
A Monitoring Network System and its Practical Demonstration on a

Model Technological Process

MILAN ADAMEK, MIROSLAV MATYSEK, VACLAV MACH,

PETR NEUMANN, MARTIN POSPISILIK

Faculty of Applied Informatics

Tomas Bata University in Zlin

Nad Stranemi 4511, 76005, Zlin

CZECH REPUBLIC

adamek@utb.cz, matysek@fai.utb.cz

http://fai.utb.cz/en

Abstract: - In order to deepen students´ practical knowledge and understanding of the “Computer Networks”

subject, a Monitoring Network System was developed that is able to read, collect and distribute data describing

real technological processes. The Monitoring System design is based on Client/Server architecture. The model

is represented by the real chemical reactor, which was created for the study of the enzymatic hydrolysis of

potentially hazardous chrome-tanned wastes generated during leather manufacturing. Final system should be

implemented at the university to the graduates and the system should be modular with possible communication

support. The setup of the monitoring system comes with all needed explanation and procedures.

Key-Words: - Monitoring network system, Client/Server, TCP/IP protocol, Chemical reactor, Hydrolysis.

1 Introduction
Students educated in the field of Informatics at

tertiary education institutions absolve, in various

forms, the “Computer Network(s)” course during

their Bachelor’s or Master’s degree studies. The

basic content of these courses is to introduce

students to the problems and issues of computer

network administration from a user’s point-of-view.

Usually, the courses more-or-less copy the

following structure: The Topology and Architecture

of Computer Networks, Communication Protocols

and – of course, the problems of Computer Network

Security. Nevertheless, computer networks represent

a broad and dynamically-developing area, which is

difficult to encompass in the limited time dedicated

to this subject such that students acquire practical

skills through practical tasks and applications.

IT education at the Faculty of Applied

Informatics is founded on a worthy tradition and

historical achievements in the field of Automation

and Control of Industrial Processes. This specific

orientation is also reflected in the long-term demand

of employers for skilled graduates in this field. For

these reasons, and with the express purpose of

extending students` practical knowledge of

computer networks, a Monitoring Network System

was developed within the context of a student’s year

seminar project - which is able to read, collect and

distribute data describing a technological process.

A client – server architecture was chosen for the

system design, which meets the requirements for the

separation of those parts which execute data

reading, collecting, distribution and presentation

operations [1]. The above-mentioned system

architecture works on the assumption that the

reading of technological data is executed by the first

client, data collection and distribution is realized by

the server, and data presentation is performed by the

second client. This system structure enables us to

achieve the necessary freedom when selecting the

environment in which any part of the system can be

realized.

The selection of the operating system was a very

important step in the development of the monitoring

system. The realization of any of the clients is not as

strongly dependent on the type of operating system

as is the realization of the server. Generally, it can

be stated that a client application can be realized on

any platform for which the BSD Sockets Network

Library is available. The selection process of the

operating system for the server application was

determined by the following parameters:

 Support of Inter-Process Communication

(IPC),

 Simultaneous Multiple Program

Processing,

 Network Communication Resources

based on TCP/IP protocols,

 Reasonable hardware demands.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Milan Adamek, Miroslav Matysek,

Vaclav Mach, Petr Neumann, Martin Pospisilik

E-ISSN: 2224-2856 520 Volume 13, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional repository of Tomas Bata University Library

https://core.ac.uk/display/224798065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:matysek@fai.utb.cz

As a result, preference was given to the Linux

Operating System (OS) for the realization of the

server as well as the individual clients. This

operating system showed the best match with the

criteria above [2, 3].

2 THE ARCHITECTURE OF THE

MONITORING SYSTEM
In network applications, the client - server model is

a standard [4]. In this case, the term server denotes a

process that expects a contact from the client - in the

sense that the server can perform an operation for

the client. The client in the said model also

represents a certain process. The behavior of the

server and client in this monitoring system can be

described as follows:

 The server process is started on a PC. It

initializes itself, then goes into sleep mode

and waits for a contact from the client.

