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a b s t r a c t

In threshold graphs one may find weights for the vertices and a threshold value t such that
for any subset S of vertices, the sum of the weights is at most the threshold t if and only if
the set S is a stable (independent) set. In this note we ask a similar question about vertex
colorings: given an integer p, when is it possible to findweights (in general depending on p)
for the vertices and a threshold value tp such that for any subset S of vertices the sum of
the weights is at most tp if and only if S generates a subgraph with chromatic number at
most p − 1? We show that threshold graphs do have this property and we show that one
can even find weights which are valid for all values of p simultaneously.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Threshold graphs have been introduced by Chvátal and Hammer [2] with a characterization based on stable sets, namely
the existence of weights for the vertices and of a threshold value t such that the sum of the weights of vertices in a subset S
of vertices is at most t if and only if S is a stable set. First, we observe that a stable set can be viewed as a set of vertices which
induce no clique K2. Considering that a stable set in a graph G is also a 1-colorable set in the sense of classical vertex coloring,
we may envisage extensions of the above properties by considering subsets S of vertices in Gwhich induce no clique Kp and
also subsets S which would be p-colorable for some specific p ≥ 1. Based on results obtained for this generalized notion of
threshold graphs,wewill show that the class of threshold graphs does indeed have some remarkable properties of chromatic
flavor which have to our knowledge not been made explicit yet.

In Section 2, we will present these extensions and use the corresponding properties to give new characterizations of
threshold graphs. Section 3 deals with some further properties of threshold graphs. Finally, in Section 4 we consider the
special case p = 3.

All graph-theoretical terms not defined here can be found in [7]. For more properties of threshold graphs, the reader is
referred to [4,5]. We recall that threshold graphs belong to the class of split graphs, i.e., graphs in which the vertex set can
be partitioned into a clique and a stable set. These graphs are perfect and they have been extensively studied by various
authors, see for instance [1]. It follows that threshold graphs are perfect.

2. New characterizations of threshold graphs

All graphs in this paper are finite, undirected, loopless and without multiple edges. Let G = (V , E) be a graph. An
edge joining two vertices u and v is denoted by uv. The set of neighbors of a vertex v in G is denoted by NG(v) and
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NG[v] = NG(v) ∪ {v}. Let H ⊆ V . The subgraph of G induced by H is denoted by G[H]. As usual, a clique on n vertices
is denoted by Kn.

In what follows, we introduce some graph classes that either can be seen as a generalization of threshold graphs, or are
defined by seemingly stronger conditions. Our main theorem (Theorem 6) will present an interesting link between these
graph classes.

Definition 1. Let p ≥ 2 be an integer. A graph G = (V , E) is a p-threshold graph if there exists a value tp and nonnegative
weightswp(v) for all vertices v ∈ V such that for any S ⊆ V ,wp(S) =


v∈S wp(v) ≤ tp if and only if G[S] contains no clique

Kp.

Remark 2. Notice that p-threshold graphs are a generalization of threshold graphs. Indeed 2-threshold graphs are
equivalent to threshold graphs.We also notice that the property of being p-threshold is hereditary, i.e., any induced subgraph
of a p-threshold graph is also p-threshold. Furthermore, the set of p-threshold graphs is clearly closed under removal of any
edges that do not belong to any p-clique. For brevity, we call a class of graphs p-hereditary if it is closed under taking induced
subgraphs and removing edges not belonging to any p-clique.

Definition 3. A graph G = (V , E) is totally threshold if there exist weights w(v) for each v ∈ V and values t2, t3, . . . , tp, . . .
such that for any p ≥ 2 and any subset S of vertices


v∈S w(v) ≤ tp if and only if G[S] contains no clique Kp.

Hence, totally threshold graphs are p-threshold for any p ≥ 2. But even more strongly, there is a uniform set of weights
(with different thresholds) that certifies p-thresholdness for p ≥ 2. Whereas at first sight totally thresholdness looks like a
significantly stronger property than thresholdness, we will prove later that these notions actually coincide.

