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Abstract 

 

 A murine line haploinsufficient in the cardiac sodium channel has been used to model 

human Brugada syndrome: a disease causing sudden cardiac death due to lethal ventricular 

arrhythmias. We explored the effects of cholinergic tone on electrophysiological parameters 

in wild type and genetically modified, heterozygous, Scn5a+/- knockout mice. Scn5a+/- 

ventricular slices showed longer refractory periods than wild-type both at baseline and during 

isoprenaline challenge. Scn5a+/- hearts also showed lower conduction velocities and 

increased mean increase in delay than did littermate controls at baseline and blunted 

responses to isoprenaline challenge. Carbachol exerted limited effects but reversed the effects 

of isoprenaline with co-application. Scn5a+/- mice showed a reduction in conduction reserve 

in that isoprenaline no longer increased conduction velocity and this was not antagonised by 

muscarinic agonists.   

 

Key Words: autonomic nervous system, conduction, SCN5A haploinsufficiency, Brugada 

syndrome 

 

Abbreviations: MEA – multielectrode array, VERP – ventricular refractory period, Scn5a+/- 

– cardiac sodium channel (Scn5a) haploinsufficient mouse 
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Introduction 

  

 Brugada Syndrome is recognised by a triad of right bundle branch block, coved ST 

elevation in the right precordial leads and lethal ventricular arrhythmias (6; 25). It may be 

responsible for up to a fifth of cases of sudden cardiac death in the young (25). Where a 

mutation is identified this most commonly occurs in the main cardiac sodium channel 

isoform, SCN5A (4) though in many patients no obvious mutations are found. The main 

pathophysiological feature is the presence of significant cardiac conduction delays 

particularly in the right ventricular outflow tract and these contribute to the ECG pattern and 

arrhythmic predisposition (15). Furthermore, it is well known that sodium channel density is 

an important determinant of conduction velocity in the heart (14).  

 An interesting feature of Brugada Syndrome is that ventricular arrhythmia occurs at 

night when the patient is sleeping and this can be accompanied by accentuation of the 

characteristic ECG pattern (21; 23). The autonomic nervous system is well known to 

modulate ventricular excitability; however in many other channelopathies it is exercise or 

stress that precipitates ventricular tachycardia and/or fibrillation and thus this observation is 

intriguing (9). During rest, vagal activity is predominant in contrast to the situation in 

exercise where vagal activity is reduced and sympathetic drive predominates though the 

detailed picture may be more complex than this standard interpretation (18). In this study, we 

explore this question in a model of Brugada Syndrome namely the SCN5A- haploinsufficient 

mouse (Scn5a+/-). This model recapitulates a number of the features of Brugada syndrome 

seen in patients (11; 12; 19; 24) and provides a route to exploring the autonomic modulation 

of the electrophysiological substrate. 
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Methods 

 

Murine breeding and genotyping 

 Mice were maintained in an animal core facility under UK Home Office guidelines 

relating to animal welfare. All mice were kept in individually ventilated, pathogen-free, 

temperature controlled cages (21-23ºC) with 12-hour day/night light cycles. Animals had free 

access to standard rodent chow and water.  Mice of both sexes were studied between 12 and 

24 weeks of age under standardized conditions for tissue slice analysis. Whole heart studies 

were performed at between 9 months and 1 year of age in mice of both sexes. The generation 

of the Scn5a+/- heterozygotic mice has been previously described (24). Genotyping was 

performed at 6 weeks of age. Littermate controls were used throughout, and experiments and 

analysis were performed blinded to genotype (MF, VV). The work was carried out under UK 

Home Office project licences PPL-6732 and PPL-7665.  

 

Cardiac Excision 

 Mice were euthanized by cervical dislocation. The thorax was immediately dissected 

and the heart exposed. Cardioplegia was induced by applying 10 ml of ice-cold, oxygenated 

(bubbled with 95% O2; 5% CO2) Ca2+-free Krebs solution (119 mM NaCl, 4 mM KCl, 1 mM 

MgCl2, 1.2 mM KH2PO4, 25 mM NaHCO3, 10 mM glucose, 2 mM Na pyruvate, pH 7.4) 

directly onto the epicardial surface. The heart and great vessels were removed within 20 sec 

and placed into a dissection dish containing oxygenated ice-cold Ca2+-free Krebs solution. A 

23 gauge cannula was inserted into the aorta and secured under light microscopy. For tissue 

slicing, cold retrograde perfusion was commenced with oxygenated, ice-cold, Ca2+ free Krebs 

solution at a flow rate of 16.5 ml/min. Whole-heart recording perfusion used oxygenated 
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Krebs solution (containing 1.4 mM Ca2+) at room temperature. The time taken from cervical 

dislocation to establishment of Langendorff perfusion was less than 3 min.  

