrombin to thrombin o Reduction of risk of stroke and systemic embolism in patients with non-valvular atrial fibrillation Not required
o Treatment of DVT and pulmonary embolism
» Prophylaxis of DVT following hip or knee replacement surgery
Edoxaban o Reduction of risk of stroke and systemic embolism in patients with non-valvular atrial fibrillation Not required
o Treatment of DVT and PE
Ila inhibitors Dabigatran Direct inhibition of Flla, blocking the « Reduction of risk of stroke and systemic embolism in patients with non-valvular atrial fibrillation Not required
o Treatment of DVT and pulmonary embolism in patients who have been treated with a parenteral

conversion of fibrinogen to fibrin A
g anticoagulant for 5-10

Prophylaxis of DVT and PE in patients who have undergone hip replacement surgery
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Chapter 2

1. INTRODUCTION

Hemostasis is the physiologic response that involves the processes by which a
hemorrhagic process ceases. The hemostasis is divided into primary and secondary
hemostasis’. After a blood vessel injury, the vessel is constricted to reduce blood flow,
and circulating platelets adhere to the vessel wall at the lesion site where they are
aggregated and activated (primary hemostasis)®. In the surface of these activated
platelets take place several enzymatic reactions by which the coagulation factors are
activated to form the insoluble fibrin clot. This process is known as coagulation cascade

(secondary hemostasis)?.

The “in vivo” coagulation process can be explained by the cellular model proposed by
Hoffman®°. This model is composed of three consecutive steps occurring in different

cellular surfaces (Figure 1).

Initiation phase Amplification phase Propagation phase

Fibrinclot

1
IX i i
L] —! .
q) Tissue factor bearing cell P[atelet _
IXa
IX

lla ‘ ‘
il \ (
IXa
Tissue factor bearing cell ‘ I ‘
w) (B (o) ()~
Activated platelet @ mnssne 4
Xla Xla Activated platelet

Figure 1. Representation of the coagulation process according to the cellular model of coagulation. TF (tissue factor),
FXII (factor XII), FXlla (activated factor XII), FXI (factor XI), FXla (activated factor XI), FIX (factor 1X), FIXa
(activated factor 1X), FVIlla (activated factor VIII), FVII (factor VII), FVlla (activated factor VII), FX (factor X),
FXa (activated factor X), FII (factor Il, prothrombin), Flla (activated factor II, thrombin) and Fg (fibrinogen).

(1) The initiation phase takes place on the surface of cells that contain the tissue
factor (TF), like fibroblasts or macrophages among others. The TF is a
protein able to initiate the coagulation cascade. On the other hand, some
coagulation factors like factor VII (FVII), FX, FIl can permeate through
tissue spaces leaving the vascular space, coming in contact with TF in the

extravascular space generating a little thrombin burst.

(i)  The amplification phase starts after a tissue injury with vessel damage.
Because of the lesion, the components that were not able to permeate

through tissue spaces like FVIII, platelets and so on, can now pass to the
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extravascular space establishing contact with the small amounts of thrombin
generated in the initiation phase. This thrombin has several functions like
platelet activation, FV and FXI activation.

(iii)  Finally, in the propagation phase, which occurs on the surface of activated
platelets through the activation of different factors, the amount of thrombin
necessary to form the coagulation clot is generated.

However, the classic model of coagulation, which divides the process into extrinsic,
intrinsic and common pathways is more appropriated to explained the prothrombin
time® (PT) and the activated partial thromboplastin time’ (aPTT) “in vitro” coagulation
tests. These tests are the most used measurements of coagulation activity in the clinical
setting, measuring the time between the addition of activators to a plasma sample and
the sufficient production of thrombin. Although these tests have a huge diagnostic
value, they are not able to characterize all thrombin formation process during
coagulation. In fact, they only identify the thrombin generated in the initiation phase,
ignoring more than 90% of the thrombin formed®. To overcome this limitation, the
thrombin generation assay (TGA) introduced by MacFarlane and Biggs in 1953° or the

1.1% in 2003, measure the

calibrated automated thrombogram (CAT) by Hemker et a
amount of thrombin produced over time after the addition of TF to a blood or plasma
sample, respectively. This test, contrary to PT and aPTT, provides information about the
amplification and propagation phases of the hemostatic system. The main limitation is
that it is not well standardized and thus, the possibly different experimental conditions
make difficult the comparison between patient’s thrombin profiles in different

experiments.

Due to the large numbers of components involved in the coagulation cascade and the
different possible experimental conditions that can be used in coagulation tests, the
development of mathematical models can be very useful to explore and predict different

scenarios to better adjust and personalize patient treatments.
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Modelling approaches:

Several models for part or whole blood coagulation process have been developed and
are available in the literature™ 2. Through this type of models, it is possible to simulate
the time profiles of the different components of the coagulation cascade and reproduce
the endpoints of PT, aPTT and TGA tests. Also, they allow simulating different type of

patients and therapies.

Systems pharmacology (SP) models are based on the bottom-up approach (Figure 2),
which builds an exhaustive computational structure based on the knowledge available of
the physiologic system. The main advantage of these models is that they are not limited
by the type of data, which can be qualitative or quantitative, longitudinal or not, from
one or different experiments, with the same or different experimental conditions?. Once
built, they represent a very useful tool to understand in silico, how the system behaves
under different perturbations as polymorphisms or potential treatment. In addition, they

2425 that constitute a reduced

serve as the starting point to develop other types of models
version of the full model but maintaining the principal mechanisms involved. However,
when fitting experimental data, and due to the elevated number of processes involved,
in most cases it is not possible to estimate all the parameters defined in the model, being
necessary to fix some from the literature. Furthermore, the obtaining of measures

characterizing all the processes involved represents an unaffordable enterprise.

On the other spectrum of the modeling paradigm, the population pharmacokinetic-
pharmacodynamic (PKPD) models describe the observed data accurately through
simpler models where all model parameters are identifiable. These models follow a top-
down approach (Figure 2), which treats the whole organism as a single system
incorporating possible covariates®®. One of the limitations of this type of models is that
they lack of deep mechanistic characterization of the physiologic processes limiting

their application outside of controlled disease and treatment scenarios.

Compared to the previous type of models a better option is the development of semi-
mechanistic PKPD models that, besides to provide good data description, their structure
resembles the mechanism of the key processes. Usually, this type of models uses the
middle-out approach (Figure 2), which includes the most relevant components of the

system in order to describe the available clinical data®” accurately.

141



Modelling the coagulation cascade
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Figure 2. Different modelling perspectives regard to data requirements and mechanistic structure. Top-down
approach, top-down approach and middle out approach.

The first objective in this article was to implement and evaluate two SP models found in
the literature for the whole coagulation process'®?!. Because an unavoidable step is the
evaluation of these SP models and their capacity to mimic the pathophysiological
behavior, the second objective was to evaluate the performance of both models
concerning longitudinal data of Flla available in literature?. Finally, a more
manageable model able to reproduce the clinical data including inter-individual
variability and covariate effects was built based on clinical data gathered from the

literature.
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2. METHODS

Literature search of quantitative systems pharmacology models for

coagulation

Several coagulation models were identified through a systematic search in PubMed
database. These models describe the whole coagulation process or characterize parts of
coagulation cascade to describe the time courses of some coagulation factors or blood
coagulation tests** 2. Among the first group, two models were finally selected which
characterize the entire coagulation network based on the inclusion of the relevant

components and reactions'®?".

Model implementation and evaluation

Both models were implemented using SimBiology (v. 5.6) software, which is a
MATLAB (MathWorks, v. 2017a) toolbox*°.

The model developed by Wajima and co-authors®® (referred to hereafter as model 1)
was established in a way that longitudinal profiles of the coagulation factors can be
generated, and the results according to the PT or aPTT tests can be calculated under

different experimental in silico scenarios.

The model consists of 51 components and 48 reactions. The components include
coagulation factors, coagulation activators, natural anticoagulants, the vitamin K and its
reduced and oxidized forms. The effect of the anticoagulant drugs warfarin,
unfractionated heparin (UFH) and low molecular weight heparins (LMWHSs) were
simulated. A scheme of the model can be seen in supplementary material Figure S1A.

The dynamics of the system was described by algebraic and ordinary differential
equations (ODEs) resembling mechanisms of synthesis, degradation, activation, and
complex formation. Warfarin effect was incorporated using an lyax model and heparin
effect using complex formation, resulting in the removal of the participating factors. An

example of Flla is presented below (Figure 3):
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Tmod lla:Tmod
TdFII °
pFll dFlla
VKH, Fll PR Flla ---+
r1 \r2 r4
Xa:Va FXa lla:AT
ATIII
d[Flla]
T rl+r2 —r3 —r4 — dFlla- [FIla] 1
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Figure 3. Corresponding ODE for the Flla indicating the different types of reaction. v and k parameters represent
Vmax and km Michaelis-Menten constants and they are expressed in h™ and nM respectively. pll is the production
rate of FIl based on a turn-over model expressed in nM. dlla is the degradation rate constant of Flla. Complex
formation is a stoichiometric reaction in which the components are assumed to combine in a molar ratio of 1:1 and
are dived by the parameter c, which is expressed in nM-h. [ ] denotes concentration and (0) initial concentration.
Tmod (thrombomodulin), VKH, (vitamin K hydroquinone) and AT (antithrombin 111).

In the supplementary tables 2, 3 and 4 of Wajima, et al. article®® parameters values,
initial conditions for each component and degradation rate constants respectively are
presented.

The model by Nayak and co-authors®* (referred to hereafter as model 2 ) was built to
match in-house in vitro calibrated automated thrombogram (CAT) and aPTT data and
therefore synthesis or degradation rates are not considered. This model consists of 61
components and 62 reactions as it is shown in supplementary material Figure S1B.
Model equations are based in association-dissociation kinetics and reactions of first and

second order. The example for Flla is presented below in Figure 4.
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FXa

rd
FIIa +| Tmod | «—— | lla:Tmod
r2
mlla :

Xa Va ATIII

L d[Flla]

=rl+4+r2 —r3 —r4}
dt

r1 =k1 - [FXa] - [FII]
[mlla] - [Xa: Va]

r3=k3 - [Flla] - [ATII]
[

Flla] - [Tmod] — kS5 - [Flla: Tmod]

r2=Kk2-

r4d =k4 -

Figure 4. Corresponding ODE for Flla in model 2. k1, k2, k3 and k4are rate constant of second order and k5 of first
order. [ ] denotes concentration. Tmod (thrombomodulin), and ATIII (antithrombin 111).

In the supporting information of Nayak, et al. article? is possible to find parameter

values as well as the initial concentration of the model components.

In both models, the parameters were taken from the literature to later be adjusted based
on the assumption of 30% fibrinogen reduction occurred at 10-15 seconds in PT test
simulation and at 27-39 seconds in the aPTT test simulation for standard plasma

samples in the case of model 1 or to fit in-house in vitro data in the case of model 2.

Once implemented, the models were curated analyzing whether or not they were

capable of reproducing the key quantitative results shown in the original publications.

Clinical data

To explore the performance of the two systems pharmacology models described above,
beyond the conditions used in the original publications, the dataset available from
Menezes and co-workers®®, which includes raw individual longitudinal data of thrombin
measured in 20 normal subjects and 40 patients with trauma, was integrated. Additional
information gathered from each subject during the study was the baseline activation
percentage of factors Il, V, VII, VIII, IX, X, and ATIII, and the PT and aPTT values.
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Simulations

For all the patients, CAT profiles, PT (implemented only in model 2) and aPTT values
were obtained simulating with the two selected models. In case of the factors measured
in each of the subjects (see above), their initial concentrations were calculated
converting the reported percentage into concentration using the initial concentrations of
the original models. Table 1 shows this conversion. For initial concentrations per

individual check supplementary material table S2 and S3. Initial conditions for factors

and proteins that were not reported in the experimental data of Menezes, et al.“" article,
were assumed to have a 100% activity percentage.
Table 1. Mean blood factors percentage transformed into concentrations (nM).
I v vil v IX X ATIN
Mean activation
percentage from
normal subjects 78.7% 50.65% 81.6% 32.5% 115.2% 74.6% 83.3%
reported in Menezes et
al. article
Mean activation
percentage from
trauma patients 76.6% 48.32% 124.7% 114.57% 104.77% 75.65 87.67%
reported in Menezes et
al. article
ftalconsiticp ey 1394.4 26.7 10 0.7 89.6 174.3 -
model 1
Normal mean blood 1097.39 13.52 8.16 0.23 103.21 130.02
factors concentration
Trauma mean blood
. 1068.11 12.90 12.47 0.80 93.8784 131.85795

factors concentration
Initial conditions from 1400 20 10 07 90 160 3400
model 2
Normal mean blood 1101.8 10.13 8.16 0.23 103.68 119.36 2832.2
factors concentration
Trauma mean blood

1072.4 9.67 12.47 0.80 94.29 121.04 2980.95

factors concentration

The initial conditions to simulate the different coagulation tests are summarized in
Table 2. To generate thrombin profiles TF concentration was set to the corresponding
value used in Menezes, et al.®. Moreover, the parameters quantifying endogenous

production rates of all components of the system were set to 0.

