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ABSTRACT 

Human-accelerated climate change is quickly leading to glacier-free mountains, with consequences 

for the ecology and hydrology of alpine river systems. Water origin (i.e. glacier, snowmelt, 

precipitation, groundwater) is a key control on multiple facets of alpine stream ecosystems, since it 

drives the physico-chemical template of the habitat in which ecological communities reside and 

interact, and ecosystem processes occur. Accordingly, distinct alpine stream types and associated 

communities have been identified. However, unlike streams fed by glaciers (i.e. kryal), groundwater 

(i.e. krenal), and snowmelt-precipitation (i.e. rhithral), those fed by rock glaciers are still poorly 

documented. We characterized the physical and chemical features of these streams and investigated 

the influence of rock glaciers on the habitat template of alpine river networks. We analysed two 

subcatchments in a deglaciating area of the Central European Alps, where rock glacier-fed, 

groundwater-fed, and glacier-fed streams are all present. We monitored the spatial, seasonal, and 

diel variability of physical conditions (i.e. water temperature, turbidity, channel stability, discharge) 

and chemical variables (electrical conductivity, major ions and trace element concentrations) during 

the snowmelt, glacier ablation, and flow recession periods of two consecutive years. We observed 

distinct physical and chemical conditions and seasonal responses for the different stream types. Rock 

glacial streams were characterized by very low and constant water temperatures, stable channels, 

clear waters, and high concentrations of ions and trace elements that increased as summer 

progressed. Furthermore, one rock glacier strongly influenced the habitat template of downstream 

waters due to high solute export, especially in late summer under increased permafrost thaw. Given 

their unique set of environmental conditions, we suggest that streams fed by thawing rock glaciers 

are distinct river habitats that differ from those normally classified for alpine streams. Rock glaciers 

may become increasingly important in shaping the hydroecology of alpine river systems under 

continued deglaciation.  
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INTRODUCTION 

Current human-accelerated climate change is leading to a rapid loss of cryosphere globally (IPCC, 

2013; Huss et al., 2017). In the European Alps, 76-97% of the present glacier volume is predicted to 

vanish within this century (Beniston et al., 2018), and the majority of glaciers to disappear within a 
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few decades, as most of them are very small (<0.5 km2; Huss and Fischer, 2016). Several Alpine 

catchments have already surpassed the hydrological tipping point of maximum average discharge 

associated with glacier wastage, in relation to summer and total annual flows (Huss and Hock, 

2018). After this “peak water”, on the long-term discharge declines and seasonal maxima shift to 

the snowmelt peak of early summer (Beniston et al., 2018). The rapid glacier recession in alpine 

catchments is paralleled by an increased hydrological role of stochastic precipitation (Milner, Brown 

and Hannah, 2009; Milner et al., 2017), and by an increased prevalence of paraglacial features (i.e. 

adjustments in the landscape following glacier loss) and periglacial (i.e. conditioned by frost) 

processes driven by a slower and prolonged permafrost ice thaw (Haeberli, Schaub and Huggel, 

2016). Rock glaciers are common and evident forms of mountain permafrost (Jones, Harrison, 

Anderson and Whalley, 2019), and their internal ice represents an important water reservoir 

globally (Jones, Harrison, Anderson and Betts, 2018). 

Water origin is a key control of alpine stream ecosystems since it influences the habitat 

template (i.e. the combination of different physical and chemical conditions) in which biotic 

communities reside and interact along the river continuum (Hannah et al., 2007; Milner et al., 

2009). Accordingly, different alpine stream types have been originally described (Ward, 1994): kryal 

(glacier-fed), krenal (groundwater-fed), and rhithral (snowmelt/rainwater fed). In the lower part of 

the catchments, the term “glacio-rhithral” is commonly used to reflect the contribution from 

different water sources (Füreder, 1999). Outflows from rock glaciers are commonly observed in the 

Alps as in other mountain ranges (Jones et al., 2019). However, to date no research has focused on 

characterizing the distinctive habitat template of such running waters (Brighenti et al., 2019). Rock 

glacier-fed (hereafter referred to as “rock glacial”) streams exhibit particular hydrological and 

chemical conditions, comprising cold (<1.5°C) and clear waters with high electrical conductivity 

associated with high concentrations of major ions and, often, trace elements (Thies, Nickus, Tolotti, 

Tessadri and Krainer, 2013; Colombo et al., 2018a; Rotta et al., 2018a). Solute concentrations 

typically increase from spring to autumn, when the baseflow can be sustained by thawing internal 

ice (see Colombo et al., 2018a). Due to their cold waters, rock glacial streams were found to 

decrease summer water temperature in tributaries along the river continuum, thus extending 

refuge areas for cold-adapted species (Harrington, Hayashi and Kurylyk, 2017). In general, rock 

glaciers (including fossil forms, i.e. those without ice) and other landscape features including talus 

bodies, moraines, and tills represent important groundwater sources (Clow et al., 2003; Wagner, 

Pauritsch and Winkler, 2016; Winkler et al., 2016; Rogger et al., 2017; Harrington, Mozil, Hayashi 
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and Bentley, 2018) that are able to influence the quantity and quality of running waters in 

alpine catchments (Liu, Williams and Caine, 2004; Weekes, Torgersen, Montgomery, 

Woodward and Bolton, 2015; Engel et al., 2019). However, most research to date has 

focused on the hydrology of single landforms (e.g. for talus bodies see  Muir, Hayashi and 

McClymont, 2011; for moraines Winkler et al., 2016; for rock glaciers Harrington et al., 

2018; Winkler et al., 2016), and we are not aware of any study attempting a longitudinal 

characterisation of stream conditions under their combined influence at the catchment 

scale. In fact, glaciers are generally considered as the major hydroecological driver during 

the snow-free season in glacierized catchments (e.g. Ilg and Castella, 2006; Brown, Milner 

and Hannah, 2010). 

Our research therefore aimed to characterize the habitat features of rock glacial streams 

and appraise the seasonal and diurnal patterns of glacial, periglacial, and paraglacial influence along 

glacier-fed streams. We tested two hypotheses: H1) Rock glacier outflows represent a distinct 

alpine stream type, with different physical and chemical conditions when compared to kryal, krenal 

and glacio-rhithral habitats; H2) Rock glaciers influence stream conditions along the river 

continuum, in catchments with small glacier cover and fading glacial influence. We investigated the 

physical and chemical characteristics of different stream types within a glacierized catchment, and 

characterized the influence of glaciers, permafrost, mountain landforms, and groundwater on the 

stream habitat conditions moving downstream from the glacier snout. 

 

STUDY AREA 

The Solda Valley (Figure 1A) is located in the Central Italian Alps, in the Ortles/Cevedale massif. The 

climate is typically alpine, with average temperatures ranging from 10.6 °C in July to -5.3 °C in 

January and an average annual precipitation of 860 mm (Autonomous Province of Bolzano/Bozen – 

APB, 2018a) at Solda village (1900 m a.s.l., 1982/2012 period).  The research was conducted in the 

upper Solda and Zay subcatchments, which both have their closing section in Solda village. The area 

hosts several glaciers (World Glacier Monitoring Service - WGMS, 2018) and active rock glaciers 

occurring above ~2700 m a.s.l. (APB, 2018b). Three tectonic units of the Austroalpine domaine 

(Ortles, Zebrù and Peio) merge in the valley resulting in a complex geology (Montrasio et al., 2015). 

To reduce this bedrock variability, we selected the study sites (Table 1, Figure 1B) within the 

crystalline basement (Campo Nappe), mainly composed of gneisses and quartzphyllytes. 
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The upper Solda subcatchment (area 20 km2, maximum elevation 3902 m a.s.l.) hosts 

several glaciers covering 32% of the total area (APB, 2018b). Among these, the North-oriented 

Suldenferner (1.05 km2, mean elevation 2986 m a.s.l.) is a debris-free glacier that has experienced 

considerable retreat during the last decades (320 m during 1920-2016 period; WGMS, 2018). 

Sampling sites (Figure 1B) included the stream originating from this glacier (S1, S2), the permanent 

outflow (SRG) of an active rock glacier (area 0.072 km2) located in the alpine belt, and one of the 

several springs originating from the slopes in the subalpine belt (i.e. SKN, Table 1).  

