
On the many faces of atomic multicast

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Paulo Coelho

under the supervision of

Fernando Pedone

May 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/224799003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dissertation Committee

Antonio Carzaniga Universià della Svizzera italiana, Lugano, Switzerland
Robert Soulé Universià della Svizzera italiana, Lugano, Switzerland
Dan Alistarh Institute of Science and Technology, Klosterneuburg, Austria
José Orlando Pereira University of Minho, Braga, Portugal

Dissertation accepted on 6 May 2019

Research Advisor PhD Program Director

Fernando Pedone Prof. Walter Binder, Prof. Olaf Schenk

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Paulo Coelho
Lugano, 6 May 2019

ii

To my wife Patrícia,
my son Gabriel and my daughter Giovanna

iii

iv

A distributed system is one in
which the failure of a computer
you didn’t even know existed can
render your own computer
unusable.

Leslie Lamport

v

vi

Abstract

Many current online services need to serve clients distributed across geographic
areas. Coordinating highly available and scalable geographically distributed repli-
cas, however, is challenging. While State Machine Replication is the most direct
way of achieving availability, no scalability comes from the traditional approach.
Typically, scalability is obtained by partitioning the original application state
among groups of servers, which leads to further challenges. Atomic multicast
is a group communication abstraction that groups processes, providing reliabil-
ity and ordering guarantees, and can be explored to provide partially replicated
applications a scalable and consistent alternative. This work confronts the chal-
lenges of providing practical group communication abstractions for crash fault-
tolerant and Byzantine fault-tolerant (BFT) models.

Although there are plenty of atomic multicast algorithms that tolerate crash
failures, they suffer from two major issues: (a) high latency for messages ad-
dressed to multiple groups, and (b) low performance when proportion of mes-
sages to multiple groups is high. To solve the first problem and reduce the latency
of multi-group messages, this work presents FastCast, an algorithm with unprece-
dented four communication delays. The second problem can be addressed by
maximizing the proportion of single-group messages and eliminating additional
communication among groups to execute operations. In this direction, this doc-
ument introduces GeoPaxos, a protocol that partitions the ordering of operations
like atomic multicast while still keeping the state fully replicated.

In the BFT model, the task is more challenging, since servers can behave arbi-
trarily. This thesis presents ByzCast, the first algorithm that tolerates Byzantine
failures. ByzCast is hierarchical and introduces a new class of atomic multicast
defined as partially genuine.

Lastly, since at the very core of most strong consistent replicated system re-
sides a consensus protocol, the thesis concludes with Kernel Paxos, a Paxos im-
plementation provided as a loadable kernel module, providing at the same time
high performance, and abstracting ordering from the application execution.

vii

viii

Acknowledgements

I am very thankful to everyone that contributed somehow to this thesis. First of
all, I wish to thank Professor Fernando Pedone for the support and patience. His
dedication and enthusiasm with each student are an example I will try to carry
on in my career.

I am grateful to the dissertation committee members, Antonio Carzaniga, Dan
Alistarh, José Orlando Pereira and Robert Soulé for the time dedicated to my
thesis and the helpful feedback.

I am very happy to be part of this research group and would like to truly
express my gratitude to all the current and former colleagues I had the pleasure
to work with: Daniele, Edson, Loan, Long, Mojtaba, Odorico, Pietro, Sam, Theo,
Tu, Vahid, and especially Leandro and Enrique for the fruitful discussions and
the friendship.

I wish to thank the Brazilian funding agency Conselho Nacional de Pesquisa
(CNPq) and the Swiss Government for the financial support.

I wish to express all my gratitude to my parents Paulo and Jôze, who have
always been there for me and for the example of family and partnership. Lastly,
I would like to thank my wife Patrícia and my kids Gabriel and Giovanna for
standing by my side these four years of PhD, providing me courage, love and
unconditional support.

ix

x

Preface

The result of this research appears in the following papers:

Coelho, Paulo; Schiper, Nicolas; Pedone, Fernando. Fast Atomic Multicast.
47th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2017, Denver.

Coelho, Paulo; Junior, Tarcisio Ceolin; Bessani, Alysson; Dotti, Fernando; Pe-
done, Fernando. Byzantine Fault-Tolerant Atomic Multicast. 48th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks (DSN), 2018,
Luxembourg City.

Coelho, Paulo; Pedone, Fernando. Geographic State Machine Replication. IEEE
37th International Symposium on Reliable Distributed Systems (SRDS), 2018,
Salvador.

Esposito, Emanuele Giuseppe; Coelho, Paulo; Pedone, Fernando. Kernel Paxos.
IEEE 37th International Symposium on Reliable Distributed Systems (SRDS),
2018, Salvador.

xi

xii

Contents

Contents xiii

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Contributions of the thesis . 2

1.1.1 Contributions in the crash-failure model 3
1.1.2 Contribution in the Byzantine-failure model 4

1.2 System model and definitions . 4
1.2.1 Processes, groups, and links 4
1.2.2 Consensus . 5
1.2.3 Reliable and atomic multicast in crash-failure model 6
1.2.4 Atomic multicast in Byzantine-failure model 7

2 Making atomic multicast faster 9
2.1 Baseline Atomic Multicast . 10

2.1.1 Overview . 11
2.1.2 Detailed algorithm . 12
2.1.3 Time complexity . 13

2.2 Fast Atomic Multicast . 13
2.2.1 Overview . 13
2.2.2 Detailed algorithm . 15
2.2.3 Time complexity . 16

2.3 Proofs of Correctness . 18
2.3.1 Proofs for Propositions 1 and 2 18
2.3.2 Proof of correctness for Algorithm 1 19
2.3.3 Proof of correctness for Algorithm 2 23

2.4 Performance evaluation . 27

xiii

xiv Contents

2.4.1 Evaluation rationale . 27
2.4.2 Implementation and environments 28
2.4.3 Social network benchmark . 29
2.4.4 Microbenchmark in LAN . 30
2.4.5 Microbenchmark in emulated WAN 32
2.4.6 Microbenchmark in real WAN 34
2.4.7 Social network in emulated WAN 35
2.4.8 Summary . 36

2.5 Related work . 38
2.6 Conclusion . 39

3 Making atomic multicast safer 41
3.1 Byzantine Fault Tolerant Atomic Multicast 43

3.1.1 Rationale . 43
3.1.2 Protocol . 44
3.1.3 Optimizations . 46

3.2 Proof of Correctness . 47
3.3 Implementation . 49
3.4 Performance evaluation . 50

3.4.1 Evaluation rationale . 51
3.4.2 Environments and configuration 52
3.4.3 Overlay tree versus workload 54
3.4.4 Scalability of ByzCast in LAN 55
3.4.5 Throughput versus latency in LAN 57
3.4.6 Latency without contention in LAN 57
3.4.7 Performance with mixed workload in LAN 58
3.4.8 Latency without contention in WAN 58
3.4.9 Performance with mixed workload in WAN 59

3.5 Related work . 59
3.5.1 Atomic Multicast . 60
3.5.2 Scalable BFT . 61

3.6 Conclusion . 61

4 Speeding up state machine replication in wide-area networks 63
4.1 Introduction . 63
4.2 System model specifics . 65
4.3 Overview . 65

4.3.1 Partial ordering of operations 65
4.3.2 Optimizing performance . 67

xv Contents

4.3.3 Fault tolerance . 67
4.3.4 Execution Model . 68

4.4 Design . 69
4.4.1 The ordering protocol . 69
4.4.2 Extensions and optimizations 70
4.4.3 Practical considerations . 72

4.5 Proof of correctness . 72
4.6 Implementation . 74
4.7 Evaluation . 74

4.7.1 Performance in the LAN . 75
4.7.2 Performance in the WAN . 76

4.8 Related work . 82
4.9 Conclusion . 85

5 Speeding up Paxos 87
5.1 Background on Paxos . 88

5.1.1 Paxos and state-machine replication 89
5.1.2 Optimizations . 89

5.2 Paxos in the kernel . 90
5.2.1 Linux kernel and TCP/IP stack 90
5.2.2 Kernel Paxos architecture . 92
5.2.3 Message flow in Kernel Paxos 93

5.3 Implementation . 94
5.4 Performance . 94

5.4.1 Evaluation rationale . 95
5.4.2 Environment . 95
5.4.3 Throughput in a LAN . 96
5.4.4 Latency in a LAN . 98
5.4.5 Performance with similar number of clients 99
5.4.6 Context-switch overhead . 100
5.4.7 Kernel Paxos in a 10Gbps network 102
5.4.8 Summary . 103

5.5 Related work . 103
5.5.1 Protocols that exploit special topologies 103
5.5.2 Protocols that exploit special hardware 104
5.5.3 Protocols that exploit message semantics 104

5.6 Conclusion . 104

xvi Contents

6 Conclusions 107
6.1 Research assessment . 107
6.2 Future directions . 109

Bibliography 111

Figures

2.1 Diagrammatic representation of BaseCast and FastCast. 12
2.2 Configuration in WAN. 29
2.3 Throughput for single-group messages in a LAN. 30
2.4 Atomic multicast in a LAN. 31
2.5 Atomic multicast in an emulated WAN. 33
2.6 Atomic multicast in a real WAN. 35
2.7 Social network application in an emulated WAN. 36

3.1 ByzCast overlay tree and sample execution. 43
3.2 Executions of ByzCast with local and global messages. 51
3.3 ByzCast performance with global messages. 53
3.4 Throughput in a LAN. 55
3.5 Throughput vs. latency in a LAN. 56
3.6 Single-client latency in a LAN. 57
3.7 Latency CDF with 10% of global messages. 58
3.8 Single-client latency in WAN. 59
3.9 Normalized throughput with mixed workload in a WAN. 60
3.10 Latency CDF with mixed workload. 60

4.1 Simple GeoPaxos executions. 66
4.2 GeoPaxos deployment in three regions. 68
4.3 Performance in LAN. 75
4.4 Impact of dynamic preferred site change on throughput and latency. 76
4.5 Latency in WAN. 79
4.6 Impact of the convoy effect on latency. 80
4.7 Impact of the convoy effect on throughput. 81
4.8 Latency and throughput in the presence of failures. 82

5.1 Multi-Paxos optimization. 90
5.2 Kernel Paxos architecture. 92

xvii

xviii Figures

5.3 Kernel Paxos event-driven approach for Ethernet types. 93
5.4 Main components of Kernel Paxos module. 95
5.5 Throughput and median latency for increasing number of clients. 96
5.6 Throughput and latency CDF for selected number of clients. 97
5.7 Performance in 1Gbps and 10Gbps setups. 101

Tables

2.1 Comparison of atomic multicast protocols. 37

3.1 Latencies within Amazon EC2 infrastructure. 52
3.2 Uniform and skewed workloads. 54
3.3 Optimization model outcomes for uniform and skewed workloads. 54

4.1 Average RTT between Amazon EC2 regions, 77
4.2 Minimum inter-region delays and operation type. 84

5.1 Performance of user- and kernel-space echo application. 91
5.2 Context-switches versus number of clients. 101

xix

xx Tables

Chapter 1

Introduction

Many modern online applications require scalable performance and high avail-
ability. Scalable performance guarantees that by increasing the system resources
(e.g., servers) the application can handle additional client requests. High avail-
ability ensures that the application remains operational despite server crashes
and datacenter disasters. Designing systems that combine scalability and fault
tolerance, however, is challenging.

State Machine Replication (SMR) is largely used as a strategy to provide avail-
ability and reliability by having multiple replicas of a service — sometimes in
different geographical regions — executing the same operations in the same or-
der [47, 77]. With enough replicas performing correctly, SMR behaves just like
a single server, with the necessary redundancy to exhibit failure transparency to
clients. To behave accordingly and guarantee that every non-faulty server ex-
ecutes the same operations in the same order, servers must solve a distributed
problem known as consensus [33]. Consensus is a fundamental distributed prob-
lem in which a set of processes must eventually decide on a common value among
values proposed by each process. Atomic broadcast [31] is an abstraction that
guarantees the total order of delivered operations, usually relying on consen-
sus to decide on the next operation to be executed by the servers. If operations
are deterministic, then replicas will reach the same state and produce the same
output upon executing the same sequence of operations.

Although SMR solves the availability problem, it does not bring any benefits
in terms of scalability, no matter how fast it can order operations. Because all
the replicas need to execute every operation, the performance of SMR is similar
to a single server’s. Moreover, if replicas are geographically distributed, clients
experience can be worse than a single server model since faraway replicas have
to coordinate to order each operation before executing and replying.

1

2 1.1 Contributions of the thesis

One strategy to increase scalability would be to weaken consistency guaran-
tees. While weak consistency has proved successful in some contexts (e.g., [10,
25, 30, 83]), it is not appropriate to every application and often places the burden
on the clients, who must cope with non-intuitive application behavior. Strong
consistency (e.g., linearizability [40]), on the other hand, leads to more intuitive
application behavior, although it requires client requests to be ordered across the
system before they are executed by the servers [47, 77].

To confront this trade-off between consistency and availability, the system
model needs to be changed. Partitioning comes as a solution to scale up in
most scenarios while also keeping linearizability. The basic idea is quite straight-
forward: the data is distributed among groups of servers (partitions) in such a
way that the correlated data is located in the same partition to maximize single-
partition operations, thus increasing the level of parallelism and consequently
the throughput. Besides, the data distribution strategy can also take into ac-
count clients’ access patterns and place partitions close to those clients which
use that specific data subset more often.

In such partially replicated systems, differently from SMR, the coordination
is typically held by atomic multicast protocols [72]. Atomic multicast is chosen
over atomic broadcast because it makes possible to deliver messages only to par-
tition subsets. As a consequence, atomic multicast keeps a reduced latency for
operations within a single partition and allows parallelism across partitions for
global operations directed to disjoint subsets of servers.

With partial replication, however, replicas still need additional coordination
to remain consistent [13]. The execution of a multi-partition operation demands
synchronization among addressed partitions so that they can exchange data and
update their state before executing the next ordered operation.

This thesis addresses the introduced challenges related to SMR and atomic
multicast from different perspectives: it reduces latency for multi-group mes-
sages in atomic multicast, explores partial order in SMR, improves performance
of consensus implementation, and proposes the first atomic multicast that toler-
ates Byzantine failures.

1.1 Contributions of the thesis

This work brings contributions in both crash (CFT) and Byzantine fault-tolerant
(BFT) failure models. In the former, there are three different approaches to
stretch the limits of both SMR and partitioned system (§1.1.1), while in the lat-
ter the first atomic multicast to support malicious behavior is introduced, with

3 1.1 Contributions of the thesis

algorithm, proof of correctness and performance evaluation in both local-area
and wide-area networks (§1.1.2).

1.1.1 Contributions in the crash-failure model

In sharded systems that rely on atomic multicast, the main issue is characterized
by the imposition of high latency for messages addressed to multiple groups.
To reduce the latency of those operations, a novel atomic multicast algorithm,
dubbed FastCast, which can deliver a multi-partition operation in unprecedented
four communication steps, is presented with algorithms and extensive perfor-
mance evaluation. Single-partition operations are delivered in three commu-
nications steps, which matches the lower bound defined for atomic broadcast
algorithms [50].

The proposed atomic multicast algorithm explores the increasing number of
processors on recent computers and extends a traditional atomic multicast algo-
rithm [15] executing an additional parallel optimistic ordering path. Under the
assumptions presented in the next chapter, the original and the optimistic paths
merge and order operations within only four communication delays.

The second contribution comes from the observation that operation order-
ing and execution can be decoupled [87]. Under this assumption, this thesis
introduces GeoPaxos, a SMR protocol that scales similarly to partially replicated
systems while keeping the data fully replicated, thus eliminating the necessity of
additional data exchange and synchronization between partitions. While each
replica keeps a full copy of all the information, the ordering responsibility is dis-
tributed among groups of servers. This distribution is performed in a way that
maximizes the proximity between the clients and the data they access more of-
ten, avoiding the global latency of hundreds of milliseconds in geographically
distributed scenarios.

GeoPaxos can also improve locality in such environments. The dynamics of
client-server interactions can lead to unbalanced load and loss of locality, a sit-
uation where data needs to be redistributed. In GeoPaxos, such redistribution
imposes no overhead on the infrastructure and no data migration. Once the
data is fully replicated, only the ordering information needs to be updated.

The last mechanism to speed up replicated systems proposed in the thesis
focuses on its core, the ordering protocol, typically represented by a consen-
sus algorithm. Among the various consensus algorithms proposed, Paxos [48]
stands out for its optimized resilience and communication. Much effort has been
placed on implementing Paxos efficiently. Existing solutions make use of special
network topologies, rely on specialized hardware, or exploit application seman-

4 1.2 System model and definitions

tics. Instead of proposing yet another variation of the original Paxos algorithm,
this work proposes a new strategy to increase performance of Paxos-based state
machine replication. The solution, dubbed Kernel Paxos, is an implementation
of Paxos that significantly reduces communication overhead by avoiding system
calls and TCP/IP stack. Besides, it reduces the number of context switches re-
lated to system calls, by providing Paxos as a kernel module.

1.1.2 Contribution in the Byzantine-failure model

Existing atomic multicast protocols only target benign failures. This section intro-
duces ByzCast, the first Byzantine Fault-Tolerant (BFT) atomic multicast. Byzan-
tine fault tolerance has become increasingly appealing as services can be de-
ployed in inexpensive hardware (e.g., cloud environments) and new applications
(e.g., blockchain [19]) become more sensitive to malicious behavior. ByzCast has
two important characteristics: it was designed to use existing BFT abstractions
and it scales with the number of groups, for messages addressed to a single group.

The main contributions of ByzCast are: (i) definition of a new class of atomic
multicast algorithms, denominated partially genuine; (ii) construction on top
of multiple instances of atomic broadcast as an overlay tree; (iii) presentation
of the problem of building the overlay tree as an optimization problem; (iv)
development and evaluation of a prototype using BFT-SMaRt [12].

1.2 System model and definitions

This section details the system model (§1.2.1) and recalls the definitions of con-
sensus (§1.2.2), and reliable and atomic multicast (§1.2.3 and §1.2.4).

1.2.1 Processes, groups, and links

The system comprises Π= {p1, . . . , pn} server processes. Processes communicate
by exchanging messages and do not have access to a shared memory or a global
clock. The system is asynchronous: messages may experience arbitrarily large
(but finite) delays and there is no bound on relative process speeds.

The set Γ = {g1, . . . , gm} represents process groups in the system. Groups are
disjoint, non-empty, and satisfy

⋃

g∈Γ g = Π. In this thesis, there are two failure
models with different assumptions for processes and communication links.

5 1.2 System model and definitions

Crash-failure model

In the CFT model, it is assumed that processes may fail by crashing (i.e., no
malicious behavior). A process that never crashes is correct; otherwise it is faulty.
Each group contains 2 f +1 processes, where f is the maximum number of faulty
processes per group.

Communication links are fair-lossy, i.e., links do not create, corrupt, or dupli-
cate messages, and guarantee that for any two correct processes p and q, and any
message m, if p sends m to q infinitely many times, then q receives m an infinite
number of times.

Byzantine-failure model

In the BFT model, processes can be correct or faulty. A correct process follows
its specification whilst a faulty process can present arbitrary (i.e., Byzantine)
behavior. Each group contains 3 f +1 processes, where f is the maximum number
of faulty server processes per group [22, 51].

Cryptographic techniques are used for authentication, and digest calculation.
Adversaries (and Byzantine processes under their control) are assumed computa-
tionally bound so that they are unable, with very high probability, to subvert the
cryptographic techniques used. Adversaries can coordinate Byzantine processes
and delay correct processes in order to cause the most damage to the system.
Adversaries cannot, however, delay correct processes indefinitely.

1.2.2 Consensus

Inside each group g there exists a consensus service. The consensus service al-
lows processes to propose values and ensures that eventually one of the proposed
values is decided. A process in group g proposes a message (or a set of messages)
x in instance i by invoking proposeg[i](x), and decides on y in instance i with
decideg[i](y). In the CFT model, the uniform consensus service satisfies the
following properties:

• uniform integrity: if a process decides x in instance i, then x was previously
proposed by some process in i.

• termination: if a correct process in group g proposes a value in instance i,
then every correct process in g eventually decides exactly one value in i.

• uniform agreement: if a process in group g decides x in instance i, then no
process in g decides y 6= x in i.

6 1.2 System model and definitions

In the Byzantine model, the consensus service properties cannot be uniform
because a faulty server can decide arbitrary values:

• integrity: if a correct process decides x in instance i, then x was previously
proposed by some process in i.

• termination: if a correct process in group g proposes a value in instance i,
then every correct process in g eventually decides exactly one value in i.

• agreement: if a correct process in group g decides x in instance i, then no
correct process in g decides y 6= x in i.

To make consensus solvable in each group [34], it is further assumed that
processes at each group have access to a weak leader election oracle [24]. The
oracle outputs a single process denoted leaderg,p such that there is (a) a correct
process lg in g and (b) a time after which, for every p in g leaderg,p = lg .

1.2.3 Reliable and atomic multicast in crash-failure model

For every message m, m.dst denotes the groups to which m is multicast. If
|m.dst| = 1 then m is a local message; if |m.dst| > 1 then m is global. A pro-
cess reliably multicasts a message m by invoking primitive r-multicast(m) and
delivers m with primitive r-deliver(m). This non-uniform FIFO reliable multicast
ensures the following properties:

• validity: if a correct process p r-multicasts a message m, then eventually all
correct processes q ∈ g, where g ∈ m.dst, r-deliver m.

• non-uniform agreement: if a correct process p r-delivers a message m, then
eventually all correct processes q ∈ g, where g ∈ m.dst, r-deliver m.

• integrity: for any process p and any message m, p r-delivers m at most once,
and only if p ∈ g, g ∈ m.dst, and m was previously r-multicast.

• FIFO order: if a process r-multicasts a message m before it r-multicasts
a message m′, then no process r-delivers m′ unless it has previously r-
delivered m.

With uniform atomic multicast, a process atomically multicasts message m
using primitive a-multicast(m) and delivers m with a-deliver(m). The relation
< on the set of messages processes a-deliver is defined as follows: m < m′ iff
there exists a process that a-delivers m before m′. Atomic multicast satisfies
the uniform integrity and validity properties of reliable multicast as well as the
following properties:

7 1.2 System model and definitions

• uniform agreement: if a process p a-delivers a message m, then eventually
all correct processes q ∈ m.dst a-deliver m.

• uniform prefix order: for any two messages m and m′ and any two processes
p and q such that p ∈ g, q ∈ h and {g, h} ⊆ m.dst ∩m′.dst, if p a-delivers
m and q a-delivers m′, then either p a-delivers m′ before m or q a-delivers
m before m′.

• uniform acyclic order: the relation < is acyclic.

Atomic broadcast is a special case of atomic multicast in which every message
is addressed to all groups.

To avoid contacting unnecessary processes, a reliable and atomic multicast
protocols should ideally be genuine [37]: an algorithm A solving reliable or
atomic multicast is genuine if and only if for any admissible run R ofA and for
any process p in R, if p sends or receives a message, then some message m is
r-multicast (resp., a-multicast), and either (a) p is the process that r-multicasts
(resp., a-multicasts) m or (b) p ∈ g and g ∈ m.dst. In [37], the authors show
the impossibility of solving genuine atomic multicast with weak synchronous as-
sumptions (i.e., unreliable failure detectors [24]) when groups intersect. Hence,
the assumption is that groups are disjoint.

1.2.4 Atomic multicast in Byzantine-failure model

The definitions of m.dst, local and global messages are the same provided in the
previous section.

A process atomically multicasts a message m by invoking primitive a-
multicast(m) and delivers m with a-deliver(m).

We define the relation < on the set of messages correct processes a-deliver as
follows: m< m′ iff there exists a correct process that a-delivers m before m′.

In BFT model, atomic multicast cannot be uniform and hence satisfies the
following properties [39]:

• Validity: If a correct process p a-multicasts a message m, then eventually
all correct processes q ∈ g, where g ∈ m.dst, a-deliver m.

• Agreement: If a correct process p a-delivers a message m, then eventually
all correct processes q ∈ g, where g ∈ m.dst, a-deliver m.

• Integrity: For any correct process p and any message m, p a-delivers m at
most once, and only if p ∈ g, g ∈ m.dst, and m was previously a-multicast.

• Prefix order: For any two messages m and m′ and any two correct processes
p and q such that p ∈ g, q ∈ h and {g, h} ⊆ m.dst ∩m′.dst, if p a-delivers

8 1.2 System model and definitions

m and q a-delivers m′, then either p a-delivers m′ before m or q a-delivers
m before m′.

• Acyclic order: The relation < is acyclic.

The definition of a genuine atomic multicast algorithm also applies to this
failure model.

FIFO Atomic Broadcast

Atomic broadcast is a special case of atomic multicast in which there is a single
group of server processes. In the BFT model, the assumption is that each group
implements FIFO atomic broadcast, which in addition to the properties presented
in §1.2.4, also ensures the following property.

• FIFO order: If a correct process broadcasts a message m before it broad-
casts a message m′, no correct process delivers m′ unless it has previously
delivered m.

Chapter 2

Making atomic multicast faster

Atomic multicast is a communication building block that allows messages to be
propagated to groups of processes with reliability and order guarantees. Intu-
itively, all non-faulty processes addressed by a message must deliver the mes-
sage and processes must agree on the order of delivered messages. Atomic mul-
ticast offers strong communication guarantees and should not be confused with
network-level communication primitives (e.g., IP-multicast), which offer “best-
effort” guarantees. Because messages can be multicast to different sets of des-
tinations and interleave in non-obvious ways, implementing message order in a
distributed setting is challenging. Some atomic multicast protocols address this
challenge by ordering all messages using a fixed group of processes or involving
all groups, regardless of the destination of the messages. To be efficient, how-
ever, an atomic multicast algorithm must be genuine: only the message sender
and destination processes should communicate to propagate and order a mul-
ticast message [37]. A genuine atomic multicast is the foundation of scalable
systems, since it does not depend on a fixed group of processes and does not
involve all processes.

This chapter introduces FastCast, a genuine atomic multicast algorithm that
offers unprecedented low time complexity, measured in communication delays.
FastCast can order and deliver global messages (i.e., messages addressed to mul-
tiple groups of processes) in four communication delays; local messages (i.e.,
messages addressed to a single group of processes) take three delays. In com-
parison, three communication delays is a lower bound on atomic broadcast (in
the presence of collisions) [50], a communication abstraction where there is a
single group of processes.

FastCast is an optimistic algorithm inspired by BaseCast, an earlier genuine
atomic multicast algorithm that requires six communication delays [15, 35, 73].

9

10 2.1 Baseline Atomic Multicast

FastCast’s secret sauce is to decompose the procedure used by BaseCast to or-
der global messages in two execution paths. There is a fast path that speculates
about the order of messages and a slow path, similar to BaseCast. If the fast
path’s “guess” is correct, something that can be assessed after four communica-
tion delays, the slow path is abbreviated; otherwise the slow path continues and
computes the final order of the message. FastCast provides a significant advan-
tage to existing atomic multicast algorithms since the fast path is correct in most
common cases, that is, when the message sender and destination processes do
not fail and are not suspected to have failed.

In addition to proposing a novel atomic multicast algorithm with reduced
number of communication delays to order global messages, FastCast has been
fully implemented and had its performance compared to BaseCast and a non-
genuine atomic multicast protocol. Experiments were conducted in three envi-
ronments: a local-area network (LAN), an emulated wide-area network (emu-
lated WAN), and a real wide-area network (WAN). FastCast evaluation comprises
a microbenchmark with configurations involving different number of groups, up
to 16 groups, and a social network application deployed in 48 servers distributed
in 16 groups of 3 servers each.

In brief, our results show that in WAN environments, FastCast outperforms
BaseCast and the non-genuine atomic multicast protocol under a large variety
of conditions, with two exceptions: when messages are multicast to a single
group (all protocols perform similarly) and to all destinations (the non-genuine
protocol performs better). In LAN environments, FastCast performs better than
the two other protocols when messages are multicast to few destinations.

The rest of the chapter is organized as follows. Sections 2.1 and 2.2 present
BaseCast and FastCast, respectively. Section 2.3 discusses the correctness of the
presented algorithms. Section 2.4 describes our experimental evaluation. Sec-
tion 2.5 surveys related work and Section 2.6 concludes the chapter.

2.1 Baseline Atomic Multicast

Fast Atomic Multicast, the main contribution of this chapter, is inspired by earlier
atomic multicast protocols [15, 35, 73]. This section describes the fault-tolerant
version of an early atomic multicast protocol [15] hereafter dubbed BaseCast.
It initially provides an overview of BaseCast (§2.1.1), then describes it in detail
(§2.1.2), and reasons about its time complexity (§2.1.3).

11 2.1 Baseline Atomic Multicast

2.1.1 Overview

In BaseCast, each process implements a logical clock [47] and assigns timestamps
to messages based on the logical clock. The correctness of BaseCast stems from
two basic properties: (i) processes in the destination of an a-multicast message
first assign tentative timestamps to the message and eventually agree on the
message’s final timestamp; and (ii) processes a-deliver messages according to
their final timestamp.

It is easier to understand how BaseCast guarantees properties (i) and (ii) by
first considering the special case in which each group gi in the system has a single
and correct process pi (i.e., gi = {pi}).

(i) To a-multicast a message m to a set of destinations (i.e., groups in m.dst),
pi r-multicasts m to the destinations in a START message. Upon r-delivering
a START message with m, each destination updates its logical clock, assigns
a hard tentative timestamp to m (the reason this timestamp is hard is ex-
plained in the next section), stores m and its timestamp in a buffer, and
r-multicasts m’s timestamp to all destinations in a SEND-HARD message.
Upon r-delivering timestamps from all destinations in m.dst, a process pi

computes m’s final timestamp as the maximum among all r-delivered hard
tentative timestamps for m.