PT and aPTT values were calculated as the time at which 30% of the fibrinogen was

19,21

transformed to fibrin™“". Initial concentrations of all components of the models were

diluted by one third as described in Wajima, et al. and Nayak, et al articles'®?.

Additionally, the endogenous production rates of all components were set to 0. In the
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case of aPTT test simulation, the initial concentrations for Xla and XI| were set to 0.148
x X1(0) and 0.339 x XI(0), respectively, where XI(0) is the physiologic concentration of
factor X1 in a plasma sample.

Table 2. Initial conditions for coagulation tests simulations. FX1(0) factor XI initial concentration.

Test/Initial condition TF CA Model components
CAT 0.005 nM 0nM Initial concentration
PT 100 nM 0nM Initial concentration/3
aPTT 0nM 100nM Initial concentration/3

FXI=FXI(0) x0.339
FXl1a=FXI(0) x0.148

Semi-mechanistic PKPD model building

Data analysis

Thrombin concentration versus time profiles were described based on the population
approach using Nonlinear Mixed Effect Models (NONMEM) version 7.4%° and First
Order Conditional Estimation (FOCE) method with INTERACTION option. Data
corresponding to normal subjects and trauma patients were analyzed simultaneously.
The observed data recorded at times greater than 25 minutes were excluded from the
analysis due to experimental noise. Also, trauma patient 2818 was ignored in the

analysis as the associated time profile corresponded to an outlier.

Thrombin experimental data in normal scale as well as logarithmically transformed
were used for the analysis. Between subject variability (BSV) was modelled
exponentially and residual variability was modelled considering an additive error for

time >15 min and a combined error for times < 15 min.

Model building

Models were based on ordinary differential equations and resulted in a simplified

version of the systems pharmacology models 1 and 2 which were used as a guide to

maintain the mechanistic perspective in the current evaluation.

In the following, the first model fit to the data is described as an example. Figure 5

shows both the schematic and mathematical representation of the model.
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The first model probed was the simplest one, where the tissue factor directly activates

thrombin synthesis.

TF arr_ o
\ at kdegTF TF

kdEgTF k kd
I I dFlla
l — = ar ~ Kyia " TF Kegn 112

Figure 5. Schematic and mathematical model representation. Kgeqre is the degradation constant of TF, Kgyna is the
synthesis constant of Flla and ke is the degradation constant of Flla.

The model assumes that TF (i) is degraded through a first order process characterized by
the first order rate constant Kqeqrr, and (ii) triggers the activation of factor 11, represented
by the first order rate constant Ksnia. The process governed by the first order rate
constant Kqegiia represents the degradation of Flla.

Model selection

The log-likelihood ratio test was performed to compare nested models and assist in
model selection. It is based on the minimum objective function value (OFV) provided
by NONMEM® for each run. The OFV is approximately equal to -2 times the logarithm
of the likelihood of the data and the difference in OFV between two nested models is
approximately y? distributed. On the other hand, to compare non-nested models the
Akaike Information Criteria (AIC) was used, which was calculated as
AIC=—2LL+2xNP, where NP is the number of parameters in the model®". Other criteria
used in the choice of the final model were the precision of parameter estimates and the

results for model performance by visual inspection of goodness-of-fit plots (GOFs)*.

Covariate selection

Once the base population model for thrombin profiles of normal subjects and trauma
patients was developed, a covariate analysis was performed. As the supplementary

material of Menezes, et al*®

paper reported blood factors percentage of factors V, VII,
VI, IX, X and ATIII, they were considered for inclusion as covariates in the model.
Additionally, the disease condition (normal or trauma) was also considered as

categorical covariate.

Covariate selection was performed using the stepwise covariate modelling (SCM)

implemented in the Perl-speaks-Nonmem (PsN) software (v.4.4.8)*® with a level of
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significance of 0.05 during the forward inclusion and of 0.01 during the backward

deletion.

Model evaluation

Thrombin model was evaluated through visual predictive checks (VPCs). A total of 500
datasets with the same characteristics as the original dataset were simulated. The 5™,
50" and 95" percentiles of simulated observations in each dataset were computed. Then,
the 90% confidence interval of each calculated percentile was obtained and plotted
against the 5™, 50" and 95" of raw thrombin data. On the other hand, parameter
estimates precision was obtained from the analysis of 500 bootstrap datasets using PSN

software®®,
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3. RESULTS

Model implementation and evaluation of the implementation

Both models were satisfactorily implemented, as shown by the exact reproduction of the
results presented in both manuscripts (Figure 6). The rest of the graphics that appear in
the articles along with their simulated version obtained in the current evaluation are

shown supplementary material S4.
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Figure 6. Graphical representation for the simulated profiles from Wajima et al. and Nayak et al. articles and their
respective representation after implementation using Simbiology. A. Graphics obtained from Wajima, et al. article. B.
Simulations performed with Simbiology with model 1. C. Graphics obtained from Nakay, et al. article. D.
Simulations performed with Simbiology with model 2.
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Clinical data integration in the models and simulation

CAT simulations

Figure 7 shows the thrombin raw data reported by Menezes et al.?®, for normal subjects
(upper panel) and trauma patients (lower panel). The blue line represents the mean of
the raw data. In general, the values of thrombin are higher in trauma patients concerning
normal individuals. In panel 7B the subject with a profile considered to be outlier is
highlighted in red.

The corresponding simulated profiles using (i) the mean values obtained with the
reported percentage of activation for factors 11, V, VII, VIII, IX, X, and ATII (Table 1)
and (ii) the initial conditions reported in each model for the rest of components, appear

superimposed in Figure 7.

As it can be observed, there are apparent discrepancies between the mean of the
observed and simulated profiles.

A Normal Subjects

500+

400+

Flla (nM)
w
3

N
o
o

100+

Time (min)
Trauma Subjects
500

400

300+

Flla (nM)

Time (min)

Figure 7. CAT profiles of the experimental data for A normal subjects and B trauma patients. Black lines represent
the individual raw data. Blue line the mean of the raw data, the orange and purple line the simulations obtained with
model 1 and model 2 respectively. Red line represents the outlier.
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Simulations obtained from model 1 provided profiles showing lower levels of thrombin
for both type of patients. On the contrary, the results obtained after the application of
model 2, pointed in the other direction, especially for normal subjects. In the trauma
patients, the two mean curves are quite similar in magnitude but delayed in the case of
the simulated profile. Supplementary material S5 shows the individual observed and

simulated profiles.

Table 3 lists the values of maximal thrombin levels in the studied scenarios (observed
and simulated) where the differences seen in the full profiles are summarized. Relative

errors (RE) were calculated as it is shown in equation 1.

Si lue — R l .
0 RE = SLnvatue - Rejvalue 10y Equation 1

Ref value

where Sim value represents the simulated thrombin peak obtained with model 1 or

model 2 and Ref value the thrombin peak of Menezes, et al. mean data.

Table 3. Thrombin peak concentration in different situations with corresponding relative errors.

Thrombin peak (nM) Relative error (%)
Menezes 119.20 -
Normal subjects Wajima 38.89 -67.37
Nayak 228.38 91.59
Menezes 202.81 -
Trauma patients Wajima 67.16 -66.89
Nayak 259.14 27.77

Sensitivity analysis

To explore the impact of the initial conditions of those coagulation factors that were not
measured in the Menezes, et al., manuscript’® on the thrombin vs time profiles, a
sensitivity analysis was performed. That univariate analysis consisted of simulating the
thrombin profiles modifying the initial condition of each factor £30% of the value

originally reported®2..

Results shown in Figure 8 indicate that in general, the impact of initial conditions was
negligible except for the TF in both models and TFPI in the case of model 2, but in any

case not enough to explain the discrepancies represented in Figure 7.
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Figure 8. Results from the sensitivity analysis, A (model 1), B (model 2). The top of each panel indicates the factor
in which initial conditions were changed +30% of the reported values in each model.
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PT and aPTT simulations

1.8 with those

Figure 9 compares the PT and aPTT values reported by Menezes, et a
obtained from model 1 (PT and aPTT) and model 2 (aPTT). For the case of PT, mean
simulated values agreed well with the mean of the observations for normal subjects and

patients, being all the values within the normal range.

aPTT resulted overpredicted in models 1 and 2 with respect the mean observed value in
normal subjects and in patients with trauma as well, although both models predicted a
reduction in aPTT in trauma patients with respect to normal subjects as seen with the
mean observed values.

Normal Trauma
20+ 20

PT (seconds)

Menezes Wajima Nayak Menezes Wajima Nayak

Normal Trauma

50+

w B o
o o o

aPTT (seconds)

aPTT (seconds)

=
o

Menezes Wajima Nayak Menezes Wajima Nayak

Figure 9. Mean PT (upper) and aPTT (lower) values for normal subjects (left) and trauma patients (right).
Histograms in blue, orange and purple represent observations, and simulated values form models 1 and 2,
respectively. The red dotted dashed lines represent the range values of PT and aPTT metrics in normal subjects.

Supplementary material S5 shows the individual PT and aPTT values obtained by
simulation for normal subjects.
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Modelling thrombin profiles

General description of the data

Figure 10 shows the individual thrombin vs time profiles with and without logarithmic
transformation. A latency time, likely associated with all mechanisms preceding
thrombin formation, was observed. In addition, a greater magnitude of noise from time
25 min onwards was detected, justifying the decision to not consider those latter points

for the analysis.
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Figure 10. Observed vs time profiles of thrombin (blue for normal subjects and red for trauma patients) used during
the population pharmacokinetic/pharmacodynamics analysis shown in natural scale (left) and after logarithmic
transformation (right).

Table 4 provides a summary of the covariates gathered in the normal and patient
population in Menezes et al. We can observe some differences between trauma and
normal subjects, which only reach significance for FVIII, probably due to the large

variability in the data.

Table 4. Summary of coagulation factor values per subject condition.

Factors Normal subjects Trauma patients Total individuals

(nM) Median Min-Max Median Min-Max Median Min-Max
FII 1108.5 725.1-1338.06 1052.8 474.09-1784.83 1066.71 474.09-1784.83
FV 11.61 8.81-25.63 12.95 0.27-25.63 12.54 0.27-25.63
FVII 7.75 4.6-11.2 7.85 4.8-59.7 7.85 4.6-59.7
FVIII 0.22 *¥k* 0.15-0.34 0.55 *¥** 0.24-3.71 0.47 0.15-3.71
FIX 102.59 53.76-136.19 85.57 26.88-178.30 93.63 26.88-178.30
FX 129.85 78.44-162.1 129.85 61.01-207.42 129.85 61.01-207.42
ATII 2805 2244-3332 2907 1768-5100 2873 1768-5100

**** p<0.0001 Significant differences between normal subjects and trauma patients. For the comparison a Wilcoxon test was used.
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Figure 11 shows the scatterplot matrix of the covariates listed in Table 4, where for

several pairs correlations showed values greater than 0.3%,
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Figure 11. Scatterplot matrix of the coagulation factors gathered for the subject population in Menezes and co-
authors.
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Semi-mechanistic PKPD model for the coagulation process

Figure 12 provides a schematic representation of the model finally selected between

different candidates based on the previously described criteria for model selection.
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Figure 12. Schematic representation of the population pharmacokinetic/pharmacodynamic model selected describing
the time course of thrombin levels “in vivo”.

Briefly, the model assumes that once TF is present (i) a direct activation effect is
triggered characterized by the second order rate constant ksnia and (ii) a second
activation pathway is initiated which appears with a certain delay with respect to TF
characterized by a chain of seven transit compartments and the second order rate
constant ksyniia2. In addition, the model includes a regulatory mechanism depending on

the thrombin generated.

The following set of differential equations represents mathematically the model shown
in Figure 12:
dTF/dt = —kdegTF - TF

dT1/dt = ktran - TF — ktran - T1
dT2/dt = ktran - T1 — ktran - T2
dT3/dt = ktran -T2 — ktran - T3
dT4/dt = ktran - T3 — ktran - T4
dT5/dt = ktran - T4 — ktran - T5
dT6/dt = ktran - T5 — ktran - T6
dT7/dt = ktran - T6 — ktran - T7
dFII/dt = — ksynlla - TF - FII - (1 + FlIla) — ksynllIa2 - T7 - FII

dFlla/dt = ksynlla - TF - FII - (1 + FIla) + ksynlla2 - T7 - FII — kdeglla - FIla
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where Kgegrr IS the first order degradation rate constant of TF, kyan is the first order rate
constant of transfer between transit compartments, Ksyniia and Ksyniia2 are the second order
rate constants of thrombin synthesis and Kgegua is the first order degradation rate

constant of Flla.