The smaller Zay subcatchment (11 km2, 3546 m a.s.l., Figure 1C) is geologically more 

homogeneous (gneisses, with some intrusions of amphibolites in the lower section). Three small 

glaciers (area <0.5 km2) cover 8 % of the subcatchment area. Among them, the North-oriented 

Ausserer Zay (0.3 km2) is a debris-covered glacier that retreated 260 m from 1897 to 2007 (WGMS, 

2018), and additional 90 m from 2008 to present (comparison between the present front and the 

2008 orthophoto of the APB, 2018). The main stream of the subcatchment (Zay Stream) originates 

from this glacier (station Z1), whereas no other major surface runoff originates from the other 

glaciers (Figure 1C). The Zay Stream has a complex flow path (Figure 1C, Table 1): 400 m below the 

glacier snout (Z3), the stream feeds a small lake (0.044 km2, 2772 m a.s.l.) whose outflow 

immediately sinks into moraine debris. The moraine outflow (Z4), located 200 m downstream, runs 

beside the body of an active rock glacier (0.09 km2, 2719 m a.s.l. front), and joins with its outflow 

(ZRG, Table 1) in a small glacial floodplain (Z5, Table 1). Downstream, the closing section (Z6) of the 

glacial cirque (5.2 km2) also drains a series of three proglacial lakes without any evident outlet, and 

a huge rock glacier (0.42 km2) that feeds a very small spring not directly connected with the Zay 

Stream. Beyond the glacial cirque, the stream seeps into the debris of a talus slope, from which it 

re-emerges after a distance of 600 m and an elevation 290 m lower (Z7, Figure 1C). The slopes of 

this lower part of the subcatchment are occupied by some intact and several relict rock glaciers 

without any evident superficial outflow. In the sub-alpine belt, groundwater-fed tributaries, 

including the one where the ZKN station is located, join the Zay Stream before station Z12. In the 

lower part, the stream flows through a coniferous forest (Z13) before reaching the Solda village 

(Figure 1). 

 

METHODS 

Streams were investigated during two consecutive years (2017, 2018). Sites (Figure 1, Table 1) were 

sampled during five-day campaigns conducted in three main periods of the alpine summer: 
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snowmelt (3rd week of June), glacier ablation (end July/beginning of August), and flow recession (1st 

week of September). Several additional field-trips were undertaken during summer 2018 for 

discharge measurements and supplementary surveys.  We designed two types of survey, differing 

in aims and monitored parameters: extensive surveys and longitudinal surveys.   

 

Extensive surveys  

These surveys (N=6) characterized the physical and chemical conditions of streams as a function of 

water origin. At each subcatchment, we selected one groundwater-, one rock glacier-, and one 

glacier-fed stream. Additionally, four stream sections of mixed origin were selected along the Zay 

Stream (Figure 1C). A total of twelve stations (reaches) of   ̴50 m length each were investigated.  

Water temperature, electrical conductivity (EC), and turbidity were recorded with portable 

probes (WTW-Cond-3310 and WTW-Turb-430IR, Germany). Water level was recorded (in 2018) by 

measuring the water surface elevation at fixed iron rods. Discharge (not assessed at ZRG and Z5 

because the very wide and shallow channels prevented complete transversal mixing) was measured 

with the salt-dilution method (Gordon, MacMahon and Finlayson, 1992) during periods of 

maximum and minimum flow, and was used to build flow-rating curves associated with water level. 

A gauging station equipped with a level-meter pressure transducer (Keller AG Messtechnik, 

Switzerland) was deployed near the Zay closing section (Z13, 2081 m a.s.l.) for continuous recording 

at 10 min intervals. All extensive survey stations were instrumented with temperature data-loggers 

(HOBO© WaterTempProv2, Onset, Germany), with 30 min interval records. Temperature datasets 

were used to calculate the maximum (Tmax), minimum (Tmin), average water temperature (Tavg) and 

temperature range (dT= Tmax-Tmin) for each survey week. 

Water samples for chemical analyses were collected in 500 mL polyethylene bottles and 

preserved at 4°C until analysis at the Hydrochemistry laboratory of the Edmund Mach Foundation. 

Alkalinity, pH, EC, CO3
-, Ca2+, Mg2+, Cl-, Na+, K+, total nitrogen (TN), NH4

+-N, NO3
--N, total phosphorus 

(TP), PO4
--P, SO4

2-and SiO2, were determined according to standard methods (APHA-AWWA-WPCF, 

2017). Stream water for the determination of trace elements was filtered with cellulose acetate 

membranes (0.45 µm) into acid washed 100 mL polyethylene bottles and acidified at 1-1.5% with 

>65% HNO3 until delivered to Ecoresearch S.r.l. laboratory (Bolzano), where concentrations of Be, B, 

Na, Mg, Al, K, Ca, Ti, V, Cr, Mn,  Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Ba, Tl, Pb, U, Bi, 

P were measured using a ICP-MS ICAP-Q, Thermo Fischer analyser. Water samples for the 

determination of Dissolved Organic Carbon (DOC) were collected in clean, pre-acidified (65% HNO3), 
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100 mL polyethylene bottles and preserved at 4°C until delivered to Dolomiti Energia S.p.a. 

laboratory (Trento). 

To identify the major runoff components for each station and sampling time, precipitation, 

snowmelt, ice-melt and stream water samples were collected in 50 mL polyethylene bottles. A 

time-integrated precipitation sample was collected each month (from May to October) in rainwater 

containers built by following the IAEA (2014) standards, and placed nearby SRG and ZRG stations. 

Snowmelt and ice melt samples were taken from dripping snow patches and glacier surface rivulets 

at each sampling occasion. Isotopic analysis of 2H and 18O was conducted with a laser 

spectroscope (Picarro L2130i, precision: 0.1‰ for 2H, 0.25‰ for 18O) at the laboratory of the Free 

University of Bozen/Bolzano. 

Channel stability was assessed with the Pfankuch index (Pfankuch, 1975), obtained by 

recording metrics describing: upper banks (landform slope, mass-wasting, debris jam potential, 

vegetation, channel capacity); lower banks (rock content, obstructions, undercutting, deposition); 

and the streambed (rock angularity, brightness, particle packing, clasts size, scouring and 

deposition, aquatic vegetation). Scores assigned to each variable are summed in order to achieve 

the index, with low and high scores associated with stable and unstable channels, respectively. An 

aliquot of water (250-3000 mL) was collected and filtered in the field through GF/C Whatman glass 

microfiber filters, that were stored frozen (<-20°C) until the determination of suspended solids 

concentration, which was calculated as ash-free dry mass (AFDM, g L-1) following Hauer and 

Lamberti (1996). The organic detritus was sampled with a Surber net (100 µm mesh, 506 cm2 

frame) by disturbing different substrates (i.e. mosses, boulders, cobbles and gravel) according to 

their relative abundance in the channel (five total replicates). Samples were preserved in 90% 

ethanol and devoid of invertebrates and fragments of living mosses under a dissecting microscope. 

Organic detritus was calculated as ADFM (g m-2). The coarse (≥ 1 cm) and fine (< 1 cm) fractions 

were separated with a sieve to calculate the detritus ratio (coarse/fine). 

 

Longitudinal surveys  

These surveys (N=3) estimated the diel and seasonal variability of glacier influence on habitat 

conditions along the river continuum. Longitudinal surveys were conducted at the Zay 

subcatchment, where we selected 13 monitoring points (Figure 1D), that included all extensive 

survey stations and additional sites that were added to obtain a more regular spacing. Monitoring 

was undertaken on days without precipitation during the extensive survey campaigns of 2018. Two 
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teams assigned respectively to the upper (Z1-Z6) and lower (Z7-Z13) stations of the subcatchment 

measured water temperature, EC, turbidity and water level every three hours starting from 7 AM 

(five runs of approximately 60 min each), proceeding downstream (ZKN and ZRG were included). 

Portable conductivity (WTW-Cond-3310, WTW-Cond-3210) and turbidity (WTW-Turb-430IR) meters 

were previously cross-calibrated in the laboratory to ensure comparable recording between the 

two teams. Station Z1 was not sampled in June as it was covered with snow. Due to safety reasons 

(dry thunderstorm), 4 PM and 7 PM runs in lower Zay (Z7-Z13) were not undertaken in September. 

Six additional surveys with morning, mid-day and afternoon runs were conducted in different 

weeks respect to longitudinal surveys, and were included in the calculation of the glacial indices 

(see below). The data recorded by the gauging station at Z13 and the data-loggers were used to 

provide information about the discharge and temperature patterns of the period and guarantee 

that the longitudinal survey data were representative of each hydrological period. The Pfankuch 

index was assessed for all the longitudinal survey stations. Discharge measurements were 

conducted using the salt dilution method at Z2, Z3, Z4, Z6, Z8, Z11 during seasonal discharge 

minima and maxima, to evaluate the discharge range, and flow rating curves were developed. 