Notice that for any given weights w: V → R+ and any p that is larger than the size of a maximum clique in G, one can
simply choose the threshold for p to be tp = w(V ) to obtain a threshold for p that certifies that G is p-threshold.

The above definitions can naturally be extended to chromatic numbers, by replacing the property of p-threshold graphs
that an induced subgraph G[S] whose weights are below the threshold value contains no p-clique with the property that
G[S] is p − 1-colorable. This leads to the classes of p-chromishold and totally chromishold graphs as defined below.

Definition 4. A graph G = (V , E) is said to be p-chromishold for some integer p ≥ 2, there exists a value tp and nonnegative
weights wp(v) for all vertices v ∈ V such that for any S ⊆ V , wp(S) =


v∈S wp(v) ≤ tp if and only if G[S] has chromatic

number χ(G[S]) ≤ p − 1.

Notice that 2-chromishold is the same as 2-threshold.

Definition 5. A graph G is called totally chromishold if there exist weights w(v) for each vertex v and threshold values
t2 < t3 < · · · < tp < · · · such that for any p ≥ 2 and any subset S of vertices,


v∈S w(v) ≤ tp if and only if G[S] has

chromatic number at most p − 1.

We are now ready to prove our main result of this section, which shows in particular that the property of a graph being
threshold is equivalent to the seemingly stronger property of being totally threshold.

Theorem 6. For a graph G the following statements are equivalent:

(a) G is a threshold graph;
(b) G is totally threshold;
(c) G is totally chromishold.

Proof. It immediately follows from the definitions above that (b) ⇒ (a). Furthermore, G being totally chromishold implies
that G is 2-chromishold which in turn is equivalent to G being threshold; therefore (c) ⇒ (a).

We now show (a) ⇒ (b). We shall show that we can assign to each vertex v a single weight w(v) and find a collection
of threshold values t2 < t3 < · · · < tp < · · · such that for any subset S of vertices and any value of p,


v∈S w(v) ≤ tp if and

only if G[S] contains no induced Kp.
In order to assign the weights to the vertices of a given threshold graph G, that certify that G is totally threshold, we will

use a well-known property of threshold graphs (see [5]): a graph G is a threshold graph if and only if it can be constructed by
introducing consecutively vertices in an order v1, v2, . . . , vn such that for any i, either vi is linked to all vertices v1, . . . , vi−1
or to none (vi is called universal in the first case or isolated in the second case).

If n = |V |, we set tp = (p − 1)2n for p = 2, 3, . . .. For i = 1 we set w(v1) = 2n−1 and for i = 2, . . . , nwe set

w(vi) =


2n

− 2n−i if vi is universal
2n−i if vi is isolated.

Claim 1. Assume we have assigned weights as above to the vertices v1, v2, . . . , vi; then for any subset S ⊆ {v1, . . . , vi} we have
mink∈N |


v∈S w(v) − k2n

| ≥ 2n−i.
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Proof of the Claim. At iteration 1, we have w(v1) = 2n−1 and the result holds. If the result holds at iteration i − 1, then by
adding a vertex vi with weight w(vi) = 2n−i or w(vi) = 2n

− 2n−i, it is immediate to observe that any subset S will have a
weight such that mink∈N |


v∈S w(v) − k2n

| ≥ 2n−i+1
− 2n−i

= 2n−i. This proves the claim. �

It remains to show that the assignedweights are indeed a certificate of G being totally threshold.We prove the statement
by induction on the size of G. The statement trivially holds for a single-vertex graph. Hence, assume that G is of size at least
2 and that the suggested weights and thresholds certify that any graph of size strictly smaller than G is totally threshold. We
have to show that for any p ∈ Z≥2, the given weights and threshold certify that G is p-threshold. Notice that for p = 2, the
result follows from the fact that the concepts of threshold and 2-threshold coincide (for this, we do not need induction on
the size of G). Hence, let p ∈ Z≥3.