Once the final model was established the covariate study was performed to test
significant effects. The set of continuous covariates tested for each parameter in the
model were FIl, FV, FVII, FVIII, FIX, FX and ATIII, exploring linear and nonlinear
relationships. Also, patient condition (normal or trauma) was tested as categorical
covariate. The selected full covariate model obtained in the forward-inclusion approach
comprised the following covariate effects: FVIII on Ksnia categorizing FVIII
concentration and FX on Ky, @s continuous covariate. Since the categorical covariate,
patient condition was significantly correlated with FVIII, its inclusion was tested
separately. In this sense, patient condition resulted significant for Ksyniia, Kaegita @nd Kran.
Due to convergence problems in the estimation, we decided to estimate separately
normal and trauma model parameters, and consequently, a substantial improvement of
fit was shown compared with the base model, as reflected in the decrease of OFV and

the diagnostics plots (data not shown).

When comparing normal subject and trauma patient parameter estimates, a significant
change was observed in the ksyniia Value. As abovementioned, FVIII covariate effect was
shown to be significant for ksynia and correlated with patient condition, however, when
the relationship between them was studied more deeply (Figure 13), no clear
relationship was observed (probably due to the high variability on FVIII levels within

the two populations), therefore the covariate was not included.
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Figure 13. Graphical representation of the relationship between Kqyn 1, parameter and FVIII for normal subjects (red)
and trauma patients (blue).
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Table 5 lists the estimates of model parameters and their corresponding precision

represented by 95% confidence interval computed from the bootstrap analysis. It is

worth noting that in none of the cases the 95% confidence intervals include the zero

value, indicating that parameters were significant for the model. All estimates lie within

the 95% confidence interval obtained by bootstrap, what denotes the model robustness.

However, ksyniia for normal subjects elicits a wide range, reflecting the poor precision in

parameter estimation. The BSV was estimated for Ksyniia, Kdegita, Kiran @nd Ksyniia2, which

ranged from 0.02 to 5.73, reflecting the high dispersion in the data. Kgeqre parameter

was fixed to 0 min™ due to the slow degradation in vitro (0.05 h™* = 0.0008 min™)*°

assuming that TF concentrations were constant over the experiment.

Table 5. Estimates for the final model parameters and their variability with their corresponding confidence intervals.

Parameter Estimate 95%CI* BSV 95%CI* Shrinkage (%0)
kdegTF (min™) 0 NA NA NA 0
Al
ksyntla(nmol“min™) 0.0047 (0.0002-0.0179) 573  (2.11-39.94) 63
(Normal)
R
ksynila (nmol“min™) 0.15 (0.118-0178)  0.26 (0.09-0.81) 25
(Trauma)
1
kdeglla (min~) 1.04 (0.949-1.139)  0.041 (0.02-0.06) 38
(Normal)
1
kdegla (min™) 0.79 (0.744-0.856)  0.064  (0.04-0.08) 14
(Trauma)
i1
Ktran (min”) 1.38 (1.24-1.53) 0.055 (0.03-0.07) 38
(Normal)
i1
Ktran (min") 1.8 (159-2.072)  0.176 (0.012-0.23) 14
(Trauma)
BT
ksyntlaz(nmol™min~) 467 (4353-50.24)  0.02 (0.002-0.03) 41
(Normal)
B
ksynl1a2(nmol”“min~) 446 (39.89-49.92)  0.113 (0.06-0.15) 18
(Trauma)
Correlations
BSVkdeglla-BSVktran (normal) - - -0.03 - -
BSVktran-BSVsynlla2(normal) - - 0.015 - -
BSVkdeglla-BSVktran (trauma) - - -0.07 ) i
BSVkdeglla-BSV synlla2(trauma) - . 0.064
Residual error
) 2.06 (additive) (1.97-3.09) - - 2
(Time>15)
Residual error 2.43 (additive) (1.29-2.8) - - 2
(Time<15) 0.178 (proportional) (0.14-0.21) - - 2

*95% confidence interval calculated from 500 bootstrap datasets.
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Figure 14 shows the individual observed and model predicted profiles indicating an

excellent model performance at the individual level.
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Figure 14. Individual thrombin observations (red dots, normal subjects; blue dots, trauma patients) and individual
model predictions (gray lines) versus time.
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Figure 15 shows the goodness of fit plots and Figure 16 shows the results of the VPC
corresponding to thrombin profile stratify by subject population (normal vs trauma).

The model performs adequately in capturing the central trend, and the dispersion of the

data.
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Figure 15. Goodness of fit plots corresponding to the selected semi-mechanistic model. Circles are the observed data
(red normal and blue trauma). Black lines represent the perfect fit. Solid red lines represent a smooth curve through

the data.
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Figure 16. Visual predictive checks corresponding to thrombin profiles in normal subjects and trauma patients. Red
and blue dots represent thrombin observations; the solid red and blue lines correspond to the median of the observed
data while the dashed red and blue lines the 5 and 95 percentiles of the observations. Shaded grey areas are the 90%
predicted intervals for corresponding percentiles obtained from 500 simulated studies.
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4. DISCUSSION

The coagulation process is crucial for human life. For this reason, understanding the
different elements and key players and the associated pathologies is needed to
individualize the therapy and optimize the patient prognosis. In this sense, mathematical
models are a very useful tool that can help to predict the coagulation dynamics and

simulate different scenarios.

The objective of this work was to implement and compare two systems pharmacology
models publicly available to finally challenge them against raw data consisting on
individual thrombin profiles measured “in vitro” from normal subjects and patients with
trauma. To the best of our knowledge, this evaluation is the first time that the
capabilities of two models from the point of view of describing individual data have

been compared.

Both models were adequately implemented in the Simbiology platform, as all the results
shown in the original publications were reproduced almost exactly. However,
disappointing results were obtained when simulated thrombin profiles generated from
the two models were compared. Discrepancies were far from negligible questioning
which model should be used in the future to explore in silico scenarios regarding drug
development or patient management. Moreover, both models failed to describe raw
thrombin time profiles. Noteworthy is the fact that the results from the local sensitivity

analysis could not make the observed and simulated profiles closer.

Different possibilities can be considered to explain those results. First, the systems
pharmacology models were adjusted to describe ex-vivo experimental data, and
therefore the experimental conditions should be controlled tightly and reported
carefully. In this context, for example, one of the models can be used to calculate both
PT and aPTT values, whereas for the other calculation of PT is not possible. The main
differences regarding assumptions and structure of both systems pharmacology models

are shown in the supplementary material S7.
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The fact that none of the models could describe the full thrombin vs time profiles in the
vast majority of the subjects might be explained by the use of typical parameters and
typical initial conditions for the rest of coagulation factor not measured. Nevertheless,
some results obtained during this evaluation deserve discussion. For example relative
changes in aPTT found in trauma patients with respect normal subjects could be

reproduced by both models.

The outcome of our simulations motivated us to develop a semi-mechanistic PKPD
model to describe thrombin concentration profiles over time after adding TF. The
developed model successfully describes the experimental observations in normal
subjects as well as in trauma patients. This resembles main mechanisms represented

with much higher granularity in the models 1 and 2.

In models 1 and 2 the conversion of prothrombin to thrombin is governed by the FXa
and the complex Xa:Va reactions. In line with these models, the developed semi-
mechanistic model describes two different mechanisms for thrombin formation. The
reaction ruled by the ksyniia constant (responsible for a quick burst of thrombin) would
correspond with the FXa reaction in models 1 and 2. On the other hand, the Ksyniia
constant, responsible for generating large thrombin concentrations, would correspond
with Xa:Va reaction. These two mechanisms are in agreement with the cell-based model
of the coagulation proposed by Hoffmann® in which the first thrombin synthesis
corresponds with the initiation phase and the second one with the propagation phase.
Nevertheless, when relating parameter values, due to differences in the structure of the
models, it is difficult to compare the estimates even though the mechanisms and
involved entities are similar. The degradation rate constant of Flla was the only
parameter subject for comparison providing similar values for the developed model and
model 1 (1.04 min™ for normal subjects and 1.12 min, respectively). Moreover, Gulati,

1.3* obtained a comparable value for degradation rate constant of Flla (0.97 min™).

19
I

et a
These authors reduced Wajima, et al. systems pharmacology model™ through proper
lumping to estimate parameters for describing fibrinogen concentrations vs time profiles

obtained from venom-induced consumption coagulopathy patients data.

Regarding Kqegre parameter, it was fixed to 0 in our model because of the assumed slow

degradation rate “in vitro” from model 1 (reflected by a half-life of 831 min) compared
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to the length experimental procedure (40 min), therefore assuming constant TF

concentrations over the experiment.

However, our model presents some limitations. Firstly, the analysis was performed in a
little fraction of population, including only normal subjects and trauma patients, with a
high between-subject variability. This limitation inquiries model predictability and
generalization. Nevertheless, the simulations performed with the VPC suggest that the
model performs adequately and predicts well the raw data. The second limitation is that
the model was built based on Menezes, et al. data, which only provided the
concentration for some coagulation factors. The possibility of including the
concentration of activated factors could represent an opportunity in order to discern
between normal subjects and trauma patients, and therefore provide more accurate

predictions depending on the patient condition.

In conclusion, systems pharmacology models are very useful when understanding
processes involve in biological systems. However, up-to-date they tend to fail at the
time to describe and predict individual data. Nevertheless, their structure facilitates the
development of mechanistic-based models that can be fit to the data providing
meaningful and precise model parameters as well as adequate model predictions. This
type of models can result very useful at the time to treat particular individuals

personalizing their dosage.
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SUPPLEMENTARY MATERIAL

Figure S1A. The scheme of the model for coagulation process developed by

Wajima and co-authors (Adapted from the original article) *°.
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Modelling the coagulation cascade

Figure S1B. The scheme of the model for coagulation process developed by Nayak
and co-authors.

Figure obtained from the original article*'.
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Table S2. Blood factors percentage transformed into concentration for Wajima, et

al. model simulations

1D 1l Vv Vil Vil IX X ATII
14488 990.024 12.282 7.6 0.196 88.704 125.496 2448
14489 1003.968 10.68 7 0.161 85.12 116.781 2244
14490 1338.624 15.486 8.9 0.168 125.44 162.099 2686
14491 1045.8 9.612 6.9 0.224 95.872 118.524 2380
14492 725.088 14.151 4.6 0.224 53.76 78.435 2686
14493 1199.184 15.219 10.4 0.287 115.584 149.898 3196
14494 920.304 14.151 6.1 0.168 98.56 104.58 2482
14495 1115.52 9.612 8.4 0.189 136.192 146.412 2788
14496 1101.576 10.146 9 0.273 94.08 139.44 3196
14497 976.08 10.947 7.9 0.147 79.744 125.496 2414
14498 1338.624 10.413 11.2 0.287 110.208 155.127 3060
14499 892.416 17.088 7.1 0.259 84.224 90.636 2958
14500 1338.624 20.025 9.6 0.301 120.064 153.384 3264
14501 1227.072 17.088 7.6 0.231 102.144 130.725 2822
14502 1031.856 10.146 7.1 0.175 103.04 125.496 2924
14503 1143.408 10.947 10.6 0.336 128.128 148.155 3196
14504 1115.52 8.811 6.3 0.259 86.016 109.809 2754
14505 1115.52 17.622 7 0.245 135.296 130.725 3332
14506 1045.8 10.413 8.8 0.21 105.728 128.982 2550
14507 1282.848 25.632 111 0.21 116.48 160.356 3264
2543 1143.408 24.831 6.3 3.276 178.304 115.038 3230
2575 1282.848 21.894 5.9 1.533 89.6 116.781 4080
2580 864.528 19.224 4.8 3.717 95.872 87.15 2686
2597 878.472 20.826 5.8 1.267 86.912 99.351 3366
2624 864.528 13.083 5.4 0.469 78.848 76.692 2856
2634 920.304 10.947 6.5 0.574 99.456 118.524 2788
2665 1241.016 20.826 7.6 1.05 107.52 163.842 3808
2668 1296.792 25.632 10.1 0.756 151.424 176.043 4080
2675 641.424 0.267 9.8 0.448 59.136 95.865 2074
2711 962.136 5.073 5.8 0.252 102.144 120.267 2312
2714 1129.464 9.078 5.8 0.735 168.448 113.295 2924
2716 906.36 13.35 8.3 1.841 84.224 102.837 2516
2743 934.248 9.879 37.4 0.455 68.992 109.809 2618
2751 1059.744 12.282 7.7 0.469 72.576 137.697 2550
2771 1199.184 13.884 13.5 0.616 54.656 148.155 3298
2772 948.192 7.743 7.9 0.539 77.952 111.552 2108
2784 1213.128 22.428 4.9 0.238 94.08 170.814 3026
2797 1310.736 22.695 59.7 0.728 163.072 205.674 5100
2814 1157.352 13.083 8.5 0.49 59.136 148.155 3264
2816 1045.8 17.088 7.7 0.903 106.624 142.926 2516
2817 1003.968 8.01 7.8 0.469 51.968 153.384 2244
2819 962.136 13.083 11.8 0.532 78.848 122.01 2788
2827 474.096 0.534 13.5 0.287 26.88 61.005 1768
2829 1087.632 7.209 7.1 0.518 60.032 130.725 2890
2841 1031.856 8.544 18.3 0.539 88.704 111.552 3060
2843 766.92 17.088 8.7 0.511 66.304 109.809 2720
2860 934.248 12.816 233 0.63 65.408 95.865 3128
2881 934.248 4.539 4.9 0.595 93.184 95.865 2720
2883 1784.832 20.292 5 1.428 173.824 207.417 3196
2885 1031.856 6.408 5.9 0.546 65.408 137.697 2516
2892 1157.352 16.554 15.4 0.763 149.632 193.473 3400
2924 1338.624 11.214 28.9 0.448 95.872 132.468 2686
2767 1213.128 21.36 17.1 0.798 94.976 189.987 3264
2818 1213.128 0.801 5.4 0.483 115.584 151.641 3434
2830 1227.072 6.408 15.5 0.623 82.432 142.926 2550
2840 1017.912 9.879 15.8 0.553 63.616 142.926 2788
2872 1213.128 14.151 39.5 0.392 161.28 155.127 3298
2878 1241.016 17.355 6.7 0.49 77.952 134.211 3128
2895 1073.688 10.146 12 0.679 71.68 128.982 3162
2901 1017.912 5.607 6.8 0.441 72.576 116.781 3298
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Table S3. Blood factors percentage transformed into concentration for Nayak, et

