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Abstract

Motivation: Most computational tools for small non-coding RNAs (sRNA) sequencing data analysis

focus in microRNAs (miRNAs), overlooking other types of sRNAs that show multi-mapping hits.

Here, we have developed a pipeline to non-redundantly quantify all types of sRNAs, and extract

patterns of expression in biologically defined groups. We have used our tool to characterize and

profile sRNAs in post-mortem brain samples of control individuals and Parkinson’s disease (PD)

cases at early-premotor and late-symptomatic stages.

Results: Clusters of co-expressed sRNAs mapping onto tRNAs significantly separated premotor

and motor cases from controls. A similar result was obtained using a matrix of miRNAs slightly

varying in sequence (isomiRs). The present framework revealed sRNA alterations at premotor

stages of PD, which might reflect initial pathogenic perturbations. This tool may be useful to

discover sRNA expression patterns linked to different biological conditions.

Availability and Implementation: The full code is available at http://github.com/lpantano/seqbuster.

Contact: lpantano@hsph.harvard.edu or eulalia.marti@crg.eu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA high-throughput sequencing strategies have revealed a pleth-

ora of small non-coding RNAs (sRNAs) with diverse functions as

regulators of gene expression (Esteller, 2011). While micro RNAs

(miRNAs) are the best-known class of sRNAs, for many others the

biogenesis, regulation and cellular roles are largely unknown.

Accumulating evidence suggests that RNA fragments derived from

small nucleolar RNA (snoRNA) and transfer RNA (tRNA) are not

just random degradation products but rather stable elements, which

may have functional activity in physiological and pathological con-

ditions, influencing gene expression and alternative splicing events

(Martens-Uzunova et al., 2013). In neuronal cells, tRNA fragments
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sensitize cells to oxidative-stress-induced p53 activation and p53-

dependent cell death indicating that these sRNAs may participate in

neurodegenerative processes (Hanada et al., 2013).

In the central nervous system (CNS), miRNA are essential in

cell-type specification and differentiation, and post-mitotic long-

term neuronal maintenance. Perturbations of miRNA pathways

have emerged as effectors of CNS damage, contributing to impaired

cell homeostasis and neuronal death. However, the relevance of

other types of sRNAs in analogous processes has been little

explored, constituting an untapped source of bioactive compounds.

Several miRNAs pathways are altered in neurodegenerative dis-

orders, including Parkinson’s disease (PD), the most common move-

ment disorder (de Rijk et al., 2000; Shulman et al., 2011). We have

previously shown that the expression of several miRNAs is altered

in brains of patients at early/premotor and late/motor stages of PD

(Minones-Moyano et al., 2011, 2013). These miRNAs modulate

mitochondrial function and neuronal viability, suggesting a contri-

bution of their deregulation in early pathogenic events. In addition,

miRNA profiling in peripheral blood suggests specific expression

signatures in PD (Burgos et al., 2014; Fernandez-Santiago et al.,

2015). Furthermore, in leukocytes of PD patients, sRNA deep

sequencing reveals splicing changes that classify brain region tran-

scriptomes (Soreq et al., 2013). Characterization of sRNA species al-

teration in PD may provide the basis to understand pathogenesis of

PD and to target new non-invasive diagnosis biomarkers. However,

a full characterization of the sRNA transcriptome in PD (including

species other than miRNAs), is still lacking.

Current bioinformatics resources for the analysis of sRNA

sequencing data are mainly focused in miRNA detection and predic-

tion. The characterization of other types of sRNA is not deeply ad-

dressed in these tools and only a few of them produce outputs for

downstream analysis (Hoogstrate et al., 2014; Huang et al., 2010).

A major drawback in the analysis and quantification of the non-

miRNA sRNA is the presence of multi-mapping reads that derive

from tRNAs or non-coding RNA genes with duplication events on

the genome. The majority of the current bioinformatic tools apply

inaccurate strategies to handle these types of sequences and: (i)

directly discard them, resulting in an under-estimation of these elem-

ents or (ii) count them everywhere they map, causing an over-

estimation of their expression and making incorrect the use of

count-based differential expression analysis, since these methods as-

sume that reads are counted once.

Here, we have developed a framework to (i) characterize the full

set of sRNAs using an improved version of the SeqCluster tool

(Pantano et al., 2011) that deals with multi-mapping reads and, (ii)

extract patterns of expression through data-mining analyses. We

used this framework to quantify all types of sRNAs from high-

throughput sequencing data of post-mortem brain samples at pre-

motor- and motor stages of PD and age-matched controls.

Subsequent data-mining analyses using the SeqCluster output un-

covered sRNA signatures at premotor stages of the disease, involv-

ing several types of sRNAs. These results suggest that general sRNA

perturbations occur early in PD and further indicate that our pipe-

line is a sensitive tool to profile all types of sRNA.

