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HIGHLIGHTS :  

 The effect of surface patterning on static and dynamic friction is investigated 

experimentally and numerically for soft polymer surfaces 

 Micro-patterns modify macroscopic sliding friction up to 300% 

 Spring-block model calculations are in good agreement with experimental results; 

 

ABSTRACT  

New possibilities have emerged in recent years, with the development of high-precision 

fabrication techniques, to exploit microscale surface patterning to modify tribological properties 

of polymeric materials. However, the effect of surface topography, together with material 

mechanical parameters, needs to be fully understood to allow the design of surfaces with the 

desired characteristics. In this paper, we experimentally asses the effect of various types of 

micropatterned Polydimethylsiloxane surfaces, including anisotropic ones, on macroscopic 

substrate friction properties. We find that it is possible, through surface patterning, to modify 

both static and dynamic friction coefficients of the surfaces, demonstrating the possibility of 

achieving tunability. Additionally, we compare experimental observations with the numerical 

predictions of a 2D Spring Block model, deriving the material parameters from tests on the 

corresponding flat surfaces. We find a good qualitative agreement between calculated and 

measured trends for various micropattern geometries, demonstrating that the proposed numerical 

approach can reliably describe patterned surfaces when appropriate material parameters are used. 

The presented results can further contribute to the description and understanding of the frictional 

effects of surface patterning, with the aim of achieving surfaces with extreme tunability of 

tribological properties. 
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INTRODUCTION 

Many practical and industrial applications require the controlled modification of the tribological 

properties of common manufacturing materials, such as polymers. One approach has been to 

explore the possibility of modifying the macroscopic friction properties of these materials 

exploiting specific microscopic surface structures, both in dry and lubricated conditions, instead 

of applying surface treatments or modifying the material chemistry. Recent experimental results 

relative to the frictional behaviour of sliding patterned surfaces have been obtained for non-

trivial geometric features, e.g. microstructures like grooves, dimples, pillars or honeycomb 

patterns [1–7]. Surface patterning has been studied for a number of years, and allows to 

accentuate hydrophilic or hydrophobic properties [8–13] or adhesive properties [14–16]. Thus, 

the effect of surface patterning on the frictional properties of surfaces is of particular interest, 

including for those applications where control of water-repellent or adhesive behaviour is also 

required. 

Friction between nominally flat surfaces at macroscale is the result of interactions at different 

length scales spanning from atomic forces to mesoscale and macroscale effects [17–19]. In the 

case of micro-patterned surfaces, the characteristic lengths of the structures also come into play, 

so that it is difficult to separate the contributions of surface roughness, heterogeneity and 

patterning, and to identify the dominant mechanisms determining the emergent frictional 

behaviour. Thus, theoretical and numerical modelling must be adopted in conjunction with 

experimental results to explain the effects induced by surface textures and to predict the most 

suitable configurations for specific purposes. 
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Models addressing the effect of surface patterning on macroscopic frictional behaviour have 

been developed for specific cases with the aim of reproducing experimental results [5, 20, 21]. 

Another option consists in developing a general simplified model, including the relevant features 

at the mesoscale and taking into account the microscale by means of effective laws [22], e.g. the 

Frenkel-Kontorova model [23–25] that can describe the emergent transition to superlubricity due 

to incommensurate lattice lengths of two sliding layers [26–31]. Another example is the so-called 

spring-block model [32–34], which has been implemented in 1D and 2D to investigate how 

frictional properties can be modified by surface textures [35, 36]. In particular, it was shown that 

the model could provide useful insights on the transition between static and dynamic friction in 

the presence of structures that modify the surface stress distribution at the onset of sliding. 

Thanks to its simplicity, the model can provide a clear qualitative understanding of the effects 

taking place, but due to the adopted approximations, its reliability for precise quantitative 

predictions remains to be evaluated. In [36], qualitative trends consistent with those obtained by 

experiments for surface structures were obtained, suggesting that some effects are quite general 

and may depend on parameters such as structure and dimensions of the surface textures rather 

than on specific material properties. In this work, one of our aims is to verify to what extent this 

is true, i.e. to assess the level of reliability of the 2D spring-block model in describing frictional 

properties of structured surfaces. 