 

Data analysis 

To detect the different components of the water flow, mixing diagrams for each subcatchment 

were produced by plotting δ2H against SiO2 values, where silica was assumed as a proxy for 

groundwater contribution (Ward, Malard, Tockner and Uehlinger, 1999; Brown, Hannah and 

Milner, 2003; Liu et al., 2004; Brown et al., 2006). In addition, we used a tracer-based runoff 

separation and produced two-member mixing models. Accordingly, mass balance equations 1 and 2 

were applied to separate discharge into two flow components (Blaen, Hannah, Brown and Milner, 

2014): 

 

Qgw / Qi = (Cm - Ci) / (Cm - Cgw)      (Equation 1) 

Qi = Qm + Qgw        (Equation 2) 

 

where Q denotes discharge and C the solute (Silica) concentrations. Subscripts gw, m and i refer to 

groundwater, melt water, and sampling site water, respectively. 

We assumed that meltwater was driven by the snowmelt or the ice melt (for both found below the 

detection limits, i.e. 0.05 mg L-1). The groundwater component was defined as the highest value at 
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krenal sites (for both SiO2 = 4.3 mg L-1). The uncertainty was calculated following Genereux (1998) 

and accounting for the error propagation where data were pooled together.  

The extensive survey dataset was analysed by Principal Component Analyses (PCA), with 

Kaiser normalization and Varimax rotation, to visualize the environmental variables associated with 

different stations and sampling date. Trace elements were analysed in a separate PCA from the 

other environmental variables, in order to account for bedrock composition variability. Stepwise 

forward selection, discarding the variables not strongly correlated (correlation coefficient <0.5) to 

any other in the correlation matrix, was used to choose the variables. Water isotopes (analysed 

separately), detritus ratio (redundant with organic detritus), suspended solids (redundant with 

turbidity), and trace elements above the detection limits for less than 6 samples were excluded 

from the multivariate analyses.  

The longitudinal survey dataset was analysed to compute the glacier influence and its spatial 

and temporal trends. The Glaciality Index proposed by Ilg and Castella (2006) uses the normalized 

values of water temperature, EC, 1/suspended solids, and 1/Pfankuch (only bottom component) to 

produce a non-centred PCA, where the PC1 scores are taken as values of the index. We used a 

similar approach and built our Index of Glacial Influence (IGI) by using 1/water temperature, 1/EC, 

turbidity, and Pfankuch (upper banks, lower banks and bottom components) in order to obtain 

increasing IGI values associated with increasing glacial influence. The IGI values were eventually 

obtained by adding to PC1 scores the minimum value of them, to achieve all positive numbers. 

Given the large seasonality of the glacier influence in alpine catchments (e.g. Milner and Petts, 

1994; Brown et al., 2003), we designed a specific index of Seasonal Glacier Influence (SGI), 

reflecting the large seasonal variability of habitat conditions driven by the presence of glaciers. This 

index was obtained using the same method employed for the calculation of the IGI by using the 

following variables in the PCA: Pfankuch index; total averages of turbidity; 1/water temperature; 

1/EC; and the standard deviation values of turbidity and EC. We cross-compared (non-parametric 

Spearman correlation, ρ) our calculated indices with the total area occupied by glaciers in the 

underlain catchment area (Glacier cover in the catchment) and the Glacial Influence index of 

Jacobsen and Dangles (2012), calculated as a function of distance from the glacier and its area. 

Ggplot2 package in R version 3.6.0 (R Development Core Team, 2017) was used to produce 

biplots of mean and standard deviation of the variables across the gradients over the season. 

Pairwise comparisons (Table 2) were made to analyse differences in all the analysed variables 

between sample groups (i.e. months, stream types). Due to non-normal distribution (Shapiro-Wilk, 
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P<0.5), even after data transformation, and/or inhomogeneous variances (Levene, P>0.5), we used 

the non-parametric Wilcoxon rank-sum and the Kruskal-Wallis tests, with post-hoc Mann-Whitney 

test and Bonferroni corrections. The softwares SPSS (v.25, IBM, 2018) and R were used to analyse 

the data.  

 

RESULTS  

Discharge patterns, water origin and temperature profiles 

The hydrograph at Zay gauging station (Figure 2) revealed major peaks during the snowmelt period 

(first week of June in 2017, last week of May in 2018). In both years, discharge decreased during 

summer, especially after early September, with superimposed secondary peaks associated with 

rainfall events in July and August (Figure 2). Discharge decreased consistently from the snowmelt to 

recession period along the whole Zay stream (Figure 3), including the proglacial sites (Z2-Z3), where 

it was 55 ± 10 L s-1 in June, 35 ± 17 L s-1 in August, and 13 ± 10 L s-1 in September (longitudinal 

surveys means and standard deviations). Discharge at the Suldenferner snout (S1; all extensive 

survey measurements always at 10-11 AM), exhibited a different trend, with the highest values 

recorded in August (136 L s-1), intermediate values in June (113 L s-1), and much lower values in 

September (12 L s-1) surveys. 

Seasonal variations of both δ18O and δ2H revealed a significant isotopic enrichment from 

June to September (Table 2), in line with a decreased influence from the melting snow. This 

seasonality is shown in the mixing space of δ2H and SiO2 (Figure 4), where all stream samples are 

included in the range of the potential water sources for both subcatchments. With very low silica 

concentrations (<0.3 mg L-1 ), snowmelt (-140.3 to -89.7 ‰) and ice melt (-105.5 to -89.5 ‰) 

delineate an end-member of isotopic depleted waters, and precipitation a second end-member of 

isotopically enriched (-91.2 to -38.8 ‰) waters. Sampling station waters were in the isotopic range 

of snowmelt and ice melt, and differed in terms of silica concentrations, with lowest values for the 

upper kryal (0.6 ± 0.4 mg L-1) and highest for krenal sites (3.7 ± 0.8 mg L-1) at each extensive survey. 

Rock glacial, lower kryal, and glacio-rhithral sites exhibited similar silica concentrations at each 

extensive survey, intermediate between kryal and krenal. Accordingly, the mixing models (Table 3) 

revealed for all periods an increased groundwater contribution from the upper kryal sites (14.1 ± 

9.9 % overall mean and SD), to the lower kryal (44.4 ± 10.8 %) and glacio-rhithral (48.3 ± 13.0 %) 

stations, and to the  krenal sites (84.9 ± 19.6 %). Rock glacial streams revealed a high proportion of 
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groundwater contribution (49.2 ± 12.7 %), without any significant difference between ZRG and SRG 

(Table 3).  

Temperature data-loggers showed different patterns according to stream type (Figure 5). 

Low water temperature with reduced diel fluctutations characterized the Zay glacier outlet (Z1, T= 

0.7 ± 0.5°C), where diel fluctuations increased in mid summer, but remained limited when 

compared to downstream stations. Marked diel fluctuations characterized Z3, where water 

temperature (T= 2.1 ± 1.2°C) even exceeded 8°C during warm days after the snowmelt (with up to 

8°C fluctations). Moving downstream, the outlets from the moraine (Z3, T= 2.5 ± 0.5°C) and the 

talus body (Z7, T= 4.7 ± 0.8°C) exhibited increasingly high average temperatures but less 

pronounced diel fluctuations, compared to Z3. The krenal station ZKN showed constant and 

relatively low water temperature in summer (T= 3.1 ± 0.3°C), with slight diel fluctuations of 

maximum 1°C. Rock glacial streams exhibited unique patterns (Figure 5), with low water 

temperatures slightly increasing over the season, and almost absent diel fluctuations (1.2 ± 0.1°C 

for both ZRG and SRG). The temperature profile of SRG exhibited more pronounced daily 

fluctuations than ZRG, and showed transient (0.5-1.5 hrs) peaks (up to 2.6°C) associated with 

rainfall events. Also the upper kryal station showed transient temperature peaks, apparently 

associated with rainfall events, although these fluctuations were less frequent and minor (not 

shown). 

