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1. SUMMARY 

In biomaterials science, peptides are widely used to functionalize material surfaces and confer 

biological potential (i.e. bioactivity) to otherwise inert substrates. The attachment of biomolecules 

to material surfaces is commonly achieved by using specific anchors with chemical affinity for the 

substrates. Well-known examples include the use of amines to bind polymers through amide 

bonds, thiols to bind gold substrates or catechol groups to bind titanium and other metallic oxides. 

However, this implies that each synthesized peptide can be used only for a narrow range of 

materials. Thus, in most cases, changing the material of study requires synthesizing the same 

peptide with a distinct anchor, resulting in time-consuming and repetitive procedures.  

To solve this, this project aims to develop a novel and versatile click-based solid-phase 

synthetic strategy to prepare peptidic coatings for a variety of biomaterials. In detail, the project 

focuses on the solid-phase peptide synthesis of a branched peptidic structure (containing the 

RGD and DWIVA peptide sequences) and the optimization of the copper-catalysed azide-alkyne 

cycloaddition reaction to introduce three anchoring groups, namely an amine, a thiol and a 

catechol, to the peptidic backbone in solid phase.   

By means of solid-phase synthetic methods and characterization by analytical HPLC and 

mass spectrometry, the feasibility of this strategy has been demonstrated. It is expected this new 

method will find applications to coat a wide range of biomaterials in a straightforward and cost-

efficient fashion. 

Keywords: peptide synthesis, click chemistry, multifunctionalization, chemical strategies  
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2. RESUM 

En ciència de biomaterials, els pèptids són àmpliament utilitzats per funcionalitzar superfícies 

de materials i conferir potencial biològic a substrats inerts (procés de biofuncionalització). La unió 

de biomolècules a la superfície dels materials s’aconsegueix mitjançant diferents ancoratges amb 

afinitat química per el substrat. Alguns exemples coneguts són l’ús d’amines per polímers 

mitjançant enllaços amida, de tiols per or i de grups catecol per titani i altres òxids metàl·lics. No 

obstant, això implica que els pèptids sintetitzats poden ser utilitzats en un petit rang de materials. 

Així, en la majoria de casos, canviar el material d’estudi requereix repetir la síntesi del pèptid amb 

un nou ancoratge, resultant en processos llargs i repetitius. 

Per solucionar-ho, aquest projecte busca desenvolupar una nova estratègia sintètica en fase 

sòlida basada en la química click que aporti versatilitat a l’hora de preparar recobriments peptídics 

per variats biomaterials. Detalladament, el projecte se centra en la síntesi de pèptids en fase 

sòlida d’una estructura ramificada (que conté les estructures peptídiques RGD i DWIVA) i la 

optimització de la reacció de cicloaddició d’azida i alquí catalitzada per coure per introduir tres 

grups d’ancoratge, consistents en una amina, un tiol i un catecol, a la matriu peptídica en fase 

sòlida. 

Mitjançant mètodes de síntesi en fase sòlida i caracterització per HPLC analític i 

espectroscòpia de masses, la factibilitat d’aquesta estratègia ha estat demostrada. S’espera que 

aquest nou mètode pugui ser aplicat per recobrir una gran varietat de biomaterials de manera 

senzilla i sense sobrecostos. 

Paraules clau: síntesi de pèptids, química click, multifuncionalització, estratègies químiques. 
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3. INTRODUCTION 

In the field of medicine, regeneration and replacement of non-functional tissues has become 

a great challenge. To solve this problem, biomaterials have evolved from just biocompatible 

substrates to highly bioactive materials. That means that they no longer just support cell adhesion 

and growth, but they interact with cells and promote certain biological responses1. This is done 

by functionalizing the surface of the material in different ways. For example, they can be 

functionalized with peptides that mimic the extracellular matrix and interact with cell receptors. In 

the present work, the synthesized peptides are meant to functionalize biomaterials and promote 

bone regeneration.  

3.1. SURFACE FUNCTIONALIZATION WITH PEPTIDES 

When peptides are designed to interact with cells, the aim is to imitate the bioactive 

sequences of proteins. Once these sequences are isolated, they can be synthesized and put on 

a material, giving nearly the same effect as if the cell was interacting with the protein itself.  

Proteins can consist of 150 amino acids or more, but only a few are active, meaning that most 

of them are structural. These amino acids are likely to be far in the sequence, but near in the 3D 

structure of the protein. Therefore, it is not a problem of sequence but conformation. When putting 

this amino acids in sequence, there are options to try to optimize the conformation and making 

them more active, like cycling the sequence or adding spacers between them1. 

To functionalize biomaterials, synthetic peptides commonly consist of an anchor group to 

specifically attach to the desired material, spacers and linear or cyclic bioactive sequences. These 

peptides can also be multifunctional, as they can have more than one bioactive sequence 

attached to a single anchor group. In this context, Lys can be used as a ramification branch thanks 

to the amine group in its lateral chain2 (Figure 1). It is useful to add two motives with a different 

function each, commonly one of them being a cell-adhesion promoter and the other one the 

functional sequence. 
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Figure 1: Representation of a dimeric peptide platform using Lys as branching unit. N and C represent 

N and C-terminal ends. 

Regarding the anchor group, there are some functional groups that can be used (see Figure 

2). However, some groups work better to bind a specific material than others. To give an example, 

polylactic acid (PLA) is functionalized through a process of hydrolysis which leaves free carboxylic 

acid groups. Here, an amine is the best option to attach the peptide to the surface, by means of 

an amide bond. The side chain of Lys is perfect to play that role. 

A widely used biomaterial is titanium (Ti). It is widely used as prosthesis because its 

biocompatible properties, but it’s not bioactive. Then, functionalization improves its properties as 

biomaterial. Its functionalization often goes by generation of hidroxyl groups, silanization and 

introduction of an electrophile linker1 (see Scheme 1). For this type of system, what is needed is 

a good nucleophile, and the best option looking into amino acids is a thiol group, then Cys is the 

chosen one. 

However, there is a novel option to functionalize Ti in which that previous treatment is not 

necessary, and it is the use of catechol groups. After the corresponding treatment, the phenolic 

oxygens can coordinate with Ti and then act as good and strong anchors. They can be introduced 

in the peptidic sequence as 3,4-dihydroxy-L-phenylalanine (L-DOPA). In this case, two of them 

are coupled instead of one to improve the anchoring3. 
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Figure 2. General scheme of functionalized surfaces. 

 

 

 

 

 

 

Scheme 1. Schematic representation of Ti functionalization via silanization4. 

As previously shown, there are many options regarding the anchor group, but they depend 

on the target material, and the fact that these groups are introduced in the first steps of the 

synthesis, in the C-terminal end, supposes a problem. For example, if a 15 amino acids platform 

is synthesized with catechol groups, and it is decided later to functionalize PLA instead of Ti, all 

the synthesis needs to be repeated starting from the first amino acid. It would be more useful to 

add the anchor group in the end of the synthesis, once the peptide is finished and the material is 

selected. Also, that would allow to take samples of the obtained peptide and functionalize them 

with different groups. For example, one part with an amine, another one with a thiol and the last 

one with catechol, thus easily creating small libraries with capacity to functionalize a wide range 

of materials. 

The study of this possibility is the main objective of this project. We aim to develop a strategy 

to introduce the desired functional groups after the synthesis of the peptide, introducing a 

functional group in the first amino acid that can react with a small unit containing the desired 

anchor and the group that makes possible the coupling with the peptide. This approach is studied 

using click chemistry. 
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3.2. CLICK CHEMISTRY AND CUAAC 

The term “click chemistry” was introduced by K. B. Sharpless et. al. in 20015, in parallel with 

the studies done by M. Meldal6. The philosophy is to imitate nature and generate substances by 

joining building blocks with heteroatom links (C-X-C). A click chemistry reaction must be ‘modular, 

wide in scope, give very high yields, generate only inoffensive by-products that can be removed 

by nonchromatographic methods, and be stereospecific (but not necessarily enantioselective) ’5. 

If it is possible, it is better to have simple reaction conditions, stability to oxygen and water, and 

the use of a benign solvent (water) or easily removable. 

Some reactions have been described that follow these conditions and can be classified inside 

click chemistry, such as cycloadditions and Michael additions. The model reaction, and the one 

that is explored in the present work, is the copper-catalysed azide alkyne cycloaddition (CuAAC). 