(ii) Messages are a-delivered respecting the order of their final timestamp.
Thus, pi a-delivers m when it can ascertain that m’s final timestamp is
smaller than the final timestamp of any messages pi will a-deliver after
m (intuitively, this holds because logical clocks are monotonically increas-
ing).

To handle groups with any number of processes and thereby tolerate process
failures, BaseCast uses consensus within each group to ensure that processes in
the same group evolve through the same sequence of state changes and produce
the same outputs [47, 77]. Consensus is needed within a group to order START

messages (this consensus is called a SET-HARD step) and SEND-HARD messages
(this consensus is called a SYNC-HARD step). Ordering SET-HARD and SYNC-HARD

events within a group ensures that processes in the group assign the same hard
tentative timestamp to an a-multicast message m and update their logical clock
in the same deterministic way upon handling hard tentative timestamps from m’s
destination groups.

The propagation of the START message followed by the SET-HARD step and
the propagation of SEND-HARD messages is referred as the first phase of the al-

12 2.1 Baseline Atomic Multicast

Consensus
local at each

involved group

Reliable Multicast
from sender to every

involved group

Consensus
local at each

involved group

Reliable Multicast
from each involved group
to every involved group

START SET-HARD SEND-HARD SYNC-HARD

(a) BaseCast

first phase second phase

a-
de

liv
er

(b) FastCast

a-
m

ul
tic

as
t

SYNC-SOFT

a-
m

ul
tic

as
t

SET-HARD SEND-HARD

SEND-SOFTReliable Multicast
from sender to every

involved group

a-
de

liv
er

Consensus
local at each

involved group

SYNC-HARD

a-
de

liv
er

6 communication
delays (6δ)

Fast path:
4 communication

delays (4δ)

Slow path:
6 communication

delays (6δ)

yes

no

Consensus
local at each

involved group

Reliable Multicast
from coordinator in each
involved group to every

involved group

Reliable Multicast
from coordinator in each
involved group to every

involved group

Consensus
local at each

involved group

START

δ 2δ δ 2δ

δ

δ

2δ δ

2δ

2δ

SOFT and HARD
timestamps match?

Tasks 3,5

Task 1

Tasks 4,5

Tasks 4,5Tasks 2,4

Tasks 4,5

Task 6

Tasks 3,4Task 1 Tasks 2,4 Tasks 3,4

Figure 2.1. Diagrammatic representations of BaseCast (top) and FastCast (bot-
tom). Existing reliable multicast and consensus algorithms can propagate mes-
sages in one communication delay and reach a decision in two communication
delays, respectively (e.g., [24] and [48]).

gorithm, and to the SYNC-HARD step as the second phase of the algorithm (see
Figure 2.1(a)).

2.1.2 Detailed algorithm

Algorithm 1 contains five tasks that execute in isolation. The algorithm contains
six variables: CH implements a process’s logical clock, used to assign hard tenta-
tive timestamps to messages; B contains timestamps assigned to messages not
yet a-delivered; kp and kd index consensus instances; and sequences ToOrder and
Ordered are used to totally order messages among processes in a group. Let S
and R be two sequences. S ⊕ R denotes S followed by R and S \ R denotes S
without the entries that exist in R.

To a-multicast a message m, process p in group g r-multicasts m to m’s desti-
nations using a (START,⊥,⊥, m) tuple. The information in such tuple represents,
respectively, the type of the message, the group that r-multicasts the message, the
timestamp and the message m. When p r-delivers message (START,⊥,⊥, m) in
Task 1 (respectively, (SEND-HARD, h, x , m) in Task 2), p adds (SET-HARD, g,⊥, m)
(respectively, (SYNC-HARD, h, x , m)) to ToOrder to be ordered by consensus in
Tasks 3 and 4. Consensus instances are independent and can execute concur-

13 2.2 Fast Atomic Multicast

rently. However, decision events are handled sequentially according to the order
determined by kd in Task 4.

Process p handles a (SET-HARD,⊥,⊥, m) tuple in Task 4 by choosing a tenta-
tive hard timestamp for m, given by CH , and propagating the chosen timestamp
to m’s destinations using a (SEND-HARD, g, CH , m) message, if m is global; if m is
local, p adds the chosen timestamp toB as a (SYNC-HARD, g, CH , m) tuple. Pro-
cess p handles a (SYNC-HARD, h, x , m) tuple by updating its local clock CH and
including the tuple inB .

In Task 5, if p has received tentative timestamps from all groups in m’s des-
tinations (i.e., SYNC-HARD tuples in B), p determines m’s final timestamp as
the maximum timestamp among the tentative timestamps assigned to m by m’s
destinations. Process p a-delivers m when it ascertains that no a-multicast mes-
sage m′ will have a final timestamp smaller than m’s. This happens when no
a-multicast message m′ r-delivered by p has (a) a final timestamp smaller than
m’s and (b) a tentative timestamp smaller than m’s final timestamp, if p has not
received tentative timestamps from all of m′’s destinations yet.

2.1.3 Time complexity

This section states the best-case time complexity between a-multicast(m) and
a-deliver(m) in Algorithm 1 in terms of δ, the maximum communication delay.

Proposition 1 Let Algorithm 1 use the reliable multicast implementation in [24]
and the consensus implementation in [48]. Every atomically multicast global mes-
sage is delivered in at least 6δ.

2.2 Fast Atomic Multicast

This section introduces FastCast, a genuine atomic multicast algorithm that can
deliver global messages fast, in four communication delays, providing a general
description of FastCast (§2.2.1), then presenting it in detail (§2.2.2) and dis-
cussing its time complexity (§2.2.3).

2.2.1 Overview

Fast Atomic Multicast implements two execution paths for global messages, a fast
path and a slow path. The two paths execute concurrently and are triggered after
a message m is a-multicast (see Figure 2.1(b)).

14 2.2 Fast Atomic Multicast

Algorithm 1 Baseline Atomic Multicast - BaseCast (for process p in group g)
1: Initialization
2: CH ← 0 {p’s logical clock}
3: B ← ; {tentative timestamps of undelivered messages}
4: kp← 0; kd ← 0 {the consensus instance for propose and decide events, respectively}
5: ToOrder← ε; Ordered← ε {sequences of tuples to be and already ordered, respectively}

6: To a-multicast message m:
7: r-multicast (START,⊥,⊥, m) to m.dst

8: when r-deliver(START,⊥,⊥, m) {Task 1}
9: ToOrder← ToOrder⊕ (SET-HARD, g,⊥, m) {add a tuple to be ordered by consensus}

10: when r-deliver(SEND-HARD, h, x , m) {Task 2}
11: if ∀y : (SYNC-HARD, h, y, m) 6∈ ToOrder then {if this tuple not already included...}
12: ToOrder← ToOrder⊕ (SYNC-HARD, h, x , m) {...add it to be ordered}

13: when ToOrder \Ordered 6= ; {Task 3}
14: proposeg[kp](ToOrder \Ordered) {propose all tuples that haven’t been ordered yet}
15: kp← kp + 1 {adjust counter for next propose instance}

16: when decideg[kd](Decided) {Task 4}
17: for each z, h, x , m : (z, h, x , m) ∈ Decided \Ordered in order do {for each tuple}
18: if z = SET-HARD then {set g’s hard tentative timestamp}
19: CH ← CH + 1 {increment logical clock}
20: if |m.dst|> 1 then {if m is a global message:}
21: B ←B ∪{(SEND-HARD, g, CH , m)} {store g’s hard tentative timestamp and...}
22: r-multicast (SEND-HARD, g, CH , m) to m.dst {...send it to each m’s destination}
23: else {if m is a local message:}
24: B ←B ∪{(SYNC-HARD, g, CH , m)} {g’s hard tentative timestamp is ordered}
25: if z = SYNC-HARD then {handle the receipt of h’s hard tentative timestamp}
26: CH ← max({CH , x}) {Lamport’s rule to update logical clocks}
27: B ←B \{(SEND-HARD, h, x , m)} {no longer needed, will store ordered timestamp}
28: B ←B ∪{(SYNC-HARD, h, x , m)} {h’s hard tentative timestamp is now ordered}
29: Ordered← Ordered⊕ (z, h, x , m) {this tuple has been handled}
30: kd ← kd + 1 {adjust counter for next decide instance}

31: when ∃m ∀h ∈ m.dst ∃x : (SYNC-HARD, h, x , m) ∈B {Task 5}
32: ts← max({x : (SYNC-HARD, h, x , m) ∈B}) {ts is m’s final timestamp}
33: for each z, h, x : (z, h, x , m) ∈B doB ←B \ {(z, h, x , m)} {replace m’s ...}
34: B ←B ∪{(FINAL,⊥, ts, m)} {...tentative timestamps inB by m’s final timestamp}
35: while ∃(FINAL,⊥, ts, m) ∈B :

∀(z, h, x , m′) ∈B , m 6= m′ : ts < x do {for each deliverable message}
36: a-deliver m {deliver it!}
37: B ←B \ {(FINAL,⊥, ts, m)} {B only contains undelivered messages}

15 2.2 Fast Atomic Multicast

In the fast path, processes in each group g ∈ m.dst assign a soft tentative
timestamp to m, which is a “guess” of what g ’s hard tentative timestamp will
be. It is called a guess because g ’s hard tentative timestamp is determined after
processes in g execute consensus, in a SET-HARD step. Processes r-multicast m’s
soft tentative timestamp to destinations in m.dst in a SEND-SOFT message. Upon
r-delivering soft tentative timestamps, processes in g execute consensus to ensure
that they act in the same way. This consensus is called a SYNC-SOFT step.

Processes in g can a-deliver m fast if two conditions are satisfied: (a) pro-
cesses have r-delivered and ordered (through consensus) soft tentative times-
tamps from all groups in m.dst, and therefore they can compute m’s final times-
tamp; and (b) the soft tentative timestamp of each g ∈ m.dst matches g ’s hard
tentative timestamp (determined in the slow path).

The slow path resembles BaseCast, with the exception that processes may
skip the second phase of the protocol. When processes in g have collected soft
tentative timestamps, as a result of the fast path, and hard tentative timestamps,
as a result of the first phase of the slow path, from all groups in m.dst, they
compare the timestamps. If the soft and hard tentative timestamps for each group
in m.dst match, then processes can a-deliver m without executing the second
phase of the slow path. If the timestamps do not match for some group, processes
continue the execution of the second phase of the slow path, just like in BaseCast.

The procedure is modified above so that processes in a group can make “edu-
cated guesses” of their hard tentative timestamps, and thereby a-deliver messages
fast.

• In each group g, consensus is implemented with Paxos [48]. In each Paxos
instance i, the leader in g proposes the value to be decided in instance i.
In runs in which there is a single and correct leader in g, processes will
decide on the value proposed by the leader [48].

• The leader is the only process in a group to propagate soft tentative times-
tamps (SEND-SOFT messages) to the destination groups of a message and
uses the chosen timestamp as the proposed hard tentative timestamp in
consensus (SET-HARD step).

As a result, in executions in which there is a single and correct leader in each
group, a-multicast messages will be a-delivered fast.

2.2.2 Detailed algorithm

Algorithm 2 presents seven tasks that execute in isolation. In addition to the
variables used in Algorithm 1, it also implements a logical clock CS used to as-

16 2.2 Fast Atomic Multicast

sign soft tentative timestamps to messages. In the following, execution of global
messages is first described and then the execution of local messages.

A process a-multicasts global message m by r-multicasting (START,⊥, ⊥, m)
to m’s destinations (i.e., groups in m.dst). In Task 1, process p in group g r-
delivers the START message and requests processes in g to compute a hard tenta-
tive timestamp for m, by adding (SET-HARD, g,⊥, m) to sequence ToOrder. Entries
in ToOrder are ordered by consensus in Tasks 4 and 5. In Task 4, if p is the leader
of g, it proposes tuples in ToOrder in the next available consensus instance; p
also chooses a soft tentative timestamp for m and r-multicasts this timestamp in
tuple (SEND-SOFT, h, CS, m) to m’s destinations.

Soft tentative timestamps are r-delivered in Task 2, where p adds
(SYNC-SOFT, h, x , m) to ToOrder to be ordered by consensus in Task 4. Task
5 is responsible for consensus decisions, handling them sequentially and in
order. To handle a (SET-HARD, h, x , m) tuple, p updates its logical clock CH ,
picks a hard tentative timestamp for m and r-multicasts this timestamp to m’s
destinations in a SEND-HARD message. Finally, p handles (SYNC-HARD, h, x , m)
and (SYNC-SOFT, h, x , m) tuples by updating its logical clock CH and adding the
tuples toB .

A tuple (SEND-HARD, h, x , m), with m’s hard tentative timestamp from group
h, is r-delivered in Task 3. As a result, p adds (SYNC-HARD, h, x , m) to ToOrder so
that it is ordered by consensus, as described above. Task 6 checks whether the
soft and hard tentative timestamps for m match, in which case it sets m as ordered
and places m in B , where it will be eventually a-delivered. The condition for
a-delivering m is similar in Algorithm 1 (Task 5) and Algorithm 2 (Task 7).

Local a-multicast messages experience a shorter execution path than global
messages. When a message m is a-multicast to a single group g, it is r-multicast
to the members of g in a (START,⊥, ⊥, m) message. Upon r-delivering m, g ’s
members execute a round of consensus (SET-HARD step) to agree on the hard
tentative timestamp to assign to m and ensure that future messages will be as-
signed a timestamp greater than the one assigned to m. When the proposed
timestamp is decided, it becomes m’s final timestamp.

2.2.3 Time complexity

Proposition 2 states that Algorithm 2 can deliver messages fast, in four commu-
nication delays.

Proposition 2 Assume Algorithm 2 uses the reliable multicast implementation in
[24] and the consensus implementation in [48]. IfR is a set of runs of Algorithm 2

17 2.2 Fast Atomic Multicast

Algorithm 2 Fast Atomic Multicast - FastCast (for process p in group g)
1: Initialization
2: CH ← 0; CS ← 0 {p’s logical clock for hard and soft tentative timestamps, respectively}
3: B ← ; {tentative timestamps of undelivered messages}
4: kp← 0; kd ← 0 {the consensus instance for propose and decide events, respectively}
5: ToOrder← ε; Ordered← ε {sequences of tuples to be and already ordered, respectively}

6: To a-multicast message m:
7: r-multicast (START,⊥,⊥, m) to m.dst

8: when r-deliver(START,⊥,⊥, m) {Task 1}
9: ToOrder← ToOrder⊕ (SET-HARD, g,⊥, m) {add a tuple to be ordered by consensus}

10: when r-deliver(SEND-SOFT, h, x , m) {Task 2}
11: if ∀y : (SYNC-SOFT, h, y, m) 6∈ ToOrder then {if this tuple not already included...}
12: ToOrder← ToOrder⊕ (SYNC-SOFT, h, x , m) {...add it to be ordered}

13: when r-deliver(SEND-HARD, h, x , m) {Task 3}
14: if ∀y : (SYNC-HARD, h, y, m) 6∈ ToOrder then {if this tuple hasn’t been included

already...}
15: ToOrder← ToOrder⊕ (SYNC-HARD, h, x , m) {...add it to be ordered}

16: when ToOrder \Ordered 6= ; and leaderg,p = p {Task 4}
17: CS ← max({CH , CS}) {soft timestamp should not be smaller than hard timestamp}
18: for each (z, h, x , m) ∈ ToOrder \Ordered in delivery order do {for unordered msgs}
19: if z = SET-HARD then
20: CS ← CS + 1 {increment logical clock and propagate soft tentative timestamp}
21: if |m.dst|> 1 then r-multicast (SEND-SOFT, h, CS , m) to m.dst
22: else
23: CS ← max({CS , x}) {soft timestamp should not be smaller than unordered ones}
24: proposeg[kp](ToOrder \Ordered) {propose all tuples that haven’t been ordered yet}
25: kp← kp + 1 {adjust counter for next propose instance}

26: when decideg[kd](Decided) {Task 5}
27: for each (z, h, x , m) ∈ Decided \Ordered in order do {for each ordered tuple}
28: if z = SET-HARD then {set g’s hard tentative timestamp}
29: CH ← CH + 1 {increment logical clock and send hard tentative timestamp}
30: if |m.dst|> 1 then r-multicast (SEND-HARD, g, CH , m) to m.dst
31: elseB ←B∪{(SYNC-HARD, g, CH , m)} {if m is local, hard timestamp is ordered}
32: if z = SYNC-SOFT then
33: CH ← max({CH , x}) {Lamport’s rule to update logical clocks}
34: B ←B ∪{(SYNC-SOFT, h, x , m)} {h’s soft tentative timestamp is now ordered}
35: if z = SYNC-HARD then
36: CH ← max({CH , x}) {Lamport’s rule to update logical clocks}
37: B ←B ∪{(SYNC-HARD, h, x , m)} {h’s hard tentative timestamp is now ordered}
38: Ordered← Ordered⊕ {(z, h, x , m)} {this tuple has been handled}
39: kd ← kd + 1 {adjust counter for next decide instance}

40: when ∃h, x , m : (SYNC-SOFT, h, x , m) ∈B and
(SYNC-HARD, h, x , m) ∈ ToOrder \Ordered {Task 6}

41: B ←B ∪{(SYNC-HARD, h, x , m)} {h’s hard tentative timestamp is now ordered}
42: Ordered← Ordered⊕ {(SYNC-HARD, h, x , m)} {this tuple has been handled}

43: when ∃m ∀h ∈ m.dst ∃x : (SYNC-HARD, h, x , m) ∈B {Task 7}
44: ts← max({x : (SYNC-HARD, h, x , m) ∈B}) {ts is m’s final timestamp}
45: for each z, h, x : (z, h, x , m) ∈B doB ←B \ {(z, h, x , m)} {replace m’s...}
46: B ←B ∪{(FINAL,⊥, ts, m)} {...tentative timestamps inB by m’s final timestamp}
47: while ∃(FINAL,⊥, ts, m) ∈B ∀(z, h, x , m′) ∈B , m 6= m′ : ts < x do
48: a-deliver m {deliver each deliverable m inB }
49: B ←B \ {(FINAL,⊥, ts, m)} {B only contains undelivered messages}

18 2.3 Proofs of Correctness

in which for every group g there is a correct leader lg and for each p ∈ g leaderg,p =
lg , then there are runs in R in which atomically multicast global messages are
delivered fast, in four communication delays.

2.3 Proofs of Correctness

This sections details the proofs of correctness for the presented algorithms.

2.3.1 Proofs for Propositions 1 and 2

Proposition 1 Let Algorithm 1 use the reliable multicast implementation in [24]
and the consensus implementation in [48]. Every atomically multicast global mes-
sage is delivered in at least 6δ.

PROOF: Let m be a global message a-multicast using Algorithm 1. It takes one
communication delay for m to be r-multicast to its destinations. Each group
in m.dst relies on consensus to assign m a hard tentative timestamp. Execut-
ing an instance of consensus within m’s destination groups takes 2δ in the best
case [50]. Processes then exchange their timestamps in another communication
delay and finally execute one more instance of consensus before a-delivering m.
Thus, m can be a-delivered in (at least) 6δ. �

Proposition 2 Assume Algorithm 2 uses the reliable multicast implementation in
[24] and the consensus implementation in [48]. IfR is a set of runs of Algorithm 2
in which for every group g there is a correct leader lg and for each p ∈ g leaderg,p =
lg , then there are runs in R in which atomically multicast global messages are
delivered fast, in four communication delays.

PROOF: Consider run R ∈ R where a process r a-multicasts a global message
m. From Algorithm 2, r r-multicasts (START,⊥,⊥, m) to m.dst. For every g in
m.dst and each p in g, p r-delivers m at Task 1 within one communication delay
and adds tuple (SET-HARD, g,⊥, m) to ToOrder. The following part consider now
what happens in the fast and in the slow paths.

• In the fast path, from the hypothesis and Task 4, for each g in m.dst, pro-
cess lg (and no other process in g) assigns a soft timestamp Cs to m and
r-multicasts it to m.dst in a SEND-SOFT message, which processes r-deliver
after one delay (Task 2) and as a result include tuple (SYNC-SOFT, h, y, m)
in ToOrder. Then, lg in g proposes a sequence that contains the SYNC-SOFT

19 2.3 Proofs of Correctness

message and after two delays, processes decide on the value proposed and
include (SYNC-SOFT, h, y, m) inB . In total, four communication delays are
needed since m is a-multicast.

• In the slow path, after including (SET-HARD, g,⊥, m) in ToOrder, lg (and
no other process in g) proposes a sequence that includes the SET-HARD

tuple, which is decided by processes in g after two delays. After deciding
on the SET-HARD tuple, processes in g assign hard timestamp Ch to m and
r-multicast (SEND-HARD, g, Ch, m) to all processes in m.dst (Task 5). This
message is r-delivered within one delay and upon r-delivering it (Task 3),
processes include (SET-HARD, g, Ch, m) inB . In total, four communication
delays since m is a-multicast.

Thus, for each process in m’s destination and each group g ∈ m.dst, after four
delays tuple (SYNC-SOFT, g, x , m) is in B and tuple (SYNC-HARD, g, x , m) is in
ToOrder and p includes (SYNC-HARD, g, x , m) in B (Task 6) and a-delivers m
(Task 7), after four communication delays. �

2.3.2 Proof of correctness for Algorithm 1

Proposition 3 Uniform integrity: For any process p and any message m, p a-
delivers m at most once, and only if p ∈ m.dst and m was previously a-multicast.

PROOF: From p to a-deliver m (Task 5), p assessed that for each h in m.dst,
there is a tuple (SYNC-HARD, h, x , m) in B . It is shown that SYNC-HARD tu-
ples for m are included only once in B . There are two cases in which tuple
(SYNC-HARD, h, x , m) is included in B . In Task 4, (SYNC-HARD, h, x , m) is in-
cluded in B upon deciding on tuple (SET-HARD, h, x , m) if m is local and upon
deciding on (SYNC-HARD, h, x , m) if m is global. For the first case to happen,
(SET-HARD, h, x , m) must be included in ToOrder in Task 1, as the result of the
r-delivery of (START,⊥,⊥, m). From the properties of reliable broadcast, such a
message is delivered only once by p. The second case happens when a SYNC-
HARD tuple is in ToOrder, which from Task 2, it is included only once. From
Algorithm 2, it follows immediately that p only a-delivers m if p is part of m’s
addresses and m is a-multicast. �

Lemma 1 If a correct process p in g includes tuple T in ToOrder, then eventually
processes in g decide on a sequence of tuples that contains T .

PROOF: Process p includes T in ToOrder either in Task 1 or in Task 2. In both
cases, T was r-delivered by p and from the properties of reliable broadcast, every

20 2.3 Proofs of Correctness

correct process in g will r-deliver T and include it in ToOrder. Let t be a time
after which all faulty processes have failed. Thus, after t there is a time when all
ToOrder sequences from processes that propose in consensus contain T . By the
uniform integrity property of consensus, T is eventually included in a decision
of consensus. �

Lemma 2 For each correct process p that has tuple (SYNC-HARD, h, x , m) in B , p
eventually replaces the entry by (FINAL,⊥, ts, m) in B where ts is the maximum
timestamp x in the SYNC-HARD tuples that concern m.

PROOF: To include (SYNC-HARD, h, x , m) in B , p has decided on a sequence
that contains either (a) a (SET-HARD, h, x , m) tuple if m is local, or (b) a
(SYNC-HARD, h, x , m) tuple if m is global. In case (a), (SYNC-HARD, h, x , m) will
be trivially replaced by (FINAL,⊥, x , m) in Task 5. In case (b), some process
proposed a ToOrder \ Ordered sequence that contains (SYNC-HARD, h, x , m).
The SYNC-HARD tuple is included in ToOrder in Task 2 upon r-delivering tuple
(SEND-HARD, h, x , m), which was r-multicast in Task 4, upon the decision of
a sequence with (SET-HARD, h, x , m). Thus, (SET-HARD, h, x , m) was included
in ToOrder at Task 1, as a result of the r-delivery of (START,⊥,⊥, m), which
is r-multicast to all of m’s destinations. Every group h in m.dst upon r-
delivering (START,⊥,⊥, m) adds tuple (SET-HARD, h, x , m) to ToOrder, which
from Lemma 1 is eventually included in a consensus decision and results in
the r-multicast of (SEND-HARD, h, x , m) to members of m.dst. When a pro-
cess r-delivers (SEND-HARD, h, x , m), it adds (SYNC-HARD, h, x , m) to ToOrder
and, from Lemma 1, the tuple is decided in an instance of consensus, lead-
ing to the inclusion of (SYNC-HARD, h, x , m) in B . Once there is a tuple
(SYNC-HARD, h, x , m) inB for each group h in m.dst, p replaces the SYNC-HARD

tuples by (FINAL,⊥, ts, m). �

Lemma 3 If a correct process p includes (FINAL,⊥, ts, m) inB , then p eventually
a-delivers m.

PROOF: Assume for a contradiction that q does not a-deliver m. Thus, there is
some tuple (z, h, y, m′) in B such that m 6= m′ and y < ts. It is first shown
that eventually any entry (z, h, y, m′) added in B after (FINAL,⊥, ts, m) is in B
has a timestamp larger than ts. Message m only has a FINAL tuple in B af-
ter it received SYNC-HARD tuples from all of m’s destinations. When q includes
(SYNC-HARD, h, x , m) inB in Task 4, q updates Ch such that it contains the max-
imum between it current value and x . Since the next SET-HARD event that q

21 2.3 Proofs of Correctness

handles for a message m′′ will increment Ch, it follows that m′′ will have a times-
tamp larger than ts.

It is then shown that every message that contains a timestamp smaller
than m’s final timestamp ts is eventually a-delivered and removed from B .
Let (z, h, y, m′) be an entry in B such that y < ts. Either z is FINAL or it is
SYNC-HARD and from Lemma 2 z the tuple will eventually be replaced by a FINAL

tuple. Thus, from Task 5 message m′ will be eventually a-delivered and removed
fromB , a contradiction. The conclusion is that q eventually a-delivers m. �

Proposition 4 Validity: If a correct process p a-multicasts a message m, then even-
tually all correct processes q ∈ m.dst a-deliver m.

PROOF: Upon a-multicasting m, p r-multicasts (START,⊥,⊥, m) to all processes
in m.dst and from the validity and agreement properties of reliable broadcast,
every correct q in m.dst will r-deliver (START,⊥,⊥, m) in Task 1. By Task
1, q includes (SET-HARD, g,⊥, m) in ToOrder and from Lemma 1, the tuple is
eventually decided in some instance of consensus. If m is global, q r-multicasts
(SEND-HARD, g,⊥, m) to all processes in m.dst; if m is local, q includes
(SYNC-HARD, g,⊥, m) in B . In the first case, every correct process r ∈ m.dst
eventually r-delivers (SEND-HARD, g,⊥, m) and includes (SYNC-HARD, g,⊥, m) in
ToOrder. From Lemma 1 the SYNC-HARD tuple is eventually included in a con-
sensus decision and from Task 4 in B . Therefore, eventually SYNC-HARD tuples
from every group in m.dst are in B and q replaces them by (FINAL,⊥, ts, m),
where ts is the maximum among the timestamps in the SYNC-HARD tuples. From
Lemma 3, q eventually a-delivers m. �

Proposition 5 Uniform agreement: If a process p a-delivers a message m, then
eventually all correct processes q ∈ m.dst a-deliver m.

PROOF: For process p to a-deliver m, from Task 5 for every group h in m.dst, there
is a tuple (SYNC-HARD, h, x , m) in B . Moreover, there is no entry (z, h′, y, m′) in
B such that m 6= m′ and ts < y , where ts is the maximum timestamp in the
SYNC-HARD tuples that concern m. There are two cases to consider.

Case (a): p and q are in the same group g. Process p adds tuples to B in
Task 4 only, and every tuple added to B , which can be of type SET-HARD and
SYNC-HARD, is created from an entry in Decided and variable Ch. Moreover, Ch is
modified only in Task 4, based on tuples in Decided. Since p and q decide on the
same sequence of consensus values, it follows that unless q fails, it executes the
same sequence of steps as p and eventually a-delivers m.

22 2.3 Proofs of Correctness

Case (b): p and q are in different groups. To include (SYNC-HARD, h, x , m)
in B , p has decided on a sequence that includes the tuple, for each group
h ∈ m.dst. From consensus, some process r proposed a sequence that
contains (SYNC-HARD, h, x , m) in ToOrder (Task 3). So, r r-delivered tuple
(SEND-HARD, h, x , m), which was r-multicast to all of m’s destinations in Task 4.
As a consequence, processes in q’s group r-deliver message (SEND-HARD, h, x , m)
and decide on a sequence that includes (SYNC-HARD, h, x , m). The conclusion
is that r adds (SYNC-HARD, h, x , m) to B , for each of m’s destinations h. From
Lemma 3, q eventually a-delivers m. �

Proposition 6 Uniform prefix order: For any two messages m and m′ and any two
processes p and q such that {p, q} ⊆ m.dst∩m′.dst, if p a-delivers m and q a-delivers
m′, then either p a-delivers m′ before m or q a-delivers m before m′.

PROOF: The proposition trivially holds if p and q are in the same group, so assume
p is in group g and q is in group h and suppose, by way of contradiction, that p
does not a-deliver m′ before m nor does q a-deliver m before m′. Without loss of
generality, suppose that m.ts < m′.ts.