 The client process is started on the same or

another PC. In the event that the client and

server are running on the same PC (under

one OS), they communicate between

themselves by means of the OS.

 If the client and server run on different PCs,

communication between them is through a

computer network. The client process sends

its request to the server and waits for the

result of the processing to be sent back by

the server.

 After completing the request of the client,

the server goes into a sleep mode and waits

for further requests from the client.

Client

The role of the client in the proposed monitoring

system is to read the technological data and depict

their visualization. A Standard Client works with a

known port, which in this case is also called the so-

called “reserved port”. The reserved ports are

installed in order to establish connection with the

server. To establish a connection, the client must

know the number of the port on which the service is

offered by the server (e.g. ftp). Other programs of a

client type operate as non-standard clients.

Therefore, after establishing a connection between

the client and server, it is not necessary to use the

reserved port (and even, this is not desirable due to

the freeing-up of the port for further

communications) and the communications are

performed on randomly-selected and mutually

conflict-free ports from the range of dynamic and

private ports available. The reserved port is, after

establishing the connection, released immediately

for eventual communication with another client.

Reading of technological data is ensured by the

Recording Client, which is realized as a controller

of the device reading the relevant technological

process quantity - which is subsequently sent to the

server. It is even possible to run multiple recording

clients under one operating system (PC). In such a

case, each client ensures the reading and transfer of

different technological quantities. No specific

requirements are made on the environment in which

this part is realized, apart from the ability to use

TCP/IP protocols for the connection with the

program server.

The Presentation Client then receives the current

copies of the technological process quantities data

from the server and ensures their presentation. It is

possible to have more presentation clients running

within a network under one operating system (PC).

Server

The collection and distribution of data is performed

by the program server. Its activities can be divided

into three main points:

 Receiving data from the recording clients

 Maintaining the current copies of the data

read

 Sending the current data to the presentation

clients

Two kinds of servers are used in the proposed

system, depending on the time needed to perform

the required processes. Their activities can be

characterized as follows:

 In the event the server is able to handle the

clients` requests in a short time interval, the

server processes these requests itself. This

type of process in the model is called an

Iterative Server. A typical example of an

iterative server is a service providing date

and time data.

 If the client’s request processing time is

unlimited, the server processes the request

in a competitive way. This type of server is

called a Competitive Server. The

competitive server - parental process (i.e.

Master Server) creates its copy – its

descendant. This descendant then processes

the client`s request further; thus the original

(parental) server process may go back into

sleep mode and await the next client

request. Of course, this type of server

requires an operating system that allows the

simultaneous running of multiple processes.

Competitive servers are widely used for

example in ftp and Telnet services. The

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Milan Adamek, Miroslav Matysek,

Vaclav Mach, Petr Neumann, Martin Pospisilik

E-ISSN: 2224-2856 521 Volume 13, 2018

Fig 1 The designed model of the monitoring and controlling system.

established connection between client and

server usually contains multiple requests – in

other words, multiple exchanges of queries and

answers take place between the client and the

server.

3 SOFTWARE
The Client Program

Communication between a client and server by

means of TCP protocols is carried out according to

the following algorithms:
 Finding the server’s IP address from the

specified name or address inputted in dot

notation Creation of a clipboard for

communication - socket() function

 Connection to the server - connect() function

 Data exchanges with the server - read() or

write() functions

 Terminating communications with the server

Fig 2 The basic algorithm for communications between a

client and server

The Server Program

Processing client requirements is performed by the

server in a competitive way. In most cases, this is an

apparent competition - achieved by sharing the

process in time.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Milan Adamek, Miroslav Matysek,

Vaclav Mach, Petr Neumann, Martin Pospisilik

E-ISSN: 2224-2856 522 Volume 13, 2018

Fig 3 A competitive TCP server.

The basic algorithm of the Server program is as

follows:

 Immediately after starting, the Master server

program creates clipboards for

communications associated with the

reserved ports - socket() and bind()

functions. The ports for connections with

clients are defined in the server

configuration file.