This reaction is a variant of the Huisgen 1,3-dipolar cycloaddition, named after R. Huisgen 

who described it7. It leads to a huge variety of disubstituted 1,2,3-triazoles, but it was not explored 

by synthetic chemists because it needs hard conditions that compromise the stability of azides 

(as high temperature) and the products are a mixture of 1,4 and 1,5-disubtituted triazoles 

(Scheme 2). However, in 2002 a variant that introduced a catalyst of copper (I) was described by 

Sharpless et. al.8, which lead regiospecifically to 1,4-disubstituted product in simple experimental 

conditions, which means room temperature and common mixtures of water and organic solvents. 

Eventually, pure water also could be used. The proposed mechanism for this reaction can be 

seen in Scheme 3. Sharpless describes this reaction as “the cream of the crop” of click chemistry4, 

and now it’s the first reaction that comes to example when click chemistry is named. 

 

 

 

 

 

Scheme 2. General scheme of azide-alkyne 1,3-dipolar cycloaddition. 
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Scheme 3. Proposed mechanism for CuAAC. 

Copper (I) is generally obtained in situ, from Cu (II) salts and a reducing agent (typically, 

CuSO4 · 5 H2O and sodium ascorbate are used). Otherwise, a Cu (I) salt can be directly used, but 

it will need absence of oxygen and an equivalent of a nitrogen base as stabilizing agent, being 

TBTA the most commonly used9. 

In this work, the reaction will be carried on solid phase, which means that the substrate will 

be a resin-bounded peptide. This type of ‘solid phase CuAAC’ has been previously described10, 

demonstrating a vast variety of uses, like couplings11 and cyclizations12. The main advantages of 

working in solid phase are that the reaction can be made using excess of reagents, the easier 

isolation of the products and efficient removal of by-products. Also, all the functional groups will 

remain protected during the reaction, as all of them will be deprotected during cleavage after the 

reaction. 

3.3. PEPTIDE PLATFORMS 

Once the methodology is clear, what is needed is to define the desired product of the click 

reaction and the starting materials. They will be synthetic peptide-based reagents, containing 

azide and terminal alkyne groups. The final product of the reaction will be a platform containing 

two bioactive sequences and the anchoring group, linked by a triazole group (Figure 3). 
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Figure 3: Schematic representation of the desired peptide-based platform. 

The synthesis of this structure has been previously described and optimized by the co-

workers in the BBT group2. It has two active sequences, one of them being Arg-Gly-Asp (RGD) 

and the other one being Asp-Trp-Ile-Val-Ala (DWIVA). RGD is an isolated sequence of fibronectin 

(FN), an extracellular matrix protein. It interacts with some types of integrins and promotes cell-

adhesion1. DWIVA is a sequence derived from bone morphogenetic protein 2 (BMP-2), and it has 

been demonstrated that promotes cell-differentiation to osteoblasts13. The two units are bound to 

a single platform, by a Lys which is used as a ramification unit. Also, two 6-aminohexanoic acid 

(Ahx) are added between Lys and each sequence, just to minimize steric impediments between 

the anchoring unit and the material surface. N-terminal ends are acetylated to neutralize charges 

and inhibit their reactivity. The first amino acid is the one that contains the reactive group to which 

the anchoring units will be coupled. In this project a Lys containing an azide instead of an amine 

will be selected. Other options can be explored, or an alkyne could be added instead of an azide. 

Azide is chosen because its known low reactivity during the synthesis. 

The anchoring units will consist of surface-specific anchor groups and a terminal alkyne. 

Therefore, structures like ‘Alkyne-NH2’, ‘Alkyne-SH’ and ‘Alkyne-DOPA’ will be needed. The 

selected building blocks are shown in Figure 4. 

When searching for the building block containing an amine, propargylamine represents a 

good starting point, as it contains a primary amine and is commercially available. Also, it has been 

proved that it can react via CuAAC10. The reaction will be carried out with the amine deprotected, 

as all the other groups in the peptide will be protected, but it can be protected easily (or also 

bought) if needed. 

Analogues of 2-propyne-1-thiol and ‘propargyl-cathecol’ could not be found from commercial 

suppliers. Then, the best option is to synthesize the building blocks containing the two functional 

groups (thiol or catechol and alkyne) (Figure 4). An amino acid containing the desired group can 
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be coupled to an acid that has a terminal alkyne as capping (being 4-pentinoic acid a good and 

cheap option). For thiol, Cys, and for catechol, L-DOPA (in this case, two of them are used). They 

can be obtained easily by a stepwise solid phase peptide synthesis (SPPS) and then cleaved. 

The resin for this synthesis must meet two requirements: i) after cleavage, an amide must be left 

in the C-terminal end to ensure no extra charges are introduced into the peptide structure (e.g. 

carboxylic acid will introduce a negative charge) and ii) the protective groups should be 

maintained to avoid interfering with the click reaction afterwards. Thus, the peptide must be 

cleaved with a very low acid concentration. More details can be found in Experimental Section. 

 

 

 

 

 

 

Figure 4. Selected alkyne building blocks. 

4. OBJECTIVES 

The objectives of this project are: 

- Synthesis of the peptide-based platform containing the azido group.   

- Synthesis of the anchoring building blocks (amino, thiol and catechol). 

- Optimize the conditions for the CuAAC reaction.  
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5. MATERIALS AND METHODS 

5.1. REAGENTS AND SOLVENTS 

Source Chemicals 

Carlo Erba DCM, DMF, piperidine, ACN 

Iris Biotech 
GmbH 

Fmoc-Rink Amide MBHA resin, Fmoc-Sieber PS resin, OxymaPure®, Fmoc-L-
Lys(N3)-OH, Fmoc-L-Lys(Alloc)-OH, Fmoc-6-Ahx-OH, Fmoc-L-Arg(Pbf)-OH, Fmoc-L-

Trp(Boc)-OH 

Merck KGaA 
Fmoc-L-Ser(OtBu)-OH, Fmoc-L-Asp(OtBu)-OH, Fmoc-Gly-OH, Fmoc-L-Ala-OH, 
Fmoc-L-Val-OH, Fmoc-L-Ile-OH, Fmoc-L-Cys(Dpm)-OH, Fmoc-L-Cys(Trt)-OH 

Sigma-
Aldrich 

DIC, DIEA, propargylamine, TFA, TIS, phenylsilane, Pd(PPh3)4, DEDTC, CuSO4 · 5 
H2O, sodium L-ascorbate 

Bachem Fmoc-L-DOPA(Acetonide)-OH 

Table 1. Reagents and solvents 

5.2. INSTRUMENTS AND EQUIPMENT 

Intrument Brand 

HPLC Shimadzu Prominence XR 

HPLC-MS Alliance Waters 2695 

Orbital stirrer Heidolph Rotamax 120 

Centrifuge Eppendorf Centrifuge 5430R 

Freeze dryer Telstar Cryodos -80 

Table 2: Instruments and equipment 

5.2.1. Analytical RP-HPLC  

Analytical RP-HPLC was performed on a Shimadzu Prominence XR with an automatic injector 

and photodiode array. The column used was a Xbrigde BEH130 C18 3.5 μm (4.6 mm x 100 mm) 

column run with linear gradients of H2O with 0.045% TFA (A) and ACN with 0.036% TFA (B) over 

8 min. UV detection was done at 220 nm, oven temperature was 25 ºC or 60 ºC and the system 

was run at a flow rate 1 mL/min.  

5.2.2. HPLC-MS  

HPLC-MS was performed on an Alliance Waters 2695 with an automatic injector, photodiode 

array and ESI. The column used was a Jupiter Proteo C18 column (250 mm × 4.6 mm, 90 Å, 4 
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μm, flow rate: 1 mL/min) with linear gradients of H2O with formic acid 0.1% (A) and ACN with 

formic acid 0.1% (B) over 30 min. UV detection was done at 220 nm and 260 nm and ionization 

system is electrospray ionization (ESI). The system was run at a flow rate of 1mL/min. 

5.3. GENERAL PROCEDURE OF SPPS 

Peptides were synthesized using the standard Fmoc/tBu strategy and DIC/Oxyma as coupling 

reagents. The system used was an open syringe equipped with a filter and a pass key, connected 

to a vacuum system to remove solvents. It is a stepwise synthesis where amino acids were 

coupled one by one, starting from the C-terminus. Two resins have been used in this project: 

Fmoc-Rink Amide MBHA resin and Fmoc-Sieber PS resin (Figure 5). 

 

 

 

 

 

Figure 5: Fmoc-Rink Amide MBHA resin (left) and Fmoc-Sieber PS resin (right). 

5.3.1. Conditioning and washing 

The resin was conditioned with DCM (5 x 0.5 min), DMF (5 x 0.5 min) and DCM (5 x 0.5 min).  