A initial claim is that q inserts m into B before a-delivering m′. In order
for m (respectively, m′) to be a-delivered by p (resp., q), p’s (resp., q’s) B
must contain tuples (SYNC-HARD, g, x , m) and (SYNC-HARD, h, y, m) (resp.,
(SYNC-HARD, g, x ′, m′) and (SYNC-HARD, h, y ′, m′)). From Task 4, for p to
include a SYNC-HARD tuple in B , p must have decided a sequence that con-
tains (SYNC-HARD, g, x , m) (recall that m is a global message). Thus, some
process in g included (SYNC-HARD, g, x , m) in ToOrder, after r-delivering tuple
(SEND-HARD, g, x , m). With a similar argument, some process in g included
(SYNC-HARD, g, x ′, m′) in ToOrder, after r-delivering tuple (SEND-HARD, g, x ′, m′).
Let r and s be the processes that r-multicast messages (SEND-HARD, g, x , m)
and (SEND-HARD, g, x ′, m′), respectively, at Task 4. Therefore, r and s decided
sequences that include the SET-HARD tuples. Assume that (SET-HARD, g, x , m)
is decided before (SET-HARD, g, x ′, m′). Therefore, before r-multicasting
(SEND-HARD, g, x ′, m′), s r-multicast (SEND-HARD, g, x , m). From the FIFO prop-
erties of reliable multicast, q r-delivered the tuples in the order above and it can
be shown that (SYNC-HARD, g, x , m) appears in B before (SET-HARD, g, x ′, m′),
which proves our claim.

Consequently, from the claim, q a-delivers m before m′ since m.tsq < m′.tsq,
a contradiction that concludes the proof. �

Proposition 7 Uniform acyclic order: The relation < is acyclic.

23 2.3 Proofs of Correctness

PROOF: Suppose, by way of contradiction, that there exist messages m1, ..., mk

such that m1 < m2 < ... < mk < m1. From Task 5, processes a-deliver messages
following the order of their final timestamps. Thus, there must be processes p
and q such that the final timestamps they assign to m1, m1.tsp and m1.tsq, satisfy
m1.tsp < m1.tsq, a contradiction since both p and q receive the same SYNC-HARD

tuples used to calculate m1’s final timestamp in Task 5.
�

Theorem 1 Algorithm 1 implements atomic multicast.

PROOF: This follows directly from Propositions 3 through 7. �

2.3.3 Proof of correctness for Algorithm 2

Proposition 8 Uniform integrity: For any process p and any message m, p a-
delivers m at most once, and only if p ∈ m.dst and m was previously a-multicast.

PROOF: Assume p a-delivers m. From Task 7, p assessed that for each h in m.dst,
there is a tuple (SYNC-HARD, h, x , m) inB . It is shown that SYNC-HARD tuples for
m are included only once inB . Since SYNC-HARD tuples for m are removed from
B when m is a-delivered (in Task 7), this shows that m is a-delivered only once.
There are three cases in which tuple (SYNC-HARD, h, x , m) is included in B in
Algorithm 2. In Task 5, (SYNC-HARD, h, x , m) is included inB (a) upon deciding
on tuple (SET-HARD, h, x , m) if m is local and (b) upon deciding on (SYNC-HARD, h,
x , m) if m is global. (c) In Task 6 if the soft and hard timestamps for h (i.e.,
(SYNC-SOFT, h, x , m) and (SYNC-HARD, h, x , m)) in ToOrder match.

In all cases, after including (SYNC-HARD, h, x , m) in B , p added the tuple to
Ordered and so, the tuple will not be in any future consensus decision. Moreover,
in case (a), (SET-HARD, h, x , m) is included in ToOrder upon r-delivering a START

message for m (Task 1). From uniform integrity of reliable multicast, p does not
r-delivers the START message for m more than once. In cases (b) and (c), since
the SYNC-HARD tuple is in ToOrder, from Task 3, no other SYNC-HARD tuple for m
from h will be included in ToOrder.

From Algorithm 2, it follows immediately that p only a-delivers m if p is part
of m’s addresses and m is a-multicast. �

Lemma 4 If a correct process p in g includes tuple T in ToOrder, then eventually
processes in g decide on a sequence of tuples that contains T .

24 2.3 Proofs of Correctness

PROOF: Process p includes T in ToOrder in Tasks 1, 2 and 3. In all cases, T
was r-delivered by p and from the properties of reliable broadcast, every correct
process in g will r-deliver T and include it in ToOrder. Let t be a time after which
all faulty processes have failed and t ′ the time after which for every process p
in g, leaderg,p = lg , where lg is a correct process. Thus, after t ′′ = max(t, t ′)
there is a time when all ToOrder sequences contain T and one correct process,
lg , proposes this sequence in consensus. By the uniform integrity property of
consensus, T is eventually included in a decision of consensus. �

Lemma 5 For each correct process p that has tuple (SYNC-HARD, h, x , m) in B , p
eventually replaces the entry by (FINAL,⊥, ts, m) in B where ts is the maximum
timestamp x in the SYNC-HARD tuples that concern m.

PROOF: To include (SYNC-HARD, h, x , m) in B , (a) p has decided on a sequence
that contains a (SET-HARD, h, x , m) tuple if m is local (Task 5), or (b) p has decided
on a sequence that contains a (SYNC-HARD, h, x , m) tuple if m is global (Task 5),
or (c) p has decided on a sequence that contains (SYNC-SOFT, h, x , m) and p has
included (SYNC-HARD, h, x , m) in ToOrder, if m is global (Task 6).

In case (a), (SYNC-HARD, h, x , m) in B will be trivially replaced by
(FINAL,⊥, x , m) in Task 5. In case (b), some process proposed a ToOrder\Ordered
sequence that contains (SYNC-HARD, h, x , m). So, for cases (b) and (c), the
SYNC-HARD tuple is included in ToOrder in Task 3 upon r-delivering tuple
(SEND-HARD, h, x , m), which was r-multicast in Task 5, upon the decision
of a sequence with (SET-HARD, h, x , m). Therefore, (SET-HARD, h, x , m) was
included in ToOrder at Task 1, as a result of the r-delivery of (START,⊥,⊥, m),
which is r-multicast to all of m’s destinations. Every group h in m.dst upon
r-delivering (START,⊥,⊥, m) adds tuple (SET-HARD, h, x , m) to ToOrder, which
from Lemma 4 is eventually included in a consensus decision and results in
the r-multicast of (SEND-HARD, h, x , m) to members of m.dst. When a process
r-delivers (SEND-HARD, h, x , m), it adds (SYNC-HARD, h, x , m) to ToOrder and,
from Lemma 4, the tuple is decided in an instance of consensus, leading to the
inclusion of (SYNC-HARD, h, x , m) inB .

Once for each group h in m.dst there is a tuple (SYNC-HARD, h, x , m) inB , p
replaces the SYNC-HARD tuples by (FINAL,⊥, ts, m). �

Lemma 6 If a correct process p includes (FINAL,⊥, ts, m) inB , then p eventually
a-delivers m.

PROOF: Assume for a contradiction that q does not a-deliver m. Thus, there is
some tuple (z, h, y, m′) inB such that m 6= m′ and y < ts.

25 2.3 Proofs of Correctness

It is first shown that eventually any entry (z, h, w, m′) added in B after
(FINAL,⊥, ts, m) is in B has a timestamp larger than ts. Process q only
includes (FINAL,⊥, ts, m) in B (Task 7) after from each h ∈ m.dst (a) q
decided on a sequence with (SYNC-HARD, h, x , m) (Task 5) or (b) q decided on a
sequence with (SYNC-SOFT, h, x , m) (Task 5) and included (SYNC-HARD, h, x , m)
in ToOrder, after r-delivering (SEND-HARD, h, x , m) (Task 3). Before q includes
(SYNC-HARD, h, x , m) in B in Tasks 5 and 6, q updates Ch such that it contains
the maximum between its current value and x . Since the next SET-HARD event
that q handles for a message m′′ will increment Ch, m′′ will have a timestamp
larger than ts.

It is now shown that every message that contains a timestamp smaller
than m’s final timestamp ts is eventually a-delivered and removed from B .
Let (z, h, y, m′) be an entry in B such that y < ts. Either z is FINAL or it is
SYNC-HARD and from Lemma 5 the tuple will eventually be replaced by a FINAL

tuple. Thus, from Task 7 message m′ will be eventually a-delivered and removed
fromB , a contradiction. The conclusion is that q eventually a-delivers m. �

Proposition 9 Validity: If a correct process p a-multicasts a message m, then even-
tually all correct processes q ∈ m.dst a-deliver m.

PROOF: Upon a-multicasting m, p r-multicasts (START,⊥,⊥, m) to all processes
in m.dst and from the validity and agreement properties of reliable broadcast,
every correct q in m.dst will r-deliver (START,⊥,⊥, m) in Task 1. By Task
1, q includes (SET-HARD, g,⊥, m) in ToOrder and from Lemma 4, the tuple is
eventually decided in some instance of consensus. If m is global, q r-multicasts
(SEND-HARD, g,⊥, m) to all processes in m.dst; if m is local, q includes
(SYNC-HARD, g,⊥, m) in B . In the first case, every correct process r ∈ m.dst
eventually r-delivers (SEND-HARD, g,⊥, m) and includes (SYNC-HARD, g,⊥, m) in
ToOrder. From Lemma 4 the SYNC-HARD tuple is eventually included in a con-
sensus decision and from Task 5 in B . Therefore, eventually SYNC-HARD tuples
from every group in m.dst are in B and q replaces them by (FINAL,⊥, ts, m),
where ts is the maximum among the timestamps in the SYNC-HARD tuples. From
Lemma 6, q eventually a-delivers m. �

Proposition 10 Uniform agreement: If a process p a-delivers a message m, then
eventually all correct processes q ∈ m.dst a-deliver m.

PROOF: For process p to a-deliver m, from Task 7, for every group h in
m.dst, there is a tuple (SYNC-HARD, h, x , m) in B . Process p includes
(SYNC-HARD, h, x , m) in B in the following situations: (a) after p decides

26 2.3 Proofs of Correctness

on a sequence that contains (SET-HARD, h, x , m) and m is local (Task 5); (b) after
p decides on a sequence that includes (SYNC-HARD, h, x , m) and m is global (Task
5); and (c) after p decides on a sequence that includes (SYNC-SOFT, h, x , m) and
(SYNC-HARD, h, x , m) is in ToOrder (Task 6).

In case (a), from consensus’s uniform agreement property, q decides on
a sequence that contains (SET-HARD, h, x , m) and since m is local, q includes
(SYNC-HARD, h, x , m) in B . From Lemma 6, q eventually a-delivers m. In case
(b), following a similar argument as item (a), q decides on a sequence that
includes (SYNC-HARD, h, x , m) and includes the tuple in B . From Lemma 6, q
eventually a-delivers m.

In case (c), to include (SYNC-HARD, h, x , m) in ToOrder, p has r-delivered
message (SEND-HARD, h, x , m) (Task 3), which was r-multicast to all of m’s
destinations in Task 5 upon the decision of a sequence containing tuple
(SET-HARD, h, x , m) at group h. From consensus’s uniform agreement property,
every correct process in h also decides on a sequence with (SET-HARD, h, x , m) and
r-multicasts (SEND-HARD, h, x , m) to every process in m.dst. Upon r-delivering
(SEND-HARD, h, x , m), processes in q’s group include tuple (SYNC-HARD, h, x , m)
in ToOrder and from Lemma 4 decide on a sequence that includes the SYNC-
HARD tuple. Then, q includes (SYNC-HARD, h, x , m) in B and from Lemma 6, q
eventually a-delivers m. �

Proposition 11 Uniform prefix order: For any two messages m and m′ and any
two processes p and q such that {p, q} ⊆ m.dst ∩ m′.dst, if p a-delivers m and q
a-delivers m′, then either p a-delivers m′ before m or q a-delivers m before m′.

PROOF: The proposition trivially holds if p and q are in the same group, so assume
p is in group g and q is in group h and suppose, by way of contradiction, that p
does not a-deliver m′ before m nor does q a-deliver m before m′. Without loss of
generality, suppose that m.ts < m′.ts.

The claim is that q inserts m intoB before a-delivering m′. In order for m (re-
spectively, m′) to be a-delivered by p (resp., q), p’s (resp., q’s)B must contain tu-
ples (SYNC-HARD, g, x , m) and (SYNC-HARD, h, y, m) (resp., (SYNC-HARD, g, x ′, m′)
and (SYNC-HARD, h, y ′, m′)).

For p to include a SYNC-HARD tuple in B , p must have (a) decided a
sequence that contains (SYNC-HARD, g, x , m) (recall that m is a global message)
(Task 5) or (b) decided a sequence that contains (SYNC-SOFT, g, x , m) and
(SYNC-HARD, h, x , m) is in ToOrder (Task 6).

In case (a), some process in g included (SYNC-HARD, g, x , m) in ToOrder,
after r-delivering tuple (SEND-HARD, g, x , m). With a similar argument, some

27 2.4 Performance evaluation

process in g included (SYNC-HARD, g, x ′, m′) in ToOrder, after r-delivering tuple
(SEND-HARD, g, x ′, m′). In cases (a) and (b), let r and s be the processes
that r-multicast messages (SEND-HARD, g, x , m) and (SEND-HARD, g, x ′, m′),
respectively, at Task 4. Therefore, r and s decided sequences that include
the SET-HARD tuples. Assume that (SET-HARD, g, x , m) is decided before
(SET-HARD, g, x ′, m′). Therefore, before r-multicasting (SEND-HARD, g, x ′, m′),
s r-multicast (SEND-HARD, g, x , m). From the FIFO properties of reliable mul-
ticast, q r-delivered the tuples in the order above and it can be shown that
(SYNC-HARD, g, x , m) appears in B before (SET-HARD, g, x ′, m′), which proves
our claim.

Consequently, from the claim, q a-delivers m before m′ since m.tsq < m′.tsq,
a contradiction that concludes the proof. �

Proposition 12 Uniform acyclic order: The relation < is acyclic.

PROOF: Suppose, by way of contradiction, that there exist messages m1, ..., mk

such that m1 < m2 < ... < mk < m1. From Task 7, processes a-deliver messages
following the order of their final timestamps. Thus, there must be processes p
and q such that the final timestamps they assign to m1, m1.tsp and m1.tsq, satisfy
m1.tsp < m1.tsq, a contradiction since both p and q receive the same SYNC-HARD

tuples used to calculate m1’s final timestamp in Task 7. �

Theorem 2 Algorithm 2 implements atomic multicast.

PROOF: This follows directly from Propositions 8 through 12. �

2.4 Performance evaluation

This section describes the main motivations that guided the experiments de-
sign (§2.4.1), details the environments in which experiments were conducted
(§2.4.2), explains how a social network benchmark was implemented (§2.4.3),
and then presents and discusses the results (§2.4.4–2.4.7). It concludes with a
summary of the main findings (§2.4.8).

2.4.1 Evaluation rationale

In the following, choices for environments, benchmarks, and protocols are ex-
plained.

28 2.4 Performance evaluation

Environments. They are three: a LAN, an emulated WAN, and a real WAN. The
LAN and emulated WAN provide controlled environments, where experiments
can run in isolation; the real WAN represents a setting in which FastCast is ex-
pected to be used in practice. FastCast optimizes for the number of communica-
tion delays. Thus, the protocol will most likely perform well in environments in
which latencies are high. Such conjecture is tested in emulated and real WANs.
It is also desirable to understand how FastCast performs in less favorable envi-
ronments, where the difference between communication and processing delays
is less significant (i.e., LAN).
Benchmarks. The microbenchmark consists of 64-byte messages to evaluate par-
ticular scenarios in isolation. The number of groups is variable (up to 16 groups,
the largest configuration our local infrastructure can accommodate) as well as
the number of message destinations. The second benchmark is a social network
service which defines message destinations according to user connections in a so-
cial network graph. In these two benchmarks, there are executions with a single
client to understand the performance of FastCast without queueing effects and
executions with multiple clients to evaluate FastCast under stress.
Protocols. FastCast is compared to another genuine atomic multicast protocol,
BaseCast, and to a non-genuine atomic multicast protocol that uses a fixed group
of processes to order messages, regardless of the message destinations. The fixed
group of processes uses Multi-Paxos to order atomically multicast messages. Al-
though the non-genuine protocol does not scale, under low load (i.e., with a
single client) it provides a performance reference since messages can be ordered
in three communication delays.

2.4.2 Implementation and environments

The prototypes of BaseCast, FastCast and the non-genuine atomic multicast are
provided in C. For brevity, hereafter the non-genuine atomic multicast protocol is
referred as Multi-Paxos. Libpaxos,1 a Multi-Paxos C library, provides consensus,
and point-to-point communication relies on TCP. A stable leader for each group
is defined prior to the execution, which is expected to be the common case.

Local-area network (LAN). This environment consisted of a set of nodes, each
node with an eight-core Intel Xeon L5420 processor working at 2.5GHz, 8GB of
memory, SATA SSD disks, and 1Gbps ethernet card. Each node runs CentOS 7.1
64 bits. The RTT (round-trip time) between nodes in the cluster is around 0.1ms.

Emulated wide-area network (emulated WAN). These experiments use the LAN

1http://libpaxos.sourceforge.net/paxos_projects.php#libpaxos3

29 2.4 Performance evaluation

environment and divides nodes in three “regions”, R1, R2 and R3. The latencies
between nodes in different regions were emulated using Linux traffic control
tools. The used latency values were measured in a real WAN (see below), with
average RTT of 70ms (R1↔R2), 70ms (R2↔R3), and 144ms (R1↔R3), and
standard deviation of 5%.

Real wide-area network (WAN). The experiments run on Amazon EC2, a public
wide-area network. All the nodes are m3.large instances, with 2 vCPUs and
7.5GB of memory, allocated in three regions: California (R1), North Virginia
(R2) and Ireland (R3).

In all experiments, groups contain three processes, each process running in a
different node. In WAN setups, clients are distributed in three regions and each
process deployed in a group in a different region (see Figure 2.2). Consequently,
each group can tolerate the failure of a whole datacenter.

~0.1ms

Datacenter
in Region R1

Datacenter
in Region R2

Datacenter
in Region R3

SE
ND

-H
AR

DSYNC-SOFT
SET-HARD

. .
 .

. .
 .

. .
 .

Group 1

Group 2

Group 16

SYNC-HARD

SE
ND

-S
O

FT

RTT=70ms RTT=70ms

~0.1ms

Node

RTT=144ms

Figure 2.2. Configuration in WAN.

2.4.3 Social network benchmark

The developed social network service is similar to Twitter. Users can follow and
unfollow other users, post a message, and read the last messages posted by the
users they follow. The social network graph has ten thousand users partitioned in

30 2.4 Performance evaluation

16 partitions using METIS,2 a popular graph partitioner. METIS strives to balance
the number of users per partition while minimizing the number of edges across
partitions. In the social graph, 7110 users have followers in the same partition,
2474 users have followers in two partitions, 376 users have followers in three
partitions, and the remaining 40 users have followers in four or five partitions.
When a user posts a message (64 bytes), the message is atomically multicast
to all the groups that contain followers of the user. This ensures that reads are
single-group operations. Since reads and posts are implemented with atomic
multicast, this social network service offers strong consistency guarantees. In the
experiments, there are only posts, since as mentioned above, reads are always
local to a partition.

 0

 100000

 200000

 300000

 400000

 500000

 600000

1 Group 2 Groups 4 Groups 8 Groups 16 Groups

T
hr

ou
gh

pu
t [

m
es

sa
ge

s
/ s

ec
] BaseCast

FastCast
MultiPaxos

Figure 2.3. Throughput for single-group messages in a LAN.

2.4.4 Microbenchmark in LAN

The first experiment explores the advantage of genuine atomic multicast algo-
rithms over non-genuine approaches like Multi-Paxos. Figure 2.3 shows the
throughput in messages per second versus the number of groups, when 200
clients per group multicast local messages only. The results show that genuine
atomic multicast protocols result in throughput that increases linearly with the
number of groups, from 36000 messages per second with 1 group to almost
600000 messages per second with 16 groups. This happens because genuine pro-
tocols only involve the sender of a message and the destination group. Because
Multi-Paxos has to order all the messages and is nearly saturated with 200 client,
performance with 2 groups is only slightly higher than with 1 group, reaching

2http://glaros.dtc.umn.edu/gkhome/views/metis

31 2.4 Performance evaluation

0.00

0.40

0.80

1.20

1.60

2.00

1 Group 2 Groups 4 Groups 8 Groups 16 Groups

La
te

nc
y

[m
se

c]
BaseCast
FastCast

MultiPaxos

0.00

0.40

0.80

1.20

1.60

2.00

1 Group 2 Groups 4 Groups 8 Groups 16 Groups

La
te

nc
y

[m
se

c]

 1

 2

 4

 8

 16

 32

 64

1G / 1536C 2G / 768C 4G / 384C 8G / 192C 16G / 96C

La
te

nc
y

[m
se

c]

BaseCast
FastCast

MultiPaxos

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000

1G / 1536C 2G / 768C 4G / 384C 8G / 192C 16G / 96C
Th

ro
ug

hp
ut

 [o
pe

ra
tio

ns
 /

se
c]

Figure 2.4. Atomic multicast in a LAN. Bars show median latency or average
throughput, and whiskers show 95-th percentile or 95% confidence interval.
(Top left.) Latency when one client multicasts to all groups versus number of
groups in configuration. (Top right.) Latency when one client multicasts to k
groups in a system with 16 groups. (Bottom left and right.) Latency and through-
put when multiple clients multicast to increasing number of destination groups
in a system with 16 groups. Legend in x -axis shows number of destination
groups kg in a multicast message and number of clients kc in the configuration,
where kg × kc = 1536.

a maximum of 48000 messages per second. BaseCast and FastCast have identi-
cal results because the mechanism to order messages addressed to one group is
similar in both algorithms. Even though Multi-Paxos does not scale, it provides
a useful reference for latency with few clients (i.e., low load), since it orders
messages in three communication delays.

The next experiments assess latency with a single client. This setup aims to
check if the reduction in communication delays introduced by FastCast has the
expected impact on latency. The considered configurations have an increasing
number of groups and clients multicast messages to all groups in the configu-
ration. FastCast’s advantage is more noticeable when the number of groups is
smaller than 8, with a reduction from 0.928 ms to 0.691ms with 2 groups when
compared to BaseCast, and from 1.068 ms to 0.847ms with 4 groups (Figure 2.4,
top left). With 16 groups, the overhead introduced by the slow and fast paths in

32 2.4 Performance evaluation

FastCast impacts latency negatively. Multi-Paxos has lower latency in almost all
the cases, an expected result that reflects the advantage of atomic broadcast over
atomic multicast when the number of destinations is equal or close to the total
number of groups [75]. Figure 2.4 (top right) shows similar results for a fixed
number of groups with increasing destinations. Multi-Paxos has higher latency
in this configuration since all processes must be reached, even if the destinations
are a subset of all groups.

The protocols are now assessed under “operational load”, that is, with enough
clients to stress the system, without saturating resources. In these experiments,
the number of groups is fixed to 16 and the number of destinations varies in mul-
ticast messages. The product number of destination groups × number of clients is
constant and equal to 1536. The rationale is that the cost to multicast a message
grows with the number of destinations. Thus, to avoid overloading the system,
the number of clients is decreased as the number of destination groups increases.

Figure 2.4 shows latency and throughput (graphs at the bottom). FastCast
outperforms BaseCast for 2 destination groups, with a latency and throughput of
3.8 ms and 202000 messages per second against 5.1 ms and 158000 messages
per second for BaseCast. With more destinations, the overhead introduced by
FastCast’s parallel paths execution make it less efficient than BaseCast, which has
a single execution path. Multi-Paxos is CPU-bound with more than 200 clients.

2.4.5 Microbenchmark in emulated WAN

The following experiments test the conjecture that FastCast is more suitable for
WANs. The first experiment assesses the latency of the three protocols in the
absence of queuing effects. A single client atomically multicasts, in closed loop,
global messages. The expected latency for the execution of a Paxos instance
in libpaxos is around 70 ms, which is the round-trip time (RTT) between the
two closest regions. This is time enough for the Paxos coordinator to receive
responses from a quorum of acceptors.

Figure 2.5 (top left) shows that for any number of destination groups, Multi-
Paxos and FastCast have a median latency around 1 RTT, while BaseCast has
always 2 RTT latency. Although FastCast executes two consensus instances for
each global message, just like BaseCast, one consensus is executed in the fast
path and the other consensus in the slow path. Since both paths are executed in
parallel, FastCast has similar latency as Multi-Paxos. The reduced communica-
tion steps, in such scenario, makes FastCast twice as fast as BaseCast. Differently
from the results found in a LAN, FastCast largely outperforms BaseCast in config-
urations with 16 groups when increasing the number of destinations (Figure 2.5,

33 2.4 Performance evaluation

 0

 30

 60

 90

 120

 150

 180

1 Group 2 Groups 4 Groups 8 Groups 16 Groups

La
te

nc
y

[m
se

c]
BaseCast FastCast MultiPaxos

 0

 30

 60

 90

 120

 150

 180

1 Group 2 Groups 4 Groups 8 Groups 16 Groups

La
te

nc
y

[m
se

c]

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1G / 1536C 2G/ 768C 4G / 384C 8G / 192C 16G / 96C

La
te

nc
y

[m
se

c]

BaseCast
FastCast

MultiPaxos
FastCast (slow path)

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 22500

1G / 1536C 2G/ 768C 4G / 384C 8G / 192C 16G / 96C
T

hr
ou

gh
pu

t [
m

es
sa

ge
s

/ s
ec

]

Figure 2.5. Atomic multicast in emulated WAN. Bars show median latency or
average throughput, and whiskers show 95-th percentile or 95% confidence
interval. (Top left.) Latency when one client multicasts to all groups versus
number of groups in configuration. (Top right.) Latency when one client mul-
ticasts to k groups in a system with 16 groups. (Bottom left and right.) Latency
and throughput when multiple clients multicast to increasing number of desti-
nation groups in a system with 16 groups. Legend in x -axis shows number of
destination groups kg in a multicast message and number of clients kc in the
configuration, where kg × kc = 1536.

top right).

The next experiments consider multiple clients and 16 groups (Figure 2.5,
bottom graphs). As in the LAN experiments, the number of destinations × num-
ber of clients factor is constant for each configuration. These experiments also
evaluate the performance of FastCast when messages are ordered through the
slow path. For this case, the protocol has been changed to force the leader to
make wrong timestamp guesses.

FastCast consistently outperforms BaseCast for global messages up to 8 desti-
nation groups. With 2 destination groups, the throughput of FastCast is 70%
higher than BaseCast’s (8400 versus 5050 messages per second on average).
When messages are multicast to all 16 groups, FastCast and BaseCast display
similar latency, although FastCast has higher throughput than BaseCast, 647 ver-
sus 475 messages per second. Both genuine atomic multicast protocols perform

34 2.4 Performance evaluation

much better than the non-genuine protocol up to 8 destination groups, although
the advantage decreases as the number of destinations increases. With 8 desti-
nation groups, FastCast and Multi-Paxos have similar latency, and BaseCast per-
forms worse than the two other protocols. With 16 destination groups, Multi-
Paxos has lower latency and higher throughput than the other protocols. This
fact confirms findings in other works in the literature, which show that when
messages address all groups, atomic broadcast protocols have superior perfor-
mance than atomic multicast protocols [75].

Up to 4 destination groups in a message, FastCast can order messages through
the slow path with latency slightly higher than BaseCast’s. With 8 and 16 des-
tination groups, the additional overhead of executing three consensus instances
in the fast and slow paths degrades the performance of FastCast.

These results establish that, as anticipated, FastCast shines in environments
where communication latency is high. In these environments, FastCast can take
full advantage of its reduced number of communication delays. Next section
aims to confirm these observations in a real WAN.

2.4.6 Microbenchmark in real WAN

To confirm the results obtained with the emulated WAN, the same set of experi-
ments is executed on Amazon EC2. The experiments used up to 48 nodes for the
maximum of 16 groups and one additional nodes per group to run the clients.

The results for executions with a single client (Figure 2.6, graphs on the top)
are very similar to those found with the emulated WAN. (recall that in the emu-
lated WAN the RTT values between regions correspond to measurements in the
real WAN.) For the experiments with increased load, FastCast had slightly better
performance in the real WAN than in the emulated WAN for configurations with 8
and 16 groups. This improvement is due to the fact that m3.large instances have
better processors than the ones in our LAN and emulated WAN, which reduces
FastCast’s CPU overhead.

FastCast beats BaseCast in all configurations, with latency of 84 ms for 2,
4 and 8 destination groups and 101 ms for 16 groups. BaseCast has a latency
between 163 ms and 170 ms in all cases (Figure 2.6, bottom left). Regarding
throughput, Figure 2.6 (bottom right) shows that FastCast is 80% faster than
BaseCast with 2 destination groups (4600 vs. 8350 messages per second) and
more than 60% faster when messages are addressed to all the available groups
(565 vs. 913 messages per second). Multi-Paxos outperforms the other two
protocols when all the groups are in the destination of the messages, delivering
1213 messages per second against the 913 messages per second of FastCast.

35 2.4 Performance evaluation

 0

 30

 60

 90

 120

 150

 180

1 Group 2 Groups 4 Groups 8 Groups 16 Groups

La
te

nc
y

[m
se

c]
BaseCast FastCast MultiPaxos

 0

 30

 60

 90

 120

 150

 180

1 Group 2 Groups 4 Groups 8 Groups 16 Groups

La
te

nc
y

[m
se

c]

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1G / 1536C 2G/ 768C 4G / 384C 8G / 192C 16G / 96C

La
te

nc
y

[m
se

c]

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 22500

1G / 1536C 2G/ 768C 4G / 384C 8G / 192C 16G / 96C
T

hr
ou

gh
pu

t [
m

es
sa

ge
s

/ s
ec

]

Figure 2.6. Atomic multicast in a real WAN. Bars show median latency or aver-
age throughput, and whiskers show 90-th percentile or 95% confidence inter-
val. (Top left.) Latency when one client multicasts to all groups versus number
of groups in configuration. (Top right.) Latency when one client multicasts to k
groups in a system with 16 groups. (Bottom left and right.) Latency and through-
put when multiple clients multicast to increasing number of destination groups
in a system with 16 groups. Legend in x -axis shows number of destination
groups kg in a multicast message and number of clients kc in the configuration,
where kg × kc = 1536.