 After their creation, the clipboards are set

into a passive state, in which they wait for

connections from clients - listen() and

select() functions. Using the select()

function, the kernel can put the master

server processes into a standby mode. It

waits in this mode until an event occurs,

then it activates itself. In the proposed

model, the kernel only notifies the master

server process in the case when connection

initialization data (i.e. data for reading)

appear on any of the clipboards.

 In the course of an occurrence of the

"connection request” event, the master

server receives the request on the

corresponding port - connect() function. In

the case of a recording client, the master

server controls the number of the connected

recording clients. If the new client exceeds

the maximum number of the recording

clients, the connection is closed and the

master server returns again to the sleep

mode. If there is enough room for the

connection of a new recording client, a call

to the kernel fork() function is executed,

resulting in the creation of a descendant to

serve the operator's requirements. If a

presentation client is connected - the

controlling of the maximum number of

connected recording clients is left out;

otherwise, the connection request process

remains the same. After that, the master

server closes the unnecessary mailbox that

was created by the prior calling of the

connect() function.

 Message exchange between a client and the

server through the established connection

 The server (descendant) serving the

recording client waits for the data sent by

the client. After receiving the data, the

server writes them into the shared memory.

The synchronization of the access to the

shared memory with other processes is

ensured by semaphores. After writing the

data in the shared memory, the server sends

a signal that indicates to all other servers

(descendants) that new data has been

written in the shared memory.

 Immediately after establishing the

connection, the recording client server sends

the contents of all slots to the client. Then it

goes back to sleep until it is awakened by a

signal that initializes new data entries in the

shared memory. Subsequently, the server

gains access to the control structure

(Header) of the shared memory, checks

which slots contain new data, and sends this

data immediately to the client.

The activities described above are carried out by

both types of descendants cyclically until the

connection is closed by the client or Server program

operations are terminated (by the master server

termination).

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Milan Adamek, Miroslav Matysek,

Vaclav Mach, Petr Neumann, Martin Pospisilik

E-ISSN: 2224-2856 523 Volume 13, 2018

Shared memory structure

In the model, the shared memory was used to

preserve the data obtained from the recording

clients. The main reason for using this resource for

inter-process communication was the possibility of

simultaneously accessing several processes

(descendants of the master server) to the data stored

in the shared memory. Access synchronization is

necessary to enable access of multiple processes to

the shared memory, for example by semaphores.

The shared memory is divided into two parts, as

shown in Figure 5.

Fig 5 Shared memory structure.

The area of each data slot represents a data area

into which data is written by individual recording

clients, while just one slot is reserved for each

recording client. The server servicing this client

records only in this one slot and in the header. The

server servicing the presentation client performs

reading only from the shared memory whether from

the slot or the header areas.

The data describing individual slots are stored in

the header. These have particularly to do with

entries indicating the time of the last modification to

the slot. The server servicing the presentation client

uses this data to decide whether the data from this

slot has already been sent to the client, or if it is

newly-received data, to be sent.

Process synchronization methods

In the Server program context, it is necessary to

ensure synchronization of the processes which

access the data in the shared memory. In order to

maintain data consistency, the following rules must

be observed:

 A slot cannot be modified by more than one

process at any one moment

 If the slot modification is in progress, no

process is allowed to read this slot

 A slot the data from which is just being read

cannot be accessed by a process that wants

to modify the data.

On the other hand, the situation may occur where

two or more processes read data from the same slot.

Semaphores and signals are used for synchronizing

all processes.

Semaphores

The semaphore principle in used in the model for

several purposes. The master server uses

semaphores for the control of the number of

connected recording clients. For this purpose, a

semaphore is created whose value indicates the

number of free places available for the connection

of other recording clients. In the course of the start

of the master server, this semaphore is initialized to

a value which indicates the number of slots reserved

for data from the recording clients. At the moment

of connecting a recording client, the master server

process reduces the semaphore value by one

numeral, and the process continues in its activities.