Washings were done after each deprotection and coupling with DMF (5 x 0.5 min) and DCM (5 x 

0.5 min). 

5.3.2. Fmoc removal 

Fmoc removal was done with 20% (v/v) piperidine in DMF (1 x 1 min, 2 x 5 min). Fmoc group 

is removed by an alkali medium using piperidine, which creates an adduct with the Fmoc group 

and avoids side reactions (see Scheme 4 for the mechanism). If necessary, a ninhydrin test could 

be done after deprotection, giving a positive result if the deprotection was well-performed (see 

Ninhydrin test in section 5.3.4). 
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Scheme 4. Fmoc removal mechanism. 

5.3.3. Loading 

After conditioning and washing, the first amino acid was loaded into the resin using Oxyma (1 

eq) and DIC (1 eq) in DMF and stirred for 1h. 0.1 mmol/g loading excess with respect to the 

desired one was used to ensure the complete loading. Afterwards, a capping step is needed to 

acetylate the unreacted amines and avoid undesired peptide chain elongation. For this step, a 

mixture of Ac2O/DIEA (5:5) in DMF was added for 45 min.  

5.3.4. Ninhydrin test 

This test detects unprotected primary amines, and it’s used as a standard method of synthesis 

control. The main reagent is ninhydrin (triketohydrindene hydrate) (1). Two molecules of ninhydrin 

react stoichiometrically with an unprotected amino acid to form a highly conjugated Schiff base, 

known as Ruhemann’s purple (2), named after S. Ruhemann who described the test14.  

The reagents come as a commercially available kit of 3 solutions. A small amount of resin 

beads was transferred to a glass tube and 2 drops of each solution were added. Then, the tube 

was incubated at 110ºC for 3 min. A dark blue or purple color (in the solution and/or in the resin 

beads) reveals the presence of free primary amines (positive test), whereas a yellow coloration 

ensures 99.5% coupling rate (negative test). The mechanism is shown in Scheme 5. 
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Scheme 5. Ninhydrin test mechanism 

5.3.5. Peptide chain elongation 

After deprotection and washing, a solution containing the amino acid (3 eq), Oxyma (3 eq) 

and DIC (3 eq) in DMF was added to the resin and stirred for 1 h. Then, the resin was washed, 

and a ninhydrin test was done. If it gave a positive result, a recoupling would be made with 1.5 eq 

of amino acid, Oxyma and DIC for 30 min. This is repeated for every new amino acid, following a 

cyclic synthetic route shown in Scheme 6.   

 

 

 

 

 

 

 

Scheme 6. General procedure for a peptide chain elongation. 

DIC (3) and OxymaPure® (4) were used as coupling reagents. The direct coupling between 

the carboxylic acid and the amine is not possible in simple conditions, as they will act as an acid 

base pair. DIC is a carbodiimide, which reacts with the acid becoming an O-acylisourea (5), very 

reactive to a nucleophilic acyl substitution as the exiting group is a urea. This mechanism  tend to 

show undesired side reactions such as the formation of 5(4H)-oxazolone (6) through cyclization, 

that can produce racemization (7) via enolization15 or formation of inactive N-acylurea (8) 
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(Scheme 7).  To avoid these reactions, Oxyma is added. It produces an active ester (9), which is 

less reactive but more stable16. The mechanism can be seen in Scheme 8. 

 

 

 

 

 

 

 

 

 

 

Scheme 7. Side reactions of O-acylisourea. 

 

 

 

 

 

 

 

Scheme 8: Coupling mechanism with DIC and Oxyma. 

5.3.6. Acetylation 

This step is needed for capping the N-terminus of the branches. It’s not needed if there’s not 

an amine in the end. 

A solution of Ac2O, DIEA and DMF (1:2:7, v/v) was used. The solution needs to be protected 

from light to prevent DIEA oxidation. Capping is done by adding this solution to the resin (1 x 5 

min, 2 x 10 min).  
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5.3.7. Alloc removal 

Pd(PPh3)4 (0.1 eq) and phenylsilane (10 eq) in DCM was added to the resin (3 x 15 min). 

Resin was washed with DCM (5 x 0.5 min) after each treatment.  

Pd(PPh3)4 is easily oxidized by the oxygen present in the air, then the three times are needed 

to ensure full deprotection. The general mechanism can be seen in Scheme 9. Pd catalyst 

interacts with the allyl group and complexes it, and phenylsilane acts as a scavenger and as a 

hydride donor to accelerate the reaction.  

 

 

 

Scheme 9. Alloc removal mechanism. 

5.3.8. Cleavage 

In this process, the peptide is released from the resin. Other effects are shown depending on 

the resin. It serves also as an analytical test to control the synthesis. 

Acidic conditions are required to cleave the peptide from the resin. Trifluoroacetic acid (TFA) 

was used for this step because it is a strong acid which is soluble in organic solvents. The 

cleavage cocktail was chosen according the sensitiveness of the resin and the protecting groups 

of the residues present in the peptide sequence. 

Harsh acidic conditions are required for the Rink Amide MBHA resin cleavege. A mixture of 

TFA, TIS and water (95:2.5:2.5, v/v/v) was added during 1.5 h. Triisopropyilsilane (TIS) is used 

as scavenger for cations, as in this acidic conditions TIS acts as a hydride donor. This resin has 

the particularity to leave an amide in the C-terminus. In this strong acid conditions, all other 

protective groups such as Boc, Pbf and tBu are removed (see their structure in Annex 1.2). 

Peptides were cleaved from the Sieber resin using very mild TFA conditions. The resin was 

treated with TFA-DCM (3:97, v/v) (8 x 0.5 min) and washed with DCM (6 x 0.5 min). This resin 

also gives an amide in the C-terminus. However, in this weak acid conditions the protective groups 

are maintained. 
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6. EXPERIMENTAL SECTION 

6.1. SOLID PHASE PEPTIDE SYNTHESIS 

6.1.1. Synthesis of RGD-DWIVA peptides 

The peptidic platform RGD-DWIVA was synthesized using the Fmoc-Rink Amide MBHA resin 

and a loading of 0.4 mmol/g.  A general synthetic scheme can be consulted in Scheme 10. Firstly, 

the RGD containing chain was elongated and then, the second chain containing the DWIVA was 

elongated from the Alloc-protected amine. Two peptide batches were prepared, RGD-DWIVA-01 

and RGD-DWIVA-02. 

RGD-DWIVA-01 

0.2128 g of Fmoc-Rink Amide MBHA resin were weighted. The resin was conditioned, Fmoc 

was removed using piperidine 20% (v/v) in DMF (1 x 1 min, 1 x 5 min, 1 x 10 min), and then the 

resin was washed. Fmoc-L-Lys(N3)-OH (42.0 mg, 1.2 eq) was loaded into the resin using Oxyma 

(15.1 mg, 1.2 eq) and DIC (17 μL, 1.2 eq) for 1h in DMF. Then, the resin was washed, and the 

capping step was performed using Ac2O (40 uL, 5 eq) and DIEA (74 uL, 5 eq) for 30 min in DMF. 

Fmoc was removed using piperidine 20% (v/v) in DMF (1 x 1 min, 2 x 5 min), and the resin was 

washed. Fmoc-L-Lys(Alloc)-OH (115.6 mg, 3 eq),  Oxyma (36.3 mg, 3 eq) and of DIC (40 μL, 3 

eq) in DMF were added to the resin and reacted for 1h. Ninhydrin test was done after the coupling.  

The first peptide chain was elongated following the protocol from section 5.5.4. Two Ahx were 

coupled using Fmoc-6-Ahx-OH (90.2 mg, 3 eq), Oxyma (36.3 mg, 3 eq) and DIC (40 μL, 3 eq). 

Ser was coupled using Fmoc-L-Ser(OtBu)-OH (97.9 mg, 3 eq), Oxyma (36.3 mg, 3 eq) and DIC 

(40 μL, 3 eq). Asp was coupled using Fmoc- L-Asp(OtBu)-OH (105.1 mg, 3 eq), Oxyma (36.3 mg, 

3 eq) and DIC (40 μL, 3 eq). Gly was coupled using Fmoc-Gly-OH (75.9 mg, 3 eq), Oxyma (36.3 

mg, 3 eq) and DIC (40 μL, 3 eq). Arg was coupled using Fmoc- L-Arg(Pbf)-OH (165.7 mg, 3 eq), 

Oxyma (36.3 mg, 3 eq) and DIC (40 μL, 3 eq). After coupling Arg, Fmoc was removed (1 x 1 min, 

1 x 5 min, 1 x 10 min), a ninhydrin test was done and the N-terminus from Arg was acetylated 

using a solution of Ac2O/DIEA/DMF (1:2:7, v/v/v) (1 x 5 min, 2 x 10 min). Afterwards, the resin 

was washed, and a ninhydrin test was done. 

