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Preface 1

Preface

During the past decades Pharmacometrics and Systems Pharmacology (PSP) modelling has emerged
as a promising discipline within drug development context. Model-based approaches in drug develop-
ment involve the integration of pharmacokinetics (PK), pharmacodynamics (PD), disease progression
and other relevant information to describe complex biological systems and the action of drugs by
computational models. The use of such models can have a major impact during all phases of drug
discovery and development and may ultimately result in significant cost reductions for the pharmaceu-

tical industry.

Modeling and simulation (M&S) in PSP integrates diverse scientific domains including pharmacology,
mathematics, computer science, biostatistics, systems biology, and recently even artificial intelligence
is being applied in this field. The diversity of this discipline sometimes results in the challenge
that people of different backgrounds do not share the same knowledge about the different aspects
governing M&S arena.

The present thesis explores the possibility to improve standard PSP modelling by integrating different
methodologies and tools that can aid to build a bridge between the different disciplines in order to
develop more mechanistic pharmacological models.

This thesis is structured as follows:

The Introduction section gives a general overview about the different methodologies that will be

explored in the different chapters of this thesis.

Chapter I proposes a qualitative modeling strategy which consist on a computational framework
to perform simulations of Boolean networks in the R environment and analyze the result of the
perturbations on these networks. This framework called SPIDDOR (from Systems Pharmacology for
efflcient Drug Development On R) combines the advantages of the parameter-free nature of logical
models while providing a good approximation of the qualitative behavior of pharmacological systems,
making the use of Boolean networks in SP more accessible to scientist involved in drug development,
especially at its early stages. Additionally, this tool has been used to qualitatively evaluate the results
of Boolean network models describing pathogenic mechanisms in the autoimmune diseases systemic
lupus erythematosus and inflammatory bowel disease. The publications corresponding to these works

are added in the Appendix of the thesis.
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Chapter 2 proposes an optimization technique known as Optimal Control and its application to a
PKPD model for the testosterone effects of triptorelin, a synthetic gonadotropin-releasing hormone
analog used to induce chemical castration in prostate cancer patients, with the goal of improving
the release characteristics of the drug. As the proposed approach is not circumscribed to just this
particular problem, the reader will find a comprehensive description of how the critical aspects of

defining control variables and selecting the cost functions and constraints were handled.

Chapter 3 presents a computational framework based on a stochastic model known as multitype
branching process used to explore the dynamic evolution of heterogeneous tumor cell populations.
This framework, which also consist on an R package, is called ACESO (from A Cancer Evolution
Simulation Optimizer) and incorporates pharmacokinetics and drug interaction effects into the stochas-
tic model. The aim of this tool is to identify optimum dosing schedules that minimize the risk of

developing resistance to anticancer therapies.

The need for integration of data from diverse sources including pharmacokinetics, pharmacodynamics,
disease progression and toxicology has led also to an increased use of mechanism-based models
during early phases of drug development but also in clinical cancer research. Therefore in Chapter 4
a semi-mechanistic model describing the time course of several circulating biomarkers in advanced
melanoma patients treated with adjuvant high-dose interferon ¢2b is presented in order to evaluate
the dynamics of the tumor markers as prognostic factors of the overall survival and progression-free
survival of the patients. This treatment-biomarker-survival model is also coupled to another semi-
mechanistic model describing the side effects of interferon therapy in the absolute neutrophil counts

of the patients in order to simultaneously analyze the benefits and toxic effects of this treatment.

Finally, the General Discussion integrates and highlights the most relevant aspects of the four chapters,

to end with the Conclusions where a summary of the more relevant findings of the thesis are described.



Introduction
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Introduction

Current drug discovery and development, regardless of the therapeutic area, is a long and complex
process associated to a high attrition rate which results in an unacceptable high cost-benefit ratio
going beyond the drug industry context. This fact motivated the emergence of a strategic initiative
by the Food and Drug Administration (FDA) in 2004, the critical path initiative, with the goal of
optimizing the development programs and accelerating the drug approval process [79].

Considering the need to anticipate/extrapolate drug safety and efficacy in new scenarios based on
information gathered at previous stages (i.e., from preclinical to first dose in humans, or from healthy
volunteers to patients) and its uncertainty associated, is not surprising that one of the six broad topic
areas of the mentioned critical path initiative was devoted to promote the application of mathematics,
statistics and computational analysis within the drug development and regulatory review process.
That represented the first step towards the current Model Informed Drug Discovery and Development
(MID3) paradigm enclosed within the discipline of Pharmacometrics and Systems Pharmacology
(PSP).

Mathematical modeling and simulation is frequently used in this area as it provides a low-cost method
to identify and integrate major determinants of drug action and make predictions about disease
progression and/or drug effects that could inform key decisions in the drug development process. PSP,
from a high level perspective, can be viewed as a way to integrate and quantitatively link all type
of information, methodologies and tools associated with the development of mechanistic models of
biological and/or physiological processes and pharmacology that can help in our understanding and
subsequent prediction of drug response in patients. Essentially, pharmacometrics is defined as “the
science of developing and applying mathematical and statistical methods to characterize, understand,
and predict a drug’s pharmacokinetic (PK) and pharmacodynamic (PD) behaviour” [78]. Systems
Pharmacology (SP) on the other hand, is an emerging multi-scale discipline that focuses on the
combination of the interactions among multiple levels of biological organization (molecules, cells,
tissues, organs, etc.) and basic principles of PKPD as a means to describe and predict therapeutic and

adverse drug effects at the whole-organism level [66].

The value of MID3 approaches in enabling model-informed decision-making is evidenced by a large

number of publications. Some recent examples can be found in [28, 56, 67, 8].

In these examples, the reliability and explanatory power of the chosen models depend predominantly
on the level of detail included and the assumptions they are based on. In many cases a combination of
strategies is the best way to proceed. Especially in pharmacometrics, not only quantifying the mean
tendency of a population with a deterministic function is of particular interest, but also finding ways

of modelling the unexplained variance of the data, which may be the result of differences in patient
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characteristics and/or uncontrolled sources of noise caused by the inaccuracy of the analytical methods
or errors in sampling times. This is the case of nonlinear mixed effects modeling approach (more com-
monly known as population pharmacokinetic/pharmacodynamic (popPK/PD) modeling), extensively
used by the pharmaceutical industry and regulatory agencies to analyze experimental and clinical data
and provide tools to design new scenarios and find optimal dosing schedules that extract the most from
preclinical and clinical studies. Nevertheless, in clinical phases of drug development, these procedures
are still mainly driven by classical maximum tolerated dose (MTD) schemas and non-compartmental
analysis. Combination therapies present additional challenges where computational modeling can
provide guidance. Because of the complexities of dose combinations and schedule options for therapy
consisting of multiple agents, testing all combinations of schedules and doses is not possible. The
use of mathematical models can help in the selection of optimal drug combinations, but even using
these strategies, optimization of drug exposure is not a trivial task (especially in the case of non-linear
and complex biological systems) and cannot be efficiently addressed through trial-error simulation
exercises. In those cases, complementary optimization techniques that will be discussed later in this

review need to be employed.

It is remarkable that the efforts performed in this field have resulted in the integration into the MID3
paradigm of very different modelling approaches that in the past were not connected at all to biophar-
maceutics, pharmacokinetics or pharmacodynamics, as it is the case of optimal control [46] methods
and the network models based on Boolean operators [32]. These are, however, areas and quantitative
approaches that are seldom used by pharmacometricians and which deserve consideration and work
to a mutual convergence. Figure 1 represents all the disciplines evaluated in this thesis and that could
provide important insights into PSP. One of those cases is the stochastic modelling approach where,
opposed to the most often used deterministic systems, the same set of parameter values and initial
conditions can lead to different outcomes of the system. Stochasticity is very appealing as events
occurring at random can have an important repercussion on disease progression and treatment effects.
Currently, this mathematical approach is being used to quantify relevant pathological aspects such as
the growing population of cancerous cells and bacterial or viral infections were mutations leading to

drug resistant cells or individuals occur at random [16, 33].

MID3 has proven to be an extremely valuable tool to evaluate different treatment strategies more
efficiently during the different preclinical and clinical drug development phases, but also to improve
patient care as it narrows the set of possible schedules that could be tested in clinical settings that
maximally extend patient survival. In this introductory review, we aim to give a general overview
about each of the above mentioned methodologies, leaving the discussion about qualitative network

models for Chapter 1.

The rest of the introduction is organized as follows: first a general description about deterministic and

stochastic modeling strategies is provided highlighting the main differences in their model structure,
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Stochastic modeling

Optimal control Joint models

Fig. 1 Different type of modeling elements and techniques that can contribute to Pharmacometrics and Systems Pharmacol-
ogy (PSP) area.

the simulation methods and model fitting techniques. Then the nonlinear mixed-effects modeling
approach is presented as the most appropriate method to model the data coming from different
individuals. Finally, the methodology of optimal control is introduced and examples of its application
to deterministic and stochastic models are described. Each of these sections are complemented by the

relevant literature in the field and examples of possible applications.

Deterministic vs stochastic models

Model structure

The structure of a model describes the relationship between the input variables and the output of a
system. This relationship can be based on different mathematical formalisms depending on the degree
of detail and the scope of the modeling effort, ranging from qualitative strategies such as Boolean
models to quantitative approaches based on ordinary differential equations or stochastic processes. In

this introduction we will focus on quantitative modeling strategies.

Quantitative models can be further divided into deterministic and stochastic systems. Deterministic
models are often described by a system of algebraic or ordinary differential equations (ODEs) and de-
scribe the evolution of a system in continuous time. Here, the output of the model is fully determined
by the parameter values and the initial conditions of the system and no randomness is assumed to be
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present. Thus, the outcome of a deterministic model is unique and represents the average behaviour of

the system. This average behavior is in most cases a suitable representation of real biological processes.

For instance, consider a cell population n where each cell gives birth to an offspring according to a
constant birth rate 8 or dies according to a certain death rate 0. Assuming that the population grows

exponentially then the ODE governing the exponential growth of the population can be defined as:

dn(t)
dt

=(B—-8)n (D

The analytical solution of this equation is: n(f) = ng - e(F=9)",

This curve is fully determined by the birth and death rates and the initial condition of the population
n0 : if the birth rate exceeds the death rate, B > &, the population size exponentially increases and

when 3 < 0, it exponentially decreases towards zero.

Tumor growth inhibition models are more elaborated examples of deterministic models used to analyze
the effect of anti-cancer agents in oncology [34, 52, 5, 58]. In these models the change in tumor size
is generally explained by the net tumor growth minus tumor shrinkage due to drug effects. Tumors are
often assumed to growth exponentially or following the so-called logistic curves or Gompertz law [24].
In [51], Norton and Simon proposed a tumor growth following a Gompertz model where drug effects
produce a decrement in the proliferation rate of the tumor. They found that the rate of cell killing by
many drugs was proportional to tumor growth rates and they suggested that the best way of treating
the patients was to increase the intensity of the treatment as the tumor became smaller [52, 50]. In a
more recent study, Garcia-Cremades and coauthors described pancreatic tumour progression by an
exponential growth model and response to treatment by a linear decrease caused by the weekly area

under the curve (AUC) of the drug plus a kinetic term reflecting reversible resistance to treatment [22] .

The limitation of deterministic models is that they do not account for uncertainty in model dynamics.
This limitation often poses a practical problem because biological processes are always subject to

stochastic effects and are intrinsically heterogeneous.

In stochastic processes it is assumed that each biological/pharmacological process is a random event
that can take place with a certain probability related to the properties of the components within the
biological system. Thus, the evolution of the system over time is dependent on a series of consecutive

probabilistic events.

The stochastic approach needs a larger mathematical foundation than the deterministic approach,
particularly in probability theory. The master equation is the fundamental mathematical description

of this approach and the starting point to analyze a particular model. It is obtained as a probability
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distribution for all the events that can occur during the time interval (¢,¢ + At), At being a very short

time interval.

To continue with the example of the cell population birth-death process described above, we consider
the stochastic version of the previous model where we assume that the time interval Af is short enough
so that only one of the following cases can exclusively occur: 1) a new cell is born with probability
BAt, 2) the cell dies with probability dAz, and 3) the cell neither gives birth nor dies with probability
1 — BAr — 0At. Now we need to calculate the probability distribution P,(t), i.e. the probability that
the population size is n at time ¢, which is the sum of the probabilities of all the mutually exclusive
events explained above and is given as (for a more detailed explanation of this point see the lecture
from [71]):

Py(t+At) = P,(t)(1 — BnAt — SnAt) + P, (t) B(n— 1)At + Py 1 (1) (n+ 1) At (2)
By letting Ar — 0, we obtain the master equation of the birth-death process:

dP,(t)
dt

=B(n—1)P,_1(t) +6(n+1)Pyyp1(t) — (B+ 0)nPy(1) for n>1 3)

This equation allows us to compute the average and variance population size values by solving the

first and second moments of the master equation:

Average: n=ng- eB=0) “4)
Variance :  Var[n] =ng- gf; B0 (o(B=0)r 1) 3)

We note that the analytic equation obtained for the average of the stochastic process is the same as
the eq. 1 of the deterministic model. Many deterministic models represent the average behavior of all
possible stochastic evolutions, that is, the differential equations of deterministic modeling are nearly
equivalent to the differential equation that describes the time evolution of the mean of the stochastic

process.

Unfortunately, the analytical solution of a master equation is often intractable, especially if a large
number of components are involved. The Gillespie algorithm provides exact simulations of trajecto-
ries of the master equation [23], but the computational cost can be high for large biological systems
because simulations must be repeated many times to reveal the complete range of behaviors of the
system. That is one of the reasons why most biological processes in biomedical research are defined
using deterministic models where the simulation of the system can be easily performed using the
high number of numerical ODE solvers available. Some stochastic simulation software tools exist
for easier computation of these processes like StochSS [17], GillesPy [1] or COPASI [30] but a great

amount of works about stochastic process simulation in biomedicine found in the literature are still
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N
o
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time time

Fig. 2 Five realizations of a stochastic linear birth-death process together with the continuous deterministic solution for
two different birth and death rate combinations, each with § — 8 = —1 (arbitrary units)and an initial number of cells of 50
(left: B =0and 8 = 1; right: § =4 and 6 =5).

accomplished using self-coded algorithms in programming languages like C++ or Mathematica due
to the fast computing time needed.

In Figure 2, five stochastic realizations of the birth-death process together with the continuous de-
terministic solution for two different birth and death rate value combinations are shown. Under the
deterministic model, the number of cells never reaches zero, simply tends to zero as time goes to in-
finity. In the stochastic simulations however, the cells go extinct and there is considerable randomness
associated with the time when this occurs. The possibility that the population of cells can die out is an
important feature of stochastic models opposed to deterministic ones. Another point to highlight is
that the stochastic process depends explicitly on both the birth rate and the death rate, and not just
on the net growth rate (f — 9) like in the case of the deterministic model. As shown in Figure 2, the
shape of the curve is governed by result of (8 — &), but the variance of the process is also controlled
by the quantity (8 + 9) as can also be seen from equation 4, thus the right panel shows a greater

degree of noise than the left panel.

Deterministic models provide good approximations to the growth of large populations but for small
populations it is important to take into account their inherent randomness because these populations
can go extinct due to random fluctuations even in the case where the birth rate of the population is
greater than the death rate, something impossible when considering deterministic models. That is why
many authors focused on the calculation of the probability of extinction of a population [11, 21, 3].
For the single-type birth-death process previously described, the probability of extinction of the cell

population is given by (see [2] for a more exhaustive mathematical explanation):

_ 5B L5\
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From this equation we can see that when # — inf and B < & the probability of extinction will be 1 but
when ¢t — inf and 8 > 0, the probability of extinction becomes P(n(t) = 0) ~ (%)no, which means
that for a small population size ny we can obtain a probability of extinction of the process different
from 0. This property introduces the possibility of a complete cure of the patient if the tumor cells

become extinct caused by the effect of the anti-cancer treatment.

As mentioned in the introduction, another important characteristic of stochastic models is that the
same initial conditions and parameter values can lead to different behaviour of the system. For
example, in [3] they propose a stochastic mathematical model for the analysis of adoptive cell transfer
immunotherapy against melanoma skin cancer where the treatment consist on the injection of T-cells
that recognize a melanocyte-specific antigen and are able to kill differentiated melanoma cell types. In
this model, the authors set the initial conditions such that the number of differentiated melanoma cells
is large, the number of T-cells injected is small and the initial number of dedifferentiated melanoma
cells (not sensitive to T-cell therapy) is small too. T-cells control the growth of the differentiated
melanoma cells but, due to the random fluctuations of the system, the small number of T-cells injected
can die out, which will lead to the growth of the differentiated melanoma cells. This behavior would
not be seen in the deterministic version of the same model. In addition, to introduce the possibility
that both differentiated and dedifferentiated melanoma cells become extinct (the patient is cured),
the authors suggested that two types of T-cells should be injected, one specific to the differentiated

population and the other one specific to the dedifferentiated cells.

Stochastic models have been widely used to model clonal evolution in growing tumors and the
evolution of resistance to anti-cancer drugs, which occurs when an initially sensitive tumor no
longer responds to treatment due to randomly generated (epi)genetic alterations in cancer cells
[54, 45, 37, 33, 25, 9]. Here, discrete stochastic models describe cell growth and mutation acquisition
by defining probabilistic reaction rates of the respective events in the form of a Markov process (the
probability of observing n cells at time 7 + Af only depends on the state of the population at time t
and not on its earlier history). Some of the most popular models in this context include branching

processes [27, 35, 18], and Moran processes [47].

Branching process

Branching processes are a class of stochastic models that describe the growth and composition of
populations by stochastically reproducing individuals [35]. Multi-type branching processes (branching
processes where offspring can be of different type than the parent) are convenient for modelling clonal
evolution of cancer cells because new (epi)genetic alterations emerge as random events during cell
division and give rise to tumor subclones with different fitness than their ancestors [54]. Here, each
cell is fully described by cell-intrinsic birth, mutation and death rate. A schematic representation of

this process is shown in Figure 3A.
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Apart from simulating the growth of heterogeneous cancer cell populations, the distinctive character-
istic about these models compared to the deterministic approach is that they allow for the calculation
of the probability of developing resistance at any time interval once the treatment has begun [33].
This probability of resistance is 1 minus the result of the sum of the probability of no sensitive cell
divisions giving rise to a resistant cell in the studied time interval plus the probability that the resistant

cells become extinct.

Several authors have attempted to quantitatively model the response of cancer cells to chemotherapy
or targeted therapies using this type of models assuming that resistance can be produced by random
mutations or be present at the start of the therapy [37, 21, 10, 20]. In [10] the authors determined
differential growth kinetics for drug-sensitive and drug-resistant EGFR-mutant non-small cell lung
cancer cells during therapy with two tyrosine kinase inhibitors in order to predict optimum dosing
strategies. In a subsequent study they incorporated PK processes into the stochastic model demonstrat-
ing the power of mathematical modeling in predicting improved treatment schedules with existing
drugs [20]. A deterministic version based on these processes can also be found in [72]. Multitype
branching processes are also powerful frameworks to analyze the data from barcoding experiments
[57].

Moran process

The Moran process, named after the Australian statistician Pat Moran, is a widely-used stochastic
model in population genetics [47]. In this model the total population size is fixed and stable coex-
istence of different cell types is impossible. At each time step, a cell is chosen to divide at random,
but proportional to fitness. The chosen cell produces a daughter cell that replaces another randomly
chosen cell that dies. Thus, the total number of cells remains strictly constant as can be seen in Fig
3B. This model is in general useful to describe cancer initiation since the total number of pre-cancer
cells tends to be stable. In this early stage of cancer, Moran processes also allow slow accumulation
of deleterious mutations while rapid accumulation of advantageous mutations [53].

Model fitting

When the structure of a mathematical model is defined and experimental data is available, the next
step is to determine whether the model is capable of describing the experimental data, and quantify the
parameter values that give a good fit. In clinical or preclinical trials for example, a typical longitudinal
dataset consists on a number of observations (e.g. drug concentrations, biomarker level, tumor volume

values...) collected among the different individuals participating in the trial.

Values of model parameters are obtained using estimation techniques aimed at searching the model

that minimizes the difference between the observations in the datasets and the model prediction.
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Extensive research has been done on numerical ODE solvers and advanced algorithms which allows
for a straightforward estimation of parameters from deterministic models thanks to the development of
easy-to-use tools. Stochastic models introduce additional challenges due to their intrinsic stochasticity
and the level of computer science expertise needed to code the simulation algorithms, and therefore
there is a lack of tools for easily finding parameter estimates for such models. A few frameworks like
StochSS or COPASI exist to help the users to automatically complete this task but, even so, most
studies found in literature treat the system as deterministic instead of stochastic when estimating
the parameters of the model to be able to use common procedures like least-squares or maximum
likelihood estimation. In those cases, the estimates of the parameter obtained through the deterministic
formulation may be plugged back into the stochastic model for the simulation of the probabilistic
process. A formal discussion of the theory of such algorithms is beyond the scope of this introductory

review.
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Fig. 3 Schematic representation of A) a two-type branching process, B) Moran process.
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Even using deterministic approaches for parameter estimation, the model prediction won’t fit perfectly
to the data because there could be assay errors or simply because the model might not be completely
accurate. This discrepancy is usually accounted for by a residual error term. However only defining
this source of uncertainty might not be enough when modeling the data of different individuals.
To account for a variation component in addition to the residual error, we introduce the nonlinear
mixed-effects approach which combines the techniques of nonlinear regression and mixed-effects

modeling.

Nonlinear mixed-effects models

Nonlinear mixed-effects (NLME) models were introduced into the pharmaceutical sciences to analyze
data from several individuals simultaneously. This approach considers the population study sample
rather than the individual and that is why this methodology is also known as the population approach.
Here, the individuals are characterized by a common deterministic model known as the structural
model and a statistical model which allows for model parameters to vary within the population. The
term “mixed-effects” refers to the presence of both fixed effects that describe the typical parameter
values of the population and random effects that handle the unexplained variability of the model. In
general, there are two sources of random variability; variability assigned to model parameters and
residual variability (RV) to account for the differences between the individual prediction of the model
and the measured observation. Parameter variability can be further divided into between-subject
variability (BSV) and between-occasion variability (BOV).

Mathematically, NLME models can be formally represented by:

vij = f(pi,xij) + &;j (7)

where y;; is the observation obtained from the i"" individual at the j' time, f represents a mathematical

function that relates the vector of individual parameters p; and the vector of independent variables
x;j (for example dose and time) to the observations and g;; is the model for the residual error which
represents the discrepancy between model predictions and observations and is assumed to follow a
normal distribution with mean 0 and variance—covariance matrix X£. When f is nonlinear with respect

to the parameters p, equation 7 describes the general form of nonlinear mixed effect models.

The vector of individual parameters p; can be characterized by a function g of the fixed effects (ppop),

random effects (1);) and covariates (Z;) specific for each individual:

Pik = Ppop * el
Nik € N(O,Q)
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@ Observations

Individual prediction

Typical prediction

Response

Interindividual variability

Time

Fig. 4 Different type of variability in nonlinear mixed-effects models. Blue points represent observation values, gray line
represents the typical prediction of the model and red line represents the individual prediction obtained for the observed data

where pj; and p,,), represent the i"" individual and typical population values of the k parameter, respec-
tively and 1 corresponds to the deviation of p; with respect the typical value p),,. Incorporation of
random effects in NLME models is important because it permits prediction of the expected outcome
and quantification of the magnitude of the variability and residual error. Figure 4 displays graphically
the different type of variabilities along with the observations and individual and typical predictions of
the model.

Covariate models describe the influence of intrinsic factors such as demographics (age, gender,...) or
extrinsic factors such as smoking status, drug formulation, or concomitant medication on the individ-
ual time course of the response. Covariate inclusion may increase the predictive performance and
mechanistic interpretability of mathematical models by, for example, identifying patient subgroups
that may have suboptimal efficacy of the drug or be at increased risk due to the adverse events of the

treatment.

The structural model in NLME approach is a deterministic model defined by an algebraic or ordinary
differential equation. Even if some randomness in model parameters and errors is involved, this
methodology does not allow for uncertainty in the dynamics of the underlying model. Therefore,
this stochasticity must not be confused with the stochastic models explained earlier in this review.
The stochastic component of NLME models is needed to describe the randomness involved in the
measurements of the population but, given an initial condition and the parameter values for every

individual, the output of the model will always be the same.

One way to introduce stochasticity in the dynamics of the model itself will be by using stochastic
differential equations (SDE). NLME models based on SDEs extend the first-stage model of the hierar-
chical structure by decomposing the residual variability into measurement and system noise [73, 55].

Thus, here three levels of random-effects are included. In [73], the use of SDEs to characterize the
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complex absorption properties of subcutaneous injections of the gonadotropin releasing hormone
antagonist degarelix was evaluated. The authors suggested a state equation for the absorption half-life
of the drug that fluctuates randomly. Tracking of the absorption half-life showed that after the third
day of treatment, the absorption half-life started to increase and reaches a new constant value. This
pattern was finally described using a usual NLME model with two absorption compartments, one with

an initial fast absorption phase followed by a prolonged slow release phase in the second compartment.

Traditionally, the analysis of the variability in NLME model parameters was first studied using the
standard two-stage approach (STS), where the estimates from each individual were obtained by the
analysis of each individual separately and subsequently, the population parameters were derived by
calculating descriptive statistics (e.g. mean and standard deviation of the model parameters). However,
if the parameters for a specific individual are unreliably estimated or even unidentifiable due to missing
data, it can lead to incorrect inference about the population. In contrast to STS analysis, the population
approach offers the possibility of gaining integrated information from relatively sparse or unbalanced
data. The most popular tools to estimate fixed and random effects parameters in compartmental
NLME modeling are NONMEM [4] and MONOLIX [38] among others.

Pharmacometrics

NLME modeling is the gold standard methodology in pharmacometrics for the analysis of longitudinal
pharmacokinetic and pharmacodynamic data collected in preclinical and clinical studies, especially in
drug development. It provides a reasonable approximation of the dynamics of the drug in the body
and of its effects. One of the first inclusions of mixed-effects modeling in biopharmaceutical research
was pioneered in the 1970s by Sheiner and Beal [63, 62, 61]. Since then, pharmacometrics has been
extensively used in a wide variety of therapeutic areas and in different stages of the drug development

process and pharmacology patient management[59, 65, 76] .

Pharmacokinetics

Pharmacokinetics is currently defined as the study of the time course of drug absorption, distribution,
metabolism, and excretion (ADME). It describes the time course of the concentration of a drug in a

body fluid, generally plasma or blood, that results from the administration of a certain dosage regimen.

Two main approaches exist to characterize the PK of a compound: i) non-compartmental analysis
(NCA), in which descriptive statistics such as maximum drug concentration (Cy,.), time to achieve
Chnax (Tinax) or AUC are summarized directly from observed individual profiles; and ii) model-based
compartmental analysis, in which the parameters governing the PK processes are inferred using
nonlinear regression approaches. In NCA, total drug exposure is most often quantified by estimating

the AUC of a concentration-time graph using the trapezoidal rule or other AUC estimating methods.
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This method requires fewer assumptions than model-based approaches but it poses several limitations.
First, summary statistics are generally only valid for a particular dose study, therefore, the prediction
of untested dosing regimens is not generally possible if the PK data is nonlinear or the frequency of
administration is to be adjusted. Second, this approach doesn’t provide any insight into the underlying
physiological processes that take place when a drug is administered to a patient. Compartmental
models in contrast, use mathematical models (algebraic or ODE based) to estimate primary parameters
(i.e., apparent volume of distribution, total clearance, absorption rate constant...) depending solely on
the patient physiology, which enables to predict drug concentrations under different scenarios with

the use of computer simulations.

Compartmental models view the body as relatively few, kinetically homogeneous compartments
in which the drug is absorbed and distributed and from which elimination occurs. The simplest
compartmental model is the one-compartment model. Here, the drug achieves instantaneous distribu-
tion throughout the body following administration and equilibrates instantaneously between tissues.
Absorption and elimination processes are generally defined using first order rate constants. Thus the
concentration-time profile shows a simple exponential decay (linear decay in log scale) following in-
travenous bolus drug administration (see Figure 5 for a schematic representation and model equations
of a monocompartmental system following intravenous and extravascular administration).

Some drugs do not distribute instantaneously to all parts of the body though, even after intravenous
bolus administration. In these cases, more compartments need to be included. The two-compartment
model resolves the body into a central compartment and a peripheral compartment, which often
represent extravascular less-perfused organs with nonrestrictive membranes (Figure 5 third panel). It
is obvious that this approach represents a great simplification of the complex processes involved in our
physiology, but for many compounds it has been proved to be sufficient to characterize drug exposure
and establish appropriate therapeutic dosing regimens [74, 41, 42]. These models can be further
complicated to allow for more than two compartments (Figure 5 last panel), nonlinear elimination or

more complicated absorption profiles.

Pharmacodynamics

PD relates drug exposure to drug effects and, in conjunction with PK, allows characterizing the time
course of in vivo drug action [29]. Hence, its objective is to relate the drug concentration at the site of

action with the therapeutic effect of the drug.

Gerhard Levy was the first to develop a simple linear mathematical equation in the mid-1960s con-
necting the PK and the rate of decline of in vivo drug effects [39, 40]. Shortly thereafter, more
elaborated direct effect models were proposed such as the so-called Emax model or sigmoid Emax
model [77]. In this type of models, the drug immediately distributes to the site of action and therefore

the pharmacological effects are readily observed and are directly related to the drug concentration.
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However, generally, the pharmacologic response takes time to develop and the observed effects are
not directly related to plasma concentrations of the drug. Reasons for these delayed responses may be
attributed to different biological mechanisms like a slow distribution to the biophase, indirect mecha-

nism of action, slow receptor deactivation or signal transduction/maturation, among others. Levy and
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Fig. 5 Schematic representation and ordinary differential equations of different pharmacokinetic models. A., A; and A,
represents the amount of drug in the central, depot and peripheral compartments respectively; CL is the apparent total
clearance; V, V,,, are the apparent volumes of distribution of the central and peripheral compartments respectively; CLq is
the distribution clearance between the central and peripheral compartments; k, is the first-order absorption rate constant; F'
is the bioavailability and C), represents the drug concentration in plasma.
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colleagues proposed one of the earliest examples of an indirect response model which characterized
the anticoagulant effect of warfarin [48]. Years later, similar structural models are still widely in
use. In oncology for instance, indirect response model are typically used to describe the levels of
tumor biomarkers released to the circulating blood by tumor cells [6, 7]. Another commonly found
model to explain this phenomenon involves using the effect-compartment approach which assumes
that the rate of drug distribution to and from the hypothetical effect site determines the rate of onset of
the pharmacological response [64]. In [75] the authors used this approach to characterize the time

delay between plasma levodopa levels and the clinical response among patients with Parkinson disease.

Good reviews of these and different mechanism-based pharmacodynamic models can be found in
[43, 19].

Optimal Control

Once mathematical models are built from experimental and/or literature data, they can predict the
dynamics of the system under different conditions through computer simulations. However, simulation
exercises are not always effective to obtain the desired objectives due to the complexity of the systems.
Finding a solution to those problems is a challenging task which requires a complementary strategy

obtained from engineering disciplines and control theory known as optimal control [68].

An optimal control (OC) problem is a dynamic optimization problem in which the state of a system is
linked in time to the application of a control function, which drives the system towards a desirable
outcome by minimizing a cost function subject to operating constraints. In other words, the control

variable is able to manipulate the system to have an optimal performance.

OC has a long and successful history of applications in engineering and economics but also has
become an important issue in biomedical and pharmacological research. The major objective of
pharmacometrics for instance, is to aid in the identification of safe and effective dosing regimens
that maintain drug concentrations within a therapeutic range while minimizing drug toxicity. In
complex systems however, optimization of drug exposure is not a trivial task and cannot be efficiently
addressed through simple parameter tuning simulation exercises, especially when drug combinations
are taking into account. Thus, this type of methodologies is crucial to advance the mathematical
problem of therapeutic optimization.

In this context, the question of how to define the objective functions and how to quantify our therapeu-
tic goals becomes crucial. In clinical cancer research the control typically represents the drug dosage
or, in simplified models, the effect of the drug on normal and cancer cells. Since chemotherapeutic

agents affect normal cells as well as cancer cells, the objective becomes to minimize the number
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of cancer cells over a fixed therapy interval while keeping the toxicity to the normal tissue at an
acceptable level. One of the earliest studies where chemotherapy treatment planning was defined as
an OC problem was in the work from [70], where the authors applied this technique to improve the
treatment administration of the bone cancer IgG multiple myeloma. Since then, a significant amount
of effort has been devoted to identify the most effective chemotherapeutic administration regimens
using this type of methods [69, 44, 60].