al. model simulations

1D 1l Vv Vil Vil IX X ATII
14488 994 9.2 7.6 0.196 89.1 115.2 2448
14489 1008 8 7 0.161 85.5 107.2 2244
14490 1344 11.6 8.9 0.168 126 148.8 2686
14491 1050 7.2 6.9 0.224 96.3 108.8 2380
14492 728 10.6 4.6 0.224 54 72 2686
14493 1204 11.4 10.4 0.287 116.1 137.6 3196
14494 924 10.6 6.1 0.168 99 96 2482
14495 1120 7.2 8.4 0.189 136.8 134.4 2788
14496 1106 7.6 9 0.273 94.5 128 3196
14497 980 8.2 7.9 0.147 80.1 115.2 2414
14498 1344 7.8 11.2 0.287 110.7 142.4 3060
14499 896 12.8 7.1 0.259 84.6 83.2 2958
14500 1344 15 9.6 0.301 120.6 140.8 3264
14501 1232 12.8 7.6 0.231 102.6 120 2822
14502 1036 7.6 7.1 0.175 103.5 115.2 2924
14503 1148 8.2 10.6 0.336 128.7 136 3196
14504 1120 6.6 6.3 0.259 86.4 100.8 2754
14505 1120 13.2 7 0.245 135.9 120 3332
14506 1050 7.8 8.8 0.21 106.2 118.4 2550
14507 1288 19.2 111 0.21 117 147.2 3264
2543 1148 18.6 6.3 3.276 179.1 105.6 3230
2575 1288 16.4 5.9 1.533 90 107.2 4080
2580 868 14.4 4.8 3.717 96.3 80 2686
2597 882 15.6 5.8 1.267 87.3 91.2 3366
2624 868 9.8 5.4 0.469 79.2 70.4 2856
2634 924 8.2 6.5 0.574 99.9 108.8 2788
2665 1246 15.6 7.6 1.05 108 150.4 3808
2668 1302 19.2 10.1 0.756 152.1 161.6 4080
2675 644 0.2 9.8 0.448 59.4 88 2074
2711 966 3.8 5.8 0.252 102.6 110.4 2312
2714 1134 6.8 5.8 0.735 169.2 104 2924
2716 910 10 8.3 1.841 84.6 94.4 2516
2743 938 7.4 37.4 0.455 69.3 100.8 2618
2751 1064 9.2 7.7 0.469 72.9 126.4 2550
2771 1204 10.4 13.5 0.616 54.9 136 3298
2772 952 5.8 7.9 0.539 78.3 102.4 2108
2784 1218 16.8 4.9 0.238 94.5 156.8 3026
2797 1316 17 59.7 0.728 163.8 188.8 5100
2814 1162 9.8 8.5 0.49 59.4 136 3264
2816 1050 12.8 7.7 0.903 107.1 131.2 2516
2817 1008 6 7.8 0.469 52.2 140.8 2244
2819 966 9.8 11.8 0.532 79.2 112 2788
2827 476 0.4 13.5 0.287 27 56 1768
2829 1092 5.4 7.1 0.518 60.3 120 2890
2841 1036 6.4 18.3 0.539 89.1 102.4 3060
2843 770 12.8 8.7 0.511 66.6 100.8 2720
2860 938 9.6 233 0.63 65.7 88 3128
2881 938 3.4 4.9 0.595 93.6 88 2720
2883 1792 15.2 5 1.428 174.6 190.4 3196
2885 1036 4.8 5.9 0.546 65.7 126.4 2516
2892 1162 12.4 15.4 0.763 150.3 177.6 3400
2924 1344 8.4 28.9 0.448 96.3 121.6 2686
2767 1218 16 17.1 0.798 95.4 174.4 3264
2818 1218 0.6 5.4 0.483 116.1 139.2 3434
2830 1232 4.8 15.5 0.623 82.8 131.2 2550
2840 1022 7.4 15.8 0.553 63.9 131.2 2788
2872 1218 10.6 39.5 0.392 162 142.4 3298
2878 1246 13 6.7 0.49 78.3 123.2 3128
2895 1078 7.6 12 0.679 72 118.4 3162
2901 1022 4.2 6.8 0.441 72.9 107.2 3298
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S.4 Graphic validation

Wajima, et al. model:

o

Integral of fibrin (nmol/l-s)

Integral of fibrin (nmol-s)

e The integral of fibrin in the PT test and in the aPTT test. The dotted lines show
1,500 nmol/I-s of the integral of fibrin, which we take as the clotting point in the
study. The clotting times are 11.8 s in the INR test simulation and 34.4 s
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Time courses of warfarin plasma concentration, vitamin K-related compounds,

vitamin K-dependent coagulation factors, and international normalized ratio

(INR) after warfarin therapy.
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e Time courses of warfarin plasma concentration, vitamin K—related compounds,

vitamin K-dependent coagulation factors, and international normalized ratio

(INR) after vitamin K therapy for excessive exposure to warfarin.
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Time courses of plasma concentrations of UFH and LMWH (enoxaparin), INR,

and aPTT.
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Nayak, et al. model:

e TGAs for various concentration of FVIla or FXa added to normal human plasma

(NHP) or FVIII deficient plasma (8DP). The first column corresponds with

experimental data, the second with Nayak’s model simulations and the third one

with the simulations obtained with the implemented model in Simbiology.
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S5. TGA simulations with individual initial conditions reported in Menezes, et al.

article.

Wajima, et al. model:

Study
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Study
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Nayak, et al. model:

Study
Normal —o— Menezes
== Nayak
14488 14489 14490 14491
200 200
1504 150 200 200
100+ S 100 = =
504 50 100 100
0- T T T T T 0 0 T T T D
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Time Time Time Time
14492 14493 14494 14495
150 200
200 A J 200
: 2 1%] :
50 ~ 100+ = g0 = 100
u 0- 07 T T T —Tr D T T T T T
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Time Time Time Time
14496 14497 14498 14499
250
q 300 200
2001 igg- 200 150
1504 1
1004 = 100 = = 100
504 50 100 50
0 it - . 0+ 0+ . e — ; 0 . . ; ;
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Time Time Time Time
14500 14501 14502 14503
3004 300 - 2001 300
2004 2007 o« 150 « 200
=004 = 100+ =
100+ 100 504 100
0-ig : ; ; ! 04 0+ il ; i 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Time Time Time Time
14504 14505 14506 14507
200 2004 200 200
5 5 8
100 = 100+ = 100 = 100
0is : : ; 0+ ; 0 v — ; 0-ie . ; . ;
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Time Time Time Time

181




Modelling the coagulation cascade

Study
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S6. PT and aPTT simulations with individual initial conditions in normal subjects

with Wajima et al. model reported in Menezes, et al. article.

30

20

PT (s)

60

40

20

aPTT (s)

N
o

Normal subjects
14488 14489 14490 14491 14492

14493 14496 14497

14498 14499 14500 14501 14502

14503 14505 14506 14507

Study

B Menezes

Normal subjects B Wwajma

14507

183



Modelling the coagulation cascade

S7. Differences between Wajima, et al. model and Nayak, et al. model.

Coagulation models

Approximation

Components /
Reactions

Parameters

Equations type

Output

Data for validation

Assumptions

Wajima, et al.

Bottom-up approach

51/48

134

Vmax - [enzyme]

Activation: Jom + [enzyme] [inactivated factor]

[factor 1] - [factor 2]

Complex formation: P

Vmax - [enzyme
Vmax - [enzyme] . tivated factor]

Degradation: " "km + [enzyme]

Inhibition; 1. fmax:(Drugl
1€50 + [Drug]

PT (INR), aPTT and factor profiles

Snakebite data obtained from Tanos, et al.
Measured PT and aPTT obtained from Pohl, et al.

Model parameters were started with the values from the literature and adjusted based on the assumption of 30% fibrinogen
reduction occurred at 10-15 seconds in INR test simulation and at 27-39 seconds in the aPTT test simulation for standard
plasma samples.

The criteria for clotting was based on the integral of fibrin, being a value of 1500nmol/L-s the clotting point.

Each component was assumed to follow a first-order degradation rate with a degradation rate constant.

The inactivated factors and proteins were assumed to have natural production rates.

Complex formation was represented as a stoichiometric reaction in which the components are assumed to combine in a
molar ratio of 1:1.

Extrinsic pathway activation was assumed to be initiated by exposing plasma to TF.

Intrinsic pathway activation was assumed to be initiated by plasma coming in contact with a negatively charged surface,
which activates factor XII to Xlla.

The natural anticoagulant effects of AT-IIl without heparin acceleration are assumed to be included in the natural
degradation rate for each factor.

The initial concentrations of all activated factors, complexes, and products were assumed, to be 0.

Nayak, et al.

Bottom-up approach

61/62

87
Activation: k * [enzyme] * [inactivated factor]

Complex formation: kon* A * B — koff * AB

TGAs and aPTT

In-house data

The model assumed a well-mixed system for in vitro experiments.

The criteria for clotting was based on the integral of fibrin, being a value of
1500nmol/L-s the clotting point.

Extrinsic pathway activation was assumed to be initiated by exposing plasma to TF.
Intrinsic pathway activation was assumed to be initiated by plasma coming in contact

with a negatively charged surface, which activates factor XII to Xlla.
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ABSTRACT

Pharmacokinetic modeling is widely used to support decision making in translational
medicine and patient care, traditionally using circulating drug exposure. The
development of mechanistic computational models that integrate drug concentrations at

the site of action making use of existing knowledge opens a new paradigm in optimal
dosing.
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MAIN TEXT

In the current issue of Clinical Cancer Research, Ribba and colleagues® applied the
Model Informed Drug Discovery & Development (MID3) paradigm to optimize dosing
regimens of Cergutuzumab amunaleukin (CEA-IL2v), a bivalent carcinoembryonic
antigen (CEA)-specific antibody fused to a modified interleukin 2 (IL2) capable to
activate the immune response in the tumor microenvironment. Their contribution, which
relies on the fundamental premise that drug exposure represents the major driver of
patient’s response (at least at early stages of the progression of the disease), goes far
beyond the MID3 standards.

In this commentary, we aim to bring the attention of the reader to the concepts of tumor
exposure, mechanistic conceptualization of the system to treat, data integration,
knowledge re-usability, and virtual scenarios. These concepts are key to understand and
predict patient’s response in the tight frames of decision making during drug

development, as illustrated in the commented manuscript’.