Termination of the connection with the recording

client results in the freeing-up of previously

assigned semaphores. Other semaphores control the

actual access of individual processes (descendants)

to the shared memory area. Each process first

attempts to acquire the semaphore to the header of

the shared memory, and only after that, the

semaphore to the corresponding data slot. This

approach was chosen deliberately in the initial

design of the monitoring system in order to avoid

deadlocks. Deadlock is understood as a situation in

which two processes mutually at the same time hold

the tools they each want to use. Each data slot

semaphore can exist in one of these three states:

 Containing the value 0

 Containing the value 1

 Containing the value 2, or multiples thereof.

The first state indicates a free slot that is not

being used by any of the processes. The second

signals an exclusively-locked slot, i.e. access to this

slot is owned by a single process, which is recording

the newly-received data. The last state denotes the

eventuality of a slot being locked, i.e. a slot from

which the data is currently being read by one or

more processes. An example of synchronization

using semaphores is shown in the following Figure

6.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Milan Adamek, Miroslav Matysek,

Vaclav Mach, Petr Neumann, Martin Pospisilik

E-ISSN: 2224-2856 524 Volume 13, 2018

Fig 6 Synchronization of process access to the shared memory.

Figure 6 depicts the situation where two

presentation clients gain access to the shared

memory. Both have the header of the shared

memory locked, and each of them is reading a

different slot. From the field of binary semaphore

slots and the semaphore of the number of recording

clients, it follows that a total of 5 recording clients,

assigned to slots 1 – 5, are simultaneously

connected. Nevertheless, at the moment captured in

the picture, they are sleeping; i.e. waiting for data

from a recording client or to receive a semaphore.

The slot semaphore field, which synchronizes

access to individual slots, contains a value of 2 in

two semaphores – the slot is locked and shared for

reading only. The other semaphores from this field

contain the value of 0; i.e. the slot is not being

accessed by any process.

Signals

The processes that ensure operation of the

recording clients use the SIGUSR signal (First User-

Defined Signal) to notify the new data recordings to

the slots of the processes servicing presentation

clients. The master server processes and the servers

servicing the recording clients ignore the reception

of this signal. The processes servicing the

presentation clients use this signal for their wakeup.

This method is more efficient than periodic wake-

ups using the sleep() function.

Program configuration

The server is configured in a way similar to the

clients, i.e. using a configuration file. The name of

the file - including its full path, is specified in the

variable of the SMONCONFIG shell. In the event

that this variable is not set, the program tries to open

the default /etc/monconfig.server configuration file.

If even this file does not exist, then the program

server reports an error.

The configuration file contains three parameters.

The first of them - USERS, determines the number

of slots that are allocated at startup. Thereby, it also

determines the maximum value of recording clients

which can be connected simultaneously to the

server. The other two parameters specify the ports,

on which the server is waiting for connections from

individual types of the clients.

Resolving critical states

The basic critical conditions include: termination of

the connection between client and server,

termination of work, or system failure. The Server

program responds to any of the above-mentioned

conditions by its proper termination, including

freeing-up all tools being used. The method

primarily used for the determination of a failure or

for disconnection with the Client program is to send

data out-of-range, which the client evaluates and

subsequently correctly closes the connection. In

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Milan Adamek, Miroslav Matysek,

Vaclav Mach, Petr Neumann, Martin Pospisilik

E-ISSN: 2224-2856 525 Volume 13, 2018

cases when the server process does not manage to

inform a client about a failure by sending the data

out-of-range, the clipboard flag SO KEEPALIVE is

used, which notifies the client process of the

situation. Another state where it is advantageous to

resolve in the master server process is to terminate

any descendant. In this case, it is necessary to

execute the calling the kernel wait() function in

order to avoid the origin of zombie processes in the

system.