In contrast to the above deterministic approaches, OC can also be applied to stochastic models if
approximate mathematical solutions of the problem are obtained. As an example, Coldman and
Murray used a multi-type branching process to describe the growth of drug sensitive and resistant
cell subpopulations and tried to optimize drug regimen that achieves the best response [12]. In order
to incorporate toxic effects into the model, the authors included a normal cell population following
Gompertzian growth and defined an objective function that maximizes the probability of tumor
extinction times the probability of no toxicity appearing during treatment. The authors concluded that

early intensification of therapy is beneficial in situations in which resistance is likely.

Several studies also include the role of the immune system into the model and add the maximization
of the number of immune system cells during or/and at the end of the treatment period to the objective
function of the optimization problem [36, 14, 26, 49]. In the work from De Pillis and Radunskaya
[14] they created a mathematical model for combined chemo- and immunotherapies with the aim of
achieving maximum tumor reduction. As the dosage of the different drugs administered played the
role of the controls, this is now a more complex mathematical problem because the authors had to
deal with multiple controls. They showed that adding the minimization of the number of tumor cells
at the end of the treatment was enough to decrease the tumor cell population at that specific time but
this objective function induced large oscillations in the population during treatment period. Therefore,
in a subsequent study, they added the minimization of the total tumor cell population summed over
the course of treatment and the maximum tumor burden achieved during the course of treatment to

the objective function in order to decrease this oscillatory pattern [15].

Nevertheless, not all the studies applying optimal control in biomedical/pharmacological research
are related to optimizing therapeutic protocols. In [31] the release characteristics of a synthetic
gonadotropin-releasing hormone analog used to induce chemical castration in prostate cancer patients
were optimized using OC methods. The therapeutic goals formulated were the minimization of the
initial flare up of testosterone levels and the time to reach testosterone values below castration limit
and the maximization of the castration period of the patients. This work will be discussed in the

second chapter of the thesis.
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Concluding remarks

In this introduction, an overview of different modeling strategies have been described with the purpose
of familiarizing the reader with the various concepts that will be covered in the following chapters of

this dissertation.

Here we want to point out that, considering that each method has its own advantages and disadvantages,
the possibility of combining different strategies may result in computational models with a greater
potential than its predecessors. NLME approach for example, is the result of the combination of
different classes of methods as it incorporates a structural or deterministic component plus a statistical

model that describes the variability in the observed data.

Traditionally, deterministic and stochastic models have been thought to be rivals or at least opposite
procedures. However, we argue that these approaches are complementary and that they can be com-
bined to create more informative models. A discussion about the combination of different modeling
strategies can be found in the General discussion section. One already mentioned example is the
work from [10, 20] where the pharmacokinetics of erlotinib was linked to the growth kinetics of a
drug-sensitive and drug-resistant non-small cell lung cancer cell line and a stochastic model based on
branching processes was used to explore the dynamic evolution of these cancer cells under erlotinib

treatment.

Quantitative systems pharmacology (QSP) represents another area where different modeling methods
coming from Systems Biology and Pharmacometrics has been merged. Here drug effects can be
simulated as perturbations of biological networks in order to understand the fundamental interactions
that drive disease progression and treatment response. As an example, in the beginning of this
introduction we referred to a recent work where a QSP model of the human coagulation network was

developed to predict the effects of commonly used anticoagulants on clotting factor levels [28].

We strongly believe that a greater awareness of the different modelling methods and how to combine
them will make future models more versatile and useful. For this reasons, in this work we propose
the incorporation of additional modeling strategies and tools to the MID3 arsenal and show some
examples of their application, with the ultimate goal of increasing drug development successes across

all therapeutic indications.
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Pharmacometrics and Systems Pharmacology (PSP) is a continuously evolving science that is being
forced to deal with new challenges, as the need to develop multi-scale models using data from
different sources, the integration of different modeling strategies coming from Systems Biology and
Bioinformatics in order to create more mechanistic models and the lack of tools to perform such

integration.

Thus, the primary goal of this thesis was to explore the use of different methodologies and tools that
could benefit standard PKPD modelling, highlighting the main advantages and drawbacks of each

technique and their contribution to PSP.

To achieve this aim, the specific contributions of the present dissertation include:

* A Boolean modeling framework implemented in an R package called SPIDDOR (Systems
Pharmacology for effIcient Drug Development On R) to perform simulations and analyze the
results of Boolean networks applied to Systems Pharmacology models. Here not only the
specific methodology of logic models is explained but also an open-source tool based on R is
presented.

* An optimization procedure based on Optimal Control techniques that aimed to enhance the
release characteristics of sustained-release formulations of triptorelin, a gonadotropin-releasing
hormone analog used to achieve chemical castration in prostate cancer patients by inhibiting

their levels of testosterone.

* A computational framework called ACESO (A Cancer Evolution Simulation Optimizer) to
explore the effects of pharmacokinetics and drug interactions in stochastic models describing
cancer progression and emergence of drug resistance with the ultimate goal of identifying

optimum dosing strategies.

* A semi-mechanistic model describing the time course of several circulating biomarkers in
advanced melanoma patients treated with adjuvant high-dose interferon-a2b used to evaluate
the dynamics of the tumor markers as prognostic factors of the overall survival and progression-
free survival of the patients. Furthermore, a semi-mechanistic myelosuppression model to

evaluate the adverse effects of the therapy is also included in the framework.
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Abstract

Motivation: Literature on complex diseases is abundant but not always quantitative. Many molecular
pathways are qualitatively well described but this information cannot be used in traditional quantitative
mathematical models employed in drug development. Tools for analysis of discrete networks are
useful to capture the available information in the literature but have not been efficiently integrated by
the pharmaceutical industry. We propose an expansion of the usual analysis of discrete networks that
facilitates the identification/validation of therapeutic targets.

Results: In this article, we propose a methodology to perform Boolean modeling of Systems Biol-
ogy/Pharmacology networks by using SPIDDOR (Systems Pharmacology for efflcient Drug Devel-
opment On R) R package. The resulting models can be used to analyze the dynamics of signaling
networks associated to diseases to predict the pathogenesis mechanisms and identify potential thera-

peutic targets.

Availability: The source code is available at https://github.com/SPIDDOR/SPIDDOR.


https://github.com/SPIDDOR/SPIDDOR
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1.1 Introduction

Computational models are frequently used in the area of biomedicine to interpret, describe or predict
dynamic profiles associated to disease progression or drug effects. Among them, the so called popula-
tion pharmacokinetic/pharmacodynamics (popPKPD) models integrate different type of information,
mainly, dosing paradigms and drug exposure, response data, and patient characteristics to account
for the time course of drug effects. PopPKPD models are well established in clinical practice and
drug development to individualize dosing, identify covariates responsible of inter-patient variability,
and dose selection [1, 7, 8]. However, there are several pending challenges in the application of
computational models to drug development such as early target identification, choice of best promising
drug combinations, understanding resistance development and highlighting patient sub-population
sensitive and non-sensitive to a particular therapeutic strategy.

To achieve these goals, popPK/PD models would require a greater mechanistic structure. Nonetheless,
mechanistic models require large number of kinetic/dynamic parameters and the task of identifying
these parameters is not always possible due to the lack of longitudinal and quantitative data available.

The emergent field of Systems Pharmacology (SP) has the role of bridging System Biology with
popPKPD models and it is expected to help in overcoming the bottlenecks highlighted before
[4, 13, 11, 20, 26, 30, 40, 42]. SP models can be viewed as networks, which are simplified rep-
resentations of biological systems in which the components of the system such as genes, proteins or
metabolites are represented by nodes and the interactions between them by edges [5, 43]. In general,
two different approaches can be used to analyze this type of models: continuous dynamic methods,
where the concentrations/amounts of the components are based on differential equations, or discrete
dynamic strategies, in which each node can be characterized by only a few discrete states, indicated in

contexts where quantitative and longitudinal data are scarce or even not available.

Boolean network models, originally introduced by Kauffman [22, 21], represent the simplest discrete
dynamic models. Very briefly, they only assume two discrete states for the nodes of a network, ON or
OFF, corresponding to the logic values 1 (active) or O (not active, but not necessarily absent). That is

why they are known as Boolean or logic models.

A well-designed logic model would be able to generate predictive outcomes given a set of initial
conditions. In terms of applications, it would be possible to test how the elimination or overexpression
of one or more components of the system affects the final state of the model, which may be useful in
the design of combinatorial therapies for a disease or identification of essential components that could
be tested as therapeutic targets. It could be also important to detect critical nodes whose perturbation

leads to significant functional changes in the system in order to reduce the size of the network by
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removing the redundant components. This could be a starting point to try a more quantitative approach.

Currently the application of Boolean analysis to SP is still very limited, contrary to the case of
applying dynamic models to continuous or non-continuous data, where there is a battery of tools to
help the scientist for model implementation, fitting and evaluation (NONMEM, PsN, Pirana, etc).
Consequently, integration of discrete analysis tools in drug development has not been accomplished

yet despite its great potential.

Based on these considerations we have developed a framework for an efficient Boolean analysis
facilitating (i) model implementation and visualization, (ii) simulation of activation profiles associated
with corresponding confidence intervals, (iii) attractor analysis and (IV) a system perturbation and
sensitivity analysis. The tools presented in this manuscript consist on a set of comprehensive R scripts

to perform discrete dynamic analysis in the context of development therapies for complex diseases.

From a methodological point of view the Boolean analysis presented in this work involves certain nov-
elties. Common Boolean modeling approaches only define direct activation-inhibition relationships
between the components of the network. In our models, new types of regulatory interactions have been
introduced, the positive and negative modulations, which lead to richer dynamics between the nodes.
We also propose a new option to perturb a component of the network emulating a “polymorphism” of
a node. Finally, novel approaches were developed for the exploratory analysis of the output of the
simulations computed on these models: (i) we incorporate new visualization techniques to evaluate
the attractors of the system and the effects of perturbations and (ii) a clustering method is used to

group the nodes that lead to similar alterations within the network.

This article guides the reader through the tools developed in our laboratory for an example metabolic
network (Figure 1.1) based on a model for immune response to autoantigens [31] and gives a
feel of what can be done with its use. The package is called Systems Pharmacology for effl-
cient Drug Development On R (SPIDDOR). R scripts, help files and vignettes are available in
https://github.com/SPIDDOR/SPIDDOR.
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Fig. 1.1 Boolean network example with 12 nodes and 19 regulatory edges made with yEd Graph Editor software.
Conceptual nodes (APC-Ag) are presented by a gray rectangle, whereas the molecules of the network are indicated with
ellipses. Node colors reflect the nature of the molecules: APC molecules are shown in orange, T cell molecules are in
green and interleukins appear in yellow (colored figure online). Arrowheads represent activation, red blunt edges indicate
inhibition, black dashed lines imply positive modulations and red dashed lines are negative modulations. The description of
the nodes and the Boolean functions is given in Table 1.1.

Table 1.1 Boolean functions of the nodes of the network of Figure 1.1.

Node Description Boolean Function Text file
APC-Ag Antigen presentation APC-Ag* = APC-Ag APC-Ag = APC-Ag
B71 CD80 molecule B71* = APC-Ag B71 = APC-Ag
1COS Inducible T-cell ICOS* = APC-Ag ICOS = APC-Ag
co-stimulator
CD40  CD40 molecule CD40* = APC-Ag CD40 = APC-Ag
B7H2 ICOS ligand B7H2* = ICOS B7H2 = ICOS
CD28  CD28 molecule CD28* = NOT CTLA4 CD28 = ! CTLA4
CTLA4  Cytotoxic T-lymphocite- CTLA4#*= NI0ACTmaxTg ACT! CTLA4= THR_TO_ACT[3]
associated protein 4
CD40L  CD40 ligand CD40L* = ICOS AND B7H2 CD40L = ICOS & B7H2 & ! (CD40 & CD40L)
AND NOT (CD40 AND CD40L)
TO_ACT  Activated T cell TO_ACT* = (CD28 AND B71) OR (TO_ACT AND B7H2) TO_ACT = ((CD28 & B71) | (TO_ACT & B7H2)
AND NOT ("M9PT0_ACT'~' & NM9PBTH2 ) &! (MOD_TO_ACT & MOD_B7H2))) &!
AND NOT (CTLA4 AND B71) (CTLA4 & B71)
IL2 Interleukin 2 IL2* = TO_ACT IL2 = TO_ACT
1L6 Interleukin 6 IL6* = CD28 IL6 = CD28
ILI2 Interleukin 12 IL12* = (CD40 AND CD40L) OR (IL12 AND ICOS) IL12 = (CD40 & CD40L) | (IL12 & ICOS) &!
AND NOT (N¥9P1L12'~" & NM9PICOS'~) (MOD_IL12 & MOD_ICOS)

The * denotes the future state of a node.



1.2 Methods 42

1.2 Methods

Our approach for Boolean modeling biological/pharmacological networks entails the workflow seen
in Figure 2.3.

The first step in turning the concepts from literature into a discrete dynamic model is to represent
the conceptual model as a directed graph showing the different nodes and the interactions between
them. Such networks involve the coordinated interaction of many molecules and stimulus that include
genes, proteins, metabolites, cellular states or other conceptual nodes as in Figure 1.1. After defining
the components and interactions of the network, the next step is to implement the Boolean transfer

functions based on an exhaustive literature research and introduce them in the R environment.

1.2.1 Boolean functions

The state of each node is determined by the state of its regulator nodes (nodes that control its activa-
tion/inhibition) based on transition rules known as the Boolean functions (BFs). Depending on the
output of the BF, the state of a node can transit from one value to another as the simulation algorithm
moves from an iteration to the next. Here, an iteration finishes when all the nodes in the network
are updated according to their BFs (in many research works these iterations of the algorithm are
referred as time steps but we prefer the term iteration to emphasize that a time step is not necessarily
equivalent to a time length). BFs consist on a set of rules specifying how the nodes’ states change
over time, as a function of the current or past values of its regulator nodes. The main operators of
Boolean dynamics are the conjunction AND, the disjunction OR and the negation NOT. Additionally,
some convenience operators have been defined. For example, some nodes may need longer activation
times of its regulator nodes to be activated. We represent this feature with the N notation that can be
seen in the BFs of Table 1.1 [37], and we called it threshold operator. The threshold operator requires
a duration argument which indicates the number of previous iteration that must be evaluated for a
regulator node. In the case of 1.1, it is used to represent that CTLA-4 molecule is active only if the T
cell activation node (TO_ACT) is ON for a defined number of iterations indicated by the parameter
TO_ACTmax (TO_ACTmax = 3 in our simulations).

Generally, Boolean functions represent simple dynamics of activation and inhibition between nodes.
In this work, we present two new possible combinations of Boolean operators that allow us to
characterize more precisely some typical processes of biological systems. There are many cases
in the literature in which a node A is not able to activate another node B, but A can increase or
prolong B expression if B is activated by other signals. We considered this relationship as a positive
modulation of node B by node A and we expressed it with the following combination of Boolean
operators: B* = Activators OR (B AND A). As can be seen, this regulatory function introduces a

self-regulation of the target node. Similarly, if node A cannot directly inhibit node B but it can
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Fig. 1.2 Workflow of the methodology employed by SPIDDOR to perform Boolean modeling of biological networks and
the most relevant outputs of each section. First, the model structure is defined in a text file or downloaded from The Cell
Collective repository. Second, SPIDDOR reads the BFs from the input files and creates a simulation algorithm in R or
C++. Then, the package is able to perform an attractor analysis and introduce perturbations into the model to analyze the
output of these networks. Finally, the Boolean networks can be exported to SBML qual format to share models or use other
platforms from the CoLoMoTo community.
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decrease or shorten its expression it was considered as a negative modulation and we expressed
it like B*=Activators AND NOT (B AND A). Furthermore, we have designed these modulatory in-
teractions between nodes to last only a few iterations: B*= Activators OR ((B AND A) AND NOT
( ﬂf.‘i ?D B~ AND ﬁ?i ?DA’ ~1)), with MOD argument specifying the maximum number of iterations that

the positive modulation will last. All BFs corresponding to the example network are listed in Table 1.1.

BFs are introduced in SPIDDOR by a simple text file written with the appropriate equation semantics
(see SPIDDOR vignettes to properly write the input text files) and the system transforms this file into
R or C++ code. Another possibility is to load Boolean expressions from a pre-built network from The
Cell Collective repository[17], a web-based platform included in the CoLoMoTo (Consortium for
Logical Models and Tools) consortium [28].

1.2.2 Nodes updating

The outcome of a Boolean model is also influenced by the chosen updating method, which could
be synchronous or asynchronous [15, 37, 33, 41]. The updating method refers to the process of
computing the BF of a node to activate or deactivate it in a particular iteration. In a synchronous
updating method, the state of the network at each step is determined by the state of the nodes in the
prior iteration of the algorithm. In such models, the dynamic trajectory of the network is deterministic,
that is, the network will always reach the same state after the same number of iterations. This
scheme assumes that all biological processes of the system have similar timescales, which seems
quite unrealistic because molecular events are not coordinated in time. A more complex but realistic
strategy is the random asynchronous method, where the nodes of the system are updated according
to the last update of their regulator nodes, which could be either in the previous or current iteration.
In this method, the order in which the nodes update their states is selected randomly during each
iteration. This introduces variability into the model, because the same initial conditions can lead to

different final states of the network and with different time courses.

Once the BFs are determined, they are implemented in the R environment. A function is written for
each BF of the Boolean model, using both the synchronous and asynchronous updating methods. The
R script containing the BFs for the example network of Figure 1.1 can be found in the Supplementary
Material.

1.2.3 Network evolution in time

We developed a simulation algorithm to calculate the evolution of the network states taking into
account the synchronous and asynchronous updating methods, although we recommend the use of the
latter as it constitutes a more realistic approach as discussed above. The output of the algorithm is

a matrix called pattern.m which represents the states of the nodes (ON/OFF) in each step (Figure 1.3A).
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Fig. 1.3 Schematic representation of the steps performed by the asynchronous algorithm. The rows in the matrices
correspond to the nodes of the network in Figure 1.1 and the columns to the iterations performed by the algorithm, 25 in this
case. (A) The output of the simulation algorithm, the pattern.m matrix. (B) Average of the simulation algorithm results. The
average was computed under 2000 (N) simulations in order to calculate the activation profiles of the nodes. (C) Probability
of being ON of IL6 and IL12 nodes in the complex attractor found with the asynchronous attractor search algorithm.

It must be stressed that, due to the stochasticity involved in the asynchronous updating scheme, the
simulations must be computed repeated times in order to estimate an average of the dynamic trajectory
of the network. This allows the calculation of the activation profiles of the nodes for any set of initial

conditions. A schematic representation of this process is shown in Figure 1.3B.

To estimate 95% Confidence Intervals (CIs) for the activation profiles of the nodes, we used a method
to calculate CIs for proportions by using a binomial distribution described by [29]. For a more detailed

description of this method see Supplementary Methods.

1.2.4 Attractor analysis

Starting from an initial condition, Boolean models eventually evolve into a limited set of stable states
known as attractors [18]. Once the model has settled onto an attractor, it will remain there for the rest

of the simulation. Attractors fall into three groups:
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* Fixed-points, which consist of a single attractor state. They are the same for both synchronous

and asynchronous update methods because of their time-independence property[33].

» Simple or limit cycles are sets of states in which the system regularly oscillates. These are
typical of the synchronous method where each state has only one possible successor state. In
our models, however, the states of the nodes in the current iteration not only depend on the
states of the nodes in the previous step, but also on prior steps due to the temporal predicates
implemented with the threshold operator and the modulators introduced in the system. This
produces regular cycles with duplicated states that we called “complex cycles”.

* Complex attractors are sets of states in which the system irregularly oscillates due to the
randomness involved in asynchronous networks. In these models there is usually more than one

possible successor state for each state, so the system does not oscillate in cycles.

Generally, large-scale or highly interconnected networks converge into a complex attractor when an
asynchronous updating scheme is used. This oscillatory behavior in Boolean models is due to the
presence of negative feedback loops in the network [38, 32, 39]. Attractors in moderate size networks
are often linked to cellular steady states, cell cycles, circadian rhythms or to phenotypes [25, 2, 6, 36].
However, it is difficult to make biological inferences from complex attractors as they normally include

a high number of stable states that do not oscillate in single cycles.

Our algorithm to identify attractors with the synchronous updating method starts from an initial
state and repeatedly performs state transitions until an already visited state is reached. When the
synchronous attractors are found (a fixed-point, a simple cycle or a complex cycle) they can be
visualized as transition tables where the color inside the table represents the ON/OFF states of the
nodes (Supplementary Figure S1). Asynchronous attractor search is more complex as it computes the
attractor via exhaustive repetitions of the simulation algorithm. The states in asynchronous attractors
do not oscillate cyclically, so they cannot be visualized using transition tables as in the previous case.
For this reason, we decided to summarize the information about all the stable states in the attractor by
generating the probability that a given node is ON inside the complex attractor. Finally, we visualize

these probabilities using bar graphs (Figure 1.3C).

Identification of all the attractors in large-scale asynchronous models is an arduous task due to the
computational time required, especially if the attractors are complex because some of their states
rarely occur. Moreover, these steady states can change when initial conditions are modified or per-
turbations are included in the system. We found that the activation probabilities of the nodes in
complex attractors almost did not change if the “unusual” states were ignored, suggesting that we
could estimate an approximation of the attractor by excluding those rare states from the analysis.
This approximation decreases the number of repetitions needed for the asynchronous attractor search

algorithm. In addition, for large-scale networks, we recommend coding the simulation algorithm on
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C++ to increase speed up to 60-fold. We used the Rcpp R package to communicate R to the C++
algorithm and get the result back to the R environment, allowing its use by normal R users not skilled
in C++.

Our main attractor search algorithm is coded to identify the attractor for a given initial condition. We
introduced this simplification because we were not interested in testing all the possible initial states, as
we typically defined a few possible initial conditions for our networks. However, in some cases there
is not enough information to specify the initial condition of a system and sampling of a multitude of
initial conditions is necessary. For those interested in this feature, SPIDDOR includes an attractor
search algorithm that searches the attractors for networks with less than 20 nodes, as the number of
initial conditions to test grow exponentially with the number of nodes. For larger networks, we allow
the specification of a subset of nodes (always less than 20) in which all the combinations are to be
tested, or the specification of a number of starting states to test (the restriction of maximum 20 nodes
limits the initial conditions to test in less than 1,000,000).

Since the hypothetical network used in this article is moderated in size, there is no need of using a
parallelized algorithm to reduce the computing time for attractor searching. Even so, this feature is
contemplated in our framework and the code for the parallelization using the snowfall library [23] is
included in the github repository.

1.2.5 Perturbation analysis

A system perturbation analysis can be performed in order to evaluate which node knockouts or
overexpressions lead to significant variations of the network dynamics. A knockout implies the
deactivation of a component during all the simulation, whereas an overexpression generates a persistent
activation of a node. Another possibility is to overexpress a node but only after its first activation or to
activate/deactivate a node for some time. This analysis allows the researcher to model the effects of
pharmacological blockades or simulate targeted therapies such as monoclonal antibodies (mAbs).

Our modeling approach also allows the emulation of “polymorphism like” alterations on the compo-
nents of the network that can result in modifications of their activation patterns. In biology, genetic
polymorphisms cause decreased, increased, or absent gene expression or molecular activity by mul-
tiple mechanisms. We included these “mutation like” perturbations in which the activity of a node
is associated with a probability dependent on the “polymorphism like” conditions. In other words,
when a polymorphism was included, we decreased the activity of a node to a lower extent (75%, 50%,
25%...). In this way, when a polymorphism of 50% activity was introduced in a node, this node was

activated only 50% of the times in which its regulator nodes were activated.
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The activation level of the nodes in normal conditions and when a node was knocked-out or overex-
pressed were compared in order to analyze how the perturbation of single nodes affected the stable
patterns of the rest of the nodes in the network. If the probability of being ON for a node was decreased
due to the inclusion of a perturbation, it means that the perturbation caused a lower activation of the
component compared to the unperturbed condition. Conversely, if the probability was increased due

to a perturbation, it indicates that the perturbation caused a higher activation of the component.

We developed a perturbation analysis algorithm that performs combined synchronous-asynchronous
simulations for faster identification of attractors with or without perturbations. First, the program
initiates a synchronous attractor search in order to detect whether the network reaches a fixed-point,
as this type of attractor is the same in both synchronous and asynchronous algorithms. If this is not
the case, we run the asynchronous attractor search to find the complex attractor and the frequency of

being ON of each node in these attractors that represent its activation level.

The result of the perturbation analysis is a square matrix in which the number of rows and columns
is equal to the number of nodes in the network. It indicates how the knockout/overexpression of
the “column node” affected each “row node” (Figure 1.4A). The value in each cell of the matrix
corresponds to the probability ratio between the perturbed and the normal conditions. We call to this
ratio the Perturbation Index(PI) of the nodes. The equation for a given node i under a perturbation in
J is the following: PI_J; = Prob(i) perturbation, / Prob (i) Normar>, Where Prob is the probability of being
ON of the node in a given attractor state. Values close to 1 mean that the activity of a node in normal
and altered conditions was very similar, and therefore the perturbation had a minor effect on the
component.

In order to improve the visualization of this analysis, we transformed the resulting matrix to store
only 3 possible values, -1, 0 and 1, as shown in Figure 1.4B. The -1 substitutes the positions where
there is a lower activation of a component (value<0.8), the 0 indicates no significant variation between
the perturbed and unperturbed conditions, and the 1 represents the locations where there is a higher
activation of a node (value>1.25). If a more complex network is being modeled, it is preferable to use
more than 3 values to take into account different levels of regulations. The rescaled matrix can be
represented using the corrplot package in R in order to visualize the individual values contained in
the matrix as colors (Figure 1.4C). In this work, we only performed single node disruptions, altering
one-by-one each node from the network, but double or triple perturbations can also be induced in the

simulations.

1.2.6 Clustering

Hierarchical clustering methods [14] determine clusters of similar data points based on their distance
and build a hierarchical structure on top of them. We applied this method on the results of the

perturbation analysis, under the assumption that node alterations that provoke similar effects on the



1.2 Methods 49

Knockouts Knockouts

A 7 51 B 3 51
< @ 2 Om O 0o 0 = =2 2 P < @ 2 0@ O 0 0 2 =2 =2 F
APCAglo |1 |1 11|11 |1 |[1]1[1][1 APC-Ag|1|o|o|ofofofo|o|o|0o |0 O
B71|o o |1 |11 [1]|1]|1]1]1]1][1 B71|4|41]|0o|ofo|ofo0o 0|0 0|O|O
ICOS|o |1 |0 |11 |11 |[1[1]1]1][1 ICOS(-1|of-1|o0ofofofofofofo 0|0
CD40| o |1 (1|01 |11 1|1 ]1]11 CD40| 1|0 |o|-1f0|0of0f0|0|0|O]|O
B7H2| o |1 (o |1 o |11 1|1 ][1[1]1 B7TH2[ 4| o |40 |4|o|o|ofo|o 0|0
CD28 [1.37(137) 1 | 1 | 1 | 0 [137101) 1 | 1 | 1 [137 cD28| 1| 1|0 fo|o|4|1]0]0f0 0|1
CTLA4| 0 | 0 (1.01(1.01/1.01| 0 | 0 [1.01{1.011.01| 1 | O CTLA4| 4| 4o |0ofo|4|4]0 00|01
CD40L|{o |1 |0 |20 1 [1]|0|1[4]1 1 CD40L|-1|o|-4|1|[1f[ofo|1|0|0o|0]|0
IL2| o [0 | 1 |1.01/1.01| 0 [1.57{1.01) 0 [1.01/1.01| O 2| 4|4|ofofo||1]|0o|-1]|0]|0]~

IL6 {1.37|1.37| 1 [0.99/0.99 0 [1.37| 1 [ 1 |0 | 1 [137 e 1|1 ojofof-4]|1 0o|0o|af0]1
w2f o1 |ofo|o|1|[1]of[1]1]0]1 I2f 4o |44 afofo|a]o0o]|o|4|[o0
TO_ACT| o (o0 |o99 1|1 |0 155 1|1 |1]1]|0 TOACT|4|1|o0o|ofo |41 |0 |0 0|01

Fig. 1.4 Results arising from a knockout analysis of the network in Figure 1.1 and the subsequent steps to improve its
visualization. (A). Numeric matrix with the corresponding Perturbation indexes in each cell; (B). Ranking of the values
from matrix A; (C). Heatmap of matrix B in which the color indicates if the node knockout entails a lower (blue) or higher
(orange) activation of a component compared to an unperturbed simulation.

rest of the nodes of the system will cluster together. Here, we employed the Euclidean metric to
determine the distances between each node Perturbation Index and, as merging approach, we used the
average-linkage strategy. For example, the distance between a knockout in node A and a knockout in

node B would be calculated as follows:

n
d(A,B) = | Y (PI_B;— PI_A;)
i=1
where n is the number of nodes in the network and PI_A and PI_B are the Perturbation indexes of the
nodes under the knockout in A and B respectively. The results of this exercise are summarized as
heatmaps complemented by dendrograms that illustrate the similarity between the perturbations of the

system (see Results and Discussion).

1.2.7 Model interoperability

Over the years, different software supporting logical models have been developed, generating different
formats to store these models. To address this problem, a novel model exchange format, called SBML
qual (Systems Biology Markup Language Qualitative Models) [9], was developed by the CoLoMoTo

community [28]. SBML qual is designed for the representation of multivalued qualitative models
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of biological networks, thus, enabling models to be shared and used with other platforms and tools

without the need of rewriting them in a different format.

We developed a function to export the networks evaluated with SPIDDOR to SBML qual format. We
note that SBML does not support networks with temporal operators, so the converter removes these
patterns from the nomenclature to store them adequately. In such cases, the output of the simulations
performed with SPIDDOR will differ from the results obtained with other platforms because the

temporal operators notably change the dynamic evolution of the network.

Models encoded in SBML qual can be submitted to the BioModels database [24] and to The Cell

Collective and GINsim [12] software repositories.
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1.3 Results and Discussion

In the current work we present the SPIDDOR package which is specifically tailored to the design and
analysis of Boolean network models in the area of SP. There are already several software tools and
packages available for Boolean modeling of biological systems like BooleanNet [3], BoolNet [27],
SimBoolNet [44], ChemChains [16], or GINsim [12]. We note that SPIDDOR differs from other

existing methodologies in the following characteristics:

a) Positive and negative modulations: Apart from the basic activation-inhibition interactions, two
new regulatory connections have been introduced in the Boolean models, the positive and
negative modulations. In the BFs of Table 1.1, IL.12 cytokine is positively modulated by the
ICOS molecule, meaning that ICOS only activates IL.12 if IL.12 has already been activated by
another regulator node. ICOS does not work as a complete activator because it cannot activate
IL12 by itself but it can intensify another activating signal, therefore working as a “sustainer”.
Similarly, the concept of negative modulator is applied to the CD40 node which does not prevent
the activation of node CD40-L by itself but can lessen its expression. Figure 1.5 shows how
the activation probabilities of nodes IL12 and CD40L changed when their corresponding logic
functions were modified. Both graphs changed when modulation interactions were included
compared to simple activations or inhibitions, reflecting the importance of choosing the proper
BF for a component. The advantage of incorporating these relationships is that they provide
a more semi-quantitative representation of the activity between components, allowing the

inclusion of more biologically realistic interactions.

b) Polymorphisms: SP models could be employed to test multiple scenarios as for example the
different disease evolution or response to treatment among subject with diverse polymorphisms

in a single or various nodes. This perturbation varies a node activity from O to 1 and checks the

IL12 CD40L
1.00 -
& o7s-
®
=
© 050-
©
ES
0.25-
0.00 -
Pos. modulation No effect ~ Activation ~ Neg. modulation |nhibiton  No effect
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Fig. 1.5 Activation probability of IL12 (left) and CD40L (right) nodes with different Boolean functions. The probability
of being ON for IL12 varies when ICOS makes a positive modulation (BF of Table 1.1), a complete activation (IL12 =
(CD40 & CD40L) | ICOS) or has no effect on IL12 (IL12 = CD40 & CD40L). On the other hand, the output of CD40L
changes when we introduce a negative modulation by CD40 node (CD40L= ICOS & B7H2 &! (CD40 & CD40L)), a
complete inhibition by CD40 (CD40L=ICOS & B7H2 &! CD40L) or when CD40 has no effect on CD40L (CD40L=ICOS
& B7TH2).
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Fig. 1.6 Relative expression profiles of B71, IL6 and TO_ACT with different levels of polymorphisms acting on B71. A
polymorphism was simulated on B71 node to reduce a 25% and a 50% its activity. This perturbation increased the levels of
IL6 expression and decreased the activation of T cell TO_ACT node.

effect of these variations on a desired outcome. In Figure 1.6 it is shown how polymorphisms
acting on the activity of B71 node decreased the activation levels of TO_ACT and increased the
expression of IL6 compared to normal response. This type of analysis can be used to evaluate
gene mutations that are linked to a particular disease, and test which polymorphisms could
trigger similar molecular alterations as the ones reported for the disease. This perturbation
analysis is complementary to the introduction of node knockouts or overexpressions which
are not realistic representations of human physiopathology. Furthermore, the introduction of a
node knockout could provoke a total blockage of one or several pathways hindering the analysis
of less severe perturbation or complementary perturbations in other nodes. A similar analysis
could be used to explore the effect of target engagement on drug treatment. For example, in
Supplementary Figure S2, when a mAbD is used as a therapeutic agent, it can be studied what is
the required level of target inhibition for an anti-Icos mAb to achieve a reduction of 50% on
IL12 expression. Similarly, if a polymorphism is introduced on an input node by setting it to a
specific average level of activation, it is possible to explore different background noise levels

on the system and evaluate the impact of environmental fluctuations [10].

