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Abstract. We consider the problem of finding in a graph a set R of edges to be colored in
red so that there are maximum matchings having some prescribed numbers of red edges.
For regular bipartite graphs with n nodes on each side, we give sufficient conditions for the
existence of a set R with |R| = n + 1 such that perfect matchings with k red edges exist for
all k, 0 ≤ k ≤ n. Given two integers p < q we also determine the minimum cardinality of
a set R of red edges such that there are perfect matchings with p red edges and with q red
edges. For 3-regular bipartite graphs, we show that if p ≤ 4 there is a set R with |R| = p for
which perfect matchings Mk exist with |Mk ∩R| ≤ k for all k ≤ p. For trees we design a linear
time algorithm to determine a minimum set R of red edges such that there exist maximum
matchings with k red edges for the largest possible number of values of k.
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1. Introduction

Various types of packing problems in graphs have been extensively studied by many
authors; the maximum stable set problem (find a maximum cardinality set of mutu-
ally non adjacent nodes); the maximum matching problem (find a maximum cardi-
nality set of mutually non adjacent edges) and the maximal forest problem are some
of the most famous examples (see for instance [3] for a formulation of many basic
packing problems in graph theory).

A natural extension of packing problems has been considered in several forms.
It consists in giving a bicoloring (R, B) (for red and black) of the node set (resp.
of the edge set) of a graph G = (V , E); it is then required to find if G contains a
stable set S (resp. a matching M) such that |S ∩ R| ≥ p and |S ∩ B| ≥ q (resp.
|M ∩ R| ≥ p, |M ∩ B| ≥ q) where p and q are given positive integers (see [7, 15]).

Besides this, the problem of constructing a spanning tree T in a graph G = (V , E)

whose edge set is partitioned into sets R, B is considered in [7] with the requirement
that |T ∩ R| ≥ p: it is shown that a solution can easily be constructed by using
simple adaptations of basic algorithms.

In addition, the problem of constructing a bicolored perfect matching M in a
complete bipartite graph Kn,n (both the left set and the right set consist of exactly n

nodes) is considered in [15] with the requirement that |M∩R| = p; it is a special case
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of the problem consisting of determining whether in a complete bipartite graph Kn,n

where each edge [i,j] has a weight wij there exists a perfect matching M with weight
w(M) ≡ ∑

(wij | [i, j ] ∈ M) = p. This general case was shown to be NP-hard in
[4], while the special case wij = 1 if [i, j ] ∈ R and wij = 0 else was solved with a
polynomial algorithm in [11, 15]. The complexity of the problem with 0,1-weights
in general bipartite graphs is apparently unknown.

In this paper we intend to consider a related problem which is also based on a
bicoloring (R, B) of the edge set of a graph. We will essentially try to characterize
"minimal" sets R for which maximum matchings M can be found with specific values
of p = |M ∩ R|.

More specifically, given a graph G = (V , E) and a set P = {p0, p1, . . . , ps} of
integers 0 ≤ p0 < p1 < . . . < ps ≤ �|V |/2�, we want to color a subset R ⊆ E

of edges of G, say in red, in such a way that for any i (0 ≤ i ≤ s) G contains a
maximum matching Mi with exactly pi red edges, i.e., |Mi ∩ R| = pi .

We shall in particular be interested in finding a smallest subset R for which the
required maximum matchings do exist.

A subset R will be P − f easible for G if for every pi in P there is a maximum
matching Mi in G with |Mi ∩ R| = pi . Notice that for some P there may be no
P-feasible set R (take P = {0, 1, 2} in G = K2,2).

In section 2 we will derive some elementary properties of solutions in regular
bipartite graphs. Section 3 will be devoted to a special case where the set of values
p = |M∩R| is an interval of consecutive integers. Then section 4 will be dedicated to
a linear algorithm for trees. Finally section 5 will contain conclusions and possible
extensions.

All graph theoretical terms not defined here can be found in [3]. Basic properties
of matchings are to be found in [12]. For definitions linked to complexity, the reader
is referred to [13]. In general all graphs will be simple (no multiple edges, no loops).

2. Regular Bipartite Graphs

In this section we will state some basic results concerning P-feasible sets in regular
bipartite graphs.

Proposition 1. In a 	-regular bipartite graph G for any P with |P| ≤ 	 there exists
a P-feasible set R.

This follows from the fact that the edge set of G can be partitioned into 	 perfect
(and hence maximum) matchings (by the König theorem, see [3], chapter 12).

Let us now briefly consider a special case for a 	-regular bipartite graph.