To physically realize various surface patterns, several techniques have been developed and 

optimized in the past, including laser surface texturing [37–39], which can provide high 

precision and speed of manufacturing, especially for applications involving metallic surfaces. On 

the other hand, micromoulding techniques are a simple and effective alternative to the high costs 

of laser texturing [3, 40, 41]. These consist in casting an elastomer using a mould formed by a 
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lithographic technique, and thus transferring the pattern on the elastomer substrate. In the present 

work, we adopt this method to realize microscale surface texturing on Polydemethilsiloxane 

(PDMS) substrates in different shapes and sizes, including anisotropic patterns. Variable contact 

area fractions are considered to account for a wide range of potential applications. Friction tests 

are then performed on the patterned elastomer substrates against a flat polycarbonate surface and 

results are compared to the calculations of a 2D version of the Spring-Block model [36], 

evaluating for the first time the limits of its qualitative predictions, with the aim of providing a 

tool for the precise tribological design of microscopic surface texture.  

 

EXPERIMENTAL PROCEDURE 

Surface manufacturing  

Surface samples are manufactured using PDMS and are realized by direct copy of a patterned 

silicon substrate. PDMS is widely used in applications where a precise reproduction of a surface 

design is required (e.g. in microfluidics and in vitro biology applications). The adopted material 

(Sylgard184) is supplied in two components: a cross-linking curing agent and a pre-polymer 

base. Polymerization begins when the two liquids are mixed together. The PDMS is first 

degassed for 30 minutes directly after mixing and a second time 30 minutes after deposition on 

the silicon substrate. The Silicon substrate is processed in a Metal-Oxide-Semiconductor pilot 

line, involving soft-lithography and dry etching to realize micrometric surface structures. Before 

PDMS moulding, the silicon substrate is coated with a silane Self-Assembly Monolayer to avoid 

sticking and to promote detachment after curing. Samples are cured at a temperature of 70 °C for 

50 minutes and PDMS samples are peeled from the silicon substrate after cooling.  
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Table 1: Geometrical characteristics of considered surface patterns. Nominal Area Fraction (AF) is calculated as the 

ratio between the area of a patterned sample with respect to that of a flat surface (sample F). The pitch distances are 

also reported (px and py). 

SAMPLE Hole Diameter Φ (µm) Hole Area (µm
2
) px x py (µm

2
) Nominal AF 

F - - - 1 

A 5 π5
2
/4 20x20 0.95 

B 10 π10
2
/4 15x15 0.65 

C 15 π15
2
/4 20x20 0.56 

S - 40x200 220x120 0.67 

 

 

Figure 1. SEM images showing details of the considered surface patterns: (1) flat surface (sample F). (2) sample A. 

(3) sample B. (4) sample C. (5) sample S. (6) enlargement of a single cavity of sample S. All scale bars are equal to 

20 μm. 

 

The chosen surface patterns are periodic arrangements of micro-cavities, as shown in Fig. 1. In 

particular, three patterns are considered, each characterized by different cavity diameter Φ, pitch 
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distance between cavities p and corresponding contact Area Fraction (AF) values, defined as the 

ratio between the nominal contact area of the patterned sample and the nominal contact area of 

the flat sample (F). The parameters of the geometries, chosen for their simplicity of fabrication in 

potential applications, are reported in Table 1. An additional pattern is considered to study the 

influence of anisotropy (Fig. 1.5, sample S). This pattern presents asymmetric cavities 40 x 200 

µm in size, with pitch distance py = 120 µm in the shorter direction and px = 200 µm in the longer 

one. Again, this geometry is chosen for its simplicity, while providing marked anisotropy. The 

cavities are staggered in the longer direction. Both principal directions (x and y in Fig. 1.6) are 

considered in friction tests. 