Visualization of attractor states: Some of the mentioned discrete modeling tools like Boolnet
have functions to visualize the complex attractors as interconnected graphs representing state
transitions inside the attractor. However, when the number of nodes in the network is high,
these graphs are extremely difficult to analyze and may not provide meaningful information for
the scientists who are not familiar with such discrete outputs. For this reason, we improved
their visualization by representing the activation probability of the nodes using bar graphs.
For the attractor analysis of the example network we simulated the evolution of the system
under a continuous antigen presentation (APC-Ag = 1) in synchronous and asynchronous mode.
Under the synchronous updating method, we found a “complex cycle” composed of 28 states
(Supplementary Figure S1). The asynchronous attractor search algorithm with 1000 simulation
steps and repeated 16 times found a complex attractor composed of 84 states whose activation

probabilities are summarized in Supplementary Table S1. In Figure 1.7, we simulated network
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Fig. 1.7 Activation levels of IL2 and IL12 with different perturbations of the system. Two different perturbations were
introduced in the model, knock-out of node CD28 (KO:CD28) and over-expression of node CD40L (OE:CD40L), in order
to see how the probability of being ON of IL2 and IL12 change.

d)

perturbations by introducing a knockout on CD28 molecule and an overexpression of CD40L

and analyze how these alterations affect to IL2 and IL.12 activation probabilities.

Visualization of perturbation analysis: Several tools were developed for the exploratory analysis
of the network output to evaluate many nodes perturbations at the same time on the attractors
of the system and to cluster them according to the effects that they provoke. In Figure 1.8A it is
shown how a knockout on APC-Ag node modifies the activation probability of all the nodes in
the network (shown in orange and blue) as it is the input node of the system, while a knockout
on ICOS molecule only downregulates B7H2, CD40L and IL.12 components (shown in blue).
This is quite easy to infer by observing the structure of the network in Figure 1, but in larger
systems the effects of the manipulations are not so easily deduced. The result of the hierarchical
clustering calculation is displayed as a dendrogram in the top of these heatmaps (Figure 1.8).
For example, the effects of ICOS and B7H2 knockouts in the system are very similar, so they
are clustered together in the dendrogram of Figure 1.8A.

The dynamic perturbation analysis is a technique used to identify critical nodes and facilitate
network validation. In this type of modeling frameworks, it is possible to emulate a disease on
the biological network under study by changing the initial conditions of the computer simu-
lations. Thanks to the dynamic perturbation method it is possible to test which perturbations
can revert the disease condition [34]. Such results could be used to prioritize which of the

knockouts or constitutive activations should be studied first in wet bench experiments.

Another practical use of the visualization technique explained above is the possibility of per-
forming a sensitivity analysis of the network to discover which nodes have a higher impact on
other components of the system. In the matrices of Figure 1.4, nodes ICOS, CD40, CD40L and
B7H2 have a higher influence on IL12 interleukin, as their perturbation lead to a significant

downregulation of the molecule. If the interest lies mainly in the response of this component,
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a network reduction could be applied by removing the components that do not regulate IL12.
This ability is important to reduce the size of complex SP networks. This sensitivity analysis
can be complemented by the use of the polymorphism tool introduced before to identify sources
of interindividual variability by highlighting the nodes which polymorphisms are more likely to

provoke large changes in specific outputs.

The immune network presented in this work is an illustrative example used to describe the new
methodologies which application we consider useful in the SP field. The results obtained from our
simulations should not be considered as a full representation of the immune response because many

immunological components have been left apart for simplification purposes.

Despite the advantages of Boolean networks and the methodologies presented in this work, some
limitations need to be considered. First, it is important to realize that manually building a biological
network may be time-consuming and (inevitably) subjective as BFs are established following the
researcher criteria. Some tools exist to infer networks automatically from experimental data [35] but
different algorithms lead to different networks while different networks are generally deduced from

different datasets, therefore, it is also subjective which algorithm and dataset to use.
A main limitation lies in the reliability of these models. In this project, we tried to reproduce the

experimental observations discussed on the research articles used to build the network. The heatmaps

created with our framework are useful for this task. For example, in the heatmap of Figure 1.8A, we
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Fig. 1.8 Hierarchical clustering of the perturbations induced on the nodes of the network in Figure 2.1. Heatmaps indicate
the effect of single perturbations (knockouts on the left and overexpressions on the right) on the nodes of the network. The
perturbations that lead to a higher activation of the nodes compared to an unperturbed situation are represented in orange
while a lower activation of the nodes is indicated in blue.
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can see how a knockout in CD28 leads to a lower activation of IL2, which is consistent with the results
found in the literature [19]. However, this could be a complex task when there is a lack of information
about the nodes under study. We are currently working on new possible validation methods based on

microarray or RNA-seq analysis, but further work needs to be done.
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1.4 Conclusion

Computational models have been increasingly used to support drug development and are widely
accepted by scientific community and even for regulatory purposes. A key challenge when using
these powerful approaches is to match the right model with the right questions in a particular research
context. Although Boolean networks cannot be used for precise estimations such as drug dosing
in pediatric or renal impairment population, they are useful to gain insight into the qualitative
behavior of a system under study. This is especially relevant for large scale systems in which a
detailed kinetic characterization of the system is not feasible due to data restrictions or limited
knowledge. More precise quantitative models require exponentially more complex and quality data,
and sometimes, acquisition of such data could be restricted by technical constraints, as is the case of
immunology in which there are not available techniques for the continuous in-vivo measurement of
cells subpopulations and cytokines in different tissues. Therefore, it is mandatory to get the best use
of the available knowledge in each stage of development, for which it is essential to explore the full
potential of tools like Boolean networks. We consider that the methodologies presented in this work
can potentiate the use of Boolean networks in SP by introducing versatile tools to enrich the analysis

of these systems.
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Supplementary Material

Confidence Intervals

95% Confidence Intervals (Cls) for the activation profiles of the nodes are estimated by using
a binomial distribution method described by (Newcombe, 1998). This is a discrete probability
distribution used to obtain the probability of observing a number of x successes in n independent
yes/no experiments. In our case, the successes are the ON states of the nodes. We used the normal
approximation of the binomial distribution theorem:
1—
Cl=ptzy /PP
where CI represents the limits of the confidence interval, p is the activation probability of a node

at a particular iteration (between 0-1), n is the sample size (2000 in Figure 3), and z is the value

corresponding to a level of confidence of 95% and it is equal to 1.959964.

CIs are used to indicate how much the activation probabilities are affected by the included ran-
domness in the asynchronous method. Explicitly, the CI shows how much the activation probabilities
can vary if the network evolutions are simulated with a particular sample size (2000 for activation
profiles in Figure 3). Initially, we performed 2000 repetitions of the simulation algorithm and re-
peated the procedure 2500 times in order to calculate the 97.5 and 2.5 percentiles of the nodes and
plot those values in the graphs. However, we realized that using the normal approximation of the
binomial distribution theorem gives almost identical results without the need of computing additional

simulations.

Supplementary Code

Supplementary code is available at Bioinformatics online.
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Supplementary Tables

Table S1.8 Activation probabilities of the nodes in the complex attractor of Figure 1.

Node % of activation
APC-Ag 1.00%
B71 1.00%
ICOS 1.00%
CD40 1.00%
B7H?2 1.00%
CD28 0.73%
CTLA4 0.28%
CD40L 0.50%
TO_ACT 0.64%
IL2 0.73%
IL6 0.67%
ILI2 0.64%
Supplementary Figures
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Fig. S1.1 Complex cycle composed of 28 states. The columns of the colored table represent consecutive states of the cycle.
Yellow cells denote the activation of a node, whereas grey cells denote deactivation. 10 of the 28 states of the cycle are
repeated attractor states (2 of them marked with a red rectangle).
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ICOS IL12

Fig. S1.2 Effect of different levels of anti-ICOS treatment. Different levels of inhibition of ICOS node were simulated
(50%, 75% and 100% inhibition) in order to test its effect on IL12. Higher levels of inhibition on ICOS led to a lower
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Abstract

Numerous problems encountered in computational biology can be formulated as optimization prob-
lems. In this context, optimization of drug release characteristics or dosing schedules for anticancer
agents has become a prominent area not only for the development of new drugs, but also for estab-
lished drugs. However, in complex systems, optimization of drug exposure is not a trivial task and
cannot be efficiently addressed through trial-error simulation exercises. Finding a solution to those
problems is a challenging task which requires more advanced strategies like optimal control theory.
In this work, we perform an optimal control analysis on a previously developed computational model
for the testosterone effects of triptorelin in prostate cancer patients with the goal of finding optimal
drug-release characteristics. We demonstrate how numerical control optimization of non-linear models

can be used to find better therapeutic approaches in order to improve the final outcome of the patients.

Author summary

Mathematical models of the disease processes are widely used in computational biology to quan-
titatively describe the time course of disease progression and are often linked to pharmacoki-
netic—pharmacodynamic models in order to evaluate the effect of drug treatment on disease. Once the
models are built from observed information and/or literature data, they can predict the dynamics of
the system under different conditions through computer simulations. However, simulation exercises
are not always effective to obtain the desired objectives due to the complexity of these systems. In this
work, we optimized the release characteristics of a synthetic gonadotropin-releasing hormone analog
used to induce chemical castration by inhibiting the testosterone levels in prostate cancer patients.
The therapeutic goals to achieve were to minimize the initial flare up of testosterone levels and the
time to reach testosterone values below castration limit, while maximizing the castration period of
the patients. Our methodology, based on control theory, introduces a manipulable variable into the
system’s equations to drive the model towards the established goals. We demonstrated how drug-
release properties can be improved with the implementation of optimal control strategies to enhance
the outcome of cancer patients. These methods are extrapolable to other problems encountered in the
field.
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2.1 Introduction

Optimizing delivery systems targeting constant levels of drug concentration represents always a
challenge for chronic diseases requiring continuous treatment and especially in those cases where the
relationship between drug exposure (represented generally as levels of drug concentration plasma
measured longitudinally) and pharmacological response is complex and non-linear. The management
of prostate cancer with sustained release formulations of triptorelin (TRP) injected every 3-6 months
represents a good example [1]. For the case of the hormone-sensitive prostate tumors the therapeutic
goal of any pharmacology treatment is to maintain as longer as possible the levels of testosterone

(TST) below the castration limit (CT) which is set to the plasma concentration value of 0.5 ng/mL [2].

In recent past, we have developed a mechanistic computational model for the TST effects of the
agonist TRP in prostate cancer patients using longitudinal pharmacokinetic (PK; drug concentration
in plasma) and pharmacodynamics (PD; TST concentrations in plasma) data obtained from several
clinical trials testing the efficacy of different sustained-release formulations (SR) [3]. Briefly, TRP
exerts its action by increasing the fraction of activated receptors and therefore stimulating the pro-
duction of TST. However, the prolonged exposure of TRP causes receptor down-regulation, resulting
in a reduced synthesis of TST. The typical TST vs time profile after a single injection of TRP is
represented in Fig 2.1. The schematic representation of the PKPD model developed for TST effects
of TRP, excluding the absorption compartments of the original model, and the estimates of model

parameters are shown in Fig 2.2.

As highlighted in Fig 2.1 there are three critical aspects to be taken into consideration at the time to
develop an innovative delivery system of TRP for the treatment of prostate cancer: initial flare up,
time to reach CT, and castration period. Ideally, such new formulation should release TRP at a rate
eliciting levels of concentration in plasma minimizing both the initial flare up and the time to reach
CT, as well as maximizing the castration period. Specifically, limitation in the TST flare-up (TSTmax)
to 50% increase with respect to baseline, minimize time to castration after first injection (tc,s¢ ) to

values below 3 weeks, and extend the castration time after injection (tefrect ) for at least 9 months.

Given the complex relationship between concentrations of TRP in plasma and response as represented
in Fig 2.1 and Fig 2.2, together with the requisite of maintaining the TST profiles within the constraints
mentioned above, optimization of the rate of drug release is not a trivial task and cannot be efficiently

addressed through an extensive trial & error simulation exercise.

In the current work we aimed to optimize the release profile of TRP from SR formulations matching
the multi-objective therapeutic needs applying optimal control methodology [4]. The rationale behind
the decision of focusing on the release process is based on the assumption that once the drug is

absorbed and reaches systemic circulation (represented as part of the central compartment in Fig 2.2)
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Fig. 2.1 Typical testosterone profile after administration of triptorelin. TSTmax refers to the maximal testosterone
concentrations, tea indicates the time where testosterone levels fall below 0.5ng/ml (castration limit of prostate cancer
patients, marked with an horizontal dashed line in the figure) and tegsc indicates the castration period of the patients.

it follows the same distribution and elimination characteristics regardless the type of formulation
administered. The same is assumed with respect to the TST response, the rate of synthesis and
degradation of TST and receptors, the dynamics of receptor occupation, and the down-regulation

process. These mechanisms are independent from the absorption properties of the drug.

Despite we focused on a specific case, the workflow and methodology used can be readily translate

to other therapeutic areas and scenarios such as dosing schedule optimization and personalized
treatments.
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Fig. 2.2 Schematic representation of the state variables and control input for the pharmakinetic-pharmacodynamic model of
the testosterone effects of Triptorelin (left) and model parameter estimates (right). Ctrp, serum concentrations of Triptorelin;
CL, apparent total clearance; V¢, V11, and V1o, apparent volumes of distribution of the central, shallow, and deep peripheral
compartments, respectively; CLp; and CLpj, distribution clearances between the central and peripheral compartments;
TST), baseline testosterone level; Kp, receptor equilibrium dissociation constant of triptorelin; Dr, down-regulation process;
DR 50, the value that elicits a 50% maximal reduction in kg g for a given amount of total receptors; kg gr, zero-order rate
constants of receptor synthesis; kp T, first-order rate constants of testosterone degradation; kj,, zero-order rate production
of testosterone independent from gonadotropins; AGN, ratio between the endogenous agonist concentration and its receptor
equilibrium dissociation constant; FDB, feedback.



2.2 Materials and methods 73

2.2 Materials and methods

Havind defined the therapeutic goals of the project, the analysis was divided in several steps: i) a
population of virtual subjects were generated in order to have a representative population of the
study; ii) the optimal TST profiles for each virtual patient were derived by means of optimal control
methods; and finally iii) the empirical absorption profiles obtained in step ii were characterized using
parametric models to assist biopharmaceutics at the time to develop and evaluate new SR formulations
of Triptorelin. A schematic representation of the workflow is given in Fig 2.3.

2.2.1 Generation of a virtual patient population

Values listed in the table inserted in Fig 2.2 include estimates of typical population parameters and
between-subject variability (represented by BSV in the table and hereafter) obtained from [3] for a set
of model parameters. In order to obtain the population of virtual patients, parameters were modelled
as P, = Py, x €7, where P; and P, represent the i individual and typical population values of the
P parameter, respectively, and 1);_p corresponds the deviation of P; with respect the typical value P, ;
the set of individual 1; p forms a random variable with mean value of 0 and variance a)%, following a
normal distribution, whereas the distribution of individual parameters is log-normal. The magnitude
of @3 reflects the BSV associated to a specific model parameter, which in Fig 2.2 is expressed as

coefficient of variation (CV%).

One thousand set of disposition (clearance and volume of distribution in the central compartment,
represented as CL and V. respectively), pharmacodynamics (receptor equilibrium dissociation constant
of triptorelin (Kp)) and system (baseline TST levels (TSTy), zero-order rate of TST production
independent from gonadotropins (ki ), zero-order rate constants of receptor synthesis (ks r) and the
value that elicits a 50% maximal reduction in kg r for a given amount of total receptors (Dr_s0))
related parameters were generated using the typical population estimates and corresponding marginal
distributions reported in the table of Fig 2.2. The parameter values for the virtual population were
generated with NONMEM 7.2 [5].

2.2.2 Optimal control

An optimal control problem is a dynamic optimization problem in which the state of a system is linked
in time to the application of a control function u(t), which drives the system towards a desirable
outcome by minimizing a cost function J(u) subject to operating constraints [6, 4]. In other words,
the control variable u(r) forces a system to have an optimal performance. The concrete control
strategy will depend upon the criterion used to decide what is meant by “optimal”; in the current case

TSThax < 1.5-TSTp ng/ml, minimize t.,s; < 3 weeks, and maximize tegrec; > 9 months.
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Fig. 2.3 Principal steps implemented in our methodology.

Therefore any optimal control problem can be formulated to find the magnitude of u(¢) over the time
of study [from initial time 7 to final time 7;] such that:

min 20 = 0lx(y))+ [ L) o)
subject to d’;(;) — £ (), ut),1)
@2.1)
x(t()) = X,
h(x(t),u(t)) =0,

where J(u) is the cost function, u(r) is the control variable; x(¢) the vector of state variables; xq the
set of initial conditions of the state variables; A() the equality constraints; and g() the inequality
constraints. The general form of the equation in J(u) is known as Bolza optimization problem [7],
which is represented as the sum of a terminal cost functional (Mayer problem) and an integral function
of the state and control from 7y to ¢ (Lagrange problem). For a more detailed information see

Supplementary Information.

Fig 2.2 shows a schematic representation of the state variables and control input defined in this work.
The state system is characterized by the variables that predict serum concentrations of triptorelin
(Ctrp), concentrations of triptorelin in the shallow and deep peripheral compartments (C; and C,
respectively), drug input profile (D), amount of total receptors (Rt), and optimal testosterone levels
(TST), each of them represented by the corresponding ordinary differential equation as shown in
Table 2.1. Note that in Fig 2.2 the terms resembling the 0’ and 1* order absorption processes have
been removed from the original model structure from [3] and have been replaced by the new control
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variable u(z). Therefore the expression associated to the rate of change of the levels of TRP in plasma
(Crrp() is:

. CL
Crrp = u(t) + c1(t) ce(t) = =24 Crapl(t)
VTI VT2 Vc (2 2)
EE2 )~ Ll |
VC TRP VC TRP

An additional compartment D was defined, where the dose of TRP administered to the patients (10mg
in this evaluation exercise) was placed as initial condition (Dy). The control variable u(t) leaves this

compartment and enters to the central (systemic) compartment of TRP as follows:
D= —u(t) (2.3)

Recall that, u(t) (ng/day) does not represent any particular mechanism of absorption (i.e., zero
and/or first order kinetics), but a vector of different values that influence the system to behave in a
pre-determined (optimal) way.

The aim of this work was to find the time profile of u(¢) (input function of TRP into the central
compartment) that minimizes an objective (or cost) function and satisfies all constraints which repre-
sent the boundaries and therapeutic goals to be achieved (see Table 2.1). The choice of an objective
function represents a critical aspect in optimal control problems [8]. Here, the problem is divided into
two phases each represented by a different cost function and defined between: (i) 0 and tc,g , and (ii)
teast and > 280 + tq,q days, respectively.

During the first phase (from 0 to tc,q ) the u(r) profile is optimized to transfer the system from an
initial state TSTy(baseline testosterone level) to the final state of 0.5ng/ml (CT value) in the shortest
possible time. To solve the first phase of the optimization problem, the following objective function

and equality constraint were defined respectively:

Jl(u) = least (24)

TST(t = teas) —0.5=0 (2.5)

where t., i an static control variable for minimizing J;. Here, we wished to obtain the minimum
value of t., that causes TST levels to achieve the CT value. The final time t.,i was not known in
advance, and that is the reason why the optimization problem was divided into two different phases.
Additionally, an inequality constraint was added to limit the initial flare-up of the testosterone below

50% increase with respect to baseline:

TST(t) <1.5-TSTy (2.6)
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Table 2.1 Summary of the setup of the different components of the optimal control problem.

Phase I, f € [0, teast] Phase It € [teast,280+tcast]
Cost function Ji(u) = teas Ji(u) = f,f:i?“‘“" TST (t)*dt
State variables

D= —u(t)

G = —CVLTDI' cr(t) + be' -Crre(t)

C = —CVLfTDZZ eo(t) + C\L,fz -Crre(t)

Crrp = u(t) + CVLTDII ey (t) + CVLTD; co(t) — C\L/CDI -Crrp(t) — bez -Crre(t) — G - Crre (1)
Rr = kS_R (DR . FDB) — kD_R -Rp (t)

TST = ks_1( 15 onm ooy - Rr(t)) +Kin —kp_1- TST(t)

Initial conditions

DI (tO) = Dose Dn (tO) = D1 (tcust)
Cll(to) =0 Cln (tO) = Cll(tcast)
CzI (tO) =0 C2n (tO) = C21 (tcast)
Crrp,(to) =0 Crrpy (to) = Crrp; (teast)
RTI (to) =1 RTn(tO) = RTI (tcast)
TSTI(tO) =TSTy TST, (to) = TST, (teast)

Inequality constraints

(Boundaries)

D € [0,Dose]

TST, € [0.5,1.5-TSTy]  TST, € [0,0.5]

Equality constraints

TST, (t = teast) —0.5=0

D,
where BGN = S FDB = R (2~ R1) Ry =1, Dp = ToaBON—AaN— » Dose = 10mg and #p makes reference to the
D T 0 0 - DR 50+ ( TXAGN+BGN ~ T+AGN )

initial time. The rest of the parameters have been already defined in Fig 2.2. The subscript | and 11 in the model parameters refers to the

first and second phase respectively.



2.2 Materials and methods 77

The second phase, covering the period between t,s and 280+t .5 days, aims to maintain the TST levels
below CT. If a second objective function or constraints were not incorporated into the optimization
problem, values of TST rose above CT at times much earlier than 280 days. The approach used to
overcome the above mentioned undesired effect and maintain TST predictions within the therapeutic

goal led to the minimization of a second objective function of the form:
280+[<?ast
Jir(u) = / TST (1)%dt (2.7)
tcast

The rationale for formulating J;; using a quadratic function (7'ST (¢)?) for minimizing testosterone
levels, instead of T'ST (¢), was because it offers relevant mathematical advantages in the context of
optimization problems. In optimal control theory, one of the main necessary conditions for optimality
is that control variables minimize a Hamiltonian function over u(¢). The Hamiltonian becomes convex
if quadratic forms are used for the objectives and thus the problem will have a unique minimizer [4].
See Supplementary Information for more information about the Hamiltonian matrix and the necessary
and sufficient conditions for optimal control problems. Furthermore, using squared terms amplify the
effects of large variations and de-emphasize the contributions of small fluctuations.

Continuity between the two phases of the optimization problem was ensured by imposing the initial
conditions of the state variables at phase II to be equal to their final values at the end of the phase I
(see Table 2.1).

Alternatively, other objective functions or constraints could have been defined. For example, an
alternative approach to model the second phase of the optimal control problem is to only add the
inequality constraint TST[tcast : (280 + tease)] — 0.5 < 0, instead of a second objective function Jj;.
This approach resulted in TST levels closer to CT compared to the values obtained with the ad-
dition of J;;. However, in the work from [9, 1] suggested that a CT value lower than 0.2 ng/ml
could be an even better target to maximize therapeutic outcomes of prostate cancer patients. Due to
these variations in the definition of the most appropriate CT value, we prioritized the minimization

of TST levels during the second phase using Jj; because we obtained the lowest possible values of TST.

Table 2.1 summarizes the setup of the different components of the optimal control problem described
above. There exists different methods to solve this type of problems [10, 11]. In our case, the
dynamic optimization problem was solved numerically via direct methods with the IPOPT Solver
(Interior Point OPTimizer) [12] which is freely available in the APMonitor Optimization Suite
(http://apmonitor.com/) through MATLAB programming environment [13]. The results were evalu-
ated by calculating the proportion of individuals that achieved the described therapeutic goals and

constraints.


http://apmonitor.com/
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For more information about control theory see the works from [14, 6, 8] and for a more comprehensive

overview of the role of optimal control in cancer research read the reviews from [15, 10, 4].

2.2.3 Mechanistic characterization of the optimal absorption profiles

During the optimal control exercise, values of TST in plasma were obtained approximately every 12h
for the first phase and every 120h in the second phase. Given the fact that the disposition, pharmacody-
namics, and system parameters were already known as they were randomly generated as described in
2.2.1, the analyses of the TST profiles described in this section focused on the mechanistic/parametric
characterization of the absorption process of TRP aiming to provide biopharmaceutics with metrics
useful to guide the development of new sustained release formulations. Those metrics are the fractions
of the total dose injected absorbed following 0" and 1* order processes, the cumulative drug release
profiles over time, the percentage of the dose that should remain in the site of injection at tc,s and the

time at which the different absorption mechanism are activated.

The absorption model used to estimate the corresponding absorption parameters allowing afterwards
computation of metrics is represented in the work from [3] and comprises three non-simultaneous
absorption mechanisms, two of them following 1* order kinetics and the third one following a 0"
order process. This model is considered of a sufficient complexity to deal with almost any absorption
profile that can take place after administration of SR formulations [16, 17]. A schematic represen-
tation of the structural model with the corresponding ordinary differential equations is provided in

supplementary figure S2.1.

The analyses were performed with the NONMEM version 7.2 software [5], following a two stage
approach in which the parameters of each subject are first obtained and summary statistics (median,
and 95th confidence intervals) are then calculated. BSV in the absorption parameters was modelled
exponentially as described in section 2.2.1 for the rest of model parameters. TST concentrations
obtained in step 2.2.2 were logarithmically transformed for the analysis, and residual variability was

modeled by using an additive error model on log-transformed data.
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Fig. 2.4 Optimal testosterone (TST) profiles for 1000 simulated individuals. Solid circles represent optimal TST observa-
tions obtained after the optimal control approach, solid line represent the median tendency of the data and red dashed line
indicates the castration limit (0.5ng/ml) of prostate cancer patients.

2.3 Results

2.3.1 Optimal Pharmacodynamic profiles

Fig 2.4 (blue points) illustrates the optimal testosterone profiles for the 1000 hypothetical individuals
that we obtained after applying the optimal control problem formulated in Table 2.1. The initial dose
was considered to be 10mg. The code and data to reproduce these results in MATLAB can be found
in the online version of the publication. All of them achieved the 3 quantitative therapeutic goals
(95% interval confidence between parenthesis) defined in the Introduction section: time to castration
was minimized to 18.96 days (11.408 - 36.289), the increase of TST levels at the flare was always
smaller than 50% with respect to baseline (36.8%-50.002%), and tefrect Was greater than 280 for all
the patients.

These profiles were generated with the manipulable variable u(¢) which could take any values in order
to minimize the multi-objective problem. However if we looked to the TRP concentration vs time
profiles that induced the optimal TST levels (data not shown), those profiles did not seem attainable
by using simple first or zero order kinetics. That was the reason to directly approximate the TST
levels with the PKPD model presented by [3] and estimate the most adequate absorption parameters.

2.3.2 Optimal release characteristics

The optimal release characteristics corresponding to the selected PKPD model from [3] are listed in
Table 2.2. The final model adequately described the optimal TST profiles calculated in the previous
section as shown in the individual profiles of Fig 2.5. A lag time was associated with one absorption
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Table 2.2 Population absorption parameters estimated for the optimal triptoreline profiles. The median
values and the 95% confidence intervals (CI%) are shown for a population of 1000 patients.

Parameter Estimate (CI%)

Dint (day) 1.66 (-)

Kaj(day™!) 0.25 (0.108-0.502)
Kao(day™1) 0.003 (0.0014-0.006)
F; 0.298 (0.067-0.6)

F, 0.664 (0.378-0.923)
Fint 0.039 (7.85e-05-0.07)
tiag (day) 3.3 (2.336-5.188)

where Djyr is the duration of the zero-order absorption process, Ka; and Ka; are the first order rate constants of
the first and second depot compartments respectively, Fi, F, and Fj,¢ represent the fraction of the drug
associated with the first and second depot compartments and the zero-order absorption process respectively,
and ty,, is the lag time associated to the first absorption compartment.

compartment. The first order rate constant of absorption of the second depot compartment (K») had a
very low median value (0.003 day '), resulting in a slow decay of TRP in serum concentrations. The
first order rate constant of the first depot compartment (K1), instead, had a higher value (0.25 dayfl)
to allow for a rapid decay of the TST levels in the firsts days of treatment. Table 2.2 also indicates that
most of the drug is released following 1* order Kinetics as the fraction of drug associated with the
0" order absorption process (Finr) is very small ( 4%). This result is also reflected in Fig 2.6, where
the median tendency of the drug release following each of the absorption mechanisms for the 1000
individuals is shown. The values of the duration of the 0/ order process (Diyf) varied immensely
between individuals (from hours to more than 200 days), thus the variability term was removed from
this parameter.

The therapeutic objectives obtained were compared to those from the optimal TST profiles (Fig 2.7)
and the 95% confidence intervals were also calculated from the 1000 samples. Minimal time to
achieve castration levels was 19.5 days (11.4-56.7) and the median percentage of drug consumed until
that moment was 38.9% (16.55%-66.96%). In Fig 2.7A the distribution of t., values for the 1000
individuals can be appreciated. With the modeling approach 63.9% of the patients had a t.,5 smaller
than 21 days, whereas in the optimal TST profiles this value was equal to 70.7%. Regarding the
second therapeutic goal, the initial peak in the TST levels had a median of 55% (17%-75%) increase
with respect to baseline. This indicated that the second objective was not always achieved, contrary to
the case of the TST profiles obtained by the optimal control problem where the flare up was much
more controlled (Fig 2.7B). Nonetheless, the median value was very close to the optimal value of
50%, so we assumed that the modeling approach managed to achieve the second therapeutic goal
as well. Finally, the long-term castration had a median value of 351 days (235.9 - 708), which was
higher than expected (Fig 2.7C), but we again needed to take into account that a small fraction of
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Fig. 2.5 Optimal testosterone profiles of the 1000 virtual patients. Optimal testosterone observations (solid circles) with
individual predictions (solid blue lines) of the pharmacokinetic/pharmacodynamic model and a red dashed line indicating
the castration limit (0.5ng/ml) of prostate cancer patients.
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Fig. 2.6 Optimal drug release characteristics following each of the absorption mechanisms.
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individuals (7.8%) did not achieve a teag + tefrece above 9 months due to their specific physiological

characteristics.
A Approach: D Optimal control D PKPD approach B Approach: D Optimal control D PKPD approach
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Fig. 2.7 Comparison of the three therapeutic objectives between the optimal control strategy (salmon) and the pharmacoki-
netic/pharmacodynamic modeling approach (blue) for 1000 individuals. A) Distribution of tc,s (time to obtain testosterone
levels below castration limit) values. B) Distribution of the values of the testosterone flare-up (maximum testosterone
level/baseline testosterone level). C) Distribution of tcast + teffect (Castration time after injection of the drug) time values of
the modelling approach.
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2.4 Discussion

In this paper, we have applied mathematical modeling and control theory to establish optimal drug
input (release) profiles to support the development of new release formulation of triptorelin aiming to
improve patient coverage. Optimal control has a long and successful history of applications in engi-
neering [8, 18] and economics [19, 20] but also has become an important issue in biomedical research.
Especially in clinical cancer research, a significant amount of effort has been devoted to developing
mathematical models to identify the most effective chemotherapeutic administration regimens using
OC methods [15, 21] and references therein. One of the earliest studies where chemotherapy treat-
ment planning was defined as an OC problem was in the work from [22]. The authors applied OC
to improve the treatment administration of the bone cancer IgG multiple myeloma. Understanding
the dynamics of resistance mechanisms against chemotherapy and targeted drugs and emerging of
adverse effects represent challenges that have also been addressed through these techniques as shown
in the works from [23-26]. For example, in [24] the authors added the pharmacokinetics of the drug
in the OC problem in order to provide chemotherapeutic protocols in qualitative terms. The injected
drug concentration is used as the control variable and the minimization of the number of tumor cells
at the end of the treatment is defined as the cost function of the problem. The results showed that the
best strategy corresponds to the maximum rate of drug injection when growth rate is assumed to be

constant, but not in other type of models.