Theorem 1. Let G = (X, Y, E) with |X| = |Y | = n be a 	-regular bipartite graph,
with 	 ≥ 2, and let P = {p, q} with 1 ≤ p < q ≤ n. The minimum cardinality of a
P-feasible set R is given by

|R| = q + max{0, p − n + |C|/2}



where C is a collection of node disjoint cycles which are alternating with respect to a
perfect matching and which have a minimum total length |C| = ∑

Ci∈C |Ci | satisfying
|C|/2 ≥ q − p.

Proof. Observe first that one can always find a collection C of alternating cycles sat-
isfying |C|/2 ≥ q − p. Take any 2−factor F in G. It is a collection of node disjoint
cycles which are alternating with respect to a perfect matching. F exists since G is
bipartite and 	-regular. Since 0 < q − p ≤ n = |F |/2 the 2−factor F satisfies the
inequality. In order to minimize the size of R we will have to find a family C which in
addition has a minimum number of edges. Let now M be a perfect matching in G.

1. Assume first p ≤ n − |C|/2; then we color in red p edges of M − C and q − p

edges of M ∩ C. This is possible since 0 < q − p ≤ |C|/2. Clearly we will have
|M ∩R| = q : by interchanging the edges of M ∩C and of C −M we get a perfect
matching M ′ with |M ′ ∩ R| = p. In such a case |R| has minimum cardinality,
since we must have |R| ≥ q for any P-feasible R. Notice that in this case any C
with |C|/2 ≥ q − p will do.

2. Suppose now p > n−|C|/2; we color in red n−|C|/2 edges of M −C and we also
color q − (n−|C|/2) = q −n+|C|/2 edges of M ∩C as well as p − (n−|C|/2) =
p − n + |C|/2 edges of C − M. This is possible since 0 < p − n + |C|/2 <

q − n + |C|/2 ≤ |C|/2. So we have |R| = p + q − n + |C|/2 ≤ n + |C|/2. Again
|M ∩ R| = q and by interchanging the edges of M ∩ C and of C − M we get a
perfect matching M ′ with |M ′ ∩ R| = p.
In order to have a matching M and a matching M ′ having respectively q and
p < q red edges, M ′ must be obtained from M by using a collection C of node
disjoint alternating cycles with |C|/2 ≥ q − p since |C| = |M�M ′|; we would
otherwise have 0 < |M ∩R|− |M ′ ∩R| ≤ |C|/2 < q −p. Now for any P-feasible
set R which is minimal (inclusionwise), we have two perfect matchings M, M ′
with |M∩R| = p, |M ′∩R| = q. So we have |R| = p+q−|(M∩M ′)∩R|; |R| will
be minimum if we maximise the third term. We have |(M ∩M ′)∩R| ≤ n−|C|/2
where C is any family of node disjoint alternating cycles with respect to some
perfect matching with |C|/2 ≥ q −p; taking such a family C, with |C| minimum,
will give the largest value of n − |C|/2, so R has minimum cardinality. �
Notice that if p ≥ q − 2, we can use a single alternating cycle C instead of the

family C since in any alternating cycle C we have |C|/2 ≥ 2 ≥ q − p.

Corollary 1. Let G = (X, Y, E) with |X| = |Y | = n be a 	-regular bipartite graph
and let P = {q − a, q} with 1 ≤ q ≤ n and 1 ≤ a ≤ 2. The minimum cardinality of a
P-feasible set R is given by

|R| = q + max{0, q − n + |C|/2 − a}
where C is a shortest cycle which is alternating with respect to some perfect matching
in G.

Surprisingly the complexity of finding in a graph G a shortest possible alternat-
ing cycle with respect to some maximum matching (not given) is unknown even if



G is a 3-regular bipartite graph. For reference purposes, this problem will be called
the SAC problem (Shortest Alternating Cycle); it is formally defined as follows:

INSTANCE: a graph G = (V , E) and a positive integer L ≤ |V |
QUESTION: is there a maximum matching M and a cycle C with |C| ≤ L and

|C ∩ M| = 1
2 |C| ?

Notice that the problem is easy if either a cycle C or a perfect matching M is
given.

In order to give a sufficient condition for a regular graph (X, Y, E) with |X| =
|Y | = n to have a P-feasible set R with |R| = n + 1 for P = {0, 1, . . . , n}, we will
need some preliminaries.

Lemma 1. For any collection of n subsets S1, . . . , Sn of a set S = {s1, . . . , sn} such that
|Si | = r ≥ √

n + 1, 1 ≤ i ≤ n, there exist two subsets Si, Sj such that |Si ∩ Sj | ≥ 2.