 

Figure 2. 1) Details of the custom-built tribometer. A flat polycarbonate surface is fixed to a tensile machine (a). A 

transparent sample holder (b) can slide on the polycarbonate surface, pulled by two inextensible wires (c), which are 

connected to the grip of a tensile machine. A frictionless roller (d) transmits the imposed velocity from the machine 

to the sample holder. Each PDMS surface is anchored to the transparent support (e) and loaded with different known 

weights. 2) Side view of the setup. 

 

Setup for Tribological Tests 
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To obtain both the static and dynamic friction coefficients of the aforementioned surfaces, a 

custom-built tribometer is used (Fig. 2). It is composed of two main polycarbonate parts. The 

first component (Fig. 2.2) is formed by a tensile machine and a polished polycarbonate rigid 

surface, which is the reference sliding surface. The other component is the sample holder and 

slider (enlargement in Fig. 2.1). Samples are glued on the slider, with the surface to be tested in 

contact with the rigid polycarbonate base. The slider is pulled by a double inextensible wire, 

which is connected to the grip of the tensile machine. A mass m is placed on the top of the slider 

to vary the normal applied force. The tensile machine records the pulling force acting on the wire 

and transmitted by a frictionless roller, recording the friction force generated by the sample 

sliding on the polycarbonate base. 

 

Tribological Test Procedure 

Samples are first glued to the sample holder. Both the test surface and the polycarbonate base are 

cleaned with ethanol and dried and a given mass is applied on the slider. The test is then 

performed at constant pulling speed of 0.2 mm/s, which is an average of values adopted in 

previous studies [42–44]. Once the detachment force is reached, corresponding to the first 

maximum peak in the load-displacement curve, the sample starts sliding at an approximately 

constant force value. When this value has stabilized, the test is stopped. The dynamic friction 

force is taken as the mean value during the sliding phase. 

Different masses are used during the friction tests, from 1.5 g (the mass of the sample holder) to 

about 140 g (with additional weights). Tests are repeated about ten times for each sample and 
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mass (three samples per pattern type) to obtain sufficient statistics. All measurements are carried 

out at room temperature.  

 

Figure 3.  Examples of friction tests with the described setup; friction force T is normalized with respect to the peak 

value of the respective test, which corresponds to the static friction force Tmax: (1) Flat PDMS surface (sample F). (2) 

Sample A. (3) Sample B. (4) Sample C. (5) Sample S, along x- and y- directions. All scale bars are equal to 20 μm. 

 

EXPERIMENTAL RESULTS AND DISCUSSION 

It is known that frictional behaviour of elastomers is a complex phenomenon, usually governed 

by interfacial properties and dissipation mechanisms (e.g. see [42, 45, 46]). Adhesion and 

friction are strictly correlated, and both can depend on sliding velocity, applied normal load and 

molecular weight, but in the range of small velocities, typically between 0.1 mm/s and 1 mm/s, 

the dependence of macroscopic friction coefficients on velocity is generally considered 

negligible [47]. In this study, all tests were performed at the same sliding speed of 0.2 mm/s. Fig. 

3 shows the tangential force variation as a function of time for different surface textures. The 
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force is normalized by the static friction force to provide a qualitative comparison on the same 

scale for each sample. As explained in the previous section, both the static and the dynamic 

friction forces can be determined from these tests. We report one test for each pattern type, i.e. 

the friction force normalized by the maximum friction force obtained in the same test, to 

highlight behaviour of the different samples. The tests show considerable stick-slip behaviour 

between the polycarbonate and flat PDMS samples (Fig. 3.1), especially at the beginning of 

sliding, but this effect becomes less evident for higher applied loads [3, 40]. The plots highlight 

some differences between patterns, especially for sample C (Fig. 3.4), for which static and 

dynamic friction forces are similar, with limited stick-slip effects. 