 

Extensive surveys 

The first two components of the PCA with the retained environmental variables (Figure 6) explained 

72.6% of the total variance, and the variable loadings are summarized in Table 4. Samples were clearly 

separated according to stream type and seasonality. Upper kryal stations could be distinguished in 

terms of their low PC1 and PC2 values. Accordingly, pairwise comparisons (Table 2) showed that 

upper kryal stations had significantly higher Pfankuch index (i.e. channel instability), suspended 

solids, turbidity, and total P, and lower SiO2,  organic detritus, and detritus ratio compared to the 

other stream types. However, in September, the upper kryal stations exhibited significantly lower 

turbidity values and higher EC, NO3
-, SO4

2-, Ca2+, than in June and August (Table 2), and the strong 

seasonal variability of the habitat conditions was also identified in the PCA by a progressive shift 

towards positive values of PC1 and PC2 (Figure 6). Samples from upper kryal to lower kryal, glacio-

rhithral, and krenal stations were distributed along a gradient of decreasing water turbidity and 
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increasing channel stability, water temperature and abundance of organic detritus (Figure 6, 

Supplementary A). In fact, a strong negative correlation (ρ=-0.84, P<0.001) was identified between 

PC1 values and the Jacobsen Index of glaciality in the catchment. Within each stream type, the PC 

values shifted from June to September along a gradient of increasing solute concentrations (Figure 

6, Supplementary II). Nevertheless, this variability was minimal for krenal stations (confirmed by non-

significant differences among the three periods in the variables). At each sampling occasion krenal 

stations  exhibited the highest values of SiO2, organic detritus, and detritus ratio among stations, 

although differences in mean values were significant only when compared to upper kryal stations 

(Table 2). Rock glacial streams exhibited significantly lower Tmax  and dT compared to all other stream 

types, and the lowest Tavg except for those of kryal stations. However, only SRG can be clearly 

distinguished in Figure 6, due to the particularly high values of PC1 , while ZRG scores are placed in 

the same range of lower kryal stations except for September values, that are associated with 

increased PC1 scores. In fact, the two rock glacial streams exhibited clear differences in water 

chemistry, with SRG showed significantly higher pH, EC, Ca2+, Mg2+, SO4
2, HCO3

-, K+, Pfankuch index 

values, and lower turbidity and total nitrogen than ZRG (Table 2). In both rock glacial streams, NO3
- 

levels (108-272 g L-1) were comparable to those of glacio-rhithral and lower kryal in all samples, and 

showed highest values in September, while PO4
- concentrations (1-5 g L-1) were among the highest 

of all stream types in all periods (see Supplementary A for further details). 

In the PCA undertaken with the retained trace elements (As, Sr, Ba, Al, Rb and U), 74.7 % of 

the variance was explained by the first two components (Figure 7, Table 4). One outlier (Z3, 

September 2017) was removed before running the analysis because of extremely high 

concentrations of Al and Fe (see Discussion). All June samples except SRG plot close to the PCA axes 

origin, due to low concentrations of trace elements. At the krenal sites, trace element 

concentrations remained for the whole season close or below the detection limits (see 

Supplementary B). For the other stream types, August and September samples are spread along the 

two PC axes in Figure 7, and clearly differ in the two subcatchments, with upper kryal and rock 

glacial samples from Solda grouped along PC1 (increasing As, Sr, Ba) and Zay samples grouped along 

PC2 (increasing Al, Rb, U). The pairwise comparisons (Table 2) confirmed this pattern (higher values 

of Rb and U and lower values of Ba and Sr at Zay), and provided further  detail on the distinction 

between habitats based on the trace elements discarded in the PCA. In fact, upper kryal exibited 

significantly higher values of Mn (up to 22.3 µg L-1) compared to all other stream types. The highest 

trace elements concentrations were detected in September at both Zay (U, Mn and in 2017 Fe, Al, 
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Rb) and Solda (As, Sr, U, and Ba, Ni, Cu, Rb only in this month) upper kryal (Supplementary B). U 

exhibited high concentrations along the entire Zay stream over this period, with higher values in the 

proglacial sections (68.1-88.3 µg L-1) than downstream (6.6-35.7 µg L-1). High concentrations of 

trace elements were also detected in rock glacial waters, in particular SRG that showed the highest 

concentrations of As (22-36 µg L-1), Sr (29.5-614 µg L-1) and Ba (11.8-24 µg L-1) among stations in all 

periods (Figure 7, Supplementary B). In September, concentrations of U at ZRG (53.2-81.9 µg L-1) 

were comparable to those of Zay upper kryal, and higher than those of the nearby lower kryal sites 

(6.6-35.7 µg L-1). 

 

Longitudinal Surveys  

The first component of the PCA used to build the Index of Glacial Influence explained 59.1% of the 

total variance (see Table 5 for the loadings). In the PCA run to build the Seasonal Glacier Influence 

(SGI), the first component alone accounted for 79.4% of the variance and was strongly driven by all 

the parameters included in the analysis (Table 5). Both IGI and SGI were significantly correlated 

(P<0.001) with distance from the glacier and elevation (correlation coefficient ρ=-0.80 for IGI, ρ=-

0.98 for SGI), Jacobsen Index (ρ=0.8; ρ= 0.98), and the glacier cover in the catchment (ρ=0.66; 

ρ=0.85). Longitudinal patterns were similar for both IGI and SGI (Figure 8) exhibiting significantly 

higher values (Table 2) in the proglacial reaches (Z1-Z3) compared to further downstream (Z4-Z13), 

with a sharp reduction from station Z4, i.e. downstream of the lake and the moraine. Longitudinal 

variations of both indices were stronger in the proglacial reaches than below the lake, reflecting a 

rapid reduction of the glacial influence moving downstream from the glacier snout on a daily (IGI) 

and seasonal (SGI) basis. IGI exhibited a clear seasonality, with lowest values during the flow 

recession compared to both snowmelt and glacier ablation periods. These longitudinal and 

temporal patterns of the indices corresponded closely to those of channel stability, water 

temperature, EC, turbidity, and discharge recorded along the stream.  

The Pfankuch index had the same longitudinal trend as the IGI, with relatively high values 

recorded at the floodplain station (Z5), driven by high values of the bottom component, and below 

station Z10, driven by high values of the upper and lower bank components (Figure 9). The index 

showed a strong negative correlation with distance from the glacier (P<0.001, ρ= -0.80). 

All stations above the proglacial lake (Z1-Z3) showed significantly higher turbidity and lower 

water temperature and EC compared to the stations downstream (Z4 to Z13) in all periods (Figure 
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10). These proglacial reaches showed a clear seasonality, with the recession period characterized by 

significantly lower discharge, and higher EC compared to the periods of snowmelt and glacier 

ablation (which did not differ significantly from each other in relation to these parameters).  

Below the lake (Z4 to Z13), the Zay stream showed sudden shifts in terms of decreased 

turbidity (up to 6-fold) and increased EC (3-fold) during snowmelt and glacier ablation, compared to 

proglacial stations, and decreased water temperature compared to Z3. Moving downstream from 

the moraine outlet, EC increased slightly during snowmelt and glacier ablation, especially in the 

lower part of the subcatchment (below Z10), and showed a positive peak below the junction with 

the rock glacial stream (Z5). This peak was particularly pronounced (228.8 ± 8.0 µS cm-1) and sharp 

during the recession period, with a rapid decrease in EC just below this station. The seasonal 

increase of EC was also found at ZRG (Figure 10), with highest values during recession (295.9 ± 7.6 

µS cm-1, 4-fold increase with respect to the previous periods), corresponding to the highest levels 

recorded at Zay. At ZRG, the longitudinal surveys confirmed seasonally low and constant water 

temperature (1.2 ± 0.1°C), while turbidity (8.3 ± 5.2 NTU) values were always comparable to those 

recorded below the talus body. ZKN was characterized by consistently clear (1.2 ± 1.1 NTU) and cold 

(3.2 ± 0.3°C) waters in all longitudinal surveys, and EC showed a small seasonality (130.0 ± 7.1 µS 

cm-1) as well, with higher values compared to all other stations (including ZRG) during snowmelt 

and glacier ablation but not during recession, when EC was higher (not significantly) than at stations 

Z10-Z13 and Z1-Z4. 

Different patterns of diel fluctuations appeared to be associated with different seasonal 

phases (Figure 11), although it was not always possible to disentangle the timing of minima and 

maxima in the parameters, and the values recorded from stations downstream of the moraine 

(especially Z4 and Z7-Z13) showed very little diel variability (Figure 10). Water temperature 

generally showed morning minima (in all periods) and mid-day (in the recession period) to 

afternoon (in the snowmelt and glacier ablation periods) maxima. These timings were confirmed by 

the analysis of the temperature data-loggers (which recorded, for the proglacial stations as well, 

the actual minima during the night, when in-situ field measurements could not be undertaken). 