Consider the vertex vn, and let G′
= G[V \ {vn}]. Notice that the restriction of the weights w, which were assigned to G,

to the graph G′, corresponds to the weights w′ we would assign with our scheme to G′ multiplied by a factor of 2, because
G has one more vertex than G′. Also the thresholds assigned to G are twice as large as those that would be assigned to G′.
Hence by induction, the weights w and the threshold value tp, when restricted to G′, certify that G′ is k-threshold for any
k ∈ Z≥2, since the definition of being k-threshold is invariant with respect to scaling all weights and thresholds by a same
positive factor. We distinguish two cases depending on whether vn is isolated or universal.
1. vn is an isolated vertex.

Let S ⊆ V . If G[S] contains an induced Kp, then so does G[S \ {vn}], and therefore we obtain by induction w(S) ≥

w(S \ {vn}) > tp. If G[S] does not contain an induced Kp, then G[S \ {vn}] does as well not contain an induced Kp and
we have w(S \ {vn}) ≤ tp = (p − 1)2n. Together with Claim 1, this implies w(S \ {vn}) ≤ (p − 1)2n

− 2, and hence
w(S) = w(S \ {v}) + w(vn)  

=1

≤ tp.

2. vn is a universal vertex.
Let S ⊆ V . If G[S] contains an induced Kp, then G[S \ {vn}] contains an induced Kp−1, and by induction we have

w(S \ {vn}) > tp−1. Thus, w(S) = w(S \ {vn}) + w(vn) > tp−1 + 2n
− 1 = tp − 1, which implies w(S) ≥ tp. Claim 1

implies w(S) ≠ tp, and therefore w(S) > tp. If G[S] does not contain an induced Kp, then G[S \ {vn}] does not contain an
induced Kp−1. Hence, by inductionwe havew(S\{vn}) ≤ tp−1, and thus,w(S) = w(S\{vn})+w(vn) ≤ tp−1+2n

−1 ≤ tp.
We complete the proof by showing (b) ⇒ (c). Consider a totally threshold graph G. Since G is perfect, its chromatic

number χ(G) is equal to the maximum clique size ω(G). Thus, for any subgraph G′ of G we have χ(G′) ≤ p if and only if G′

contains no induced clique Kp+1. Hence, the property of being totally chromishold is equivalent to totally threshold and the
result follows. �

We will now observe a few simple consequences of Theorem 6. First, in a similar spirit as the definition of threshold
graphs, one could as well have considered a class of graphs strongly related to p-threshold graphs, where the property of
not containing a p-clique in an induced subgraphwhose weight is below the threshold is replaced by not containing a stable
set of size p. Calling such graphs p-cliqueshold, we have that a graph is (totally) p-cliqueshold if its complement is (totally)
p-threshold. An interesting fact about threshold graphs is that they are closed under taking complements. This follows easily
from a characterization of Chvátal and Hammer [3], showing that a graph G is threshold if and only if it does not contain any
induced subgraph isomorphic to 2K2, P4 or C4, and by observing that complementing each graph in the family {2K2, P4, C4}

leads again to the same family of graphs. Alternatively, one can observe that the complement of a threshold graph G can be
obtained by exchanging the roles of universal and isolated vertices in the characterization used in the proof of Theorem 6.
Hence, together with Theorem 6 this implies the following:

Corollary 7. A graph is threshold if and only if it is totally cliqueshold.

Furthermore, for completeness we would like to observe that since 2-threshold, 2-chromishold and 2-cliqueshold are
equivalent, we obtain the following corollary as a simple consequence of Theorem 6 and Corollary 7.

Corollary 8. For a graph G the following statements are equivalent:
(a) G is threshold;
(b) G is 2-chromishold;
(c) G is 2-cliqueshold;
(d) G is totally threshold;
(e) G is totally chromishold;
(f) G is totally cliqueshold.

3. More properties of threshold graphs

In this section we present some additional properties of threshold graphs which are linked to the properties given in the
previous section.

