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Chemokine biology is mediated by more complex interactions than simple 
 monomolecular  ligand–receptor interactions, as chemokines can form higher order 
quaternary structures, which can also be formed after binding to glycosaminoglycans 
(GAGs) on endothelial cells, and their receptors are found as dimers and/or oligomers at 
the cell surface. Due to the complexity of the chemokine binding and signaling system, 
several mechanisms have been proposed to provide an explanation for the synergy 
observed between chemokines in leukocyte migration. Pioneering studies on interac-
tions between different chemokines have revealed that they can act as antagonists, or 
synergize with other chemokines. The synergism can occur at different levels, involving 
either two chemokine receptors triggered simultaneously or sequentially exposed to their 
agonists, or the activation of one type of chemokine receptor triggered by chemokine 
heterocomplexes. In addition to the several chemokines that, by forming a heterocom-
plex with chemokine receptor agonists, act as enhancers of molecules of the same fam-
ily, we have recently identified HMGB1, an endogenous damage-associated molecular 
patterns (DAMPs) molecule, as an enhancer of the activity of CXCL12. It is now evident 
that synergism between chemokines is crucial at the very early stage of inflammation. 
In addition, the low-affinity interaction with GAGs has recently been shown to induce 
cooperativity allowing synergy or inhibition of activity by displacement of other ligands.
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CHeMOKineS AnD THeiR ReCePTORS

Chemokines are key regulators of leukocyte migration and function, playing fundamental roles 
both in physiological and pathological immune responses, such as inflammatory diseases (1). The 
chemokine system includes ~50 ligands, which engage a panel of over 20 chemokine receptors 
in a promiscuous fashion, which are differentially expressed by all leukocytes and many non-
hematopoietic cells (2). Proper tissue distribution of distinct leukocyte subsets, under normal and 
pathological conditions, is guaranteed by the resulting combinatorial diversity in cell responsiveness 
to chemokines.

To mediate their activity chemokines bind to cell surface receptors which belong to the largest 
branch of the γ subfamily of rhodopsin-like G protein-coupled receptors (GPCRs) (3), a receptor 
superfamily which represents the most successful target of small molecule inhibitors for treating 
diseases affecting different systems in modern pharmacology. All chemokine receptors couple to 
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heterotrimeric Gαi-proteins and accordingly most responses can 
be fully inhibited by treatment of cells with Bordetella pertussis 
toxin. Today, a total of 19 signaling receptors have been identified: 
7 CXCRs (CXCR1–6 and CXCR8), 10 CCRs (CCR1–10), CX3R3, 
and CKR1. In addition, there are four “atypical” receptors that use 
alternative signaling pathways, and act mainly by sequestering 
and degrading the chemokines present in the microenviron-
ment (4). Thus, the ~50 chemokines outnumber their receptors 
indicating that a receptor can bind more than one chemokine. In 
addition, several chemokines can also bind to multiple receptors 
(2, 5). Novel findings indicate that polysialylation of CCR7, the 
central chemokine receptor controlling immune cell trafficking 
to secondary lymphatic organs, is essential for the recognition of 
the CCR7 ligand CCL21 (6), and that the glycosylation pattern 
of this receptor shapes receptor signaling (7), suggesting that this 
further level of control might be shared with other chemokine 
receptors.

CHeMOKine SYneRGY AnD 
COOPeRATiOn

A vast range of in  situ experiments, aimed at understanding 
which chemokines are produced under specific circumstances, 
has revealed that a variety of chemokines can be concomitantly 
produced at the target sites of leukocyte trafficking and homing 
(8–12). This renders the chemokine system a good target for 
therapy and has promoted the search by pharmaceutical compa-
nies for small molecule chemokine antagonists (13–16). While we 
understand the effects of different chemokines singly, much less 
is known about the potential consequences of the concomitant 
expression of multiple chemokines and their interaction with 
other inflammatory molecules (17, 18).

The suggestion that chemokines might have additional 
regulatory mechanisms started with the identification of natural 
chemokine antagonists. Many reports have demonstrated that 
certain chemokines can also antagonize non-cognate chemokine 
receptors, by altering agonist-induced signaling and abrogating 
cellular responses via several mechanisms, including occupancy 
of the chemokine receptor-binding pocket or signaling through 
Rac-2 (19–24).