To better highlight the dependence of the friction force on the pattern type, Fig. 4 shows the 

results for different applied pressures, both for static and dynamic friction. Since the generalized 

Coulomb friction law is a good approximation for the macroscopic frictional behaviour of these 

samples, the experimental results have been fitted using the equation T = μN + τ0A, including the 

presence of adhesion with the constant term τ0. From the fits, the coefficient of friction μ and the 

adhesion term τ0 are obtained, both for static and dynamic friction (reported in Table 2). 

Macroscopic friction coefficients decrease non-linearly with increasing applied normal load. For 

a small or near-zero normal load, results display a large standard deviation, mainly due to 

difficulties in setting identical initial conditions for all the samples (positioning on the setup was 

done by hand). Conversely, the standard deviation decreases for increasing normal loads. This 

also applies to sample C, although some oscillations occur.  

Results obtained for sample S highlight the effect of surface pattern anisotropy and sliding along 

two different directions. Due to the asymmetric holes, which are longer in the x direction than in 

the y direction, the friction force is greater when the sample slides along x, especially for small 
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loads. A similar result was found in Rand and Crosby 2009 [40], where the authors studied 

friction parallel and perpendicular to wrinkled surfaces, observing that for sliding parallel and 

perpendicular to the wrinkles, the sliding frictional force decreased compared to a flat surface, 

the greater decrease being for the perpendicular direction. 

From experimental results, one can deduce how surface patterns influence the frictional 

behaviour of the PDMS samples. Sample A is characterized by the smallest cavities and larger 

spacing, so that its friction coefficients are the closest to those of the flat samples. In comparison, 

samples B and C display smaller friction forces as a function of the applied normal load. This is 

partly due to a decrease of the real contact area of the textured samples, as discussed in He et al. 

2008 [3], but also to stress concentrations around surface features and the effect of adhesion, 

which has a higher relative influence at smaller loads, especially on surfaces with higher texture 

density. 
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Figure 4. Experimental friction test results. Mean values are reported as dots, while the standard deviation of the 

mean is shown with error bars. Plots report the ratio between the static or dynamic friction force (T) and the applied 

normal load (N) as a function of the applied nominal pressure (p=N/A, with A the total nominal sample area). The 

experimental data are fitted by using the generalized Coulomb friction relation T/N= μ + τ0/p, where μ is the static or 

dynamic friction coefficient, while τ0 is the adhesion force normalized by the nominal area of contact. Fitting 

parameters μ and τ0 are reported in Table 2. (1) Static friction coefficients of flat surfaces (samples F) and samples 

A, B and C. (2) Dynamic friction coefficients of flat surfaces (samples F) and samples A, B and C. (3) Static friction 

coefficients of samples S, along both x and y directions. (4) Dynamic friction coefficients of samples S, along both x 

and y directions.  

 

NUMERICAL SIMULATIONS 

Model formulation 
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Sliding friction simulations of the patterned surfaces are performed using the 2D spring-block 

model previously introduced in [36]. In the model, the contact surface is discretized into 

elements of mass m, each connected by springs to the first eight neighbours and arranged in a 

regular square lattice with Nx blocks along the x-axis and Ny blocks along the y-axis (Fig. 5.1). 

The distances between blocks on the two axes are, lx and ly, respectively. The equivalence of the 

spring-mass system with a homogeneous elastic material can be imposed by applying the method 

illustrated in [47] in the case of plane stress. In this way, the stiffness of the springs parallel to 

the x-  or y- direction in the plane of the material is Kint = 3/4 E lz , where E is the Young’s 

modulus and lz is the thickness of the layer, and the stiffness of the diagonal springs is Kint /2. 

This implies that the Poisson’s ratio of the modelled homogeneous material is fixed to 1/3 and lx 

= ly = l (the adopted mesh is similar to that used in [34]). The force exerted on the i–th block by 

the neighbouring j-th block can be written as: Fint
(ij) 

= kij (rij - lij)(ri – rj)/rij, where ri , rj are the 

position vectors of the two blocks, rij is the modulus of their distance, lij is the modulus of the 

rest distance and kij is the stiffness of the spring connecting them. 
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Figure 5. (1) Schematic of the 2D spring-block model with the notation used in the text. Mesh of the internal 

springs on the surface (shear springs are not shown). (2) Example of a patterned surface, where the main sliding 

direction is set to α = 0°. (3) Side view showing the slider moving at constant velocity v, pulling the sample through 

shear springs. (4) Typical simulation outputs, showing the time evolution of the friction coefficient for different 

types of samples. 