Definition 9. Let G = (V , E) be a graph and let p ≥ 2 be an integer. Then G has property Pp if the following holds: Let
V1 ∪ V ∗, V2 ∪ V ∗ be vertex sets of two p-cliques with V1 ∩ V2 = V1 ∩ V ∗

= V2 ∩ V ∗
= ∅; then for any partition V ′

1, V
′

2 of
V1 ∪ V2, at least one of V ′

1 ∪ V ∗, V ′

2 ∪ V ∗ induces a graph containing a p-clique.
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Fig. 1. Graph G showing that the statement of Lemma 13 cannot be extended to hold for the graph G itself, instead of only for its p-core Cp(G).

Notice that threshold graphs must have property P2.

Definition 10. Let G = (V , E) be a graph and p ≥ 2 an integer. The p-core of G, denoted by Cp(G) = (Vp, Ep), is the graph
obtained from G by removing all vertices and edges not contained in any p-clique.

Fact 11. It follows from the above definitions that Cp(G) is a p-threshold graph if and only if G is a p-threshold graph. Indeed if G
is p-threshold, then so is Cp(G) because the property of being p-threshold is p-hereditary. Conversely, weights and threshold values
certifying that Cp(G) is a p-threshold graph can be extended to G by assigning weightswp(v) = 0 to all vertices v in V \V (Cp(G)).

Fact 12. A p-threshold graph G has property Pp.

Proof. Let wp(v) be the weights assigned to the vertices of G and let tp be the threshold value. We have a =
v∈V1∪V∗ wp(v) > tp and b =


v∈V2∪V∗ wp(v) > tp. If G does not have property Pp, there is a partition V ′

1, V
′

2 of V1 ∪ V2

such that a′
=


v∈V ′

1∪V∗ wp(v) ≤ tp and b′
=


v∈V ′

2∪V∗ wp(v) ≤ tp. But then we have 2tp < a + b = a′
+ b′

≤ 2tp, which
is a contradiction. Hence G has property Pp. �

We can now state the following.

Lemma 13. Let G = (V , E) be a graph and p ≥ 2 an integer. If Cp(G) has property Pp, then ∀u, v ∈ Vp we have either
NCp(G)(u) ⊆ NCp(G)[v] or NCp(G)(v) ⊆ NCp(G)[u].

Proof. Assume that in H = Cp(G) there are two vertices u, v for which we have neither NH(u) ⊆ NH [v] nor NH(v) ⊆ NH [u].
This means that there is a vertex x ∈ NH(u) − NH(v) and a vertex y ∈ NH(v) − NH(u). Since we are in H = Cp(G), the edge
xu belongs to some p-clique K 1 and the edge yv belongs to some p-clique K 2; these cliques are necessarily different since yu
and xv do not exist in H . But now in the subgraph H induced by K 1

∪K 2, for the partition (K 1
− x)∪ {y}, (K 2

− y)∪ {x} none
of the sets of vertices (K 1

− x) ∪ {y} and (K 2
− y) ∪ {x} does induce a clique on p vertices and so H does not have property

Pp, a contradiction. �

Example 14. Notice that if G is a p-threshold graph which is different from its p-core Cp(G), Lemma 13 may not hold for G
itself as shown in Fig. 1. The weights are indicated besides each vertex and the two vertices of weight 0 have non-nested
neighborhoods.

It follows from Lemma 13 that if H = Cp(G) has property Pp, the neighborhoods of all vertices are nested. This is a
characteristic property of threshold (i.e., 2-threshold) graphs (see Chapter 1 in [4]): a graph G is a threshold graph if and
only if for any two vertices u, v we have N(u) ⊆ N[v] or N(v) ⊆ N[u]. So we obtain the following.

Corollary 15. Let G = (V , E) be a graph satisfying Pp for some p ≥ 2; then Cp(G) is a 2-threshold graph.

Example 16. The graph G in Fig. 1 is a 3-threshold graph (use the threshold value t3 = 2 and the weights shown in Fig. 1).
Notice that G is not 2-threshold. However C3(G), which is the triangle in G, is a 2-threshold graph.

Corollary 17. A graph G is p-threshold if and only if its core Cp(G) is a threshold graph.