Alloc was removed using Pd(PPh3)4 (9.8 mg, 0.1 eq) and PhSiH3 (105 μl, 10 eq) in DCM (3 x 

15 min), washing with DCM (5 x 0.5 min) after each step. Ninhydrin test was done after that. 

DWIVA branch was elongated and acetylated following the same protocols as for RGD branch. 



New synthetic strategies for the synthesis of multifunctional peptidic platforms with osteoinductive potential 21 

 

Two Ahx were coupled using Fmoc-6-Ahx-OH (90.2 mg, 3 eq), Oxyma (36.3 mg, 3 eq) and DIC 

(40 μL, 3 eq). Ala was coupled using Fmoc-L-Ala-OH (79.5 mg, 3 eq), Oxyma (36.3 mg, 3 eq) and 

DIC (40 μL, 3 eq). Val was coupled using Fmoc- L-Val-OH (86.7 mg, 3 eq), Oxyma (36.3 mg, 3 

eq) and DIC (40 μL, 3 eq). Ile was coupled using Fmoc- L-Ile-OH (90.2 mg, 3 eq), Oxyma (36.3 

mg, 3 eq) and DIC (40 μL, 3 eq). Trp was coupled using Fmoc- L-Trp(Boc)-OH (75.9 mg, 3 eq), 

Oxyma (36.3 mg, 3 eq) and DIC (40 μL, 3 eq). Asp was coupled using Fmoc- L-Asp(OtBu)-OH 

(105.1 mg, 3 eq), Oxyma (36.3 mg, 3 eq) and DIC (40 μL, 3 eq). After coupling Asp, Fmoc was 

removed (1 x 1 min, 1 x 5 min, 1 x 10 min), a ninhydrin test was done, and the N-terminus from 

Asp was acetylated using a solution of Ac2O/DIEA/DMF (1:2:7, v/v/v) (1 x 5 min, 2 x 10 min). 

Afterwards, the resin was washed, and a ninhydrin test was done. 

0.2480 g of peptidyl-resin were obtained. 

RGD-DWIVA-02 

0.2310 g of Fmoc-Rink Amide MBHA resin were weighted. The resin was conditioned, Fmoc 

was removed using piperidine 20% (v/v) in DMF (1 x 1 min, 1 x 5 min, 1 x 10 min), and then the 

resin was washed. Fmoc-L-Lys(N3)-OH (45.6 mg, 1.2 eq) was loaded into the resin using Oxyma 

(16.4 mg, 1.2 eq) and DIC (18 μL, 1.2 eq) for 1h in DMF. Then, the resin was washed, and the 

capping step was performed using Ac2O (43 uL, 5 eq) and DIEA (80 uL, 5 eq) for 30 min in DMF. 

Fmoc was removed using piperidine 20% (v/v) in DMF (1 x 1 min, 2 x 5 min), and the resin was 

washed. Fmoc-L-Lys(Alloc)-OH (125.4 mg, 3 eq),  Oxyma (39.4 mg, 3 eq) and of DIC (43 μL, 3 

eq) in DMF were added to the resin and reacted for 1h. Ninhydrin test was done after the coupling.  

The first peptide chain was elongated following the protocol from section 5.5.4. Two Ahx were 

coupled using Fmoc-6-Ahx-OH (98.0 mg, 3 eq), Oxyma (39.4 mg, 3 eq) and DIC (43 μL, 3 eq). 

Ser was coupled using Fmoc-L-Ser(OtBu)-OH (106.3 mg, 3 eq), Oxyma (39.4 mg, 3 eq) and DIC 

(43 μL, 3 eq). Asp was coupled using Fmoc- L-Asp(OtBu)-OH (114.1 mg, 3 eq), Oxyma (39.4 mg, 

3 eq) and DIC (43 μL, 3 eq). Gly was coupled using Fmoc-Gly-OH (82.4 mg, 3 eq), Oxyma (39.4 

mg, 3 eq) and DIC (43 μL, 3 eq). Arg was coupled using Fmoc- L-Arg(Pbf)-OH (179.8 mg, 3 eq), 

Oxyma (39.4 mg, 3 eq) and DIC (43 μL, 3 eq). After coupling Arg, Fmoc was removed (1 x 1 min, 

1 x 5 min, 1 x 10 min), a ninhydrin test was done and the N-terminus from Arg was acetylated 

using a solution of Ac2O/DIEA/DMF (1:2:7, v/v/v) (1 x 5 min, 2 x 10 min). Afterwards, the resin 

was washed, and a ninhydrin test was done. 
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Scheme 10. Synthetic scheme for RGD-DWIVA peptide synthesis. A: Piperidine 20% (v/v) in DMF. B: 

Ac2O/DIEA/DMF (10:20:70, v/v/v). 

Alloc was removed using Pd(PPh3)4 (10.6 mg, 0.1 eq) and PhSiH3 (114 μl, 10 eq) in DCM (3 

x 15 min), washing with DCM (5 x 0.5 min) after each step. Ninhydrin test was done. After that, 

the resin was treated with sodium diethyldithiocarbamate (DEDTC) 0.02M in DMF (3 x 15 min) 

and washed. DWIVA branch was elongated and acetylated following the same protocols as for 
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RGD branch. Two Ahx were coupled using Fmoc-6-Ahx-OH (98.0 mg, 3 eq), Oxyma (39.4 mg, 3 

eq) and DIC (43 μL, 3 eq). Ala was coupled using Fmoc-L-Ala-OH (86.3 mg, 3 eq), Oxyma (39.4 

mg, 3 eq) and DIC (43 μL, 3 eq). Val was coupled using Fmoc- L-Val-OH (98.0 mg, 3 eq), Oxyma 

(39.4 mg, 3 eq) and DIC (43 μL, 3 eq). Ile was coupled using Fmoc- L-Ile-OH (98.0 mg, 3 eq), 

Oxyma (39.4 mg, 3 eq) and DIC (43 μL, 3 eq). Trp was coupled using Fmoc- L-Trp(Boc)-OH (146.0 

mg, 3 eq), Oxyma (39.4 mg, 3 eq) and DIC (43 μL, 3 eq). Asp was coupled using Fmoc- L-

Asp(OtBu)-OH (114.1 mg, 3 eq), Oxyma (39.4 mg, 3 eq) and DIC (43 μL, 3 eq). After coupling 

Asp, Fmoc was removed (1 x 1 min, 1 x 5 min, 1 x 10 min), a ninhydrin test was done, and the N-

terminus from Asp was acetylated using a solution of Ac2O/DIEA/DMF (1:2:7, v/v/v) (1 x 5 min, 2 

x 10 min). Afterwards, the resin was washed, and a ninhydrin test was done. 

0.3280 g of peptidyl-resin were obtained. 

6.1.2. Characterization of RGD-DWIVA-01 

To characterise this peptide, a mini-cleavage was made. The procedure is as follows: 

A small aliquote of resin beds was transferred to an eppendorf and 0.5 ml of a solution of 

TFA/TIS/H2O (95:2.5:2.5, v/v/v) were added and left to react for 1.5 h. After that, TFA solution 

was evaporated using an N2 flow, and 1.5 ml of cold diethyl ether were added. The eppendorf 

was centrifuged during 3 min at 4ºC and 5000 rpm. After that, ether was removed, 100 μl of 

H2O/ACN (1:1, v/v) were added, filtrated and transferred to an HPLC vial. 

HPLC is done in 20-100% gradient of solvent B at 25ºC, and then in 10-100% at 60ºC. HPLC-

MS was also performed in 10-100% gradient of solvent B. 

25ºC chromatogram shows two major peaks at 6.0 and 6.1 min, and two minor peaks at 6.3 

and 6.4 min (Appendix 2.1). 60ºC chromatogram shows one main peak at 6.9 min (Appendix 2.2). 

Its purity was 50%. 

HPLC-MS shows one major peak at 10.7 min, that corresponds to the expected mass 

(Appendix 2.3). 
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6.1.3. Characterization of RGD-DWIVA-02 

Mini-cleavage analysis was done in the same manner as RGD-DWIVA-01 (section 6.1.2). 

25ºC and 60ºC HPLC were done in 20-100% gradient of B, and HPLC-MS in 0-100% of B. 

Its chromatogram at 25ºC shows nearly the same peaks and shape of RGD-DWIVA-01, and 

retention times were also the same. 60ºC chromatogram shows a single major peak at 6.0 min 

with 70% purity (Figure 6 in page 30). 