Proof. Assume we have a collection of m subsets Si of S with |Si | = r for all i ≤ m

and |Si ∩ Sj | ≤ 1 for all i, j ≤ m, then an element s ∈ S is contained in at most n−1
r−1

subsets Si (since the number of subsets Si which contain s and which are otherwise
disjoint is ≤ (n − 1)/(r − 1)); so the total number m of subsets is at most n

r
(n−1)
(r−1)

because we can take n different elements s and in doing this each set is counted r

times.
Now if we have m=n > n

r
(n−1)
(r−1)

, then there will be two subsets Si, Sj with |Si∩Sj |≥2.

The smallest r verifying r(r − 1) ≥ n − 1 is r = 1
2 (1 + √

4n − 3) <
√

n + 1. �

In the following, we denote by δ(G) the minimum degree of a graph G and by
N(x) the set of neighbours of x. Furthermore Ck will denote a cycle of length k.

Corollary 2. Let G = (X, Y, E) be a bipartite graph with |X| = |Y | = n, n ≥ 4. If
δ(G) ≥ √

n + 1 then G contains a cycle of length four.

Proof. If δ(G) ≥ √
n + 1, it follows from Lemma 1 that there exist two nodes

x, x′ ∈ X such that |N(x)∩N(x′)| ≥ 2. Hence, for y, y′ ∈ N(x)∩N(x′), (x, y, x′, y′)
is a cycle. �

Fact 2.1. Let n, p, q be three integers such that 0 ≤ q ≤ p ≤ n. Then p+√
n − p+1 ≥

q + √
n − q + 1.

Proof. If p = q, the result is obvious. Consider now the case p > q. Then p +√
n − p + 1 ≥ q + √

n − q + 1
⇔ p + √

n − p ≥ q + √
n − q

⇔ p − q ≥ √
n − q − √

n − p

⇔ (p − q)(
√

n − q + √
n − p) ≥ p − q

⇔ √
n − q + √

n − p ≥ 1
This is necessarily true, as 0 ≤ q < p ≤ n. �



Fact 2.2.
n+2 n

4 �+1
2 ≥ 2(n

4 � − 1) +
√

n − 2(n
4 � − 1) + 1

Proof.
n+2 n

4 �+1
2 ≥ 2(n

4 � − 1) +
√

n − 2(n
4 � − 1) + 1

⇔ n + 2n
4 � + 1 ≥ 4n

4 � − 4 + 2
√

n − 2(n
4 � − 1) + 2

⇔ n − 2n
4 � + 3 ≥ 2

√
n − 2(n

4 � − 1)

⇔ n2 + 4n
4 �2 + 9 − 4nn

4 � − 12n
4 � + 6n ≥ 4n − 8n

4 � + 8

⇔ n2 + 4n
4 �2 + 1 − 4nn

4 � − 4n
4 � + 2n ≥ 0

⇔ 4n
4 � ≤ 2n + 1 + (n − 2n

4 �)2

Notice that 4n
4 � < n + 4 ≤ 2n if n ≥ 4, thus 4n

4 � ≤ 2n + 1 + (n − 2n
4 �)2. �

Lemma 2. Let G = (X, Y, E) be a bipartite simple graph with |X| = |Y | = n, n ≥ 4.
A sufficient condition for G to contain k node disjoint cycles of length four is

δ(G) − 2(k − 1) ≥
√

n − 2(k − 1) + 1

Proof. Let G0, G1, . . . , Gk−1 be a sequence of graphs built as follows: G0 = G and
Gi is the subgraph of Gi−1 obtained by deleting nodes x, x′, y, y′ which form a cycle
C4.

We have δ(Gi) ≥ δ(Gi−1)−2 and ni = ni−1 −2 where ni is the number of nodes
of the left set (or of the right set) in Gi .

From fact 2.1, if 1 ≤ i ≤ k, we have:

δ(G) ≥ 2(k − 1) + √
n − 2(k − 1) + 1 ≥ 2(i − 1) + √

n − 2(i − 1) + 1. As a

consequence we have δ(Gi−1) ≥ δ(G) − 2(i − 1) ≥ √
n − 2(i − 1) + 1 = √

ni−1 + 1
for all i (1 ≤ i ≤ k).

So from Corollary 2, Gi−1 contains a C4 for all i (1 ≤ i ≤ k) and by the
construction we have found k node disjoint cycles C4. �

Theorem 2. Let G = (X, Y, E) be a 	-regular simple bipartite graph with |X| =
|Y | = n ≥ 4 and 	 ≥ 1

2 (n + 2n
4 � + 1). Let P = {0, 1, . . . , n}; then there exists a

P-feasible set R with |R| = n + 1.