 

All the blocks are connected to the slider through springs of stiffness KS (Fig. 5.3), which are 

related to the shear modulus of the material G = 3/8 E, and, by simple calculation, Ks = Kint (l/ 

lz)
2
. We set for simplicity lz = l. The slider moves at a constant velocity v lying in the xy plane, so 

that the force exerted by the shear springs on the i-th block at time t is Fs
(i)

 = (vt + ri
0
- ri), where  

ri
0 

is the initial resting position. We define the total driving force as Fmot
(i) 

= Fs
(i) 

+ Fint
(ij)

. Each 

block is subjected to a normal force Fn
(i) 

= pl
2
, where p is the applied pressure. A damping force 
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term is added to avoid artificial block oscillations, Fd
 (i) 

= - m γ ui , where γ is the damping 

coefficient, which we fix at γ =500 ms
-1

 in the underdamped regime, and  ui  is the velocity vector 

of the i-th block. 

The interaction between the blocks and the rigid plane is modeled as in our previous work [36]: 

each block is subjected to the fundamental Amontons-Coulomb (AC) friction force with local 

static and dynamic friction coefficients, respectively μs
(i) 

and μd
(i) 

, which are assigned randomly 

for each block at the beginning of the simulation from a Gaussian statistical distribution g(μs,d
(i)

) 

= (2πσ)
 −1

 exp [−(μs,d
(i )

 − (μs,d)m ) 2 /(2σs,d
2
 )]. (μs,d)m denotes the mean of the microscopic friction 

coefficients for the static and dynamic case, respectively, and σs,d is its standard deviation. Thus, 

the friction force on the i-th block can be described as follows: while the block is at rest, the 

friction force Ffr
(i)

 opposes the total driving force, i.e. Ffr
(i)

 = −Fmot
(i)

 , up to a threshold value Ffr
(i)

 

= μs
(i) 

Fn
(i)

. When this limit is exceeded, a constant dynamic friction force opposes the motion, 

whose modulus is Ffr
(i)

 = μd
(i)

 Fn
(i)

. Furthermore, since experimental data in this work shows non-

negligible adhesion effects in the friction force in the limit of zero pressure, a constant term is 

added to both static and dynamic friction forces. Thus, the static friction threshold for the i-th 

block is Ffr
(i)

 = μs
(i) 

Fn
(i) 

+Fas, where Fas is the same for all blocks and includes all the possible 

adhesion effects in the static phase. The dynamic friction force is Ffr
(i)

 = Fad + μd
(i)

 Fn
(i)

, where 

Fad is the adhesion term in the dynamic phase. In the case of patterned surfaces, areas 

corresponding to cavities are attributed friction coefficients equal to zero. 

This model is an approximation of friction/adhesion effects, and other microscopic formulations 

are possible [19]. However, it is the simplest way to account for adhesion effects without adding 

specific details of the microscopic structure. Our aim is to test its validity limits comparing it 

with experimental results.  
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The motion of a block i is described by Newton’s equation: 

m a
(i)

 = Σj Fint
(ij)  

+ Fs
(i)

  + Fd
 (i) 

 + Ffr
(i)

 

Where a
(i)

 is the block acceleration. The overall system of equations can be solved using a 

fourth-order Runge-Kutta algorithm to find the model time evolution. 

From the equation of motion of all blocks the total tangential friction force can be calculated 

through the total force exerted by the slider, i.e. Ttot(t)=ΣiFs
(i)

(t), which corresponds to that 

measured in experiments. A typical behaviour of Ttot as a function of time is shown in Fig. 5.4. 