2.4.7 Social network in emulated WAN

In the first experiment, a single client posts messages in a closed loop. Each post
operation results in the posted message atomically multicast to all the groups in
which the poster has at least one follower. Figure 2.7 (top left) shows that Fast-
Cast performs similarly to Multi-Paxos, despite the additional consensus instance
needed by FastCast to order global messages. FastCast’s latency is in the range
73–76ms, which approximates 1 RTT). BaseCast, on the contrary, has latency
2 times greater because of the two sequential consensus executions needed to
order global messages.

The next experiments consider executions with an increasing number of clients.
Figure 2.7 (top right) compares the throughput of the three protocols. Up to 3200
clients, that is, 200 clients per group, FastCast outperforms both BaseCast and
Multi-Paxos. After 3200 clients, FastCast saturates with a throughput of 12500

36 2.4 Performance evaluation

posts per second. BaseCast eventually reaching FastCast with similar throughput
before both systems reach saturation, with 4000 clients.

Figure 2.7 (both graphs at the bottom) shows the latencies for executions
with 800 and 1600 clients. Multi-Paxos is overwhelmed in both cases. With
800 clients, the latency of FastCast is close to 1 RTT, between 80ms and 90ms,
while the latency of BaseCast is around 150ms. With 1600 clients (100 clients
per group), FastCast’s latency increases to 130ms, while the latency of BaseCast
reaches 200ms.

 0

 30

 60

 90

 120

 150

 180

1 Dest. Group 2 Dest. Groups 3 Dest. Groups 4 Dest. Groups

La
te

nc
y

[m
se

c]

BaseCast FastCast MultiPaxos

 0

 3000

 6000

 9000

 12000

 15000

 0 800 1600 2400 3200 4000

T
hr

ou
gh

pu
t [

m
es

sa
ge

s
/ s

ec
]

Clients

BaseCast
FastCast

MultiPaxos

 0

 200

 400

 600

 800

 1000

 1200

1 Dest. Group 2 Dest. Groups 3 Dest. Groups 4 Dest. Groups

La
te

nc
y

[m
se

c]

 0

 200

 400

 600

 800

 1000

 1200

1 Dest. Group 2 Dest. Groups 3 Dest. Groups 4 Dest. Groups

La
te

nc
y

[m
se

c]

Figure 2.7. Social network application in an emulated WAN. Bars show median
latency, lines show average throughput, and whiskers show 90-th percentile or
95% confidence interval. (Top left.) Latency when one client executes ’post’
operations versus number of groups in the client’s followers list. (Top right.)
Throughput versus number of clients executing ’post’ operations. (Bottom left.)
Latency when 800 clients execute ’post’ operations versus number of groups in
the clients’ followers list. (Bottom right.) Latency when 1600 clients execute
’post’ operations versus number of groups in the clients’ followers list.

2.4.8 Summary

This section summarizes the results of the performance evaluation. Table 2.1
compares the protocols based on the results presented in the previous sections.

The following conclusions are drawn from the evaluation.

37 2.4 Performance evaluation

• FastCast outperforms other protocols in most configurations in a WAN (em-
ulated and real), with a few exceptions: (a) For local messages, under low
load all protocols perform the same and under high load FastCast and Base-
Cast have similar performance, better than Multi-Paxos’s. (b) For messages
addressed to all destinations, Multi-Paxos performs best.

• In LAN under high load, no protocol stands out. FastCast performs best
with few destination groups, BaseCast with many destination groups, but
not all, when Multi-Paxos is better than the other two.

• Multi-Paxos outperforms the genuine protocols in the LAN with one client,
and in all cases when messages are multicast to all destinations, with one
exception (microbenchmark in emulated WAN, single client and 16 desti-
nations).

Benchmark Environment Load
Destinations in system with 16 groups

1 2 4 8 16

LAN
low

all
MP MP MP MP

equal

high
BC

FC
BC

BC MP
FC FC

low
all FC FC FC MP

Micro emulated equal MP MP MP
bechmark WAN

high
BC

FC FC FC MP
FC

low
all FC FC FC MP

real equal MP MP MP
WAN

high
BC

FC FC FC MP
FC

low
all FC FC Not applicable

Social emulated equal MP MP
Network WAN

high FC FC FC Not applicable

Table 2.1. How atomic multicast protocols compare. FC=FastCast,
BC=BaseCast, MP=Multi-Paxos; each cell shows the best performing proto-
col(s) in the given configuration.

38 2.5 Related work

2.5 Related work

Several multicast and broadcast algorithms have been proposed in the litera-
ture [31]. Moreover, many systems ensure strong consistency with “ad hoc” or-
dering protocols that do not implement all the properties of atomic multicast
(e.g., [28, 44, 79]). The focus of this section is on atomic multicast algorithms.

Existing atomic multicast algorithms fall into one of three categories:
timestamp-based, round-based, and ring-based.

Algorithms based on timestamps (i.e., [35, 70, 74] and the algorithms pro-
posed in this work) are genuine and variations of an early atomic multicast al-
gorithm [15], designed for failure-free systems. In these algorithms, processes
assign timestamps to messages, ensure that destinations agree on the final times-
tamp assigned to each message, and deliver messages following this timestamp
order. The algorithms in [35, 74] have a best-case time complexity of 6δ for
the delivery of global messages. The algorithm in [70] can deliver global mes-
sages in 5δ and it ensures another property besides genuineness called message-
minimality. This property states that the messages of the algorithm have a size
proportional to the number of destination groups of the multicast message, and
not to the total number of processes. The two algorithms proposed in this chapter
verify this property as well.

In round-based algorithms, processes execute an unbounded sequence of
rounds and agree on messages delivered at the end of each round. A round-
based atomic multicast algorithm that can deliver messages in 4δ is presented
in [74]. Differently from FastCast, which can also deliver global messages in 4δ,
the algorithm in [74] is not genuine.

Ring-based algorithms propagate messages along a predefined ring overlay
and ensure atomic multicast properties by relying on this topology. An atomic
multicast algorithm in this category is proposed in [32], where consensus is run
among the members of each group. The time complexity of this algorithm is
proportional to the number of destination groups.

Multi-Ring Paxos [56], Spread [2, 9], and Ridge [14] are ring-based non-
genuine atomic multicast protocols. On the one hand, to deliver a message m,
they require communication with processes outside of the destination groups of
m. On the other hand, these protocols do not require disjoint groups.

Although FastCast is the first optimistic atomic multicast protocol, optimistic
execution to improve performance has been explored before in other contexts,
such as atomic broadcast (e.g., [64, 65, 88]) and quorum systems [38].

39 2.6 Conclusion

2.6 Conclusion

Atomic multicast is a fundamental communication abstraction in the design of
scalable and highly available strongly consistent distributed systems. This thesis
proposes FastCast, the first genuine atomic multicast algorithm that can order
local messages, addressed to a single group, in three communication delays and
global messages, addressed to multiple groups of processes, in four communica-
tion delays. In addition to introducing a novel genuine atomic multicast algo-
rithm, its performance has been assessed in three different environments. The
results show that FastCast largely outperforms other genuine and non-genuine
atomic multicast protocols.

40 2.6 Conclusion

Chapter 3

Making atomic multicast safer

Although research on efficient atomic multicast protocols is relatively mature [2,
32, 35, 70], to date all existing protocols target benign failures (e.g., crash fail-
ures) [9, 14, 26, 56]. This chapter introduces ByzCast, the first Byzantine Fault-
Tolerant (BFT) atomic multicast protocol. Byzantine fault tolerance has become
increasingly appealing as service providers can deploy their systems in increas-
ingly inexpensive hardware (e.g., cloud environments) and new applications be-
come more and more sensitive to malicious behavior (e.g., blockchain [19]).

ByzCast’s design was motivated by two driving forces: (i) The desire to reuse
existing BFT tools and libraries, instead of coming up with protocols that would
require an implementation from scratch. (ii) The perception that the useful-
ness of atomic multicast lies in its ability to deliver scalable performance. On
the one hand, much effort has been put into designing, implementing, debug-
ging and performance-tuning BFT atomic broadcast protocols (i.e., a special case
of atomic multicast in which messages always address the same set of destina-
tions) [5, 12, 21, 58, 81]. One could build on these solutions and thereby shorten
the development cycle of BFT atomic multicast protocol. On the other hand, it
would not be difficult to achieve the first goal above with a naive atomic multi-
cast protocol that trivially relies on atomic broadcast. For example, one could use
a fixed group of processes to order all multicast messages (using atomic broad-
cast) and then relay the ordered messages to their actual destinations. Instead,
one should aim at atomic multicast protocols that are genuine, that is, only the
message sender and the message destinations should communicate to order mul-
ticast messages [37]. A genuine atomic multicast is the foundation of scalable
systems, since it does not depend on a fixed group of processes and does not
involve processes unnecessarily.

ByzCast conciliates these goals with a compromise between reusability and

41

42

scalability: the resulting protocol is more complex than the naive variant de-
scribed above and partially genuine. ByzCast is partially genuine in that messages
atomically multicast to a single group of processes only require coordination be-
tween the message sender and the destination group; messages addressed to
multiple groups of processes, however, may involve processes that are not part
of the destination (i.e., these processes help order the messages though). The
motivation for partially genuine atomic multicast protocols comes from the ob-
servation that when sharding a service state for performance, service providers
strive to maximize the number of requests that can be served by a single shard
alone.

ByzCast is a hierarchical protocol. It uses an overlay tree where a node in
the tree is a group of processes. Each group of processes runs an instance of
atomic broadcast that encompasses the processes in the group. Hence, ordering
messages multicast to a single group is easy enough: it suffices to use the atomic
broadcast instance implemented by the destination group. Ordering messages
that address multiple groups is trickier. First, it requires ordering such a message
in the lowest common ancestor group of the message’s destinations (in the worst
case the root). Then, the message is successively ordered by the lower groups in
the tree until it reaches the message’s destination groups. The main invariant of
ByzCast is that the lower groups in the tree preserve the order induced by the
higher groups.

In addition to proposing a partially genuine atomic multicast protocol that
builds on multiple instances of atomic broadcast (one instance per group of pro-
cesses), this work also considers the problem of building an efficient overlay
tree. The structure of the overlay tree is mostly important for messages that ad-
dress multiple groups. In its simplest form, one could have a two-level tree: any
messages that address more than one destination would be first ordered by the
root group and then by the destination groups, the leaves of the tree. In this
simple tree, however, the root could become a performance bottleneck. More
efficient solutions, based on more complex trees, are possible if one accounts for
the workload when computing ByzCast’s overlay tree. This discussion is framed
as an optimization problem.

The work described in this chapter makes the following contributions:

• it presents a partially genuine atomic multicast protocol that builds on mul-
tiple instances of atomic broadcast, a problem that has been extensively
studied and for which efficient libraries exist (e.g. [12, 59, 61, 84]).

• it defines the problem of building an overlay tree as an optimization prob-
lem. The optimization model takes into account the frequency of messages

43 3.1 Byzantine Fault Tolerant Atomic Multicast

per destination and the performance of a group alone.

• it describes a prototype of ByzCast developed using BFT-SMaRt [12], a
well-established library that implements BFT atomic broadcast.

• it provides a detailed experimental evaluation of ByzCast and compares
ByzCast to a naive atomic multicast solution.

The rest of the chapter is organized as follows. Section 3.1 presents ByzCast,
its performance optimizer, and correctness proof. Section 3.3 details the pro-
totype. Section 3.4 describes the experimental evaluation. Section 3.5 surveys
related work and Section 3.6 concludes the chapter.

3.1 Byzantine Fault Tolerant Atomic Multicast

g1

auxiliary
groups

target
groups

h1

h2 h3

g2 g3 g4
(a) (b)

g1
g2
g3
g4

h1
h2
h3

timem2 m1

a-multicast(m)

m3

m

a-deliver(m)m

m2
m2

m1

m3

m1
x-broadcast

x-deliver

Figure 3.1. (a) An overlay tree used in ByzCast with four target groups and three
auxiliary groups. (b) An execution of ByzCast with three messages: m1 is a-
multicast to {g1, g2}, m2 to {g2, g3}, and m3 to g3. For clarity, each group has
one (correct) process.

This section explains the rationale behind the design of ByzCast (§3.1.1),
presents the protocol in detail (§3.1.2), shows how to optimize ByzCast for dif-
ferent workloads (§3.1.3), and then argues about its correctness (§3.2).

3.1.1 Rationale

The design of ByzCast was guided by two high-level goals:

Building on existing solutions

Research on Byzantine Fault Tolerant agreement protocols is mature (see §3.5).
One of the main goals was to devise an atomic multicast protocol that could

44 3.1 Byzantine Fault Tolerant Atomic Multicast

reuse existing BFT software, instead of designing a protocol that would require
an implementation completely from scratch.

Striving for scalable protocols

Genuineness is the property that best captures scalability in atomic multicast. By
requiring only the groups in the destination of a message to coordinate to order
the message, a genuine atomic multicast protocol can scale with the number of
groups while saving resources.

3.1.2 Protocol

For clarity, the following description represents a version of ByzCast that uses
additional groups of servers to help order messages. Hereafter, the groups in
Γ = {g1, ..., gm} are referred as target groups and the additional server groups in
Λ = {h1, ..., hn} as auxiliary groups. As with target groups, each auxiliary group
has 3 f + 1 processes, with at most f faulty processes, a necessary condition for
solving consensus with Byzantine adversaries.

Each group x in ByzCast (both target and auxiliary) implements a FIFO atomic
broadcast, as defined in §1.2.4. The atomic broadcast in group x is implemented
by x ’s members and independent from the atomic broadcast of other groups.
There is a distinction between the primitives of atomic multicast, denoted as a-
multicast and a-deliver, and the primitives of the atomic broadcast of group x ,
denoted as x-broadcast and x-deliver.

ByzCast arranges groups in a tree overlay where the leaves of the tree are
target groups and the inner nodes of the tree are auxiliary groups. The reach of
a group x , reach(x) is defined as the set of target groups that can be reached
from x by walking down the tree. In Figure 3.1 (a), reach(h1) = {g1, g2, g3, g4},
reach(h2) = {g1, g2}, and reach(h3) = {g3, g4}. The set children(x) denotes the
children of a group x in the tree.

To a-multicast a message m to a set of target groups in m.dst (see Algo-
rithm 3), a process first x0-broadcasts m in the lowest common ancestor group x0

of (the groups in) m.dst, denoted lca(m.dst).
When m is xk-delivered by processes in xk, each process xk+1-broadcasts m in

xk’s child group xk+1 if xk+1’s reach intersects m.dst. This procedure continues
until target groups in m.dst xk-deliver m, which triggers the a-deliver of m.

To account for Byzantine processes in group xk, processes in xk+1 only han-
dle m once they xk+1-deliver m f + 1 times. This ensures that m was xk+1-
broadcast by at least one correct process in xk and, by inductive reasoning, m

45 3.1 Byzantine Fault Tolerant Atomic Multicast

Algorithm 3 ByzCast
1: Initialization
2: T is an overlay tree with groups Γ ∪Λ
3: A-del ivered ← ;

4: To a-multicast message m:
5: x0← lca(m.dst)
6: x0-broadcast(m)

7: Each server process p in group xk executes as follows:
8: when xk-deliver(m)
9: if k = 0 or xk-delivered m (f + 1) times then

10: for each xk+1 ∈ children(xk) such that
m.dst ∩ reach(xk+1) 6= ; do

11: xk+1-broadcast(m)
12: if xk ∈ m.dst and m 6∈ A-del ivered then
13: a-deliver(m)
14: A-del ivered ← A-del ivered ∪ {m}

was a-multicast by a client (and not fabricated by a malicious server).
Intuitively, ByzCast atomic order is a consequence of two invariants:

1. Any two messages m and m′ atomically multicast to common destinations
are ordered by at least one inner group xk in the tree.

2. If m is ordered before m′ in xk, then m is ordered before m′ in any other
group that orders both messages (thanks to the FIFO atomic broadcast used
in each group).

Figure 3.1 (b) illustrates an execution of ByzCast with messages m1, m2 and
m3 a-multicast to groups {g1, g2}, {g2, g3}, and {g3}, respectively. Assuming the
overlay tree shown in Figure 3.1 (a), m1 is first h2-broadcast in group h2. Upon
h2-delivering m1, processes in h2 atomically broadcast m1 in g1 and in g2. Mes-
sage m2 is first h1-broadcast, and then it continues down the tree until it is deliv-
ered by g2 and g3, its destination target groups. Message m3 is g3-broadcast in
g3 directly since it is addressed to a single group. The order between m1 and m2

is determined by their delivery order at h2 since h2 is the highest group to deliver
both messages.

ByzCast is a partially genuine atomic multicast protocol. While messages ad-
dressed to a single group are ordered by processes in the destination group only,
messages addressed to multiple groups may involve auxiliary groups. For exam-
ple, in Figure 3.1, the atomic multicast of m1 (resp., m2) involves h2 (resp., h1, h2

46 3.1 Byzantine Fault Tolerant Atomic Multicast

and h3), which is not a destination of m1 (resp., m2). Since m3 involves a single
destination group, only m3’s sender and g3, m3’s destination, must coordinate to
order the message.

Finally, even though ByzCast has been described with auxiliary groups as
inner nodes of the tree, Algorithm 3 does not need this restriction: target groups
can be inner nodes in the overlay tree, i.e., a tree can contain target groups only.

3.1.3 Optimizations

The performance of messages multicast to multiple groups largely depends on
ByzCast overlay tree. Laying out the overlay tree is an optimization problem with
conflicting goals: on the one hand, the aim at short trees to reduce the latency
of global messages; on the other hand, when laying out the tree, one must avoid
overloading groups. For example, in Figure 3.1, the height of the lowest common
ancestor of m1 and m2 are two and three, respectively. A two-level tree where
the four target groups descend directly from one auxiliary group would improve
the latency of global messages. However, in a two-level tree all global messages
must start at the root group, which could become a performance bottleneck.

The problem of laying out an optimized ByzCast tree is formulated next. The
following parameters are input:

• Γ and Λ as already defined, and N = Γ ∪Λ;

• D ⊆ P (Γ): all possible destinations of a message, whereP (Γ) is the power
set of Γ ;

• F(d): maximum load in messages per second multicast to destinations d
in the workload, where d∈D; and

• K(x): maximum performance in messages per second that group x can
sustain, ∀x ∈ N .

Given this input, the problem consists in finding the directed edges E ⊆
N ×N of the optimized overlay tree T = (N ,E). To more precisely state the
optimization function with constraints, we introduce additional definitions.

• P(T , d): the set of groups involved in a multicast to d (i.e., groups in the
paths from lca(d) to all groups in d);

• H(T , d): the height of the lowest common ancestor of groups in d;

• T(T , x) = {d | d ∈ D and x ∈ P(T , d)}: set of destinations that involve
group x; and

• L(T , x) =
∑

d∈T(T ,x) F(d): load imposed on group x .

47 3.2 Proof of Correctness

Among the candidate overlay trees, respecting the above restrictions, we are
interested in those that minimize the height of the various destinations.

minimize
∑

d∈D

H(T , d)

In addition to topological constraints, the load imposed to each group must
respect its capacity.

subject to ∀x : L(T , x)≤ K(x)

3.2 Proof of Correctness

This section presents the proof that ByzCast satisfies all the properties of atomic
multicast (§1.2.3).

Lemma 7 For any message m atomically multicast to multiple groups, let group
x0 be the lowest common ancestor of m.dst. For all xd ∈ m.dst, if correct process
p in x0 x0-delivers m, then all correct processes in the path x1, ..., xd , xk-deliver m
(f + 1) times, where 1≤ k ≤ d.

PROOF: By induction. (Base step.) Since p x0-delivers m, x1 is a child of x0, and
reach(x1) ∩ m.dst 6= ;, p x1-broadcasts m. The claim follows from the validity
of atomic broadcast and the fact that there are 2 f + 1 correct processes in x0.
(Inductive step.) Assume each correct process r in xk xk-deliver m at least (f +1)
times. From Algorithm 3, and the fact that xk+1 is a child of xk and reach(xk+1)∩
m.dst 6= ;, r xk+1-broadcasts m. From the validity of atomic broadcast and the
fact that there are 2 f + 1 correct processes in xk, every correct process in xk+1

xk+1-delivers m. �

Lemma 8 For any atomically multicast message m, let group x0 be the lowest com-
mon ancestor of m.dst. For all xd ∈ m.dst, if correct process p in xd xd-delivers m,
then all correct processes in the path x0, ..., xd , xk-deliver m, where 0≤ k ≤ d.

PROOF: By backwards induction. (Base step.) The case for k = d follows di-
rectly from agreement of atomic broadcast in group xd . (Inductive step.) Assume
that every correct process r ∈ xk xk-delivers m. It is shown that correct pro-
cesses in xk−1 xk−1-deliver m. From Algorithm 3, r xk-delivered m (f +1) times.
From integrity of atomic broadcast in xk, at least one correct process s in xk−1

xk-broadcasts m. Therefore, s xk−1-delivers m, and from agreement of atomic
broadcast in xk−1 all correct processes xk−1-deliver m. �

48 3.2 Proof of Correctness

Proposition 13 (Validity) If a correct process p a-multicasts a message m, then
eventually all correct processes q ∈ g, where g ∈ m.dst, a-deliver m.

PROOF: Let group x0 be the lowest common ancestor of m.dst and xd a group
in m.dst. From Algorithm 3, p x0-broadcasts m and from validity of atomic
broadcast, all correct processes in x0 x0-deliver m. From Lemma 7, all correct
processes in xd , xd-deliver m (f + 1) times. Hence, every correct process in xd

a-delivers m. �

Proposition 14 (Agreement) If a correct process p in group xd a-delivers a message
m, then eventually all correct processes q ∈ g, where g ∈ m.dst, a-deliver m.

PROOF: From Lemma 8, all correct processes in x0, x0-deliver m. Thus, from
Lemma 7, all xd ∈ m.dst xd-deliver m (f +1) times. It follows from Algorithm 3
that all q ∈ xd a-deliver m. �

Proposition 15 (Integrity) For any correct process p and any message m, p a-
delivers m at most once, and only if p ∈ g, g ∈ m.dst, and m was previously
a-multicast.

PROOF: From Algorithm 3, it follows immediately that a correct process p ∈ g
a-delivers m at most once, only if g ∈ m.dst and m is a-multicast. �

Lemma 9 If m and m′ are two messages atomically multicast to one or more des-
tination groups in common, then lca(m) ∈ subtree(m′) or lca(m′) ∈ subtree(m).

PROOF: Assume group x is a common destination in m and m′ (i.e., x ∈ m.dst ∩
m′.dst). Let path(x) be the sequence of groups in the overlay tree T from the
root until x . From Algorithm 3, in order to reach x , lca(m) (resp., lca(m′)) must
be a group in path(x). Without loss of generality, assume that lca(m) is higher
than lca(m′) or at the same height as lca(m′). Then, lca(m′) ∈ subtree(m), which
concludes the lemma. �

Lemma 10 If a correct process in group x0 x0-delivers m before m′, then for every
ancestor group xd of x0, where xd ∈ m.dst ∩ m′.dst, every correct process in xd

xd-delivers m before m′.

49 3.3 Implementation

PROOF: By induction on the path x0, ..., xk, ..., xd . (Base step.) Trivially from the
properties of atomic broadcast in group x0. (Inductive step.) Let p ∈ xk xk-deliver
m before m′. Thus, p xk+1-broadcasts m before m′ and from the FIFO guarantee
of atomic broadcast in xk+1, every correct process q ∈ xk+1 xk+1-delivers m before
m′. �

Proposition 16 (Prefix order) For any two messages m and m′ and any two correct
processes p and q such that p ∈ g, q ∈ h and {g, h} ⊆ m.dst∩m′.dst, if p a-delivers
m and q a-delivers m′, then either p a-delivers m′ before m or q a-delivers m before
m′.

PROOF: The proposition holds trivially if p and q are in the same group, so assume
that g 6= h. From Lemma 9, and without loss of generality, assume that lca(m′) ∈
subtree(m). Thus, lca(m′) will order m and m′. From Lemma 10, both p and q
a-deliver m and m′ in the same order as lca(m′). �

Proposition 17 (Acyclic order) The relation < is acyclic.

PROOF: For a contradiction, assume there is an execution of ByzCast that results
in a cycle m0 < ... < md < m0. Since all correct processes in the same group a-
deliver messages in the same order, the cycle must involve messages a-multicast
to multiple groups. Let x be the highest lowest common ancestor of all messages
in the cycle. Consider subtree(x , 1), subtree(x , 2), ... as the subtrees of group x in
T . Since the cycle involves groups in the subtree of x , there must exist messages
m and m′ such that (a) m is a-delivered before m′ in groups in subtree(x, i) and
(b) m′ is a-delivered before m in groups in subtree(x, j), i 6= j. From Lemma 10,
item (a) implies that processes in x x-deliver m and then m′, and item (b) implies
that processes in x x-deliver m′ and then m, a contradiction. �

3.3 Implementation

ByzCast was implemented on top of BFT-SMaRt, a well-known library for BFT
replication [12]. This library has been used in many academic projects and a
few recent blockchain systems (e.g., [19, 82]).

BFT-SMaRt message ordering is implemented through the Mod-SMaRt algo-
rithm [80], which uses the Byzantine-variant of Paxos described in [18] to estab-
lish consensus on the i-th (batch of) operation(s) to be processed by the repli-
cated state machine. The leader starts a consensus instance every time there are

50 3.4 Performance evaluation

pending client requests to be processed and there are no consensus being exe-
cuted. Consensus follows a message pattern similar to PBFT [21]: the leader
proposes a batch of messages to be processed, the replicas validate this proposal
by writing the proposal in the other replicas; the replicas accept the proposal if a
Byzantine quorum of n− f replicas perform the write. When a replica learns that
n− f replicas accepted the proposal, it executes the operation and sends replies
to the clients. In case of leader failure or network asynchrony, a new leader is
elected. BFT-SMaRt also implements protocols for replica recovering (i.e., state
transfer), and group reconfiguration [12].

In ByzCast, each group (either target or auxiliary) corresponds to a BFT repli-
cated state machine. Each replica in auxiliary groups connects to all the replicas
in the next level. The implementation considers two overlay trees. A three-level
tree, as the one presented in Figure 3.1 and a two-level tree that uses a single
auxiliary group to order global messages.

Replicas only process messages from a higher-level group when they (FIFO)
a-deliver them f + 1 times. Target groups execute a-delivered messages and re-
ply either to clients or to auxiliary groups whether the message is local or global.
Both clients and auxiliary groups wait for f + 1 correct replies. Figure 3.2 de-
picts the described logic in executions of a request from a client in a local and a
global message. Except for client requests, which are single messages, all mes-
sages exchanges between groups need f + 1 equal responses before they can be
processed. Even though multiple processes in group invoke the broadcast of a
message in another group, thanks to BFT-SMaRt’s batching optimization, it is
likely that all such invocations are ordered in a single instance of consensus.

Clients run in a closed loop (i.e., only send a new message after the previous
message reply) and forward messages to every replica in the lowest common
ancestor group of the message. ByzCast was implemented in Java and the source
code is publicly available.1

3.4 Performance evaluation

This section describes the main motivations that guided the design of experi-
ments (§3.4.1), details the environments in which experiments were conducted
(§3.4.2), and then presents and discusses the results (§3.4.3–3.4.8).

1https://github.com/tarcisiocjr/byzcast.

https://github.com/tarcisiocjr/byzcast

51 3.4 Performance evaluation

BFT
Atomic

Multicast

p1
p2
p3
p4

c
f+1 identical
responses

request

BFT
Atomic

Multicast
h

p1
p2
p3
p4

c
request

g

p5
p6
p7
p8

BFT
Atomic

Multicast

f+1 identical
responses

(a) (b)

Figure 3.2. Executions of ByzCast with (a) a local message and (b) a global
message. Each group has four processes, one of which may be Byzantine. For
clarity, the execution of ByzCast shows a single target group only.

3.4.1 Evaluation rationale

In the following, the choices for environments, benchmarks, and protocols are
detailed.

Environments

Experiments run on a local-area network (LAN) and a wide-area network (WAN).
The LAN provides a controlled environment, where experiments run in isolation;
the WAN represents a more challenging setting.

Benchmarks

A microbenchmark with 64-byte messages is useful to evaluate particular sce-
narios in isolation. The number of groups varies (up to 8 groups, the largest
configuration accommodated in our local infrastructure) as well as the number
of message destinations. Two layouts are considered for the ByzCast tree: a 2-
level and a 3-level tree. Executions with a single client allow to understand the
performance of ByzCast without queueing effects, and with multiple clients to
evaluate the solution under stress. Finally, experiments consider workloads with
and without locality (i.e., skewed access).

52 3.4 Performance evaluation

Protocols

ByzCast is compared to BFT-SMaRt and to a non-genuine 2-level atomic multicast
protocol, called Baseline. BFT-SMaRt uses a single group and provides a refer-
ence to the performance of ByzCast with local messages. The Baseline protocol
has one auxiliary group that orders all messages regardless of the message des-
tination. After the message is ordered, it is forwarded to its destinations. Each
process in the target group waits until it receives the message from f + 1 pro-
cesses in the auxiliary group. Although the non-genuine protocol does not scale,
it provides a performance reference for global messages.