Proof. We have 	 ≥ 1
2 (n + 2n

4 � + 1) ≥ 2 (n
4 � − 1) +

√
n − 2(n

4 � − 1) + 1 from

Fact 2.2. It follows from Lemma 2 that G contains n/4� node disjoint cycles C4.
Let {x2i+1, y2i+1, x2i+2, y2i+2} be the nodes of cycle Ci

4 for i = 0, . . . , n/4� − 1.
We observe that the number of nodes of X (or of Y ) contained in the cycles Ci

4
is 2n/4� ≥ n − n/2� = �n/2�.

Let now H = (X′, Y ′, E′) be the subgraph of G obtained by deletion of all
the cycles Ci

4 and their nodes. We have |X′| = |Y ′| = n − 2n/4� ≤ n/2� and
δ(H) ≥ 	−2n/4� ≥ 1

2 (n+2n/4�+1)−2n/4� = 1
2 (n−2n/4�+1) = 1

2 (|X′|+1).



It is known (see [2] [Corollary 7.3.13]) that such an H is hamiltonian. It has
then a 2-factor which can be partitioned into two perfect matchings MH , M ′

H of H .
Notice that |MH | = |M ′

H | = n − 2n/4�.
We now construct R as follows:

R = {[xi, yi ] i = 1, . . . , 2n/4�} ∪ {[x1, y2]} ∪ MH .

Clearly we construct perfect matchings in G by taking a perfect matching in
each Ci

4 and in H . Each Ci
4 (i ≥ 1) will give matchings with 0 or 2 edges of R; Co

4
will give matchings with 1 or 2 edges of R. In H , the matchings MH and M ′

H have
|MH | or 0 edges in R.

From the cycles Ci
4 we can construct matchings having 1, 2, . . . , 2n/4� edges

in R. These can be combined with MH ′ to get perfect matchings Mi in G having
1, 2, . . . , 2n/4� edges in R. Combining these matchings with MH will give perfect
matchings in G having 1 + |MH |, 2 + |MH |, . . . , 2n/4� + |MH | edges in R. Since
|MH | = n − 2n/4� ≤ n/2� we will produce perfect matchings of G having i edges
in R for any i with 1 ≤ i ≤ n.

Now since G is regular, we may remove the edges of all cycles Ci
4 and of MH ∪M ′

H .
We have a (	−2)-regular graph, which has a perfect matching M0 such that M0∩R =
∅. So we have constructed a P-feasible set R with |R| = 2n/4�+1+|MH | = n+1.

�

The following is a simple consequence of the König theorem:

Proposition 2. If a 3-regular bipartite graph contains a cycle on four nodes, then this
cycle is alternating with respect to some perfect matching.

Remark 1. In general a graph G may not have perfect matchings. We can find a
minimum cardinality P-feasible set R for P = {n − 1, n} : here Mn is a maximum
matching which is not perfect; an alternating chain C = {e1, e2} exists which starts
at some (exposed) node. We simply remove e2 from Mn and introduce e1 into Mn to
obtain Mn−1. So R = Mn ∪ {e1} − {e2}.

Let us mention additional results related to alternating cycles in bipartite graphs.

Theorem 3. Let G = (X, Y, E) be a 	−regular bipartite graph (	 ≥ 3) with |X| =
|Y | = n, then G contains a cycle C with |C| ≤ 2n/2� which is alternating with respect
to some perfect matching.

Proof. Let (M1, M2, . . . , M	) be an edge 	-coloring of G; if M1 ∪M2 is not a ham-
iltonian cycle, then it contains a cycle C with |C| ≤ 2n/2�. C is clearly alternating
for M1.

If M1 ∪M2 is a hamiltonian cycle, then consider any edge e ∈ M3; M1 ∪M2 ∪{e}
contains 2 cycles using e; at least one of them has at most 2n/2� edges; this cycle
is alternating with respect to M1 or M2. �



Theorem 4. Let G be a 	-regular bipartite graph (with 	 ≥ 3) such that for some
integral k ≥ 3 every cycle of length at least 2k has a chord. Then there exists a cycle
C with |C| ≤ 2k − 2 which is alternating with respect to some perfect matching.

Proof. Take a perfect matching M in G; since 	 ≥ 3 from the König theorem,
there exists a perfect matching M ′ with M ′ ∩ M = ∅. Then M ′ ∪ M contains a
cycle C which is alternating with respect to M. Assume |C| ≥ 2k; then there is a
chord ab. It determines with one part of C an alternating cycle C′ with respect to
M. Now |C′| ≤ |C| − 2. If |C′| ≥ 2k we continue. We will finally get a cycle C" with
|C"| ≤ 2k − 2 which will be alternating with respect to M. �

A tedious but not difficult enumeration of cases shows the following:

Theorem 5. For a 3-regular bipartite graph G = (X, Y, E) with |X| = |Y | = n ≤ 7,
there exists a set R ⊆ E with |R| ≤ n + 2 which is P-feasible for P = {0, 1, . . . , n}.