Combination of different active compounds, are the rule rather than the exception in oncology and
other therapeutic areas, but the potentially high number of different possible combinations (including
different dosing schemes), makes drug selection an unaffordable task from an experimental trial
and error perspective. Therefore any guide on how to administer these therapies to achieve the best

possible responses is of great potential as shown by [27, 28].

In the area of infectious diseases, the works from [29] and [30] showed that using treatment regimens
obtained from optimal control could lead to a substantial improvement in HIV patients outcome in
comparison to the administration of constant-dose standard regimens. Anesthesia is another medical
area where optimal control strategies are used to maintain patient response within the desired thera-
peutic window for the case of the Bispectral Index (BIS) as an indicator of sedation, or the degree of

neuromuscular blockade [31, 32].

Despite the approach shown in the current evaluation is not novel in the drug delivery arena, it has
been seldom used beyond optimizing drug exposure. Especially in the context of multi-objective opti-
mization, the current example and others presented below indicate that the optimal control approach
should be considered part of the computational modeling arsenal advocated by the FDA promoted

critical pathway initiative under the Model Informed Drug Discovery and Development (MID3)
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paradigm [33].

Here we focused on the non-trivial problem of simultaneously achieving multiple therapeutic goals
related to drug onset and offset in the context of clinical trials with a minimum duration of 9 months,
which implies high cost and uncertainty regarding the final response outcome. Therefore the pos-
sibility of providing to pharmaceutical technology scientists guidance in the form of release/input
(absorption) profiles represents a real added value to avoid failed clinical studies. In this context we
performed a reverse engineering exercise interpreting the empirical input profiles from a mechanistic
biopharmaceutic perspective and showing the practical application of our optimal control analysis,

encouraging cooperation between computational and experimental/technology scientists.

In the current exercise the majority of the system accounting for the relationship between dose and
response (drug disposition, receptor interaction, and down-regulation mechanisms) was already well
characterized with the corresponding typical values and associated variability reported in [3]. In
addition the subcutaneous route of administration represents a much simpler biological system com-
pared for example with the oral route. Therefore the optimal control approach used here represents
an appropriate choice even recognizing that in more complex situations the advantages offered by

similar approaches like non-linear model predictive control [34, 13] could represent a better alternative.

In this context, the main critical aspect of the analysis is the choice of the appropriate structure of the
cost function to be minimized and the constraints of the problem. As highlighted in Materials and
methods section, we divided the problem into two phases because the minimum time to achieve CT
values (tc,s ) in TST levels was not known in advance. For the first phase, we implemented the Mayer
form of optimization problems whereas for the second phase a Lagrange term was used (see Table
2.1). In this work, we focused on the resulting testosterone levels of the prostate cancer patients, but,
as shown in the above paragraphs of the Discussion, for other therapeutic areas different objectives
could have been established, like the minimization of the tumor cell population at the end of treatment,
the maximization of the number of healthy immune system cells or the penalization of excessive

application of therapeutic agents [35-37].

The concept of optimization is present at every stage of the drug development process. Optimal design
methods, based on the D-optimality criteria which relies on the maximization of the determinant of
the Fisher information matrix [38, 39] is becoming also popular to select the appropriate number of
subjects in each cohort of the trials, the sampling times and the number of dose levels [40]. However,
we must not confuse optimal design methods with optimal control techniques. The aim of the first is
to simplify population trials but maintaining the same efficiency as the original studies. Here, they
do not alter the system equations nor the objective function of the algorithms and the focus is to
search for similar results to the original study (identical pk/pk parameters, similar concentration vs

time profiles...). For example, in the work from [40], they used this method to optimize a population
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pharmacodynamic experiment of the effect of ivabradine on exercise-induced tachycardia. On the
other side, in optimal control, we introduce what are known as control variables into the model
equations in order to manipulate the system response towards the desired goal. Therefore, in this
type of problems, system equations can be modified and objective functions and constraints defined
to search for improved solutions compared to the ones of the original study. Still, both approaches
have something in common; they avoid the use of intensive computer simulations when the optimal

solutions of a problem are being explored.

2.4.1 Conclusion

Optimal control theory has been applied to a population pharmacokinetic/pharmacodynamic model to
derive the optimal drug release profiles to achieve multiple therapeutic goals. The optimal control
analysis is more relevant in physiological systems with complex dynamics where simple simulation
tuning parameters exercises are not effective to obtain the optimal profiles. Moreover, the flexibility of
the method allows to deal with multiple and tight therapeutic objectives performing real optimization.
In this context the question of how to define the objective functions and how to quantify our thera-
peutic goals becomes crucial. Here, we focused on the resulting testosterone levels of the patients,
however, within the oncology area, different therapeutic objectives can be established with the goal of
improving drug combinations, help to lessen the side effects of cancer treatments, etc.

Finally, the optimal release characteristics have been described based on standard absorption PK
models. Although there are some discrepancies between the resulting TST profiles from the optimal
control strategy and the modeling approach (see Results), we note that the important aspect of this
work was to find the optimal release characteristics for prostate cancer patients, not to perform an
ideal PKPD modeling exercise as there was not real data to fit. We conclude that this objective is
achieved and that the information summarized in this article could be very useful for the development
of new formulations, since it provides insight into the desired absorption characteristics and could

produce a broad benefit for future prostate cancer patients.
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Fig. S2.1 Original pharmacokinetic model for triptorelin from [3]. Dy, is the duration of the zero-order absorption
process; Ka1 and Ka» are the first order rate constants of the first and second depot compartments respectively; Fy, F, and
Fins represent the fraction of the drug associated with the first and second depot compartments and the zero-order absorption
process respectively; tiyg1/lag2 is the lag time associated to the first/second absorption compartment; Ctgp is the serum
concentrations of Triptorelin; CL, the apparent total clearance; V¢, V11, and V1, apparent volumes of distribution of the
central, shallow, and deep peripheral compartments respectively; and CLp; and CLpy,, distribution clearances between the
central and peripheral compartments.

S1 Data: APMonitor MATLAB code and datasets. APMonitor Optimization Suite code for
MATLAB and datasets to reproduce the results of this work can be found in the online version of the

publication.
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Supporting information

Here, we wanted to summarize the mathematics involving the process of finding optimal control
histories for dynamic systems. These methods are analogous to the static optimizations, but the
computations are necessarily more complex. Additionally, we consider the method of Pontryagin

maximum principle to address optimal control problems having path constraints.

DYNAMIC SYSTEMS

In dynamic systems, state equations that describe the system and controls are expected to evolve over
time and not necessarily remain at a steady state.

Consider the dynamic system described by the ordinary differential equation of the form:

x(t) = f(x(t),u(t)),x(t0) = xo ()

given the control variable u(t) for to <t <t and the following cost function over the time interval [fo

S 1f]

tf
J= o)+ / LIx(r),u(t)] dr (i)

The first term of the cost function ii is known as Mayer problem and is a scalar algebraic function
of the final state and time and works as a terminal penalty. It is used to assure that one or more
state variables satisfy some condition at the end of the trajectory. The second term is known as
Lagrange problem and is an integral function of the state and control from 7 to z,. When both terms
are considered in the cost function, the problem is known as Bolza and its general form is shown in
equation ii (Stengel 1986; Betts 2001).

In optimal control problems, the control history «(¢) that minimizes J is to be found, subject to specific

constraints.

DYNAMIC OPTIMIZATION WITH DYNAMIC CONSTRAINTS

As previously described, generally dynamic constraints take the form of ordinary differential equations.
To guarantee that the dynamic constraint is considered in the minimization of a cost function, is has to
be adjoined to the integrand term of the equation in such a way that the numerical value of the cost
function remains unchanged at its optimum.

Note that in static minimization, an equality constraint of the form f(x,u)=0 can be adjoined to the

cost function J using Lagrange multipliers (vector A) to form the augmented cost function J,:
Ja=J + AT f(x,u) (iii)

J4 is identical to J at the minimum because f(x,«) must be zero at that point.
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In dynamic optimization however, the equality constraint is derived from the system’s differential
equation x(r) = f(x(¢),u(t)), which is equivalent to f(x(¢),u(t)) —x(t) = 0. If we convert the
constrained optimal control problem into an unconstrained optimal control problem using the Lagrange

multipliers, the augmented cost function J4 has the following form:

of
Ja=@x(tp)]+ /[0 {LIx(e),u @]+ AT () [f e (1) ,u ()] —x(t)]} dr (iv)

This motivates the construction of the Hamiltonian function defined as

H[x(r),u(r), A ()] = LIx(e),u(0)]+ AT (e) flx(e) ,u(7)) )
Thus, ;
J=olx(1p)] + /to {H[x(),u(t), 2 ()] = AT (e) 2(1)} di (vi)

Now J4 depends on x(7). Using integration by parts,

[ AT 50 =T ) x0) — AT Go)xta0) — [ AT (0)x(0) (v

the cost function becomes

Ia=x )]+ [AT (t0)x(to) — AT (1)) x(t/)] + /tf {H[x(t) (), A (O] +AT (1) x(t)} dr (viii)

fo

From this point, the augmented cost function will be written simply as J.

CONDITIONS FOR OPTIMALITY

One of the main issues in optimal control is to assure whether an optimal control exists for a given

problem. In the next section, we describe a set of conditions which any optimal control must satisfy.

Necessary conditions for optimality

Necessary conditions indicate that the cost function should be insensitive to small control variations
(Au) in the optimum point. This is mathematically expressed as AJ*[ux,Au] = O (the first variation of
J due to small variation in u must be equal 0). Setting the terms that multiply these variations to be
zero yields to the three necessary conditions for optimality, known as the Euler-Lagrange equations
(described in detail in (Stengel 1986)):

L[&(p_lﬂ =0 (i%)
ax t:[f
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JoH
JH _ .
35 =0 in (to,tf) (Xl)

Note that, in this section, we consider optimal control problems having no restriction on the control

variables.

Sufficient conditions for optimality

In many optimal control problems, cost stationarity may imply optimality because there is sufficient
knowledge of the system and flexibility in the choice of the cost function. Even so, in (Stengel 1986)
three sufficient conditions are described (convexity condition, normality condition and uniqueness
or Jacobi condition), which along with the necessary conditions, would assure optimality. The most
important one (and the only condition that is discussed for this work) is the convexity condition, also

known as Legendre-Clebsch condition:

J2H(x*, u*, A")
ou?

] >0 in(fy,ty) (xii)
Where x*, u* and A * refer to the optimal state, control and Lagrange variables found as solution to the
problem respectively. This property implies that every stationary point in u is a strict local minimizer
of the Hamiltonian H in the control. Using quadratic formulations in the cost function considerably
simplifies the analysis of this condition because the Hamiltonian becomes convex in the control u and
thus has a unique minimizer. While this does not guarantee that the controls found by the analysis are

necessarily optimal, it introduces important mathematical advantages (Schittler and Ledzewicz 2015).

Pontryagin’s Principle

In this section, we present more general necessary conditions for optimality for those problems having
bounded control magnitudes. Such conditions were generalized by Pontryagin and co-workers in their
Maximum principle (sometimes also referred as Pontryagin’s Minimum Principle) (Pontryagin et al.
1962).

Because of the restriction on u, the necessary condition of section 3.1 changes to AJ*[u*,Au| > 0.
This implies that

HIx (1), u" (£), A" (1)) < H ¥ (t) ,u" (t) + Au, A* (1)) (xiii)

Equation xiii is the necessary conditions stated by Pontryagin in his theorem, which along with
equations ix and x, state the necessary conditions for optimality when control variables are subject

to constraints on their magnitudes. The maximum principle can in some cases provide a solution to
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problems where the Euler-Lagrange equations fail. One example is when linear terms are used in the

cost function and the equation ‘fi—’: becomes identically zero.

Both Euler-Lagrange equations and the maximum principle are difficult to apply to large non-linear
systems with state or control variable constraints and this may lead to computationally intractable
problems. In these cases, where an analytical solution is not possible to be found, computational

algorithms are inevitable in solving optimal control problems (Hedengren et al. 2014).
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3.1 Introduction

A major obstacle in cancer research is the development of resistance to anticancer drugs. Although
this phenomenon has long been studied, it has gained even more attention after the introduction
of targeted therapies and technological advances such as next generation DNA/RNA sequencing.
Targeted therapy differs from cytotoxic chemotherapy in that it not only leads to more specific effects
with reduced toxicity, but also promises a future of personalized tailored treatment. Unfortunately, the
initial clinical response to targeted therapies is almost always temporary, as acquired resistance to these
drugs invariably develops [25]. Emergence of resistance is also a therapeutic relevant consequence of

administering conventional chemotherapeutic agents [57].

Clonal evolution represents a key element in understanding these resistance mechanisms [24]. In this
context, cancer cells evolve specific genetic and/or epigenetic alterations during tumor growth that
lead to the progression of different sub-clones within a single tumor. The heterogeneity of cancers
has important negative implications for targeted therapies because somatic mutations continue to
happen even in the presence of drugs and new drug resistant cells with improved fitness and malignant
potential may arise. Moreover, drug resistance can also emerge through therapy-induced selection
of a small resistant subpopulation of cells that was already present in the original tumor (intrinsic

resistance).

Clonal evolution gradually leads to the aggressiveness of the cancer and resistance to treatment. This
realization has given rise to many stochastic mathematical models of genetic resistance, i.e. resistance
driven by (epi)genetic alterations in cancer cells, since these alterations emerge as random events
during cell division [18, 4]. Some of the earliest work about resistance arising due to point mutations
was presented in the 1980s by Goldie and Coldman [22, 23, 12], where the authors proposed the use
of a class of stochastic models known as branching process models to study pre-existing or acquired

resistance to chemotherapy in tumor cell populations.

Branching process models describe the growth and composition of populations by stochastically
reproducing individuals [37, 27]. Multi-type branching processes (branching processes where off-
spring can be of different type than the parent) are convenient for modelling clonal evolution of
cancer cells, where new (epi)genetic alterations emerge as random events during cell division and
give rise to tumor subclones with different fitness (i.e. different proliferative capacity or resistance
to apoptosis) than their ancestors [47]. This approach has inspired other groups to mathematically
characterize drug resistance mechanisms and to investigate potential administration schedules that
could delay the appearance of this resistance. For instance, Kendall proposed a two-type branching
process where wildtype and mutant cell types were assumed to randomly divide, die, and mutate
according to different rates [35]. This model is also referred to as a birth-death branching process

because it considers that each cell type experiences random birth (cell divides into two offspring and a
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mutation is possible to happen) or death. Iwasa and colleagues [32] used a similar two-type birth and
death process to model the dynamics of resistance emerging due to genetic alterations in a population
of drug sensitive cells prior to the start of therapy. Multi-drug resistance has also been studied using
these types of models in the work from Komarova and Wodarz [39, 38]. More recently, Bozic et al.
[6] used multi-type branching processes to predict the effects of combination therapies on tumors and
showed that drugs given simultaneously have a higher probability of success compared to sequential
therapy.

Hence, understanding how resistance to targeted therapy or conventional chemotherapy occurs is
necessary to prolong the effect of modern anti-cancer drugs and try to find optimum dosing strategies.
Further complicating the issue, the existence of a multitude of resistance mechanisms necessitates
administering drugs in combination, significantly complicating the endeavor of identifying optimal
intervention strategies. In addition, high doses or long term use of drugs can cause severe adverse
effects in the patients and hence the assessment of the dose-limiting toxicities (DLT) and maximally
tolerated doses (MTD) is also very relevant when searching for the optimal regimen. A thorough
understanding of the important determinants of cancer evolution and possible side effects under single-

agent and combination therapies is therefore crucial for correctly predicting treatment outcomes.

We have previously developed a comprehensive computational strategy to explore the evolutionary
dynamics of heterogeneous tumor cell populations while taking pharmacokinetic and drug interaction
effects into account [16, 17, 7]. This approach is made up of a cell-level description of the changes in
sensitive and resistant cells over time and in response to treatment in the form of a birth-death process
model of cell growth, death, and mutation acquisition (see quick guide to equations for a general
description of this model). It also includes mathematical models to describe the time course of drug
concentrations and to characterize the interactions of the drugs. These characteristics represent a
departure from previously developed stochastic models of emergence of resistance during therapy
which were defined as time-homogeneous processes where the birth and death rates of sensitive and

resistant cells were not directly influenced by drug concentrations and were assumed to be constant.

We note that the pharmacokinetic processes included in previous works [17, 15, 41, 7] were simple
exponential decay models of drug concentrations. Even in the case where the dose was given orally
to the patients, no absorption parameters were estimated because the time scale considered for the
dosing strategies (days instead of hours) plus the rapid absorption of the drug allowed to discard
this parameter. However, not all the treatments present such a simple concentration-time profile.
Additionally, the effect of drug concentrations on the growth kinetics of sensitive and resistant cell
populations were considered to be linear [7] despite the fact that in vitfro growth inhibition response
of cell lines to a range of different drug concentrations is generally non-linear and conventionally
modeled with a hill function [19, 51].
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In this work, we aim to extend this hybrid methodology to account for more complex pharmacokinetic
models and non-linear effects of drugs on the growth and death kinetics of cancer cells. Further-
more, we integrate this framework in an R package called ACESO (A Cancer Evolution Simulation
Optimizer), providing users with an accessible tool to rationally identify optimum single-agent and
combination treatment administration strategies for oncogene-driven cancers. We demonstrate the
use of ACESO to explore optimum dosing strategies using publicly available data from the Harvard
Medical School (HMS) Library of Integrated Network-based Cellular Signatures (LINCS) Database
[34] (http://lincs.hms.harvard.edu/db/). Additionally, we showed how the new features and flexibility
of ACESO could improve the predictions of a previous application of this evolutionary framework
on the identification of optimum administration schedules for non-small cell lung cancer patients,
matching the results obtained in subsequent publications [15, 56]. We conclude that this multi-scale
framework represents a crucial step towards making clinically relevant predictions as it considers the

most important aspects governing treatment response and cancer evolution.


http://lincs.hms.harvard.edu/db/
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Quick Guide to Equations and Assumptions

Multi-type branching process

A branching process is a stochastic model of cell division, mutations events and cell death used
to describe the growth and composition of tumor cell populations. It is an example of a first
order Markov process that models a population in which the probability of observing n cells
at time 7 + Ar (At being a very short time interval) only depends on the state of the population
at time t and not on its earlier history. Multitype branching processes are branching processes
where daughter cells can be of different type than the parent (e.g. a genetic alteration occurs that

make them more aggressive, metastatic or resistant to a drug).

Mayor assumptions of the model:

* Only 3 different events are possible for each cell in the population: cell division, cell

division with mutation or death.
* Each cell is fully described by cell-intrinsic birth, mutation and death rates.

¢ Cellular events (replication, mutation and death) do not influence each other, so all events

occur independently.

» The waiting time between events a cell can undergo is distributed exponentially according

to its intrinsic rates.

* Birth and death rates are influenced by the changing drug concentrations over time, which
vary in function of the pharmacokinetic model defined, the model parameter values and
the dosing time. The mutation rate parameter can also vary over time, but for the equations

described below, is assumed to be constant.

Taking into account these assumptions, the expected number of cells at any time after treatment
initiation was derived in previous publications (see [7] and its supplementary material) and is

given by:
(ni(t)) = Ny e Jolbols) (1=TLuc) —do(s))ds fori=0
_ N;+ f(; [e—fg[b,-(r)—di(r)]dr - bto(s) “No- ejé[bo(f)'(l—):]:vzl ua)—do(f)]df]ds Fori>0
e Jolbi(s)—di(s)]ds
(3.1)

where i = 0 denotes the original sensitive cell type and i = 1,...,N denotes the N different
resistant cell types. Birth, death and mutation first order rates are denoted by b;, d; and u;
respectively and the initial number of sensitive and resistant cells is represented by Ny and
N;. Since the first order mutation rate constant is always much less than 1 (¢; << 1), the sum
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over the mutation rates of all N-resistant types ):Q’:l u, can be removed from the equation. The
expression for the expected number of cancer cells considering cross-resistance to drugs is

shown in the Supplementary material.

The probability that there exists at least one resistant cell of any type (i = 1,...,N) at time T
after treatment initiation was also derived in previous works [17] and is given by:

[—foT (Z?’:] No.efé[bo(f)(lf):: ”Z)"{O(f)]d7~bo(1)~u,~(1—PEX,),'(I,T)))dt]

PR(T)=1-e¢ (3.2)

font di(t+1)- (elbfdi(nﬂ)—b,-(nﬂ)dn)dr
1+ [T di(t+1) - (el dmtn=bi(n+ndn) g g

where Poy i(t,T) =

The expressions above cannot be solved analytically for time-dependent growth and death rates,

and therefore has to be solved numerically.

Net growth, birth and death rate estimation from data
In order to estimate the net growth rate of the cells, an exponential growth model based in the

following ordinary differential equation (ODE) is defined:

dN
— =A;-N 33
=N (3.3)
where N is the number of viable cells, A; is the first order net growth rate parameter and j
represents the different drug concentrations analyzed in the experiment. This model implies
that each concentration has its own net growth rate associated. The analytical solution of this

equation is:
N(t) = Ny- el (3.4)
where Ny is the number of viable cells at time 0.

In order to estimate the death rate from apoptosis assay data where the number of death cells is

counted over time and different drug concentrations, the following ODE was defined:

dNy
—— =d;-N 3.5
dt J (3-5)

where Ny is the total number of death cells and d; is the first order death rate parameter for

the different drug concentrations tested. As the equation for N has been already defined, the
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following analytical solution for N, can be obtained:

No-dj (M

» ~1) (3.6)

t
Nd(l‘) :/ (dj ~N0~elj't)dl‘ =

0
As the value of A; is already known from the previous exercise and the values for Ny and Ny
over time and different drug concentrations can be obtained from the dataset, the different d;
parameters can be easily obtained using a least square minimization. Finally, as the net growth
rate parameter A; is the difference between cell proliferation and death, the birth rates b; for the

different drug concentrations can be obtained from the values of A; and d; as b; = A;+d;.

Non-linear concentration-response curves

Many drug concentration-effect relationships are described by nonlinear sigmoid models, which
are characterized by a sigmoidal or “S” shape. The four-parameter logistic equation (or Hill
equation) is one of the most common approaches to describe single-agent concentration-response
curves of this type [51]. In this work, the responses being analyzed are the first order birth
and death rates of sensitive and resistant cell lines. This model is defined by (the equation is

customized for the effect exerted by a drug on the birth rate):

BO - Bmax

B(C) = By + <.
max 1_’_(%50)}1

3.7
where B is the first order rate constant obtained at concentration C C, B, is the maximum
effect of the drug on the birth rate, By is the intrinsic birth rate when no drug is present, ECs
is the inflection point of the curve and represents the concentration corresponding to 50% of
the maximum effect and 4 is the shape parameter linked to the steepness of the curve. The
five-parameter logistic model is an extension of this equation for fitting asymmetrical data [51]

as it adds an asymmetry factor parameter defined as f in the previous equation:

BO - Bmax

B(C) =Bpax+ (. )

(3.9)

These models can be generalized to any measure of drug exposure (e.g., dose, plasma concentra-
tion, or area under the concentration vs time curve).

Apart from these two examples, ACESO incorporates other nonlinear dose-response models like
the three and four-parameter Gompertz model, Weibull models, etc. for parameter estimation. A

simple linear model can also be fitted to the data.
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Compartmental pharmacokinetics/Population pharmacokinetics

Pharmacokinetic (PK) models consist of algebraic or differential equations used to quantitatively
describe how drug concentrations change over time in a biological system following its admin-
istration. Compartmental PK analysis views the body as consisting of compartments between
which drug distributes and from which elimination occurs. The transfer of drug between these

compartments is represented by distribution clearances or first order rate constants.

The simplest compartmental model is the one-compartment model. In this model, the body is
depicted as a kinetically homogeneous unit, which means that the drug achieves instantaneous
distribution throughout the body following administration and that the drug equilibrates instanta-
neously between tissues. Thus the plasma drug concentration-time profile C(¢) shows a simple

exponential decay when the drug is given intravenously as a bolus:

where D represents the dose of drug given to the patient, V is the apparent volume of distribution

and CL the total drug elimination clearance.

The two-compartment model resolves the body into a central compartment and a peripheral
compartment between which drug distributes. Here, the drug does not achieve instantaneous
distribution following administration into the central compartment and thus the log plasma drug

concentration—time profile shows a biphasic response.

These models can be further complicated to allow for more than two compartments, more com-
plicated absorption profiles, delayed responses, etc. An overview of standard pharmacokinetic
compartmental models, their ordinary differential equations and concentration-time profiles
under single and multiple drug administrations can be found in Figure 5 from the Introduction

section of the thesis.
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3.2 Material and Methods

3.2.1 General structure of the framework

We model the cancer cell population during treatment with a multi-type time-inhomogeneous branch-
ing process (see Quick Guide to Equations and Assumptions for a brief description of the model
assumptions and mathematical equations). Here we consider only the sub-population of cancer cells

that is capable of self-renewal to produce and maintain a resistant cell clone.

The original cells with oncogene-activating mutations (also denoted type O cells) are referred to
as sensitive cells, since they contain all (epi)genetic alterations necessary for conferring the cancer
phenotype, but anti-cancer therapies are effective against them. The sensitive cancer cells proliferate
and die with first order rates by(r) and dy(r) respectively, which can be modulated by the cytostatic
and/or cytotoxic effect exerted by the drug(s) as a function of their concentration vs time profiles.

Sensitive cells may accumulate different mutations at a first order rate u; per cell division and generate
new clones harboring specific resistance mechanisms. This mutation parameter can be a constant
value or be modified (i.e., augmented) as a result of the presence of a drug in the body. The new
resistant cell types (denoted type i cells, with i = 1,2, ... depending on the number of resistant clones
being modeled) are again characterized by their first order birth and death rates b;(¢),d;(t), which
may also show a concentration dependent profile. Each of these resistant cell types can then again
mutate to accumulate further alterations and become resistant to more than one drug. For a schematic

representation of a two-type branching process with cross-resistance see Figure 3.1A.

This quantitative approach considers both situations in which there is preexisting resistance as well as
de novo resistance at the time of tumor diagnosis and treatment. Analytic solutions for the expected
number of cells of any type as a function of time and the probability of developing resistance for
an arbitrary number of cell types were derived in previous works [17, 7] and are summarized in the
quick guide to equation section, allowing for faster predictions without the need for detailed stochastic

simulations of the evolutionary process.

This cell-level description of how heterogeneous cell populations evolve over time is then coupled
to a pharmacokinetic (PK) model, which describes how the drug concentration changes over time
(Figure 3.1B). PK refers to the processes by which drugs are absorbed, distributed and eliminated
from the body. In order to implement more complex compartmental PK models and simulate different
routes of administration and any type of dosing schedules, we integrated the mrgsolve R package [2]
in ACESO, which allowed for rapid simulations of ordinary differential equation (ODE) based models
due to its implementation in C++ (see Quick guide to equation and Assumptions for an introductory
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Fig. 3.1 Schematic representation of: A) a two-type branching process with cross-resistance. The type 0 cell (blue), which
is sensitive to both drugs A and B, proliferates at rate by(t), dies at rate dy(r) and can accumulate mutations at rate u; per
cell division to give two different cell types, type 1 (green) and 2 (orange), which are sensitive to either drug A or drug B.
Type 1 and 2 cells can mutate again and become resistant to both drug A and B (type 3 cells, magenta). Each resistant cell
type has its own proliferation and death rates, b;(¢), d;(t), with i = 1,2... B) Drug concentration-time profile governed by
the pharmacokinetic parameters of drug A and B after a single-dose administration.

explanation about compartmental pharmacokinetics).

3.2.2 Model development and outcome

In the following the data analyses and simulations procedures are described. Briefly two types of
approximations are combined sequentially as described below. First the parameters driving tumor cell
proliferation and death, and pharmacokinetic processes are estimated. Then, those parameters are
used to simulate the expected number of different type of cells and probability that there exists at least
one resistant cell based on the equations derived from the multitype branching process model shown

in the Quick guide to equations and Assumptions.

Estimation of birth and death first order rate constants and drug effect parameters

Cell viability and death in vitro assays are required for both sensitive and resistance cells lines used
in the model to determine the growth and death rate parameters for each cell with and without the
presence of drugs. One example of viability assay to characterize cell proliferation is the MTS assay

[13]. Here, the number of viable cells is measured over time which is then used to identify a first order

50
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proliferation rate constant of an exponentially growing population. These rates are also determined
for varying levels of drug concentrations. The dynamics of tumor cell death can be characterized
using apoptosis assays such as Annexin V/propidium iodide (PI) fluorescence-activated cell sorting
(FACS) assays [54], where cells with positive Annexin V staining are considered to be dead. Other
assays for proliferation (e.g. KI-67 protein assay [31]) and death (e.g. Caspase activation assays [33])
can also be used to determine the respective rates.

In the computational approach implemented in ACESO, data from the viability and apoptosis assays
(cell levels measured over time in absence or in presence of drug(s) concentrations) are used in a two

steps procedure as follows:

(i) For each treatment condition (concentration level of one or two drugs) the corresponding first

order rate constants of birth (b;) and death (d;) are estimated using equations 3.4 and 3.6.

(i) A. In case of a exposure to a single drug, modeling the b; and d; estimates vs the full concentra-
tion range profiles provided the values of the drug effect parameters, as ECs0, B,,ax, andh in
equation 3.7 (see Quick guide to equations and Assumptions), although other model alternatives
are available in ACESO (Weibull, Gompertz, linear models, etc.). The selection of the best
model is based on the lowest Akaike Information Criterion (AIC) values [1].

B. The relationship between estimates of b; or d; and drug concentrations obtained from
drug combination studies was established using generalized additive models (GAMs) [5] or
locally weighted scatterplot smoothing regression (loess) [1], both implemented in ACESO and
belonging to the class of nonparametric models. Thus, the b; or d; vs concentration profiles are
described without assuming any mechanism of interaction which provides a high degree of

flexibility in the fitting but lacks any biological interpretation.

Estimating the mutation rate from data is still an unsolved problem which has not been yet adequately
addressed in literature. Thus for the simulations exercises from the Results section, very small values

ranging between 10~7 — 10~ for the mutation rates are arbitrarily defined.

Pharmacokinetics

In the case where patient specific PK data is available, user-defined or compartmental models already
coded in ACESO using the mrgsolve model specification (one to three compartments considering
intravenous and extravascular route of administration) are available to select the best model describing
the concentration vs time curves. This functionality from ACESO is called the PK curve estimator. If
data from different individuals are available, parameter estimates describing the median tendency of
the data will be reported, as estimation of inter-individual variability is not supported in the current
version of ACESO. Selection between models is based mainly on the minimum AIC value and

inspection of the individual fits.
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Assessing drug synergy/antagonism

Since the analysis of drug combination data using the nonparametric models described above does
not provide any information on the type of interaction between compounds, ACESO helps to identify
if the combined action of two drugs is synergistic, antagonistic or simply the drugs don’t interact with

each other.

In order to quantify the degree of synergy/antagonism between two compounds, the most common
approach is to compare their measured combination effect to a null reference model of no interaction,
i.e. the expected response assuming no interaction between the two compounds. If the combination
response is greater than what is expected by the reference model, the combination is classified as
synergistic, while antagonism is defined when the combination produces less than the expected effect.