2 Methods

2.1 General characterization of the sRNA

sequencing dataset
Brain samples were obtained from the Institute of Neuropathology

and the University of Barcelona Brain Bank. PD-related Braak

staging, RNA extraction and sRNA library preparation are detailed

in the Supplementary methods (Supplementary Table S1). Reads

were trimmed to 36 nt and ligation adapters removed using the

adrec.jar program from seqBuster suite (Pantano et al., 2010).

Sequences were mapped to the hg19 genome. sRNA processing,

mapping and annotation details are provided in Supplementary

Methods.

2.2 Definition of sRNA clusters
After adapter removal, sequences were collapsed among samples, re-

sulting in a set of unique sequences with the corresponding counts.

In this analysis, only sequences with more than 10 counts were con-

sidered. The pipeline detects hotspots after mapping sequences onto

the human genome (hg19 release). A hotspot is defined as a group of

at least 10 overlapping sequences, mapping onto a specific genomic

site.

The pipeline defines initial clusters, each consisting in several

hotspots sharing any number of sequences. We call these sequences

that map multiple times ambiguous sequences. We modified

SeqCluster (Pantano et al., 2011) to get better summarization, anno-

tation and reports of clusters, and be able to use multiple mapping

sequences. We assume that all hotspots with ambiguous sequences

belong to the same sRNA cluster that may have one or multiple cop-

ies on the genome. In some cases, two hotspots may share a very

small proportion of ambiguous sequences, maybe due to gene diver-

gence or spurious alignments. It would be incorrect to consider this

as the same sRNA cluster since the two copies are essentially differ-

ent. To solve this, we apply a heuristic algorithm to end up with a

sRNA cluster that can be considered as a unique unit of transcrip-

tion (Fig. 1). The algorithm is based on two steps: (i) reduction and

(ii) cluster correction. The reduction step joins all hotspots that

share more than N sequences, (60% by default). We implemented a

proportion test to determine whether the percentage of common se-

quences among hotspots is above that value. If the P value of the

proportion test is < 0.05, the hotspots will be considered from the

same sRNA cluster.

After that, if there are multiple hotspots in the same sRNA clus-

ter with lower similarity (<60%), that cluster goes through the ‘clus-

ter correction’ step. We applied the-most-voting strategy, where

common sequences are assigned to the sRNA cluster with more se-

quences. After this step, a new sRNA cluster is created and will con-

tain sequences uniquely to this new cluster.

This strategy generates unique/final sRNA clusters, each iden-

tifying a type of sRNA that, although it may contain sequences map-

ping onto multiple genomic locations (hotspots), these are only

considered once. As a result, a cluster defines the expression pattern

of a type of sRNA, in which groups of sequences are consistently co-

expressed, irrespective of their genomic origin. The full code is avail-

able at GitHub repository (http://github.com/lpantano/seqbuster),

and as a package at pypi (python package manager) (https://pypi.py-

thon.org/pypi/seqcluster).

In the present study, we detected a total of 2162 precursors (ini-

tial sRNA clusters) that were organized in 652 final sRNA clusters.

Only 127 initial clusters (with hotspots having <60% of similarity)

were split into three or more unique clusters (without ambiguous se-

quences), where ambiguous sequences contributed with less than

10% of sequences to these new clusters (Supplementary Fig. S1A).

This indicates that the ambiguous sequences among precursors of

different sRNA clusters were low expressed sequences compared to

the rest of sequences in each sRNA cluster. In many cases, all hot-

spots of an sRNA cluster shared all sequences, with hotspots

2 L.Pantano et al.
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differing only in the size (Supplementary Fig. S1B). In these cases, as

the pipeline runs through progressively more similar hotspots, all of

them are included in the same final sRNA cluster (without repeating

the sequences) using as hotspot/s those that contain the largest num-

ber of sequences.

For instance, an initial sRNA cluster formed by 50 hotspots was

reduced to three sRNA clusters with three hotspots. One of them

corresponds to sRNAs derived from tRNA-ARG-CCG that was

reduced from 20 precursors to one. The other two clusters are

sRNAs derived from the tRNA-ARG-CCT and another tRNA-

ARG-CCG. These three clusters are very similar, although they con-

tained some region-specific differences (Supplementary Fig. S22).

Therefore our strategy simplified annotation and interpretation of

the data and, at the same time kept enough specificity to detect

variability.