This result is best possible in the sense that there exists a bipartite 3-regular graph
on 2n = 14 nodes for which the minimum value of |R| is n + 2 = 9; this is the
so-called Heawood graph (or (3, 6)-cage) (see [8], p.309).

In 3-regular bipartite graphs G = (X, Y, E) with |X| = |Y | = n ≥ 8 the mini-
mum cardinality of a P-feasible set R for P = {0, 1, . . . , n} is not known.

Finally if we restrict P to {0, 1, . . . , p} with p ≤ 4, we can state the following:

Theorem 6. Let p ≤ 4 be an integer. For a 3-regular bipartite graph G = (X, Y, E),
with |X| = |Y | = n ≥ 2(p − 1) there exists a set R ⊆ E with |R| = p which is
P-feasible for P = {0, 1, . . . , p}.

Proof. We just give the proof for p = 4; the case p ≤ 3 can be handled similarly.
Let M, M ′ be two disjoint perfect matchings in G. So E − (M ∪M ′) is also a perfect
matching. Suppose M∪M ′, which is a 2-factor, is connected. It is then a hamiltonian
cycle C of G. Choose two chords of C, say [a, b] and [c, d], which are at distance at
least 2 (i.e. there are no two nodes of the chords that are adjacent). These chords,
belonging to E − (M ∪ M ′), divide the set of edges of cycle C into four parts A, B,
C and D.

Let M1 (resp. M2) be the matching containing the chord [a, b] (resp. [c, d]) and
|M| − 1 edges of C. Clearly M1 and M2 use the same edges of M ∪ M ′ in two parts,
say A and C, and different edges of M ∪M ′ in B and D. As the chords are at distance
at least 2, there are at least two edges e1, e2 ∈ M1 ∩M2. Let us distinguish two cases:

1. there exist e1, e2 ∈ M1 ∩ M2 ∩ M (if necessary exchange M and M ′)
It is obvious that there exists an edge e3 in B ∪ D such that e3 ∈ M1 ∩ M or
e3 ∈ M2 ∩ M as M1 and M2 use different edges in B and D. Suppose there
exists e3 ∈ M1 ∩ M. Take R = {[a, b], e1, e2, e3}. Then we have: |M ∩ R| = 3,
|M ′ ∩ R| = 0, |M1 ∩ R| = 4, |M2 ∩ R| = 2 and |(E − (M ∪ M ′)) ∩ R| = 1.

2. there exist no two edges e1, e2 such that e1, e2 ∈ M1 ∩ M2 ∩ M or e1, e2 ∈
M1 ∩M2 ∩M ′; this of course implies |A| = |C| = 3. Suppose e1 ∈ M1 ∩M2 ∩M



and e2 ∈ M1 ∩ M2 ∩ M ′. It is obvious that there exist two edges e3, e4 in B ∪ D

such that e3, e4 ∈ M1 ∩ M or e3, e4 ∈ M2 ∩ M as at least one part B or D

contains at least four edges. Suppose e3, e4 ∈ M1 ∩ M. Take R = {e1, e2, e3, e4}.
Then we have: |M ∩ R| = 3, |M ′ ∩ R| = 1, |M1 ∩ R| = 4, |M2 ∩ R| = 2 and
|(E − (M ∪ M ′)) ∩ R| = 0.

Suppose now M ∪M ′ is not connected. Then it consists of at least two cycles. Notice
that if there are more than two cycles, the solution is obvious. In fact consider three
cycles C1, C2 and C3. Take R = {e1, e2, e3, e4} such that e1, e2 ∈ C1∩M, e3 ∈ C2∩M

and e4 ∈ C3 ∩ M ′. Then of course there exist perfect matchings with 0, 1, 2, 3, 4
edges of R. So suppose now that M ∪ M ′ consists of exactly two cycles, C1 and C2.
Distinguish two cases:

1. at least one of the cycles, say C1, has a chord [a, b]
This chord divides cycle C1 in two parts A and B which contain both an odd
number of edges. Let M1 be the perfect matching containing chord [a, b], the
edges of M in A, the edges of M ′ in B (if necessary exchange M and M ′) and
edges of M in cycle C2. Let M2 be the perfect matching containing chord [a, b],
the edges of M1 in C1 and edges of M ′ in cycle C2. So there exist at least two
edges e1, e2 ∈ M1 ∩ M2 such that e1 ∈ M and e2 ∈ M ′. Consider e3, e4 ∈ C2

such that e3, e4 ∈ M. Take R = {e1, e2, e3, e4}. The we have: |M ∩ R| = 3,
|M ′ ∩ R| = 1, |M1 ∩ R| = 4, |M2 ∩ R| = 2 and |(E − (M ∪ M ′)) ∩ R| = 0.