HPLC-MS spectrum show the same peaks as the ones in RGD-DWIVA-01 (Appendix 2.3). 

6.1.4. Synthesis of ‘Alkyne-SH’ 

Sieber resin was used to synthesize the ‘Alkyne-SH’ building block, that consist of a Cys 

protected with diphenylmethyl (Cys(Dpm)), and a 4-pentynoic acid (Pty) (Scheme 11). The 

loading was the maximum for this resin (0.59 mmol/g). The procedure that has been optimized to 

synthesize it is as follows: 

0.3804 g of Fmoc-Sieber PS resin were weighted. Resin was conditioned and Fmoc was 

removed using piperidine 20% (v/v) in DMF (1 x 1 min, 1 x 5 min, 1 x 10 min). Fmoc-L-Cys(Dpm)-

OH was loaded to the resin (343.1 mg, 3 eq) using Oxyma (95.7 mg, 3 eq) and DIC (104 μL, 3 

eq) in DMF. The system was stirred for 1 h, washed, and a ninhydrin test was done. Fmoc was 

removed following the standard procedure described in section 5.3.2. After washing, Pty (33.0 

mg, 1.5 eq) was coupled adding it alongside Oxyma (47.8 mg, 1.5 eq) and DIC (52 μl, 1.5 eq) in 

DMF. The system was stirred for 2 h and washed. Ninhydrin test was done.  

Cleavage of the resin was performed in 5 extracts, collected on 20 ml of water inside falcons. 

These extracts were done by multiple washes with TFA-DCM (1.5:98.5, v/v) (6 x 0.5 min, 2 

collects), DCM (6 x 0.5 min), TFA-DCM (1.5:98.5, v/v) (6 x 0.5 min) and TFA-DCM (3:97, v/v) (6 

x 0.5 min). For each collect, DCM was evaporated using N2 flow and 2 ml of ACN were added. 

150 μl were transferred to an HPLC vial, the rest was freezed with liquid N2 and taken to lyophilize. 

After freeze drying and unite the collects, 53.0 mg of peptide were obtained (66% yield). 
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Scheme 11: Retrosynthetic analysis of ‘Alkyne-SH’ 

6.1.5. Characterization of ‘Alkyne-SH’ 

HPLC of the extracts were done in a 30-100% gradient of solvent B at 25ºC. HPLC-MS was 

done in a 0-100% gradient of solvent B. 

All the extracts show the same chromatogram, consisting of a single peak at 7.1 min 

(Appendixes 2.4 and 2.5) with >99.9 % purity. 

HPLC-MS chromatogram shows this peak at 20.5 min. In its mass spectrum M+1 peak can 

be found, alongside with 2M+1H (dimer) and removed Dpm due to formic acid in mobile phase 

(Appendix 2.6). 

6.1.6. Synthesis of ‘Alkyne-DOPA’ 

Sieber resin was used to synthesize the building block containing catechol groups, ‘Alkyne-

DOPA). It consists of two 3,4-dihydroxy-L-phenylalanine (L-DOPA) protected with acetonide and 

a 4-pentynoic acid (Pty) (Scheme 12). Its synthesis was done in the same manner as ‘Alkyne-SH’ 

with less equivalents in the loading step: 

0.3000 g of Fmoc-Sieber PS resin were weighted. . Resin was conditioned and Fmoc was 

removed using piperidine 20% (v/v) in DMF (1 x 1 min, 1 x 5 min, 1 x 10 min). Fmoc-L-

DOPA(Acetonide)-OH (162.7 mg, 2 eq) was loaded to the resin using Oxyma (50.3 mg, 2 eq) and 

DIC (55 μl, 2 eq) in DMF. The system was stirred for 1.5 h, washed, and a ninhydrin test was 

done. Fmoc was removed following the standard procedure described in section 5.3.2. After 

washing, Fmoc-L-DOPA(Acetonide)-OH (11.5 eq), Oxyma (37.7 mg, 1.5 eq) and DIC (41 μl, 1.5 

eq) were added in DMF for the coupling of the second DOPA. The system was stirred for 2 h and 

a ninhydrin test was done. Fmoc was removed. After washing, Pty (26.0 mg, 1.5 eq), Oxyma (37.7 

mg, 1.5 eq) and DIC (41 μL, 1.5 eq) were added in DMF. The system was stirred for 2 h. Ninhydrin 

test was done.  

Cleavage of the resin was performed in 3 extracts, collected on 15 ml of water inside falcons. 

These extracts were done by multiple washes with TFA-DCM (3:7, v/v) (6 x 0.5 min, 2 collects), 
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DCM (6 x 0.5 min). For each collect, DCM was evaporated using N2 flow and 2 ml of ACN were 

added. 150 μl were transferred to an HPLC vial, the rest was freezed with liquid N2 and taken to 

lyophilize. After freeze drying and unite the collects, 33.8 mg of peptide were obtained (42% yield). 

 

 

 

 

Scheme 12: Retrosynthetic analysis of ‘Alkyne-DOPA’. 

6.1.6. Characterization of ‘Alkyne-DOPA’ 

HPLC of the extracts were done in a 40-100% gradient of solvent B at 25ºC. HPLC-MS was 

done in a 20-100% gradient of solvent B. 

All the extracts showed the main peak at 5.5 min (Appendix 2.8), with a purity of 80%. 

In HPLC-MS, this peak appeared at 17.3 min, showing a mass spectrum where [M+1H]+ peak 

appeared as base peak (Appendix 2.9). 

6.2. CLICK CHEMISTRY 

Copper-catalysed azide alkyne cycloaddition (CuAAC) was done on solid phase, which 

means that azide-containing peptide was bounded to the resin and the alkyne-containing building 

blocks were added in solution. The reactions were followed by mini-cleavages of resin aliquots at 

certain times of reaction (the procedure for mini-cleavage is described in section 6.1.2). All HPLC 

runs were done in 20-100% gradient of solvent B at 25ºC or 60ºC, and HPLC-MS in 10-100%. 

The conditions used for this reaction were based on the ones reported by V. Marchán et. al11. 

These conditions consist of the use of CuSO4/ascorbate (3 eq:3 eq) as catalyst and DMF/H2O 

20:1 (v/v) as solvent under N2 atmosphere, room temperature and overnight time of reaction. 

Each reaction has been optimized for each alkyne building block using RGDS-DWIVA peptides. 

To consult all the test reactions with their conditions and results, see Table 3. Tests reactions are 

coded with a letter that indicates which indicates what alkyne building block was used. A# tests 

are for ‘Alkyne-NH2’ (propargylamine), S# for ‘Alkyne-SH’ and D# for ‘Alkyne-DOPA’. 
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A1 01 20 
1.5 μl   

(3 eq) 

6.0  

(3 eq) 

4.8  

(3 eq) 
o.n. Y 4 ml of solvent Y 56% 

A2 01 50 
3.8 μl 

(3 eq) 

15.0  

(3 eq) 

12  

(3 eq) 

o.n. 
Y 

Reduction to 1 ml of 
solvent. 

Y 47% 

A3 01 20 
1.5 μl 

(3 eq) 

6.0  

(3 eq) 

4.8  

(3 eq) 

o.n. 
Y 

Previous wash with 
DEDTC 

N - 

A4 01 20 
1.5 μl 

(3 eq) 

6.0  

(3 eq) 

4.8  

(3 eq) 

o.n. 
Y 50ºC N - 

A5 01 20 
1.5 μl 

(3 eq) 

6.0  

(3 eq) 

4.8  

(3 eq) 

o.n. 
Y Repetition of 3 Y Quant. 

A6 01 20 
1.5 μl 

(3 eq) 

6.0  

(3 eq) 

4.8  

(3 eq) 

o.n. 
Y 30ºC N - 

A7 01 20 
1.0 μl 

(2 eq) 

6.0  

(3 eq) 

9.6  

(6 eq) 

o.n. 
N  Y Quant. 

A8 02 15 
0.8 μl 

(2 eq) 

4.5  

(3 eq) 

9.6  

(6 eq) 
8 h N 

6 h of reaction + 2 h 
extra 

Y Quant. 

S1 02 15 
4.4 mg  

(2 eq) 

4.5  

(3 eq) 

3.6  

(3 eq) 
o.n. Y 1 ml of solvent N - 

S2 02 15 
6.6 mg 

(3 eq) 

4.5  

(3 eq) 

3.6  

(3 eq) 
o.n. Y 

Substrate from test 
1, cleavage with 

DTT additive 
Y Quant. 