The studies on possible regulatory mechanisms continued when 
three reports showed that chemokines can synergize to enhance 
leukocyte functions in response to chemoattractants. The first 
described a bovine chemokine, regakine 1 that induces enhanced 
neutrophil migration when combined with CXCL7, CXCL8, 
and C5a. The receptor or the mechanism of regakine-1-induced 
synergism is not known. Competition with labeled C5a for bind-
ing to neutrophils or receptor-transfected cell lines demonstrated 
that regakine 1 does not alter receptor recognition. The protein 
kinase inhibitors 2′ amino 3′ methoxyflavone (PD98059), wort-
mannin, and staurosporine had no effect on the synergy between 
C5a and regakine 1 (25). The second study showed that migration 
of natural IFN-producing cells, a subpopulation of murine and 
human lymphocytes, to the CXCR3 agonists requires stimula-
tion of CXCR4 by CXCL12. The mechanism by which CXCL12 
induces enhanced migration in response to CXCR3 agonists is yet 

unknown. CXCL12 does not upregulate the expression of CXCR3 
and does not increase the affinity of CXCR3 for its agonists (26). 
The third report (27) showed the same enhanced migration, on 
human plasmacytoid dendritic cells, in response to CXCR3 ago-
nists induced by stimulation with CXCL12 as observed by Krug 
et al. (26). These reports undoubtedly indicate, as for the natural 
antagonist chemokines, that it is necessary to carefully analyze 
the effects that the concomitant expression of chemokines can 
have on cell functions and to elucidate the molecular mechanisms 
governing cell activities at sites of inflammation. Synergism can 
thus occur at different levels, involving either two chemokine 
receptors triggered simultaneously or sequentially exposed to 
their agonists (26–30). We have identified a further mechanism by 
which chemokines, forming chemokine heteromeric complexes, 
can activate one type of chemokine receptor (Figure 1A) (31): 
(i) CXCL13 enhances CCL19 and CCL21 triggering of CCR7 
(32); (ii) CXCL10 enhances CCL22 triggering of CCR4 (33); (iii) 
CCL19 and CCL21 enhance the activity of CCR2 ligands and 
protect them from degradation (34); and (iv) CXCL9 enhances 
migration induced by CXCL12 on CXCR4+/CXCR3− malignant 
B cells (35). Other groups have also shown that the synergism 
between a chemokine agonist and a non-ligand chemokine can 
enhance the activity of selective chemokine receptors (36–40).

Chemokines have a second important interaction with cell 
surface expressed glycosaminoglycans (GAGs), which mediates 
their immobilization on the endothelial surface in order to pro-
vide their directional signal (41–43). This interaction was shown 
to be essential for their ability to recruit cells in vivo by the loss 
of activity of chemokine variants, which had abrogated GAG-
binding capacity (44). Without the interaction with endothelial 
GAGs, most chemokines would be washed away from the local 
production site, especially under flow conditions, diluted to 
a concentration below the threshold required for binding, and 
distributed uniformly throughout the vasculature such that no 
localized chemotactic signal is generated for leukocytes to allow 
directional mobilization. Furthermore, differential binding to 
GAGs plays an important role in localization. Neutrophil recruit-
ment to the lung is greater in response to chemokines that bind 
GAGs less strongly. This was demonstrated both by mutants of 
CXCL8 with abrogated GAG binding as well as comparison of 
another neutrophil chemoattractant, CXCL1. Although increased 
recruitment was postulated to be mediated by the stronger GAG 
binder, lower binding capacity resulted in enhanced recruitment, 
demonstrating that the tissue microenvironment plays a pivotal 
role in the spatial formation of chemokine gradients and defining 
GAGs functions (45, 46).

Recently, binding to cell surface GAGs has identified more 
subtle roles in chemokine biology, where competitive binding of 
chemokines to GAGs can either induce cooperative enhancement 
of activity or inhibition of activity by displacement of certain 
chemokines. Cooperative enhancement has been demonstrated 
for both classical receptors as well as atypical or non-signaling 
receptors such as CCX-CKR/ACKR4 (47). In both cases, com-
petitive displacement of the chemokines from GAGs was shown 
to be responsible for the effects, using modified chemokines lack-
ing the GAG-binding sequence. The competitive displacement is 
limited to chemokines which bind GAGs strongly such as CCL11, 
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FiGURe 1 | Synergism induced by the formation of heterocomplexes. (A) Heterocomplex formed between two chemokines renders the agonist more potent 
on the selective receptor. (B) HMGB1 forms a heterocomplex with CXCL12 enhancing CXCL12 potency on CXCR4.
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CXCL12, and CXCL13, compared with low-affinity binders, such 
as CCL3 and CCL4, being unable to induce this synergy.

A similar phenomenon was observed for CCL18, an interest-
ing chemokine in that is has been shown to be unregulated in 
many pathological conditions, yet its receptor remained elusive 
until it was shown recently to activate CCR8 (48). Moreover, 
CCL18 is always present at considerably higher concentrations 
in the circulation than most chemokines, and it was shown to 
displace certain chemokines bound to heparin (49). This prop-
erty led to the hypothesis that it could prevent the recruitment 
of leukocytes by these chemokines by removing them from the 
endothelial surface.