Turbidity showed a comparable diel pattern across all periods in the proglacial reaches (Z1-Z3), with 

afternoon maxima and morning minima. A clear opposite trend was observed in the lower part of 

the subcatchment (Z7-Z13) during glacier ablation, where maxima were recorded in the early 

morning and minima in the late afternoon. A spatial pattern in EC values was observed during 

glacier ablation, when all the upper stations showed morning maxima (except Z4) and afternoon 
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minima (except Z4 and Z6), while the lower stations (Z7/Z13) had morning minima and afternoon 

maxima. Discharge values showed similar patterns for all stations and across all periods, with 

morning minima and afternoon maxima where variations could be detected. Finally, IGI diel cycles 

appeared to be most strongly related to the trends recorded for turbidity, with a weaker 

contribution from the other parameters structuring the index (Figure 11). 

 

DISCUSSION  

This study combined field sampling, to characterize the physical and chemical water quality and 

habitat parameters of alpine streams, with high-frequency monitoring to investigate the longitudinal 

gradients of glacial influence in different periods of the Alpine summer. Using this combined survey 

design we addressed both research hypotheses: i) we identified key habitat features that distinguish 

rock glacial streams from other stream types (H1) and ii) we demonstrated the role of an active rock 

glacier in shaping the stream habitat conditions along the river continuum, in a catchment where the 

hydrological imprint of glaciers is fading because of the prolonged retreat and the influence from the 

paraglacial landscape is increasing (H2). 

 

Discharge and water sources 

Discharge patterns suggest a greater hydrological role of the glacier in Solda than in Zay. In fact, the 

discharge at the Suldenferner outflow was an order of magnitude higher than at the Ausserer Zay 

glacier, with major peaks during the period of glacier ablation. In contrast, discharge maxima at the 

upper kryal stations (and along the entire stream) at Zay occurred in the early summer, i.e. during 

the snowmelt period. This seasonal dynamic, combined with the extreme reduction of the glacier 

during the last few years (WGMS, 2018), provides evidence that the Zay subcatchment was well 

over the peak water. In fact, a similar condition was observed for small glaciers in Switzerland (Huss 

and Fischer, 2016), where anticipation of the seasonal peak discharge and decreased average 

discharge were observed in 1961-1990 following glacier retreat, and were associated with the 

exceedance of peak water. At the catchment scale, the reduced hydrological contribution from 

predictable glacier cycles is paralleled by an increased relative importance of melting snow and a 

larger dependency on stochastic precipitation patterns, as reported for several catchments in the 

Alps and the Pyrenees (Milner et al., 2017).  



16 
 

At Zay, the progressive groundwater contribution in the lower sections suggested by mixing 

models is in line with previous studies in alpine settings, where silica was found to be a good 

indicator of groundwater (Ward, Malard, Tockner and Uehlinger, 1999; Brown et al., 2003; Liu et al., 

2004; Brown et al., 2006). However, the isotopic composition of water (assessed during baseflow 

conditions) indicates that at least part of the groundwater flow in Zay was associated with the 

routing of glacial- and snow melt waters. This meltwater contribution to groundwater recharge was 

also demonstrated by Ward et al. (1999) in a highly glacierized catchment, and our results suggest 

that glaciers are still able to provide a notable contribution to water fluxes even in catchments with 

a small glacier cover. 

 

Stream types 

Despite the differences in the hydrochemistry of the two studied subcatchments reflecting the 

prevalence of different bedrock, our study has provided further evidence that water origin is a key 

driver in structuring habitat conditions in alpine streams (e.g. see Ward, 1994; Brown et al., 2003). 

The upper kryal stations were characterised by the harshest and most variable habitat conditions 

among all surveyed stations. In fact, highly unstable channels with very turbid and cold waters, 

enriched in total phosphorus (product of the glacial physical erosion; see Hodson, 2007) and 

depleted in other solutes, were typical of the snowmelt and glacier ablation periods. Shifts to clear 

waters with a steady flow occurred in September, when a 10-fold increase in EC was detected 

compared to August. Multiple energy fluxes (e.g. net radiation and sensible heat) influence the 

ablation process on glaciers (Hannah, Gurnell and McGregor, 2000), and ice ablation is reduced or 

absent during autumn and winter (Cuffey and Paterson, 2010). Accordingly, autumn discharge from 

glaciers is typically dominated by the baseflow (see Table 3), which is mostly driven by the 

subglacial/englacial contribution associated with waters enriched in solutes (Sharp, 2006) and 

metals/metalloids (Mitchell, Brown and Fuge, 2001). Accordingly, highest concentrations of major 

ions (Ca2+, Mg2+, SO4
2-, NO3

-) and trace elements were recorded in this period in both glacier-fed 

streams. Interestingly, As (S2), U (the entire Zay Stream), Fe and Al (Z3, 2017) were found above the 

EU/EPA limits for drinking water in September, likely as a result of the local lithology and the 

presence of metal ores in the upper Zay (siderite at manganese; Baumgarten, Folie and Stedingk, 

1998).  

As previously reported for highly (e.g. Milner and Petts, 1994; Füreder, 2012; Finn, Räsänen 

and Robinson, 2010) and poorly (e.g. Smith, Hannah, Gurnell and Petts, 2001; Khamis, Brown, 
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Hannah and Milner, 2016) glacierized basins, a gradient of habitat amelioration was detected along 

the glacier-fed stream. This steep gradient we observed was associated with decreasing turbidity 

and trace element concentrations, and increasing channel stability, average water temperature, 

nitrate concentrations, and abundance of organic detritus, the latter due to higher inputs from the 

surrounding vegetation and increased retention from bryophyte mats.  

Water temperature represents the main environmental variable that discriminates rock 

glacial streams from the other habitats, as very low (<1.2°C) and constant values were recorded at 

both rock glacial streams . Carturan et al. (2016) suggested a low and constant temperature during 

summer as the only reliable water proxy allowing identification of the permafrost presence in rock 

glaciers. However, the studied rock glacial streams were also characterized by clear waters, with an 

abundance of organic detritus that was comparable to glacio-rhithral stations. Despite the scarce 

loads from the surrounding vegetation (patchy alpine grassland), this indicates a higher retention 

capacity of rock glacial compared to kryal habitats, which is also due to the higher coverage of 

mosses and higher channel stability. Nutrient levels, i.e. nitrates and phosphates, were also high 

and comparable to those of glacio-rhithral sections, and potentially support primary production 

(Uehlinger, Robinson, Hieber and Zah, 2010). High nitrate levels are commonly found in rock glacier 

outflows and have been attributed to microbial production into the rock glacier bodies, where the 

ice thaw may promote the nitrogen flushing from microbially active sediments (Williams, Knauf, 

Cory, Caine and Liu, 2007; Baron, Schmidt and Hartman, 2009; Barnes, Williams, Parman, Hill and 

Caine, 2014). 

Although it was not possible to clearly discriminate rock glacial streams according to water 

isotopes, these streams exhibited concentrations of silica comparable to those of lower kryal and 

glacio-rhithral stations in all periods, suggesting a considerable part of the baseflow associated with 

the groundwater component. This is in line with the literature on rock glacier hydrology stating that 

these landforms act as unconfined aquifers in mountain slopes (e.g. Krainer and Mostler, 2002; 

Jones et al., 2019). The enrichment of solutes and trace elements in rock glacier outflows is 

commonly attributed to the thaw of internal ice and to the associated weathering of freshly 

exposed rock particles (Williams, Knauf, Caine, Liu and Verplanck et al., 2006; Ilyashuk, Ilyashuk, 

Psenner, Tessadri and Koinig, 2018; Colombo et al., 2018b; Munroe, 2018). Accordingly, the high 

values of EC, major ions, and trace elements, we observed increasing over the season, are 

consistent with data reported in the literature on rock glacier hydrology (e.g. Millar, Westfall and 

Delany 2013; Williams et al., 2006; Mair et al., 2015; Colombo et al., 2018a) and suggest that part of 
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the rock glacial baseflow in late-summer came from permafrost thaw, in addition to the 

groundwater fraction, and this increased as summer progressed. As observed in other case studies 

(e.g. Colombo et al., 2018a; Rotta, 2018), trace elements were found at high concentrations in rock 

glacial waters at Solda (As, Sr and Ba) and Zay (U, Rb), with concentrations of As (all Solda samples, 

up to 3-fold in September) and U (Zay, up to 3-fold in September) exceeding the EU/EPA limits for 

drinking water.  