From this curve it is possible to extract the static friction force T=maxt Ttot(t), i.e. the first force 

peak. To account for statistical effects, the simulations are iterated various times, extracting each 

time new random local friction coefficients and determining a statistical average of any 

observable. The integration time step is 10
−8

 s, which is sufficient to reduce integration errors 

below the statistical uncertainty due to the model iterations [36]. 

 

Model parameters 

The numerical model contains a number of parameters that need to be tuned by fitting 

experimental data, although some degree of approximation is inevitable since experimental 

conditions cannot be replicated exactly. For example, the Poisson’s ratio of the model is 

constrained to 1/3 due to the equivalence requirement of this system with a continuous material, 

while the PDMS real value is closer to 0.5. Since mesh deformations during the simulation are 

less than one percent of the discretization length, we assume that this approximation is not 

influential. Although the square mesh is not isotropic, we have verified that for a non-patterned 
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surface, results of macroscopic friction coefficients do not depend on the sliding angle. 

Moreover, averaging over random orientations is required to account for the uncertainty on the 

experimental sliding angle (as explained below). 

The slider velocity, the applied pressure, the material density and Young’s modulus are taken 

from experimental values. Thus, the mass of the block is m =  l
3
, with  = 1.012 g/cm

3 
. The 

Young’s modulus is E = 0.8 MPa [46], and the applied pressure varies between 3 kPa and 25 

kPa. The modulus of the slider velocity is v = 0.2 mm/s. In order to reduce the computational 

times, simulation time scales have been reduced with respect to those used in the experiments 

(see Fig. 5.4) by adjusting the arbitrary parameter lz. However, we have verified that 

modifications on friction coefficients due to a reduced time scale are smaller than the statistical 

uncertainty on model results. The sliding direction with respect to the (x,y) orientation is 

randomly chosen at each simulation at an angle to account for the uncertainty in the sliding 

direction in experiments. Thus, the velocity vector of the slider is v = (v cos(), v sin()). For 

flat and patterned samples A, B, C the angle is chosen with a uniform distribution in the range 

[0°, 90°], which is sufficient to emulate the experimental setup due to the symmetry of the 

samples. For anisotropic samples S, which are designed with a precise sliding direction 

(for S along the x-axis and for sliding along the y-axis), the uncertainty is reduced 

and the angle is chosen within a range [-10°, 10°] around the nominal sliding angle. 

The local friction coefficients and adhesion force of the model are obtained by fitting the 

experimental data for a flat (non-patterned) surface, i.e. we set these local parameters to obtain, 

in the flat case, the same global friction coefficients and total adhesion found in experiments. 

The optimal values are (μs)m = 5.5, σs = 0.195 and (μd)m = 2.9, σd = 0.15 for the local static and 
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dynamic friction coefficients, respectively. The adhesion terms are Fas/l
2
 = 23.45 kPa and Fad/l

2
 

= 11.60 kPa.  

The spring mesh discretization length is fixed to l = 5 µm, which corresponds to the smallest 

feature of the experimental surface structures. The total number of blocks required to match the 

size of the experimental sample would be very high, but it is not necessary to reproduce the 

entire specimen. As discussed in [36] the resulting qualitative behaviour is not influenced by the 

number of blocks and the only effect of discretization is the decrease of the macroscopic static 

friction coefficients. Since there is already a set of free parameters, e.g. local friction coefficients 

and the adhesion, which need to be tuned in order to match the macroscopic coefficients with the 

experimental one, it is equivalent to fix a smaller number of blocks and to consequently tune the 

other parameters. Thus, the lateral number of blocks is Nx = Ny = 85, which allows to simulate all 

the different samples with the same mesh whilst adequately modelling the cavity geometries.  