2.3 Partial least squares discriminant analysis
Partial least squares discriminant analysis (PLS-DA) is a technique

specifically appropriate for analysis of high dimensionality data sets

and multicollineality (Perez-Enciso and Tenenhaus, 2003). PLS-DA

is a supervised method (i.e. makes use of class labels) with the aim

to provide a dimension reduction strategy in a situation where we

want to relate a binary response variable (in our case control or

diseased status) to a set of predictor variables (in our study, sRNA

clusters) (Perez-Enciso and Tenenhaus, 2003) Dimensionality reduc-

tion procedure is based on orthogonal transformations of the ori-

ginal variables (clusters) into a set of linearly uncorrelated latent

variables (usually termed as components) such that maximizes the

separation between the different classes in the first few components

(Xia and Wishart, 2011). We used sum of squares captured by the

model (R2) as a goodness of fit measure.

Clusters with more than 10 counts in more than two samples

were taken into account and additionally we considered only clus-

ters expressed in at least 5 samples out of 14 being analysed (a total

of 621 clusters in controls versus premotor cases, or controls

versus motor cases). To avoid false separation caused by picking

up random noise rather than real signal, we conducted a permuta-

tion test (Xia and Wishart, 2011) involving 1000 data sets con-

structed by randomly reassigning class labels at each individual and

further performing PLS-DA on the new randomized data sets. We

further performed a PLS-DA for each of the main classes of sRNA

clusters and for the miscellaneous cluster list. We ensured for each

randomized data set that each group had a balanced number of cor-

rect and incorrect samples.

We conducted a refinement strategy to elude over parameterized

models with rather poor discriminant properties (Perez-Enciso and

Tenenhaus, 2003). In this sense, we obtained the most important

Fig. 1. General pipeline to define clusters of sRNAs (sRNA clusters), annotate miRNAs/isomiRs and perform downstream analyses to separate groups. Unique se-

quences are mapped onto the genome (steps 1 and 2). Miraligner detects miRNAs and isomiRs and generates a count matrix for all samples. For the rest, hot-

spots are defined (in this example H1–H5) as sets of overlapping sequences, according to their genomic positions (step 2). Colours show different types of sRNA,

derived from different classes of RNA precursors. The grey sequence has an uncertain origin because it maps on multiple sites. Primary clusters (CA and CB, in

the scheme) are subsequently defined as hotspots sharing any sequence. Then the pipeline goes through the reduction and the correction modules, based on re-

cursively heuristic steps that reorganize the hotspots in meaningful clusters of expression (step 3). To generate a final cluster (for instance, C1 and C2 in step 4)

the algorithm starts considering the most similar hotspots (H1–H2) in CA and joints them into a new hotspot (H’12). Then, the next similar hotspots within CA

(H3–H4) are taken and joined into another hotspot (H’34). All new hotspots that have similarity � 60% (or any other cut-off), will be labelled as conflict events. In

this case, the common sequences go to the bigger hotspot, and each of them becomes a different cluster (in this example H’12 ends as C1 and H’34 as C2). When

all initial clusters go through this step, SeqCluster annotates them with an optional GTF file and generates the count matrix for downstream analysis (step 4).

Finally, both count matrixes (miRNA and cluster) are normalized with DESeq2 and used for PLS-DA and differential expression analysis (step 5)
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discriminant clusters from the four PLS-DA models based on the

analysis of the three main sRNA-clusters lists (miRNA-, tRNA- and

snoRNA-clusters) and the miscellaneous one, and conducted a se-

cond PLS-DA analysis including the important clusters associated

independently to the four different models. We used variable im-

portance for the projection (VIP) criterion that takes into account

the contribution of a specific predictor for both the explained vari-

ability on the response and the explained variability on the pre-

dictors. As a rule of thumb, it is customary to retain variables with

VIP > 0.8 (Perez-Enciso and Tenenhaus, 2003), however we used a

more strict criteria, VIP > 1.2, to ensure variable importance into

the whole model.

To evaluate significance of the refined strategy, we conducted

two different approaches to respond to two different concepts. The

first approach evaluates the robustness of the whole procedure,

which consisted in: (i) randomize the class labels of the individuals,

(ii) perform a PLS-DA analysis per each of the four different cluster

lists and (iii) conduct a PLS-DA analysis including VIP clusters asso-

ciated to the four different models. The second approach evaluates

whether the selected clusters (according to the VIP score) are only

useful for discriminating the target groups. For this latter purpose,

we conducted similar permutation analysis to that explained for the

general PLS-DA model, but including only the original VIP clusters

in each randomized data set.

Permutation-based P values were calculated following this

equation:

p� value ¼
X

R2
o < R2

e

nþ 1

where R2
o and R2

e are the sum of squares captured by the model in

the real and randomized data sets respectively, and n is the number

of permutations.