In stark contrast to all the patterns described above, we observed some striking differences 

between the two rock glacier outflows. While the Solda rock glacial stream exhibited high EC, Ca2+, 

Mg2+, SO4
- that made this stream unique among all stations, the Zay rock glacial stream showed 

intermediate conditions between the Solda rock glacial and the lower kryal/glacio-rhithral stations, 

especially during the snowmelt period. The differences could be related in part to local topographic 

(channel stability) and geological features (pH and trace elements). However, we suggest that the 

seepage of kryal waters across the rock glacier debris, observed in the field, might play a crucial role 

in structuring the chemistry of rock glacial waters at Zay. In fact, turbidity and δ2H values were 

consistently similar to those found in the adjacent lower kryal stations. The decreasing glacial 

influence from June to September was balanced by an increasing role exerted by the groundwater 

component and the thawing permafrost, as shown by a 3- to 4-fold increase of EC, ions and trace 

element concentrations. In addition, as summer progressed and the influence of glacier ablation 

dropped, the distinction between the two rock glacial streams became less pronounced. This 

provides insights on the mutual interactions between glacial and periglacial processes in 

deglaciating environments (see also Jones et al., 2019). In fact, rock glaciers can originate from the 

progressive evolution of a debris-covered glacier, under a continuum process along which the 

decreasing glacial influence is paralleled by increasing periglacial/permafrost conditions as 

deglaciation progresses (Anderson, Anderson, Armstrong, Rossi and Crump, 2018). Accordingly, the 

Zay rock glacial stream may represent a hydrological evidence of this glacial to periglacial transition, 

as the Zay rock glacier shows evidences of glacial origin from the same debris-covered glacier that 

feeds the Zay stream. Whatever its origin, the Solda rock glacier appears to be completely isolated 

from any glacial influence. Accordingly, its outflow may represent an ideal “hydrological end-

member” of periglacial influence that the Zay rock glacial stream may reach in the late stages of 

deglaciation, when this stream becomes completely detached from the glacier imprint. 
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Glacial influence along the river continuum 

The longitudinal surveys at Zay suggest that in the late stages of glacier retreat, under a declining 

and low discharge from glaciers, the paraglacial landscape exerts a strong influence on stream 

habitat conditions. Within this context, our new index (SGI) seems to capture the average influence 

of the glacier at the reach level, reflecting harsh summer conditions and a large seasonal variability 

of stream parameters. In turn, the IGI best reflected the diel cycles associated with the glacial 

influence in different periods and was a good indicator of the glacial imprint in proglacial sections. 

However, the collected data suggest that atmospheric conditions (e.g. solar radiation, air 

temperature) exerted a greater influence than the glacier over the water temperature, as values of 

5-6°C were reached just 300 m below the glacier in all longitudinal survey periods. This is in line 

with the findings from another poorly glacierized basin in the French Pyrenees, where Khamis, 

Brown, Milner and Hannah (2015) found atmospheric conditions as the primary driver of the energy 

budgets in a glacier-fed stream during the snow-free period, under low discharges from the small 

glacier. 

In our study, local conditions such as slope gradients seemed to override the glacier 

influence on channel stability in all stations below the lake, and this was reflected in the non-linear 

behaviour of the IGI proceeding downstream. In fact, a high glacial influence was restricted to the 

proglacial sections, where pronounced diel and seasonal variations of discharge, turbidity, EC, were 

those typical of highly glacierized areas (e.g. Milner and Petts, 1994; Milner, Brittain, Castella and 

Petts, 2001, Castella et al., 2001). Proglacial lakes are known to have a great buffering capacity for 

alpine river networks, as they can smooth water temperature variability, trap sediments, and 

stabilize downstream discharge (Milner and Petts, 1994, Finn et al., 2010). Also in our study, the 

turbid proglacial lake acted as an efficient environmental buffer and trap for suspended solids along 

the river continuum, as confirmed by significant reductions in IGI and SGI values below the lake 

compared to the inlet, in combination with decreased average values of turbidity (up to an order of 

magnitude) and Pfankuch index. Nevertheless, some environmental features showed unexpected 

patterns that cannot be explained by the presence of the lake alone. In fact, water temperature at 

the moraine outlet, extremely constant on a diel and daily basis, was always lower than in the lake 

inlet, whereas EC was higher downstream the moraine compared to upstream sites for all periods 

and timings. Furthermore, three surveys of the lake waters (downstream shore) at different timings 

during the glacier ablation survey revealed warm conditions (6.4-8.9°C) with turbidity and EC values 

lower but the same order of magnitude as the inflowing stream. Lower water temperatures and 
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higher EC values at the moraine outlet during snowmelt and glacier ablation are probably the result 

of processes occurring in the hypogeal flow across the moraine debris. In fact, coarse blocky 

deposits in alpine settings are able to buffer atmospheric temperatures in summer and to cool 

infiltrating warmer waters (Jones et al., 2019). In addition, proglacial moraines are generally 

considered as potential groundwater storage systems (Langston, Bentley, Hayashi, McClymont and 

Pidlisecky, 2011). Accordingly, the moraine outlet may combine the seepage of stream/lake waters 

with the groundwater flow, and this is corroborated by a larger groundwater component revealed 

by mixing models in that station compared to the upstream ones. Thus, while the turbidity drop 

was caused by both the lake and the moraine, the increased EC and the decreased water 

temperature was likely driven by the moraine baseflow.  

Although not capable of cooling waters in the tributary, as found by Harrington et al. (2017) 

in a glacier-free catchment, the rock glacial stream does represent an important driver within the 

river continuum at Zay. This is demonstrated by the rise of EC below the confluence during the 

recession phase compared to previous periods which can be explained by the increased 

contribution of permafrost-influenced waters from the rock glacier. However, the decreased values 

of EC from the first to the second station downstream from the junction indicate an incomplete 

mixing of lower kryal and rock glacial waters at the upper site, which was located ca. 60 m below 

the confluence where the channel was very wide (20 - 30 m) and shallow (< 1 m).  

The decreasing trends of turbidity below the glacial cirque reflect the linearly decreasing 

influence of the glacier, whereas the downstream increase of discharge and EC may reflect the 

increasing contribution from groundwater sources. Although some storage capacity has been 

reported in talus slopes (e.g. Sueker, Ryan, Kendall and Jarrett, 2000), water flow across these 

bodies is often rapid as these landforms typically consist of coarse blocky materials (Muir et al., 

2011). In our study, similar water characteristics above and below the talus body suggest the 

stream water probably had a short residence time. However, minor diel fluctuations recorded for 

all parameters at the talus outlet compared to the upstream station are probably due to some 

buffering effect exerted by the talus debris, leading to relatively stable habitat conditions. 

In the lower section of Zay, the observed longitudinal increase in EC values during snowmelt 

and glacier ablation can be explained by the contribution of krenal streams enriched in solutes, 

which also accounted for the lowering of turbidity and water temperature observed along the Zay 

stream. However, during the flow recession the EC continued to decline proceeding downstream 

from the glacial cirque, most likely due to the contribution from krenal tributaries being unable to 
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increasing EC as during the previous periods. This explanation is supported by the observed 

inactivity and reduced flow from several springs in this period. 

The longitudinal gradients of EC recorded during the recession period, with a dominant 

influence from the rock glacier and negligible effect from groundwater tributaries, were also 

confirmed by additional longitudinal surveys (16-24/9, 4/10), and were driven by concentrations of 

Ca2+, Mg2+, SO4
2-, and HCO3

- (Supplementary A). Thus, despite the seepage of kryal waters into the 

debris of the active rock glacier, its outflow was capable of driving an inversion of the EC gradients 

along the entire Zay stream in late summer, exerting a significant influence on the stream 

hydrochemistry for more than 3 km downstream, until the Zay closing section. Furthermore, a 

previous study conducted along the main river of the Solda catchment revealed, in September, an 

increase of EC below the junction with the Zay Stream (Engel et al., 2019), and this suggests an even 

wider hydrological influence exerted by the Zay rock glacier requiring further investigation. Despite 

the water contribution from rock glaciers currently being considered as negligible from a 

catchment-scale perspective in the Alps (Krainer, Mostler and Spötl, 2007; Krainer, Chinellato, 

Toninandel and Lang, 2011; Geiger, Daniels, Miller and Nicholas, 2014), our results demonstrate 

that these landforms can have a significant role in shaping the stream habitat conditions along the 

Alpine river networks. 