There are several well-known conventional approaches that define different null models to assess drug
synergy/antagonism. The Loewe Additivity model [42] is one of the most commonly used models
to quantify a zero-interactive state for the combination of two drugs. This model is based on the
assumption that a drug cannot interact with itself and defines synergy/antagonism as a combined
inhibitory effect that is greater/lower than the sum of the individual effects of the drugs. Highest
Single Agent (HSA), also known as Gaddum’s non-interaction model [3], is another popular model
which defines a “independent action” of the drugs when the predicted effect of a combination is that
of the one most effective drug alone. According to this model, any combined effect stronger than the
effect of a single drug is called ‘synergism’ and a weaker effect ‘antagonism’. Additional information

and equations of these models are described in Supplementary material.

All these methods represent a pure comparison between observed and no-interaction model response
and they don’t define a mechanistic model to quantify the interaction of the drugs. Even so, both
reference models are implemented in ACESO and allow for the computation of a response surface
which can then be used for the simulations of the evolutionary process when there is a clear certainty

that the drugs do not interact with each other.

3.2.3 Model predictions: Simulation of the treatment effects

Once the birth and death first order rate constants for all the cell types are defined as a function of
drug concentrations and the PK model(s) are selected, simulations of potential dosing regimens can be
performed aiming to find the optimal therapeutic strategy that minimizes the expected number of total
tumor cells remaining and/or the probability of developing resistance within a specified time frame.

Although the current version of ACESO doesn’t support the estimation of inter-individual variability

(IIV), it allows for the simulation of IV in the model in the case where population PK models from the
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literature or model parameters estimated using platforms based on nonlinear-mixed effects methods
(e.g. NONMEM [3], MONOLIX [40]. ..) want to be used. Therefore, ACESO allows exploring the
impact of interpatient pharmacokinetic variability and adherence to treatment (e.g., missed doses) on

disease progression and dynamics of resistance.
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3.3 Results

Figure 3.2 lists all the functionalities of ACESO that now will be deeply explored through different

demonstrative case studies.

In the first case study, we demonstrate the use of ACESO to determine optimum combination dosing
strategies using publicly available data from the HMS LINCS Database. In the second, a previously
developed branching process model that evaluates the evolutionary processes driving the emergence
of resistance in response to erlotinib in non-small cell lung cancer (NSCLC) is extended to account for
CNS metastases. These case studies highlight the fact that quantitative knowledge of pharmacokinetic,

drug interaction and evolutionary processes is essential for identifying best intervention strategies.

3.3.1 Case study 1: LINCS database

The HMS LINCS Database is a publicly available database that aims to collect and disseminate data
which can be used to understand how human cells respond to different types of perturbation such as

exposure to drugs, environmental conditions, and mutations [34].
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Fig. 3.2 Main functionalities of ACESO. PK refers to pharmacokinetics, GAM to Generalized Additive Models and loess
to locally weighted scatterplot smoothing.
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In the current evaluation cell viability data resulting from the exposure of BT-20 triple-negative breast
cancer (TNBC) cell line to different concentration values of the targeted drugs alpelisib, neratinib, and
trametinib used as single agents or in combination between (i) alpelisib and neratinib, or (ii) alpelisib
and trametinib, were analyzed following the evolutionary process and the modeling and simulation
steps described in Material and Methods in order to analyze the dynamics of heterogeneous TNBC
tumor cell populations under combination treatment.

Briefly, in these experiments cells were exposed during 72 hours to constant concentrations levels of
the drugs either as single agents or in the combinations described above. The reader is referred to the
HMS LINCS page (http://lincs.hms.harvard.edu/db/) for more information regarding the experimental
settings. The raw data used in the present analysis can be retrieved from the datasets identified as
20245, 20247 and 20259.

Regarding the drugs used in the experiments, neratinib is an irreversible tyrosine kinase inhibitor of
HER1, HER2, and HER4 [5] which is currently being used for the extended adjuvant treatment of
early stage HER2-positive breast cancer following adjuvant trastuzumab-based therapy. Alpelisib is a
phosphatidylinositol-3-kinase (PI3K) inhibitor which is currently undergoing different clinical trials
including a phase III study where the combination of alpelisib with fulvestrant (hormonal therapy)
as a second-line therapy for patients with ER-positive/HER2-negative breast cancer whose tumours
had PIK3CA mutations is being tested [52]. Finally, trametinib is a reversible inhibitor of mitogen-
activated extracellular signal regulated kinase (MEK) activation [21] which has been approved by the
FDA for the treatment of metastatic melanoma with BRAF V600E or V600K mutations.

Analysis of Alpelisib and Neratinib combination

We first analyzed the data from the combination of Alpelisib and Neratinib drugs. BT-20 cells sensitive
to both drugs were defined as type O cells in our framework, whereas cells resistant to neratinib and
alpelisib were defined as type 1 and type 2 cells respectively.

Dynamics of sensitive (type 0) cells

Figure 3.3A shows the relationship between viable cells measured 72 h after exposure and the different
drug concentration levels, where it can be observed that both targeted drugs reduce in a concentration-
dependent manner tumor cell viability and that greater reduction of cell viability is observed for the
two drugs in combination compared to single drug effects. Moreover, the effect of alpelisib seems to
be stronger at first sight, although we must note that the maximum concentration of neratinib used in
this combination experiment (1.92uM) is much lower than the maximum concentration of alpelisib
aoum).


http://lincs.hms.harvard.edu/db/
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Fig. 3.3 Estimation of the net growth rate of sensitive cells using drug combination data. A) Viable cell counts under
different drug concentrations of alpelisib and neratinib. B) Net growth rate of sensitive cells as a function of the different
drug concentrations. C) Discrete values of the birth rate of sensitive cells under different drug concentrations. D) Smooth
response surface of the sensitive cell birth rate values under different drug concentrations.

An exponential model was used to deterministically characterize the change in viable cells from O to
72 h:

N(t) = Ny- Mo (3.10)
where N is the number of viable cells, N, is the number of viable cells at time 0 (2751 in this database)
and Ao j is the first order net growth rate parameter of type O cells corresponding to each treatment
condition j (drug(s) and concentration level) reflecting the difference between birth and death first
order rate constants and referred as A hereafter. The estimates of Ay ranged from 7.73x103/4 ! in
absence of both drugs to —2.55x10724~! in presence of 10 M of alpelisib and 1.92 M of neratinib.
Figure 3.3B shows the net growth rate estimates vs concentration profiles.

As previously explained, the evolutionary model requires values for the cell birth, death and mutation
rates. However, as there was no information regarding apoptosis assays available to estimate the first
order death rate of type 0 cells (dp) and assuming that these targeted therapies do not induce cell death
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per se, a first order elimination rate constant of 0.028 4~! was defined to ensure that all the values for

the first order birth rates of type O cells (bg) are positive regardless of the treatment conditions.

The values of by are listed in the matrix shown in Figure 3.3C and Figure 3.3D shows the same matrix
after using a smoothing function. These parameters were fitted nonparametrically using a GAM to

generate the predicted surface (Figure 3.4A) required for the simulation of the evolutionary process.

Dynamics of drug resistant cells (type 1 and type 2) cells

Once drug resistant cells have mutated from drug sensitive cells they follow their own fate character-
ized by their corresponding bi and di. Due to the lack of information regarding drug-resistant cell lines
in LINCS, we assumed that these cells had decreased birth and death rate parameters compared to
their sensitive counterparts, and hence we divided the proliferation and death rate parameters obtained
in the previous exercise for the parental BT-20 cell line by different arbitrary values depending on the
drugs being analyzed (by two in the case of alpelisib resistant cells and by three for neratinib resistant
cells).

A full resistance mechanism was considered in this example, that is, neratinib drug concentrations
didn’t have any influence on neratinib-resistant cell proliferation and therefore, these cells are only
affected by the varying alpelisib concentrations as can be seen in the second panel of Figure 3.4A.
The same is assumed regarding alpelisib-resistant cells (third panel in Figure 3.4A). Those profiles
were characterized using the nonlinear models for single agents included in ACESO providing very
good fits (an exponential decay model and a five parameter log-logistic function best fitted the first

order birth rates of neratinib-resistant cells and alpelisib-resistant cells respectively).

In addition, a value for the second order mutation rate constant of 10~7 was defined for the cells resis-
tant to one drug, and of 103 for cross-resistance (resistant to both drugs). Although a modification
of these estimates would alter the results of the simulations slightly, it would not affect the relative

comparison between dosing schedules.

Pharmacokinetic models

Pharmacokinetic parameters required to generate the concentration vs time profiles for alpelisib
were obtained from a previous pharmacokinetic analysis published in literature [14]. In the case
of neratenib, pharmacokinetic parameters were estimated from an analysis performed with the me-
dian concentration vs time data scanned from the original publication [36] using WebPlotDigitizer
(https://apps.automeris.io/wpd/). Results from this analysis performed using the PK curve estimator

from ACESO are shown in supplementary figure S3.2.
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Fig. 3.4 A) Different fitted models for the data used in the case study of the combination of alpelisib and neratinib drugs:
a GAM is fitted to describe the effect of the combination of the two drugs on the birth rate of sensitive cells (left), an
exponential model best described the alpelisib concentration-response curve of neratinib-resistant cells (middle) and a five
parameter log-logistic model best fitted the birth rate values under different concentrations of neratinib of alpelisib-resistant
cells (right). B-C) Effect of the varying plasma drug concentrations over time (B) in the birth rate of the different sensitive

and resistant cell types (C).

Alpelisib is in late stage clinical trials, where a standard dosing schedule of 300 mg/day orally is being

tested when the drug is given in combination with other anticancer agents [45]. The recommended

therapeutic oral dose for neratinib on the other hand, is 240 mg/day continuously for one year. Figure

3.4B shows the time course of alpelisib and neratinib drug concentrations after administration of two

different dosing schedules (standard continuous daily dosing vs a high-dose pulse with continuous

low-dose therapy) and how the birth rates of the different cell populations change over time as a
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consequence of the time varying concentrations (Figure 3.4C).

In the next section, the differences caused by the treatment on the total number of the different cancer
cell types and the probability of developing resistance calculated using the equations 3.1 and 3.2 were

explored.

Simulation of the treatment effects

Having defined (i) the PK models, (ii) the response surface for the effect of the combination of the
two drugs on the proliferation of the sensitive cells, (iii) the birth rates vs concentration curves and
death rates of drug resistant cell types and (iv) the mutation rates, ACESO was used to simulate the
impact of different dosing schedules on the dynamics of resistant cells assuming a population of 1
million sensitive cells and 1000 resistant cells to alpelisib and neratinib prior to treatment initiation.
In addition to the standardized MTD schemas for alpelisib and neratinib, we investigated the dosing

strategies listed in Figure 3.5A among others.

We first compared between sequential, alternating and simultaneous dosing strategies and concluded
that simultaneously administering the drugs gave the best results (data not shown). Among the
simultaneous dosing strategies tested, schedules including once-weekly pulses with resting periods
resulted in the highest expected number of tumor cells after the treatment period. These results are
caused by the fast clearance of the drugs that allow cancer cells to grow during treatment breaks as
there are no drug concentrations decreasing the value of their birth rates. Increasing the weekly pulse
frequency (twice-weekly, three times a week) did not improve the results (Figure 3.5B-C). For the
case of alpelisib, combining a high-dose pulse of 900 mg with a maintenance low daily dosing of 200
myg for the rest of the week showed a greater effect, but proved to be a 12% worse than the daily dosing
of 300 mg in the lessening of the number of alpelisib-sensitive cells (type 1 in the Figure 3.5C) and
almost 5% worse in the effect caused to type O cells. By contrast, low neratinib concentrations have a
considerable effect on the birth rate of type 2 cells and therefore the schedule involving a high-dose
pulse of 720 mg/week with an additional daily dose of 120 mg for the remainder of the week was
comparable to the approved schedule of 240 mg once a day (QD) (see simulation 1 and 7 of Figure
3.5). Thus, both the dosing schedules from simulation 1 and 7 gave the most satisfactory results. The
decision of using one or the other could be based on the tolerability of each dosing regimen by the
TNBC patients.
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Analysis of the Alpelisib and Trametinib combination

The previous example has shown several of the main capabilities of ACESO. In this second case study,
the analysis is focused on the characterization of the type of interaction occurring in drug combination
therapies, as well as comparing the magnitude of the effect elicited by different combinations (alpelisib
and neratinib vs alpelisib and trametinib). The dynamics and impact of emerging resistant cells is, in

this case, out of scope.

The procedure to calculate the first order net growth, birth and death rate parameters of the sensitive

cells under different combinations of alpelisib and trametinib was analogous to the previous example.

Pharmacokinetic models

The pharmacokinetic model and parameters for trametinib were also extracted from literature [49].
In brief, the disposition properties of trametenib in plasma were described with a two-compartment
model with linear elimination. Absorption after oral administration resulted to be time variant evolving
from a slow to a fast absorption process in a short period of time (0.4 h). For simplicity, only the first
order absorption rate constant equal to 2.05 4~ ! was used. Plasma drug concentration vs time profiles
of trametinib were then generated for the recommended schedule consisting on 2 mg orally once a
day.

PK characteristics for alpelisib were already described in the previous example.

Characterizing the type of interaction

To determine whether the combination of alpelisib and trametinib elicits a greater reduction of the
birth rates of type O cells than the expected under the assumption of additivity or from the effect of
each drug alone, a visual comparison was performed between the response surface resulting from
the non-parametric analysis of the combination data and the response surface generated from the
generalized Loewe additivity or HSA models (see supplementary material for the specific equations

and procedure).

In Figure 3.6A it can be appreciated that the effect caused by trametinib when combined with high
alpelisib concentrations is negligible as the vertical isobole lines from the graph indicate that infinite
concentration values of trametinib are required to achieve the same effect than the one produced
by ~ 1-10 uM alpelisib concentrations. In addition the three surfaces appear to be comparable
suggesting lack of interaction. However, the profiles shown in Figure 3.6B where the expected number
of sensitive cells is simulated over time (based on the results from the non-parametric analysis, Loewe

additivity assumption and HSA model), reveal that at least some therapeutic benefit is seen after three
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weeks of combination treatment at the recommended dosing (although we note that no statistical test

was applied to know if this result was significant or not).

An equivalent analysis was performed for the alpelisib and neratinib combinations where the profiles
shown in Figure 3.6D indicate a higher synergistic interaction. Consequently, between the two options
explored in this case study, neratinib would be the most suitable choice to combine with alpelisib in
future clinical trials.
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Fig. 3.6 A, C) Response surface analysis. Smooth response surface of type O cell birth rates as a function of alpelisib and
trametinib concentrations (A) or alpelisib and neratinib concentrations (C) and its comparison to the surface obtained under
Generalized Loewe additivity model and Highest-Single Agent hypothesis. B) Simulation of a simultaneous dosing strategy
involving 300 mg QD alpelisib and 2 mg QD trametinib for 25 days and its effect on the total number of type O cells using
the different response surfaces for type O cell birth rates showed in A. D) Simulation of a simultaneous dosing strategy
involving 300 mg QD alpelisib and 240 mg QD neratinib for 30 days and its effect on the total number of type O cells using
the different response surfaces for type O cell birth rates showed in C.



3.3 Results 121

3.3.2 Case study 2: Erlotinib

In this second case study, we focused on an evolutionary cancer model from [8, 15] used to identify

novel treatment administration strategies for non-small cell lung cancer (NSCLC).

NSCLCs that harbor mutations within the epidermal growth factor receptor (EGFR) gene are sensitive
to the tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib [44, 50]. Unfortunately, all patients
treated with these drugs acquire resistance, most commonly as a result of a secondary mutation
within EGFR (T790M mutation). In addition, approximately one third of the patients develop CNS
metastases after initial response to EGFR TKIs [48, 26, 29].

In this case study we extended the original two-type branching process from the previous publications
to account for CNS metastases and to show the flexibility of ACESO to handle different variants of
clonal evolution. As it has been suggested in previous works, the metastatized cells retain EGFR TKI
sensitivity if sufficient drug concentrations can be achieved in brain parenchyma for brain metastases
or in cerebrospinal fluid (CSF) for leptomeningeal metastases [26, 29]. Therefore in this model, three
type of cells were considered (see Figure 3.7 for a schematic representation): primary tumor drug
sensitive cells, primary tumor drug resistant cells and drug sensitive metastatized cells (drug sensitive
cells that has disseminated to a new site and that have the same proliferation and death rates as the

original cells).

Estimation of the birth and death rates of drug sensitive and resistant cells

Because both drugs were developed to target wild-type EGFR, we hypothesized that current dosing
schedules were not optimized for mutant EGFR or to prevent resistance. To investigate this hypothesis,
we used the data from previously developed isogenic erlotinib-sensitive and erlotinib-resistant pair of
PC-9 cell lines that mimic the behavior of human tumors [8]. In order to estimate net (birth minus
death) growth rates of erlotinib-sensitive and erlotinib-resistant cells, the total number of viable cells
in culture was counted at 48, 60, and 72 hours in the presence and absence of the drug (see Figure 3.8
for the raw values). The subsequent steps to calculate the net growth rate parameter from the data
assuming an exponential growth of the cells has been already explained in the previous case study. For
this exercise, the data corresponding to time 0 was not used to calculate the net growth rate parameter.
Death rates were estimated using equation 3.6 and the results of Annexin V/PI FACS assay where
the fraction of death cells was determined at 48, 60, and 72 hours and for different concentrations
of erlotinib (Figure 3.8 bottom). For the resulting birth and death rates and more details about the
experimental conditions, see the work from Chmielecki et al. [8].

We fitted the concentration-response curves for the birth and death rates of each cell type with ACESO

(data not shown). The selected model for erlotinib-sensitive cells was a five parameter logistic function
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Fig. 3.7 Schematic representation of the stochastic model proposed in case study 2, where erlotinib-sensitive cell (green),
proliferates at rate by (), dies at rate do(¢) and can accumulate mutations at rate u per cell division to give birth to the
erlotinib-resistant cell type (yellow), which proliferates at rate b (¢) and dies at rate d; (¢). Erlotinib-sensitive cell is also
able to migrate to other sites (to CNS in this example) and continue growing at the same rates as the original cell type.

(see equation 3.8) with a cell intrinsic birth rate of 0.04 h~1, a Byae of 0.003 ™', a ECsg value of
0.76 uM , a Hill coefficient of 1.5 and an asymmetry factor of 8.26. In contrast to previous case
studies, a model was also fitted for the small influence of erlotinib in the growth inhibition curve of
drug- resistant cells instead of completely neglecting the erlotinib influence on the resistant variant.
Although it was not the best fitted model (the model with lower AIC), a linear equation with an
intercept of 0.034 4~! and a slope parameter of -0.0005 (uM - h~') was used to model the birth rates
of the resistant PC-9 cell line as in the original article. The death rates obtained from the Annexin
V/PI FACS counts for both cell types were almost identical for the different drug concentrations used
in the experiments, and hence we defined a constant death rate of 0.12 day~! and 0.06 day~! for the
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drug sensitive and resistant cell populations respectively.
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Fig. 3.8 (Top)Total number of viable cells (drug sensitive and resistant) over time and for different concentrations of
erlotinib. Points represent the raw observations and solid lines indicate the smooth line obtained for the three replicates
for each erlotinib concentration (Bottom). Fraction of death cells (%) over time and for different erlotinib concentrations.
Points represent raw values, bars indicate the median value of the three replicates for each drug concentration tested and
error bars indicate the range of the raw values.

Pharmacokinetic model

The erlotinib plasma drug concentration vs time profiles were generated using the model and the
corresponding model parameters obtained from a pharmacokinetic analysis performed with data from
1047 patients with solid tumors [43], instead of using simpler equations for the PK obtained from

scarce data points from the literature as in the publication from [15].

Simulations represented in Figure 3.9A were performed considering the administration of a 1600 mg
dose of erlotinib once a week over one month of treatment and showed the differences in exposure

obtained when using each of the models. The estimated drug clearance from Foo et al. [15] is faster
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than the parameter reported in the population model from Lu and coauthors [43], which causes the
cells to resume proliferation as there are no drug concentrations to inhibit cell growth during treatment
breaks. Indeed, these differences had a huge impact on the risk of developing resistance as can be
seen in Figure 3.9B. This example highlights the importance of properly characterizing the PK of the

drugs being analyzed as they can have a high influence in selecting optimum dosing strategies.

On the other hand, previous studies had demonstrated that the concentration of erlotinib measured in
cerebrospinal fluid (CSF) during standard daily dosing of 150 mg is too low (5% of that in plasma
according to Togashi et al. [53]) to stop EGFR-mutant NSCLC cell proliferation, supporting the
hypothesis of poor erlotinib delivery into the CNS rather than the development of acquired drug
resistance and converting CNS a common site of disease progression. Thus we assumed a linear
pharmacokinetic process (dose independent) with a partition coefficient of 0.05 to simulate erlotinib

concentrations in the metastatic site.
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Fig. 3.9 Effect of two different pharmacokinetic models for erlotinib on the probability of developing resistance. The
pharmacokinetic models described in 1) Lu et al. 2006 [43] and 2) Foo et al. 2012 [15] were coded in ACESO and a dosing
schedule of 1600mg once a week was simulated to explore the effects of the resulting erlotinib concentrations (A) on the
risk of developing resistance for a period of 20 days (B).

Simulation of the treatment effects

The current analysis explores whether a higher dose of erlotinib provides an increased concentration in
CNS that may prove to be more efficient in metastatic CNS cancers while preventing the development
of resistance at the primary site. Based on the above considerations, the standard oral daily dosing
schedule of 150 mg was compared to a high-dose pulse of 1600 mg once a week and four different
combinations of low-dose continuous and high-dose pulsed strategies (see Figure 10 to know the
particular dosing regimens simulated) assuming one month of treatment. Additional simulations
increasing the daily dosing for erlotinib were not tried because daily doses above 200 mg induce
unacceptable toxicity [46]. In contrast, weekly high-dose pulses up to 2000 mg were tolerated by
NSCLC patients despite of persistent nausea reported in patients receiving higher doses than 1200 mg

[9].
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Simulations were performed in the case of (i) absence of pre-existing tumor cells at the metastatic
site at the time of tumor diagnosis, and (ii) CNS established metastases at the moment of the primary
tumor diagnosis, assuming no pre-existing resistance in both cases. A mutation rate of 1078 per

erlotinib-sensitive cell division was defined and a dissemination rate to CSF of 10~7.

The resulting number of the different cancer cell populations is shown in Figure 3.10. Variations
in the number of sensitive cells in the primary tumor site from one schedule to the next was min-
imal as well as the probability of developing resistance over time (data not shown). However, for
erlotinib-resistance cells and especially for metastatized erlotinib-sensitive cells using high-dose

pulses considerably improved the results.

ACESO also allowed the estimation of the probability of dissemination to CNS (as the equation for
the probability of developing resistance can be customized for other conditions), which was also very
similar for all the dosing schedules simulated with a value of approximately 1.38% for a treatment
period of 25 days. Clearly, the task of finding the optimal dosing regimen could have been further

complicated by allowing acquired resistance to arise in the metastatized cell population defined in our
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Fig. 3.10 Effect of different dosing regimens in the number of cancer cells at 30 days. Erlotinib dosing schedules used
in the simulations: 1) standard daily dosing of 150mg, 2) high-dose pulse of 1600mg once a week, 3) high-dose pulse
of weekly 1600mg plus 50mg/day the rest of the week, 4) high-dose pulse of weekly 1800mg plus 50mg/day the rest of
the week, 5) high-dose pulse of 1000mg day 1 and 2 followed by 100mg/day the rest of the week and 6) high-dose pulse
of 1200mg day 1 and 2 followed by 50mg/day the rest of the week. Type O cells refer to primary tumor drug sensitive
cells, type 1 cells to primary tumor drug resistant cells and type 2 cells to drug sensitive metastatized cells. For the case of
pre-existing metastasis before treatment initiation, an initial number of 50 cells were assumed. The initial number of type 0
cells was set to 10° and we defined a erlotinib penetration to CNS of 5%.
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computational model.

We conclude that a combined low-dose continuous and high-dose pulsed erlotinib schedule was the
most successful dosing strategy at preventing progression in patients with CNS metastases but did not
show significantly delayed emergence of resistance due to the T790M EGFR mutation (although once
resistant cells arise, these schedules also demonstrated to be more effective killing the resistant cell

population).
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3.4 Discussion

In this work, we have built a multi-scale computational framework in R called ACESO (A Cancer
Evolution Simulation Optimizer) which incorporates a continuous time multitype branching process
model with concentration-dependent birth, death and mutation rates to investigate the evolution of
resistant clones to anti-cancer therapies. The emergence of drug resistance represents a significant
obstacle to the successful control of tumors since it contributes to drug failure and poor prognosis.
The use of mathematical models to search for optimized treatment schedules that delay the appearance
of this resistance in cancer cells is part of a growing effort to improve clinical trial design for cancer
patients. Here we provide an open-source tool to contribute to this search by exploring the dynamic
evolution of heterogeneous tumor cell populations while taking pharmacokinetic and drug interaction
effects into account.

Literature is plenty of examples showing different models to describe drug pharmacokinetics, tumor
progression and drug effects. There are also tools that allow developing and fitting computational mod-
els to cancer data from different sources and nature (i.e., biomarkers, tumor volume, etc.). However,
such ambitious enterprise usually requires the use of different platforms (for parameter estimation,
model simulation or numerical and graphical diagnostics), delaying the application of integrative
quantitative analysis of cancer data. The objective of the current work was to integrate in a single com-
putational framework the tools required to characterize all the process mentioned above, becoming,
to the best of our knowledge, the first R package allowing the merge of deterministic and stochastic
approaches, and paying special attention to the incorporation of pharmacokinetic processes and their
influence in the growth kinetics of branching process models with the goal of finding optimized dosing

strategies.

In order to simulate a wide range of PK models and dosing schedules, ACESO incorporates the
mrgsolve package and provides the codes of the most commonly used pharmacokinetic models to
ease the degree of competency needed to perform simulations based on ordinary differential equation
systems. These PK models can then be further extended to increase their predictive value, for instance,
by including the effect of patient-specific covariates. As an example, the PK model for erlotinib
from [43] included the smoking status as a covariate in the parameter for the drug clearance and
therefore additional simulations could have been easily performed to investigate the differences in
the emergence of resistance found between smokers and non-smokers. These variables and complex

dosing schedules are now easily simulated in ACESO, which provide an added value to the framework.

The application of our method to individual cancer types requires the availability of data on cell growth
and death during different clinically tolerated concentrations of the drugs in order to parameterize
the proliferation of sensitive and resistant cancer cell populations. ACESO uses of in vitro growth

kinetics for the sensitive and resistant cancer cell populations, because of the difficulty of obtaining
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similar concentration-response curves from in vivo settings. This fact complicates the predictions of
realistic time scales for the emergence of resistance because growth kinetics in vitro occurs in a time
scale orders of magnitude faster than in vivo. The comparisons between dosing schedules will always
be valid as long as the relative differences in growth rates are constant between in vivo and in vitro
situations or an in vitro-in vivo correlation model is included in the framework. Nevertheless, our
approach enables the incorporation of a detailed set of measurements of in vitro assays for a wide
range of drug concentrations, which in turn allows the model to predict the resistance dynamics under

a variety of treatment protocols.

In this work we analyzed the freely available data from HMS LINCS database. The results of this
analysis showed that when the drugs have fast elimination rates weekly high-dose pulses won’t
enhance the killing of cancer cells. Besides that, when the inhibitory effect caused by low and high
drug concentrations is similar, as in the case of neratinib, the differences found between the standard
daily dosing schedule and the weekly high dose pulse combined with a continuous low dose dosing
regimen can be very small. However, if at least one of the drugs has a slow clearance and is able to
accumulate over time, variations in the dosing regimens could induce significant differences in the
total number of cancer cells at the end of the treatment period or in the probability of developing
resistance [7]. In addition, the strong synergism found in alpelisib and neratinib showed that the drugs
work best when dosed simultaneously and that the combination of these two drugs will produce a
greater decrease in the number of drug-sensitive cells than the combination of alpelisib with trametinib.
We must note however that the results of the first case study should be regarded carefully due to the
lack of data regarding apoptosis assays and drug resistant cell lines. Still, the important aspect of
this example is that it highlights the ability of ACESO to integrate all these models and parameters
and generate plots (e.g. Figure 3.5) that allow a quick diagnosis and comparison of different dosing

schedules.

In the second case study on the other hand, we showed that the stochastic process included in ACESO
was previously applied to a population of EGFR-mutant cancer cells with the goal of rationally identi-
fying optimum treatment administration schedules for NSCLC patients [8, 15]. In those publications,
the growth kinetics for drug-sensitive and drug-resistant EGFR-mutant cells during therapy was
determined and PK processes were incorporated into the model. This modeling framework enabled to
identify a low-dose/high-dose pulse erlotinib administration schedule as the predicted best intervention
strategy for stage IV NSCLC. This strategy was then tested in a prospective clinical trial [56] at the
Memorial Sloan-Kettering Cancer Center (http://clinicaltrials.gov/show/NCT01967095), establishing
the maximally tolerated dose as 1200mg for two days a week and 50mg for the remainder of the
week. Although the study was not powered to demonstrate a significant delay of the emergence of
T790M-driven resistance due to larger than expected variability in patient PK, a significant reduction
in the rate of progression due to CNS disease was observed (0% versus up to 33% given historical

control). In this work, we used the information of those publications and tried to reproduce their results


http://clinicaltrials.gov/show/NCT01967095

3.4 Discussion 129

by expanding the model developed in [15] to include a population of drug-sensitive metastatizable
cells that are able to migrate to the CNS. We also replaced their mathematical model for erlotinib
by the population PK model developed in [43]. The resulting pulse dosing allowed for increased
CNS penetration and the continued daily dosing controlled the progression of the disease. Due to
the satisfactory results of the Memorial Sloan-Kettering Cancer Center clinical trial, this regimen is
now being studied in a cohort of EGFR-mutant lung cancer patients with untreated CNS metastases

demonstrating the tremendous anticipated translational potential of this approach.

ACESO is limited to two interacting drugs for now. Calculating the effect of each treatment on
the birth or death rate of the different cell populations is a very complex task when more than two
drugs are taken into account because of the difficulty in discerning the effect of each drug plus the
synergistic/antagonistic interaction between them. In addition, the fact of using nonparametric models
considerably increased the computation time needed for the simulations, although this problem could

have been avoided with the incorporation of user-defined drug interaction models.

We are aware that the model integrated in ACESO is a simplified representation of the tumorigenic
process as it only assumes exponential cell growth and no competing interactions between the cellular
populations as this kind of interactions are hardly parameterized using in vitro data. In addition,
spatial effects are not taken into account and therefore this platform won’t be able to accurately
characterize tumor evolution driven by microenvironmental determinants for now, like in the case of
glioblastoma and its radiation response which greatly depends on the localization of the cell within
the tumor [30]. Despite these facts, the flexibility of ACESO opens the possibility of further extending
the underlying stochastic model to include more complicated processes that may play an important

role in the development of resistance mechanisms.