2. none of the two cycles has a chord
This is only possible if both cycles have same length. As n ≥ 6, we have |C1| =
|C2| ≥ 6. Consider two edges [a, b], [c, d] ∈ E − (M ∪M ′) such that nodes a and
c are neighbors in C1. Let M1 be the perfect matching containing [a, b], [c, d],
edges of M in C1 and edges of M ∪M ′ in C2. Let e1, e2 ∈ C1 ∩M1 and e3 ∈ C2 ∩
M1 ∩M. Take R = {[a, b], e1, e2, e3}. Then we have: |M1 ∩R| = 4; |M ′ ∩R| = 0,
|M ∩ R| = 3, taking M in C1 and M ′ in C2 we obtain a perfect matching with
two edges of R, taking M ′ in C1 and M in C2, we obtain a perfect matching with
one edge in R. �

3. The Interval Property (IP)

We shall consider here the special case where P is a set of consecutive integers and
we will characterize graphs which have a property related to such a P . We will
exhibit some classes of graphs (bipartite or not) for which a P−feasible set R with
minimum cardinality can be obtained in polynomial time. We will denote by ν(G)

the cardinality of a maximum matching in G.
We shall say that G has property IP (interval property) if whenever there are

maximum matchings Mk, Mν in G with |Mk ∩ Mν | = k < ν = ν(G), there are also
maximum matchings Mi with |Mi ∩ Mν | = i for i = k, k + 1, . . . , ν.

In other words, when G has property IP and there is some k and two maximum
matchings Mk, Mν with |Mk ∩ Mν | = k ≤ ν(G), then R = Mν is P-feasible for
P = {k, k + 1, . . . , ν = ν(G)} and clearly R has minimum cardinality.



We define a IP-perfect graph G as a graph in which every partial subgraph has
property IP. We recall the reader that a partial subgraph of a graph G is obtained
by taking an induced subgraph G′ and keeping only a subset of edges of G′.

A cactus is a graph where any two (elementary) cycles have at most one common
node. A cactus is odd if all its (elementary) cycles are odd. Notice that a tree is a
special (odd) cactus.

Theorem 7. The following statements are equivalent:

(a) G is an odd cactus
(b) G is IP-perfect

Proof. (b) ⇒ (a) If G is not an odd cactus, there exists a partial subgraph which
is an even cycle C = Mν ∪ M0 with |Mν | = |M0| ≥ 2. We have Mo ∩ Mν = ∅
by construction and |Mν ∩ Mν | ≥ 2, but there is no M1 with |M1| = |Mν | and
|M1 ∩ Mν | = 1.

(a) ⇒ (b). Assume we have two maximum matchings Mk, Mν with |Mk ∩Mν | =
k < ν = ν(G). Consider Mk�Mν . It consists of a collection of node disjoint even
alternating chains with total length 2(ν − k) > 0.

Starting from Mν we may use some of the subchains (by starting from the end
nodes saturated by Mν) to replace r = ν − i edges of Mν by r edges of Mk in order to
obtain a maximum matching Mi with |Mi ∩Mν | = i = ν−r for i = k+1, . . . , ν(G).
Since every partial subgraph of G is also an odd cactus, G has property IP. �

It follows from Theorem 7 that if we want to find the largest sequence of consec-
utive integers P = {p0, p1, . . . , ps} such that a set R = Mν is P-feasible for an odd
cactus G, we have to find in G two maximum matchings Mk, Mν such that |Mk ∩Mν |
is minimum.

Let us examine first the case of bipartite graphs (that include trees but not odd
cacti).

Theorem 8. If G = (X, Y, E) is a bipartite graph, there exists a polynomial time algo-
rithm to construct two maximum matchings M, M ′ with a minimum value of |M ∩M ′|.

Proof. Let us replace each edge [x, y] of G by two arcs (x, y)0 and (x, y)1 with
capacities c(x, y)0 = c(x, y)1 = 1 and costs k(x, y)0 = 0, k(x, y)1 = 1. Introduce
a source s with arcs (s, x) having c(s, x) = 2 and k(s, x) = 0 for each node x in X.
Similarly for each node y in Y introduce a sink t with arcs (y, t) with c(y, t) = 2
and k(y, t) = 0.