2.4 Differential expression
We used DESeq2 for differential expression analysis and log2 trans-

formation of the count data. We used the count matrix generated by

Seqbuster and SeqCluster. Following the same rationale as in the

PLS-DA analysis, only isomiRs, or clusters with more than 10

counts were taken into account and also sRNA-clusters or isomiRs

consistently expressed (counts>10) in at least 5 samples out of the

14 included in each analysis (controls versus premotor cases and

controls versus motor cases). We performed permutation analysis to

compare the results with the background noise of the data (See

Supplementary material).

3 Results

3.1 Amygdala sRNA composition is complex, but

dominated by few abundant RNAs
To elucidate the role of sRNAs in PD, we subjected 21 human brain

samples to small RNA sequencing (sRNA-seq). We specifically

focused in the amygdala, a brain area presenting Lewy bodies (LB)

at pre-motor stages, the characteristic neuropathological hallmark

of PD (Braak et al., 2003, 2004). The samples comprised seven pre-

motor cases, seven motor cases and seven control individuals

(Supplementary Table S1, Supplementary methods). In addition,

technical replicates were made of the seven controls, for a total of

28 distinct sequencing libraries constructed. Following sequencing

on an Illumina HiSeq2000 instrument, the libraries each yielded be-

tween 10 and 20 million reads. After quality filtering, between 85

and 93% of the reads could be traced to genomic loci with high

confidence (Supplementary Methods). As expected, most of the

sequenced RNAs originated from miRNAs (mean 56%), but there

were also substantial contributions from tRNAs (24%), rRNAs

(5%), snoRNAs (3%) and yRNAs (7%) (Fig. 2A and B). Although

hundreds of genes in each of these sRNA classes were expressed,

relatively few genes dominate the pool of sequenced RNA (Fig. 2C).

The biogenesis of sRNAs is often reflected in the length of the mol-

ecules. As expected, the miRNAs in our samples clearly tended to-

wards a length of 22 nucleotides (Fig. 2D).

Interestingly, the yRNA fragments clearly peaked at 32 nucleo-

tides and the tRNA fragments at 33 nucleotides. The fragments

from snoRNAs and rRNAs, did not exhibit any clear length peaks

(Supplementary Fig. S3A). Investigating the relation between the

amygdala sRNAs and their annotated host transcripts, we found

that the most expressed miRNA, tRNA and yRNA genes: mir-181a,

tRNA-Val-GTY and Y4, accounting for 18, 21 and 78% of the re-

spective classes, all yield fragments from specific positions in their

transcripts (Supplementary Fig. S4). We next investigated if these

three genes, mir-181a, Y4 and tRNA-Val-GTY, are representative

of their respective species. While miRNAs and tRNA fragments tend

to be 22 nt 33 nt long, the yRNAs tend to be more variable in length

(Supplementary Fig. S5).

Hierarchical clustering (Supplementary Methods) to group the

28 libraries based on their sRNA compositions reflects the path-

ology of the brain samples, since controls grouped together although

they were prepared in independent batches (left of the sequenced

dendrogram, Supplementary Fig. S3B). Finally, plotting the lengths

RNAs showed sRNA length profile is enough to define the library

compositions: libraries enriched in miRNAs tend to comprise RNAs

that are �22 nucleotides in length, while those enriched in tRNAs

tend to contain RNAs that are �33 nucleotides in length.

3.2 Improvements to the SeqCluster tool
SeqCluster organizes sRNAs in units or clusters of co-expressed mol-

ecules, consistently mapping to a host transcript (Pantano et al.,
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Fig. 2. Amygdala sRNA composition (A) sRNA composition summed over

seven control individuals. (B) Pie chart representation. (C) Abundances of

highly and lowly expressed sRNAs summed over seven control individuals.

Colour code as above. (D) Length distributions of sRNAs summed over seven

control individuals. The abundances are relative to all sequenced RNAs
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2011). A distinctive characteristic of this tool is that it objectively

assigns each sequence to a cluster, at which the correspondent

counts are assigned (Supplementary Methods). We have upgraded

the original pipeline, which in its current version generates a count

matrix for all samples that can be used downstream profiling ana-

lyses (Fig. 1).