S3 02 15 
4.4 mg 

(2 eq) 

4.5  

(3 eq) 

3.6  

(3 eq) 

o.n. 
Y  Y Quant. 
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D1 02 15 
6.8 mg 

(2 eq) 

4.5  

(3 eq) 

3.6  

(3 eq) 
o.n. Y  Y Quant. 

o.n.: overnight 
DEDTC: sodium diethyldithiocarbate 
DTT: dithiothreitol 
Y: Yes 
N: No 

Table 3. List of test reactions.  

6.2.1. Reaction with ‘Alkyne-NH2’ 

Two methods were used to perform the reaction with propargylamine. The main difference 

between the methods is that in one of them the reaction was put under inert gas (N2). 

Method 1: The desired amount of RGD-DWIVA resin was put in a glass vial and DMF was 

added. The mixture was purged and stirred 10 min under N2 atmosphere. To purge, two needles 

were connected to the plug, one of them having N2 flow and the other open to air. N2 flow was 

maintained for 5 min and the open needle was retired as N2 flow continued for 2 min. 

Propargylamine (desired eq), CuSO4 · 5 H2O (3 eq) dissolved in water and sodium ascorbate (3 

eq) were added to the pot, which was purged and left to reactthe desired time. After reaction, the 

system was opened, and the resin was transferred into a syringe and washed with DMF (5 x 0.5 

min) and DCM (5 x 0.5 min). 

Method 2: In a syringe, the desired amount of RGD-DWIVA resin was conditioned and DMF 

was added.  Propargylamine (desired eq), CuSO4 · 5 H2O (3 eq) dissolved in water and sodium 

ascorbate (6 eq) were added to the system and it was left stirring for the desired time. After 

reaction, the resin was washed with DMF (5 x 0.5 min) and DCM (5 x 0.5 min). 

6.2.2. Reaction with ‘Alkyne-SH’ 

Reactions with this compound follow the method 1 described for propargylamine. 

The desired amount of RGD-DWIVA resin was put in a glass vial and DMF was added. The 

mixture was purged and stirred 10 min under N2 atmosphere. To purge, two needles were 

connected to the plug, one of them having N2 flow and the other open to air. N2 flow was 

maintained for 5 min and the open needle was retired as N2 flow continued for 2 min. ‘Alkyne-SH’ 

(desired eq) dissolved in 150 μl of DMF, CuSO4 · 5 H2O (3 eq) dissolved in water and sodium 

ascorbate (3 eq) were added to the pot, which was purged and left to react overnight. After 
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reaction, the system was opened, and the resin was transferred into a syringe and washed with 

DMF (5 x 0.5 min) and DCM (5 x 0.5 min). 

6.2.3. Reaction with ‘Alkyne-DOPA’ 

One reaction has been made with this building block, following the same method described 

for ‘Alkyne-SH’ (section 6.2.2). 

The desired amount of RGD-DWIVA resin was put in a glass vial and DMF was added. The 

mixture was purged and stirred 10 min under N2 atmosphere. To purge, two needles were 

connected to the plug, one of them having N2 flow and the other open to air. N2 flow was 

maintained for 5 min and the open needle was retired as N2 flow continued for 2 min. ‘Alkyne-

DOPA’ (desired eq) dissolved in 150 μl of DMF, CuSO4 · 5 H2O (3 eq) dissolved in water and 

sodium ascorbate (3 eq) were added to the pot, which was purged and left to react overnight. 

After reaction, the system was opened, and the resin was transferred into a syringe and washed 

with DMF (5 x 0.5 min) and DCM (5 x 0.5 min). 

7. RESULTS AND DISCUSSION 

7.1. SYNTHESIS OF RGD-DWIVA PEPTIDES 

Two batches of this peptide were synthesized, obtaining 50% and 70 % purity. 

In the steps of loading and acetylation, last deprotection steps were carried during 10 min 

instead of 5 to ensure full removal of Fmoc. Before acetylation, ninhydrin test was also done to 

confirm it. 

After removing Alloc, the resin was washed with a solution of sodium diethyldithiocarbamate 

(DEDTC) 0.02 M in DMF (3 x 15 min) to remove Pd that could remain in the resin. That was done 

after the full synthesis in RGD-DWIVA-01, and just after Alloc removal in RGD-DWIVA-02. That 

was found to be important for the CuAAC reaction (see Section 7.3.1). 

There were some problems regarding the ninhydrin tests. As negative results are associated 

with yellow colour and positive to blue/violet, there were some tests that resulted in a green colour 

when the expected result was negative. It was decided to take green as negative, because resin 
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beads were transparent. Main hypothesis is that ninhydrin reagent could also interact with azide 

and give the green colour.   

Another problem was that after the elongation and Fmoc removing from the last amino acid 

(aspartic acid) of the DWIVA branch, ninhydrin test was negative. After repeating the deprotection 

step with more piperidine treatments, the ninhydrin was still negative. The reason is that this 

amine is not as accessible as the previous ones, due to two branches of 6 and 7 amino acids, 

respectively. Then, this steric impediment does not allow ninhydrin reagents to react with the 

amine. It was decided to continue with acetylation because after that double treatment Fmoc was 

surely removed. 

In their chromatograms at 25ºC, a specific pattern of four peaks can be seen. At 60ºC, these 

4 peaks unify as one (Figure 6). This is due to the formation of two known by-products. One is an 

isomerization of the RGD branch. The other one is formed when Trp traps the CO2 from the Boc 

protecting group once it is deprotected. At 60ºC, the RGD isomers get an equilibrium and after 

long time in solution, the CO2 is removed. Note that this pattern is found in all the chromatograms 

of the click reactions if they are done at 25ºC. 

 

 

 

 

 

 

                          

Figure 6. RGD-DWIVA-02 chromatograms at 25ºC (left) and 60ºC (right). 

7.2. SYNTHESIS OF ‘ALKYNE-SH’ 

For this compound, the obtained quantity was enough to perform the reactions and the purity 

was good. It was obtained as a white-yellow solid. 

In order to find the loading conditions, 30 mg of Sieber resin were loaded with Fmoc-L-

Cys(Trt)-OH (12.1 mg, 1.2 eq) for 1h and after a ninhydrin test, it was discovered that the loading 

step failed. As the maximum loading was wanted, it was found that adding stoichiometric amounts 
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for the loading did not result in the complete loading in 1h, and more time would be needed. 

However, with a 3x excess a complete loading was accomplished in 1h. This was demonstrated 

by ninhydrin tests. Once the conditions were optimized, the synthesis was repeated with the 

desired amino acid.  

For cleavage, it was tried to be done with TFA 1.5% (v/v), as Sieber resin can be cleaved with 

1% concentration17,18 and in TFA 3% (v/v) it was possible that Dpm protective group could be 

released. However, after cleavage treatment with TFA 1.5% (as described in section 6.2.3), the 

peptide was not fully cleaved. When the concentration was raised to 3%, the resin was cleaved 

with a total of 6 washes of cleavage solution (6 x 0.5 min), but the extract became yellow. That 

was interpreted as the removal of Dpm from the thiol, but HPLC revealed that the group was 

maintained as all chromatograms were the same (Appendixes 2.4 and 2.5). Therefore, it was 

decided to cleave the resin with TFA 3% (v/v). 

7.3. SYNTHESIS OF ‘ALKYNE-DOPA’ 

The obtained quantity was enough to perform tests and with a decent purity. It was obtained 

as a white solid. The first collect was discarded as it showed yellow traces. 

However, the obtained quantity was low. It was thought that more peptide could remain 

bounded to the resin, then the process of cleavage was repeated. The hypothesis was confirmed 

as more peptide was cleaved in the new collects, demonstrated by HPLC. Up to this date, there 

is not data about the amount of recovered peptide, then the shown amount is the one which was 

obtained in the first cleavage process. In the end, it was clear that more collects and more washes 

were needed to collect all the product. 

7.4. CUAAC OPTIMIZATION 

7.4.1. ‘Alkyne-NH2’ 

The first reagent to be tested was propargylamine. After optimizing the conditions with this 

reagent, the tests with other building blocks were based on the obtained results. 

Before adding ascorbate to the mixture, the solution was blue due to copper (II). When it was 

added, the solution became green (copper (I)), and while the reaction took place the colour tended 

to yellow. When the resin was washed, it remained as green. It was found that dissolving copper 

and ascorbate in water together resulted in the formation of a brown solid which was not useful. 
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It hasn’t been determined what compound is. However, the main theory  is that is metallic Cu 

(excess of reduction) or Cu2O (as it has the same colour). Adding CuSO4 · 5 H2O dissolved in 

water and solid ascorbate avoided the formation of this by-product. 