We approximate the circular holes by means of squares with sides of the same length as the 

circle diameter and the same spacings between neighbouring cavities. Although the numerical 

model does not replicate the exact area and geometry of the holes, simulations using with a finer 

discretization mesh (i.e. reduced discretization length), which better approximate the circular 

shape, do not provide substantially different results. The same local friction coefficients of the 

flat surfaces are adopted for the regions of the patterned samples in contact with the substrate. In 

order to compare the numerical simulations with the experimental results, data must be 

normalized with respect to the total normal force N=ΣiFn
(i)

, so that comparisons are made for 

T/N, i.e. the macroscopic friction coefficient, as a function of pressure p. 

DISCUSSION 
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In Figs. 6 and. 7, we show the comparison between experimental and numerical results for static 

and dynamic friction forces, respectively, as a function of the applied normal load. For both 

series of data, results are fitted using a linear interpolation (red line for experimental and green 

for numerical), as T = A·0 +·N, where A is the contact area,  is the macroscopic coefficient of 

friction and 0 is the adhesion term per unit area. Results obtained for the linear interpolation are 

also reported in Table 2.  

 

Figure 6. Static friction force T as a function of the applied normal load (N): experimental data (blue circles), linear 

fit (red line), numerical simulations (green line), AF prediction curve (yellow dotted line). (1) Flat surface (sample 

F); (2) A sample;(3) B sample; (4) C sample; (5) S sample - sliding along the x direction; (6) S sample - sliding 

along the y direction. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 20 

 

 

Figure 7. Dynamic friction force T as a function of the applied normal load (N): experimental data (blue circles), 

linear fit (red line), numerical simulations (green line), AF prediction curve fit (yellow dotted line). (1) Flat surface 

(sample F); (2) A sample;(3) B sample; (4) C sample; (5) S sample - sliding along the x direction; (6) S sample - 

sliding along the y direction. 
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Figure 8: Experimental and numerical friction coefficient dependence on the area fraction (AF): comparison 

between μ and τ0 obtained from the linear fit of the experimental data (the red lines are the fits of these parameters), 

μ and τ0 obtained with numerical simulations and the same parameters found assuming T = Tflat
 
·AF. (1) Static 

friction coefficient; (2) static adhesion coefficient; (3) dynamic friction coefficient; (4) dynamic adhesion 

coefficient. Due to approximations in the numerical model, the AF of the samples are slightly different: 0.94 (sample 

A), 0.57 (sample B), 0.46 (sample C) and 0.72 (sample Sx and Sy). 

 

The parameters of the fitting curve display a dependence on the considered surface structure. 

Once the input model parameters are tuned using experimental data for a flat surface, the 

numerical calculations for static friction coefficients appear to be in very good qualitative 

agreement with experimental results. The model is able to reproduce the correct order of the 

values for the different A, B, C samples and for the anisotropic patterns Sx, Sy. This means that, 

despite the approximations, the model correctly accounts for the stress concentrations occurring 

at the edges of these structures and is able to capture the underlying mechanisms of the transition 

from the static to the dynamic phase in the presence of surface features. A good quantitative 
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description of the behaviour of samples A and Sx is found. These are also the samples with closer 

0, while for other samples the calculated variations are slightly smaller. 

This can be explained by considering that the adhesion term found in experiments is actually the 

sum of various effects not directly included in the model, e.g. deformation of the pattern 

geometries, variation of the effective contact area during sliding, and possible “suction-cup” 

effects. Thus, the model is less reliable from the quantitative point of view when these factors 

become more influential. 

 

Table 2: Linear interpolation parameters for experimental results and corresponding numerical estimations.  

 STATIC FRICTION 

Sample 

fit T/N= μ + τ0/p numerical simulation 

μ τ0 [kPa] μ τ0 [kPa] 

mean st.dev mean st.dev mean st.dev mean st.dev 

F 4.76 0.73 23.45 9.24 4.78 0.013 23.44 0.06 

A 5.71 2.36 15.41 20.03 4.15 0.006 17.71 0.04 

B 2.05 0.40 24.85 7.46 3.76 0.006 9.83 0.04 

C 2.18 1.19 4.30 6.15 4.00 0.032 7.47 0.08 

Sx 2.44 1.55 9.17 12.13 3.29 0.006 10.84 0.03 

Sy 2.25 0.22 1.16 2.07 3.25 0.006 10.12 0.01 

          DYNAMIC FRICTION 

Sample 

fit T/N= μ + τ0/p numerical simulation 

μ τ0 [kPa] μ τ0 [kPa] 