3.4.2 Environments and configuration

Details about the environments for the evaluation of the three protocols are pre-
sented next.

Local-area network (LAN)

This environment consisted of a set replica nodes with an eight-core Intel Xeon
L5420 processor working at 2.5GHz, 8GB of memory, SATA SSD disks, and 1Gbps
ethernet card; and clients nodes with a four-core AMD Opteron 2212 processor
at 2.0GHz, 4GB of memory, and 1Gbps ethernet card. Each node runs CentOS
7.1 64 bits. The RTT (round-trip time) between nodes in the cluster is around
0.1ms.

Wide-area network (WAN)

Amazon EC2, a public wide-area network, is used. All nodes are c4.xlarge in-
stances, with 4 vCPUs and 7.5GB of memory. Nodes are allocated in four regions:
California (R1), North Virginia (R2), Frankfurt (R3) and Tokyo (R4). Table 3.1
summarizes the latency between pairs of regions in milliseconds.

EU CA VA JP

CA 165 − 70 112
VA 88 70 − 175
JP 239 112 175 −

Table 3.1. Latencies within Amazon EC2 infrastructure.

53 3.4 Performance evaluation

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

Uniform workload Skewed workload

T
hr

ou
gh

pu
t [

m
es

sa
ge

s
/ s

ec
] 2-level tree

3-level tree

 0

 20

 40

 60

 80

 100

Uniform workload

[%
]

2-level tree
3-level tree

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

Skewed workload

[%
]

Latency [msec]

2-level tree
3-level tree

Figure 3.3. ByzCast global messages throughput and latency CDF with 2-level
and 3-level trees. Whiskers show 95% confidence interval.

Configuration

In all experiments, groups contain four processes, each process running in a dif-
ferent node. The number of groups depends on the tree layout. In the 2-level
tree the number of target groups varies from 2 to 8 with 1 auxiliary for global
messages. In the 3-level tree the number of target groups is fixed to 4 and the
number of auxiliary groups to 3, as depicted in Figure 3.1. In the WAN setup,
clients are distributed along all the regions and deploy each process of a group in
a different region. Consequently, the system can tolerate the failure of a whole
region.

54 3.4 Performance evaluation

Uniform workload
Du = {{gi, g j}|1≤ i, j ≤ 4∧ i 6= j} ∀d ∈ Du : Fu(d) = 1200 m/s

Skewed workload
Ds = {{g1, g2}, {g3, g4}} ∀d ∈ Ds : Fs(d) = 9000 m/s

Table 3.2. Uniform and skewed workloads.

Uniform workload
Tu(T2, h1) = Du Lu(T2, h1) = 7200 m/s

∑

d∈Du
H(T2, d) = 12 Best choice

(lowest heights)
Tu(T3, h1) = Du \ {{g1, g2}, {g3, g4}} Lu(T3, h1) = 4800 m/s

Tu(T3, h2) = Du \ {{g3, g4}} Lu(T3, h2) = 6000 m/s
∑

d∈Du
H(T3, d) = 16 Poor choice

Tu(T3, h3) = Du \ {{g1, g2}} Lu(T3, h3) = 6000 m/s

Skewed workload
Ts(T2, h1) = Ds Ls(T2, h1) = 18000 m/s

∑

d∈Ds
H(T2, d) = 4 Not viable

(exceeds capacity)
Ts(T3, h1) = ; Ls(T3, h1) = 0 m/s

Ts(T3, h2) = {{g1, g2}} Ls(T3, h2) = 9000 m/s
∑

d∈Ds
H(T3, d) = 4 Best choice

Ts(T3, h3) = {{g3, g4}} Ls(T3, h3) = 9000 m/s

Table 3.3. Optimization model outcomes for uniform and skewed workloads.

3.4.3 Overlay tree versus workload

This experiment assesses how the workload and the performance of groups affect
the overlay tree. The system has four target groups and up to three auxiliary
groups subject to two workloads. In both workloads only global messages are
considered since local messages are multicast directly to target groups and do
not affect the tree layout. In the uniform workload, clients multicast messages
to two groups and all combinations of destinations have an equal probability
of being chosen. In the skewed workload, clients multicast messages to either
groups {g1, g2} or to {g3, g4}. Moreover, the load in the skewed workload is
higher. Table 3.2 details the two workloads. Based on the experiments reported
in §3.4.4, an auxiliary group can sustain approximately 9500 messages/sec (i.e.,
K(hi) = 9500 m/s).

Table 3.3 shows outcomes for the two workloads with two-level (T2) and
three-level (T3) trees (for the three-level tree depicted in Figure 3.1). For the
uniform workload, a two-level tree is the best option since the root can sustain
the load (i.e., Lu(T2, h1) < K(h1)) and the sum of heights is lower than in the
three-level tree (12 instead of 16). For the skewed workload, a two-level tree
would impose too high a load on the root (i.e., Ls(T2, h1)> K(h1)) and therefore
it is not a viable solution. In this case, in a three-level tree the traffic is divided
among the two branches of the tree (h2 and h3).

55 3.4 Performance evaluation

Figure 3.3 exhibits the experimental results in terms of throughput and la-
tency Cumulative Distribution Function (CDF) for each scenario. For the uniform
workload, the average latency with a two-level tree is lower than with a three-
level tree, although about 55% of messages have lower latency. This happens
because the three-level tree distributes the load more uniformly among inner
groups. In the skewed workload, the high load on the root of the two-level tree
leads to much higher latencies than the three-level tree. The experiments pre-
sented next (both LAN and WAN) use the 2-level tree.

 0

 15000

 30000

 45000

 60000

 75000

 90000

1 Group 2 Groups 4 Groups 8 Groups*

T
hr

ou
gh

pu
t [

m
es

sa
ge

s
/ s

ec
] Baseline

BFT-SMaRt
ByzCast

(a) Local messages.

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

1 Group 2 Groups 4 Groups 8 Groups

T
hr

ou
gh

pu
t [

m
es

sa
ge

s
/ s

ec
] Baseline

BFT-SMaRt
ByzCast

(b) Global messages.

Figure 3.4. Throughput in a LAN. Whiskers show 95% confidence interval.

3.4.4 Scalability of ByzCast in LAN

This experiment assesses the performance of ByzCast and compares it to BFT-
SMaRt (using a single group) and to Baseline, a non-genuine atomic multicast
approach. Figure 3.4(a) shows the throughput in messages per second versus the

56 3.4 Performance evaluation

number of groups, when 200 clients per group multicast local messages only (ex-
cept for the 8-group setup where there are 100 clients per group since there are
not enough client nodes to deploy 200 clients per group without saturating those
nodes). The results show that the genuineness of ByzCast with respect to local
messages pays off. The throughput scales linearly with the number of groups with
respect to BFT-SMaRt (single group), delivering more than 83000 messages/sec
with 4 groups and 200 clients per group and the same with 8 groups and 100
clients per group. This happens because, for single-group messages, ByzCast
only involves the sender of a message and the destination target group. Since a
single group must order all the messages with the Baseline protocol, it becomes
nearly saturated with 400 clients. Thus, the performance with four groups is only
slightly higher than with two groups, from 11000 to 12000 messages/sec), and
even smaller with eight groups. Figure 3.4(b) shows that ByzCast’s throughput
when all the clients multicast global messages only is at most half the through-
put of BFT-SMaRt: 9700 messages/sec against 19500 messages/sec in the best
case. Differently from BFT-SMaRt, a global message in ByzCast has to be or-
dered by both the auxiliary group and the target groups, impacting the message
latency and the overall throughput. The same observation holds for the Baseline
protocol, which behaves similarly to ByzCast.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

La
te

nc
y

[m
se

c]

Throughput [x1000 messages / sec]

BFT-SMaRt
ByzCast 2G
ByzCast 4G
ByzCast 8G

 0

 10

 20

 30

 40

 50

 0 3 6 9 12 15 18 21 24

La
te

nc
y

[m
se

c]

Throughput [x1000 messages / sec]

BFT-SMaRt
Baseline 2G
Baseline 4G
Baseline 8G

(a) Local messages: ByzCast (top) and
Baseline (bottom).

 0

 10

 20

 30

 40

 50

 60

 70

 0 3 6 9 12 15 18 21 24

La
te

nc
y

[m
se

c]

Throughput [x1000 messages / sec]

BFT-SMaRt
ByzCast 2G
ByzCast 4G
ByzCast 8G

 0

 10

 20

 30

 40

 50

 60

 70

 0 3 6 9 12 15 18 21 24

La
te

nc
y

[m
se

c]

Throughput [x1000 messages / sec]

BFT-SMaRt
Baseline 2G
Baseline 4G
Baseline 8G

(b) Global messages: ByzCast (top) and
Baseline (bottom).

Figure 3.5. Throughput vs. latency in a LAN.

57 3.4 Performance evaluation

 0

 4

 8

 12

 16

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

Baseline (Local)
ByzCast (Local)

BFT-SMaRt
ByzCast (Global)
Baseline (Global)

Figure 3.6. Single-client latency in a LAN. Bars show median latency and
whiskers show 95-th percentile.

3.4.5 Throughput versus latency in LAN

Figure 3.5(a) shows how the mean latency behaves as the number of clients in-
creases. ByzCast (top) is at least twice as fast and has half the Baseline’s latency
even with only 2 groups. In executions where all request are global messages,
even for small number of clients, BFT-SMaRt has always the best performance, as
depicted in Figure 3.5(b). This results reinforces the observation that an atomic
broadcast (BFT-SMaRt) is preferable over an atomic multicast when most mes-
sages are global [74]. ByzCast and Baseline for 2, 4 and 8 groups perform very
alike and the latency saturates with less than half BFT-SMaRt’s throughput.

3.4.6 Latency without contention in LAN

The next experiments assess latency with a single client. This setup aims to check
how the protocols perform in the absence of contention or queuing effects. The
configurations have an increasing number of groups with both local and global
messages. Figure 3.6 shows that regarding local messages ByzCast performs as
well as BFT-SMaRt no matter the number of groups, with latency around 4 msec.
The fact that groups do not interact with each other when ordering local mes-
sages guarantees this expected latency. Global messages have twice the latency
of local messages in ByzCast because they go through the auxiliary group before
reaching the target groups. Besides, global messages latency increases slightly
as more target groups are added because replicas in the auxiliary group need to
perform multiple broadcasts to all the groups in message destination.

58 3.4 Performance evaluation

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

[%
]

Latency [msec]

Local only
Global only

Local w/ 10% global

(a) Baseline

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

[%
]

Latency [msec]

Local only
Global only

Local w/ 10% global

(b) ByzCast

Figure 3.7. Latency CDF with 10% of global messages.

3.4.7 Performance with mixed workload in LAN

The last experiment in LAN assesses the performance of ByzCast with both local
and global messages. In a 2-level overlay tree with 4 target groups, 160 equally
distributed clients multicast local and global messages in a proportion of 10:1.
Figure 3.7 shows the latency CDF for both Baseline and ByzCast. Since in the
Baseline protocol (Figure 3.7(a)) all messages are ordered in the same auxiliary
group before reaching the target group(s), the latency for both local and global
messages are similar. ByzCast, on the contrary, is genuine for local messages,
which have a considerably smaller latency up to the 99.5-th percentile, as exhib-
ited in Figure 3.7(b). For global messages, ByzCast and Baseline have similar
performance. It is worth noticing that in ByzCast local messages do not suffer
from the “convoy effect”, a phenomenon in which the slower ordering of global
messages can impact the latency of local ones [76]. In fact, the local-message la-
tency CDF for ByzCast with 10% of global messages is very similar to the latency
for 100% local messages.

3.4.8 Latency without contention in WAN

The first experiment in WAN measures the latency of ByzCast without any queu-
ing effect or resources overload. A single client from each region multicasts local
and global messages in a closed loop. The conclusions, shown in Figure 3.8,
are similar to those presented for a LAN. ByzCast has latency as good as a sin-
gle group (BFT-SMaRt) for local messages and twice the value for global ones.
In ByzCast, clients multicast global messages via an auxiliary group that totally
orders all messages before broadcasting them to target groups, what explains
the doubled latency. The Baseline protocol pays this double ordering for every
message.

59 3.5 Related work

 0

 150

 300

 450

 600

 750

 900

 1050

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

(CA)

Baseline (Local)
ByzCast (Local)

BFT-SMaRt

ByzCast (Global)
Baseline (Global)

 0

 150

 300

 450

 600

 750

 900

 1050

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

(EU)

 0

 150

 300

 450

 600

 750

 900

 1050

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

(JP)

 0

 150

 300

 450

 600

 750

 900

 1050

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]
(VA)

Figure 3.8. Latency with single client in WAN. Bars show median latency and
whiskers represent the 95-th percentile.

3.4.9 Performance with mixed workload in WAN

The last experiment evaluates ByzCast with a mix of local and global messages
in a proportion of 10:1, which would represent a more realistic workload. The
setup comprehends 4 target groups, 1 auxiliary group to order global messages,
and 40 clients per target group equally distributed among the 4 geographical
regions. The results presented in Figure 3.9 shows that ByzCast is 2x to 3x faster
than the Baseline protocol in terms of throughput. Figure 3.10 shows the latency
CDF for global and local messages. As expected, ByzCast has local latency 2x to
4x smaller than the values for the Baseline protocol. Regarding global messages,
both protocols behave similarly as exposed by previous experiments in LAN and
WAN. The latency CDF also confirms that ByzCast does not suffer from the convoy
effect, as the local latency is stable even in the presence of global messages.

3.5 Related work

ByzCast is at the intersection of two topics: atomic multicast (§3.5.1) and BFT
protocols (§3.5.2).

60 3.5 Related work

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CA EU JP VA

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Baseline
ByzCast

36.8
(msgs/sec)

38.8
(msgs/sec)

34.6
(msgs/sec)

38.3
(msgs/sec)

Figure 3.9. Normalized throughput with mixed workload in a WAN.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

ByzCast[%
]

Latency [msec]

CA - Local
EU - Local
JP - Local
VA - Local

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

Baseline[%
]

Latency [msec]

CA - Local
EU - Local
JP - Local
VA - Local

(a) Local messages.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

ByzCast[%
]

Latency [msec]

CA - Global
EU - Global
JP - Global
VA - Global

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

Baseline[%
]

Latency [msec]

CA - Global
EU - Global
JP - Global
VA - Global

(b) Global messages.

Figure 3.10. Latency CDF with 40 clients per group and 10% of global messages.

3.5.1 Atomic Multicast

Several multicast and broadcast algorithms have been proposed [31]. Moreover,
many systems use “ad hoc” ordering protocols that do not implement all the
properties of atomic multicast (e.g., [28, 44, 79]). Since no atomic multicast
algorithm exists for Byzantine failures, the discussion about atomic multicast for
benign failures presented in §2.5 also relates to ByzCast.

61 3.6 Conclusion

3.5.2 Scalable BFT

Despite the large amount of work on BFT replication in the last two decades
(e.g., [1, 5, 12, 21, 36, 45, 53, 58, 81, 85]), the scalability of BFT protocols is
still a relatively unexplored topic, which is discussed in this section.

A common observation of BFT protocols is that their performance degrades
significantly as the number of faults tolerated increase [1]. This lack of fault-
scalability comes mostly from the all-to-all communication used in these proto-
cols, which implies in a quadratic amount of messages. This limitation can be
mitigated either by using protocols with linear message pattern [1, 36, 45], by
using protocols with a smaller ratio between n and f [53, 85], or by exploring
erasure codes and large message batches [58]. Independently on the trade-offs
explored by these protocols, all of them lose performance as the number of repli-
cas increase, contrary to ByzCast.

There are few BFT protocols that target wide-area networks [5, 81]. These
protocols tend to use more replicas to decrease the relative quorum size or the
distance between replicas in the quorums. Similarly to the scalable protocols
described before, the performance of these protocols tends to decrease with the
number of replicas.

The natural way of scaling replicated systems is sharding the state in multiple
replica groups and running ordering protocols only in these groups. To the best
of our knowledge, there are only three works that consider partitionable replica-
tion for BFT systems. Augustus [63] and Callinicos [62] introduces protocols for
executing transactions in multiple shards of a key-value store implemented on
top of multiple BFT groups. A recent work by Nogueira et al. [60] introduces pro-
tocols for splitting and merging replica groups in BFT-SMaRt, without discussing
ways to disseminate messages to more than one of these groups with Byzantine
failures. ByzCast complements these works by providing a protocol for dissem-
inating requests on multiple partitions, enabling thus the efficient support for
services that require multi-partition operations.

3.6 Conclusion

Atomic multicast is a fundamental communication abstraction in the design of
scalable and highly available strongly consistent distributed systems. This chap-
ter presents ByzCast, the first Byzantine Fault-Tolerant atomic multicast, de-
signed to build on top of existing BFT abstractions. ByzCast is partially genuine,
i.e., it scales linearly with the number of groups, for messages addressed to a

62 3.6 Conclusion

single group. In addition to introducing a novel atomic multicast algorithm, its
performance is also assessed in two different environments. The results show
that ByzCast outperforms BFT-SMaRt in most cases, as well as a non-genuine
BFT atomic multicast protocol.

Chapter 4

Speeding up state machine
replication in wide-area networks

4.1 Introduction

Many current online services must serve clients distributed across geographic
areas. In order to improve service availability and performance, servers are typ-
ically replicated and deployed over geographically distributed sites (i.e., data-
centers). By replicating the servers, the service can be configured to tolerate the
crash of nodes within a single datacenter and the disruption of an entire datacen-
ter. Geographic replication can improve performance by placing the data close
to the clients, which reduces service latency.

Designing systems that coordinate geographically distributed replicas is chal-
lenging. Some replicated systems resort to weak consistency to avoid the over-
head of wide-area communication. Strong consistency provides more intuitive
service behavior than weak consistency, at the cost of increased latency. Due
to the importance of providing services that clients can intuitively understand,
several approaches have been proposed to improve the performance of geo-
distributed strongly consistent systems (e.g., [44, 59, 78, 83]). This chapter
presents GeoPaxos, a protocol that combines three insights to implement effi-
cient state machine replication in geographically distributed environments.

First, GeoPaxos decouples ordering from execution [87]. Although Paxos intro-
duces different roles for the ordering and execution of operations (acceptors and
learners, respectively [48]), Paxos-based systems typically combine the two roles
in a replica (e.g., [44, 59, 67]). Coupling order and execution in a geographically
distributed setting, however, leads to a performance dilemma. On the one hand,
replicas must be deployed near clients to reduce latency (e.g., clients can quickly

63

64 4.1 Introduction

read from a nearby replica). On the other hand, distributing replicas across ge-
ographic areas to serve remote clients slows down ordering, since replicas must
coordinate to order operations. By decoupling order from execution, GeoPaxos
can quickly order operations using servers in different datacenters within the
same region [44] and deploy geographically distributed replicas without penal-
izing the ordering of operations.

Second, instead of totally ordering operations before executing them, as tra-
ditionally done in state machine replication [47], GeoPaxos partially orders op-
erations. It is well-known that state machine replication does not need a to-
tal order of operations [77] and a few systems have exploited this fact (e.g.,
[46, 59]). GeoPaxos differs from existing systems in the way it implements par-
tial order. GeoPaxos uses multiple independent instances of Multi-Paxos [23] to
order operations—hereafter, an instance of Multi-Paxos is called a Paxos group
or simply a group. Operations are ordered by one or more groups, depending
on the objects they access. Operations ordered by a single group are the most
efficient ones since they involve servers in datacenters in the same region. Op-
erations that involve multiple groups require coordination among servers in dat-
acenters that may be far apart and thus perform worse than single-group oper-
ations. GeoPaxos’ approach to partial order can take advantage of public cloud
computing infrastructures such as Amazon EC2 [4]: fault tolerance is provided
by nodes in datacenters in different availability zones, within the same region;
performance is provided by replicas in different regions. Although intra-region
redundancy does not tolerate catastrophic failures in which all datacenters of
a region are wiped out, most applications do not require this level of reliabil-
ity [44].

Third, to maximize the number of single-group operations, GeoPaxos exploits
geographic locality. Geographic locality presumes that objects have a preferred
site, that is, a site where objects are most likely accessed. Geographic locality
is common in many online services. For example, operations on a user’s data
often originate in the region where the user is. Some distributed systems exploit
locality by sharding the data and placing shards near the users of the data (e.g.,
[44, 83]). GeoPaxos does not shard the service state; instead, it distributes the
responsibility for ordering operations to Paxos groups deployed in different re-
gions. Operations are ordered by the groups in the preferred sites of the objects
accessed by the operation.

The rest of the chapter is structured as follows. Section 4.2 details the system
model and recalls fundamental notions. Section 4.3 overviews the main contri-
butions. Section 4.4 details GeoPaxos. Section 4.5 discuss the correctness of the
provided algorithm. Section 4.6 describes the prototype. Section 4.7 presents

65 4.2 System model specifics

performance evaluation. Section 4.8 reviews related work and Section 4.9 con-
cludes the chapter.

4.2 System model specifics

Besides the system model defined in §1.2, additional assumptions related to
GeoPaxos are provided next. The considered system ia a message-passing ge-
ographically distributed system. Client and server processes are grouped within
datacenters (also known as sites or availability zones) distributed over different
regions. The system is asynchronous in that there is no bound on message delays
and on relative process speeds, but communication between processes within
the same region experience much shorter delays than communication between
processes in different regions.

Processes are subject to crash failures and do not behave maliciously (e.g.,
no Byzantine failures). Service state can be replicated in servers in datacenters
within the same region and across regions. The approach taken to replication is
aligned with cloud environments [4, 44]: Replication in different datacenters in
the same region is used to tolerate failures. Replication across regions is mostly
used to explore locality. The system also accounts for client-data proximity by
assuming that objects have a preferred site [83]. For this purpose, each object has
an attribute that indicates its preferred site. The preferred site of an object may
be initially unknown by the system and change over time (e.g., as users change
their physical location).

4.3 Overview

This section explains how GeoPaxos implements partial order in the absence of
failures (§4.3.1), optimizes performance (§4.3.2), and tolerates failures (§4.3.3).
It concludes discussing GeoPaxos execution model (§4.3.4).

4.3.1 Partial ordering of operations

GeoPaxos explores the fact that operations that access disjoint sets of objects
(i.e., commutative operations) do not need to be executed in the same order by
the replicas [77]. Consider the example in Fig. 4.1(a) where two clients invoke
operations op1 and op2 that access objects x and y , respectively. In replica s1,
the operation on x is executed before the operation on y , while in s2 and s3 the

66 4.3 Overview

s1

s2

c1: op1(x)

c2: op2(y)

s3

(a) Commutative operations.

s1

s2

̻4,1̼

̻8,2̼

̻5,1̼ ̻
9,2̼

̻9,1̼

̻9,2̼

s3

c1: op3(x,y)

c2: op4(z)

(b) Operations ordered by multiple replicas.

Figure 4.1. Simple GeoPaxos executions. Replicas s1, s2 and s3 are preferred
sites of objects x , y and z respectively.

opposite happens. Despite the different execution order, all replicas produce the
same output for the operations.

In typical implementations of state machine replication (e.g., [48, 59]), a
quorum of replicas must order operations before the operations can be executed.
The responsibility for ordering operations is assigned to replicas at the preferred
sites of the objects accessed in the operation. For example, in Fig. 4.1, s1, s2

and s3 are the preferred sites for objects x , y and z, respectively. So, when s1

receives operation op1(x) (see Fig. 4.1(a)), it can order and propagate the oper-
ation to the other replicas, but when s2 receives op4(z) from c2 (see Fig. 4.1(b)),
s2 forwards the operation to s3 to be ordered.

For operations that access multiple objects, there are two possibilities: (i) all
the objects accessed by the operation share the same preferred site or (ii) the
objects’ preferred sites are different. In case (i), the operation is ordered by the
replica in the only preferred site, as described above. In case (ii), the involved
replicas need to coordinate to decide the final order of the operation, as explained
next.

Replicas assign unique timestamps to operations and execute operations in
timestamp order.1 In the case of an operation that involves multiple replicas, the
involved replicas must agree on the operation timestamp. In Fig. 4.1(b), client
c1 sends operation op3 to s1. Since op3 accesses objects x and y , whose preferred
sites are s1 and s2, s1 forwards op3 to s1 and s2, which assign their next available
timestamp to op3. After exchanging assigned timestamps, op3’s final timestamp
is computed as the maximum between 〈5,1〉 and 〈9, 2〉. Replicas s1, s2 and s3

can execute op3 as soon as (1) they have received op3’s final timestamp from the

1A timestamp is a tuple 〈i, j〉, where i is an integer and j a unique id associated with each
replica. For any two timestamps 〈i, j〉 and 〈k, l〉, 〈i, j〉< 〈k, l〉 if (a) i < k or (b) i = k and j < l.

67 4.3 Overview

replicas involved in the ordering procedure, and (2) they have executed all non-
commuting operations with smaller timestamp than op3’s final timestamp. Since
op3 and op4 commute, they can be ordered by disjoint sets of replicas. Further
details about GeoPaxos ordering algorithm are provided in §4.4.

4.3.2 Optimizing performance

The preferred site of objects plays a central role in GeoPaxos performance. First,
it is important to maximize locality, i.e., assign the object preferred site to a
replica close to clients that access the object more often. Besides, single-replica
operations are the most efficient ones in GeoPaxos: (a) they involve no inter-
replica communication in the ordering process and scale with the number of
replicas; (b) they can be ordered and executed independently and concurrently
by different replicas. By taking into account the affinity between objects (i.e.,
how often objects are accessed in the same operation), single-replica operations
can be optimized. Finally, when defining object preferred site, one should strive
to keep the load on the replicas equally distributed. Ideally, the system should
seek to achieve a balance among locality, affinity and load, as discussed in §4.4.2.

4.3.3 Fault tolerance

The protocol presented in §4.3.1 does not tolerate replica failures. If replica s1

in Fig. 4.1(b) fails, for instance, then all clients that depend on objects ordered
by s1 will block until s1 recovers. The solution to avoid blocking in the event of
failures is inspired by Spanner [16]. In Google’s distributed database, transac-
tions that span multiple shards are committed using two-phase commit (2PC),
a blocking protocol. Spanner avoids blocking by replicating each shard within a
Paxos group. Such an approach tolerates the failure of a minority of replicas in
each Paxos group.

GeoPaxos relies on Paxos groups to replicate the logic responsible for ordering
operations. This essentially splits the roles of ordering from execution at repli-
cas. Moreover, GeoPaxos explores the different Paxos roles to split ordering from
execution, performed by acceptors and learners, respectively. Fig. 4.2 exhibits a
GeoPaxos deployment with three Paxos groups in regions A, B and C. Different
Paxos groups can order operations concurrently and replicas (learners) execute
all operations in the order established by the acceptors of each group. Such de-
ployment can tolerate the failure of one datacenter, a failure model similar to
Spanner’s.

68 4.3 Overview

DC1
XYZ

A1

Obj. X preferred site
Region A

XYZ
Replica with
objects X,Y, Z

A Paxos group
for region A

DC2
XYZ A2 B3

DC3

DC4
XYZ B2 C3

Region B
Obj. Y preferred site

XYZ
C1

Region C
Obj. Z preferred site

XYZ B1

XYZ C2 A3

DC5

DC6

~1 msec
~100 msec

XYZ
additional replica
(optional)

Figure 4.2. A deployment of GeoPaxos within six datacenters (DCi) in three
regions.

4.3.4 Execution Model

While GeoPaxos shares Spanner’s failure model, the two systems differ in a funda-
mental manner: Spanner supports read-write objects (i.e., storage) and GeoPaxos
supports read-modify-write objects (i.e., state machines). In Spanner, clients can
build complex applications by issuing multiple read and write requests to servers
and encapsulating multiple requests into a transaction, which can also contain
client-side arbitrary computation on the data. GeoPaxos supports state machines:
the application logic runs entirely at the replicas; clients simply invoke the oper-
ations (similarly to database stored procedures).

From a broader perspective, Spanner executes transactions, possibly span-
ning multiple shards, and then coordinates the involved shards by means of
2PC; in GeoPaxos, operations are first ordered and then executed. These two
approaches have important differences. First, transactions in Spanner’s execute-
coordinate model may abort, which never happens in GeoPaxos’ order-execute
model. The order-execute model requires deterministic execution, so that repli-
cas reach the same state after executing the same sequence of operations.

Additionally, GeoPaxos allows commutative operations to execute concur-
rently, in any order. Even though EPaxos [59], M2Paxos [67], and Mencius [55]
can also exploit commutative operations to improve performance, they have to
contact at least a majority quorum of distant replicas for each operation. In
other words, quorum-based systems where replicas participate in both the or-
dering and execution are vulnerable to the performance dilemma described in

69 4.4 Design

§4.1. GeoPaxos is empirically compared to this class of quorum-based protocols
in §4.7.

4.4 Design

In this section, we detail the GeoPaxos protocol (§4.4.1), present some extensions
and improvements to the basic protocol (§4.4.2), and discuss practical aspects
(§4.4.3).

4.4.1 The ordering protocol

In GeoPaxos, clients can send operations to any replica. An operation op received
by a replica has two main attributes: (a) the destination op.dst, which contains
the preferred sites of the objects accessed in op; and (b) the timestamp op.ts,
which defines the order in which op must be executed by the replicas. A preferred
site corresponds to a Paxos group. Note that only the groups representing the
preferred sites of the objects accessed in op coordinate to order op, but all replicas
execute op.

Algorithm 4 presents GeoPaxos, divided in atomic tasks. Whenever a client
submits an operation op for execution to a replica r, the latter invokes psi te(op),
which defines op.dst as the set of preferred sites from every object accessed by
op, and proposes op to each group in op.dst in a STEP1 message, as detailed
in Task 0. The proposing of an operation triggers an execution of Paxos in each
group in op.dst.