In summary, the mathematical framework presented in this work is a general description of the
evolutionary processes driving tumorigenesis, the emergence of resistance, and treatment response for
oncogene-driven cancers which can be used to identify novel administration schedules of single-agent
or combination treatment strategies that maximize efficacy and minimize the chance of resistance.
Using ACESO, the different strategies can also be tested for robustness due to variability in pharma-
cokinetic parameters among patients, variable growth and death rates of sensitive and resistant cells
as well as different compositions of the tumor at the start of therapy. We now propose to perform
advanced validation of our methodology for other cancer types and for therapeutic agents at the

forefront of clinical development.
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Fig. S3.1 Loewe additivity between drugs A and B. Loewe additive model response at any combined concentration is

calculated from the sigmoidal fits of the single-agent response curve, which in this figure corresponds to a four parameter
logistic equation. The model parameters used to simulate each response surface are indicated below each graph.
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Fig. S3.2 Estimation of the pharmacokinetic parameters driving the time course of neratinib concentration. The solid line
represents the prediction of the model and the solid points represent the observations. CL indicates total drug clearance, V
is the apparent volume of distribution, KA is the first-order absorption rate constant, ALAG is the lag time associated with
the absorption of the drug and AIC is the Akaike Information Criterion.
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Equations for the expected number of cells assuming cross-resistance to drugs

To model cross resistance to drugs, each of the resistant cell types are allowed to gain additional
mutations and become resistant to more than one compound. A resistant type i cell can thus further
mutate to form a type ia cell with probability u;, (u3 in Figure 1A). The first order birth and death
rates of the ia cell are given by b;, and d;,. Thus, the time evolution equations of the expected number

of cells in each clone are given by:

(ni(1)y = No- o Jolbo(s)-(1=TL i) —do(s)lds fori=0
: 11— Jo [bi(2) (1 =Ly thiae, ) —di(T)]dT ). N - pJolbo(7)-(1=X ui,)—do(7)ld7
_ Ni+ [ole /o [ u; -bo(s) - Np-elo |ds Fori>0
e— .fO [b, (S)(I_Zcr u,-,,(.r)—d,- (S)]ds
) 11— Jobia(T)=dia(D)]dT .. B (o) a.
nia(0) = Nig+ [yle /o Uiq - bi(s) -n;(s)]ds fori>0

e~ fé [bia(s)—dia(s)]ds

Non-parametric models to estimate the effect of drug combination data

To estimate the regression surface of the in-vitro drug combination data, nonparametric fitting methods
like Generalized Additive Models (GAMs) [5] or locally weighted scatterplot smoothing (loess) re-
gression [1] were used. GAMs are a nonparametric extension of generalized linear models (GLMs) [6].
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Here, a general nonparametric function (e.g. cubic splines) that relates the predicted drug effect values
to the drug concentrations is defined [8]. Loess is a particular implementation of local polynomial
smoothing which fits simple models to localized subsets of the data. As nonparametric methods,
GAMs and loess regression are data-driven rather than model-driven; that is, they allow the data to
determine the shape of the response curves. Thus, these models are used to describe the relation
between drug concentrations and the growth and death rates of cancer cells without assuming the data
must fit some distribution shape. Although these methods are very flexible, they are not biologically
interpretable. Even so, they are a very powerful exploratory tool which often shows relatively complex
relations between a dependent variable and more than one independent variable without being limited

by the shapes available in a parametric model.

This approach allowed us to incorporate drug combination data into our evolutionary framework and

explore the effect of multidrug dosing schedules in the evolution of cancer cells.

Assessing drug synergy/antagonism

In order to quantify the degree of synergy/antagonism between two compounds, the typical approach
is to compare their measured combination effect to a null reference model of no interaction, i.e. the
expected response assuming no interaction between the two compounds. If the combination response
is greater than what is expected by the reference model, the combination is classified as synergistic,

while antagonism is defined when the combination produces less than the expected effect.

There are several well-known conventional approaches that define different null models to assess drug
synergy/antagonism. The Loewe Additivity model [42] is one of the most commonly used models
to quantify a zero-interactive state for the combination of two drugs. This model is based on the
assumption that a drug cannot interact with itself and defines synergy/antagonism as a combined
inhibitory effect that is greater/lower than the sum of the individual effects of the drugs. The general

equation of this model is:

da db
—+—=1 3.11
DA * DB G-11)
where da and db are the dose (or concentrations) of drug A and B in the combination that produce an
effect Eqp and DA and DB represent the single doses of drug A and B necessary to reach the same

effect E4p. Isobole analysis [7, 2] and the Greco model [4] are methods derived from this equation.

Loewe additive model response at any combined concentration is calculated from the sigmoidal fits
of the single-agent response curves. In order to obtain the concentrations of each drug given as a

single agent that elicits an effect E4p, an inverse hill equation (h~!) with parameters obtained from
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the individual dose-response curves using a common baseline value (effect when there is no drug

concentration) is employed:

d db
= (3.12)
hy (Eap)  hg (Eap)
Epax, — E
Y (Eap) = Cy = EC50A($_EOO —1)/% (and equivalent forhy' (Exg)) (3.13)

Classical Loewe additivity model assumes that the drugs in the combination have equal individual
baseline and maximum effects. However, this method can be extended to account for different drug
maximal responses [9]. We refer to this extended method as Generalized Loewe additivity model. In
the Supplementary Figure S2 an isobole analysis done for the combined action of two hypothetical

drugs with differing single-agent model parameters is shown.

Highest Single Agent (HSA), also known as Gaddum’s non-interaction model [3], is another popular
model which defines a “independent action” of the drugs when the predicted effect of a combination
is that of the one most effective drug alone. The HSA zero interaction model predicts the combined
effect EAB for two single agents with effects EA and EB as:

Eap = max(Ex,Ep) (or min(Ea, Eg) if the monotherapy curves are decreasing) (3.14)

where E4 and Ep are measured on the monotherapy dose-response curve of drug A and B respectively.
According to this model, any combined effect stronger than the effect of a single drug is called

‘synergism’ and a weaker effect ‘antagonism’.
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Abstract

Advanced melanoma remains a disease with poor prognosis. Several serologic markers have been
investigated to help monitoring and prognostication, but to date only lactate dehydrogenase (LDH)
has been validated as a standard prognostic factor biomarker in malignant melanoma by the American

Joint Committee on Cancer.

In this work, we have constructed a semi-mechanistic model to explore the relationship between the
time course of several circulating biomarkers and overall or progression free survival in advanced
melanoma patients treated with adjuvant high-dose interferon-a2b. Additionally, due to the adverse
interferon tolerability, a semi-mechanistic model describing the side effects of the treatment in the
absolute neutrophil counts was built in order to simultaneously analyze the benefits and toxic effects

of this treatment.

The relative change from baseline of LDH was the most significant predictor of the overall survival
of the patients. Unfortunately, there was no significant difference in the proportion of patients with
elevated serum biomarkers between the patients who recurred and those who remained free of disease.

Thus, no link was established between biomarker levels and progression-free survival.

We believe that the modeling framework presented in this work of circulating biomarkers and adverse

effects could constitute an additional strategy for disease monitoring in advance melanoma patients.
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4.1 Introduction

According to the American Cancer Society, the incidence rate of melanoma has been rising for the
last 30 years. Although the disease accounts for only about 1% of skin cancers, it is responsible for

the death of the vast majority of these patients making it the most aggressive neoplasm of the skin [8].

Since 1995, immunotherapy based on interferon-¢ containing regimens has been used as an adjuvant
therapy to surgery for patients diagnosed of American Joint Committee on Cancer (AJCC) stage 1IB,
IIC or III melanoma after the Eastern Cooperative Oncology Group (ECOG) 1684 trial showed that a
high-dose regimen of Interferon ¢-2b (IFN-2b) led to a significant prolongation of progression-free
survival and overall survival (PFS and OS, respectively) compared to the control group [13]. Although
new therapeutic strategies are emerging for advanced melanoma in recent years thanks to the FDA
approval of several new immunotherapy and targeted drugs, treatment with IFN-o2b still constitutes
one of the alternatives in the therapeutic arsenal in many hospitals and health care centers. However,
due to the toxicity and the evidence that only a subgroup of patients can benefit from this treatment,

acceptance of IFN-2b among physicians is limited.

In order to adequately treat melanoma patients, it is important to study those factors related to the
prognosis and outcome of the disease. As reflected in recent studies, the most important prognostic
factors that could predict the outcome of melanoma patients include the vertical tumor thickness
known as Breslow’s index, the presence of ulceration, the mitotic rate, the location of distant metas-
tases, as well as the levels of serum lactate dehydrogenase (LDH) [8]. Other serum biomarker levels
that have been proposed as possible prognostic factors are the melanoma-inhibiting activity (MIA)
and the calcium binding protein S100B [17], but no consensus exists on their prognostic capability.

Proper assessment of the predictive capacity of biomarkers longitudinal data should be done in
the context of mechanistic computational models linking them with clinical outcome. Biomarker
trajectories are usually not linear and show great variability across individuals. Consequently, a
non-linear mixed effects (NLME) modeling approach provides a valuable option to handle and model
this type of dynamic behavior. In NLME models, individual profiles are characterized by a common
structural model with fixed population parameters and a statistical model with random effects to allow
the parameters to vary within the patient population. In this work, longitudinal biomarker data has
been described based on semi-mechanistic pharmacokinetic-pharmacodynamic (PKPD) type models
and linked to the PFS and OS. Recent efforts have shown that this approach is feasible to identify
robust markers that allow the selection of patients that could obtain a therapeutic benefit from the

different anticancer treatments and to improve the prediction of their survival [4, 20, 6].

Therefore, in this study we aim to establish a quantitative treatment-biomarker-survival modeling

framework using nonlinear mixed effects PKPD modeling to link the survival of advanced melanoma
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patients with LDH, MIA and/or S100B protein kinetics following IFN-¢2b administration. In addition
and taking into account the toxicity associated to IFN-o2b administration, neutropenic effects were
also described mechanistically [7] in the current evaluation providing a highly valuable approach in

which to evaluate possible predictors of clinical response while minimizing adverse effects.
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4.2 Material and Methods

4.2.1 Patient characteristics and data collection

In this retrospective study, data related to different biomarker levels and patient survival were ob-
tained from the medical records of 48 patients diagnosed with advanced melanoma and treated in the
University Clinic of Navarra (Pamplona, Spain).

Adult patients with histologically documented AJCC stage 1IB, IIC, or III primary cutaneous
melanoma were included in the dataset. All the patients were treated with adjuvant high-dose
IFN-02b between 2004 and 2013. The high-dose regimen followed the Kirkwood scheme [13]:
intravenous administration of 20 MU/m?2/day at the induction phase (5 days/week during 4 weeks)
followed by subcutaneous injections of 10 MU/m2/day during the maintenance phase (3 days/week
during 48 weeks). Blood samples for drug quantification and tumor assessment measurements during

treatment were not available.

Table 4.1 summarizes physiopathological and demographic characteristics of the patients included in

the study and Table 4.2 summarizes the main adverse events reported during IFN-2b therapy.

Blood samples for measurement of LDH, MIA and protein S100B were collected from each patient
before, meanwhile and after therapy. For MIA and S100B levels, observations corresponding to 9 and
10 patients of the database were not reported, respectively. A total of 954/383/405 LDH/MIA/S100B
observations were included in the analysis, where each patient contributed a mean of 19/10/10 samples
(range 1-57/1-31/1-33).

4.2.2 Data analysis

A population joint sequential modeling approach was used for the development of the treatment-
biomarker-survival framework [5]. First, the relationship between treatment and biomarkers dynamics
was characterized, and then their predicted time profiles were used to characterize the hazard rates and
subsequently PFS and OS. For the continuous (biomarker levels, and absolute neutrophils counts) and
non-continuous (PFS, OS) response data the first-order conditional estimation method with interaction
and the Laplacian estimation method were used, respectively, for parameter estimation in NONMEM
7.3 (Icon Development Solutions, Ellicott City, MD).

The continuous data of the different biomarkers and the absolute neutrophil counts (ANC) were
logarithmically transformed for the analysis. The developed models share a common architecture
constituted by a structural model and a statistical component where (i) between-subject variability
(BSV) was modeled exponentially and (ii) residual variability was described using a proportional or
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Table 4.1 Demographic characteristics and diagnostic values of the patients*

Demographic Characteristics Overall population (N = 48)

Gender (M/F) 25723

Age at melanoma diagnosis (years) 50 [21 - 74]
Body weight at first IFN dose (kg) 73 [45 - 108]
Height (cm) 168.5 [148 — 188]
BSA (m2) 1.825[1.37-2.31]

Diagnosis values

Location of primary lesion

Face 3

Trunk 15

Extremity (Upper/lower) 4/19

Other 4

NR 3
Type of melanoma

Amelanotic melanoma 1

Superficial spreading melanoma 16

Acral lentiginous melanoma 2

Maligna melanoma 14

Nodular melanoma 15
Laterality (Right/Left/NR) 11/14/23
Local recurrence (Yes/No/NR) 05/02/41
Diagnostic - Pathological stage AJCC 2009b

1B 6

ITA/IIB 1/6

HI/IITA/IIB/IIC 2/8/9/4

NR 12
First dose - Pathological stage AJCC 2009b

1B 4

II/HIA/IB/IC 10/8/14/7

NR 5
SLNB

Yes (Positive cases) 32 (21)

No 16
History of complete lymphadenectomy

Yes (Positive cases) 44 (41)

No 3

NR 1
Breslow thickness (mm)

<1 5

>1to<?2 10

>2to<4 13

>4 12
Clark level

II 2

111 12

v 22

\% 2

NR 10
Ulceration (Yes/No/NR) 8/22/18
Extracapsular extension (Yes/No/NR) 3/35/10
Satellite lesions (Yes/No/NR) 3/24/21
BRAF Mutation (Yes/No/NR) 08/08/32
ECOG performance status (before therapy)

0 14

1 21

NR 13

M: male; F: female; BSA, Body Surface area; AJCC, American Joint Committee on Cancer;
SLNB, Sentinel Lymph Node Biopsy; ECOG, Eastern Cooperative Oncology Group;

NR: Not reported.

*Continuous variables are expressed as median [range] whereas categorical variables are

expressed as number of cases.
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Table 4.2 Main adverse events reported during IFN therapy.

Main adverse events* Induction phase Maintenance phase
Neutropenia 13 6
Thrombocytopenia 2 1
Increased transaminases 12 3
Hepatotoxicity 8 1
Fatigue 9 8
Osteoarticular pain 1 2
Influenza-like symptoms 2 3
Fever 3 1
Headache 4 -
Anorexia 1 5
Depression 3 4
Nausea 2 2

*QOther adverse events reported were: dermal events (cellulitis, dermatitis,
skin dryness and alopecia), neurological events (anxiety, somnolence,
insomnia, dizziness, recurrent syncope), weight loss and hyperthyroidism.

an additive error model on the log-transformed data corresponding to the biomarker and ANC levels

respectively.

Model selection

Model selection during model building included comparison of the objective function value which is
approximately equal to minus twice the log(likelihood) (-2LL) and inspection of graphical diagnostics.
For application of the -2LL ratio test in the case of comparing nested models, a significance level of
P<0.01 was used, corresponding to a decrease in -2LL of at least 6.63 when one extra parameter was

added. Non-nested models were compared using the Akaike information criteria (AIC) [1].

Model evaluation

Evaluation was performed through simulation-based diagnostics by performing visual predictive
checks (VPC) [3]. VPCs evaluate the model’s ability to describe the median tendency and variability
in the observed data. To this end, the original dataset was simulated 1000 times by sampling new
sets of individual parameters from the estimated population parameter distributions. Then, 95%
prediction intervals were derived from the simulation results, and compared with the 5th, 50th and
95th percentiles of the observed data. The results of the VPCs can also be normalized by the typical
population prediction, creating the so-called prediction-corrected VPCs.

Precision of parameter estimates was obtained from the analysis of 500 bootstrap datasets. Briefly,
in a bootstrap analysis, the original dataset is replaced to produce another dataset of the same size

but with a different combination of individuals. This re-sampled database is then used to re-estimate



4.2 Material and Methods 152

the population and variability parameters of the model. Lastly, median values and 95% confidence

intervals of the re-estimated parameter distribution are calculated.

Software and tools

Preprocessing of the data, additional simulation exercises and graphical and other statistical analyses,
including predictive checks and bootstrap analyses, were performed with Perl-speaks-NONMEM
(PsN) software [15], Simulx (http://simulx.webpopix.org/), R version 3.4.3 (http://www.R-project.
org/) and Rstudio version 1.1.456 (http://www.rtudio.com/).

Model for biomarker response

As above mentioned, NLME models were used to characterize the longitudinal LDH, MIA and S100B

protein concentrations over time.

As no PK data of interferon therapy were available from the patients, a K-PD modeling approach
[10] was used to study the link between the interferon dosing rate and the biomarker dynamics. A
preliminary exploratory analysis showed that the decrease in biomarker levels occurred with some
delay after treatment administration (see Figure 4.2A) that was handled incorporating a series of
transit compartments. Transit of the pharmacodynamic signal elicited by interferon through the
chain of compartments was characterized by the first order rate constant k;, defined as (n+1)/MTT,

where 7 is the number of transit compartments and M7 T the mean transit time between compartments.

In the absence of treatment, an exponential tumor growth governed by a first-order proliferation rate

constant (k,,,;) was defined in the following form:

dTA

dt = kpml -TA 4.1)
where TA (Tumor Activity) represents the unobserved tumor progression dynamics. IFN-a2b therapy
induced tumor shrinkage, and hence, the final equation for TA was expressed as a balance between

tumor growth and drug-induced tumor death:

dTA
7 = kpr()l “TA— fdrug -TA (42)
Different models for drug effects (f;,4¢) were explored including linear, E,,,, and sigmoidal models.

The value of TA at diagnosis (TAg) was arbitrarily set to 1.

Lastly a turn-over model assuming that the circulating levels of biomarkers are a function of (i) a
synthesis process governed by TA and the first-order rate constant k;,, and (ii) an elimination process
controlled by the first-order rate constant k,,; as shown in the expression below:


http://simulx.webpopix.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.rtudio.com/
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dBiomarker ; )
T" = k‘nj -TA — komj -Biomarker | 4.3)
where j represents each of the biomarkers (LDH, MIA and S100B). The initial condition for biomarker

values was estimated as due to tumor progression steady-state condition did not hold.

Each biomarker’s longitudinal data were fitted separately using the model equations described above.
Afterwards, the kinetics of the three biomarkers was combined in the same analysis to evaluate their
contribution in the clinical outcome of the patients.

Models for progression-free survival and overall survival

Kaplan-Meier curves were generated to perform a first exploratory analysis of the overall and
progression-free survival stratified based on well-established clinical variables whose differences

across patients were tested for significance by the log-rank test (Figure 4.1).

PFS and OS were modeled as time to event response data using parametric survival analyses. Time
frame was considered between diagnosis and (i) time at which the patient showed disease progression
or died and (ii) last recorded time (right censored). Interval censored for the case of PFS response was

not considered in this evaluation.

Different distributions (exponential, Weibull and Gompertz) were used to describe the hazard rate,
hz(t), which is defined as the instantaneous risk of dying/recurring at each time provided that the
patient lives/is free of disease to that time, with the sole restriction of being no-negative. In contrast to
the hazard function, the survival function indicates the probability that the event of interest has not yet
occurred by time t (the patient is still alive or free of disease) and therefore if the hazard function is

known, the survival probability is automatically determined as follows:

S(t) = exp(—/ot hz(1)) 4.4

where — [§ hz(t) represents the cumulative hazard.

Time-varying covariates, as the predicted time course of the biomarkers, were included in the model
as modulators of /iz(r). Parameters describing Az(¢) has no associated BSV as each patient contributed

with a single measurement.

The effect of the predicted dynamics for the three biomarkers on hz(t) were tested alone or in
combination to explore whether their absolute or relative change from baseline over time were

predictive of OS/PFS. For the estimation of the parameters linking the survival and the biomarker
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model, the population parameters from the previously selected biomarker model were fixed and the
corresponding observed levels were retained together with the PFS and OS data (PPP&D method [21]).

Model for neutropenic adverse effects

A semi-mechanistic model for myelosupression [7] was used to characterize the dynamics of the
absolute neutrophil circulating counts under IFN-o2b therapy. Briefly, in this model neutrophil
development is determined by different physiological processes: (i) a self-renew first-order process of
the precursor cells (i1) a maturation chain comprising three transit compartments (iii) a homeostatic
regulation that modulates the proliferation of the precursor cells as a function of the change of ANC
relative to the value at baseline (ANCy), and finally (iv) a first-order elimination of ANC. As said
before, no interferon PK data were available, and therefore, a K-PD model [10] was used to link the

dosing rate to drug effects.

The model structure is defined by the following set of ordinary differential equations:

% = —K,-IFNa2b 4.5)
dZ};Ol = kpror - Prol - (1 — Epguc) - <Ij‘4]1\i/CC‘?) - krg - Prol (4.6)
% — kg - Prol — kg - Transit1 4.7)
% = krg - Transitl — krg - Transit2 (4.8)
% = krg - Transit2 — krg - Transit3 (4.9)
d%c = kg - Transit3 — keiye - ANC (4.10)

where K, represents the first-order elimination rate constant of interferon after administration, kpgroy,
is the first-order rate of proliferation on precursor cells (Prol), kg is the first order rate constant
governing the transit of immature neutrophils between transit compartments, k., is the first-order
rate constant of elimination of ANC and 7y is the parameter modulating the feedback mechanism. The
transit rate was defined as krg = (n+1)/MT Tync where MT Tync is the mean maturation time and n
is the number of transit compartments, which was three in this model. As no information was gathered
from the precursor and immature cells, it was assumed that, at baseline, their number of cells were
equal to ANCp, and therefore the parameter values for kpror, krr and k;» were defined to be equal.
Both a linear and a sigmoidal E,,,, function of the predicted levels of IFN-a2b were evaluated for

drug effects (Epgruc), which were assumed to act by reducing the proliferation rate of the neutrophils.
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In order to reduce the number of parameters to estimate and improve model stability, the parameters
reported in the original work [7] for MTT and 7y were used, as the authors demonstrated that the
estimates of the system related parameters showed consistency across different anti-cancer agents.
The final parameters to be estimated were reduced to ANCy, parameters measuring drug effects and

those quantifying random effects.

Covariate selection

Covariate model selection was performed using the Stepwise Covariate Model-building (SCM) tool in
PsN [14], which consists on a forward covariate inclusion followed by a backward deletion approach.
Specifically, this technique consist on creating a full model by combining the covariates identified as
significant (p<0.05) and once the full model is established, each potential covariate is individually

removed to see if the value of -2LL significantly increases (p<0.01).

Patient characteristics are listed in Table 4.1. For those covariates that were correlated between them,
as it was the case for weight, height and body surface area (BSA), only the most relevant covariate
with regard to usual dose adjustments in the clinic, in this case BSA, was included in the analysis.
Therefore, the following patient’s characteristics measured at baseline were explored for inclusion in
the model (the covariates were tested in all the model parameters): Breslow thickness, presence of
ulceration (yes vs. no), age, body surface area, type of melanoma (horizontal growth phase vs vertical
growth phase) and ECOG performance status. Other a priori important clinical covariates like the
presence of BRAF mutation or the mitotic rate were not studied as the number of missing data was
high. The categorical level of invasion known as the Clark index was neither included in the analysis

as almost every patient had reported a level of IV.

Covariates were tested for significance following the general model:

ctg

m )4
TVP = On-Hg(covm,covm’ref,Bm) -H(l—l— Z Op.car) “4.11)
1 1

cat=2
where the typical value of a parameter (TVP) was described as a function of m continuous (cov,,) and
p categorical covariates (cat) with a total number categories of ctg. 6, describes the n” typical param-
eter value for an individual with covariate values equal to the reference values: [(cov,, = cOVyref)
and cat = 1] where cov,, . refers to the median value across the studied population. g refers to the
different linear and non-linear functions explored for the relationship between the values of cov,,
and cov, r.f, and 6,, and 0), ., are parameters quantifying the magnitude of the covariate-parameter

relationship.
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4.3 Results

A total of 30 (62%) and 21 (43%) patients completed the induction and the maintenance phase,
respectively. In total, 17 patients (35%) had at least one dose reduction during the induction or
maintenance phase due to adverse events and 25 patients (52%) had dose delays for the same reason,

demonstrating the high toxicity of IFN-a2b therapy.

4.3.1 Exploratory analysis

The median overall survival of the patients in the dataset was 270 weeks. A first exploratory analysis of
the dataset showed that patients with high LDH, MIA and S100B levels have the poorest outcomes as
indicated by the Kaplan—Meier curves of OS shown in the top of Figure 4.1 and Supplementary Figure
S4.1. However, the Kaplan-Meier analysis and log-rank tests corresponding to the PFS response did
not show significant results (p>0.01) when stratifying by high and low biomarker values at the time of
disease progression (Figure 4.1 and Supplementary Figure S4.1 bottom). Other in principle relevant
clinical covariates like the Breslow thickness, presence of ulceration, tumor extension (distal, localized
or regional) or the value of the biomarkers before treatment initiation also showed no significant
differences in OS or PES (p>0.01) (Supplementary Figure S4.2 and S4.3). These findings suggest that
a link might exist between biomarker dynamics during and after IFN-o2b treatment and OS and not
for PFS.

OS Curve PFS Curve
Biomarker LDH<=275U/L LDH>275U/L Biomarker =+ LDH<=200U/L =+ LDH>200U/L
1.00 1.00
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Fig. 4.1 Evaluation of the overall survival (OS) and progression-free survival (PFS) of the patients with high and low
biomarker concentrations at the end of the study. MIA and S100 biomarker Kaplan Meier curves showed equivalent results
(see supplementary figures).
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The raw values for each biomarker are shown in Figure 4.2A, where the time course for one indi-
vidual data and its treatment period (induction phase followed by the maintenance phase) has been
highlighted. When looking at the whole range of observations, it is difficult to observe a general trend
in the data. However, when the biomarker profiles are observed individually, a response to the therapy
followed by a relapse after the treatment period can be detected. In this work, we intended to describe

this trend and its link to the OS and PFS data using semi-mechanistic computational models.

4.3.2 Biomarker dynamics

Figure 4.2B provides a schematic representation of the model which is described by the following set

of ordinary differential and algebraic equations:

% — k- IFNa2b (4.12)
‘%R = ky-IFNa2b—k,-TR (4.13)
A ks TA— farg TA (“.14)
farg = kk,-zz_max-TRiI;Rso 4.15)
% = kin; - TA — kou;, - Biomarker; (4.16)

Drug effects were described with an E,;,,, model were T Rs is the predicted pharmacodynamic signal
generated by the treatment in the transit compartment eliciting half of maximum effect (kg;j;_mqy). The

rest of parameter abbreviations have been defined in Material and Methods.

Parameter estimates and their corresponding BSV are summarized in Table 4.3 . For the sake of
parameter identifiability, the value of TRs5g was fixed in the model of LDH and MIA dynamics after
performing a sensitivity analysis study (data not shown). For S100B tumor marker the population
estimate and BSV of MTT were also fixed to the values obtained in the model for LDH concentrations.

None of the studied covariates had a significant effect on the model parameters.

The analysis of the Individual Weighted Residuals IWRES) vs. time or predicted biomarker is shown
in Supplementary Figure S4.4. Additionally, the three individual fits of a representative patient for
each biomarker in Figure 4.2 and the results of the VPCs represented in Figure 4.3A demonstrated

good agreement between observed and simulated data (only the VPC for LDH is shown).

With respect to parameter precision, none of the 95% confidence intervals for the model parameters

reported in Table 4.3 (computed from the bootstrap analysis) included the value of zero, indicating



4.3 Results

158

LDH concentration (U/L)

Treatment
Induction + Maintenance

3000

1000

100

0

100 200 300
Time (weeks)

400

MIA concentration (ng/mL)

.
L

-
o
o
S

S100B concentration (ng/m

200 300 400 500 0

Time (weeks)

0 100

ke

—

INFa2b

TR
farug = Kkin_max "TReg + TR

+
T = > Kingpy kout py
— —

+

o kinM’A m koutMIA
_— —_
+
=i kin5100 kouts1oo
— BN —

200 300
Time (weeks)

400

Treatment

Induction + Maintenance

(—A—\

=

£ s
- -

e

6 s 10
Time (weeks)

®

LDH (UrL)

IS

w

MIA (ng/ml)

o

100 200 300
Time (weeks)

&

$100 (ng/m)
[

&

[ 100 200 300
Time (weeks)

Fig. 4.2 A) Raw values (solid circles) of the different biomarker levels over time where the profile of one individual has
been highlighted in color. The treatment period (induction phase followed by the maintenance phase) is shadowed in blue.
B) Schematic representation of the K-PD model proposed for the IFN-a2b effect on LDH, MIA and S100 levels (left)
and three individual biomarker profiles (right) where solid circles represent biomarker observation values and solid lines
indicate the prediction of the model. Parameter abbreviations: kpml, first-order tumor proliferation rate; MTT, mean transit
time; Asp, amount of drug producing 50% of the maximum elimination; ki;j; mqy. first-order tumor elimination rate; k;;,
first-order biomarker synthesis rate constant; &, , first-order degradation rate constant.
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Fig. 4.3 Model evaluation: Visual Predictive Checks. A) Kaplan Meier plot of OS probability. The solid blue line represents
raw data while the blue shaded area cover the 95% prediction interval calculated from 1000 simulated studies. B) VPC
of the selected biomarker model. Median (solid line), 5 and 95" percentiles (dashed lines) of the observed data. 95%
confidence Intervals for median (shaded colored area), 5" and 95" percentiles (shaded grey areas) of the simulated data.

that the data supported the degree of complexity of the final model selected. In all the models, &,
and MTT showed a high BSV value and a wide range for the confidence interval of the BSV.

4.3.3 Survival model

Predicted biomarker dynamics over time were linked to the probability of survival as an argument of
the baseline hazard function, which was best described using an exponential model with constant A in
the case of OS and with a Gompertz function in the case of PFS (Supplementary Figure S4.5). Relative
change from baseline of LDH (ALDH rel) was the most significant predictor of OS (p<0.001), however
none of the biomarker dynamics significantly improved PFS predictions as previously suggested by
the Kaplan-Meier curves from Figure 4.1 and Supplementary Figure S4.1. Additionally, none of the
studied covariates (see Material and Methods for the information about the covariates tested in the
model) influenced survival according to the univariate analysis done in PsN using the SCM tool and

therefore none of them were included in the joint model afterwards.

The final survival model for has the following form:

hz(t) = A - eP-ALDHrel(r) (4.17)

where the term ePALPHTel(t)

describes the change in Az elicited by the relative change from baseline
of LDH for each individual i multiplied by the link parameter 3. The estimated values for a and 3
are summarized in Table 4.3 and the corresponding VPC for OS is shown in Figure 4.3B. We only

considered time up to 450 weeks after diagnosis to evaluate model performance through VPCs as for
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Table 4.3 Final model parameter estimates

Model for biomarker response
LDH

Typical estimate

BSV: CV%

MTT (weeks)
TRso(U - 10°)

LDH baseline (U/L)
kprot (weeks™!)
Kkiti_max(weeks™")
kour (weeks™1)
Residual error (%)

22.3 (12.49-37.318)
23.7 ()

225 (167.082-261.393)
0.0029 (0.00196-0.0053)
0.0077 (0.0056-0.012)
0.321 (0.189-0.822)
0.0521 (0.0376-0.0576)

59.8 (44.7-113.5)

31.3(21.45-51.28)
58 (51.75-224.27)
34 (31.3-128.45)

NA*

MIA

MTT (weeks)

TRso(U - 109)

MIA baseline (ng/mL)
kprot(weeks ™)
Kiitt_max(weeks™")

kour (weeks™")

33.1 (28.04-36.9)
252 ()

7.53 (5.57-7.85)
0.0028 (0.0022-0.0042)
0.0058 (0.003-0.0061)

0.369 (0.288-0.486)

63.8 (41.6-83)
45.3 (27-54.8)
75.6 (69.2-141)
34.6 (25.5-62.4)

Residual error (%) 0.248 (0.192-0.296) NA
S100B
MTT (weeks) 22.3 (-) 59.8 ()
TRso(U - 10°) 19.9 (16.42-23.64) -
S100B baseline (ng/mL) 0.0503 (0.038-0.0656) 42.4 (36.74-55.95)

kprol (weeks™!)
kkill_max (Weeks— ! )
kour (weeks™")

0.0023 (0.0017-0.0025)
0.0065 (0.005-0.0072))
1.99 (1.71-2.49)

56.2 (45.8-73.48)

Residual error (%) 0.348 (0.3-0.424) NA

OS model

A 0.00181 (0.0016-0.0026) -
BaLprirel 1.1 (0.59-1.9) -
Myelosuppresion model

MT Tync(weeks) 0.52 -
ANCy(10°/L) 3.41(3.134-3.737) 32.4 (26.3-40)

Slope(U - 1074)
K, (weeks™1)

Y
Residual error (10° /L)

0.0425 (0.0392-0.055)
0.389 (0.344-0.566)
0.161
0.485 (0.465-0.501)

52.4 (24.36-70.26)

*NA: Not Applicable

90% confidence intervals (in parenthesis) were obtained from 500 bootstrap analyses.
Estimates of between-subject variability (BSV) are shown as coefficients of variation.
Parameter names are defined in the text.



4.3 Results 161

Tumor progression kprol=0.0029 1/w kprol=0.00145 1/w

1,001 2-years 5-years 10-years
2
Z 0.757
®©
Q
<
Qo
©
2 0.50
2
=)
7
B
2 0.25;
o

0.00

0 100 200 300 400 500

Time (weeks)

Fig. 4.4 Kaplan Meier overall survival stratified by different values of the tumor proliferation rate constant parameter
(kpro)- The plot is the result of the simulation of 1000 individuals receiving the treatment in the same time period.

longer times only 7 individuals were remaining for a period of approximately 225 weeks more.