Our results provide new insights into how we sample the physical, chemical, and biological 

characteristics of alpine streams in the late phases of glacier retreat. In fact, the typically large diel 

fluctuations commonly attributed to glacier-fed systems, and driven by the cycles of glacier 

ablation, were only restricted to the proglacial sections. All stations below the lake showed a 

negligible diel variability in EC, turbidity, and discharge, and water temperature cycles were 

associated with the atmospheric conditions rather than the glacier ablation patterns. In contrast, 

rock glacial streams showed consistent physico-chemical variables, although we identified large and 

transient variations in water temperature and EC (increasing at ZRG, decreasing at SRG) associated 

with rainfall events (not shown). Thus, on the basis of the habitat parameters analysed, only krenal 

sites seem to be decoupled from both diel and daily patterns and from weather conditions, and a 

sampling strategy accounting for seasonality is important for all stream types. 

 

CONCLUSIONS 

Recent research on alpine stream ecosystems is beginning to show that the hydrological role of 

mountain permafrost is expected to increase as glaciers recede due to climate change (Jones et al., 



22 
 

2019). Our results provide evidence to support previous findings on the hydrology and 

hydrochemistry of outflows from thawing rock glaciers, and clearly highlight the distinctive nature 

of these habitats. In fact, rock glacial streams exhibit constantly cold and clear waters, stable 

channels favouring the retention of organic detritus, and high concentrations of solutes and trace 

elements that increase over the season under the influence of thawing permafrost.  

In alpine catchments with a small glacier cover, in which peak water has been surpassed, the 

low discharge from glaciers allows other driving forces, such as weather conditions and the 

contribution from non-glacial tributaries, to exert an increased hydrological influence. Within this 

context, the paraglacial landscape (i.e. proglacial lakes, moraines, talus bodies) and permafrost 

increasingly shape the habitat conditions of streams. Our research points to the importance of rock 

glacial streams in driving the hydrochemistry of alpine river networks, namely under permafrost 

thaw conditions, and for a long distance downstream.  

Under continued climate change in the Alps (Gobiet et al., 2014), a sustained glacier 

recession in combination with a prolonged snow-free period may further boost the hydrological 

importance of active rock glaciers. Late summer/autumn can be considered as a “hot period” in 

deglaciating catchments because the combination of low discharges, a higher proportion of 

subglacial contribution, and the prolonged permafrost thaw cause an intense release of solutes and 

trace elements, with potentially significant effects on stream ecology and for drinking water quality. 

Given the scarce consideration dedicated so far to mountain permafrost, and its increasing 

hydroecological importance, we call for more research on the role of rock glaciers and the 

paraglacial landscape on the river continuum. As rock glacial streams have distinct habitat 

characteristics, increased research will provide valuable insights on their future ecological role in 

glacier-free alpine catchments.  
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SUPPLEMENTARY INFORMATION 

Supplementary A. Environmental variables dataset, extensive survey analyses 

Supplementary B. Trace elements dataset, extensive survey analyses 

Supplementary C. Longitudinal surveys dataset 
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Table 1. Main features of sampling stations. CodeLS= only longitudinal survey undertaken. Lat/Lon= coordinates referring to WGS84, UTM32N. Alt= elevation (m a.s.l.). Dist 
= distance from the spring (km). Slope = % average slope, obtained with clivometry maps (Autonomous Province of Bolzano/Bozen, 2018). Channel type derived from 
Rinaldi et al. (2016). Veg= Riparian vegetation, classes: 0=sparse/absent, 1=discontinuous alpine heat, 2= continuous alpine heat, 3= alpine heat with sparse trees and 
shrubs 4= canopy from trees and shrubs. Moss= abundance of mosses in the channel, classes: 0=0-5%, 1=5-10%, 2=10-30%, 3=30-50%. Different kryal habitats (i.e. upper 
and lower stations) are classified in this work according to the distance from the glacier snout. 
 

Catchment Code Lat/Lon Alt Dist Slope Habitat type Channel type Veg Moss Bedrockc 

Zay Z1 625.249/ 5.156.172 2845 0 55 Upper kryal Single-thread, straight 0 0 Orthogneiss (Quartzphyllyte) 

Zay Z2 LS 624.690/ 5.156.263 2811 0.13 10 Upper kryal Double-thread 0 0 Orthogneiss 

Zay Z3 625.039/ 5.156.377 2780 0.34 18 Upper kryal Single-thread, straight 1 0 Orthogneiss 

Zay Z4a 624.691/ 5.156.262 2736 0.72 10 Lower kryal Single-thread, straight 1 3 Orthogneiss 

Zay Z5 624.278/ 5.156.281 2717 1.13 2 Lower kryal 
Glacial floodplain 

Multi-thread 
1 1 Orthogneiss 

Zay Z6 LS 623.870/ 5.156.156 2699 1.61 1 Lower kryal Single-thread, sinuous 1 1 Orthogneiss 

Zay Z7 623.744/ 5.155.463 2407 2.38 4 Glacio-rhithral Single-thread, sinuous 2 3 Orthogneiss, Flaser paragneiss 

Zay Z8 LS 623.696/ 5.155.423 2395 2.73 5 Glacio-rhithral Single-thread, sinuous 2 3 Orthogneiss, Flaser paragneiss 

Zay Z9 LS 623.574/ 5.155.234 2350 3.04 35 Glacio-rhithral Single-thread, sinuous 3 2 Orthogneiss, Flaser paragneiss 

Zay Z10 LS 623.446/ 5.155.015 2228 3.44 17 Glacio-rhithral Single-thread, straight 3 3 Orthogneiss, Flaser paragneiss 

Zay Z11 LS 623.131/ 5.154.761 2148 3.8 20 Glacio-rhithral Multi-thread 3 3 Orthogneiss, Flaser paragneiss 

Zay Z12 LS 622.893/ 5.154.517 2084 4.15 25 Glacio-rhithral 
Multi-thread:   
anabranching 

4 2 Orthogneiss, Flaser paragneiss 

Zay Z13b 622.681/ 5.154.270 1982 4.5 40 Glacio-rhithral Single-thread, straight 4 2 Flaser paragneiss, Orthogneiss (Amphibolites) 

Zay ZRG 624.401/ 5.156.088  0 2 Rock glacial Single-thread, sinuous 2 1 Orthogneiss 

Zay ZKN 622.936/ 5.154.442  0 22 Krenal Single-thread, straight 4 3 Flaser paragneiss 

Solda S1 622.586/ 5.148.841 2710 0 15% Upper Kryal Single-thread, straight 0 0 
Orthogneiss, Phyllades, Amphibolites, (Prasinites 

and Serpentinites) 

Solda S2 622.250/ 5.149.314 2560 0.7 10% Upper Kryal Multi-thread: braided 0 0 
Phyllades, Amphibolites, 

Quartzites (Prasinites, Serpentinites) 

Solda SRG 622.737/ 5.149.517 2586 0.05 25% Rock glacial Single-thread, straight 2 3 
Orthogneiss, Quartzphyllytes, Micaschists 

(Andesites) 

Solda SKN 622.298/ 5.151.224 2105 0.1 65% Krenal Single-thread, straight 3 2 
Orthogneiss, Quartzphyllytes, Amphibolites 

(Dolomite) 
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Table 2. Results from the pairwise comparisons analyses. The values of the post-hoc test (Mann-Whitney test adjusted by the Bonferroni correction for multiple tests) are 
reported where differences are significant, according to the corresponding α-value and df.  Stream type codes: UK= Upper Kryal, LK= Lower Kryal, GR= Glacio-rhithral, KN= 
Krenal, RG= Rock glacial, all= all other stream types. Month codes: JUN= June, AUG= August, SEP= September, all= all other periods. Proglacial= Z1-Z3, Others= Z4-Z13. See 
text for further details on measured variables. 
 