The use of models to establish dosage regimens has been present in drug development
and patient care during the last three decades. With the arrival of biologics, specifically
monoclonal antibodies, these models have gained mechanistic insights leading to the
term of target-mediated drug disposition (TMDD)?, accounting among other phenomena
for time dependent pharmacokinetics. Indeed, the TMDD framework has been used by
Ribba and colleagues® to characterize the reduction of circulating drug exposure during

treatment triggered by the increasing target levels.

On the other hand, there is an arsenal of models linking systemic circulating drug
exposure to response. One drawback of these approaches comes from the fact that tumor
exposure is inferred from the time course of systemic drug levels and response, and
therefore, variability in response due to target bioavailability cannot be accounted for
(scenario a, Figure 1). Gathering tumor exposure appears as an obvious solution to
overcome this important limitation, however, accessing tumor biopsies or intra-tumor
microdialysis are not always possible. In the commented article, CEA-IL2v longitudinal
tumor uptake was assessed through imaging data, which likely implied a significant
amount of resources as indicated by the fact that a small cohort of 14 patients received
89Zr-labeled CEA-IL2 and only three measurements up to eight hours post-dose were

obtained per subject. The additional costs may pay off in the long term if this
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[3

methodology proves to be more precise to select the “optimal dosing regimen” for
efficacy studies, therefore maximizing the chances of clinical success and reducing the
alarming rates of late phases failure, one of the major hurdles in current oncology drug

development.

(a) Circulating TMDD
Jea |
& e —>a
(0/./ l
(b) Circulating TMDD
Ja N —
Tumor (sparse) ) — "9
"‘/o"-‘? )70/ "5Wp’ - ?T, | \

Tole

* Tumor access confirmation

Simulated Antibody Levels * Data enrichment

Tumor levels

Computational Mechanistic Model Frameworks
(knowledge integration & bility)

Figure 1. Expected impact of study design driving data availability and data processing approaches on attrition rates and
therapeutic success in oncology drug development and patient care. (a) Circulating antibodies measurements coupled with semi-
mechanistic modeling efforts; (b) circulating antibodies and sparse tumor measurements coupled with semi-mechanistic modeling
efforts using tumor uptake information to confirm target uptake; and (c) circulating antibodies and sparse tumor measurements
coupled with mechanistic modeling efforts using publicly available computational tools and Bayesian modeling. TMDD, target
mediated drug disposition

It should be highlighted that those raw data would have been sufficient to simply
confirm tumor access, but certainly it would have not permitted the prediction of
exposure at the site of action in untested dosing scenarios (scenario b, Figure 1). How to
deal with that type of information to get robust and trustful exposure predictions is a
very relevant as well as a non-trivial question to answer related to extrapolation. We
need scientifically sound tools to constrain prediction outcomes within reliable bounds,
which can be achieved considering the system (tumor) as an entity with a dynamism

governed by physiological processes, rather than a black box. This mechanistic
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perspective is not exempted from complexities though, as it is quite data and

computational demanding.

Interestingly, the strategy followed by Ribba and colleagues’ minimized data and
computation requirements upon the adaptation of a mechanistic computational model
publicly available (scenario ¢, Figure 1). One fundamental property of mechanistic
models is that processes (and their corresponding parameters) inherent to the system are
isolated from those that are treatment-specific, therefore, enabling the integration of
physicochemical characteristics of the compound, which are independent from the type
of disease and its progression and frequently available from early stages of the
discovery phase. This approach ensures and promotes model re-usability in other
therapeutics, as well as it reduces the data acquisition needs permitting the use of sparse

measurements in the target tissue.

The results obtained by Ribba and colleagues' using the above mechanistic approach
and integrating data from different sources (intrinsic drug properties, temporal profiles
of drug levels in peripheral blood and tumor, and immune cell counts) are impressive if
one compares the lack of meaningful trends shown in panel E of their Figure 2 with the
predictions generated and shown in bottom panels of their Figure 3. Given those results,
it will not be surprising that the same modeling paradigm can be applied by others in the

case of different antibodies and cancer indications.

So far, the commentary has been focused on the drug development arena, however, this
approach opens the avenue of translating MID3 efforts to model informed drug use in
patient care. The authors made use of a powerful modeling technique, the Bayesian
approach®. In brief, given a population model and individual (sparse) patient data,
individual exposure profiles can be generated. Therefore, the modeling framework that
Ribba and colleagues® present in this journal should not be diluted in time, and we
highly encourage to carry forward and re-use those computational tools at the time
when patient data are gathered and the therapeutic is available for medicine

personalization.

Consequently, the end-product of the modeling effort we are discussing is the
simulation outcome showing how a change in the dosing schema can overcome the
reduced availability of circulating CEA-IL2v result of the model predicted peripheral

target expansion. Focusing on drug exposure and leaving efficacy and toxicity apart,
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there are at least two variables that need to be taken into consideration for dose
optimization at the typical patient, which are dose level and dosing interval. The
pharmacometric discipline provides tools to find, from a formal perspective, optimal
dosing and design scenarios in order to extract the most from clinical trials.
Nevertheless, publicly available information on these therapies indicates that one of the
main obstacles in clinical phases of drug development of these compounds is dose
selection and optimization, which is still mainly driven by classical maximum tolerated
dose (MTD) schemas and non-compartmental analysis®. To the best of our knowledge,
there is only one publication where pharmacokinetic/pharmacodynamic modeling
efforts were undertaken to develop a translation model integrating information across
the different phases of drug development to finally support decision making® in the

immune-oncology arena.

To summarize, Ribba and colleagues' have applied the MID3 paradigm during the
clinical development program of a new immune modulator in oncology therapy. In their
work, circulating levels of CEA-IL2v and imaging data were embedded in a
computational modeling framework using publicly available information. This strategy,
based on sparse data, allowed for an in silico optimization of dosing schedules with
focus on tumor uptake as an alternate/complementary paradigm to MTD. It should not
be ignored that selection of the right dosage regimen is ultimately driven by the balance
between efficacy and toxicity. Remarkably, the authors found a strong positive
correlation between predicted target levels and interleukin 2 receptor (IL2-R) positive
cells, supporting drug mechanism of action and adding robustness to the developed
model. Therefore, we are eager to see how tumor uptake drives CEA-IL2v patient’s

response.

In conclusion, the contribution of Ribba and colleagues highlights the enormous
potential of modeling and simulation as a pillar in drug development and translational

medicine supporting dosing optimization and decision making.
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General discussion

During the drug development process, especially in the context of complex diseases, it
would be of a great help to have available tools facilitating key and relevant tasks, for
example identifying (i) the right therapeutic targets for the addressed condition, (ii)
underlying alterations involved in the disease etiopathogenesis and prognosis, (iii)
different subpopulations of patients with specific treatment considerations, and (iv) key
biomarkers that can assist in the decision making process by quickly and accurately
predicting and evaluating the progression the disease of particular subjects.

The Food and Drug Administration (FDA), has suggested some strategies and tools
with the purpose of facilitating and accelerating the drug development process.
One of these strategies describes the potential benefit of the use of
pharmacometrics and systems pharmacology disciplines. Under the name of
“Model Informed Drug Discovery and Development” (MID3), this strategy aims to
enhance drug discovery productivity and efficiency targeting the abovementioned

objectives using mathematical models throughout all the stages of the process!.

Throughout this thesis, systems pharmacology and pharmacometrics were applied
to different pathologies covering a broad spectrum of methodologies and
objectives. On the one hand, systems pharmacology was used to develop a
framework that could help to identify targets, biomarkers and patients
subpopulations, especially in cases of complex diseases by linking the already
available knowledge of complex biological systems with qualitative or quantitative
pharmacology data. On the other hand, pharmacometrics allowed us to build a
semi-mechanistic PKPD model to describe and predict experimental data, which, in
the future, will serve to individualize treatments, explore different scenarios and

predict drug behavior.

Along the different chapters of this thesis, different qualitative and quantitative
systems pharmacology models as well as semi-mechanistic PKPD models are
shown and have been already discussed with special mention to their advantages
and limitations. Therefore, in this section, a summary, general discussion and

overview of the whole work is provided.
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Systems pharmacology based on Boolean networks

In Chapter 1, it is shown how, in cases of complex diseases with limited longitudinal or
quantitative data, systems pharmacology based on Boolean networks represents an
interesting and useful approach.

Systemic Lupus Erythematosus (SLE) is a very complex autoimmune disease, which is
characterized by a high between patient heterogeneity. Due to this heterogeneity, it
would not seem reasonable to treat different patients with the same pharmacological
treatment, as the expected outcome is difficult to predict and might vary significantly.

For such a reason, and through a systems pharmacology approach applied to SLE
disease, we tried to identify different subpopulations of patients in order to predict the
likely progression, and thus, be able to develop individualized therapies that guarantee a
high probability of therapeutic success.

The first step in this type of approaches represents a literature survey integrating all the
available knowledge. A great general interest in biomedicine on this disease was
detected as a huge amount of available discrete data is found in the literature including
several papers reporting alterations in patients, as well as public and private datasets

from -omics experiments.

In detail, this chapter aimed to build a systems pharmacology model based on Boolean
networks to characterize the co-stimulation process in SLE disease. This model
integrates all the available knowledge to group SLE patients according to their
molecular alterations to find out whether there are, indeed, different subpopulations of

patients that may require different treatments.

The resultant network was composed of 52 components and 296 governing relationships
between them which were divided into activation, deactivation, upregulation and
downregulation processes. Twenty three out of 52 nodes had already been reported to be
altered in SLE. Once the logic network was established, we can obtain semi-quantitative
profiles and the attractors of the system. For the semi-quantitative profiles, we ran 5,000
model simulations of 40 time steps (30 of antigen exposure and 10 of washout) and
then, calculated the average of all simulations at each time step for all the nodes. For the

attractor analysis, we ran 40 simulations with 5,000 time steps. In both cases, to mimic
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biologic conditions and increase robustness on the results, we decided to incorporate
variability by randomly updating the nodes in each time step (asynchronous method),
which resulted in different progressions of the network.

An interesting feature of this approach is that perturbations can be introduced in the
network, recreating knockouts or upregulations by setting a node to 0 or 1, respectively.
By perturbing all network components, it is possible to study which the most likely
perturbations are that may cause SLE reported alterations, and then, apply a clustering
analysis to group together underlying alterations according to the Ilupus-like

manifestations they provoke.

Those possibilities show important implications in the case of evaluating potential
treatments. As we have already evaluated, different perturbations can lead to very
similar alterations, which would either react similarly to the same treatments or, on the

contrary, elicit different effects.

The main limitation of this network is that it only describes a fraction of the immune
response, and therefore, until all SLE pathways and immune alterations were included
into the model we would not be able to assess its full potential. Moreover, the building
process of the relationships between the nodes is challenging, because of the published
controversial results, unsupported affirmations, questionable experiments and
unanswered questions about the immune dynamics. Finally, another limitation that
should be highlighted is that full model validation is not feasible at this stage because
activation of many nodes is also regulated by other molecules, critical to the immune

physiopathology of SLE, but not currently available for inclusion in the model.

Nevertheless, these limitations suppose new opportunities to improve the already
developed immune Boolean network in order to provide better assistance in drug

development and clinical care in the case of SLE patients.

Quantitative systems pharmacology

In the previous chapter, a Boolean network was developed for SLE disease due to the
limited longitudinal data available from the literature. On the contrary, when adequate

longitudinal data is available, quantitative systems pharmacology models can be
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developed that describes the full longitudinal profile of the elements and pathways

involved in a disease.

In Chapter 2, the objective was to develop a framework that could assist in the
individualization/optimization of factor administration for patients with coagulation
disorders undergoing surgery. To fulfill the previous goal, two guantitative systems
pharmacology models for the coagulation cascade process®* found in the literature were
presented, implemented and evaluated. Both models incorporated most of the
components involved in the coagulation process and were developed using parameters

searched in the literature and optimized to describe in-house data.

In our case, both models were satisfactorily implemented and reproduced. The models
were able to replicate factor profiles as well as different coagulation tests (TGA, PT and
aPTT) results provided in the original publications. Nevertheless, one of the main
advantages of modeling is the predictive performance required for study design and
treatment optimization. To prove the model performance for both models with external
data, experimental data was obtained from a published article. This data includes the
percentage of activation for different factors, PT and aPTT tests results and longitudinal
thrombin profiles for normal subjects and trauma patients”. It is noteworthy to highlight

the high variability observed in the experimental data.

After simulating and comparing the individual profiles as well as the mean population
profiles obtained for the published and the simulated data, the models were deemed not
to be good enough to describe the experimental data. This event points out the existing
challenge for quantitative systems pharmacology models when dealing with data with
high variability”.