In Task 1, when a replica in op.dst learns about a new STEP1 message ad-
dressed to a group h (line 13), it increments h’s local clock, updates op.ts, and
appends op to the set of unordered messages. When r learns STEP1 messages
from each group in op.dst, it proposes op final timestamp to its local group g
(the group it belongs to) within a STEP2 message (line 18).

When r learns a STEP2 message from a group h (the decide event in line 19),
it updates h’s clock to the maximum between the previous value and the one just
decided. As soon as replicas learn STEP2 messages from all groups in op.dst, they
consider the operation ordered and move it from the ToOrder set to the Ordered
set.

An operation in the Ordered set can be executed by the replica in Task 2 when
it has a timestamp smaller than any other operations with common destination
in both ToOrder and Ordered sets.

70 4.4 Design

Algorithm 4 replica r in group g.
1: Initialization
2: clock[N]← {〈0, 1〉, · · · , 〈0, g〉, · · · , 〈0, N〉}
3: ToOrder← ;; Ordered← ;

4: To submit operation op: {Task 0}
5: op.dst ← psite(op)
6: op.ts← 〈0,0〉
7: for all h ∈ op.dst do
8: proposeh(STEP1, op,−)

9: when decideh(S, op, clock′) {Task 1}
10: if S = STEP1 then
11: if |op.dst|= 1 then
12: execute operation op
13: else
14: inc(clock[h])
15: op.ts← max(op.ts, clock[h])
16: ToOrder← ToOrder∪ {op}
17: if decided j(STEP1, op, _) from all j ∈ op.dst then
18: proposeg(STEP2, op, op.ts)
19: else
20: clock[h]← max(clock[h], clock′)
21: if decided j(STEP2, op, _) from all j ∈ op.dst then
22: Ordered← Ordered∪ {op}
23: ToOrder← ToOrder \ {op}

24: while ∃op ∈ Ordered : {Task 2}
(∀op′ ∈ Ordered∪ ToOrder :

op 6= op′ ∧ op.dst ∩ op′.dst 6= ; ⇒ op.ts < op′.ts) do
25: execute operation op
26: Ordered← Ordered \ {op}

Operations ordered by a single Paxos group (single-group operations) do not
receive a timestamp. Instead, they are immediately forwarded to all replicas to
be executed, bypassing any ongoing multi-group operations (line 11). We detail
this optimization in §4.4.2.

4.4.2 Extensions and optimizations

In this section, we describe a few optimizations that improve the performance of
the basic ordering protocol.

71 4.4 Design

Speeding up single-group operations

In Algorithm 4, replicas deliver single-group operations without assigning them
timestamps. This optimization ensures that operations involving a single Paxos
group do not have to wait for slower multi-group messages. To understand why,
assume that both single- and multi-group messages are assigned timestamps. Let
ops and opm be two operations that access a common object x (i.e., ops and opm

do not commute), where ops is single-group and opm is multi-group. Thus, ops

and opm must be executed in the same order by all replicas.
Consider an execution in which ops’s communication round happens between

opm’s first and second communication rounds at the replicas in the preferred site
for object x . Thus, ops receives a timestamp greater than opm’s. This means that
even if ops is ready to be executed, it must wait for opm to be ordered. We call
the phenomenon by which the execution of an ordered operation is delayed by
the ordering of another operation the “convoy effect”. Since there is a significant
difference between the response times of single-group and multi-group opera-
tions, even a small percentage of multi-group operations in the workload can
add substantial delays in the execution of single-group operations. To cope with
the convoy effect, we let single-group operations be executed as soon as they are
ordered in STEP1 (line 11 of Algorithm 4). Consequently, STEP2 of a multi-group
operation does not delay the execution of a single-group operation. Intuitively,
this does not violate correctness because ops and opm are handled in the same
total order within a group, and so, all replicas agree that ops should be executed
before opm is ordered.

Setting an object’s preferred site

Since the preferred site of objects may be unknown until the first accesses to the
objects and it may also change over time (e.g., as users change their physical
location), reassigning an object’s preferred site is inevitable. A practical way
to maintain preferred sites is to monitor access to objects, client location, and
replica load, and periodically evaluate and reassign groups to object accordingly.

Differently from Spanner, where data needs to be copied in the background
to the destination zone by the placement driver, in GeoPaxos there is no bulk
data transfer involved in reassigning an object preferred site. The task is accom-
plished by a set_psi te(ob jec t_id, new_pre f er red_si te) operation that involves
the Paxos groups at the object’s current and new preferred sites. After ordered,
the operation updates the object’s preferred site in all replicas. We exercise this
feature of GeoPaxos in §4.7.2 using simple heuristics to assign preferred sites to

72 4.5 Proof of correctness

objects.

4.4.3 Practical considerations

Paxos groups are available as long as there is a majority of non-faulty nodes
(acceptors) in the group. Clients connected to a replica that fails can reconnect to
any operational replica, possibly in the client’s closest region. We experimentally
evaluate the effects on performance when clients reconnect to a remote replica
in §4.7.2.

To recover from failures, the in-memory state of acceptors must be saved
on stable storage (i.e., disk). In GeoPaxos, acceptors can persist their state in
both asynchronous or synchronous mode. These modes represent a performance
and reliability trade-off: the asynchronous mode is more efficient but can cause
information loss if an acceptor crashes before flushing its state to disk. We use
asynchronous mode in our evaluation.

As an optimization, multi-group operations (with associated parameters) do
not need to be sent to all groups involved in the operation. It is sufficient that one
group receives the full operation while the other groups receive only the unique
id of the operation, so that the operation can be ordered in all involved groups.

4.5 Proof of correctness

Proposition 18 If operations opi and op j do not commute, then replicas execute
them in the same order.

PROOF: Since opi and op j do not commute, they access at least one common
object. Let PSi and PS j be the preferred sites for opi and op j (i.e., these are the
Paxos groups that will order each operation). Thus, either (i) PSi ∩ PS j 6= ;, that
is, the operations are ordered by at least one group in common; or (ii) PSi∩PS j 6=
;. Case (ii) is only possible if the objects accessed by opi and op j changed their
preferred site after the first operation is executed and before the second operation
is executed. Without lack of generality, let x be an object accessed by the two
operations, and PS(x)i and PS(x) j be the preferred sites for x when opi and op j

are executed, respectively. From the mechanism to reassign the preferred site of
an object, both the current and the next preferred sites must be involved in the
operation. It is possible to conclude that opi and op j are ordered in at least one
group, directly, as in case (a), or indirectly, as in case (b).

73 4.5 Proof of correctness

The claim follows from two facts: (a) for ordered operations (operations in
the Ordered set) opi and op j either opi.t p < op j.t p or op j.t p < opi.t p; and
(b) replicas execute ordered operations in timestamp order. Fact (a) holds since
timestamp values are unique and the timestamp of an ordered operation op is the
maximum among the timestamp values proposed by each one of the destination
groups in op.dst (line 20 of the Algorithm 4). Fact (b) holds because when an
operation op is executed by a replica, there is no operation op′ at the replica with
a smaller timestamp (Task 2 of Algorithm 4). Moreover, no future operation can
have a smaller timestamp than op’s timestamp since timestamps are monotoni-
cally increasing and the timestamp of each group in op.dst is at least equal to
op’s (line 19 of Algorithm 4). �

Proposition 19 GeoPaxos is linearizable.

PROOF: From the definition of linearizability [40], there must exist a permu-
tation π of the operations in any execution of GeoPaxos that respects (i) the
real-time ordering of operations as seen by the clients, and (ii) the semantics of
the operations. Let opi and op j be two operations submitted by clients Ci and C j,
respectively.

There are two cases to consider.
Case (a): opi and op j are commutative. Thus, opi and op j access different

objects and the sets of groups representing preferred sites of the objects involved
in each operation are disjoint. Consequently, the execution of one operation does
not affect the execution of the other and they can be placed in any relative order
inπ. Operations opi and op j are arranged inπ so that their relative order respects
their real-time dependencies, if any.

Case (b): opi and op j do not commute. It follows from GeoPaxos order prop-
erty above that replicas execute the operations in the same order. Since the two
operations execute in sequence, the execution of the operations satisfies their
semantics. It is now shown that the execution order satisfies any real-time con-
straints among opi and op j. Without lack of generality, assume opi finishes before
op j starts (i.e., opi precedes op j in real time). Thus, before op j is submitted by
C j, opi has completed (i.e., Ci has received opi ’s response). Since op j is ordered
and then executed, the conclusion is that opi is ordered before op j.

From the claims above, opi and op j can be arranged in π according to their
delivery order so that the execution of each operation satisfies its semantics.

The last consideration regards the earlier execution of single-group opera-
tions as presented in lines 10 to 12 of Algorithm 4. Because replicas receive both
STEP1 and STEP2 messages from a group g by means of consensus (proposeg()

74 4.6 Implementation

and decideg()), they are totally ordered. This means that all replicas will decideg

and execute a single-group operation opi in some group g in the same order with
respect to any multi-group operation op j which also has g in op j.dst. An oper-
ation opk that does not contain g in opk.dst is commutative with respect to ipi;
in such case, opk is not proposed in group g and both operations may appear in
any relative order in π. �

4.6 Implementation

GeoPaxos was implemented in C.2 The prototype allows to configure disk ac-
cess mode, synchronous or asynchronous, by default set to asynchronous. Lib-
paxos3 is used as the Paxos library. In GeoPaxos proposers and acceptors are
single-threaded processes. To ensure liveness, the system starts with a default
distinguished proposer, which exchanges heartbeats with the other proposers to
allow progress in the event of a failure. Replicas are multithreaded processes.
The learner for each Paxos group is executed as an independent thread and only
synchronizes with other learners when an operation addresses multiple Paxos
groups. An additional thread handles the requests from the clients and, depend-
ing on the operation parameters, sets the destination groups accordingly.

Clients are multithreaded, with each thread usually connected to the closest
replica. Operations are submitted in a closed loop, i.e., an operation is only sent
after the response for the previous operation is received.

4.7 Evaluation

Experiments are conducted in two environments, a local-area network (LAN)
and a public wide-area network (WAN). GeoPaxos is compared to other protocols
that also implement state machine replication: Multi-Paxos (implemented with
Libpaxos), EPaxos,4 and M2Paxos.5 There is no empirical comparison between
GeoPaxos and Mencius as Mencius’s source code is not publicly available—see
§4.8 for an analytical comparison of the protocols.

2https://bitbucket.org/paulo_coelho/replica-ssn
3https://bitbucket.org/sciascid/libpaxos
4The evaluation of EPaxos used the authors’ original code, available at https://github.com/

efficient/epaxos and compiled using Go version 1.6.3.
5The evaluation of M2Paxos used the authors’ original code, available at https://bitbucket.

org/talex/hyflow-go and compiled using Go version 1.6.3.

https://bitbucket.org/paulo_coelho/replica-ssn
https://bitbucket.org/sciascid/libpaxos
https://github.com/efficient/epaxos
https://github.com/efficient/epaxos
https://bitbucket.org/talex/hyflow-go
https://bitbucket.org/talex/hyflow-go

75 4.7 Evaluation

4.7.1 Performance in the LAN

The experiments in the LAN allow to assess the protocols in a controlled environ-
ment, where it is possible to compare GeoPaxos performance to related protocols
(§4.7.1).

Environment

The LAN consists of a cluster of nodes, each one with an 8-core Intel Xeon L5420
processor (2.5GHz), 8GB of memory, SATA SSD disks, and 1Gbps ethernet card.
Each node runs CentOS 7.1 64 bits. The RTT (round-trip time) between nodes
in the cluster is ∼0.1 msec. GeoPaxos uses three acceptors per Paxos group, with
the replica co-located with an acceptor (see Fig. 4.2). For Multi-Paxos, one of
the replicas is the coordinator.

 0

 25000

 50000

 75000

 100000

 125000

3 Groups 5 Groups

T
hr

ou
gh

pu
t [

op
er

at
io

ns
 /

se
c] Multi-Paxos

GeoPaxos
EPaxos

M2Paxos

(a) Peak throughput

 0

 10

 20

 30

 40

 50

3 Groups 5 Groups

La
te

nc
y

[m
se

c]

(b) Latency

Figure 4.3. Performance in LAN (whiskers: 95% confidence interval for through-
put, 99-th percentile for latency).

Benchmark and configuration

The LAN configuration uses a replicated key-value store service. In the workload,
all the client requests are 64-byte updates. Clients run in a closed loop and the
number of clients is increased until the system is saturated and no increase in
throughput is possible. For GeoPaxos, EPaxos and M2Paxos, where the clients
are equally distributed among replicas, 100 simultaneous clients per replica are
enough to saturate the system. Multi-Paxos saturates sooner, with around 80
clients per replica, which forward the operations to the coordinator. Batching
is enabled for Multi-Paxos, EPaxos and GeoPaxos. M2Paxos does not provide
batching support.

76 4.7 Evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140

t1 t2 t3

T
hr

ou
gh

pu
t [

op
er

at
io

ns
 /

se
c]

Time [sec]

(a) Throughput

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

[%
]

Latency [msec]

t1
t2
t3

(b) Latency CDF for highlighted intervals

Figure 4.4. Impact of dynamic preferred site change on throughput and latency.

Throughput and latency

As depicted in Fig. 4.3(a), GeoPaxos and EPaxos have similar performance. This
is explained by the absence of leader in EPaxos and the independent ordering
in each replica in GeoPaxos. M2Paxos combines clients and replicas in the same
process, imposing high CPU usage. As the number of replicas increases and the
amount of single-group operations remains high, GeoPaxos throughput is ex-
pected to increase linearly, because such operations are ordered by a single Paxos
group. Multi-Paxos saturates when the coordinator reaches maximum CPU us-
age.

Fig. 4.3(b) shows the latency at peak load for all protocols. GeoPaxos and
EPaxos have similar results, substantially lower than Multi-Paxos, which suffers
the effects of the overloaded coordinator. M2Paxos has the lowest median latency
but much larger latency tail.

4.7.2 Performance in the WAN

This section assesses the following aspects: (a) the effectiveness of simple heuris-
tics to set the preferred site of objects (§4.7.2), (b) the latency of the various
protocols in a WAN (§4.7.2 and §4.7.2), (c) the convoy effect and mechanism to
counter it (§4.7.2), and (d) the performance of GeoPaxos under failures (§4.7.2).

Environment

The WAN configuration uses Amazon EC2, with each replica deployed in a dif-
ferent region. All the nodes are m3.large instances, with 2 vCPUs and 7.5GB of
memory. The experiments with 3 replicas uses 2 datacenters in California (CA), 3
datacenters in North Virginia (VA) and 3 datacenters in Ireland (EU). Each region
holds three acceptors and one replica (co-located with one acceptor) in different

77 4.7 Evaluation

datacenters for fault tolerance in the ordering protocol. The regions of Oregon
(OR), with 3 datacenters, and Tokyo (JP), with 2 datacenters, are included to
complete the 5 replicas scenario. Table 4.1 summarizes the RTT between these
regions. RTT within a datacenter is smaller than 1 msec and between datacenters
in the same region below 2.5 msec.

VA EU OR JP

CA 75 145 22 110
VA – 75 80 150
EU – – 130 215
OR – – – 95

Table 4.1. Average RTT between regions, in milliseconds.

Benchmark and configuration

The WAN configuration uses a social network service. Social networks are notori-
ous for exhibiting locality properties of the sort that GeoPaxos can take advantage
of [3, 17, 71]. The social network has 10000 users, each one represented as an
object. The friendship relations follow a Zipf distribution with skew 1.5. There
are two operations: getTimeline and post. The getTimeline operation returns the
last 10 messages posted on a specified user timeline. The post appends a mes-
sage to the timeline of all the followers of the specified user. While getTimeline
is always a single-group operation, post depends on the set of preferred sites of
posting user’s followers.

The experiments in WAN were executed with 10 clients in each region and
a mix of getTimeline and post operations in a proportion of 4:1. In the WAN
experiments, GeoPaxos contains 3 acceptors and 1 replica per region, with the
acceptors distributed in different availability zones and the replica co-located
with one acceptor in a node (see Fig. 4.2). Multi-Paxos, M2Paxos and EPaxos
use one replica per region. Clients (which represent the users) are evenly dis-
tributed among the three or five regions, depending on the configuration. When
the system starts, the preferred site of each object is set to an arbitrary region
(Paxos group).

Defining objects preferred site

This experiment assesses a simple strategy to assign preferred sites to objects
in the social network service. The strategy works as follows. To account for

78 4.7 Evaluation

locality, the first time an object is accessed (i.e., when a user executes his first
post or getTimeline), the user’s preferred site is set to the region of the user so
that further accesses will be “local” to the user. Affinity is taken into account by
monitoring the frequency of operations involving an object. A user A that follows
a user B will have its preferred site set to B’s preferred site if B posts more often
than A reads his timeline.

Fig. 4.4 shows the throughput in the first 140 seconds of an execution and the
latency CDF of three time intervals (t1 = (0,20), t2 = (40, 60), t3 = (80,100)).
Until the system has optimized the preferred site of objects performance is low.
Once objects preferred site have been efficiently assigned, something that hap-
pens after 75 seconds into the execution, most operations will be local single-
group. The following distribution is obtained when the assignments become
stable:

• Three regions ordering 3404, 3170 and 3426 users; where 80% of users
have followers with the same preferred site, 18% of users have followers
ordered in two regions, and 2% in all regions.

• Five regions ordering 1998, 1942, 2057, 1943 and 2060 users; 74% of
users have followers ordered in the same preferred site , 22% in two re-
gions, 2.6% in three regions, 1% in four regions, and 0.4% in five regions.

In the experiments presented next, we report results after assignments are stable.
Although conceptually M2Paxos supports the notion of object ownership (equiv-

alent to object preferred site), it was not possible to compare it experimentally
to GeoPaxos since the available implementation does not include this feature.
Besides, M2Paxos does not support multi-group operations.

Latency in WAN

Fig. 4.5 shows the median latency and 99-th percentile of the protocols in sce-
narios with a single client. In the “remote client” configurations, the client is in
Ireland (EU) and connects to the replica in CA; in all other executions the client
is in California (CA). The deployment with a single client assesses the protocols
in the absence of queueing effects.

Multi-Paxos, EPaxos and M2Paxos have their latency strictly related to the
proximity to other replicas. Multi-Paxos also depends on the location of the
clients, because all operations must reach the coordinator in CA. GeoPaxos de-
pends on the number of groups that an operation is addressed to, while proximity
to other replicas only impacts operations that access objects ordered by multiple
replicas. For single-group operations, the latency of GeoPaxos is around 2 msec,

79 4.7 Evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

3 Regions 5 Regions

La
te

nc
y

[m
se

c]

Multi-Paxos
GeoPaxos

EPaxos
M2Paxos

lo
ca

l c
lie

nt

lo
ca

l c
lie

ntre
m

ot
e

cl
ie

nt

re
m

ot
e

cl
ie

nt

1-
gr

ou
p

op
er

. -
 lo

ca
l c

lie
nt

1-
gr

ou
p

op
er

. -
 lo

ca
l c

lie
nt

1-
gr

ou
p

op
er

. -
 r

em
ot

e
cl

ie
nt

1-
gr

ou
p

op
er

. -
 r

em
ot

e
cl

ie
nt

2-
gr

ou
p

op
er

.

2-
gr

ou
p

op
er

.

3-
gr

ou
p

op
er

.

5-
gr

ou
p

op
er

.

lo
ca

l c
lie

nt

lo
ca

l c
lie

nt

lo
ca

l c
lie

nt

lo
ca

l c
lie

nt

r.
c.

r.
c.

Figure 4.5. Latency in WAN (whiskers: 99-th percentiles).

while the best case for EPaxos and Multi-Paxos is around 80–90 msec for both 3
and 5 regions. Such latency is similar to Spanner read-only operations with all
datacenters in a single region [44]. No state machine replication system achieves
latency as low as GeoPaxos because at least a majority of replicas needs to be con-
tacted. M2Paxos takes around 63 msec to order a message. Even with a single
client, M2Paxos has high latency for remote clients, almost twice the value of
GeoPaxos’s latency in the 5-region scenario. Operations that involve two groups
in GeoPaxos have latency between 80 msec and 90 msec. It is worth mention-
ing that in the 5-region scenario, even though a remote client does not make
sense for EPaxos, a client in EU connected to a local replica would have a latency
similar to a GeoPaxos remote client invoking single-group operations.

GeoPaxos only has higher latency than other techniques in particular multi-
group operations like the situation with all regions, something that is expected
to happen very scarcely, depending directly on the latency of the farthest group.

Convoy effect

The following experiment compares GeoPaxos without the optimizations to cope
with the convoy effect (“GeoPaxos”) and with the optimization described in §4.4.2
to mitigate the convoy effect (“GeoPaxos NC”). EPaxos and Multi-Paxos are also
included in the evaluation. M2Paxos is not evaluated in this setup since the avail-
able implementation cannot handle multi-group operations.

Fig. 4.6 shows the cumulative distribution functions (CDF) for 3- and 5-region

80 4.7 Evaluation

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

[%
]

Latency [msec]

Multi-Paxos
GeoPaxos NC

GeoPaxos
EPaxos

(a) Latency in WAN and convoy effect with 3 regions.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

[%
]

Latency [msec]

Multi-Paxos
GeoPaxos NC

GeoPaxos
EPaxos

(b) Latency in WAN and convoy effect with 5 regions.

Figure 4.6. Impact of the convoy effect on latency.

setups. With 3 regions, GeoPaxos NC brings the percentage of low-latency single-
group operations from around 65% to more than 90%. With 5 regions, half the
single-group operations experience the convoy effect originally and less than 15%
are penalized with GeoPaxos NC. Part of the single-group operations that display
high latency with GeoPaxos NC are due to queuing effects and CPU scheduling
(2 vCPUs in configurations with as many threads as the number of replicas) and
a minor fraction of users with followers exclusively external to their own region
(single-group operations ordered by a remote client, resulting in a remote client).

Fig. 4.7 exhibits the impact on throughput. GeoPaxos is 2x faster than EPaxos
with 3 regions (from 374 to 745 operations/sec) and GeoPaxos NC is 6x faster
(2245 operations/second). With 5 regions, the speedup over EPaxos is 3.8x and
7.6x for GeoPaxos and GeoPaxos NC, respectively (366, 1357 and 2767 opera-

81 4.7 Evaluation

tions/sec). Multi-Paxos experienced the lowest throughput due to the ordering
of operations done by the single coordinator.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

3 Regions 5 Regions

T
hr

ou
gh

pu
t [

op
er

at
io

ns
 /

se
c] Multi-Paxos

GeoPaxos
GeoPaxos NC

EPaxos

Figure 4.7. Impact of the convoy effect on throughput.

Performance under failures

The last set of experiments assess GeoPaxos in the presence of replica failures.
Initially, the system is configured with clients running in closed loop and equally
distributed across groups in order to keep the overall throughput between 10000
and 12000 operations per second, without saturating the replicas (see Fig. 4.8).

Clients from 3 EC2 regions (CA, VA and EU) connect to their local replicas.
Clients in CA have a backup replica in another datacenter in the same region,
while clients in VA are configured to connect to the EU replica in case of failures.
After 30 seconds into the execution, a replica in CA is killed. Clients in this region
immediately connect to the second replica of the region, which has a slightly
greater latency (from 0.4 to 1.2 msec), resulting in some throughput decrease.
A second replica is killed 30 seconds later, now in VA. Clients reconnect to the
EU replica, but are subject to increased latency (around 140 msec).

The replica in EU keeps a constant throughput despite two failures in two
distinct regions. This is possible due to the partial ordering implemented by
GeoPaxos and the separation of Paxos roles, disassociating the acceptor and pro-
poser from the replicas (learners).

82 4.8 Related work

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90

La
te

nc
y

[m
se

c]

Time [sec]

VA replica crash, recovery replica in EU
CA replica crash, recovery replica in CA

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t [

op
er

at
io

ns
 /

se
c]

Time [sec]

CA VA EU

CA replica fails! VA replica fails!

Figure 4.8. Latency and throughput in WAN (3 regions, clients in all regions).

4.8 Related work

If on the one hand state machine replication is widely used to increase service
availability (e.g., [20, 42, 44]), on the other hand it is notably criticized for its
overhead. From single-leader algorithms, like Paxos [48], to leaderless algo-
rithms (e.g., [59, 84]) and variations that take the semantics of operations into
account (e.g., [49, 66]), all efforts have been directed to finding faster ways to
order operations. None of the solutions, however, can avoid the large latency
imposed by geographically distributed applications since at least a simple major-
ity quorum of replicas is needed to order operations [50]. Furthermore, existing
solutions experience reduced performance as the number of replicas increases.

GeoPaxos improves the performance of state machine replication by (a) ex-
ploiting the fact that operations do not need a total order; (b) distinguishing
ordering from execution; and (c) judiciously choosing the Paxos group that will
order operations. Partially ordering operations with the goal of improving perfor-

83 4.8 Related work

mance has been previously implemented by EPaxos, Alvin, Caesar and M2Paxos.
EPaxos [59] improved on traditional Paxos [48] by reducing the overload on

the coordinator and allowing any replica to order operations. As long as replicas
observe common dependencies set, operations can be ordered in one round-trip
(fast decision).

Alvin [84] is a system for managing concurrent transactions that relies on
Partial Order Broadcast (POB) to order conflicting transactions. While POB is
very similar to EPaxos, its main contribution lies in the substitution of EPaxos
complex dependency graph analysis by a set of cycle-free dependencies based on
timestamps.

Caesar [8] extends POB and reduces the numbers of scenarios that would
impose one additional round-trip (slow decisions). Differently from Alvin and
EPaxos, where nodes must agree on operations dependency set, Caesar seeks
agreement on a common final timestamp for each operation. This strategy allows
fast decisions even in specific cases where dependencies do not match, resulting
in better performance as contention increases.

Depending on the interference between operations, however, the rate of slow
decisions in EPaxos, Alvin and Caesar increases considerably, a high price to be
paid by geographically distributed applications.

M2Paxos [67] is another implementation of Generalized Consensus [49] that
does not establish operation dependencies based on conflicts, but, similar to
GeoPaxos, maps replicas to accessed objects. M2Paxos guarantees that opera-
tions that access the same objects are ordered by the same replica. It needs
at least two communications steps for local operations and one additional step
for remote operations. M2Paxos’s mechanism to handle operations that access
objects mapped to multiple replicas requires remapping the involved objects to
a single replica. Replicas executing different operations may dispute the same
objects indefinitely.

Mencius [55] extends traditional Multi-Paxos with a multi-leader solution
that partitions the sequence of consensus instances among geographically dis-
tributed replicas to avoid the additional round-trip for clients far from the single-
leader. Besides, it provides a mechanism to deal with unbalanced load, allowing
one replica to propose a SKIP message when there is no operation to be executed
in that instance. Mencius also allows out-of-order execution of commutative op-
erations.

Differently from GeoPaxos, none of the existing solutions takes locality into
account. Instead, they require a quorum of replicas, and thus cannot avoid inter-
region latencies in geo-distributed scenarios. GeoPaxos takes advantage of lo-
cality to deliver single-replica operations with intra-region latency. Table 4.2

84 4.8 Related work

Protocol ∆ Operation type
Alvin [84] 2 RMW
Caesar [8] 2 RMW
EPaxos [59] 2 RMW
Mencius [55] 2 RMW
M2Paxos [67] 2 RMW
Multi-Paxos [48] 2 RMW
Spanner [44]

single-shard operation 0 RW
multi-shard operation 2 RW

GeoPaxos
single-group operation 0 RMW
multi-group operation 2 RMW

Table 4.2. Minimum inter-region delays (∆) and operation type: read-modify-
write (RMW) vs. read-write (RW).

compares the latency of GeoPaxos to other state machine replication-based sys-
tems. GeoPaxos optimizes for single-group operations ordered in a region. Other
solutions rely either on a classic quorum or a fast quorum of replicas in different
regions.

Several solutions that partition (i.e., shard) the data have appeared in the
literature. Systems in this category are sometimes referred to as partially repli-
cated systems, as opposed to designs in which each replica has a full copy of
the service state, like in GeoPaxos. Spanner [44] is a partitioned distributed
database for WANs. It uses a combination of two-phase commit and a TrueTime
API to achieve consistent multi-partition transactions. TrueTime uses hardware
clocks to derive bounds on clock uncertainty, and is used to assign globally valid
timestamps and for consistent reads across partitions. It requires elaborate syn-
chronization mechanisms to keep the clock skew among nodes within an accept-
able limit. Furthermore, Spanner provides more restrictive type of operations
(read-write objects) than state machine replication (read-modify-write objects).

Spinnaker [69] is similar to the approach presented here. It also uses sev-
eral instances of Multi-Paxos to achieve scalability. However, Spinnaker does not
support operations across multiple Multi-Paxos instances.

Differently from existing sharded systems, where replicas contain only part
of the service state, in GeoPaxos each replica contains the entire state. In doing
this, GeoPaxos can improve performance without sacrificing the simplicity of the
state machine replication approach. Moreover, there is no need to reshard data

85 4.9 Conclusion

across nodes and to migrate data across nodes for load balance and in response
to failures.

Some systems seek to boost performance by exploiting transactional seman-
tics. The most related to GeoPaxos are MDCC, Granola, Geo-DUR and P-Store.
MDCC [46] is a replicated transactional data store that also uses several instances
of Paxos. MDCC optimizes for commutative transactions, and uses Generalized
Paxos to relax the order of commuting transactions. Granola [28] is a distributed
transaction coordination system that relies on clock-based timestamps to pro-
vide strong consistency among transactions. It depends on loosely synchronized
clocks and needs three communication delays to order multi-repository transac-
tions, in the absence of aborts. P-Store [76] and Geo-DUR [78] are optimized for
wide-area networks and have also looked into techniques to reduce the convoy
effect. Differently from these systems, GeoPaxos does not require transaction
support. For example, GeoPaxos does not need to handle rollbacks in case parti-
tions do not agree on the order of operations [78].