Variable Groups N p-value Test statistic df Post-hoc <0.001 Post-hoc <0.01 Post-hoc <0.05 
EXTENSIVE SURVEYS         

Pfankuch index Stream type 68 <0.001 H=52.4 4 UK>GR,KN, RG  UK>LK 
Turbidity Stream type 68 <0.001 H=42.5 4 UK>KN,RG  UK>GR 

Suspended Solids Stream type 63 <0.001 H=43.6 4 UK>KN,RG UK>GR, LK  
SiO2 Stream type 63 <0.001 H=51.6 4 UK<RG,KN UK<GR, LK  

Organic detritus Stream type 67 <0.001 H=54.4 4 UK<GR,RG, KN LK<KN  

Detritus ratio Stream type 67 <0.001 H=43.4 4 UK<GR,KN 
RG<KN 

 
 

Total P Stream type 68 <0.001 H=25.3 4 UK>GR,KN LK<KN 
UK>RG 

 
Tmax Stream type 65 <0.001 H= 32.7 4 RG<KN,GR RG<LK RG<UK 

Tavg Stream type 65 <0.001 H= 44.7 4 
RG<KN,GR 
UK<KN,GR 

  

dT Stream type 65 <0.001 H=20.4 4 RG<UK RG<LK RG<GR 
δ18O Month 67 <0.001 H=19.5 2 JUN<SEP   
δ2H Month 67 <0.001 H= 20.2 2 JUN<SEP  AUG<SEP 

Turbidity Month at UK 24 0.006 H= 11.3 2  SEP<AUG SEP<JUN 
Electrical conductivity Month at UK 24 0.003 H= 10.1 2   SEP>all 

NO3
- Month at UK 24 <0.001 H=16.8 2 SEP<AUG  SEP>JUN 

Ca2+ Month at UK 24 0.005 H= 10.5 2   SEP>all 
Mg2+ Month at UK 24 0.031 H= 6.9 2    
SO4

2- Month at UK 24 0.011 H= 9.0 2   SEP>all 
         

Turbidity, Pfankuch index ZRG>SRG 12 0.002 U=36.0     
Electrical conductivity, Ca2+, 

Mg2+, SO4
2, HCO3

-, pH 
SRG>ZRG 12 0.002 U=21.0     

K+ SRG>ZRG 12 0.041 U=5.0     
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Table 3. Groundwater contribution (%) resulting from the two end-member mixing analysis (groundwater versus snowmelt/ice melt, 
Silica concentrations as proxy). For each of the summer periods we provide the groundwater % range across the survey stations, and 
the mean and standard deviation values for each stream type. With the exceptions of Z1 snowmelt and Z12 (one sample), single 
numbers indicate the same value in both years. The relatively small values of groundwater contribution during recession are due to 
snow melting in the days prior to the September 2017 field campaign. 

 

Station Snowmelt Ablation Recession 
S1 2.3 4.7-7.0 2.3-4.7 
S2 9.3-18.6 9.3-20.9 14.0-34.9 
Z1 14.0 9.3-18.6 18.6-34.9 
Z3 11.6 9.3-14.0 16.3-34.9 
Upper kryal 10.0 ± 6.0 12.0 ± 6.1 20.1 ± 13.4 
Z4 46.5 41.9-48.8 30.2-62.8 
Z5 39.5-41.9 39.5-44.2 30.2-62.8 
Lower kryal 42.6 ± 3.6 43.6 ± 4.0 46.5 ± 18.8 
Z7 41.9 39.5-44.2 27.9-58.1 
Z12 58.1 51.2 72.1 
Glacio-rhithral 47.3 ± 9.4 45.0 ± 5.9 52.7 ± 22.6 
SKN 86.0-88.4 90.7-100.0 41.9-93.0 
ZKN 88.4-93.0 97.7-100.0 46.5-93.0 
Krenal 89.0 ± 2.9 97.1 ± 4.4 68.6 ± 28.3 
SRG 46.5-51.2 58.1-69.8 27.9-58.1 
ZRG 39.5-55.8 41.9-48.8 30.2-62.8 
Rock glacial 48.3 ± 6.9 54.7 ± 12.1 44.8 ± 18.3 

 

 

Table 4. Variable loadings of the environmental and trace element principal component analyses (after VariMax 
rotation). Bold numbers indicate strong correlation (<-0.6 or > 0.6) 

 PC1  PC2 

Environmental features 
PCA tot. variance 44.8% 27.9% 
EC 0.98 0.15 
SO4

2- 0.98 0.07 
Ca2+ 0.98 0.13 
Mg2+ 0.97 0.08 
K+ 0.35 0.67 
Turbidity -0.27 -0.72 
SiO2 0.11 0.91 
Pfankuch -0.11 -0.81 
NO3

- 0.23 0.55 
Tavg -0.29 0.65 
Organic detritus -0.08 0.76 
   

Trace elements 
PCA tot. variance 41.4% 33.2% 
Sr 0.98 0.04 
Ba 0.95 0.05 
As 0.78 -0.21 
Rb 0.03 0.89 
Al -0.03 0.85 
U 0.06 0.71 
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Table 5. Variable loadings for the Principal Component Analysis used to build the indices of Glacial Influence. Bold 
numbers indicate correlation > 0.6 or <-0.6 

Index of Glacial Influence (IGI)a Stationary Glacier Influence (SGI)b 

 PC1 PC2  PC1 

1/EC 0.91 0.16 Turbidity SD 1.00 

Turbidity 0.85 -0.20 Turbidity average 0.99 

Pfankuch index 0.72 -0.55 Pfankuch index 0.98 

1/water temperature 0.52 0.81 Conductivity SD 0.86 

 1/average water temperature 0.78 

1/average EC 0.70 

 

abased on single datapoints. bbased on the whole dataset mean and SD.   
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FIGURE LEGENDS 

Figure 1. A) Location of the study area and of the two subcatchments; B) Upper Solda; and C) Zay 

with location of the sampling stations and main geomorphic drivers. Station codes as in Table 1. D) 

Hypsographic curve of Zay stream, with indication of the monitoring stations. 

Figure 2. Comparison of daily average water level (continuous line) and maximum and minimum 

values (dashed lines) at Z13 (2084 m a.s.l., 4.2 km far from the glacier snout) and total rainfall 

(columns) for both summers (until the 15th October). Gauging stations deployed on 23th June 2017. 

Precipitation measured at the closest meteorological station, in Solda (Autonomous Province of 

Bolzano/Bozen, 2018). The water stage gap in 2018 is due to a defect logging period on 9-23 June. 

Figure 3. Discharge diel variability along the Zay Stream during the three longitudinal survey 

campaigns at different stations. Error bars indicate 95% confidence interval. 

Figure 4. Mixing space of δ2H and Silica (SiO2) for a) Solda and b) Zay stations, including samples 

from potential runoff components, i.e. melting snow, supraglacial ice melt and precipitation. 

Different shapes indicate distinct hydrological periods: “Snowmelt”, glacier ablation (“Ablation”), 

flow recession (“Recession”), pooling together several sampling dates. 

Figure 5. Temperature profiles for key stations in summer 2018, from the 1st of June to the 27th of 

September. Interruptions for the Z1 profile are caused by sensor emergence from water. 

Figure 6. Boxplots of the two principal components resulting from the retained environmental 

variables. Boxes are clustered in terms of sampling timing, and grouped in terms of stream type 

except for rock glacial streams for which boxes of single stations are provided. 

Figure 7. Boxplots of the two principal components resulting from the retained trace elements. 

Boxes are clustered in terms of sampling timing, and grouped in terms of stream type except for 

upper kryal and rock glacial streams, for which boxes of different catchments and single stations are 

provided respectively. 

Figure 8. Indices of glacial influence. Seasonal Glacier Influence (SGI, black line), and the Index of 

Glacial Influence (IGI) boxplot for all stations and seasons. The supplementary LS campaigns were 

included for the calculation of the indices. 
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Figure 9. Longitudinal variations of the Pfankuch index (columns) and its components (lines). 

Figure 10. Longitudinal patterns of the IGI, turbidity, electrical conductivity and water temperature 

for the three hydrological periods (snowmelt, “ablation” i.e.  glacier ablation, “recession” i.e. flow 

recession), each calculated over all daily samplings. Mean (point) and standard deviation (area) of 

each sampling station and period (colours). Values for ZRG (triangles) and ZKN (circles) stations are 

inserted in each plot according to their position along the longitudinal gradient. 

Figure 11. Timing of the minima (blue) and maxima (red) values of each variables for each 

hydrological period (snowmelt, “ablation” i.e.  glacier ablation, “recession” i.e. flow recession), 

measured at 3 hours interval over 12 h. Stations and timings with constant values not represented 

in figures. The incomplete dataset for stations Z7/Z13 for the flow recession phase does not allow 

to provide results for this part of the subcatchment. 
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