The predicted median 2-year and 5-year overall survival probability computed was 84.37% and 58.33%
respectively, which were very similar to the observed values of 82.4% and 56.39% obtained from the
48 patients in our dataset. Additional simulation exercises where the therapy was administered in the
same time period to all the individuals showed that a 50% decrease in tumor proliferation practically
did not affect the 2-year survival rate, but increased the 5-year and 10-year rate a 13.7% and 42%

respectively (see Figure 4.4).

4.3.4 Model for neutropenic adverse effects

Table 4.2 summarizes the main adverse events reported during interferon therapy. Due to the fact that
neutropenia was one of the most reported and potential life threatening toxic effects, we decided to
characterize this adverse response using the semi-mechanistic model from [7]. That semi-mechanistic
myelosuppression model adequately described the time course of the log-transformed absolute neu-
trophil counts as illustrated by the prediction-corrected VPC from Figure 4.5A. The linear drug effect
model showed significantly better fitting results compared with the E,,,x model (p<0.01). The final
model included BSV in the ANC baseline parameter (ANCp) and in the elimination rate constant
(K,) of the K-PD model (see Table 4.3 for parameter values). None of the studied covariates had a
significant effect on the model parameters.
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Fig. 4.5 Evaluation of the myelosuppression model for the absolute neutrophil counts (ANC) of the patients. A) Prediction-
corrected visual predictive check. Solid circles represent observed ANC, solid lines represent the median of the observed
data, and dashed lines the 2.5 and 97.5 percentiles of the observations. Shaded areas are the 95% confidence intervals based
on the simulated data (n=1000) for the corresponding percentiles. B) Percentage of patient in grade 1,2,3 and 4 neutropenia
(grade 1: >1.5 ANC, grade 2: 1-1.5 ANC, grade 3: 0.5-1 ANC, grade 4: <0.5 ANC). Boxplots summarize the result of the
500 simulations and the red cross represents the real percentage values from the dataset.

In Figure 4.5B the percentage of patients with grade 1, 2, 3 and 4 neutropenia calculated from five
hundred simulated ANC vs time profiles were compared to the corresponding percentages derived

from the observations. Results show that the model captures well severe grades of neutropenia.
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4.4 Discussion

A joint model for the dynamics of circulating biomarkers and overall survival has been established
and evaluated in patients with melanoma during treatment with IFN-2b. Additionally, a myelosup-
pression model was also developed to evaluate the adverse effects of the IFN-a2b therapy in the same
cohort of patients. This framework enables to convert the individual biomarker levels into personalized
predictions of survival while taking toxicity into account. All of the investigated biomarkers were
significantly related to OS when evaluated one by one, but the relative change from baseline of LDH
was identified as the most predictive of OS regarding objective function values. Although other studies
also showed a significant association between LDH and PFS in melanoma [9], in our analysis none
of the tumor marker dynamics significantly improved PFS predictions. Moreover, treatment with
Interferon is more associated with an improvement in PFS rather than OS but our data did not allow

us to characterize this link.

Serum LDH, which is a standardized biomarker routinely monitored in clinic, is also used to categorize
patients with stage IV melanoma, as increased LDH values are known to be correlated with a poor
outcome of the patients. However, the link between biomarker values and survival needs to be
quantitatively characterized in order to allow for more meaningful predictions of patient prognosis.
In this work, we add insights in this context by providing a treatment-biomarker-survival-toxicity
framework where the effectiveness of alternate dosing regimens could be tested based on ALDH el
values and neutropenia. Figure 4.6 conceptualizes the computational framework as it shows the
individual LDH and ANC profiles and the time course of the hazard rate differentiating by an
individual who is alive at the last follow-up (patient 36) and an individual who died (patient 26). In
this figure it can also be appreciated that the effect of the therapy on the ANC was much faster than
the decrease in LDH. This justifies the differences found between the estimates for the k;, parameter
which had a value of 0.039 weeks™! for the case of LDH and the K, of the myelosuppression K-PD
model which had a value of 0.389 weeks™! (almost 10 times higher).

The treatment of advanced stage melanoma has evolved immensely in recent years with the success of
new immunotherapies and targeted drugs [2]. Nowadays, it is well known that approximately 60%
of melanomas harbor a mutation in the gene encoding for the serine/threonine protein kinase BRAF,
which leaded to the development of selective BRAF inhibitors such as vemurafenib and dabrafenib.
Although it has been demonstrated that these targeted drugs significantly improve PFS and OS in
comparison with chemotherapy, the patients receiving this treatment rapidly develop resistance [2].
On the other hand, the FDA-approved checkpoint inhibitors against cytotoxic T lymphocyte antigen
4 (CTLA-4) and programmed death 1 (PD-1) enhance the natural antitumor immune response of
the patients and also lead to improved survival [18]. However, only a subset of patients respond
to immune checkpoint inhibitors and resistance mechanisms can also arise among this group of

responders. In this context, the identification of predictive biomarkers and/or baseline covariates able
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Fig. 4.6 Individual predicted LDH and ANC profiles (solid lines) by the selected models and the time course of the hazard
rate (dashed line) differentiating by an individual who is alive at the last follow-up (patient 36) and an individual who died
(patient 26). Solid points represents the observation values of the patients.

Table 4.4 Median value (5-95) of different outcomes obtained after 1000 simulation of different dosing
schedules.

Standard dosing regimen®: induction: 20 MU /m?* 5 days a week + maintenance: 10 MU /m? 3 days a week

1-year 2-year 5-year 10-year
LDHrel -0.127 (-0.29-0.095)  -0.242 (-0.52-.019)  -0.062 (-0.61-1) 0.138 (-0.6-1.79)
Overall Survival 91.5 (89.7-93.2) 83.6 (81.3-85.9) 58.5(55.5-61.6) 29.5 (26.8-32.4)

Absolut neutrophil count (10°/L) 2.14 (1.04-4.07) 3.21 (1.94-5.36) 3.17 (1.93-5.66) 3.92 (2.37-6.15)

Regimen 2*: induction: 40 MU /m? 5 days a week + maintenance: 10 MU /m? 3 days a week

LDHrel -0.133 (-0.3-0.088)  -0.247 (-0.53-.018) -0.07 (-0.62-0.99) 0.129 (-0.619-1.74)
Overall Survival 91.6 (89.9-93.3) 83.7 (81.4-86) 58.8 (55.8-61.9) 29.7 (27-32.7)
Absolut neutrophil count (10°/L)  2.14 (1.03-4.07) 3.21(1.94-536)  3.17(1.93-5.66)  3.92 (2.36-6.14)

Regimen 3*: induction: 20 MU /m? 5 days a week + maintenance: 20 MU /m?* 3 days a week

LDHrel -0.132 (-0.3-0.09)  -0.266 (-0.53-.016)  -0.1 (-0.66-0.94)  0.134 (-0.66-1.62)
Overall Survival 91.5 (89.8-93.2) 83.6 (81.3-86) 59.8 (56.8-62.9) 31.5(28.7-34.5)
Absolut neutrophil count (10°/L) 1.4 (0.4-3.27) 3.21 (1.93-5.36) 3.15(1.93-5.66) 3.87 (2.3-6.1)

*The treatment started 6 weeks after diagnosis for all the regimens simulated. The treatment was administered to
an individual with a body surface area of 1.8 m?. LDHrel is the relative change of LDH from the baseline value.
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to select patients most likely to benefit from these therapies could be crucial.

In our case, none of the studied baseline covariates (Breslow thickness, tumor extension, presence
of ulceration...) influenced survival. Unexpectedly, this agrees with the result of other statistical
analysis made in advanced melanoma patient data where the univariate analysis of the gender, age,
Breslow thickness, BRAF mutation status and location of primary tumor resulted in no significant
association with OS [11, 16]. Still, we find difficult to conclude that these covariates do not influence
the survival of melanoma patients because we think that part of the results obtained were influenced
by the small number of patients in the dataset and the missing information regarding the covariates of
these subjects. Therefore, a better univariate and multivariate baseline covariate analysis is encouraged
if more informative datasets are available in the future. Other limitations to highlight regarding this
work were that no PK and tumor progression measurements were available for the development of the
model. That is why a K-PD approach was used to link the dosing records with a drug effect in an
unobserved variable that simulates the disease progression of the patients. This tumor progression was
in turn linked to the time course of LDH, MIA and S100B serum concentration dynamics that were
produced by a first-order rate constant and cleared at a first-order elimination rate in healthy subjects.
However, the major obstacle to develop this treatment-biomarker-survival-toxicity framework to
monitor clinical response in melanoma was the moderate efficacy of IFN-a2b therapy. Although
the 1684 ECOG trial probed a significant improvement on the PFS and OS of melanoma patients,
subsequent trials showed limited efficacy of this treatment as monotherapy, particularly on the OS of
the individuals [12]. Table 4 shows how doubling the dose from the induction or the maintenance
phase of the treatment influenced the LDH values, OS and ANC of 1000 simulated individuals for
a1, 2, 5 and 10 year period. The values summarized in this table showed that doubling the dose
of the induction or maintenance phases doesn’t have much repercussion in OS due to the low drug
effects, but altering the maintenance phase could provoke a lower neutropenia grade. Even so, the
development of new treatments opens the opportunity to reanalyze the utility of these tumor markers
as prognostic factors (in fact, LDH has been reported as a clinically significant factor associated
with OS under targeted and immune therapies [11, 16]) and to follow-up patients during therapy [19]
re-using parts of the model built in this work. More importantly, the modeling effort developed here
offers an attractive methodology to evaluate not only new treatment alternatives in drug development
but also existing ones in the clinic, in order to evaluate safety and efficacy of the therapy, identify
predictive factors and biomarkers and finally, perform dosing optimization in order to improve the

clinical outcome of the patients.
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Fig. S4.1 Evaluation of the overall survival (OS) and progression-free survival (PFS) of the patients with high and low

MIA and S100B concentrations at the end of the study.
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Fig. S4.3 Kaplan-Meier curves of the OS stratified by baseline biomarker values (before treatment initiation).
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The discipline of Pharmacometrics and Systems Pharmacology (PSP) is focused on the development
of pharmacokinetic (PK), pharmacodynamics (PD) and disease progression models to interpret, de-
scribe and predict drug effects in the target patient populations supporting key decisions during all
phases of drug discovery and development, and patient management through personalize medicine
including dose individualization. As it has become clear through the different chapters of this thesis,
PSP integrates principles from the field of biology, pharmacology, biostatistics, mathematics and
computer science for proper use of available information in order to get a better understanding of the
in vivo drug effects and the variability associated to treatment. These mathematical models provide
deeper insights related to emergent pharmacological properties that could remain hidden in the raw
data following empirical and standard statistical approaches, thus supporting hypothesis generation
and challenging model predictions against experimental data. It is therefore not surprising that pharma
industry, regulatory agencies as well as academia and clinics consider PSP as a relevant key player in

their corresponding arenas.

In general, modeling approaches can be classified in different groups depending on the mathematical
formalisms they are based on. Models can be quantitative when mathematical equations are used to
describe the relationship between the components of the systems, or qualitative when the relationship
between the model components is based on signed and directed causal regulatory graphs. Another
possible classification discussed in this thesis distinguishes between deterministic and stochastic
models. In deterministic modeling, stochasticity within the system is neglected and the output of the
model is fully determined by the parameter values and the initial conditions. Stochastic models on
the other hand, have some inherent randomness, that is, the same set of parameter values and initial
conditions can lead to different results. The two classifications above, namely qualitative/quantitative
and deterministic/stochastic, are complementary, that is, a quantitative or qualitative model can be

either deterministic or stochastic.

A key factor driving the choice between qualitative and quantitative representations is the type of
knowledge and information available related to the system under study. When there is no longitudinal
experimental data available but connections between the components of a system are known at least
from a qualitative perspective, a network-based approach might be a suitable option [10].

The next question to answer then is how to build this type of networks. Depending on the system
being modelled, a bottom-up or knowledge-based approach can be adopted, where information about
the components to include and their relationships is gathered from scientific literature or public repos-
itories that contain previously generated models. In fact, both the Boolean network examples annexed
in this thesis were constructed using this bottom-up approach. By contrast, it is sometimes possible to
infer the topology of the networks directly from experimental datasets (e.g. gene expression data [3]),
which is known as a top-down or data-based approach. Data-based methods allow the construction of

directed graphs whose edges represent positive or negative effects of the components under study.
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Those graphs can then be transformed to logic models using specific software like CellNetOptimizer
[7]. Although choosing this procedure may seem less painful for the researcher a priori, the networks

obtained with the top-down approach also need an extensive manual curation.

As an example of qualitative strategy, in Chapter 1 we proposed the use of Boolean models (i.e.
discrete two-state logical models in which each node in a network is represented as a simple on/off
switch) to analyze the results of SP networks. Here we showed that the updating method of the nodes
in the network (synchronous vs asynchronous) might have a big influence in the outcome of the
model. In this sense, in the synchronous updating method the output of the network will always be
the same when starting from an initial condition whereas with the asynchronous approach different
outputs could be obtained. These characteristics correspond to the definition of deterministic and
stochastic modeling strategies previously mentioned and therefore here we demonstrated how a qualita-

tive framework can also have a deterministic or stochastic behavior depending on the chosen algorithm.

Currently the application of Boolean analysis to PSP is still very limited, contrary to the case of
applying deterministic models to continuous data, where there is a battery of tools to help the scientist
for model implementation, fitting and evaluation. We think that with the development of SPIDDOR we
provide and easy-to-use tool to perform simulations and analyze the results of previously constructed

Boolean networks (using the bottom-up or the top-down approach).

Once a Boolean model is built, one can produce trajectories and study the possible attractors of the
system (i.e. steady-states). Especially when the networks are highly interconnected, analyzing the
state-transition diagrams of the attractors is very difficult because they generally consist on complex
cycles. This analysis is further complicated when node perturbations are introduced on the network
(knockouts, overexpressions...) and the differences obtained between the perturbed and the normal
state of the network want to be determined. In SPIDDOR, we simplified this analysis by representing
the activation probability of the nodes inside the attractors. This and other advantages of the frame-

work have been already discussed in Chapter 1.

In addition, in the Appendix section we also showed two applications where SPIDDOR has been
used to simulate Boolean networks related to autoimmune diseases. In [9] the potential of a Boolean
network model to support drug development in systemic lupus erythematosus was explored, focusing
the analysis on the antigen presentation to naive T cells. In [1] on the other hand, a logic model for
inflammatory bowel disease is proposed to describe the pathogenic mechanisms of the disorder and

qualitatively describe the characteristic chronic inflammation.

In these works we showed that logic models are a useful tool to make a general picture of the systems
under study and test potential therapeutic interventions. It must be addressed however, that in this type

of networks there is no a clear notion of continuous time and therefore, as longitudinal data becomes
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available, the transformation of these networks to a more quantitative framework is essential.

In this sense, non-linear mixed-effects (NLME) modelling has proven to be one of the most successful
data-driven strategy to characterize longitudinal data coming from different individuals. NLME
approach is widely used in PSP in order to quantitatively characterize the time course of disease
progression and establish the link to the PKPD properties of the drugs. As such, PKPD modeling

constitutes the scientific basis for dose and delivery optimization of new and existing drugs.

It is our perception however that these capabilities of the models are far from being fully exploited
and the question of “how and to which degree the system needs to be perturbed (optimized) to achieve
certain physiological or therapeutic conditions” is in general not addressed. This is mainly due
to the fact that (i) under complex dynamic systems and multiple therapeutic objectives to achieve,
optimization cannot be efficiently addressed through trial-error simulation exercises, and (ii) there is a

lack of standard methodology to implement formal optimization approaches in computational biology.

Indeed, in Chapter 2, we investigated how Optimal Control (OC) principles could be applied to derive
optimal drug delivery profiles of the drug triptorelin, a gonadotropin-releasing hormone analog, using
a PKPD model for its testosterone (TST) effects in prostate cancer patients [8]. The aim of this work
was to derive the optimal drug release profiles to achieve the following multiple therapeutic goals:
minimize both the initial flare up of TST levels and the time to reach TST values below castration
limit (2,45 ), while maximizing the castration period of the patients (for more than 9 months). As the
value of 7., was not known in advance, the problem was divided into two phases each represented by
a different cost function and constraints and defined between: (i) [0, f.45 ] and (1) [Zcasr, 280+fcqs ]
days, respectively. Once the optimal TST profiles were obtained, we directly approximate them using
the zero-order release compartment and two first-order release compartments from the original PKPD

model and estimate the most adequate absorption parameters using NLME methods.

This work presented a good example of complex dynamic system with multiple therapeutic objectives
to achieve where a more advanced optimization technique coming from engineering has shown highly
favorable results. In the Introduction of this thesis and in the discussion from Chapter 2 we also
indicated that the proposed approach is not circumscribed to just this particular problem, but also
to many other problems related to drug exposure optimization. Thus optimal control is a promising
multidisciplinary modeling technique that not only could help us to improve patient coverage but also

to increase drug development successes.

On the other hand, in Chapter 3 the disciplines of NLME and stochastic models have been combined

in order to create a more comprehensive and practical computational framework called ACESO (A
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Cancer Evolution Simulation Optimizer) aimed to explore the dynamic evolution of heterogeneous
tumor cell populations while taking pharmacokinetics and drug interaction effects into account. This
approach is made up of a cell-level description of the changes in drug sensitive and resistant cell
populations over time and in response to treatment in the form of a stochastic model known as
multitype branching process. In this model, sensitive cells accumulate mutations at a given rate per
cell division, generating new clones harboring specific resistance mechanisms to the drugs. The birth
and death rate of each cell type are influenced by drug concentrations, and hence, accounting for
population pharmacokinetic models is essential to form a multiscale description of drug pharmacoki-
netics/pharmacodynamics and cancer evolution. The ultimate goal of this tool is to search through
different possible drug administration strategies to identify the one that is predicted to be best, for

instance, because it minimizes the risk of resistance or the expected number of cancer cells over time.

We must note however that, although the framework of this work is based on a stochastic model of
clonal evolution, the equations implemented in ACESO are deterministic, as only the mathematical
approximations for the expected values of the total number of cells and the probability of developing
resistance have been incorporated in the package in order to accelerate the process of searching for
the optimal dosing schedule. Even if the user is able to add variability to the PK parameters and
test different initial conditions and birth, death and mutation rate constants, the possibility of using a

stochastic simulation algorithm (SSA) to analyze the evolution of the cells is not implemented.

Still, the utility of this tool has been demonstrated through different case studies mainly focused on the
analysis of the evolution of different populations of tumor cells under targeted therapies. Nonetheless,
the tool is very versatile and could also be used to study the effects of other type of anti-cancer

treatments or other biological problems like the emergence of antibiotic resistance in bacteria.

We think that the activity of combining models could become a major part of PSP in near future. How-
ever, an issue regarding the combination of different methodologies is that the different frameworks
may require very different numerical approaches towards equations integration. These problems
could arise when combining ordinary differential equations with stochastic kinetics (represented
as master equations or stochastic differential equations) or qualitative (e.g. Boolean networks) and
quantitative models (e.g. ODEs). In the former, some examples already exist where the combination
of SDE and ODE has been implemented in NONMEM [12]. However, for the case of stochastic
models based on master equations, mathematical approximations of the processes being modeled
is encouraged in order to easily integrate them in ODE-based systems. Although it is possible to
represent part of a model with differential equations and another part with a stochastic simulation
algorithm once a parametrization of the model has been done, the integrated model will be much
more computationally intensive. In addition, the task of coding a SSA will be quite complex for

researchers without a computer science background. As better techniques become available that could
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facilitate the parametrization and simulation of stochastic models, frameworks like ACESO make the

integration of models coming from different disciplines easier.

Regarding the integration of qualitative and quantitative modeling approaches, methods exist for
the conversion of Boolean systems into systems of ordinary differential equations by multivariate
polynomial interpolation or the application of sigmoidal Hill functions [6]. In contrast to these
deterministic logic-based ODEs, MaBoSS software simulates continuous time Markov processes on
Boolean networks to handle the asynchronous updates of the states of the nodes in a stochastic way
and generate a population of trajectories as sequences of Boolean states [11]. Transition rates can be
associated with each node, and probabilities of network states can be estimated given a set of initial
probabilities.

However, when the reason of initially choosing a logic-based approach is the insufficient longitudinal
data available to characterize the biological process of interest, the quantitative version of the Boolean
model will be difficult to calibrate. Another concern is with regard to the size and complexity of those
models. ODE based systems with a large number of components have a vast number of parameters,
which results in a large uncertainty in parameter estimates even if some of them are fixed from values
obtained from literature. Parameter estimation in stochastic models is even more difficult and is not

yet adequately addressed in the literature.

While there are still many aspects that need to be improved, we strongly believe that the next genera-
tion of models will be more modular, in which different processes could be modelled independently
and then integrated in the simulation process through variable transformation and synchronization.
Certainly, this integration requires an additional effort from scientists and engineers who have to

become familiar with these approaches and simplify the work for the next generations.

Lastly, in the chapters corresponding to this dissertation, not only different type of methodologies
have been explored but also the combination of models of the same nature that together are able to
characterize and integrate different type of data. As an example, the framework presented in Chapter
4 describes the relationship between the time-course of three biomarkers (longitudinal data) and
the overall survival of melanoma patients (time-to-event data) while taking the side effects of the
treatment into account. The use of this type of models is not innovative in PSP; recent examples
can be found in [2, 5, 4]. However, due to the increasing interest in the use of biomarkers in drug
development and clinical practice in order to recruit patients with the most favorable benefit/risk ratio,

we also found interesting to include this analysis as the last chapter of the dissertation.
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We conclude that the different modeling strategies discussed in this thesis may help in the development
of more mechanistic pharmacological modelling approaches that could reduce the late-stage attrition in
the drug development process, but also in the transition from drug development to patient care in order
to drive optimal intervention strategies resulting from the combination of individual physiological

information and computational methodologies.
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The primary goal of the present project was to explore the use of different methodologies and tools

that could benefit the field of Pharmacometrics and Systems Pharmacology modelling.

Several achievements have been already summarized in the different chapters of this dissertation.

These contributions include:

1. A versatile tool called SPIDDOR, which is specifically tailored to the design and analysis of
Boolean network models in the area of Systems Pharmacology. This tool proposes several

novelties, including:

* new types of regulatory interactions, the positive and negative modulations, which lead to

richer dynamics between the nodes.
* Improvement of the perturbation paradigm emulating a “polymorphism” of a node.

* Improvement of the exploratory analysis of the output of the simulations computed on
these models by incorporating i) new visualization techniques to evaluate the attractors
(long-time behavior) of the system and the effects of perturbations and ii) a clustering

method to group the nodes that lead to similar alterations within the network.

2. Two boolean network models describing pathogenic mechanisms in the autoimmune diseases
systemic lupus erythematosus and inflammatory bowel disease built and analyzed with SPID-
DOR (Appendix section).

3. The application of optimal control theory to a population pharmacokinetic/pharmacodynamic
model for the testosterone effects of triptorelin in prostate cancer patients in order to derive
the optimal drug release profile to achieve multiple therapeutic goals. Apart from highlighting
the advantages of using this optimization technique to define a reverse engineering problem,
the information summarized in this work could be very useful for the development of new
formulations, since it provides insight into the desired absorption characteristics that could

produce a broad benefit for future patients.

4. A multi-scale computational framework in R called ACESO (A Cancer Evolution Simulation
Optimizer) which incorporates a multitype branching process model where the birth, death
and mutation rates of the heterogeneous tumor cell populations can be influenced by the drug
concentrations resulting from the simulation of pharmacokinetic models. This approach is an
important step towards validating evolutionary mathematical models in the clinic as it investi-

gates the evolution of resistant clones to anti-cancer therapies while taking the pharmacokinetic
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of the drugs and drug interaction effects into account.

5. A semi-mechanistic model describing the time course of several circulating biomarkers in
advanced melanoma patients treated with adjuvant high-dose interferon-alpha2b to evaluate the
dynamics of the tumor markers as prognostic factors of the overall survival and progression-free
survival of the patients. A semi-mechanistic myelosuppression model to evaluate the adverse
effects of the therapy has been also developed in order to convert the individual biomarker

levels into personalized predictions of survival while taking toxicity into account.

6. Apart from the underlying methodology exposed in each chapter and the corresponding publi-
cations, this thesis also involved the development of various tools, two R packages especifically,
that allows for efficient use of some of these methods, demonstrating their usefulness through

the different case studies presented in each chapter and appendix section.
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El objetivo principal del presente proyecto ha sido el de explorar el uso de diferentes metodologias y

herramientas que puedan beneficiar el campo de la farmacometria y la farmacologia de sistemas.

Los distintos logros han sido expuestos en los diferentes capitulos de esta disertacion. Estas contribu-

ciones incluyen:

1. Una versatil herramienta denominada SPIDDOR, especificamente disefiada para el desarrollo y
analisis de modelos de redes booleanas en el area de farmacologia de sistemas. Esta herramienta

propone varias novedades, entre ellas:

* Nuevos tipos de interacciones reguladoras, las modulaciones positivas y negativas, que

conducen a dinimias mas diversas entre los nodos del sistema.

* Una mejora en el paradigma de las perturbaciones de estas redes emulando la accién de

“polimorfismos” en los nodos.

* Mejora del andlisis exploratorio de las simulaciones obtenidas a partir de estos modelos
mediante la incorporacién de i) nuevas técnicas de visualizacién de los atractores (com-
portamiento a largo plazo) del sistema y los efectos de las perturbaciones y ii) métodos de
agrupamiento (“clustering”) para asociar los nodos que producen alteraciones similares

dentro de la red.

2. Dos modelos de redes booleanas analizados utilizando SPIDDOR que describen mecanismos
patogénicos en las enfermedades autoinmunes lupus eritematoso sistémico y la enfermedad

inflamatoria intestinal (ver Apéndice).

3. La aplicacidén de técnicas de control éptimo (“Optimal Control”’) a un modelo farmacocinético/
farmacodindmico poblacional que describe los efectos de la triptorelina en la testosterona de
los pacientes con cdncer de prdstata con el fin de obtener los perfiles de liberacién del formaco
Optimos que logren multiples objetivos terapéuticos. Ademads de resaltar las ventajas de usar
esta técnica de optimizacién para definir un problema de ingenieria inversa, la informacién
resumida en este trabajo podria ser muy util para el desarrollo de nuevas formulaciones, ya
que brinda informacién sobre las caracteristicas de absorcién deseadas que podrian generar un

amplio beneficio para futuros pacientes.

4. Una herramienta computacional basada en el entorno R llamada ACESO (A Cancer Evolution
Simulation Optimizer) que incorpora un modelo de proceso de ramificacién de multiples tipos
(“multitype branching process™) en el que las tasas de divisién, muerte y mutacion de las pobla-

ciones de células tumorales heterogéneas pueden verse influenciadas por las concentraciones
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de farmaco resultantes de la simulacién de modelos farmacocinéticos. Este enfoque es un
paso importante hacia la validaciéon de modelos matematicos evolutivos en la clinica, ya que
investiga la evolucién de los clones resistentes a las terapias contra el cancer a la vez que toma

en cuenta la farmacocinética de los medicamentos y los efectos de interaccién de los mismos.

5. Un modelo semi-mecanistico que describe el curso temporal de varios biomarcadores cir-
culantes en pacientes con melanoma avanzado tratados con dosis altas de interferén-alfa2b
adyuvante para evaluar la dindmica de estos marcadores tumorales como posibles factores
prondstico de la supervivencia general y la supervivencia libre de progresion de los pacientes.
Ademds, se ha desarrollado un modelo de mielosupresion para evaluar los efectos adversos de la
terapia a fin de convertir los niveles de biomarcador individuales en predicciones personalizadas

de supervivencia mientras se tiene en cuenta la toxicidad de la terapia.

6. Ademids de la metodologia expuesta en cada capitulo y las publicaciones correspondientes, este
trabajo ha involucrado el desarrollo de varias herramientas, dos paquetes de R especificamente,
que permiten el uso eficiente de algunos de los métodos expuestos, demostrando su utilidad a

través de los diferentes ejemplos presentados en cada capitulo y el apéndice de esta tesis.
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Abstract

Motivation

The literature on complex diseases is abundant but not always quantitative. This is particu-
larly so for Inflammatory Bowel Disease (IBD), where many molecular pathways are qualita-
tively well described but this information cannot be used in traditional quantitative
mathematical models employed in drug development. We propose the elaboration and vali-
dation of a logic network for IBD able to capture the information available in the literature
that will facilitate the identification/validation of therapeutic targets.

Results

In this article, we propose a logic model for Inflammatory Bowel Disease (IBD) which con-
sists of 43 nodes and 298 qualitative interactions. The model presented is able to describe
the pathogenic mechanisms of the disorder and qualitatively describes the characteristic
chronic inflammation. A perturbation analysis performed on the IBD network indicates that
the model is robust. Also, as described in clinical trials, a simulation of anti-TNFa, anti-IL2
and Granulocyte and Monocyte Apheresis showed a decrease in the Metalloproteinases
node (MMPs), which means a decrease in tissue damage. In contrast, as clinical trials have
demonstrated, a simulation of anti-IL17 and anti-IFNy or IL10 overexpression therapy did
not show any major change in MMPs expression, as corresponds to a failed therapy. The
model proved to be a promising in silico tool for the evaluation of potential therapeutic tar-
gets, the identification of new IBD biomarkers, the integration of IBD polymorphisms to antic-
ipate responders and non-responders and can be reduced and transformed in quantitative
model/s.
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Introduction

Inflammatory bowel disease (IBD) is a complex gastrointestinal tract disorder characterized by
a functional impairment of the gut wall affecting patients” quality of life [1,2]. IBD includes
ulcerative colitis (UC) and Crohn’s disease (CD). The natural course of IBD is highly variable
[3-6] and its etiology is still unknown. The incidence of IBD has dramatically increased world-
wide over the past 50 years [7], reaching levels of 24.3 per 100,000 person-years in UC and 20.2
per 100,000 person-years in CD in the developed countries [8].

There is current evidence that Interleukin 6 (IL6), Tumour necrosis factor-alpha (TNFa),
Interferon Gamma (IFNY), Interleukin 1 beta (IL18), Interleukin 22 (IL22), Interleukin 17
(IL17) and Natural Killer cells (NK), among other signalling pathways, play relevant roles in
the pathogenesis of IBD, which is a reflection of the complexity of that physiological system
[9-12]. That complexity indicates that a universal treatment for IBD may not be feasible for
the vast majority of patients [13,14]. In fact, current biological approved treatments are only
palliative with a high percentage of non-responders. For example, around 50% of IBD patients
treated with the current standard of care, Infliximab (an anti-TNFa) or Vedolizumab (an anti-
047 integrin) do not respond satisfactorily to therapy [15,16]. One characteristic of the cur-
rent IBD biological treatments is that approved therapies target just one signalling pathway,
which might explain the high rate of non-responders and the long-term inefficiency of most
treatments [15,17]. In addition, there is evidence to suggest that optimal treatment for IBD
should involve a combination of different drugs [18,19]. Therefore, there is a need, especially
for complex alterations such as immune-mediated diseases, to change the paradigm of drug
development, considering the main aspects (targets, cross-talking between pathways, therapy
combination) from an integrative and computational perspective.

Given the aforementioned biological complexity of immune-mediated diseases and the fact
that current longitudinal data associated with the most relevant elements of the system are
scarce, a full parameterization of IBD related systems based on a differential equation model
does not yet seem feasible. However, some attempts have been made to describe quantitatively
the IBD systems. For example, Wendelsdorf et al., [20] built a quantitative model based on
ordinary differential equations. However, some key disease elements, such as cytokines and T
cells, were incorporated non-specifically (i.e., all types of cytokine were grouped under the
generic element active cytokines) in the model structure, limiting its use to explore potential
therapeutic targets. More recently, Dwivendi et al., [21], based on the results of a clinical trial
with the anti-IL6R antibody, Tocilizumab, have developed a multiscale systems model in
Crohn’s disease, limited to the IL6-mediated immune regulation pathway.