4 NETWORK (OVER)LOAD
When implementing network applications, it is

essential to evaluate the network load from two

perspectives. It is necessary to consider the extent to

which the deployed applications will load the

overall operation of the network, and – vice versa,

to evaluate the effect of network load on application

performance. This has to do with the basic

viewpoints on the performance issues of both the

application and network.

The design of the monitoring system took into

consideration the minimum network load and the

method chosen for data-transfer between the server

and clients was one that uses small packets, which

are sent in longer time intervals. This prevents

overload stress on the network, since it could be

busy with other user applications.

To assess the effect of long-term network

(over)load, it is necessary to consider what time

interval the data in the given monitoring system

must be presented in. In the monitoring of a

technological process, this mainly concerns

acquiring data for further calculations or for the

verification of the course of the process control. The

proposed monitoring system will not be

significantly affected by sudden network overload

crashes, which may be caused by a short-term

failure of the file – server, for instance.

5 IMPLEMENTATION OF THE

MONITORING SYSTEM
The monitoring system was developed and

implemented on a real technological process model,

for educational purposes and for a more-detailed

study of the monitoring system´s properties and

behavior. Students are provided with the

opportunity to verify the functioning of the

monitoring system on a real technological device,

and thereby, to familiarize themselves with the data-

transfer process, server functions, and the recording

and presentation clients. The study of real processes

is still an important part of engineering education in

many fields, and in many cases, it cannot be fully

substituted for only mere simulations of individual

physical/chemical phenomena [7]. The need for, and

importance of, practical experience with real

systems, e.g. in the form of remote laboratories, is

also repeatedly reflected in technical literature

oriented on the field of the role of computer

technology in university education [e.g. 8].

Technological process monitoring

The realistic model was represented by a chemical

reactor, which was constructed for model studies on

the enzymatic hydrolysis of potentially hazardous

chrome-tanned wastes generated during leather

manufacturing. The disposal of chrome-tanned

waste in open landfills - where it is subjected to

climatic and other external conditions is not

suitable, since there is a risk of oxidation of trivalent

chromium present in this waste into carcinogenic

hexavalent chromium salts [9]. The processing of

chrome-tanned wastes - the most typical

representative of which is chromium shavings and

their conversion into valuable products is therefore

advantageous not only from the environmental, but

above all, the health protection point of view.

One of the most advanced industrially implemented

procedures so far is two-step hydrolysis under alkali

conditions in the presence of a proteolytic enzyme

[10]. The process is performed in two stages,

namely - alkali treatment, and consecutive

enzymatic hydrolysis. The results of the reaction

after the first step is a gelatable protein and an

intermediate filter cake.

Fig 7 Simplified structure of the chemical reactor.

The cake is then subjected to enzymatic hydrolysis,

that generates an insoluble filter cake with

concentrated chromium and soluble protein

hydrolysate - which, in the terminal phase, is dried

in a vacuum evaporator. Depending on the way in

which the reaction is controlled, the reaction

generates protein solution of various qualities, given

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Milan Adamek, Miroslav Matysek,

Vaclav Mach, Petr Neumann, Martin Pospisilik

E-ISSN: 2224-2856 526 Volume 13, 2018

specifically by gel strength (Bloom value). The

model reactor allows the studying of the hydrolysis

conditions at which it is possible to obtain desired

properties of final products.

The monitoring system is implemented in the first

stage of the technological process, i.e. alkaline

treatment (denaturation) of chrome shavings in the

chemical reactor. Simplified models of the used

chemical reactor used, and its control, are depicted

in Figures 7 and 8, respectively.

Fig 8 Block diagram of the chemical reactor control.

The reactor, a cylindrical tank of a fermentation

reactor type, represents a non-flow isothermal

heterogeneous reactor with a hollow shell through

which the heating liquid flows which is heated in a

separated tank outside the reactor. The alkaline

treatment takes place at a pH of 12 and a

temperature of 70°C. If the pH decreases below the

required level (due to the buffering effect of

protein), it is adjusted by the addition of an alkali.