The new version of SeqCluster has important improvements that

allow correct quantification of all types of sncRNA and a better ex-

ploratory analysis: (i) While the first version was java-based inter-

face for exploratory analysis, this version, is a python based

command line tool that can be integrated into any bioinformatic

framework focused in the quantification, annotation and visualiza-

tion; (ii) It is totally integrated in python allowing easy installation

and usage of already published packages for common bioinformatic

tasks; (iii) It handles all samples at the same time, reducing the time

and number of commands needed to process a full project; (iv) It

generates a count matrix that can be used for differential expression

or clustering analyses; (v) It uses pysam and bedtools for the align-

ment and annotation that improves reproducibility, ensuring correct

results since these tools are highly tested by the community; (vi) It

works with known formats removing any custom format from the

previous version; (vii) The algorithm to detect clusters has been

modified in order to remove some dependencies that complicate in-

stallation and improve memory and time resources, taking less than

20 min to run a total of 28 samples—20 million reads/sample—in a

single machine with 8GB of RAM); (viii) The whole analysis is

wrapped in bcbio-nextgen framework that produces isomiRs/clus-

ters results in html format with a single command line [http://github.

com/chapmanb/bcbio-nextgen]; (ix) isomiRs count matrix gener-

ation, PLS-DA and DE analysis are integrated in a R package:

isomiRs (http://github.com/lpantano/isomiRs).

To validate the quantification potential of SeqCluster, we ana-

lyzed the publicly available miRQC samples (Mestdah et al., 2014)

with SeqCluster and used the generated sRNA clusters count matrix

for relative expression analysis. Four samples were considered: A,

containing 100% Universal Human miRNA Reference RNA; B,

100% human brain RNA; and two titrations thereof (C ¼ 0.75A þ
0.25B and D ¼ 0.25A þ 0.75B). For clusters more abundant in A

versus B (A>B) or in B versus A (B>A), the vast majority were cor-

rectly ordered when comparing all groups (A>C>D>B) or

(B>D>C>A), respectively (see Supplementary Table S3); suggest-

ing that SeqCluster detects titration and therefore it is an appropri-

ate tool to quantify sRNAs (http://seqcluster.readthedocs.org/

example_pipeline.html#mirqc-data).

3.3 Amygdala host transcripts give rise to specific

sRNAs that are organized in hundreds of sRNA clusters
To have a qualitative and quantitative estimation of expressed

sRNAs in each sample, we structured overlapping sequences in clus-

ters, using the improved version of SeqCluster.

A total of 635 sRNA clusters were identified in the 28 samples

(Supplementary Table S2), the majority of which mapped onto

miRNA precursors (36.2%); onto C/D box small nucleolar RNAs

(C/D box snoRNAs), H/ACA box snoRNAs and small Cajal body-

specific RNAs (scaRNAs) (30%); and tRNAs (16.8%). The remain-

ing 108 clusters (17%) contained a variety of sRNA mapping onto

different types of precursors, including small cytoplasmic RNAs

(scRNAs) genes, and a variety of non-characterized transcripts, that

are also detected by the ENCODE consortium. The composition,

abundance and mapping positions of all sequences within a cluster

can be visualized in a html generated by the pipeline.

3.4 Partial least square discriminant analysis identifies

sRNA expression patterns that distinguish control

individuals from PD patients at premotor and motor

stages.
Partial least square discriminant analysis (PLS-DA) is a supervised

multivariate method that was used to explore if the expression pat-

tern of sRNAs could classify controls versus affected individuals

(Table 1). A general PLS-DA was first performed separately in con-

trols versus premotor cases and controls versus motor cases to avoid

experimental bias related with independent sequencing experiments.

Using the list of sRNA clusters PLS-DA build a model that could sig-

nificantly explain 86% of the response variability (control or PD-

motor stages) (P ¼ 0.049). A similar analysis could not discriminate

controls from premotor cases (R2 ¼ 28%, P ¼ 0.6). To evaluate if

different types of sRNAs contributed specifically to the model, we

performed a PLS-DA for each of the main classes of sRNAs clusters

and the list containing miscellaneous sRNA clusters (Table 1).

Table 1. PLS-DA of sRNA expression data. PLS-DA using the total list of clusters (All), the clusters annotating onto several functional clases

of non coding RNA (miRNAs, snoRNA and tRNAs) or the rest of clusters annotating onto a variety of precursors (Rest)

Type of sRNA clusters Control versus pre-motor Control versus motor

All miRNA snoRNA tRNA Rest All miRNA snoRNA tRNA Rest

Number of sRNA

clusters (%)

621 (100%) 230 (37%) 190 (31%) 104 (17%) 98 (16%) 621 (100%) 230 (37%) 188 (30%) 105 (17%) 97 (16%)

Number components 4 2 4 5 4 3 2 4 4 4

R2 (sRNA-clusters

variability)

First comp. 26.40% 18.60% 16.40% 27.50% 17.10% 14.30% 16.80% 16.50% 28.30% 20.90%

Second comp. 13.60% 6.60% 22.20% 37.70% 20.60% 13.70% 26.60% 19.40% 27.90% 20.70%