Network analysis represents a promising alternative in such data limited circumstances
[22-24]. As many molecular pathways in IBD are qualitatively well described, interaction net-
works may be a suitable approach for characterizing IBD. These networks are simplified repre-
sentations of biological systems in which the components of the system such as genes, proteins
or cells are represented by nodes and the interactions between them by edges [25]. Boolean
network models, originally introduced by Kauffman [26,27], represent the simplest discrete
dynamic models. These models only assume two discrete states for the nodes of a network,
ON or OFF, corresponding to the logic values 1 (active) or 0 (not active, but not necessarily
absent) [28]. A well-designed logic model could generate predictive outcomes given a set of
initial conditions. Qualitative, logical frameworks have emerged as relevant approaches with
different applications, as demonstrated by a growing number of published models [29]. Com-
plementing these applications, several groups have provided various methods and tools to sup-
port the definition and analysis of logical models, as it can be seen by the recent achievements
of the Consortium for Logical Models and Tools (CoLoMoTo) in logical modelling [30].
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There are already several tools for Boolean modeling of regulatory networks in which it is pos-
sible to define direct activation-inhibition relationships between the components of the net-
work, such as BoolNet R [31] or GINsim [32]. More recently, the R package SPIDDOR
(Systems Pharmacology for efflcient Drug Development On R) among others, has imple-
mented new types of regulatory interactions and perturbations within the system, such as posi-
tive and negative modulators and the polymorphism-like alterations, which lead to richer
dynamics between the nodes [28].

In the specific case of IBD, there have been initial attempts to develop network models. The
multi-state modeling tool published by Mei et al., [33,34] can be considered a proof of concept
in the application of these types of networks in mucosal immune responses. However, the
number of elements that this model considers and integrates is limited for IBD characteriza-
tion, since only six different cytokine types are included in the inter-cellular scale.

The objective of the current manuscript is to present a Boolean based network model incor-
porating the main cellular and protein components known to play a key role in IBD develop-
ment and progression. The model has been built on well-established experimental knowledge,
mostly of human origin, and only including animal data when no other source of information
was available. Our aim has been to build a model structure facilitating key aspects in the treat-
ment of immune mediated disease, such as the selection of the most promising combination
therapies and the study of the impact of polymorphisms on pathway regulation, thus allowing
patient stratification and personalized medicine.

This study provides the scientific community with a (i) computational IBD model imple-
mented in SPIDDOR R package [28], which allows translation of Boolean models (excluding
models enclosing temporal operators) to a standard Markup language in Systems Biology for
qualitative models (SBML qual [35]) which promotes model interoperability, and (ii) a reposi-
tory with the main and updated information known of the immune system and IBD, which
shows model transparency and allows model reusability. The proposed IBD model can be eas-
ily expanded in size and complexity to incorporate new knowledge, or other type of informa-
tion such as proteomic data. The model presented hereafter is general enough to serve as a
skeleton for other relevant immune diseases such as Rheumatoid Arthritis, Psoriasis or Multi-
ple Sclerosis.

The manuscript is organized as follows: In the next section, Results regarding the structure
of the model can be graphically visualized, and the ability of the model to recreate certain alter-
ations that have been reported in IBD is demonstrated, as well as the model’s capability to
reproduce the results from recent clinical trials performed in IBD patients from a high-level
perspective. Applications of the model, including its advantages and limitations are then dis-
cussed together with ideas for future research. Finally, the Methods section provides a detailed
technical description (with the aid of supplementary material) of the network and a descrip-
tion of how simulations, collection, and representation of results have been performed.

Results
Graphical representation, repository, and Boolean functions

The graphical representation of the IBD network is shown in Fig 1. It consists of 43 nodes and
298 qualitative interactions located in three different physiological areas corresponding to (i)
the lymph node, (ii) the blood and lymph circulatory system that irrigates the intestinal epithe-
lial cells and (iii) the gut lumen.

Definition of all nodes and the full documented regulatory interactions conforming the
model structure can be found in supporting information S1 Table and S2 Table, respectively.
The S2 Table is fundamental to understand the rationale for the selection and implementation
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Fig 1. Graphical representation of IBD model. Nodes represent cells, proteins, bacterial antigens, receptors or ligands. Bacterial antigens trigger the IBD immune
response through activation of different pattern recognition receptors (TLR2, TLR4 and NOD2) starting the innate and adaptive immune response. Reprinted from [36]
under a CC BY license, with permission from the organizers of the 2016 International Conference on Systems Biology, original copyright 2016.

https://doi.org/10.1371/journal.pone.0192949.g001

of the Boolean functions (BF). It was organized to provide a comprehensive summary of the
301 manuscripts (published over the last three decades) used to build the model, highlighting
for example whether (i) a specific pathway was reported to be altered in IBD, or (ii) informa-
tion was supported by human (more than the 80% of the network structure) or animal data.
The Boolean operators used to define the network model of IBD were: the NOT operator
which is noted as “!”, the AND operator which is noted as “&” and the OR operator which is
noted as “|”. Recent and innovative modulators and threshold operators previously described
by Irurzun-Arana et al., 2017 [28] were also part of the arsenal of Boolean elements used in the
model proposed (see S1 File for a detailed description of those additional Boolean elements).
Regarding the input selection, as it is assumed that IBD is caused by intestinal dysbiosis, an
environment of different bacteria was recreated selecting three different antigens which are
components of most Bacterial Gram positive and Gram negative. Therefore, during the devel-
opment of the proposed model the following assumptions were made: First, there is a chronic
exposure to bacterial antigens: Peptidoglycan (PGN), Lipopolysaccharide (LPS) and Muramyl
dipeptide (MDP). PGN is a component of the cell wall of all bacteria, but in particular of
gram-positive bacteria, LPS is a component of the outer membrane of Gram-negative bacteria
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Table 1. Boolean functions (BF) of the IBD model to simulate the initial conditions.
INITIAL CONDITIONS: CHRONIC EXPOSURE

PGN = ! (5 “"~° PERFOR™ | N, " GRANZB | (S “"~° DEF")

MDP = ! ("S- PERFOR"" | (% """ GRANZB~ | ()}, *"° DEF*"")

LPS = ! (N%-"=° PERFOR" | (!°-""~° GRANZB~" | (\°-*"~° DEF*")

https://doi.org/10.1371/journal.pone.0192949.t001

[37], and MDP is a constituent of both Gram-positive and Gram-negative bacteria [38]. All
three elicit strong immune responses and seem to play a critical role in the development and
pathophysiology of IBD, as it has been hypothesized that the onset or relapse of IBD is trig-
gered by an imbalance in self-microbiota composition than cannot be controlled by immune
system [39]. Table 1 lists the initial conditions expressed by the corresponding BF, and shows
that the nodes representing antigens are chronically expressed unless the natural antimicrobial
peptides perforin (PERFOR), granzyme B (GRANZB) or defensins (DEF) become active.

Second, there is an impairment in antigen elimination in IBD patients [1,40,41], simulated
with the threshold operator Ag_elim = 6. The threshold operator means that PERFOR,
GRANZB, or DEF inhibit antigen activation when any of these three nodes have been activated
for at least 6 consecutive iterations (see Table 1).

Third, the final readout of the network model is the average expression of the output node,
Metalloproteinases (MMPs). There is solid evidence that this group of proteins is directly asso-
ciated with intestinal fibrosis and tissue damage in IBD [42-46] supporting their use as a rele-
vant biomarker in clinical practice as proposed by O’Sullivan et al. [47]. As it can be seen in
Table 2, the nodes that directly activate MMPs are the nodes that have relevant roles in the
pathogenesis of IBD [9-12,42-44,46,48].

Table 2 contains the full set of BF that modulates the signal initialized by the antigens
through the activation of different pattern recognition receptors (TLR2, TLR4 and NOD2
nodes) and the impact on the output node (MMPs) as the recipient of the antigen signal inter-
nal modulation. The nodes TNFo or IFNY have the most complex pathways as can be seen in
the corresponding Boolean equations (Table 2).

With the aim of making the network model more accessible to the community it has been
uploaded to “The Cell Collective” [49,50] platform (https://www.cellcollective.org/#cb963d7f-
75cb-4b2e-8987-0c¢7592a9¢21d). In addition, the supporting information document S2 File
provides the network model in text format ready for simulation in the R-based freely available
package SPIDDOR [28] and an html tutorial as a guide to reproduce the results (S3 File).

Perturbation analysis and clustering: Network robustness

The results of the network perturbation analysis are presented in Fig 2. The heatmap shows
the impact of a single blockage of each node in every network node. The results indicate that
most node blockages did not trigger considerable changes, suggesting that the IBD network is
robust [51]. Some perturbations led to a higher activation of the nodes, while down regulations
were more common. The heatmap was combined with a hierarchical clustering grouping
together the nodes that caused similar alterations. Knockout of the NFkf3 node appeared to be
the most relevant alteration as it caused a reduction in expression of many of the nodes that
were reported to be overexpressed in IBD patients. The knockout of the ThO node (represent-
ing activated CD4+ T cells) also elicited a reduction in MMPs. The positive effects of the NFkf3
and ThO node blockades on MMPs decreased expression, resembled some of the known mech-
anisms of action of glucocorticoids, inhibitors of T cell activation and proinflammatory
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Table 2. Boolean functions (BF) of the IBD model for the internal and the output nodes.

INTERNAL NODES

TLR2 = PGN
TLR4 = LPS

NOD2 = MDP

NFKB = TLR2 | NOD2 | TLR4

IL6 = (MACR & PGN) | (DC & (LPS | PGN)) | (Th17 & IL23) | (NFKB &! (L4 | IL10))

TNFa = ((NFKB&LPS) | (MACR&(IL2 | (IFNg&LPS) | PGN)) | (NK&(MDP | PGN | LPS)&((IL2 |

IL12)&(IL2 |IL15)) | (FIBROBLAST&IFNg) | ((CD4-NKG2D | CD8_NKG2D | NK -NKG2D)&(IEC_MICA _B |
IEC_ULPB1_6)))&! ("""~ IL10" &(O}"r" " TLR2| (/7" " TLR4 ") &TNFa)

TGFb = (Treg | MACR)

ThO = (™7 LPs | O™ MDP | " PGNT

ThO_M = (Th0 & (IL23 | IL12)) | ThO_M

IL18 = (MACR | DC) & LPS) & NFkB

IL1b = ((MACR | DC)&LPS&NFKB)&! (IL1b&|J" -7 [L10')

IFNg = ((NK&(PGN|LPS|MDP|&(IL23|(IL12&(IL2|IL15 |IL18)))) | (ThO-M&(LPS | MDP | PGN)
&(IL12 | 1123)) | Thl | ((CDS_NKG2D | NK -NKG2D)&(IEC_MICA _B | IEC_ULPB1 6)) | (Th17&(PGN | LPS|
MDP)) | ((MACR | ThO)&IL1SKIL12))&! ((IFNg& ("=~ TGFy | ("™~ IL10" | Th)

1123 = (MACR & IL1b) | DC

1122 = Th17|(NK&((IL18&KIL12) | IL23))|CDA_NKG2D|(((IL22& ThOKIL21) & (/%" [122" &
(V7= ThO' &[T~ IL21'))&! TGFb)

IL21 = Th17 | ((ThO & IL6) &! (IL4 | IENg | TGFb))

IL17 = (Th17 | (Th17_M&(LPS | MDP | PGN)) | (CDA_NKG2D&(IEC _MICA B | IEC_ULPB1 _6)))&!
(s =t TGRY = | (Y= 113" &IL1T)

IL10 = Treg|(Th2 &! IL23)|((TLR2 & NFkB) &! (MACR & IFNg)) | ((MACR & LPS) &! IL4) | (DC & LPS)
Th17 = ((ThO&(IL1b | IL23 | ILG)) | ((Th17&IL23)& (NP e~ Th17* &7 1123') ) )&!
(U= 7GRy | ey == 12 | U= 4| U7y =" * IFNg" |

(s =<2 Trogt—i)&Th17)

Th17_M = ((ThO_M & (PGN | MDP | LPS)) & ((IL1b & IL6) | IL23 | IL2)) | Th17_M

Thl = (ThOK((IL12 | IFNg | IL18) | (DC&IL12&IL23&LPS)))&! (U= IL17"'&

L2 110y | (s -2 Trggii] |Jime—i-2 gii| | <=2 1GRy-i |

UJv=ede2 11| o< [L401)) scTh1)

Th2 = (ThOX(IL10 |((IL18XIL4)&!IL12))| (Th2&IL4)&!((5 "> Th2! &7 IL4)))&!

(U™ Treg™!| U™ " IPNg!| Uiy~ TGFb"")&Th2)

IL4 = Th2

IL15 = (FIBROBLAST & (MDP | LPS | PGN)) | (MACR & (LPS | IFNg))

IL12 = ((((MACR | DC)&(LPS |PGN)&IFNg)&!(IL12&J"""~"" TNFa'*)) | (DC&KIL1b) |

(IL12&(IL13 | IL4)))&I((Uy™ - TGEy— | (209" 1110 ) &IL12)

IL13 = Th2

Treg = (N1 ThO''&(TGFb | TLR2))&! (U™~ 1w6'| U=~ 121

s 300 s <2 gy 7| | - ppogie| | st TEg ) gcTreg)
K = (IL15 [IL2 | IL12 [IL23] (IL18&IL10))&! (" Treg' *&NK)

DEF = IL22 | IL17 | (=" Nop2

IL2 = ThO | (ThO_M & (MDP | LPS | PGN)) | DC

MACR = (NFkB | ((MACR&(IFNg |IL15))&! (/7 ~""* NFkB'~ &()/#~"~* IENg"" |

(=<2 L5 )))) &t (U™ =" IL10" ' &MACR)

DC = NFKB&! (L7~ IL10'"'&DC)

IEC_MICA B = ((LPS | MDP | PGN) | (IEC_MICA -B&TNFa)&! ((1*~""* IEC_MICA -B"~'&

(=" TNFa'~"))&! TGFb

IEC_ULPB1_6= CD8_NKG2D & (LPS|MDP|PGN)

CD8_NKG2D = (LPS | PGN | MDP)&!(((\[1-HOANPS-NK020=3 TEC_MICA B (MNP -N20= [ _ULPB 16"

| (<=2 [ a1 g J - [131) & CDS _NKG2D)
NK _NKG2D = (LPS|PGN|MDP)&! (L} ~""* TGFbp*| ()"} -sowwsvse™ [EC_MICA B |

((\[HR-LGANDS NKG2D=5 T 1y PR ] i1 (=12 [L21 & JrE =12 IT.12)) &NK _NKG2D)

CD4_NKG2D = (LPS | PGN | MDP | (CD4-NKG2D&(IL15 | TNFa))&! (=" CD4 _NKG2D""
(V7 115 (Y7 INFG ))& (U™~ 1010 |

- uoas-xsan =) [EC_MICA_B'— | ()Mo -3 [pC_ULPB_1_6'"')&CD4_NKG2D))
FIBROBLAST = ((MACR&(ILA | IL13 | TGFb))[IL2)&!((J}" "= IENg!| "~ 1L12"")
&FIBROBLAST)

PERFOR = NK | NK_NKG2D

(Continued)

PLOS ONE | https://doi.org/10.1371/journal.pone.0192949 March 7, 2018 6/19



Appendix B 217

. 2 (]
@ ’ PLOS ’ ONE A systems pharmacology model for IBD

Table 2. (Continued)

GRANZB = CD8_NKG2D | NK | NK_NKG2D | (DC &! (LPS | PGN))
OUTPUT NODE
MMPs = (MACR & TNFa) | (FIBROBLAST & (IL21 | IL17 | IL1b | TNFa))

Bold text within Boolean equations indicates that the information belongs to animal data

https://doi.org/10.1371/journal.pone.0192949.t002

cytokines, as well as potent suppressors of the effector function of monocyte-macrophage and
fibroblastic activity, interfering with the NFxB inflammatory signal [52-54].

Network accuracy and validation

Experimental and clinical information. Simulations of chronic infection in IBD individ-
uals show that the model reproduced satisfactorily experimental and clinical information
(summarized in Table 3 and supporting information S3 Table). Fig 3 shows the results of the
simulation for each network node after reaching the attractor state for virtual healthy and IBD
subjects. In total, 31 upregulations in experimental studies were replicated with our simula-
tions. Similarly, the 9 nodes reported as altered appeared upregulated in the simulations, and
finally, the three nodes whose profiles were not known also proved to be upregulated.

Clinical trials. In our simulations, three drugs that have failed to prove clinical efficacy in
clinical trials (anti-IL17, anti-IFNYy and rhulL-10) also exhibited no benefit in the simulated
surrogate for the disease score (Fig 4). Simulations with anti-TNFo, a biologic therapy
approved for IBD, showed a decrease in the disease score. Simulations with anti-IL12-1L23, a
recently approved therapy for IBD, showed a slight decrease in MMPs and anti-IL2 therapy
simulation showed a decrease similar to anti-TNFo. In addition, the new promising therapy
(GMA), equivalent to an anti-MACR in our model showed a decrease in MMPs similar to that
for anti-TNFo.

Discussion

In the current study, we present a Systems Pharmacology (SP) network model for IBD based
on the main cells and proteins involved in the disease. Our analysis appears timely, as IBD has
recently been attracting increasing attention [55-59]. We attempted to meet one of the major
challenges in inflammatory bowel disease (IBD) which is the integration of IBD-related infor-
mation to construct a predictive model. We are not the only ones following this line of
research, as Lauren A Peters et al. have very recently performed a key driver analysis to identify
the genes predicted to modulate network regulatory states associated with IBD [55]. Both anal-
yses could be integrated in the future and inform our post-transcriptomic network with the
key driver genes identified by Lauren A Peters et al. [55].

In comparison with the previous quantitative approaches for IBD [20,21,33,34], our model
identified Naive CD4+ T Cells, Macrophages and Fibroblasts cells as relevant in IBD. Also, in
addition to the six interleukins (TGF8, IL6, IL17, IL10, IL12 and IFNY) considered by Mei
etal. [33,34] our network involves 10 interleukins more which could represent possible IBD
biomarkers [60]. The procedure to evaluate the potential role of the different components on
the disease as plausible biomarkers, would be equal to the one described in section 4.5 (pertur-
bation analysis and clustering), focussing on the changes in the output node.

In the validation of network models, robustness and practical applicability represent critical
aspects. The fact that the information gathered from the literature was obtained under very
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Fig 2. IBD network perturbation analysis and clustering. The heatmap indicates the effect of single blockage of each node (columns) in every network
node (rows). The colour in each cell corresponds to the Perturbation Index (PI) of the nodes. When there is no change in the expression of the node, the
cells of the heatmap would be black, having a value between 0.8 and 1.25 in their PIs. Otherwise, when the perturbation causes an overexpression in a
node, the cell in the heatmap would be orange coloured, with PIs values greater than 1.25. On the contrary, a value of 0.8 or smaller, blue colour, indicates
that the perturbation causes a downregulation of the node. The numeric scale in the legend represents different values of the nodes PI under different
perturbations. Nodes that induce similar alterations are hierarchically clustered.

https://doi.org/10.1371/journal.pone.0192949.¢g002

different experimental designs/conditions/methodologies, represents a challenge with respect
to validation. This led us to propose and adopt a novel strategy consisting of the comparison of
the results of model-based virtual pathway simulations with those reported in the literature for
IBD patients. Using this approach, we obtained a qualitative reproduction of IBD in which all
the network elements that have been reported as upregulated in IBD patients appeared upre-
gulated in our simulation results. The perturbation analysis of the network was performed by a
single blockage in each node to analyse how that type of alteration propagates through the
entire network reflecting the case of single polymorphisms, which represents the simplest case
of IBD disease. Despite of the simplicity of this analysis, the results obtained from the model
accuracy and validation procedures are encouraging. Results from the perturbation analysis
indicate that the proposed network model is robust, as alteration in most nodes did not trigger
considerable changes in the network [61].

Once validated and checked for robustness, the network was challenged to qualitatively
reproduce the readouts of five different therapies reported in experimental and clinical studies.
The outcome of this challenge was similar to the clinical output in IBD patients. By the simula-
tion of TNFo. or MACR knockout (simulating Granulocyte and Monocyte Apheresis), a
decrease in MMPs node was observed, which is in line with therapy success in clinical practice
by a decrease in Crohn’s Disease Activity Index (CDAI) Score [42-46],[62-68]. On other
hand, IL17 or IFNy knockout or IL10 overexpression did not show major change in MMPs
expression, suggested a failed therapy as was indeed found in clinical practice [69-72].

Surprisingly, the model shows that a knockout of IL2 leads to a reduction in MMPs similar
to that of a knockout of TNFo, even when previous results of clinical trials with Basiliximab or
Daclizumab (monoclonal antibodies that bind to the interleukin 2 receptor CD25) in Ulcera-
tive Colitis have failed to show superiority to corticosteroids alone [73,74]. The mechanism of

Table 3. Expression of network nodes in IBD patients.

NODE | EXPRESSION | NODE

PGN Altered
MDP
LPS

TLR2 | Upregulated
TLR4 | Upregulated
NOD?2 | Altered
NFkB | Altered

IL6 Upregulated
TNFa | Upregulated

TGFb | Upregulated
Tho Unknown

ThO_M | Upregulated
IL18 Upregulated

IL1b

IFNg
1123
1L22
1L21
IL17

IL10
Th17
Th17_M
Th1

EXPRESSION |NODE | EXPRESSION NODE EXPRESSION
Upregulated | Th2 Upregulated DC Downregulated in Blood-Upregulated in
mucosa
Upregulated 1L4 Altered IEC_MICA_B | Upregulated
Upregulated | IL15 | Upregulated IEC_ULPB1_6 | Upregulated
Upregulated | IL12 | Upregulated CD8_NKG2D | Upregulated
Upregulated | IL13 | Upregulated NK_NKG2D | Unknown
Upregulated | Treg | Downregulated in Blood-Upregulated in | CD4_NKG2D | Upregulated
mucosa
Upregulated | NK Upregulated FIBROBLAST | Upregulated
Upregulated | DEF | Altered MMPs Upregulated
Upregulated | IL2 Upregulated PERFOR Altered
Altered MACR | Unknown GRANZB Upregulated

A total of 31 nodes are reported as upregulated in IBD patients, 9 are reported to be altered (when different reports from literature are inconclusive or contradictory)

and 3 nodes are unknown.

https://doi.org/10.1371/journal.pone.0192949.t003
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Fig 3. IBD network simulation results. Attractor state of every network node for healthy and IBD simulated individuals under chronic antigen exposure.

https://doi.org/10.1371/journal.pone.0192949.g003

action of corticosteroids has not been fully described, yet it is known that corticosteroids cause
diminished levels of IL2 mRNA [75,76]. Together with the rest of corticosteroid inhibitory
mechanisms, this would be the reason why Basiliximab or Daclizumab do not show superiority
to corticosteroids alone.

Among the potential applications the current network supports: (i) biomarker selection
given that the cytokines TNFo, IL21, IL17 and IL183, which can be easily measured in periph-
eral plasma with different Enzyme-linked immunosorbent assay (ELISA) kits [77,78], are the
model components directly related to MMPs activation, (ii) search for optimal combination
therapy to overcome the high attrition rates in phase clinical trials with single therapies which
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Fig 4. Comparison of MMPs expression after the simulation in IBD simulated individuals of different therapies.
Simulated therapies: Anti-TNFa, GMA therapy (equivalent of knock out our MACR node), anti-IL17, human
recombinant IL10 (rhulL-10), anti-IFNy, anti-IL2 and anti-IL12-IL23. Comparing with untreated simulation, we can
see a 30.7%, a 27.1%, a 31.9% and a 4.1% decrease in the MMPs expression simulating anti-TNFo, GMA therapy, anti-
IL2 and anti-IL12-IL23 respectively. There is no major change in MMPs expression for the two which failed in clinical
trials anti-IL17 (a 6.5% decrease) and human recombinant IL10 (a 3.2% decrease). Otherwise, anti-IFNy therapy
simulation shows an increase in MMPs expression of 16.0% compared to Untreated.

https://doi.org/10.1371/journal.pone.0192949.g004

are due mainly to lack of efficacy [79], and (iii) management of multiscale information such as
the integration of proteomic gene expression data [55] accounting for IBD polymorphisms to
anticipate responders and non-responders. With such a type of data able to correlate a genetic
alteration with a decrease or an increase in protein expression, it would be possible to simulate
specific genetic alteration by altering the protein expression. This would allow one of the limi-
tations of the current network at the present time to be overcome with regard to the effects of
Ustekinumab, a monoclonal antibody targeting free IL12 and IL23, which has been recently
approved for moderately to severely active Crohn’s disease in adults who have failed to treat-
ment with immunomodulators, or more than one TNFa. blocker [80]. Simulation results
based on the known mechanisms of Ustekinumab showed just a 4.1% decrease in tissue dam-
age. On the other hand, when simulating TNFo blocker effects, tissue damage decreased by
30.6% even though a substantial percentage of patients showed poor control of the disease
after treatment with anti-TNFo antibody [15,16].

We emphasize that the proposed network model is fully accessible which allows it to
undergo immediate testing and further development. In that respect it should be noted that
although our model intended to include information of human origin exclusively, some criti-
cal pathways had to be complemented with animal derived data (although in the current case
the percentage of human supported pathways is greater than in previous computational mod-
els [20,81,82]), but we are aware of the wide differences in the immune system between species
[83-85].
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This study addresses the goals of systems pharmacology by effectively encompassing prior
knowledge to generate a mechanistic and predictive understanding at the systems level for
IBD. Semi-quantitative understanding at the network level is necessary prior to the generation
of detailed quantitative models for within-host disease dynamics. The current IBD model and
the companion literature summary archive will drive the development of a dynamic (i.e., ordi-
nary differential equation driven) model involving meaningful parameters capable of simulat-
ing longitudinal data, and allowing model reduction as well the goal of parameter estimation
during the clinical stages of the drug development process. In addition, our IBD network can
be extended to other inflammatory diseases, as main pathways in the model are common to
most inflammatory conditions [86,87], and the outputs of our nodes could also serve as inputs
to broader-scale logic models; for example, incorporating structures from available logic mod-
els of some of our nodes such as fibroblast [61], IL1b or IL6 [88].

In summary, we present a network model for inflammatory bowel disease which is available
and ready to be used and can cope with (multi-scale) model extensions. It is supported by a
comprehensive repository summarizing the results of the most relevant literature in the field.
This model proved to be promising for the in silico evaluation of potential therapeutic targets,
the search for pathway specific biomarkers, the integration of polymorphisms for patient strat-
ification, and can be reduced and transformed in quantitative model/s.

Methods
Literature search and data selection

The network model is based on an exhaustive bibliographic review focusing on the essential
components of IBD, as previously performed by Ruiz-Cerda et al., in their systems pharmacol-
ogy approach for lupus erythematosus [23]. Our review included around 620 papers published
between October 1984 and September 2017, yet the most common reviewed articles were from
2007 or later (76%). The search of the relevant literature was made through Medical Subject
Headings (MeSH) terms using different search engines such as PubMed, clinicaltrials.gov or
google scholar. MeSH terms were focused on the combination of keywords and free words
including;: (i) relevant network components (ej.”IL6”) involved in the pathogenesis of IBD, (ii)
nodes that have been reported to be altered in IBD (ej. “IL6 AND IBD”) and (iii) nodes directly
affecting the expression of the nodes selected in (i) and (ii) (ej. “DC AND IL6”). The internal
nodes selection was made according to the reported upregulated components in IBD patients
together with the nodes (immune system cells) which are necessary to link the upregulated
nodes, which were established as internal nodes. Only original papers with a clear description
of experimental conditions were considered to identify the relationships between the compo-
nents of the biological network. Due to the reported differences between animal and human
immunology [83-85], in only few cases were animal data considered to connect nodes of criti-
cal pathways when no human data were available.

Annotation and system representation

Annotation was crucial to organize the available literature according to its relevance. S2 Table
from supplementary information shows the way the information was organized for building
the network. S2 Table includes every node definition and the relationships between the nodes.
Annotation included the identification of the main elements (antigens, cytokines, cells, pro-
teins, membrane receptors and ligands) of IBD disease.

The IBD model will be freely accessible to the public through the “The Cell Collective”
repository https://cellcollective.org/#cb963d7f-75cb-4b2e-8987-0c7592a9¢21d.
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Boolean network building and r implementation

The collection of qualitative relationships extracted from the literature was transformed into a
logical model as described before by Ruiz-Cerda et al. [23]. Logic networks capture the dynam-
ics of their components, called nodes, after selected stimuli or initial conditions [89,90]https://
paperpile.com/c/XvtklO/p0BRz+YiQ4q. In these models the relationships of activation or
inhibition between nodes are described as combinations of the logic operators: AND, OR and
NOT condensed in a mathematical expression called a Boolean function for each node. Posi-
tive and negative modulators, and thresholds as previously described by Ruiz-Cerda et al.[23]
and Irurzun-Arana et al. [28] were also considered to resemble better the biological system.
Boolean network building and R implementation from S1 File gives a more detailed explana-
tion of the modulators used in the model.

Simulations

The set of combined Boolean functions for the IBD model was implemented SPIDDOR [28],
using RStudio Version 0.99.442. Simulations with 25 repetitions over 5000 iterations were per-
formed. According to preliminary experiments, these simulation conditions were required to
achieve the steady state of the network called attractor [91-93]. An attractor can be a fixed-
point if it composed of one state, a simple cycle if consists of more than one state that oscillates
in a cycle or a complex attractor if a set of steady-states oscillate irregularly. In each simulation,
anode can show two possible values in each iteration: 0 (deactivated) or 1 (activated). The per-
centage of activation of the output node (MMPs) calculated at the attractor state was used as
the readout summary of the simulation exercises, as this group of proteins are directly associ-
ated with intestinal fibrosis and tissue damage in IBD [42-46].

Each node was updated asynchronously [94-96] according to its Boolean function that
defines the dynamics of the system. Initial conditions are explained in detail in “Simulations”
from S1 File.

Perturbation analysis and clustering

Robustness can be defined as the system’s ability to function normally under stochastic pertur-
bations [96]. The investigation of robustness in Boolean networks generally focuses on the
dependence between robustness and network connectivity [97]. We performed a perturbation
analysis in our IBD model to study robustness by simulating the effect of the single blockage of
each node on every other node of the network [51]. This simulation was performed by using
the KO_matrix.f function from SPIDDOR package with 24 repetitions over 999 iterations
under asynchronous updating.

Results from the simulations described above were represented as heatmaps with dendro-
grams in which the number of rows and columns is equal to the number of nodes in the net-
work (Fig 2). The colour in each cell of the heatmap corresponds to the Perturbation Index(PI)
of the nodes, which is the probability ratio between the perturbed and the normal conditions
as described by Irurzun-Arana et al. [28]. A hierarchical clustering method [98] was applied to
further study which nodes cause similar alterations in the system.

Network accuracy and validation

Accuracy was evaluated comparing the alterations reported in the literature for IBD patients
with the simulations of chronic antigen exposure for IBD or healthy individuals.

A literature search of every node expression in IBD patients was performed, and the gath-
ered information is condensed in S3 Table including three categories: up-, down-regulated, or
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altered, whether the levels in CD, UC or both (IBD) with respect to healthy volunteers are
higher, lower, or inconclusive and/or contradictory, respectively.

For validation purposes, model simulations were compared against available results from
clinical trials performed in IBD, CD or UC until the beginning of 2017 in https://www.
clinicaltrials.gov/. All the molecules tested in clinical trials, whose mechanism of action is
known and whose target were included in our network, were tested with the model. The net-
work was evaluated comparing simulations and reported outcomes from clinical trials for six
investigated molecules: anti-TNFo. [62-65] and anti-IL12-IL23 [80], two monoclonal antibod-
ies (mAb) approved for IBD disease, anti-IFNy [69,70], anti-IL17 [72], anti-IL2 [73,74] and
human recombinant IL10 (rhuIL-10) [71] which failed in clinical trials. Also a new promising
therapy: Granulocyte and Monocyte Apheresis (GMA) [66-68] was tested. The reported
CDAI (Crohn Disease Activity Index) was compared with the average expression of the MMPs
output node in the attractor state.

Supporting information

S1 Table. Abbreviations. List of abbreviations.
(PDF)

S2 Table. IBD Network Repository. Table of nodes and interactions supported by references.
(PDF)

S3 Table. IBD_validation. Table of alterations in patients of IBD network nodes supported by
references.
(PDF)

S1 File. Supporting_Information_Methods. Document with detailed description of the
methodology.
(DOCX)

S2 File. IBD.txt. Text document with the Boolean functions written in SPIDDOR nomencla-
ture for iBD simulation.
(TXT)

S3 File. User_Guide_SPIDDOR_IBD.html. Html tutorial about how to reproduce the results
from the present manuscript with the SPIDDOR package.
(HTML)
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