A1 test was monitored at 1 and 2 h of reaction. At 1 h there wasn’t any product formed. At 2 

h, a small peak appeared at 5.6 min, which increased after overnight (Figure 7). This peak was 

related to the new product, and showed the same pattern as the starting material, which shows 

the major peak at 6.1 min. The yield was 56%, calculated with the area relationship between these 

two major peaks. 

 

 

 

 

 

 

           

Figure 7. Evolution of A1 test at 1 h (left), 2 h (centre) and overnight (right). All done at 25ºC. 

To try to improve the results obtained from A1, A2 test was performed, trying to concentrate 

the reagents reducing the amount of solvent and taking more resin. However, the obtained yield 

was nearly the same (47%), then it was found that the concentration was not the problem. 

A3 and A4 tests didn’t give any product due to manipulation problems. 

A5 and A6 reactions were done in parallel. This time, the resin was washed with DEDTC to 

remove Pd, as it could be interfering with Cu in the catalytic process. It was also tested to 

accelerate the reaction by raising mildly the temperature, having reaction 6 at 30ºC. The result 

was that reaction 5 yield was 51% after 1 h, 83% after 2 h and quantitative after overnight (Figure 

8). This was also demonstrated by HPLC-MS (Appendix 2.9). According to these data, it seemed 

that the time it took to be quantitative was 3-4h. A6 reaction solution and resin turned brown after 

overnight and it was decided that it was not necessary to analyse. 

 

 

Starting mat. 
Product 
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Figure 8. Evolution of A5 test at 1 h (left), 2 h (centre) and overnight (right). All done at 25ºC. 

For A7 test, it was tried to avoid using N2 atmosphere to facilitate the manipulation. For this 

reason, ascorbate ratio was doubled to prevent Cu(I) oxidation due to open air. Also, it was tried 

to reduce alkyne equivalents (from 3 to 2) to see if it worked, because the next reactions would 

be tested with synthetic reagents and it was better to use less quantity. At 3h, its yield was 38%, 

and at 4h it was 70%. (Figure 9). The reaction mixture showed its usual green colour. However, 

after overnight, the solution became brown as in A6 test. HPLC showed that the reaction was 

quantitative, but the reaction crude was very dirty (Figure 9). It was tried to wash the resin with 

DEDTC, but it was not effective. 

 

 

 

 

 

 

              

Figure 9. Evolution of A5 test at 3 h (left), 4 h (centre) and overnight (right). All done at 60ºC. 

Then, it was decided to repeat the reaction stopping it in 6h (A8 test) to see if it was enough 

time to be quantitative and to avoid the formation of the brown precipitate, but the obtained yield 

was lower than the expected, 22%, so the reaction was resumed, and the mixture turned yellow 

first and started to get brown at 2h. In that moment it was stopped, and the chromatogram showed 

the same result as in reaction A7: quantitative, but dirty. 

Starting mat. 
Product 

Starting mat. 
Product 
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In the end, it was decided that the optimal conditions were the ones in A5. It was necessary 

to wash the resin with DEDTC before the reaction to avoid intermetallic interferences, and it was 

decided to use inert atmosphere and stoichiometric ratio of Cu (II) and ascorbate to avoid the 

formation of Cu precipitate and obtain a cleaner crude. 

7.4.2. ‘Alkyne-SH’ 

For S1 test, the colours progression was the same as the one seen with propargylamine. In 

its chromatogram a new peak appeared at 7.2 min, which was expected to be the product (Figure 

10) with an apparent yield of 22%. However, the crude was very dirty, and it could not be assigned 

by HPLC-MS, as expected m/z could not be found, neither the product nor the starting material 

(Appendix 2.11). 

S2 test was performed before obtaining HPLC-MS results of S1 test. As a low yield was 

calculated, it was decided to reuse that resin to try the same conditions but concentrating, and 

that was done raising the eq from 2 to 3 and reducing the solvent to the same proportion as it was 

for 20 mg of resin. It was also washed with DEDTC, as the crude was very dirty. After overnight, 

the chromatogram was almost the same as the obtained for S1. After some research, it was 

decided to do a mini-cleavage using dithiothreitol (DTT) as additive to the cleavage solution in 

small amount, as it prevents byproducts that come from thiol oxidation to disulphide2. The result 

was a new cleaner chromatogram where a major single peak appeared at 5.7 min (Figure 10). 

This peak was confirmed to be the product by HPLC-MS (Appendix 2.12). 

 

 

 

 

 

   

Figure 10. S1 mini-cleavage after overnight (left), S2 mini-cleavage without DTT (centre) and S2 mini-

cleavage with DTT (right). All done at 60ºC. 
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After this result, a new test was performed (S3) using the same conditions for S1, to confirm 

that if it worked with 2 eq after overnight. After mini-cleavage with DDT and HPLC analysis, it was 

confirmed that it worked perfectly, as the same chromatogram as for S2 was obtained. 

In the end, the same conditions that worked with propargylamine are good for this reaction, 

and it was demonstrated that alkyne equivalent could be reduced from 3 to 2. The only thing that 

needs to be changed is the cleavage with DTT due to the formation of numerous byproducts. 

7.4.3. ‘Alkyne-DOPA’ 

Only one reaction has been performed with this building block (D1 test). The conditions that 

were used worked with both propargylamine and ‘Alkyne-SH’, then it was expected to work well. 

The reaction progression was the expected one and nothing strange happened. The 

chromatogram of this reaction after overnight showed nearly the same profile as S3 test, including 

the main single peak at 5.7 min (Figure 11). Although this is surely the product, HPLC-MS analysis 

could not be done due to lack of time, then it needs further studies. 

 

 

 

 

 

 

 

Figure 11. D1 test mini-cleavage after overnight. Done at 60ºC. 

To sum up, it seems that the product has been obtained, but it needs confirmation by HPLC-

MS.  
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8. CONCLUSIONS 

The three proposed objectives were accomplished. All the target compounds were 

synthesized, and the three reactions were optimized to obtain the desired peptide platforms in 

good yields. 

However, this is not the end for this study. Further studies in DOPA analogue should be done 

to confirm that the product is the desired one.  

This project focused on the methodology, and now these methods are established to 

synthesize these moieties in larger scale. The next thing to do is produce them with more amounts 

of reagents, cleave them and purify them. Once they are obtained, they should be tested in 

surface functionalization studies to demonstrate their effectiveness on adhesion to the surface 

and on their function. 

Also, it must be proved that this methodology is useful to synthesize other peptide platforms 

that contain other bioactive sequences, for example, a dimeric platform of RGD and lactoferrin 

(antibiotic properties), PHSRN (osteoblast response boost) or REDV (endothelialisation)1. Once 

this is proved to work with other structures, it will be considered as a solid methodology to prepare 

multifunctional platforms. 

It is hoped that this project will serve as a starting point to develop new methodologies on 

SPPS of the peptide platforms destined to functionalize materials, introducing new ways of 

working that will be fast and efficient. 



New synthetic strategies for the synthesis of multifunctional peptidic platforms with osteoinductive potential 37 

 

9. REFERENCES AND NOTES 
(1)  Mas-Moruno, C. Surface Functionalization of Biomaterials for Bone Tissue Regeneration and 

Repair; Elsevier Ltd., 2017. https://doi.org/10.1016/B978-0-08-100803-4.00003-6. 
(2)  Mas-Moruno, C.; Fraioli, R.; Albericio, F.; Manero, J. M.; Gil, F. J. Novel Peptide-Based Platform 

for the Dual Presentation of Biologically Active Peptide Motifs on Biomaterials. ACS Appl. Mater. 
Interfaces 2014, 6 (9), 6525–6536. https://doi.org/10.1021/am5001213. 

(3)  Pagel, M.; Hassert, R.; John, T.; Braun, K.; Wießler, M.; Abel, B.; Beck-Sickinger, A. G. 
Multifunctional Coating Improves Cell Adhesion on Titanium by Using Cooperatively Acting 
Peptides. Angew. Chemie Int. Ed. 2016, 55 (15), 4826–4830. 
https://doi.org/10.1002/anie.201511781. 

(4)  Hoyos-Nogués, M.; Velasco, F.; Ginebra, M. P.; Manero, J. M.; Gil, F. J.; Mas-Moruno, C. 
Regenerating Bone via Multifunctional Coatings: The Blending of Cell Integration and Bacterial 
Inhibition Properties on the Surface of Biomaterials. ACS Appl. Mater. Interfaces 2017, 9 (26), 
21618–21630. https://doi.org/10.1021/acsami.7b03127. 