Some solutions have faced the “high latency” of state machine replication by
weakening consistency guarantees. One example is eventual consistency [30],
which allows replicas to diverge in case of network partitions, with the advantage
that the system is always available. However, clients are exposed to conflicts and
reconciliation must be handled at the application level. Walter [83] offers Parallel
Snapshot Isolation (PSI) for databases replicated across multiple datacenters.
PSI guarantees snapshot isolation and total order of updates within a site, but
only causal ordering across datacenters. COPS [54] ensures a stronger version
of causal consistency: in addition to ordering causally related write operations,
it also orders writes to the same data items.

4.9 Conclusion

Online services with clients all over the globe are becoming usual, imposing
tough requirements on replicated protocols. Coordinating replicas geographi-
cally distributed, while keeping performance at acceptable level is challenging.
This thesis proposes GeoPaxos, a protocol that confronts this challenge. First,
GeoPaxos decouples order from execution in state machine replication. Second,
it imposes a partial order on operations. Finally, GeoPaxos exploits geographic
locality and places replicas close to clients. The results reveal that GeoPaxos
outperforms state-of-the-art approaches by more than an order of magnitude in
some cases.

86 4.9 Conclusion

Chapter 5

Speeding up Paxos

At the core of replicated systems that provide strong consistency, like FastCast
and GeoPaxos, servers must solve consensus, a distributed problem in which
servers must agree on a value (e.g., the i-th operation to be executed). Many
consensus algorithms have been developed in the literature and Paxos [48] is
probably the most prominent consensus algorithm proposed to date. In part this
is attributed to the fact that Paxos is resilience-optimum (i.e., it ensures progress
with a majority-quorum of non-faulty replicas) and delay-optimum (i.e., it re-
quires a minimum number of network delays to reach a decision) [50].

While relying on an algorithm that optimizes resilience and communication
is important, quickly ordering operations also requires an efficient implementa-
tion of Paxos. Therefore, much effort has been placed on implementing Paxos
efficiently. Existing proposals fall in three categories: protocols that take advan-
tage of special network topologies (i.e., overlay networks) [38, 57]; protocols
that resort to specialized hardware (e.g., part of Paxos is deployed in the net-
work) [29, 52]; and protocols that exploit the semantics of applications (e.g., if
the order of two messages does not matter to the application, they do not have to
be ordered) [49, 59, 67]. This chapter presents Kernel Paxos 1, an alternative ap-
proach, which does not depend on special network topologies, specialized hard-
ware, or application semantics. The main idea behind Kernel Paxos is simply to
reduce the main sources of overhead in traditional Paxos implementations. Since
Paxos does not involve complex computation, most of the overhead stems from
communication. Kernel Paxos reduces communication overhead in two ways:
(a) by eliminating context switches needed to send and receive messages and
(b) by avoiding the TCP/IP stack. More concretely, Kernel Paxos eliminates con-

1This work is the result of a collaboration with Emanuele Giuseppe Esposito and it is partially
described in his bachelor project.

87

88 5.1 Background on Paxos

text switches by placing the protocol in the kernel; instead of TCP/IP, Kernel
Paxos uses raw Ethernet frames.

Kernel Paxos has been fully implemented and its performance carefully as-
sessed. Kernel Paxos is derived from LibPaxos, a popular Paxos library. The
performance of Kernel Paxos is compared to LibPaxos and an improved version
of LibPaxos. The performed experiments used different message sizes, system
load, and communication hardware. The experiments show that Kernel Paxos
largely outperforms these libraries.

This chapter describes the following contributions.

• It introduces a number of optimizations to LibPaxos, a popular Paxos li-
brary. These optimizations have consistently improved the performance of
LibPaxos.

• It describes Kernel Paxos, a kernel-based library that outperforms both Lib-
Paxos and its optimized version.

• It assesses the performance of Kernel Paxos under different conditions and
experimentally compares it to LibPaxos and its improved version.

The rest of the chapter is organized as follows. Section 5.1 overviews the
Paxos algorithm. Section 5.2 introduces Kernel Paxos. Section 5.3 details the
prototype. Section 5.4 describes the experimental evaluation. Section 5.5 sur-
veys related work and Section 5.6 concludes the chapter.

5.1 Background on Paxos

Paxos is a fault-tolerant consensus protocol with important characteristics: it
has been proven safe under asynchronous assumptions (i.e., when there are no
timing bounds on message propagation and process execution), live under weak
synchronous assumptions, and resilience-optimum [48].

Paxos distinguishes the following roles that a process can play: proposers,
acceptors and learners. An execution of Paxos proceeds in two phases. During
the first phase, a proposer that wants to submit a value selects a unique round
number and sends a prepare request to a group of acceptors (at least a quorum).
Upon receiving a prepare request with a round number bigger than any previ-
ously received round number, the acceptor responds to the proposer promising
that it will reject any future prepare requests with smaller round numbers. If the
acceptor already accepted a request for the current instance (explained next), it
will return the accepted value to the proposer, together with the round number

89 5.1 Background on Paxos

received when the request was accepted. When the proposer receives answers
from a quorum of acceptors, it proceeds to the second phase of the protocol.

The proposer selects a value according to the following rule. If no acceptor in
the quorum of responses accepted a value, the proposer can select a new value
for the instance; however, if any of the acceptors returned a value in the first
phase, the proposer chooses the value with the highest round number. The pro-
poser then sends an accept request with the round number used in the first phase
and the value chosen to at least a quorum of acceptors. When receiving such a re-
quest, the acceptors acknowledge it by sending a message to the learners, unless
the acceptors have already acknowledged another request with a higher round
number. Some implementations extend the protocol such that the acceptor also
sends an acknowledge to the proposer. Consensus is reached when a quorum of
acceptors accepts a value.

Paxos ensures consistency despite concurrent leaders and progress in the
presence of a single leader. Paxos is resilience-optimum in that it tolerates the
failure of up to f acceptors (or replicas) from a total of 2 f +1 acceptors to ensure
progress (i.e., a quorum of f + 1 acceptors must be non-faulty) [50].

5.1.1 Paxos and state-machine replication

In practice, replicated services run multiple executions of the Paxos protocol to
achieve consensus on a sequence of values. Multiple executions, or instances, of
Paxos chained together are referred as Multi-Paxos [23].

Clients of a replicated service are typically proposers, and propose operations
that need to be ordered by Paxos before they are learned and executed by the
replicated state machines. These replicas typically play the roles of acceptors and
learners. If multiple proposers simultaneously execute the described procedure
for the same instance, then no proposer may be able to execute the two phases of
the protocol and reach consensus. To avoid scenarios in which proposers compete
indefinitely in the same instance, a leader process can be chosen. In this case,
proposers submit values to the leader, which executes the first and second phases
of the protocol. If the leader fails, another process takes over its role. In typical
state machine replication implementations one of the replicas assumes the role
of leader and proposes operations forwarded by clients.

5.1.2 Optimizations

If the leader identity does not change between instances, then the protocol can be
optimized by pre-initializing acceptor state with previously agreed upon instance

90 5.2 Paxos in the kernel

and round numbers, avoiding the need to send first phase messages [48]. This is
possible because only the leader sends values in the second phase of the protocol.
With this optimization, consensus can be reached in three communication steps:
the message from the proposer to the leader, the accept request from the leader
to the acceptors, and the response to this request from the acceptors to the leader
and learners. Moreover, the leader pre-initialization (first phase of the protocol)
for a further instance could be piggybacked in the second phase message for the
current instance. Fig. 5.1 exhibits such optimizations.

Phase 1, inst. 1-5 Command, inst. 1
Phase 1, inst. 6

L

A1

Command
from client

Command
from client

A2

A3 Command, inst. 2
Phase 1, inst. 7

Figure 5.1. Multi-Paxos optimization (example with five pre-initialized instances
followed by two client operations).

5.2 Paxos in the kernel

This section motivates the use of in-kernel Paxos (§5.2.1) and describes Kernel
Paxos architecture (§5.2.2) and message flow (§5.2.3).

5.2.1 Linux kernel and TCP/IP stack

The Linux kernel is an open-source software that implements the basic function-
alities provided by an operating system (e.g., interface to the hardware devices,
memory and process management). Due to its openness, the Linux kernel is eas-
ily extensible by means of loadable kernel modules (LKM). A module can add
support to a new device or introduce a new operating system feature. Besides,
it allows separating the minimum core functionalities from on-demand loadable
complementary utilities.

91 5.2 Paxos in the kernel

Linux implements the traditional user and kernel separation of concerns: user
applications run in user-space while kernel-related tasks run in the kernel-space.
This separation protects the operating system and the hardware against inten-
tional and unintentional misbehave of applications. Every time a user application
wants to send a message through the network, for instance, it uses a system call
to context switch from user-space to kernel-space. The system call is necessary to
access the network interface card (NIC) and execute the actual sending of data.

A clear trade-off comes from such an approach: if on the one hand the system
calls protect the operating system and control the execution of programs, on the
other hand every system call involves two context switches, one from user-space
to kernel-space so that the call can be executed and another context switch to
return from kernel-space to user-space.

Applications that heavily rely on system calls (e.g., I/O-bound applications)
suffer the most from the overhead of context switches. In an attempt to measure
the impact of context switches in network applications, a simple echo application
that runs either in user-space or entirely in kernel-space as a loadable kernel
module has been developed. Clients send outstanding UDP messages to a server,
which simply replies with the same message it has received from the client. The
experiments are executed with increasing number of clients until the point when
the throughput stopped increasing. The first line of Table 5.1 shows the peak
performance for both the user application and the loadable kernel module.

User-space application Loadable kernel module

UDP echo 120000 msgs/sec 135000 msgs/sec
Ethernet echo 318000 msgs/sec 520000 msgs/sec

Table 5.1. Performance of user-space and kernel-space echo with UDP and
Ethernet.

In controlled environments such as local-area networks (LAN), network ap-
plication performance may also benefit from bypassing the TCP/IP stack, i.e.,
instead of having IP and UDP headers inside a Ethernet frame to differentiate
between application addresses and ports, one can use custom Ethernet types
and send application data directly as the Ethernet frame payload. To assess the
impact of this modification the initial UDP echo application has been extended
to send application data directly on top of Ethernet frames. The second line of
Table 5.1 shows the improvement with respect to the UDP version for both user
and kernel module versions.2

2The hardware setup used in this evaluation is detailed in §5.4. The source code used in these

92 5.2 Paxos in the kernel

NIC

kernel-space
user-space

KProposer

NIC

kernel-space
user-space

Acceptor

NIC

kernel-space
user-space

Acceptor

NIC

kernel-space
user-space

KAcceptor

NIC

kernel-space
user-space

Learner

Application

chardev

NIC

kernel-space
user-space

Learner

Application

chardev

NIC

kernel-space
user-space

KLearner

Application

chardev

LAN

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Client
NIC

kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Clients

NIC
kernel-space
user-space

Client

Figure 5.2. Kernel Paxos architecture.

While a typical user-space UDP-based echo application can reach peak through-
put at 120K messages per second, a kernel-space Ethernet-based system attains
520K messages per second, a 4x performance improvement. These results moti-
vate Kernel Paxos. Moreover, as shown later in this chapter, latency also largely
benefits from such an approach.

5.2.2 Kernel Paxos architecture

Paxos relies on a leader for liveness. Therefore, typical Paxos implementations
have their performance limited by what the leader can achieve. While some
proposals extend Paxos with multi-leader or generalized solutions [49, 59, 67],
this work intends to reduce the overhead imposed by the communication layer
and the operating system to improve the performance of classic Paxos. Fig. 5.2
shows the proposed architecture.

In Kernel Paxos, each one of the Paxos roles, proposer, acceptor and learner,
can run either on the same machine (defined as a replica in such case) or de-
ployed in independent nodes, as depicted in Fig. 5.2. Each role runs entirely in
kernel space and communicates with the other Paxos players by means of mes-
sage passing. For the reasons discussed earlier, the system bypasses the TCP/IP
stack and exchanges messages right on top of Ethernet frames.

The kernel adopts an event-driven model regarding the reception of Ethernet
frames, i.e., the LKM must assign a callback function to each Ethernet type, as

experiments is publicly available at https://github.com/paulo-coelho/kether.

https://github.com/paulo-coelho/kether

93 5.2 Paxos in the kernel

exhibited in Fig. 5.3. As soon as a new frame arrives, the kernel invokes the corre-
sponding handler automatically. The great advantage of such an approach is that
there is no necessity for kernel threads that block while waiting for messages. In
fact, each module is a single event-driven kernel thread and no synchronization
is required with respect to the data accessed by registered handlers. In Kernel
Paxos specifically, each Paxos-related message, like a promise or a prepare mes-
sage, is statically associated to an Ethernet type and the corresponding handler
function. This way, each Paxos player registers itself to receive the types its roles
requires. For example, a KProposer registers to receive both promise and accepted
messages representing the replies from acceptors for phases one and two, besides
the client_value type for clients requests.

 DST SRC TP DATA (iid, ballot, …) CRC
6 6 2 4<1500

TP=PAXOS_PROMISE => handle_promise()
TP=PAXOS_PREPARE => handle_prepare()

…

Figure 5.3. Kernel Paxos event-driven approach for Ethernet types.

5.2.3 Message flow in Kernel Paxos

When a KProposer is loaded into the kernel, it contacts a quorum of KAcceptors
and pre-executes the first phase for a configurable number of instances. Upon
receipt of operations from clients, the KProposer uses such instances to send
accept messages to the KAcceptors, which, under normal execution, reply with
accepted messages to both KProposer and KLearners. A KLearner waits until it
receives a quorum of such messages before it can deliver the operation to the ap-
plication in user-space. The application in the user-space receives the operation
from a KLearner reading from a character device, as depicted in Fig. 5.2. The
application blocks until the operation is ready and the KLearner has written it
to the character device. operations are delivered to the application in increasing
instance order.

Both KProposer and KLearner take care of possible message losses. KProposer
resends first- and second-phase messages for timed-out instances. A KLearner
restarts an instance i when it receives a quorum of second-phase messages for
an instance j > i, but not for i. Restarting an instance i means the KLearner tries
to propose a NULL value for instance i in order to learn the previous decided value
(if any) or skip the instance otherwise. Clients and application are not aware of

94 5.3 Implementation

Kernel Paxos internals. Clients simply send requests in an Ethernet frame. From
the application point of view, receiving an operation is as simple as reading from
a file.

5.3 Implementation

Kernel Paxos was implemented in C and the source code is publicly available.3

Kernel Paxos borrows Paxos algorithm logic implementation from LibPaxos,4 an
open-source user-space Multi-Paxos library written in C as well. Each Paxos role
comprises five components responsible for specific tasks. Fig. 5.4 shows the re-
lation among such components.

The network component handles the creation of Ethernet frames with appli-
cation specific payload and type to be sent as well as the unpacking of received
frames and invocation of registered handlers.

The storage component is a general-purpose in-memory key-value store, used
mainly to keep the acceptor state and “live” proposer and acceptor instances.

The kpaxos component consists of two sub-components: (a) a network-independent
set of objects for each Paxos role and functions to update the state from received
messages returning the replies to be sent over the network; (b) the set of han-
dlers for each Ethernet type, which are responsible for (de)serializing messages
and invoking the corresponding function in the other sub-component.

To keep statistical information about Kernel Paxos performance, a statistics
component is also notified by kpaxos handlers every time a new message arrives.
When the kernel module is unloaded the collected statistical data is persisted to
disk.

The last component, chardev, manages the creation, reading, writing and de-
struction of character devices and represents the interface between Kernel Paxos
and the actual replicated application. It is only present in a KLearner, which
reads from this component to deliver operations to the application in increasing
instance order.

5.4 Performance

This section describes the main motivations that guided the experiments
design (§5.4.1), details the environment in which experiments were con-

3https://github.com/esposem/Kernel_Paxos
4https://bitbucket.org/sciasciad/libpaxos

https://github.com/esposem/Kernel_Paxos
https://bitbucket.org/sciasciad/libpaxos

95 5.4 Performance

Network

N.I. Paxos
Paxos Handlers StatisticsStorage

CharDev
Kernel Paxos Module

Figure 5.4. Main components of Kernel Paxos module.

ducted (§5.4.2), and then presents and discusses the results (§5.4.3 – §5.4.7).
It concludes with a summary of the main findings (§5.4.8).

5.4.1 Evaluation rationale

All experiments are conducted in a local-area network (LAN). The LAN provides
a controlled environment, where experiments can run in isolation. In all exper-
iments, there is a single proposer representing the leader and three acceptors,
deployed in different machines. To measure the performance of the ordering
protocol, each client is also a learner. Thus, the latency of a command represents
the time between the command has been sent by the client and delivered to the
learner in the same process or kernel module.

The experiments use a micro-benchmark with 64-byte and 1000-byte mes-
sages to evaluate particular scenarios in isolation. The benchmark considers
executions with a single client to understand the performance of Kernel Paxos
without queueing effects and executions with multiple clients to evaluate the
protocol under stress. Executions with multiple clients are performed by con-
trolling the number of outstanding messages of up to three learner processes (or
kernel modules) in different machines.

5.4.2 Environment

The experiments compare Kernel Paxos to LibPaxos, a user-space library that pro-
vides the basic Paxos logic present in the “network-independent” part of KPaxos
component (see Figure 5.4). Besides comparing with the original LibPaxos li-
brary, a modified version of LibPaxos that includes all the optimizations applied
to Kernel Paxos and described in §5.1 has been implemented and assessed.

96 5.4 Performance

The LAN environment consists of a set of nodes, each one with an eight-core
Intel Xeon L5420 processor working at 2.5GHz, 8GB of memory, SATA SSD disks,
and 1Gbps ethernet card. Each node runs CentOS 7.1 64 bits. The round-trip
time (RTT) between nodes in the cluster is around 0.1ms. Kernel Paxos has also
been assessed on nodes with 10Gbps ethernet card, where the RTT is around
0.04ms. The experiments in the 1Gbps nodes compare Kernel Paxos to LibPaxos,
while the experiments in the 10Gbps nodes assess the performance of Kernel
Paxos in two different configurations.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t [

m
es

sa
ge

s
/ s

ec
]

Number of clients

LibPaxos
LibPaxos Mod.

Kernel Paxos

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t [

m
es

sa
ge

s
/ s

ec
]

Number of clients

LibPaxos
LibPaxos Mod.

Kernel Paxos

(b)

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 3200

 0 20 40 60 80 100 120 140 160 180 200

La
te

nc
y

[u
se

c]

Number of clients

LibPaxos
LibPaxos Mod.

Kernel Paxos

(c)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

[u
se

c]

Number of clients

LibPaxos
LibPaxos Mod.

Kernel Paxos

 0
 200
 400
 600
 800

 1000

 0 2 4 6 8 10 12 14 16 18 20

(d)

Figure 5.5. Throughput and median latency for increasing number of clients
with 64-byte (left) and 1000-byte messages (right). Whiskers represent the 95-th
percentile.

5.4.3 Throughput in a LAN

These experiments measure the throughput of standard LibPaxos, improved Lib-
Paxos, and Kernel Paxos as the number of clients increase in scenarios with 64-
byte and 1000-byte messages, as depicted in Figure 5.5(a) and Figure 5.5(b),
respectively. In summary, Kernel Paxos outperforms both the original LibPaxos
and the modified version for any number of clients and message size.

97 5.4 Performance

 0

 10

 20

 30

 40

 50

 60

 70

1 Client 32 Clients

T
hr

ou
gh

pu
t [

M
bp

s]
LibPaxos

LibPaxos Mod.
Kernel Paxos

Kernel Paxos (user-space)

(a)

 0

 30

 60

 90

 120

 150

 180

 210

 240

1Client 8Clients

T
hr

ou
gh

pu
t [

M
bp

s]

LibPaxos
LibPaxos Mod.

Kernel Paxos
Kernel Paxos (user-space)

(b)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

[%
]

Latency [us]

Kernel Paxos
Kernel Paxos (user-space)

LibPaxos
LibPaxos Mod.

(c) 1 client.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400
[%

]
Latency [us]

Kernel Paxos
Kernel Paxos (user-space)

LibPaxos
LibPaxos Mod.

(d) 1 client.

 0

 20

 40

 60

 80

 100

 0 150 300 450 600 750 900 1050

[%
]

Latency [us]

Kernel Paxos
Kernel Paxos (user-space)

LibPaxos
LibPaxos Mod.

(e) 32 clients.

 0

 20

 40

 60

 80

 100

 0 150 300 450 600 750 900 1050

[%
]

Latency [us]

Kernel Paxos
Kernel Paxos (user-space)

LibPaxos
LibPaxos Mod.

(f) 8 clients.

Figure 5.6. Throughput and latency CDF with the selected number of clients for
64-byte (left) and 1000-byte messages (right).

Performance with small (64-byte) messages

With a single client, Kernel Paxos is twice as fast as LibPaxos with throughput
around 8000 msgs/sec. The difference increases even more as the number of
clients is augmented, with Kernel Paxos throughput close to 100000 msgs/sec
with 16 clients, 4x better than both versions of LibPaxos. The modification to
LibPaxos starts paying off with more clients. The performance of the modified
version with 128 clients is close to 100000 msgs/sec while the original library
already saturates the proposer and cannot go beyond 60000 msgs/sec. The max-
imum performance of Kernel Paxos, LibPaxos and LibPaxos Modified is 128000,
61000 and 117000 msgs/sec with 64, 128 and 160 clients, respectively. The
maximum represents the point where the proposer is overloaded, i.e., its CPU

98 5.4 Performance

reaches 100%.

Perfomance with large (1000-byte) messages

With a single client Kernel Paxos is still faster than LibPaxos with throughput
around 4500 msgs/sec against less than 3000 msgs/sec for LibPaxos. In this
setup, larger messages saturate the network before proposers are overloaded.
For such reason, both versions of LibPaxos have similar performance and reach
a maximum of 25000 and 27000 msgs/sec for the original and the modified ver-
sion. Kernel Paxos can still push close to 29000 msgs/sec. For 1000-byte mes-
sages, this represents a throughput of around 235 Mbps in the clients, amounting
to an aggregated throughput in the proposer of 940 Mbps: 235 Mbps from the
clients and 3×235 Mbps from the acceptors. This aggregated throughput was
confirmed with iptraf on the proposer machine.

5.4.4 Latency in a LAN

The overall better performance of Kernel Paxos in terms of throughput repeats
for latency. Figure 5.5(c) and Figure 5.5(d) exhibit the results for small and large
client messages.

Latency with small (64-byte) messages

With a single client, the latency of Kernel Paxos is very close to 1 round-trip time
(RTT) and as low as 124 microseconds. LibPaxos, on the contrary, has a median
latency of 248 and 252 microseconds for the modified and original versions,
what represents more than 2 RTTs. The modifications in LibPaxos have direct
positive impact on the latency. With 160 clients, the modified version has a me-
dian latency of around 1400 microseconds against almost twice the value for the
original version with 2700 microseconds. In all implementations the measured
latencies are quite stable with very low variance around the median values. With
the maximum throughput, Kernel Paxos latency is below 500 microseconds with
64 clients, 3x to 5x less than the values for LibPaxos.

Latency with large (1000-byte) messages

With bigger messages, the latency for all protocols increase. With a single client,
messages need close to 350 microseconds to be ordered with LibPaxos and 230 mi-
croseconds with Kernel Paxos. At maximum throughput, Kernel Paxos can keep
latency as low as 279 microseconds while LibPaxos needs 8x and 9x more time

99 5.4 Performance

to deliver a message for the modified and original libraries, respectively. Kernel
Paxos has smaller latency, higher throughput and needs only 8 clients to saturate
the data link, while LibPaxos needs at least 32 clients.

5.4.5 Performance with similar number of clients

As observed in Figure 5.5, depending on the message size clients can saturate
either the proposer’s CPU or the communication links. In such cases, the maxi-
mum throughput of Kernel Paxos is only 10% superior to the modified version of
LibPaxos in the same setup.

The next results compare the various protocols in scenarios with the same
number of clients, choosing two specific scenarios from the previous experiments
and zoomed in on the behavior of the protocols. These scenarios represent (a)
the setup with a single client and thus no contention or queuing effects, to iso-
late the benefits of eliminating context switches and TCP/IP stack; and (b) the
performance under stress, specifically with 32 clients for 64-byte massages and 8
clients for 1000-byte messages, since none of the implementations are saturated
at these points. The dashed lines in Figure 5.5 highlight the selected points.

Besides, these experiments also evaluate the behavior of Kernel Paxos with
client/learner in user-space sending messages to the proposer using raw sockets
and learning decided values from the character device created by the kernel-
space learner.

Throughput and latency with small (64-byte) messages

Figure 5.6(a) exhibits the throughput advantage introduced by Kernel Paxos.
With a single client, Kernel Paxos reduction in communication overhead and
context switches is enough to double the throughput. With 32 clients, Kernel
Paxos can reach 60 Mbps, almost 4x the performance of the original library and
3x the performance of the modified version.

Besides, the Cumulative Distribution Function (CDF) with 1 client shown in
Figure 5.6(c) for Kernel Paxos is quite stable with the 99.9-th percentile equal to
128 microseconds while the median is 126 microseconds. These values represent
at least half of the latencies for the user-space protocols.

Figure 5.6(e) exhibits a similar behavior with 32 clients, where the CDF is
stable in Kernel Paxos going from 280 to 305 microseconds in the 50-th and 95-
th percentile, respectively. In the user-space library, the latency is at least 3x
greater.

100 5.4 Performance

Another interesting result regards the difference between Kernel Paxos en-
tirely in the kernel and the deployment with client and application in user-space.
The throughput and latency distribution show that, although there is a small
overhead in the latter deployment, Kernel Paxos is still 2x to 3x times better than
LibPaxos.

Throughput and latency with large (1000-byte) messages

Figure 5.6(b) shows the throughput for this scenario. With a single client, Ker-
nel Paxos reaches a throughput 50% greater than LibPaxos, around 35 Mbps.
With only 8 clients, Kernel Paxos almost saturated the proposer communication
link: with 232 Mbps in the client, the proposer aggregated throughput is around
930 Mbps. LibPaxos, on the other hand, uses only 10% of the communication link
capacity, since performance is capped by the processing power of the proposer.

Regarding latency, both LibPaxos and Kernel Paxos are very stable for a single
client, with latencies close to 340 and 230 microseconds, respectively, as shown
in Figure 5.6(d). With 8 clients, however, LibPaxos latency has a large variation,
from 500 microseconds in the 5-th percentile to almost 800 microseconds in the
95-th percentile. Kernel Paxos remains quite stable with values between 220 and
295 microseconds for the same percentiles as exhibited in Figure 5.6(f).

For large messages, the difference of a deployment of Kernel Paxos with client
and application in user-space is minimal for both throughput and latency.

5.4.6 Context-switch overhead

Since LibPaxos is a user-space library, sending and receiving data imply invok-
ing a system call to context-switch to kernel-space and access the network card,
followed by another context-switch back to user-space when the system call re-
turns.

Kernel Paxos runs entirely in kernel-space and the context-switch overhead
at the proposer and acceptors is completely eliminated, contributing to improve
the overall performance.

To quantify the difference, dstat is used to monitor the number of context-
switches for the experiments with 1000-byte messages. Table 5.2 exhibits the
approximate numbers for both libraries as the number of clients increase.

101 5.4 Performance

Clients LibPaxos Kernel Paxos

1 7000 150
2 9000 150
4 12000 150
8 12000 150

Table 5.2. Approximate number of context-switches with increasing number of
clients

 0

 25000

 50000

 75000

 100000

 125000

 150000

 175000

 0 15 30 45 60 75 90 105 120

T
hr

ou
gh

pu
t [

m
es

sa
ge

s
/ s

ec
]

Number of clients

Kernel Paxos (1Gbps)
Kernel Paxos (10Gbps)

(a)

 0

 25000

 50000

 75000

 100000

 125000

 150000

 175000

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t [

m
es

sa
ge

s
/ s

ec
]

Number of clients

Kernel Paxos (1Gbps)
Kernel Paxos (10Gbps)

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 15 30 45 60 75 90 105 120

La
te

nc
y

[u
se

c]

Number of clients

Kernel Paxos (1Gbps)
Kernel Paxos (10Gbps)

(c)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70

La
te

nc
y

[u
se

c]

Number of clients

Kernel Paxos (1Gbps)
Kernel Paxos (10Gbps)

(d)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

[%
]

Latency [us]

1Gbps, 1 client
1Gbps, 32 clients
10Gbps, 1 client

10Gbps, 32 clients

(e)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

[%
]

Latency [us]

1Gbps, 1 client
1Gbps, 8 clients
10Gbps, 1 client

10Gbps, 8 clients

(f)

Figure 5.7. Kernel Paxos performance in 1Gbps and 10Gbps setups for in-
creasing number of clients with 64-byte (left) and 1000-byte messages (right).
Whiskers represent the 95-th percentile.

102 5.4 Performance

5.4.7 Kernel Paxos in a 10Gbps network

The last experiments evaluate Kernel Paxos in a 10Gbps network and compare the
results with the 1Gbps network. The 10Gbps setup represents environments typi-
cally used by hardware-based consensus solutions, which rely on high-throughput
network cards. The experiments assess Kernel Paxos with small and large mes-
sages while increasing number of clients.