Hydrolysis is most efficient at the said pH and

temperature; an increase of either value above or

below this optimal level reduces the reaction rate, or

affects the resulting products.

6 CONCLUSIONS
TCP protocol-based communications guarantee the

sufficient integrity of the transferred data. The

system architecture makes possible the dynamic

connection and disconnection of both the

monitoring places and the programs for monitored

processes’ data presentation. The modularity of the

system has prepared good preconditions for the

implementation of the client application in the

environment of any operating system equipped with

TCP/IP protocol-based communication support. The

local network monitoring and control system has

been debugged in the C-language in the OS Linux

Slackware 1.2.13 and RedHat 7.1 environments and

verified on the laboratory hydrolysis/fermentation

reactor installed within the premises of the Faculty

of Applied Informatics.

The system has been successfully implemented at

the Faculty of Applied Informatics of Tomas Bata

University in Zlín, Czech Republic within the

context of the “Computer Networks” subject.

Extending practical knowledge contributes to higher

employment opportunities of the graduates on the

labor market - especially in technical branches.

Students can also use the system for their Bachelor’s

and Master’s theses; in addition to the educational

benefits, these theses contribute to the gradual

upgrading and development of the monitoring

network system - including its extension for

example to mobile applications.

7 AKNOWLEDGEMENT
The work was performed with the financial support

of Research Project NPU I No. MSMT-7778/2014

by the Ministry of Education of the Czech Republic,

by the European Regional Development Fund under

the Project CEBIA-Tech No.

CZ.1.05/2.1.00/03.0089, and by the European Social

Fund under the Project No. CZ.1.07/2.3.00/30.0035.

References:

[1] Tanenbaum, A: Modern operating systems, 2nd

edition, Prentice Hall, Englewood Cliffs

(2001).

[2] Stevens, W. R.: Advanced Programming in the

UNIX Environment, 2nd Ed. Addison-Wesley,

Reading (2005)

[3] Stevens, W. R.: TI - UNIX network

programming, Prentice-Hall, Englewood Cliffs

(1998)

[4] Tanenbaum, A. S., Woodhull, A. S.: Operating

Systems: Design and Implementation, Prentice-

Hall, Englewood Cliffs (2006)

[5] Silberschatz, A., Galvin, P. B., Gagne, G.:

Operating systems concepts, 7th Ed. John

Wiley & sons, Inc. (2002)

[6] Bigelow, S. J.: Troubleshooting, Maintaining

& Repairing Networks, 1st Ed.

Osborne/McGraw-Hill (2002)

[7] Nedic, Z., Machotka, J., Nafalski, A.: Remote

laboratories versus virtual and real

laboratories, Frontiers in Education, FIE 2003.

33rd Annual 1, T3E-1-T3E-6 (2003)

[8] Domínguez, M., Fuertes, J. J., Prada, M. A.,

Alonso, S., Morán, A.: Remote laboratory of a

quadruple tank process for learning in control

engineering using different industrial

controllers, Comput. Appl. Eng. Educ., Vol.

22, No. 3, 375-386, (2011)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Milan Adamek, Miroslav Matysek,

Vaclav Mach, Petr Neumann, Martin Pospisilik

E-ISSN: 2224-2856 527 Volume 13, 2018

[9] Kolomazník, K., Adámek, M., Anděl, I.,

Uhlířová, M.: Leather waste - Potential threat

to human health, and a new technology of its

treatment. J. Haz. Mat., Vol. 160, No. 2-3, 514-

520, (2008)

[10] Kolomaznik, K., Mladek, M., Langmaier, F.,

Janacova, D., Taylor, M. M.: Experience in

industrial practice of enzymatic dechromation

of chrome shavings, J. Am. Leather Chem. As.,

Vol. 94, No. 2, 55-63, 1999

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Milan Adamek, Miroslav Matysek,

Vaclav Mach, Petr Neumann, Martin Pospisilik

E-ISSN: 2224-2856 528 Volume 13, 2018