(5)  Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a 
Few Good Reactions. Angew. Chemie - Int. Ed. 2001, 40 (11), 2004–2021. 
https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. 

(6)  Tornøe, C. W.; Meldal, M. Peptidotriazoles: Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions on 
Solid-Phase. In Peptides: The Wave of the Future: Proceedings of the Second International and 
the Seventeenth American Peptide Symposium, June 9--14, 2001, San Diego, California, U.S.A.; 
Lebl, M., Houghten, R. A., Eds.; Springer Netherlands: Dordrecht, 2001; pp 263–264. 
https://doi.org/10.1007/978-94-010-0464-0_119. 

(7)  Huisgen, R.; Knorr, R.; Möbius, L.; Szeimies, G. 1.3-Dipolare Cycloadditionen, XXIII. Einige 
Beobachtungen Zur Addition Organischer Azide an CC-Dreifachbindungen. Chem. Ber. 1965, 98 
(12), 4014–4021. https://doi.org/10.1002/cber.19650981228. 

(8)  Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition 
Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. 
Chemie - Int. Ed. 2002, 41 (14), 2596–2599. https://doi.org/10.1002/1521-
3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. 

(9)  Rodionov, V. O.; Presolski, S. I.; Díaz, D. D.; Fokin, V. V.; Finn, M. G. Ligand-Accelerated Cu-
Catalyzed Azide-Alkyne Cycloaddition: A Mechanistic Report. J. Am. Chem. Soc. 2007, 129 (42), 
12705–12712. https://doi.org/10.1021/ja072679d. 

(10)  Castro, V.; Rodríguez, H.; Albericio, F. CuAAC: An Efficient Click Chemistry Reaction on Solid 
Phase. ACS Comb. Sci. 2016, 18 (1), 1–14. https://doi.org/10.1021/acscombsci.5b00087. 

(11)  Rovira, A.; Gandioso, A.; Goñalons, M.; Galindo, A.; Massaguer, A.; Bosch, M.; Marchán, V. 
Solid-Phase Approaches for Labeling Targeting Peptides with Far-Red Emitting Coumarin 
Fluorophores. J. Org. Chem. 2019, 84 (4), 1808–1817. https://doi.org/10.1021/acs.joc.8b02624. 

(12)  Palmer, D.; Gonçalves, J. P. L.; Hansen, L. V.; Wu, B.; Hald, H.; Schoffelen, S.; Diness, F.; Le 
Quement, S. T.; Nielsen, T. E.; Meldal, M. Click-Chemistry-Mediated Synthesis of Selective 
Melanocortin Receptor 4 Agonists. J. Med. Chem. 2017, 60 (21), 8716–8730. 
https://doi.org/10.1021/acs.jmedchem.7b00353. 

(13)  Lee, J. Y.; Choo, J. E.; Choi, Y. S.; Suh, J. S.; Lee, S. J.; Chung, C. P.; Park, Y. J. Osteoblastic 
Differentiation of Human Bone Marrow Stromal Cells in Self-Assembled BMP-2 Receptor-Binding 



38 Sánchez Campillo, Iván 

       

Peptide-Amphiphiles. Biomaterials 2009, 30 (21), 3532–3541. 
https://doi.org/10.1016/j.biomaterials.2009.03.018. 

(14)  Ruhemann, S. CCXII.—Triketohydrindene Hydrate. J. Chem. Soc.{,} Trans. 1910, 97 (0), 2025–
2031. https://doi.org/10.1039/CT9109702025. 

(15)  Al-Warhi, T. I.; Al-Hazimi, H. M. A.; El-Faham, A. Recent Development in Peptide Coupling 
Reagents. J. Saudi Chem. Soc. 2012, 16 (2), 97–116. https://doi.org/10.1016/j.jscs.2010.12.006. 

(16)  El-Faham, A.; Al Marhoon, Z.; Abdel-Megeed, A.; Albericio, F. OxymaPure/DIC: An Efficient 
Reagent for the Synthesis of a Novel Series of 4-[2-(2-Acetylaminophenyl)-2-Oxo-Acetylamino] 
Benzoyl Amino Acid Ester Derivatives. Molecules 2013, 18 (12), 14747–14759. 
https://doi.org/10.3390/molecules181214747. 

(17)  Sieber, P. A New Acid-Labile Anchor Group for the Solid-Phase Synthesis of C-Terminal Peptide 
Amides by the Fmoc Method. Tetrahedron Lett. 1987, 28 (19), 2107–2110. 
https://doi.org/10.1016/S0040-4039(00)96055-6. 

(18)  Paradís Bas, M. Development of New Tools for the Synthesis of “Difficult Peptides.” 



New synthetic strategies for the synthesis of multifunctional peptidic platforms with osteoinductive potential 39 

 

10. ACRONYMS 

ACN:   acetonitrile 

Ahx:    6-aminohexanoic acid 

Alloc:   Allyloxycarboyl 

APTES:  3-aminopropyltriethoxysilane 

BMP:   Bone Morphogenetic Protein 

BMPS:  3-(maleimido)propionic acid N-succinimidyl ester 

Boc:   tert-butyloxycarbonyl 

CuAAC:   Copper-catalysed Azide Alkyne Cycloaddition 

DCM:   dichloromethane 

DEDTC:   sodium diethyldithiocarbamate 

DIC:    N,N’-diisopropylcarbodiimide 

DIEA:   N,N-diispropylethilamine 

DMF:   N,N-dimethylformamide 

DOPA:   3,4-dihydroxyphenylalanine 

Dpm:   diphenylmethyl 

Dpm:   diphenylmethyl 

DTT:   dithiothreitol 

eq:   equivalent 

Fmoc:  9-fluorenylmethoxycarbonyl 

FN:   fibronectin 

MS:   Mass Spectrometry 

OxymaPure (Oxyma):  ethyl 2-cyano-2-(hydroxyimino) acetate 

Pbf:   2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl 
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PLA:    polylactic acid 

Pty:   4-Pentynoic acid 

Rink Amide MBHA:  4-(2',4'-Dimethoxyphenylaminomethyl)-phenoxyacetamido-

   methylbenzhydrylamine 

RP-HPLC:  Reversed Phase-High Performance Liquid Chromatography 

Sieber PS:  9-amino-9H-xanthen-3-yl-oxymethyl polystyrene 

SPPS:   Solid Phase Peptide Synthesis 

TBTA:   tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine 

tBu:   tert-butyl 

TFA:   trifluoroacetic acid 

TIS:   triisopropylsilane 

Trt:   trityl 
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APPENDIX 1: TABLES OF AMINO ACIDS AND 

PROTECTIVE GROUPS 

1.1. Amino acids 
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1.2. Protective groups 
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APPENDIX 2: CHROMATOGRAMS AND SPECTRA 

2.1. RGD-DWIVA-01, 25ºC 

 

 

 

 

 

 

2.2. RGD-DWIVA-01, 60ºC 

 

 

 

 

 

 

2.3. RGD-DWIVA-01, HPLC-MS 
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M=1835.04. [(M+3H)/3]3+: 612.68 (612.68). [(M+2H)/2]2+: 918.48 (918.52). [M+1H]+: 1835.90 

(1836.04). 

2.4. ‘Alkyne-SH’ (cleavage with TFA 1.5% v/v) 

 

 

 

 

 

 

2.5. ‘Alkyne-SH’ (cleavage with TFA 3% v/v) 

 

 

 

 

 

 

2.6. ‘Alkyne-SH’, HPLC-MS 
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M=366.48. [Dpm]+: 166.99 (167.09). [M+1H]+: 367.03 (367.48). [2M+1H]+: 733.12 (733.96). 

2.7. ‘Alkyne-DOPA’ 

 

 

 

 

 

 

2.8. ‘Alkyne-DOPA’, HPLC-MS 

 

 

 

 

 

 

 

 

 

 

 

 

M=535.60. [M+1H]+: 536.39 (536.60). 
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2.9. A5 test, HPLC-MS 

 

 

 

 

 

 

 

 

 

M=1890.08. [(M+3H)/3]3+: 630.95 (631.03). [(M+2H)/2]2+: 945.94 (946.04). 

 

 

 

 

 

M=1835.04. [(M+3H]/3]3+: 612.64 (612.68). [(M+2H]/2]2+: 918.40 (918.52). 

2.10. S1 test, HPLC-MS 
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2.11. S3 test, HPLC-MS 

 

 

 

 

 

 

 

 

 

 

 

M=2035.10. [(M+3H]/3]3+: 679.92 (676.37). [(M+2H]/2]2+: 1019.27 (1018.55). 





 

 