Construct in the network N obtained in this way an (integral) maximum flow f

from s to t with minimum cost K(f ). Clearly there exists a feasible flow with value
2ν(G) (obtained by setting f (x, y)1 = f (x, y)0 = 1 for all arcs (x, y) corresponding
to the edges [x, y] of a maximum matching in G). Furthermore no flow can have a
value larger than 2ν(G) (because this would mean that there is in G a matching M

with |M| > ν(G)). Now the cost of f is equal to the number of arcs (x, y)1 with
f (x, y)1 = 1. Since K(f ) has been minimized, we have a minimum number of such



arcs and furthermore f (x, y)1 = 1 implies f (x, y)0 = 1. These are the edges [x, y]
of G which are used in both matchings M, M ′. Hence an integral flow f with max-
imum value 2ν(G) and minimum cost K(f ) will define two maximum matchings
M, M ′ with |M ∩ M ′| = K(f ) minimum.

It is known that such a flow can be constructed in polynomial time (see [1]). �

For trees we will present a more efficient algorithm (linear time) in the next
section.

Remark 2. For non bipartite graphs, one cannot use the same construction (dupli-
cation of edges) and determination of a maximum 2-matching (partial graph H with
degrees dH (z) ≤ 2 for each node z):

In the graph of Figure 1, we would obtain a 2-matching H consisting of the edges
of all four triangles; its cost is 0. It is clearly not the union of two maximum match-
ings. The two maximum matchings M, M ′ with |M ∩ M ′| minimum are M = M ′
given by the heavy edges; the cost of this 2-matching is 6.

At this stage, we can deduce from Theorems 7 and 8.

h

a b

c d

e

f g

Fig. 1. An odd cactus where the 2-matching algorithm does not give the solution



Theorem 9. If G = (V , E) is a forest, we can determine in polynomial time a min-
imum k and a minimum set R of edges to be colored in red in such a way that for
i = k, k + 1, . . . , ν(G) G has a maximum matching Mi with |Mi ∩ R| = i.

Remark 3. In a graph G with the IP property, there exists a set R with |R| = ν(G)

such that for i = 0, 1, . . . , ν(G) G has a maximum matching Mi with |Mi ∩ R| = i

if and only if G has two disjoint maximum matchings.
It should be noticed that finding in a graph two maximum matchings that are

as disjoint as possible is NP-complete. This is an immediate consequence of the
NP-completeness of deciding whether a 3-regular graph has an edge 3-coloring
[10].

We will now show that there is an algorithm to determine if some special odd
cacti have two disjoint maximum matchings.

In [6], it is shown that finding a maximum number of edges that can be colored
with 2 colors is NP-hard in multigraphs.

D. Hartvigsen has developed (see [9]) an algorithm for constructing in a graph
a partial graph H with dH (v) ≤ 2 for each node v, which contains no triangle and
which has a maximum number of edges.

Such an algorithm can be used in graphs where the only odd cycles are triangles
(these are the so called line-perfect graphs (see [14], [5]). We obtain the following:

Theorem 10. If G is a line-perfect graph, one can determine in polynomial time whether
G contains two disjoint maximum matchings.

Proof. We apply the algorithm of D. Hartvigsen that gives a partial graph H with
dH (v) ≤ 2 for each v, which contains no triangle and which has a maximum number
|E(H)| of edges. Since G has no odd cycle of length 5 or more, E(H) has no odd
cycle and is therefore the union of two disjoint matchings M1, M2.

We cannot have |E(H)| > 2ν(G) because this would imply that H contains a
matching M with |M| > ν(G). So we have |E(H)| ≤ 2ν(G) and if |E(H)| < 2ν(G),
then clearly G cannot contain two disjoint maximum matchings. So assume we have
|E(H)| = 2ν(G). Since |M1|, |M2| ≤ ν(G) and |E(H)| = 2ν(G) = |M1| + |M2|, we
have two disjoint matchings M1, M2 with |M1| = |M2| = ν(G). �

From Theorems 7 and 10 we obtain:

Corollary 3. If G is a cactus where all cycles are triangles, one can determine in poly-
nomial time whether there exists a minimum set R of edges that is P-feasible for
P = {0, 1, . . . , ν(G)}.

It should be noted that in order to find two maximum matchings M, M ′ with |M∩M ′|
minimum, we would need to introduce weights on the edges, but apparently this can-
not be handled by the above algorithm.



Since line-perfect graphs may contain even cycles and consequently alternating
cycles with respect to some maximum matching, we shall not discuss further about
this class (that does not have the IP property) but we shall concentrate on trees.

4. A Linear Time Algorithm for Trees

We will describe an algorithm for constructing in a tree T two maximum matchings,
say M and M ′, which are as disjoint as possible, i.e. such that |M ∩M ′| is minimum.
Although such a construction could be performed by network flow technique, we
shall sketch here a linear time algorithm.

We will therefore choose a pendent node (a node of degree 1) as a root r and
orient all edges towards this root as usual. T becomes an arborescence with arcs
(x, y).