Since chemokine cooperativity via GAG binding would 
allow chemokines to activate their cognate receptors at lower 
chemokine concentrations, it is likely that in vivo, this phenom-
enon would extend the range from which chemokines can induce 
recruitment of leukocytes (50). GAG binding and/or formation 
of heterocomplexes can definitively contribute to the fine-tuning 
modulation of chemokine activities occurring in vivo.

It is well established that many chemokines exist in equilibrium 
between the monomeric and dimeric state, and even as higher 
order oligomers (51–53). It is therefore clear that chemokine biol-
ogy is more complex than simple monomolecular ligand–receptor 
interactions. It has been shown in vitro that the quaternary struc-
ture of chemokines influences the affinity of binding to GAGs (54, 
55). Moreover, in vitro studies have suggested that dimerization 
may also occur after binding to GAGs on endothelial cells (56). In 
fact, this phenomenon is essential for certain chemokines in vivo 
since obligate monomers of the proinflammatory chemokines, 
CCL2, CCL4, and CCL5, are unable to recruit cells when injected 
into the peritoneal cavity (44).

It is however important to note that alterations in GAG com-
position can occur in several pathological conditions (57–59). 
In addition, chemokine receptors can be found as dimers and/
or oligomers at the cell surface (60–62). Due to the complexity of 
chemokine binding and signaling (63), several mechanisms have 
been proposed to provide an explanation for synergy between 
chemokines in leukocyte migration. It is now evident that the 
synergism between chemokines is crucial at the very early stage 
of inflammation, as in vivo disruption of pro-atherogenic heter-
omers of CCL5 and CXCL4 resulted in a significant decrease in 
atherosclerotic lesion formation (38, 64). Moreover, disruption 
of the heteromers, formed between CCL5 and the α-defensin 
HNP1, attenuated monocyte and macrophage recruitment in 
a mouse model of myocardial infarction (65). On the contrary, 
the study of the role of synergy-inducing chemokines in the 
tumor microenvironment is at its infancy, as it has been shown 
in vitro that the distinct co-expression of B and T cell attractant 
chemokines, present in the tumor microenvironment, control cell 
trafficking of both tumor-infiltrating lymphocytes and malignant 
B cells (35).

CHeMOKineS AnD DAMPs

Under inflammatory conditions, the cross talk between different 
molecules plays a crucial role in reaching the balance in tissue 
regeneration. A complete system for the detection, containment, 
and repair of damage caused to cells in the organism requires 
warning signals for the cells to respond. These warning signals 
are called endogenous damage-associated molecular patterns 
(DAMPs) or alarmins. In addition to the several chemokines that 
act as enhancers of molecules of the same family, by forming a 
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heterocomplex with chemokine receptor agonists, we have recently 
identified HMGB1, an alarmin, as an enhancer of the activity 
of CXCL12 (Figure 1B) (66–68). The heterocomplex HMGB1/
CXCL12 can be disrupted with a specific molecule, glycyrrhizin, 
which inhibits cell influx into the injured tissue. This indicates that 
a number of components, in addition to the direct activation of the 
receptor via a selective agonist, can regulate chemokine functions 
via a direct interaction with chemokines or chemokine receptors. 
Multiple chemokines within inflamed tissues selectively enhance 
each other’s migratory functions, depending on their concentra-
tions, proximity, and simultaneous exposure to leukocytes. The 
mechanisms underlying the involvement of endogenous DAMPs 
in chronic diseases are still largely unexplored, and the interaction 
with other molecules might be a possible approach to understand 
their targets and functions. The interaction between chemokines 
and inflammatory molecules needs to be taken into account when 
chemokine cleavage by proteolysis, or chemokine degradation by 
atypical chemokine receptors, would be beneficial to achieve a 
resolving microenvironment favorable for resolution of inflam-
mation by abrogating chemokine signals and the recruitment of 
inflammatory cells (69). The heterocomplex HMGB1/CXCL12 
was demonstrated to prevent CXCL12 degradation (70), similarly 
to the observation that the complex CCL19/CCL7 prevents CCL7 
degradation by the atypical receptor ACKR2 (34).

FUTURe PeRSPeCTiveS

The chemokine system remains a promising biological target 
for the development of new therapeutic tools for the treatment 
of immunological disorders. Nevertheless, drug discovery 
programs have not yet produced successful drugs targeting the 
chemokine system for the treatment of inflammatory diseases. 
Most of the competitive chemokine receptor antagonists devel-
oped by all major pharma companies have been disappointingly 

unsuccessful when tested in clinical trials (71), and as a matter of 
fact, the only two small molecule inhibitors approved by the FDA 
do not target inflammation. Taking into account GAGs-binding 
properties, synergy induced by heterocomplexes formed with 
non-ligand chemokines or inflammatory molecules, and the 
possibility that the heterocomplexes might induce differential 
signaling pathways, will certainly help in elaborating the biol-
ogy involved in this family and will surely contribute to the 
successful development of inhibitors of the chemokine system 
as therapeutics.
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