Third comp. 16.70% 7.60% 9.90% 9.90% 16.70% 15.10% 5.70% 5.50%

Fourth comp. 6.10% 2.80% 5.80% 8.70% 5.50% 4.80% 5.70%

Fifth comp. 2.30%

R2 (outcome variability) 28.00% 58.40% 17.90% 99.29% 79.90% 86.10% 44.90% 73.50% 88.40% 78.70%

P value 0.608 0.345 0.719 0.001 0.074 0.049 0.317 0.055 0.014 0.077

In each PLS-DA, the number of variables (clusters), the number of components, R2 value providing clusters variability in each component and R2 value provid-

ing the outcome variability are shown. Finally, a P value indicates the significance of the separation between controls and affected individuals (1000

permutations).
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A PLS-DA using the list of clusters that mapped onto tRNAs better

separated controls and affected patients both at motor (R2 ¼
88.4%, P ¼ 0.014) and premotor stages (R2 ¼ 99.3 P ¼ 0.001), sug-

gesting that this class of sRNAs undergo early perturbation in PD.

PLS-DA provides the variable importance in projection (VIP)

score that measures the relevance that each cluster provides to the

model (Supplementary Fig. S6). Interestingly, 13 of the highly im-

portant tRNA-clusters (VIP score>1.2; Supplementary Table S4

and Fig. S7) were common in PLS-DA of controls versus premotor

cases and controls versus motor cases, suggesting that their com-

bined expression pattern may define initial events in PD.

To improve the classification between control individuals and

diseased patients, we performed a new PLS-DA, using a re-defined

shorter list of clusters with a high (> 1.2) VIP score (Fig. 3A,

Supplementary Fig. S8, Tables S5 and S6). This list could discrimin-

ate controls from PD-motor cases (R2 ¼ 88.4%) or PD-premotor

cases (R2 ¼ 99.1%). This refined PLS-DA confirmed the former

PLS-DA (Table 1), showing that among the top contributors, tRNA

clusters were significantly enriched (Supplementary Fig. S6 and

Table S7). A total of 12 clusters with high VIP scores (>1.2) were

common in PLS-DA of controls versus motor cases and controls ver-

sus premotor cases, suggesting their early perturbation in PD.

PLS-DA using miRNA clusters could not separate controls and

affected individuals (Table 1). However, miRNA clusters contain

all sequences mapping onto each miRNA-precursor and therefore

miRNA-3p or miRNA-5p forms are not distinguished. Similarly,

miRNA clusters definition does not distinguish miRNA isoforms

(isomiRs). IsomiRs are miRNAs that vary slightly in sequence,

which result from variations in the cleavage site during miRNA

biogenesis (50-trimming and 30-trimming variants), nucleotide add-

itions to the 30-end of the mature miRNA (30 addition variants)

and nucleotide modifications (substitution variants) (Marti et al.,

2010; Pantano et al., 2010). Because miRNAs and IsomiRs have

important roles in the CNS maintenance and function (Cloonan

et al., 2011; Fernandez-Valverde et al., 2010), we performed a

PLS-DA using an isomiR expression dataset, defined by the

Seqbuster tool (Pantano et al., 2010). More than 5000 isomiRs

were consistently detected in the human amygdala samples, corres-

ponding to 539 miRNAs. Using this list, we performed a first PLS-

DA (Supplementary Table S8), and a refined version with the

isomiRs with the highest VIP scores (>1.2) from the first PLS-DA

could significantly discriminate controls from premotor or motor

cases (Fig. 3B, Supplementary Table S8), suggesting that miRNAs

are early altered in PD.

To validate these results, we applied a non-supervised method

principal component analysis (PCA) using clusters or isomiRs with

high VIP scores (>1.2). As shown in Supplementary Figure S9, the

first two components from PCA could clearly separate controls from

motor cases, explaining around 50% of clusters variability. This

was not so clear at early stages of the disease, where only the second

component (with 16% of clusters variability) generally separated

controls from premotor cases. When analyzing isomiRs the two first

components from PCA discriminated controls versus patients at

both motor and premotor stages explaining as well 50% of the total

variability.

3.5 Differential expression analysis identified selective

sRNA clusters and isomiRs deregulated in the

amygdala at premotor and motor stages
In addition to the identification of global patterns of sRNA clusters

that distinguished controls from diseased samples using PLS-DA, we

evaluated whether single clusters were differently expressed between

control individuals and patients at premotor stages or motor stages.