We shall start from a leaf (node w with d−
G(w) = 0) and follow an oriented path

until we meet a node v of indegree > 1 or the root r. Such a node will be called a
hip while the paths starting at leaves and reaching v will be called legs. Their parity
will be the parity of their number of arcs. Let ev ≥ 0 (resp. od ≥ 0) be the number
of even (resp. odd) legs starting at hip v.

We have several cases to examine:

Case 4.1. ev = 0, od ≥ 2
If there are two maximum matchings with minimum intersection, then there are
two maximum matchings M, M ′ such that M ∪ M ′ contains any two (odd) legs of v

and all but the first arc out of v of the remaining (odd) legs. Clearly M and M ′ are
disjoint on these legs.

Furthermore the unique arc (v, u) is not in M ∪ M ′ and we can remove it. We
construct for the subtree formed by (v, u) and the legs out of v a transversal set �
consisting of v and all nodes in the legs at even distance from v.

Clearly |�| is equal to the number of edges of M (or M ′) in the legs out of v.
We remove the subgraph induced by v and the legs out of v.

Case 4.2. ev > 0, od ≥ 2
We proceed as in case 1 for the arcs on the odd legs and for the even legs, we take the
even numbered arcs (starting from the hip v). Again the transversal set � consists
of v and all nodes in the legs at even distance from v. The edges of the even legs
chosen belong to M ∩M ′; we keep track of their number i(v). We can again remove
the subgraph induced by v and its legs.

Clearly any two maximum matchings M1, M2 in G have |M1 ∩M2 ∩L(v)| ≥ i(v)

where L(v) consists of the unique arc (v, u) and the legs hanging from hip v. Notice
that we have |�| = |M ∩ L(v)| = |M ′ ∩ L(v)|.

Case 4.3. ev > 0, od = 1
We take all even numbered edges of the ev even legs of v and introduce them into M

and M ′; let j (v) be their number. We observe that for any two maximum matchings



M1, M2 in T we have |M1 ∩ M2 ∩ Le(v)| ≥ j (v) where Le(v) are the even legs at
hip v.

Then we take for � all nodes at odd distance from v in these even legs. We remove
all these even legs, so v now has degree 2 (unless it was the root). As before we have
|�| = |M ∩ Le(v)| = |M ′ ∩ Le(v)|.

Case 4.4. ev > 0, od = 0
In this case, we take the even numbered edges of the ev − 1 shortest even legs at hip
v; let k(v) be their number. We introduce them into M and M ′.

We take for � the nodes at odd distance from v in these ev −1 even legs. We have
|�| = |M ∩ L∗(v)| = |M ′ ∩ L∗(v)| where L∗(v) is the collection of edges in these
ev − 1 shortest even legs. Again for any two maximum matchings M1, M2 in T we
have |M1 ∩ M2 ∩ L∗(v)| ≥ k(v). We remove L∗(v) and v now has degree 2 (unless it
was the root).

So we shall start from a leaf of T and apply the above rules until we reach a
hip v which is directly connected to the root r of T ; we will construct matchings
M, M ′ and a transversal set � such that |M| = |M ′| = �. This will be a certificate
of optimality for the matchings. Furthermore at each stop the choices (of legs) will
have been made in such a way that |M ∩ M ′| is as small as possible.

It just remains to describe the last step when there is only a single path P left in
T from the root r. If this leg is even, then we may insert alternately the arcs of P in
M and in M ′ and introduce the nodes of P at odd distance from r into �.

If P is odd, then we have to introduce the odd numbered arcs of P into M and
M ′ so |M ∩ M ′ ∩ P | = |P |/2� and we introduce into � the even numbered nodes
of P .

So we have obtained two maximum matchings M, M ′ in T with a minimum
value of k = |M ∩M ′| and by coloring the edges of M in red (i.e., setting R = M) we
can construct maximum matchings Mi in T with |Mi ∩ R| = i for i = k, . . . , ν(T ).

5. Conclusion

We have examined the problem of finding a minimum subset R of edges for which
there exist maximum matchings Mi with |Mi ∩ R| = pi for some given values of
pi . Partial results have been obtained for some classes of graphs (regular bipartite
graphs, trees, odd cacti with triangles only,. . .).

In general, our problem requires the determination of a shortest alternating cycle
(SAC problem) whose complexity status is open.

Further research is needed to extend our results to other classes of graphs. These
problems seem to be more difficult than the spanning tree problems in bicolored
graphs mentioned in the introduction; the reason is that it is a special case of three
matroid intersection as mentioned in [7]: a matching is an intersection problem of
two matroids and the bicoloring (R, B) induces a partition matroid; for trees we
simply have, in addition to the partition matroid, a second matroid whose indepen-



dent sets are the forests in G. Such problems are known to be solvable in polynomial
time (see [12]).
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