Proof. It follows from Fact 12 that any p-threshold graph has property Pp. So Cp(G) also has property Pp and it follows from
Corollary 15 that Cp(G) is a 2-threshold graph. Conversely, if Cp(G) is a 2-threshold graph, it is a p-threshold graph from
Theorem 6 and Fact 11 establishes that G is p-threshold. �

Example 18. Notice that Corollary 17 does not hold if we replace p-threshold by p-chromishold. Indeed, consider the graph
G = K3 ∪C5 (i.e., the disjoint union of a triangle and an induced cycle of length five with no edges between them). This graph
is 3-threshold and its core C3(G) consists in K3, thus it is a threshold graph. But clearly G is not 3-chromishold.
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Fig. 2. Forbidden induced subgraphs for graphs satisfying property P3 .

Corollary 19. Let G = (V , E) be a graph and let p ≥ 2 be an integer. Then G is p-threshold if and only if G satisfies property Pp.

Proof. We only have to show that if G satisfies property Pp then it is p-threshold. From Corollary 15, its core CP(G) is a
2-threshold graph and from Corollary 17 G is p-threshold. �

Remark 20. The above corollary implies that the property of being p-threshold can be tested locally because it is equivalent
to property Pp which can be tested by looking at all induced subgraphs of Gwith at most 2p vertices. Hence, the property of
being p-threshold can be characterized by providing a list of forbidden induced subgraphs of size at most 2p.

As an example, we provide the list of forbidden induced subgraphs for the property P3 in Section 4.

4. The special case p = 3

In this section we focus on property Pp with p = 3. We will first give a characterization of all graphs that satisfy property
P3 by a family of forbidden induced subgraphs. Let G = (V , E) be a graph. We say that G is H-free, for some graph H , if no
induced subgraph of G is isomorphic to H . If H is a family of graphs, we say that G is H-free, if no induced subgraph of G is
isomorphic to some graph of H .

Now consider the graphs shown in Fig. 2. Let F be the family of these graphs, i.e., let F = {H1,H2,H3, J1, . . . , J6}. One
can easily verify that F is the list of forbidden induced subgraphs for property P3 as discussed in Remark 20. Hence we have
the following.
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Fig. 3. Graph showing that P3 does not imply O.

Proposition 21. A graph G = (V , E) satisfies property P3 if and only if G is F -free.

Definition 22. G = (V , E) has property O if the following holds: let V1 ∪ V ∗, V2 ∪ V ∗ be the vertex sets of two odd cycles in
G with V1 ∩ V2 = V1 ∩ V ∗

= V2 ∩ V ∗
= ∅. Then for any partition V ′

1, V
′

2 of V1 ∪ V2 at least one of V ′

1 ∪ V ∗, V ′

2 ∪ V ∗ contains
an odd cycle.

The following immediately follows from the definition of property O and property P3.

Lemma 23. Let G = (V , E) be a graph having property O. Then G has property P3.

Remark 24. Notice that P3 does not implyO as shownby the graphG in Fig. 3.Ghas property P3 since it contains no triangles.
But if V1 = {c, d, e}, V2 = {c ′, d′, e′

}, V ∗
= {a, b} the choice V ′

1 = {c, d, c ′, d′
}, V ′

2 = {e, e′
} shows that O does not hold.

We recall the following definition. A graph G is line-perfect if its line graph L(G) is perfect. These graphs are characterized
by the following (see [6]).

Proposition 25. G is line-perfect if and only if G contains no odd elementary cycle of length at least five.

We can derive immediately the following statement.

Proposition 26. For a line-perfect graph, properties O and P3 are equivalent.

Finally we have the following.

Proposition 27. A line-perfect graph is 3-threshold if and only if it does not contain any of H1, J1, J2 as an induced subgraph.

Proof. Combining Corollary 19 and Proposition 21 we have that a graph G is 3-threshold if and only if it is F -free. However,
if G is line-perfect, then it cannot contain any of the graphs H2,H3, J3, J4, J5, J6 as an induced subgraph since all of those
graphs contain an elementary cycle of length 5. Hence, for line-perfect graphs the condition of being F -free is equivalent to
the condition of not containing any of H1, J1, J2 as an induced subgraph. �
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