mean st.dev mean st.dev mean st.dev mean st.dev 

F 2.88 1.39 11.85 11.27 2.879 0.003 11.89 0.01 

A 3.75 1.64 4.02 9.47 2.864 0.002 11.17 0.01 

B 2.62 0.32 2.98 2.55 3.036 0.008 6.02 0.05 

C 1.88 0.78 1.05 2.01 3.107 0.015 4.85 0.08 

Sx 2.67 0.87 4.52 5.12 2.866 0.005 8.57 0.01 

Sy 2.14 0.16 0.09 0.84 2.851 0.005 8.60 0.03 
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Numerical dynamic friction coefficients display smaller variations with respect to the 

experimental values for all types of patterns, and the calculated macroscopic adhesion term is 

proportional to the effective contact area. This is only partially true for experimental data. As 

expected, the current formulation of the model is less accurate in describing this phase of the 

sliding, probably mainly due to the implicit model assumption that pattern shapes remain 

unvaried during sliding, which may not be strictly true for a soft material like PDMS.  

In Fig.8, we analyse the results of the fit of Table 2 as a function of the corresponding Area 

Fraction (AF) of the different surface structures. Experimental results are correlated to this 

parameter by adding the curve T = Tflat
 
·AF (where Tflat is the fitting data for the flat surface) to 

the plot. Friction coefficients and adhesion terms display a linearly decreasing trend with AF for 

all isotropic patterns and for the anisotropic Sx pattern, i.e. when the larger side is aligned with 

the sliding direction. Results for the Sy pattern appear as outliers in the fit of 0. This confirms 

that area variations due to PDMS deformation influence the global value of 0. in the 

experimental results for different sliding directions on asymmetric patterns, Except for this, both 

numerical and experimental results are consistent with a three-term friction law T = μ N + a AF 

+ b, where a and b are constants, so that the adhesion term corresponds to 0 = a AF + b for a 

fixed area fraction [47, 48]. 

Overall, results show that the 2D spring-block model can be used for a qualitative, and often for 

a quantitative description of the static friction behaviour of elastic micropatterned surfaces. The 

necessary tuning of model parameters can be performed once and for all for a given material 

system and these remain valid for varying surface patterns, at least if the same surface 

preparation procedure is adopted. The current formulation is reliable for the static phase in a 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 24 

regime of slow sliding, small-intermediate pressures and negligible effects due to pattern 

deformations during the sliding.  

CONCLUSIONS 

In conclusion, we have presented a combined experimental and numerical study on static and 

dynamic friction of micro-patterned PDMS surfaces on a flat substrate. Experimental results 

were performed with a custom-made tribometer that allowed the evaluation of friction forces at a 

constant sliding velocity and for varying normal applied loads. Various types of simple micro-

patterns were considered, from equally spaced circular cavities to an array of elongated cavities, 

to evaluate the role of pattern spacing and anisotropy. Results show good repeatability and 

consistency, with a decrease of macroscopic friction coefficients as a function applied normal 

load. Anisotropic patterns generate a variation of friction forces of up to 300% depending on the 

sliding direction in the plane, thus allowing to generate directionally-tuned friction. Numerical 

calculations using the 2D spring-block model, modified to include adhesion, show considerable 

agreement with experimental results, correctly reproducing normal load dependence and static 

friction coefficient absolute values, both for isotropic and anisotropic patterns. Results provide 

further evidence of the reliability of the presented model in the case of friction of 2D patterned 

surfaces. This can be of great interest for the calculation of frictional properties of surface 

patterns, limiting the need for experimental tests, or for the conception of novel surface texture 

designs for applications, which can enable control and tuning of their frictional and adhesive 

properties.  
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