Throughput and latency with small (64-byte) messages

Figure 5.7(a) and 5.7(c) show throughput and latency in both networks. The
throughput for a single client in the faster network is more than 2x greater, close
to 19000 msgs/sec or 10 Mbps. The median latencies are 52 and 126 microsec-
onds for the 10Gbps and 1Gbps network, respectively, representing roughly the
measure of one RTT.

The maximum throughput is 170000 msgs/sec (87 Mbps) for the 10Gbps
network against 129000 msgs/sec (66 Mbps). In both cases the proposer is CPU
bound and the difference in this case is mainly due to the better CPU in the nodes
with 10Gbps NIC.

The CDF in Figure 5.7(e) confirms that although the values are smaller for
the 10Gbps network, the slower network has a much more stable curve.

Throughput and latency with large (1000-byte) messages

With 1000-byte messages, the communication links are expected to saturate be-
fore the proposer is CPU bound. As demonstrated in Figure 5.5(b) and now in
Figure 5.7(b), the 1Gbps link is saturated in the proposer when the client reaches
around 29000 msgs/sec or 240 Mbps. The 10Gbps link, on the other hand, has
enough bandwidth to go beyond 1Gbps in the client, and close to 4.5Gbps in
the proposer, which differently from the slower network, is saturated at around
130000 msgs/sec.

The median latencies are 83 and 230 microseconds with a single client and
224 and 279 microseconds with 8 and 32 clients for the 10Gbps and 1Gbps net-
works, as seen in Figure 5.7(d).

The CDF shown in Figure 5.7(f) reinforces the overall stability in the 1Gbps
network, most likely due to lower load in the proposer, since the 1Gbps link is
not enough to overload it in this configuration.

103 5.5 Related work

5.4.8 Summary

This section draws some general conclusions from the experimental evaluation:

• Kernel Paxos outperforms LibPaxos, both original and improved versions,
in each and every experiment, with small and large messages, and presents
superior throughput and smaller latency for the same number of clients.

• In setups with large messages (1000 bytes), the evaluated libraries are able
to saturate the proposer’s data link in a 1Gbps network.

• In a 10Gbps network, Kernel Paxos can deliver commands at a rate superior
to 1Gbps, representing 130000 1000-byte messages per second.

The last two observations suggest that batching could be quite effective in
further boosting Kernel Paxos performance at the cost of small increase in latency.
For example, if the KProposer would batch 10 small client requests (i.e., 100
bytes) in 1000-byte messages, Kernel Paxos could potentially reach one million
ordered messages per second.

5.5 Related work

Improving the performance of Paxos has been a hot research topic. The follow-
ing discussion considers related proposals from three perspectives: those that
take advantage of special network topologies (i.e., overlays); those that resort to
specialized hardware; and those that exploit the semantics of applications.

5.5.1 Protocols that exploit special topologies

Several approaches modify the Paxos [48] protocol to improve performance.
In [38], the authors proved that ring topologies allow systems to achieve opti-
mal throughput. Some protocols that benefit from such topologies are LCR [38],
Spread [6] and Ring Paxos [57]. LCR arranges processes in a ring and uses vec-
tor clocks to ensure total order. Spread, which is based on Totem [7], relies on
daemons interconnected as a ring to order messages, while message payloads
are disseminated using IP-multicast. Finally, Ring Paxos deploys Paxos processes
in a ring to maximize throughput. A problem of all such ring-based protocols
is that their latency is proportional to the size of the system times the network
point-to-point latency.

104 5.6 Conclusion

5.5.2 Protocols that exploit special hardware

Some solutions provide ordering as a network service. Speculative Paxos [68]
and NOPaxos [52] use a combination of techniques to eliminate packet reorder-
ing in a data center, including IP multicast, fixed-length network topologies, and
a single top-of-rack switch acting as a serializer (although in case of NOPaxos a
Linux server can act as a sequencer at the cost of higher latency). NetPaxos [29]
deploys acceptors and coordinator in switches. Although this reduces the latency,
it makes the recovery more complex: switches have limited memory, making it
hard to keep the state of acceptors. Besides, replacing a failed coordinator is not
trivial in such configuration. In [43], the authors bring the consensus logic to
the hardware, implementing Zookeeper [42] in FPGA. Even though the through-
put is quite high, such programmable hardwares are not suitable to store large
amount of replicated state [52]. While Kernel Paxos cannot achieve the perfor-
mance of hardware implementations for state machine replication protocols, it
can still provide a considerably high throughput without depending on any net-
work ordering guarantees or specialized hardware. Kernel Paxos can virtually
run on any machine with commodity hardware and a Linux operating system.

5.5.3 Protocols that exploit message semantics

Several Paxos variants yield better performance with a multi-leader or general-
ized approach. EPaxos [59] improves on traditional Paxos [48] and reduces the
leader overload by allowing any replica to order commands. As long as replicas
observe common dependencies set, commands can be ordered in one round-trip.
M2Paxos [67] is a implementation of Generalized Consensus [49] that allows dif-
ferent ordering of non-conflicting commands. It detects conflicts by looking into
the objects the commands access and making sure a replica has exclusive access
to such objects. M2Paxos guarantees that commands that access the same objects
are ordered by the same replica. Any of such solutions could benefit from Kernel
Paxos strategies to reduce latency and increase performance, i.e., the protocols
could be moved to the Linux kernel as module and use raw Ethernet frames to
exchange messages.

5.6 Conclusion

At the core of of most strong consistent replicated systems like state machine
replication and atomic multicast, there is the consensus problem. While many

105 5.6 Conclusion

protocols have been proposed to implement consensus, Paxos stands out. There-
fore, much effort has been placed on implementing Paxos efficiently. This thesis
proposes Kernel Paxos, a different approach to improving the performance of
Paxos. Differently from previous proposals, Kernel Paxos does not rely on spe-
cial network topologies, specialized hardware or application semantics. Kernel
Paxos addresses the performance challenge by reducing the communication over-
head in two directions: (a) eliminating context switches by placing the protocol
implementation in the Linux kernel, and (b) bypassing the TCP/IP stack and
exchanging protocol messages inside raw Ethernet frames. The performance of
Kernel Paxos has been assessed and compared to user-space implementations.
The results show that in most configurations of interest Kernel Paxos largely out-
performs user-space protocols.

106 5.6 Conclusion

Chapter 6

Conclusions

Many modern online applications require scalable performance and high avail-
ability. Designing systems that combine scalability and fault tolerance, however,
is challenging. This thesis has provided two broad directions applications can
follow to fulfill such requirements. The first approach yields sharded systems
a group communication abstraction with reliability and ordering guarantees,
presenting efficient atomic multicast algorithms for both crash- and byzantine-
failure models. The second approach explores partial order and Paxos different
roles to improve SMR scalability. It also improves performance for the core piece
of most replicated systems, the consensus service. The thesis provides a Paxos
implementation that eliminates common sources of overhead.

6.1 Research assessment

This thesis presents four main contributions: (i) FastCast, the first crash-fault
tolerant genuine atomic multicast algorithm to deliver multi-group messages in
four communication delays; (ii) ByzCast, the first atomic multicast algorithm
that tolerates Byzantine failures; (iii) GeoPaxos, a SMR protocol that provides
availability and can scale with the number of replicas in a geographically dis-
tributed deployment; and (iv) Kernel Paxos, a high-performance Paxos service
infra-structure provided as a Linux loadable kernel module.

FastCast

The algorithm extends Skeen’s original algorithm [15] to support server crashes
and provides an additional optimistic path that merges with original flow to de-
liver multi-group messages fast. The assumption for such fast delivery is the exis-

107

108 6.1 Research assessment

tence of a stable leader within each group. If the assumption holds, each leader
tries to optimistically guess a message final timestamp. If the guess matches
the actual timestamp after consensus, then a message can be delivered fast, in
four communication delays. FastCast algorithm has been proved correct, imple-
mented, and largely assessed in both LAN and WAN environments.

ByzCast

ByzCast builds up on existing BFT abstractions to provide the first atomic mul-
ticast protocol that can tolerate Byzantine failures. It organizes groups hierar-
chically in a overlay tree. Multi-group messages are ordered by the common
ancestor that includes all the message destinations. Single-group messages go
straight to target groups. ByzCast is therefore classified as partially genuine, since
it is genuine for single-group messages, but potentially non-genuine for multi-
group ones. The algorithm has been implemented and assessed in both local-
and wide-area networks.

GeoPaxos

GeoPaxos extends the concept of partial order from atomic multicast algorithms
to provide a fully replicated system with partial order, allowing for concurrent
ordering and execution of operations that access unrelated objects. It does so
by assigning objects to groups and turning replicas into multi-learner processes.
It also provides mechanisms to manage operations that involve multiple groups.
GeoPaxos explores locality and can scale linearly with respect to single-group
operations. The protocol has been implemented and evaluated in LAN and WAN
deployments.

Kernel Paxos

Consensus stands at the core of all the previous contributions of this thesis. For
this reason, a fast and reliable consensus implementation is fundamental for the
performance of distributed systems. This thesis has presented Kernel Paxos, a
Paxos implementation with high throughput and low latency provided as a load-
able Linux kernel module. Such an approach speeds up decisions for two main
points: (i) it bypasses the TCP/IP stack and provides messages on top of Ethernet
frames, and (ii) it places all the communication and algorithm logic in the kernel
to avoid context switches. The implementation has been extensively evaluated
and can potentially batch over one million small messages per second.

109 6.2 Future directions

6.2 Future directions

The contributions of this thesis have raised several questions that are worth fur-
ther investigation. The following discusses the main open questions.

Partially genuine atomic multicast

ByzCast defines a new class of atomic multicast algorithms called partially gen-
uine. It has been shown in [75] that non-genuine atomic multicast algorithms
can deliver commands with lower latency since they typically require fewer com-
munication steps. However, they do not behave as well as genuine atomic multi-
cast algorithms when the number of groups and the load increase as they involve
processes other than those in the message’s destination. A partially genuine al-
gorithm is genuine with respect to single-group messages, but can potentially
involve groups other than the destinations for multi-group messages.

Intuitively, the behavior of multi-group messages for different workloads could
lead to situations where a partially genuine algorithm performs better. The im-
plementation of a ByzCast equivalent algorithm in the crash-failure model is
quite straightforward and would allow comparison between genuine and par-
tially genuine algorithms. A detailed analysis of such scenarios would bring a
valuable contribution and could result in a solution that puts together the main
advantages of genuine and non-genuine algorithms.

ByzCast also defines the challenge of choosing the best overlay tree as an
optimization problem, showing the strong relation between workload and tree
topology for performance. The definition of the best topology based on the on-
the-fly observed workload and the adjustment of the tree topology dynamically
may also be an interesting ByzCast spin-off.

Dynamic ownership changes

In GeoPaxos, the larger the proportion of single-group operations in relation to
multi-group ones, the more the system can scale. Keeping this proportion as large
as possible is not a trivial task. Firstly, the workload of the system must have a
pattern that allows assigning objects to groups, preferably with some degree of
locality. Furthermore, even supposing we have such a workload, the dynamics of
the system may change along time, leading to temporary locality characteristics
that non long reflect the initial optimal ownership partitioning scheme and thus
hurt performance.

110 6.2 Future directions

To address this problem, object preferred sites must be changed among groups
accordingly. GeoPaxos already allows static object ownership transfers among
groups using the move(object_id_list, source, destination) operation, addressed
to the source and the destination groups, where object_id_list contains a list of
objects whose ownership should be re-assigned.

Even with the advantage that changing objects preferred site does not imply
in any transfer of actual objects (since every replica contains a full copy of the
application state), GeoPaxos does not provide a smart way of analyzing workload
changes and triggering a redistribution of objects among groups.

Understanding and adapting to the dynamic behavior of the system is a “must-
have” to any infra-structure that intends to be used in real-world deployments.
In order to enhance GeoPaxos with mechanisms to address these issues, a natural
follow-up for GeoPaxos is the proposal and implementation of a set of heuristics
that would allow to automatically adjust to the workload changes. Moreover, a
differentiation between read and write operations would allow the adoption of
a ROWA model bringing a sensitive benefit for read intensive workloads [11, 27,
86].

Paxos as a service

Kernel Paxos minimizes the operating system overhead and delivers a low latency
Paxos implementation. The current system can, however, be further enhanced.
First of all, the acceptors state should be persisted to disk to allow recovery from
crashes and increased reliability. Additionally, a useful extension would be the
provision of Paxos as an operating system service. This means the current kernel
modules should be able to attend multiple applications, presenting itself as an
isolated service to each one.

Bibliography

[1] Abd-El-Malek, M., Ganger, G., Goodson, G., Reiter, M. and Wylie, J. [2005].
Fault-scalable Byzantine fault-tolerant services, SOSP.

[2] Agarwal, D. A., Moser, L. E., Melliar-Smith, P. M. and Budhia, R. K. [1998].
The totem multiple-ring ordering and topology maintenance protocol, ACM
Trans. Comput. Syst. 16(2): 93–132.

[3] Allamanis, M., Scellato, S. and Mascolo, C. [2012]. Evolution of a location-
based online social network: Analysis and models, IMC.

[4] Amazon [2018]. Elastic Compute Cloud (EC2) – Cloud Server & Hosting –
AWS, https://aws.amazon.com/ec2/. Online; accessed 2018-12-09.

[5] Amir, Y., Danilov, C., Dolev, D., Kirsch, J., Lane, J., Nita-Rotaru, C. and
Josh Olsen, D. Z. [2010]. STEWARD: Scaling Byzantine fault-tolerant repli-
cation to wide area networks, IEEE Trans. on Dependable and Secure Com-
puting 7(1).

[6] Amir, Y., Danilov, C., Miskin-Amir, M., Schultz, J. and Stanton, J. [2004].
The spread toolkit: Architecture and performance, Johns Hopkins Univer-
sity, Tech. Rep. CNDS-2004-1 .

[7] Amir, Y., Moser, L. E., Melliar-Smith, P. M., Agarwal, D. A. and Ciarfella,
P. [1995]. The totem single-ring ordering and membership protocol, ACM
Transactions on Computer Systems (TOCS) 13(4): 311–342.

[8] Arun, B., Peluso, S., Palmieri, R., Losa, G. and Ravindran, B. [2017]. Speed-
ing up consensus by chasing fast decisions, DSN.

[9] Babay, A. and Amir, Y. [2016]. Fast total ordering for modern data centers,
ICDCS.

111

https://aws.amazon.com/ec2/

112 Bibliography

[10] Baker, J., Bond, C., Corbett, J., Furman, J. J., Khorlin, A., Larson, J., Leon,
J.-M., Li, Y., Lloyd, A. and Yushprakh, V. [2011]. Megastore: Providing
scalable, highly available storage for interactive services, CIDR.

[11] Bernstein, P. A., Hadzilacos, V. and Goodman, N. [1987]. Concurrency con-
trol and recovery in database systems.

[12] Bessani, A., Sousa, J. and Alchieri, E. [2014]. State machine replication for
the masses with BFT-SMaRt, DSN.

[13] Bezerra, C. E., Pedone, F. and van Renesse, R. [2014]. Scalable state-
machine replication, DSN.

[14] Bezerra, E., Cason, D. and Pedone, F. [2015]. Ridge: high-throughput,
low-latency atomic multicast, SRDS.

[15] Birman, K. and Joseph, T. [1987]. Reliable communication in the presence
of failures, Trans. on Computer Systems 5(1): 47–76.

[16] Brewer, E. [2017]. Spanner, truetime and the cap theorem, Technical report,
Google.
URL: https://research.google.com/pubs/pub45855.html

[17] Brodersen, A., Scellato, S. and Wattenhofer, M. [2012]. Youtube around
the world: Geographic popularity of videos, WWW.

[18] Cachin, C. [2009]. Yet another visit to Paxos, Technical Report RZ3754, IBM
Research, Zurich, Switzerland.

[19] Cachin, C. and Vukolic, M. [2017]. Blockchain consensus protocols in the
wild, Technical report, Cornell University.

[20] Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., McKelvie, S.,
Xu, Y., Srivastav, S., Wu, J., Simitci, H., Haridas, J., Uddaraju, C., Khatri,
H., Edwards, A., Bedekar, V., Mainali, S., Abbasi, R., Agarwal, A., Haq, M.
F. u., Haq, M. I. u., Bhardwaj, D., Dayanand, S., Adusumilli, A., McNett,
M., Sankaran, S., Manivannan, K. and Rigas, L. [2011]. Windows azure
storage: A highly available cloud storage service with strong consistency,
SOSP.

[21] Castro, M. and Liskov, B. [1999]. Practical Byzantine Fault Tolerance,
Proc. of the 3rd Symposium on Operating Systems Design and Implementa-
tion (OSDI’99), USENIX, New Orleans, LA.

113 Bibliography

[22] Castro, M. and Liskov, B. [2002]. Practical byzantine fault tolerance and
proactive recovery, ACM Trans. on Computer Systems (TOCS) 20(4): 398–
461.

[23] Chandra, T. D., Griesemer, R. and Redstone, J. [2007]. Paxos made live:
an engineering perspective, PODC’07, ACM, Portland, OR, pp. 398–407.

[24] Chandra, T. and Toueg, S. [1996]. Unreliable failure detectors for reliable
distributed systems, J. ACM 43(2): 225–267.

[25] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows,
M., Chandra, T., Fikes, A. and Gruber, R. E. [2008]. Bigtable: A distributed
storage system for structured data, ACM Trans. Comput. Syst. 26(2).

[26] Coelho, P., Schiper, N. and Pedone, F. [2017]. Fast atomic multicast, Pro-
ceedings of the 47th Dependable Systems and Networks (DSN).

[27] Cook, S. A., Pachl, J. and Pressman, I. S. [2002]. The optimal location of
replicas in a network using a read-one-write-all policy, Distributed Comput-
ing 15(1): 57–66.

[28] Cowling, J. and Liskov, B. [2012]. Granola: Low-overhead distributed
transaction coordination, Proceedings of the 2012 USENIX Annual Technical
Conference, USENIX, Boston, MA, USA.

[29] Dang, H. T., Sciascia, D., Canini, M., Pedone, F. and Soulé, R. [2015]. Net-
paxos: Consensus at network speed, SOSR, ACM.

[30] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,
Pilchin, A., Sivasubramanian, S., Vosshall, P. and Vogels, W. [2007]. Dy-
namo: Amazon’s highly available key-value store, SOSP.

[31] Défago, X., Schiper, A. and Urbán, P. [2004]. Total order broadcast and mul-
ticast algorithms: Taxonomy and survey, ACM Comput. Surv. 36(4): 372–
421.

[32] Delporte-Gallet, C. and Fauconnier, H. [2000]. Fault-tolerant genuine
atomic multicast to multiple groups, OPODIS.

[33] Fischer, M. J. [1983]. The consensus problem in unreliable distributed sys-
tems (a brief survey), Technical Report DCS/RR-273, Department of Com-
puter Science, Yale University.

114 Bibliography

[34] Fischer, M. J., Lynch, N. A. and Patterson, M. S. [1985]. Impossibility of
distributed consensus with one faulty process, J. ACM 32(2): 374–382.

[35] Fritzke, U., Ingels, P., Mostéfaoui, A. and Raynal, M. [1998]. Fault-tolerant
total order multicast to asynchronous groups, SRDS.

[36] Guerraoui, R., Knezevic, N., Quema, V. and Vukolic, M. [2010]. The next
700 BFT protocols, Proc. of the 5th ACM European conf. on Computer systems
(EUROSYS’10), Paris, France.

[37] Guerraoui, R. and Schiper, A. [2001]. Genuine atomic multicast in asyn-
chronous distributed systems, Theor. Comput. Sci. 254(1-2): 297–316.

[38] Guerraoui, R. and Vukolić, M. [2010]. Refined quorum systems, Distributed
Computing 23(1): 1–42.

[39] Hadzilacos, V. and Toueg, S. [1994]. A modular approach to fault-tolerant
broadcasts and related problems, Technical report, Cornell University.

[40] Herlihy, M. P. and Wing, J. M. [1990]. Linearizability: A correctness condi-
tion for concurrent objects, Trans. on Programming Languages and Systems
12(3): 463–492.

[41] Hunt, P., Konar, M., Junqueira, F. P. and Reed, B. [2010a]. Zookeeper: Wait-
free coordination for internet-scale systems., USENIX ATC.

[42] Hunt, P., Konar, M., Junqueira, F. and Reed, B. [2010b]. ZooKeeper: Wait-
free coordination for Internet-scale systems, USENIX Annual Technology
Conference.

[43] István, Z., Sidler, D., Alonso, G. and Vukolic, M. [2016]. Consensus in a
box: Inexpensive coordination in hardware., NSDI.

[44] J. C. Corbett, J. D. and et al, M. E. [2012]. Spanner: Google’s globally
distributed database, OSDI.

[45] Kotla, R., Alvisi, L., Dahlin, M., Clement, A. and Wong, E. [2009]. Zyzzyva:
Speculative Byzantine fault tolerance, ACM Trans. on Computer Systems
27(4).

[46] Kraska, T., Pang, G., Franklin, M. J. and Madden, S. [2012]. MDCC: Multi-
Data Center Consistency, CoRR .

115 Bibliography

[47] Lamport, L. [1978]. Time, clocks, and the ordering of events in a distributed
system, CACM 21(7): 558–565.

[48] Lamport, L. [1998]. The part-time parliament, Trans. on Computer Systems
16(2): 133–169.

[49] Lamport, L. [2005]. Generalized consensus and paxos, Technical Report
MSR-TR-2005-33, Microsoft Research (MSR).

[50] Lamport, L. [2006]. Lower bounds for asynchronous consensus, Distributed
Computing 19(2): 104–125.

[51] Lamport, L. and Fischer, M. [1982]. Byzantine Generals and transaction
commit protocols, Technical Report 62, SRI Int.

[52] Li, J., Michael, E., Sharma, N. K., Szekeres, A. and Ports, D. R. [2016]. Just
say no to paxos overhead: Replacing consensus with network ordering.,
OSDI.

[53] Liu, S., Viotti, P., Cachin, C., Quéma, V. and Vukolic, M. [2016]. XFT: prac-
tical fault tolerance beyond crashes, OSDI.

[54] Lloyd, W., Freedman, M. J., Kaminsky, M. and Andersen, D. G. [2011].
Don’t settle for eventual: scalable causal consistency for wide-area storage
with COPS, SOSP.

[55] Mao, Y., Junqueira, F. and Marzullo, K. [2008]. Mencius: Building efficient
replicated state machine for WANs, 8th Usenix Symposium on Operating Sys-
tems Design and Implementation (OSDI08), pp. 369–384.

[56] Marandi, P. J., Primi, M. and Pedone, F. [2012]. Multi-ring paxos, DSN.

[57] Marandi, P., Primi, M., Schiper, N. and Pedone, F. [2010]. Ring Paxos: A
high-throughput atomic broadcast protocol, Proc. of IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’10), pp. 527–536.

[58] Miller, A., Xia, Y., Croman, K., Shi, E. and Song, D. [2016]. The honey
badger of BFT protocols, CCS.

[59] Moraru, I., Andersen, D. G. and Kaminsky, M. [2013]. There is more con-
sensus in egalitarian parliaments, SOSP.

[60] Nogueira, A., Casimiro, A. and Bessani, A. [2017]. Elastic state machine
replication, IEEE Trans. on Parallel and Distributed Systems 28(9).

116 Bibliography

[61] Ongaro, D. and Ousterhout, J. K. [2014]. In search of an understandable
consensus algorithm., USENIX ATC.

[62] Padilha, R., Fynn, E., Soulé, R. and Pedone, F. [2016]. Callinicos: Robust
transactional storage for distributed data structures, USENIX ATC.

[63] Padilha, R. and Pedone, F. [2013]. Augustus: Scalable and robust storage
for cloud applications, EuroSys.

[64] Pedone, F. [2001]. Boosting system performance with optimistic distributed
protocols, Computer 34(12): 80–86.

[65] Pedone, F. and Schiper, A. [1998]. Optimistic atomic broadcast, DISC.

[66] Pedone, F. and Schiper, A. [1999]. Generic broadcast, DISC.

[67] Peluso, S., Turcu, A., Palmieri, R., Losa, G. and Ravindran, B. [2016]. Mak-
ing fast consensus generally faster, DSN.

[68] Ports, D. R., Li, J., Liu, V., Sharma, N. K. and Krishnamurthy, A. [2015].
Designing distributed systems using approximate synchrony in data center
networks., NSDI.

[69] Rao, J., Shekita, E. and Tata, S. [2011]. Using Paxos to build a scalable,
consistent, and highly available datastore, Proceedings of the VLDB Endow-
ment 4(4): 243–254.

[70] Rodrigues, L., Guerraoui, R. and Schiper, A. [1998]. Scalable atomic mul-
ticast, IC3N.

[71] Scellato, S. [2012]. Spatial properties of online social services: measurement,
analysis and applications, PhD thesis, University of Cambridge, UK.

[72] Schiper, N. [2009]. On multicast primitives in large networks and partial
replication protocols, PhD thesis, Università della Svizzera italiana (USI).

[73] Schiper, N. and Pedone, F. [2007]. Optimal atomic broadcast and multicast
algorithms for wide area networks, PODC.

[74] Schiper, N. and Pedone, F. [2008]. On the inherent cost of atomic broadcast
and multicast in wide area networks, ICDCN.

117 Bibliography

[75] Schiper, N., Sutra, P. and Pedone, F. [2009]. Genuine versus non-genuine
atomic multicast protocols for wide area networks: An empirical study,
SRDS.

[76] Schiper, N., Sutra, P. and Pedone, F. [2010]. P-Store: Genuine partial repli-
cation in wide area networks, SRDS.

[77] Schneider, F. [1990]. Implementing fault-tolerant services using the state
machine approach: A tutorial, ACM Computing Surveys 22(4): 299–319.

[78] Sciascia, D. and Pedone, F. [2013]. Geo-replicated storage with scalable
deferred update replication, DSN.

[79] Sciascia, D., Pedone, F. and Junqueira, F. [2012]. Scalable deferred update
replication, DSN.

[80] Sousa, J. and Bessani, A. [2012]. From Byzantine consensus to BFT state
machine replication: A latency-optimal transformation, EDCC.

[81] Sousa, J. and Bessani, A. [2015]. Separating the WHEAT from the chaff:
An empirical design for geo-replicated state machines, SRDS.

[82] Sousa, J., Bessani, A. and Vukolic, M. [2018]. A Byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform, DSN.

[83] Sovran, Y., Power, R., Aguilera, M. K. and Li, J. [2011]. Transactional stor-
age for geo-replicated systems, SOSP.

[84] Turcu, A., Peluso, S., Palmieri, R. and Ravindran, B. [2014]. Be general and
don’t give up consistency in geo-replicated transactional systems, OPODIS.

[85] Veronese, G. S., Correia, M., Bessani, A., Lung, L. C. and Verissimo, P.
[2013]. Efficient Byzantine fault-tolerance, IEEE Trans. on Computers 62(1).

[86] Wolfson, O., Jajodia, S. and Huang, Y. [1997]. An adaptive data replication
algorithm, ACM Transactions on Database Systems (TODS) 22(2): 255–314.

[87] Yin, J., Martin, J.-P., Venkataramani, A., Alvisi, L. and Dahlin, M. [2003].
Separating agreement from execution for byzantine fault tolerant services,
SOSP.

[88] Zieliński, P. [2005]. Optimistic generic broadcast, DISC.

118 Bibliography

	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions of the thesis
	Contributions in the crash-failure model
	Contribution in the Byzantine-failure model

	System model and definitions
	Processes, groups, and links
	Consensus
	Reliable and atomic multicast in crash-failure model
	Atomic multicast in Byzantine-failure model

	Making atomic multicast faster
	Baseline Atomic Multicast
	Overview
	Detailed algorithm
	Time complexity

	Fast Atomic Multicast
	Overview
	Detailed algorithm
	Time complexity

	Proofs of Correctness
	Proofs for Propositions 1 and 2
	Proof of correctness for Algorithm 1
	Proof of correctness for Algorithm 2

	Performance evaluation
	Evaluation rationale
	Implementation and environments
	Social network benchmark
	Microbenchmark in LAN
	Microbenchmark in emulated WAN
	Microbenchmark in real WAN
	Social network in emulated WAN
	Summary

	Related work
	Conclusion

	Making atomic multicast safer
	Byzantine Fault Tolerant Atomic Multicast
	Rationale
	Protocol
	Optimizations

	Proof of Correctness
	Implementation
	Performance evaluation
	Evaluation rationale
	Environments and configuration
	Overlay tree versus workload
	Scalability of ByzCast in LAN
	Throughput versus latency in LAN
	Latency without contention in LAN
	Performance with mixed workload in LAN
	Latency without contention in WAN
	Performance with mixed workload in WAN

	Related work
	Atomic Multicast
	Scalable BFT

	Conclusion

	Speeding up state machine replication in wide-area networks
	Introduction
	System model specifics
	Overview
	Partial ordering of operations
	Optimizing performance
	Fault tolerance
	Execution Model

	Design
	The ordering protocol
	Extensions and optimizations
	Practical considerations

	Proof of correctness
	Implementation
	Evaluation
	Performance in the LAN
	Performance in the WAN

	Related work
	Conclusion

	Speeding up Paxos
	Background on Paxos
	Paxos and state-machine replication
	Optimizations

	Paxos in the kernel
	Linux kernel and TCP/IP stack
	Kernel Paxos architecture
	Message flow in Kernel Paxos

	Implementation
	Performance
	Evaluation rationale
	Environment
	Throughput in a LAN
	Latency in a LAN
	Performance with similar number of clients
	Context-switch overhead
	Kernel Paxos in a 10Gbps network
	Summary

	Related work
	Protocols that exploit special topologies
	Protocols that exploit special hardware
	Protocols that exploit message semantics

	Conclusion

	Conclusions
	Research assessment
	Future directions

	Bibliography