For this reason and keeping in mind the objective of this work, we decided to move
from a systems pharmacology approach to a semi-mechanistic PKPD modelling (i.e.,
from a knowledge-driven to a data-driven modeling approach) reducing considerably
the number of parameters achieving an identifiable model.
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Semi-mechanistic PKPD modelling

A semi-mechanistic population PKPD model for thrombin formation was developed

according to the individual raw longitudinal data obtained from Menezes, et al.*.

The semi-mechanistic model consists of three main compartments. The first one is the
tissue factor (TF), which is the stimulus for initiating the coagulation process to form
thrombin. The second one is the prothrombin, essential factor for thrombin formation.
The last compartment is representative of the thrombin levels. The model incorporates
two mechanisms for thrombin formation in accordance with the cellular model of
coagulation by Hoffman, et al.’. One of them provokes a quick but weak burst of
thrombin and the other one a large thrombin peak regulated by a transit compartment

model.

The model accurately describes the profiles of thrombin concentration over time after
the addition of TF to plasma samples from normal subjects and trauma patients, as a
main outcome of the coagulation process. The high variability between individuals and
the typical profile are well captured by the model as shown by visual inspection of

model simulations versus observations.

The model allows differentiating thrombin dynamics between the two different
populations included. The inclusion of more data and different patient conditions might
enrich the proposed coagulation model, what would improve model performance and
generalization. Consequently, it could be used in clinic to manage appropriately the
administration of coagulation factors as treatment for several coagulopathies

minimizing risks and improving the prognosis of these patients.

The use of models to establish dosage regimens

As we have seen previously, one of the aims that systems pharmacology and
pharmacometrics address is treatment individualization to enhance patient response,
improving efficacy and reducing toxicity. In Chapter 3, it is shown an approach that

opens an avenue in the model informed drug use in patient care.

Usually, pharmacokinetic models use blood drug concentrations to infer drug exposure
in the site of action. In this chapter, we have presented a brief perspective discussing the
impact of considering exposure at the target site concerning systemic concentrations. To
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address this, we referred to Ribba, et al.” article where a model for drug uptake by tumor
tissue that integrates a target-mediated drug disposition approach (TMDD) was
presented. The model was used to optimize dosing regimens in patients with advanced
and/or metastatic solid carcinoembryonic antigen positive (CEA™) tumors, overcoming
the increase in the synthesis of the target triggered by the therapeutic agents increasing

its clearance and reducing tumor concentrations.

In this contribution, a novel immunocytokine, which is formed by an antibody against
CEA and a variant of interleukin 2 (IL2, not able to bind to IL2 receptor of the T
regulatory cells), is presented. Once the drug is administered, it enhances the expansion
of immune cells positive to IL2 receptor, resulting in faster depletion of available drug.
For this reason, the incorporation of peripheral immune cells concentrations to the
model allowed predicting the real drug uptake in the tumor cells, confirmed by
intratumoral sparse measurements. Interestingly, the authors used for the model building
publicly available models®® which emphasizes the importance of knowledge reusing
that can be achieved using the model based approach. Below, a representation of the
model developed by these authors is presented (Figure 1). As a result of this, the authors
concluded through model simulations that increasing the dose or shortening the time

interval between doses led to a higher drug uptake by the tumor.

BLOOD

Figure 1. Model representation of drug uptake developed by Ribba, et al.
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This example highlights the enormous potential of pharmacometrics modeling and
simulation as a pillar in drug development and translational medicine, supporting dosing

optimization and decision-making.

In summary, this thesis constitutes an effort of learning and application of a broad
spectrum of modeling techniques and tools from the qualitative and quantitative systems
pharmacology models (knowledge-driven) to the PKPD models (data-driven) applied to
both drug development and clinical care. Across the different chapters, we present
examples on the application of these techniques to situations with limited longitudinal
data (chapter 1), longitudinal data from the literature (chapter 2) and experimental data

from plasma, imaging and scarce data from the site of action (chapter 3).
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Conclusions

(1)

(2)

(3)

(4)

A systems pharmacology model based on Boolean Network was built for the
co-stimulation process, in the autoimmune disease Systems Lupus
Erythematosus (SLE) disease, constituting proof of concept for this
methodology in the context of Systems Pharmacology. The model allows
identifying drug targets, optimal combinatorial regimens and subpopulations

of responders and non-responders to drug treatment.

Two quantitative systems pharmacology models of coagulation process
found in the literature were well implemented in Simbiology. Clinical data
also found in the literature was simulated with both models. The models
seem not to be appropriate to describe individual data due to the large
number of parameters and equations making impossible the introduction of

inter-individual variability in the models.

A semi-mechanistic PKPD model for coagulation process was successfully
developed in order to describe individual clinical data. The model was able
to describe individual thrombin profiles from normal subjects as well as

trauma patients.
Considering drug exposure at the target site aside from systemic

concentrations represent a powerful complement in drug development and

translational medicine supporting dosing optimization and decision making.
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(1)

(2)

(3)

(4)

Un modelo de Farmacologia de Sistemas basado en redes Boleanas fue
construido para el proceso de la co-estimulacion, en la enfermedad
autoinmune Lupus Eritematoso Sistémico (LES), constituyendo una prueba
de concepto de esta metodologia en el contexto de la farmacologia de
sistemas. El modelo permite la identificacion de dianas terapéuticas,
regimenes Optimos en combinacion y subpoblaciones de pacientes de
respondedores y no respondedores al tratamiento farmacoldgico.

Dos modelos de farmacologia de sistemas cuantitativos del proceso de la
coagulacién encontrados en la literatura fueron bien implementados en
Simbiology. Los datos clinicos que también fueron encontrados en la
literatura se simularon con ambos modelos. Los modelos parecen no ser
apropiados para describir datos individuales debido a la gran cantidad de
parametros y ecuaciones que hacen imposible la introduccion de la

variabilidad interindividual en los modelos.

Se desarroll6 con éxito un modelo PKPD semi-mecanistico para el proceso
de coagulacion con el fin de describir datos clinicos individuales. EI modelo
fue capaz de describir los perfiles de trombina individuales de sujetos

normales y de pacientes con traumatismo encontrados en la literatura.

Considerar la exposicion al farmaco en lugar de accién a parte de las
concentraciones a nivel sistémico, representa un potente complemento en el
desarrollo de farmacos y la medicina traslacional, apoyando la optimizacién

de la dosificacion y la toma de decisiones.
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Abstract

Motivation

The literature on complex diseases is abundant but not always quantitative. This is particu-
larly so for Inflammatory Bowel Disease (IBD), where many molecular pathways are qualita-
tively well described but this information cannot be used in traditional quantitative
mathematical models employed in drug development. We propose the elaboration and vali-
dation of a logic network for IBD able to capture the information available in the literature
that will facilitate the identification/validation of therapeutic targets.

Results

In this article, we propose a logic model for Inflammatory Bowel Disease (IBD} which con-
sists of 43 nodes and 298 qualitative interactions. The model presented is able to describe
the pathogenic mechanisms of the disorder and qualitatively describes the characteristic
chronic inflammation. A perturbation analysis performed cn the IBD network indicates that
the model is robust. Also, as described in clinical trials, a simulation of anti-TNFa, anti-IL2
and Granulocyte and Monocyte Apheresis showed a decrease in the Metalloproteinases
node (MMPs), which means a decrease in tissue damage. In contrast, as clinical trials have
demonstrated, a simulation of anti-IL17 and anti-IFNy or IL10 overexpression therapy did
not show any major change in MMPs expression, as corresponds to a failed therapy. The
model proved to be a promising in sifico tool for the evaluation of potential therapeutic tar-
gets, the identification of new IBD biomarkers, the integration of IBD polymorphisms to antic-
ipate responders and non-responders and can be reduced and transformed in quantitative
model/s.
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Introduction

Inflammatory bowel disease (IBD) is a complex gastrointestinal tract disorder characterized by
a functional impairment of the gut wall affecting patients” quality of life [1,2]. IBD includes
ulcerative colitis (UC) and Crohn’s disease (CD). The natural course of IBD is highly variable
[3-6] and its etiology is still unknown. The incidence of IBD has dramatically increased world-
wide over the past 50 years [7], reaching levels of 24.3 per 100,000 person-years in UC and 20.2
per 100,000 person-years in CD in the developed countries [8].

There is current evidence that Interleukin 6 (IL6), Tumour necrosis factor-alpha (TNFa),
Interferon Gamma (IFNY), Interleukin 1 beta (IL183), Interleukin 22 (IL22), Interleukin 17
(IL17) and Natural Killer cells (NK), among other signalling pathways, play relevant roles in
the pathogenesis of IBD, which is a reflection of the complexity of that physiological system
[9-12]. That complexity indicates that a universal treatment for IBD may not be feasible for
the vast majority of patients [13,14]. In fact, current biological approved treatments are only
palliative with a high percentage of non-responders. For example, around 50% of IBD patients
treated with the current standard of care, Infliximab (an anti-TNFa) or Vedolizumab (an anti-
a4p7 integrin) do not respond satisfactorily to therapy [15,16]. One characteristic of the cur-
rent [BD biological treatments is that approved therapies target just one signalling pathway,
which might explain the high rate of non-responders and the long-term inefficiency of most
treatments [15,17]. In addition, there is evidence to suggest that optimal treatment for IBD
should involve a combination of different drugs [18,19]. Therefore, there is a need, especially
for complex alterations such as immune-mediated diseases, to change the paradigm of drug
development, considering the main aspects (targets, cross-talking between pathways, therapy
combination) from an integrative and computational perspective.

Given the aforementioned biological complexity of immune-mediated diseases and the fact
that current longitudinal data associated with the most relevant elements of the system are
scarce, a full parameterization of IBD related systems based on a differential equation model
does not yet seem feasible. However, some attempts have been made to describe quantitatively
the IBD systems. For example, Wendelsdorf et al., [20] built a quantitative model based on
ordinary differential equations. However, some key disease elements, such as cytokines and T
cells, were incorporated non-specifically (i.e., all types of cytokine were grouped under the
generic element active cytokines) in the model structure, limiting its use to explore potential
therapeutic targets. More recently, Dwivendi et al., [21], based on the results of a clinical trial
with the anti-IL6R antibody, Tocilizumab, have developed a multiscale systems model in
Crohn’s disease, limited to the IL6-mediated immune regulation pathway.

Network analysis represents a promising alternative in such data limited circumstances
[22-24]. As many molecular pathways in IBD are qualitatively well described, interaction net-
works may be a suitable approach for characterizing IBD. These networks are simplified repre-
sentations of biological systems in which the components of the system such as genes, proteins
or cells are represented by nodes and the interactions between them by edges [25]. Boolean
network models, originally introduced by Kauffman [26,27], represent the simplest discrete
dynamic models. These models only assume two discrete states for the nodes of a network,
ON or OFF, corresponding to the logic values 1 (active) or 0 (not active, but not necessarily
absent) [28]. A well-designed logic model could generate predictive outcomes given a set of
initial conditions. Qualitative, logical frameworks have emerged as relevant approaches with
different applications, as demonstrated by a growing number of published models [29]. Com-
plementing these applications, several groups have provided various methods and tools to sup-
port the definition and analysis of logical models, as it can be seen by the recent achievements
of the Consortium for Logical Models and Tools {CoLoMoTo) in logical modelling [30].
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There are already several tools for Boolean modeling of regulatory networks in which it is pos-
sible to define direct activation-inhibition relationships between the components of the net-
work, such as BoolNet R [31] or GINsim [32]. More recently, the R package SPIDDOR
(Systems Pharmacology for efflcient Drug Development On R) among others, has imple-
mented new types of regulatory interactions and perturbations within the system, such as posi-
tive and negative modulators and the polymorphism-like alterations, which lead to richer
dynamics between the nodes [28].

In the specific case of IBD, there have been initial attemnpts to develop network models. The
multi-state modeling tool published by Mei et al., [33,34] can be considered a proof of concept
in the application of these types of networks in mucosal immune responses. However, the
number of elements that this model considers and integrates is limited for 1BD characteriza-
tion, since only six different cytokine types are included in the inter-cellular scale.

The objective of the current manuscript is to present a Boolean based network maodel incor-
porating the main cellular and protein components known to play a key role in IBD develop-
ment and progression. The model has been built on well-established experimental knowledge,
mostly of human origin, and only including animal data when no other source of information
was available, Our aim has been to build a model structure facilitating key aspects in the treat-
ment of immune mediated disease, such as the selection of the most promising combination
therapies and the study of the impact of polymorphisms on pathway regulation, thus allowing
patient stratification and personalized medicine.