Differential expression was evaluated using DESeq2 with sRNA

clusters. Among the differently expressed sRNA clusters (nominal P

value<0.05), hierarchical clustering analysis, which is blind to sam-

ple type, showed that the 20 with the highest significance separated

all premotor cases and a control sample in the same cluster (Fig. 4A,

Supplementary Table S9 and Fig. S10). Considering these 20 sRNA

clusters, shuffling the identity of the patients or randomly taking

groups of 10 clusters from the full set resulted in the significant loss

of separation (Supplementary Fig. S11A). Of these 20 sRNA-clus-

ters, 7 mapped onto tRNA, 7 onto C/D Box snoRNA, 5 onto

miRNAs precursors and an additional sRNA-cluster onto an

uncharacterized transcript. Half of these sRNA clusters presented

high VIP scores (>1.2) in the PLS-DA analysis (Fig. 4A,

Supplementary Table S9). Overall, these data suggest that these dif-

ferently expressed clusters may define PD-premotor cases. A similar

analysis identified 10 differently expressed clusters that optimally

separated the group of controls from motor cases (Fig. 4B,

Supplementary Table S9, Figs S10B and S12). Six of these top

sRNA-clusters mapped onto tRNAs and 4 onto C/D Box snoRNAs.

In accordance with their possible relevance, these clusters presented

a high VIP score (VIP>1.2) in the refined PLS-DA.

Differential expression analysis was also performed for isomiRs.

A total of 85 differently expressed isomiRs (nominal P value<0.05)

corresponding to 42 miRNAs significantly separated all control indi-

viduals and premotor cases in two main groups (Fig. 4C,

Supplementary Table S10). In addition, 230 differently expressed

isomiRs corresponding to 104 miRNAs significantly separated con-

trols and premotor cases. Importantly, the vast majority of isomiRs

presented a significant VIP score (>1.2) according to the PLS-DA

(Supplementary Table S10). In each of the comparisons, clustering
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Fig. 3. Refined PLS-DA of sRNA clusters (A) and isomiRs (B) expression data.

PLS-DA score scatter plot of the three components for control and affected in-

dividuals, showing separation of controls from premotor cases and controls

from motor cases. Refined PLS-DA was performed with the more relevant

sRNA clusters (VIP>1.2) of each class (miRNA, snoRNAs, tRNAs, and the

rest) (A) or the more relevant isomiRs (VIP> 1.2) (B) separating controls from

affected individuals of a primary PLS-DA with consistently expressed

sequences
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of the two groups of samples was lost if shuffling the identity of the

patients or randomly choosing different groups of isomiRs among

the total expressed (Supplementary Fig. S11C, D). Twenty-one

miRNAs and more specifically, seven isomiRs were commonly

deregulated in premotor and motor cases, suggesting their early af-

fectation in PD.

3.6 Benchmarking with sRNAbench
To our knowledge, there are only two additional tools that, similarly

to the present pipeline, can annotate different types of small RNAs

and handle multi-mapped reads: sRNAbench (Hackenberg et al.,

2011) and flaimapper (Hoogstrate et al., 2014). We therefore used

these tools to repeat the analyses with our sequencing dataset, focus-

ing in the sRNAs that map onto tRNAs because this class is highly

enriched in multi-mapping sequences and is the type that optimally

separated affected and control individuals.

Flaimapper failed to successfully process the individual BAM

files due to RAM memory issues (it failed in a 64GB RAM memory

machine). Regarding sRNAbench, it produces outputs with uniquely

mapped reads and multi-mapped reads, with these last being

counted repeatedly in each mapping site. We separately used both

types of count matrix for PLS-DA, to determine the influence of

multi-mapped reads in the analysis. While PLS-DA using uniquely

mapping tRNAs could not separate controls and affected

individuals, multi-mapping tRNAs tended to better distinguish

groups (Supplementary Table S11). However, when comparing con-

trols with premotor cases, differences were not significant, indicat-

ing that SeqCluster outperformed this tool. Furthermore, differential

expression analysis of tRNA and isomiRs with sRNAbench output

showed that the signal of differences among groups was reduced or

disappeared (Supplementary Table S12). Overall these data suggest

that using multi-mapped hits is important and further indicates that

processing the data to unique clusters helps to separate affected indi-

viduals from controls.

4 Discussion

Our study provides the first deep characterization of the sRNA tran-

scriptome at different stages of LB pathology and parkinsonism in

post-mortem brain samples. We have used a strategy that organizes

the transcriptome in unique units of consistently co-expressed

sRNAs (sRNA clusters) using an improved version of the SeqCluster

tool (Pantano et al., 2011). This approach simplifies the complexity

of the sRNA transcriptome, arranging millions of sequences into

hundreds of sRNA clusters, which permits a downstream compre-

hensive profiling.

Using the sRNA-cluster count matrix, we could significantly

separate control individuals from clinical/motor cases. However,

expression profiles of tRNA clusters better separated controls from

affected individuals at different stages of LB pathology, compared

with other functional classes of co-expressed sRNAs. tRNA-

derived sRNAs correct annotation and quantification is specially

challenging, given that the majority map onto multiple locations.

Our strategy successfully overcomes this problem through a pro-

gressive and heuristic allocation of each multi-mapped sequence to

a specific (tRNA) gene with one or multiple precursors (see

Methods). Using the expression matrix of tRNA-genes, we demon-

strate that multi-mapping sequences are important to classify dis-

eased status.

It has been recently shown that non-random 20–35 nt tRNA

fragments (tRFs) guide mRNA cleavage, control translation and

show cross talk with canonical sRNA silencing pathways, through a

variety of mechanisms (Durdevic et al., 2013; Gebetsberger and

Polacek, 2013; Selitsky et al., 2015; Sobala and Hutvagner, 2011;

Sobala and Hutvagner, 2013). In addition, accumulation of 50 halves

of different types of tRNAs are produced in response to oxidative

stress (OS) in a wide variety of eukaryotes (Saikia et al., 2012;

Thompson et al., 2008). The majority of the top-deregulated tRNA

fragments presented highly abundant 50-tRFs, with most showing

up-regulation at premotor and motor stages (Supplementary Table

S2). Because OS is a major hallmark in PD brains (Ferrer et al.,

2011), it is tempting to speculate about the participation of this

pathway in tRFs accumulation.

miRNA clusters that contained all types of co-expressed se-

quences mapping onto each miRNA could not discriminate controls

and affected individuals. However, we captured disease stage-

specific profiles using a list of isomiRs, which are slightly varying

miRNA sequences with the potential to influence silencing dynamics

(Cloonan et al., 2011; Fernandez-Valverde et al., 2010; Llorens

et al., 2013).

The proportion of the different classes of IsomiRs (50 trimming,

30-trimming, 30-addition and nt-substitution) was similar in the

group of deregulated isomiRs and the total number of isomiRs, indi-

cating that no general alterations occur in the mechanisms generat-

ing the main types of isomiRs. Instead, disease-IsomiR profiles may

 

Fig. 4. Ward hierarchical clustering analysis of differentially expressed sRNA-

clusters (A, B) or isomiRs (C, D) in the amygdala of controls versus pre-motor

cases of PD (A, C) and controls versus motor cases of PD (B, D). Only the top

significant clusters (C) or isomiRs (P< 0.05) optimally separating controls

from affected individuals are shown (see Supplementary Table S9 and S10).

1 – correlation matrix was used as the distance matrix in the clustering. The

expression counts were z-score normalized for visualization purposes and ex-

pression levels are coloured light yellow for low intensities and dark blue for

high intensities
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reflect changes in the biogenesis and/or stability of selective

miRNAs variants; raising the question of whether mechanisms finely

modulating the biogenesis of each miRNA may reflect an early dys-

function of the brain. In line with this, differential changes in the ex-

pression of specific isomiRs relative to those of the consensus

(reference) counterpart have been found in several neurodegenera-

tive disorders (Hebert et al., 2013; Marti et al., 2010).

In the present study, we found many deregulated miRNAs previ-

ously associated with PD and other neurodegenerative disorders,

including miR-9, miR-181c, miR-146a, miR-16 and miR-124

(Supplementary Table S13). We confirmed the deregulation pattern

of 26 miRNAs (out of 34) (Supplementary Table S13), whose pre-

cursors were altered in PD brains (Kim et al., 2007). We also con-

firmed the deregulation pattern of 10 out of 18 miRNAs in total

blood of PD patients (Martins et al., 2011) and 3 out of 17 in leuko-

cytes of PD patients (Soreq et al., 2013) (Supplementary Table S13).

Other miRNAs associated with PD (Alvarez-Erviti et al., 2013; Cho

et al., 2013; Kim et al., 2007; Minones-Moyano et al., 2011; Soreq

et al., 2103) were not confirmed in our analysis either because deep

sequencing approach could not reliably detect them or showed a

high variability between samples.

In summary, the present workflow revealed an overall alteration

of sRNA profiles in the amygdala of PD brains that occurs early, at

premotor stages. A similar analysis in peripheral blood samples of

patients at diverse disease stages and compared with control samples

will answer whether our strategy is useful as a diagnosis tool in PD.

tRFs and miRNAs (isomiRs) are the more relevant sRNAs types

classifying affected individuals at different stages. We propose tRFs

as a new class of early-stage biomarkers that may reflect OS in the

brain of neurodegenerative disease patients. Other sRNAs species

were deregulated in PD, mapping onto snoRNAs, repeated element

sequences and other uncharacterized RNAs of uncertain function.

An important future task is to go beyond the identification of dis-

ease-classifying sRNAs and associate them with functions. This will

likely likely shed light onto the involvement of sRNAs pathways in

PD patients as compared with controls, and between varying disease

progression stages.
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