This study provides the scientific community with a (i} computational IBD model imple-
mented in SPIDDOR R package [28], which allows translation of Boolean models (excluding
models enclosing temporal operators) to a standard Markup language in Systems Biology for
qualitative models (SBML qual [35]) which promotes model interoperability, and (ii) a reposi-
tory with the main and updated information known of the immune system and IBD, which
shows model transparency and allows model reusability. The proposed IBD model can be eas-
ily expanded in size and complexity to incorporate new knowledge, or other type of informa-
tion such as proteomic data. The model presented hereafter is general enough to serve as a
skeleton for other relevant immune diseases such as Rheumatoid Arthritis, Psoriasis or Multi-
ple Sclerosis.

The manuscript is organized as follows: In the next section, Results regarding the structure
of the model can be graphically visualized, and the ability of the model to recreate certain alter-
ations that have been reported in IBD is demonstrated, as well as the model’s capability to
reproduce the results from recent clinical trials performed in 1BD patients from a high-level
perspective. Applications of the model, including its advantages and limitations are then dis-
cussed together with ideas for future research. Finally, the Methods section provides a detailed
technical description (with the aid of supplementary material) of the network and a descrip-
tion of how simulations, collection, and representation of results have been performed.

Results
Graphical representation, repository, and Boolean functions

The graphical representation of the IBD network is shown in Fig 1. Tt consists of 43 nodes and
298 qualitative interactions located in three different physiological areas corresponding to (i)
the lymph node, (ii) the blood and lymph circulatory system that irrigates the intestinal epithe-
lial cells and (iii) the gut lumen,

Definition of all nodes and the full documented regulatory interactions conforming the
maodel structure can be found in supporting information S1 Table and 52 Table, respectively.
The S2 Table is fundamental to understand the rationale for the selection and implementation
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Fig 1. Graphical representation of IBD model. Nodes represent cells, proteins, bacterial antigens, receptors or ligands. Bacterial antigens trigger the IBD immune
response through activation of different pattern recognition receptors (TLR2, TLR4 and NOD2) starting the innate and adaptive immune response. Reprinted from [36]
under a CC BY license, with permission from the organizers of the 2016 International Conference on Systems Biology, original copyright 2016.

https://doi.org/10.1371/journal.pone.0192949.9001

of the Boolean functions (BF). It was organized to provide a comprehensive summary of the
301 manuscripts (published over the last three decades) used to build the model, highlighting
for example whether (i) a specific pathway was reported to be altered in IBD, or (ii) informa-
tion was supported by human (more than the 80% of the network structure) or animal data.
The Boolean operators used to define the network model of IBD were: the NOT operator
which is noted as “!”, the AND operator which is noted as “&” and the OR operator which is
noted as “|”. Recent and innovative modulators and threshold operators previously described
by Irurzun-Arana et al., 2017 [28] were also part of the arsenal of Boolean elements used in the
model proposed (see S1 File for a detailed description of those additional Boolean elements).
Regarding the input selection, as it is assumed that IBD is caused by intestinal dysbiosis, an
environment of different bacteria was recreated selecting three different antigens which are
components of most Bacterial Gram positive and Gram negative. Therefore, during the devel-
opment of the proposed model the following assumptions were made: First, there is a chronic
exposure to bacterial antigens: Peptidoglycan (PGN), Lipopolysaccharide (LPS) and Muramyl
dipeptide (MDP). PGN is a component of the cell wall of all bacteria, but in particular of
gram-positive bacteria, LPS is a component of the outer membrane of Gram-negative bacteria

PLOS ONE | https://doi.org/10.1371/journal.pone.0192949 March 7,2018
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Table 1. Boolean functions {BF) of the IBD model to simulate the initial conditions.

INITIAL CONDITIONS: CHRONIC EXPOSURE
PGN =1 ()X = PERFOR= | ()1 =" GRANZB | () =" DEPT)

MDP = ([ PERFOR™ | (" GRANZE | (""" DEF)

LPS = (Y2 = pERFOR= | (1 "= GRANZB | (1 ™ DEP—)
https://doi.org/10.1371/journal.pone.0192949.t001

[37], and MDP is a constituent of both Gram-positive and Gram-negative bacteria [38]. All
three elicit strong immune responses and seem to play a critical role in the development and
pathophysiology of IBD, as it has been hypothesized that the onset or relapse of IBD is trig-
gered by an imbalance in self-microbiota composition than cannot be controlled by immune
system [39]. Table 1 lists the initial conditions expressed by the corresponding BF, and shows
that the nodes representing antigens are chronically expressed unless the natural antimicrobial
peptides perforin (PERFOR), granzyme B (GRANZB) or defensins (DEF) become active.

Second, there is an impairment in antigen elimination in 1BD patients [1,40,41], simulated
with the threshold operator Ag_elim = 6. The threshold operator means that PERFOR,
GRANZB, or DEF inhibit antigen activation when any of these three nodes have been activated
for at least 6 consecutive iterations (see Table 1).

Third, the final readout of the network model is the average expression of the output node,
Metalloproteinases (MMPs). There is solid evidence that this group of proteins is directly asso-
ciated with intestinal fibrosis and tissue damage in IBD [42-46] supporting their use as a rele-
vant biomarker in clinical practice as proposed by O’Sullivan et al. [47]. As it can be seen in
Table 2, the nodes that directly activate MM Ps are the nodes that have relevant roles in the
pathogenesis of IBD [9-12,42-44,46,48].

Table 2 contains the full set of BF that modulates the signal initialized by the antigens
through the activation of different pattern recognition receptors (TLR2, TLR4 and NOD2
nodes) and the impact on the output node (MMPs) as the recipient of the antigen signal inter-
nal modulation. The nodes T'NFo or IFNy have the most complex pathways as can be seen in
the corresponding Boolean equations (Table 2),

With the aim of making the network model more accessible to the community it has been
uploaded to “T'he Cell Collective” [49,50] platform (https://www.cellcollective.org/#cb963d7{-
75cb-4b2e-8987-0c7592a9¢21d). In addition, the supporting information document S2 File
provides the network model in text format ready for simulation in the R-based freely available
package SPIDDOR [28] and an html tutorial as a guide to reproduce the results (S3 File).

Perturbation analysis and clustering: Network robustness

The results of the network perturbation analysis are presented in Fig 2. The heatmap shows
the impact of a single blockage of each node in every network node. The results indicate that
most node blockages did not trigger considerable changes, suggesting that the IBD network is
robust [51]. Some perturbations led to a higher activation of the nodes, while down regulations
were more common. The heatmap was combined with a hierarchical clustering grouping
together the nodes that caused similar alterations. Knockout of the NFkf$ node appeared to be
the most relevant alteration as it caused a reduction in expression of many of the nodes that
were reported to be overexpressed in IBD patients. The knockout of the ThO node (represent-
ing activated CD4+ T cells) also elicited a reduction in MMPs. The positive effects of the NFkf3
and ThO node blockades on MMPs decreased expression, resembled some of the known mech-
anisms of action of glucocorticoids, inhibitors of T cell activation and proinflammatory
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Table 2. Boolean functions (BF) of the IBD model for the internal and the output nodes.

INTERNAL NODES

TLR2 = PGN

TLR4 -~ LP§

NOD2 = MDP

NFLD = TLR2 | NOD2 | TLR4

1L6 = (MACR & PGN) | (1C & (LS| PGNY) | (Th17 & 1123} | (NFRB &) (114 | IL10))

INFa = ((NFRB&LES) | (MACR&(IL? (IENg&LPS) | PGN)) | (NK&(MDP | PGN | LPS)&((112
TL12Y&(IL2 [TLA5)) | (FIBROBLAST&IFNg) | {(CD4_NKG2D CDR_NRG2D | NK_NKG2D)&(IEC_MICA B
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Table 2. (Continued )

GRANZB= CD8_NKG2D | NK| NK_NKG2D | (DC &' (LPS | PGN)}

OUTPUT NODE

MMPs = (MACR & TNFa) | (FIBROBLAST & (I£21 | IL17 | IL1b | TNEa))

Bold tex! within Boolean equations indicates thal the information belongs Lo animal data

https://doi.org/10.1371/journal.pone.0192949.t002

cytokines, as well as potent suppressors of the effector function of monocyte-macrophage and
fibroblastic activity, interfering with the NFxB inflammatory signal [52-54].

Network accuracy and validation

Experimental and clinical information. Simulations of chronic infection in IBD individ-
uals show that the model reproduced satisfactorily experimental and clinical information
(summarized in Table 3 and supporting information S3 Table). Fig 3 shows the results of the
simulation for each network node after reaching the attractor state for virtual healthy and IBD
subjects. In total, 31 upregulations in experimental studies were replicated with our simula-
tions. Similarly, the 9 nodes reported as altered appeared upregulated in the simulations, and
finally, the three nodes whose profiles were not known also proved to be upregulated.

Clinical trials. In our simulations, three drugs that have failed to prove clinical efficacy in
clinical trials {anti-IL17, anti-IFNy and rhuIL-10) also exhibited no benefit in the simulated
surrogate for the disease score (Fig 4). Simulations with anti-TNFu, a biclogic therapy
approved for IBD, showed a decrease in the disease score. Simulations with anti-IL12-1L23, a
recently approved therapy for IBD, showed a slight decrease in MMPs and anti-IL2 therapy
simulation showed a decrease similar to anti-TNFe. In addition, the new promising therapy
(GMA), equivalent to an anti-MACR in our model showed a decrease in MMPs similar to that
for anti-TNFet.

Discussion

In the current study, we present a Systems Pharmacology (SP) network model for IBD based
on the main cells and proteins involved in the disease. Our analysis appears timely, as IBD has
recently been attracting increasing attention [55-59]. We attempted to meet one of the major
challenges in inflammatory bowel disease (IBD) which is the integration of IBD-related infor-
mation to construct a predictive model. We are not the only ones following this line of
research, as Lauren A Peters et al. have very recently performed a key driver analysis to identify
the genes predicted to modulate network regulatory states associated with IBD [55]. Both anal-
yses could be integrated in the future and inform our post-transcriptomic network with the
key driver genes identified by Lauren A Peters et al. [55].

In comparison with the previous quantitative approaches for IBD [20,21,33,34], our model
identified Naive CD4+ T Cells, Macrophages and Fibroblasts cells as relevant in IBD. Also, in
addition to the six interleukins (TGFf, IL6, IL17, IL10, IL12 and TFNY) considered by Mei
et al. [33,34] our network involves 10 interleukins more which could represent possible IBD
biomarkers [60]. The procedure to evaluate the potential role of the different components on
the disease as plausible biomarkers, would be equal to the one described in section 4.5 (pertur-
bation analysis and clustering), focussing on the changes in the output node.

In the validation of network models, robustness and practical applicability represent critical
aspects. The fact that the information gathered from the literature was obtained under very
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Fig 2. IBD network perturbation analysis and clustering. The heatmap indicates the effect of single blockage of each node (columns) in every network
node (rows). The colour in each cell corresponds to the Perturbation Index (PI) of the nodes. When there is no change in the expression of the node, the
cells of the heatmap would be black, having a value between 0.8 and 1.25 in their PIs. Otherwise, when the perturbation causes an overexpression in a
node, the cell in the heatmap would be orange coloured, with PIs values greater than 1.25. On the contrary, a value of 0.8 or smaller, blue colour, indicates
thal the perturbalion causes a downregulalion of the node. The numeric scale in the legend represents differenl values of the nodes PI under dilferent
perlurbalions. Nodes that induce similar alleralions are hierarchically clustered.

https://doi.org/10.1371/journal.pone.0192949.g002

different experimental designs/conditions/methodologies, represents a challenge with respect
to validation. This led us to propose and adopt a novel strategy consisting of the comparison of
the results of model-based virtual pathway simulations with those reported in the literature for
IBD patients. Using this approach, we obtained a qualitative reproduction of IBD in which all
the network elements that have been reported as upregulated in IBD patients appeared upre-
gulated in our simulation results. The perturbation analysis of the network was performed by a
single blockage in each node to analyse how that type of alteration propagates through the
entire network reflecting the case of single polymorphisms, which represents the simplest case
of IBD disease. Despite of the simplicity of this analysis, the results obtained from the model
accuracy and validation procedures are encouraging. Results from the perturbation analysis
indicate that the proposed network model is robust, as alteration in most nodes did not trigger
considerable changes in the network [61].

Once validated and checked for robustness, the network was challenged to qualitatively
reproduce the readouts of five different therapies reported in experimental and clinical studies.
The outcome of this challenge was similar to the clinical output in IBD patients. By the simula-
tion of TNFo or MACR knockout (simulating Granulocyte and Monocyte Apheresis), a
decrease in MMPs node was observed, which is in line with therapy success in clinical practice
by a decrease in Crohn’s Disease Activity Index (CDAI) Score [42-46],[62-68]. On other
hand, IL17 or IFNy knockout or IL10 overexpression did not show major change in MMPs
expression, suggested a failed therapy as was indeed found in clinical practice [69-72].

Surprisingly, the model shows that a knockout of 11.2 leads to a reduction in MMPs similar
to that of a knockout of TNFa, even when previous results of clinical trials with Basiliximab or
Daclizumab (monoclonal antibodies that bind to the interleukin 2 receptor CD25) in Ulcera-
tive Colitis have failed to show superiority to corticosteroids alone [73,74]. The mechanism of

Table 3. Expression of network nodes in IBD patients.

NODE |EXPRESSION |[NODE | EXPRESSION | NODE | EXPRESSION NODE EXPRESSION
PGN | Altered 1.1b Upregulated | Th2 Upregulated DC Downregulated in Blood-Upregulated in
MDP mucosa

LPS

TLR2 | Upregulated IFNg Upregulated 1L4 Altered IEC_MICA_B | Upregulated
TLR4 | Upregulated |IL23 Upregulaled | IL15 | Upregulaled IEC_ULPBL_6 | Upregulaled
NOD2 | Altered 1L22 Upregulaled | IL12 | Upregulated CD8_NKG2D | Upregulaled
NEKB | Altered IL21 Upregulated | IL13 | Upregulated NK_NKG2D | Unknown

IL6 Upregulated | IL17 Upregulated | Treg | Downregulated in Blood-Upregulated in | CD4_NKG2D | Upregulated
TNFa | Upregulated mucosa

TGFb | Upregulated | IL10 Upregulated | NK Upregulated FIBROBLAST | Upregulated
Tho Unknown Th17 Upregulated | DEF | Altered MMPs Upregulated
ThOo_M | Upregulated | Th17_M | Upregulated | IL2 Upregulated PERTFOR Altered

IL18 Upregulated | Thl Altered MACR | Unknown GRANZB Upregulated

A total of 31 nodes are reported as upregulated in IBD patients, 9 are reported to be altered (when different reports from literature are inconclusive or contradictory)

and 3 nodes are unknown,

hitps://doi.org/10.1371/journal.pone.0192949.t003
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Fig 3. IBD network simulation results. Attractor state of every network node for healthy and IBD simulated individuals under chronic antigen exposure.

https://doi.org/10.1371/journal.pone.0192949.g003

action of corticosteroids has not been fully described, yet it is known that corticosteroids cause
diminished levels of IL2 mRNA [75,76]. Together with the rest of corticosteroid inhibitory
mechanisms, this would be the reason why Basiliximab or Daclizumab do not show superiority
to corticosteroids alone.

Among the potential applications the current network supports: (i) biomarker selection
given that the cytokines TNFa, IL21, IL17 and IL1£, which can be easily measured in periph-
eral plasma with different Enzyme-linked immunosorbent assay (ELISA) kits [77,78], are the
model components directly related to MMPs activation, (ii) search for optimal combination
therapy to overcome the high attrition rates in phase clinical trials with single therapies which
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Fig 4. Comparison of MMPs expression after the simulation in IBD simulated individuals of different therapies.

Simulated therapies: Anti-TNFa, GMA therapy (equivalent of knock out our MACR node), anti-IL17, human
recombinant IL10 (rhulL-10), anti-IFNY, anti-IL2 and anti-IL12-1L23. Comparing with untreated simulation, we can
see a 30.7%, a 27.1%, a 31.9% and a 4.1% decrease in the MMPs expression simulating anti-TNFo, GMA therapy, anti-
IL2 and anti-IL12-IL23 respectively. There is no major change in MMPs expression for the two which failed in clinical
trials anti-IL17 (a 6.5% decrease) and human recombinant IL10 (a 3.2% decrease). Otherwise, anti-IFNy therapy
simulation shows an increase in MMPs expression of 16.0% compared to Untreated.

https://doi.org/10.1371/journal.pone.0192949.9004

are due mainly to lack of efficacy [79], and (iii) management of multiscale information such as
the integration of proteomic gene expression data [55] accounting for IBD polymorphisms to
anticipate responders and non-responders. With such a type of data able to correlate a genetic
alteration with a decrease or an increase in protein expression, it would be possible to simulate
specific genetic alteration by altering the protein expression. This would allow one of the limi-
tations of the current network at the present time to be overcome with regard to the effects of
Ustekinumab, a monoclonal antibody targeting free IL12 and IL23, which has been recently
approved for moderately to severely active Crohn’s disease in adults who have failed to treat-
ment with immunomodulators, or more than one TNFa blocker [80]. Simulation results
based on the known mechanisms of Ustekinumab showed just a 4.1% decrease in tissue dam-
age. On the other hand, when simulating TNFa blocker effects, tissue damage decreased by
30.6% even though a substantial percentage of patients showed poor control of the disease
after treatment with anti-TNFo antibody [15,16].

We emphasize that the proposed network model is fully accessible which allows it to
undergo immediate testing and further development. In that respect it should be noted that
although our model intended to include information of human origin exclusively, some criti-
cal pathways had to be complemented with animal derived data (although in the current case
the percentage of human supported pathways is greater than in previous computational mod-
els [20,81,82]), but we are aware of the wide differences in the immune system between species
[83-85].
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This study addresses the goals of systems pharmacology by effectively encompassing prior
knowledge to generate a mechanistic and predictive understanding at the systems level for
IBD. Semi-quantitative understanding at the network level is necessary prior to the generation
of detailed quantitative models for within-host disease dynamics. The current IBD model and
the companion literature summary archive will drive the development of a dynamic (i.e., ordi-
nary differential equation driven) model involving meaningful parameters capable of simulat-
ing longitudinal data, and allowing model reduction as well the goal of parameter estimation
during the clinical stages of the drug development process. In addition, our IBD network can
be extended to other inflammatory diseases, as main pathways in the model are common to
most inflammatory conditions [86,87], and the outputs of our nodes could also serve as inputs
to broader-scale logic models; for example, incorporating structures from available logic mod-
els of some of our nodes such as fibroblast [61], IL1b or IL6 [88].

In summary, we present a network model for inflammatory bowel disease which is available
and ready to be used and can cope with (multi-scale) model extensions. It is supported by a
comprehensive repository summarizing the results of the most relevant literature in the field.
This model proved to be promising for the in silico evaluation of potential therapeutic targets,
the search for pathway specific biomarkers, the integration of polymorphisms for patient strat-
ification, and can be reduced and transformed in quantitative model/s.

Methods
Literature search and data selection

The network model is based on an exhaustive bibliographic review focusing on the essential
components of IBD, as previously performed by Ruiz-Cerda et al., in their systems pharmacol-
ogy approach for lupus erythematosus [23]. Our review included around 620 papers published
between October 1984 and September 2017, yet the most common reviewed articles were from
2007 or later (76%). The search of the relevant literature was made through Medical Subject
Headings (MeSH) terms using different search engines such as PubMed, clinicaltrials.gov or
google scholar. MeSH terms were focused on the combination of keywords and free words
including: (i) relevant network components (ej.”IL6”) involved in the pathogenesis of IBD, (ii)
nodes that have been reported to be altered in IBD (ej. “IL6 AND IBD”) and (iii) nodes directly
affecting the expression of the nodes selected in (i) and {ii) (ej. “DC AND IL6”). The internal
nodes selection was made according to the reported upregulated components in IBD patients
together with the nodes (immune system cells) which are necessary to link the upregulated
nodes, which were established as internal nodes. Only original papers with a clear description
of experimental conditions were considered to identify the relationships between the compo-
nents of the biological network. Due to the reported differences between animal and human
immunology [83-85], in only few cases were animal data considered to connect nodes of criti-
cal pathways when no human data were available.

Annotation and system representation

Annotation was crucial to organize the available literature according to its relevance. 52 Table
from supplementary information shows the way the information was organized for building
the network. S2 Table includes every node definition and the relationships between the nodes.
Annotation included the identification of the main elements (antigens, cytokines, cells, pro-
teins, membrane receptors and ligands) of IBD disease.

The IBD model will be freely accessible to the public through the “T'he Cell Collective”
repository https://cellcollective.org/#cb963d7f-75ch-4b2e-8987-0c7592a9¢21d.
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Boolean network building and r implementation

The collection of qualitative relationships extracted from the literature was transformed into a
logical model as described before by Ruiz-Cerda et al. [23]. Logic networks capture the dynam-
ics of their components, called nodes, after selected stimuli or initial conditions [89,90]https://
paperpile.com/c/XvtklO/p0BRz+YiQ4q. In these models the relationships of activation or
inhibition between nodes are described as combinations of the logic operators: AND, OR and
NOT condensed in a mathematical expression called a Boolean function for each node. Posi-
tive and negative modulators, and thresholds as previously described by Ruiz-Cerdd et al.[23]
and lrurzun-Arana et al. [28] were also considered to resemble better the biological system,
Boolean network building and R implementation from S1 File gives a more detailed explana-
tion of the modulators used in the model.

Simulations

The set of combined Boolean functions for the IBD model was implemented SPIDDOR [28],
using RStudio Version 0.99.442. Simulations with 25 repetitions over 5000 iterations were per-
formed. According to preliminary experiments, these simulation conditions were required to
achieve the steady state of the network called attractor [91-93]. An attractor can be a fixed-
point if it composed of one state, a simple cycle if consists of more than one state that oscillates
in a cycle or a complex attractor if a set of steady-states oscillate irregularly. In each simulation,
anode can show two possible values in each iteration: 0 (deactivated) or 1 (activated). The per-
centage of activation of the output node (MMPs) calculated at the attractor state was used as
the readout summary of the simulation exercises, as this group of proteins are directly associ-
ated with intestinal fibrosis and tissue damage in IBD [42-46].

Each node was updated asynchronously [94-96] according to its Boolean function that
defines the dynamics of the system. Initial conditions are explained in detail in “Simulations”
from S1 File.

Perturbation analysis and clustering

Robustness can be defined as the system’s ability to function normally under stochastic pertur-
bations [96]. The investigation of robustness in Boolean networks generally focuses on the
dependence between robustness and network connectivity [97]. We performed a perturbation
analysis in our IBD model to study robustness by simulating the effect of the single blockage of
each node on every other node of the network [51]. This simulation was performed by using
the KO_matrix.f function from SPIDDOR package with 24 repetitions over 999 iterations
under asynchronous updating.

Results from the simulations described above were represented as heatmaps with dendro-
grams in which the number of rows and columns is equal to the number of nodes in the net-
work (Fig 2). The colour in each cell of the heatmap corresponds to the Perturbation Index(PI)
of the nodes, which is the probability ratio between the perturbed and the normal conditions
as described by Irurzun-Arana et al. [28]. A hierarchical clustering method [98] was applied to
further study which nodes cause similar alterations in the system.

Network accuracy and validation

Accuracy was evaluated comparing the alterations reported in the literature for IBD patients
with the simulations of chronic antigen exposure for IBD or healthy individuals.

A literature search of every node expression in IBD patients was performed, and the gath-
ered information is condensed in S3 Table including three categories: up-, down-regulated, or
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altered, whether the levels in CD, UC or both (IBD) with respect to healthy volunteers are
higher, lower, or inconclusive and/or contradictory, respectively.

For validation purposes, model simulations were compared against available results from
clinical trials performed in IBD, CD or UC until the beginning of 2017 in https://www.
clinicaltrials.gov/. All the molecules tested in clinical trials, whose mechanism of action is
known and whose target were included in our network, were tested with the model. The net-
work was evaluated comparing simulations and reported outcomes from clinical trials for six
investigated molecules: anti-TNFo [62-65] and anti-IL12-IL23 [80], two monoclonal antibod-
ies (mADb) approved for IBD disease, anti-IFNy [69,70], anti-IL17 [72], anti-IL2 [73,74] and
human recombinant IL10 (rhulL-10) [71] which failed in clinical trials. Also a new promising
therapy: Granulocyte and Monocyte Apheresis (GMA) [66-68] was tested. The reported
CDAI (Crohn Disease Activity Index) was compared with the average expression of the MMPs
output node in the attractor state.

Supporting information

S1 Table. Abbreviations. List of abbreviations.
(PDF)

S2 Table. IBD Network Repository. Table of nodes and interactions supported by references.
(PDF)

§3 Table. IBD_validation, Table of alterations in patients of IBD network nodes supported by
references.
(PDF)

§1 File. Supporting_Information_Methods. Document with detailed description of the
methodology.
(DOCX)

S2 File. IBD.txt. Text document with the Boolean functions written in SPIDDOR nomencla-
ture for iBD simulation.

(TXT)

§3 File. User_Guide_SPIDDOR_IBD.html. Html tutorial about how to reproduce the results

from the present manuscript with the SPIDDOR package.
(HTML)
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