 

Preparation of cardiac tissue slices 

 Following perfusion for 2 min, the perfusate was altered to an ice-cold oxygenated 

Ca2+-free Krebs solution containing high K+ (20 mM KCl) and blebbistatin (20 µM; 

Cambridge Bioscience, Cambs, UK) for 3 minutes. The hearts were then removed from the 

Langendorff perfusion rig and placed again in a dissection dish containing cold perfusate. 

Ventricular tissue was dissected from atrial tissue under light microscopy. The dissected 

ventricles were then embedded in low-melt agarose (4% low-melting point agarose in Ca2+-

free Krebs solution), and then rapidly chilled on ice. The agarose block was orientated and 

fixed onto a magnetic stage using cyanoacrylate glue and placed in the cutting chamber of a 

Vibratome (Campden Instruments, London, UK). This chamber was maintained at 4ºC using 

external ice. It was filled with cold, modified oxygenated Krebs solution (containing 0.6 mM 

Ca2+, 10 mM K+). Tissue sections were obtained from apex to base at an interval thickness of 

200 µm. The vibrating PTFE-coated steel blade (Wilkinson Sword, Bucks, UK) was 

advanced at <200 µm/sec. The x-axis vibration was applied at an amplitude of 2 mm and 

frequency of 80 Hz. The z-axis deviation was calibrated prior to every use to be < 1µm.  The 

cut sections were immediately placed in oxygenated low-Ca2+ Krebs solution (4 mM KCl, 0.6 

mM Ca2+) containing 10 mM blebbistatin maintained at room temperature. After 25 minutes, 

the samples were transferred to standard oxygenated Krebs solution (4 mM KCl, 1.1 mM 

Ca2+) and kept at room temperature until electrophysiological studies were performed. 

 

Cardiac slice electrophysiological (EP) studies 
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 Stimulation was generated by a stimulus isolation unit (DS-2A, Warner Instruments, 

MA, USA) with signal timing driven by an Arduino Uno microcontroller (Arduino, It). 

Stimulation was applied using a silver chloride bipolar electrode. The sections were placed in 

the recording chamber and carefully positioned manually so that left ventricular tissue 

overlaid the measurement electrodes. A 1 cm diameter metal ring with an overlying nylon 

mesh (Harp-slice grid, Micro Control Instruments, East Sussex, UK) was used to hold the 

tissue flat in place on the electrode grid and ensured adequate tissue electrode contact. The 

recording chamber was mounted in the headstage and perfusion commenced at 2 ml/min. 

Tissue was allowed to settle to a steady state over 1 min before electrode placement. The 

bipolar stimulating electrode was carefully lowered to just contact the tissue slice on the left 

ventricular tissue, but not to move the slice on the array. Stimulation was started at a 

frequency of 5 Hz using a monophasic 1 ms duration pulse, for real-time recording of 

electrical activity. The stimulus voltage was increased until electrical capture was achieved. 

The stimulus voltage was then reduced until electrical capture was lost: the lowest voltage 

stimulus that could reliably achieve capture was then taken as the stimulus threshold. Cardiac 

signals were recorded at a sampling frequency of 10 kHz. A simulation protocol was 

performed with steady state pacing at an interstimulus interval of 200 ms, with stimulation 

during recording applied at an amplitude of twice threshold. Around 30 sec of pacing activity 

were recorded for each state for each slice. Perfusate solution containing drugs was washed in 

over 30 seconds at 20 ml/min. Slices were then stimulated at 5 Hz for 2 min before threshold 

was determined and recording commenced. 

 

Ex-vivo whole heart recordings 

 For whole heart recordings, hearts were retrogradely perfused at 16.5 ml/min with 

normal oxygenated Krebs solution (Ca2+ 1.4 mM). A unipolar silver chloride stimulation 
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electrode and flexible 32-pole multi-electrode array (MEA) (FlexMEA, Multielectrode 

Systems) were placed on the ventricular epicardium and an S1S2 decremental stimulation 

protocol was performed to determine the ventricular effective refractory period (VERP). 

Stimulation was performed with a biphasic pulse of amplitude 2 V and duration 0.5 ms, with 

S1S2 intervals reduced from 150 ms by decrements of 5 ms to 100 ms and thereafter by 

decrements of 2 ms until tissue refractoriness was reached. Arrhythmogenicity was further 

tested for by applying stimulating trains of 100 beats at coupling intervals progressively 

reduced from 100 ms. Ventricular tachycardia was defined as a ventricular arrhythmia 

persisting more than 2 sec.  

 

Analysis of electrograms 

 All analysis of murine electrophysiology was performed using custom software 

running in Matlab, v2014b (The Mathworks Inc., MA, USA). The time point of local 

activation was taken at the steepest negative gradient of the unipolar electrogram. Conduction 

velocities were determined using a gradient method, with conduction velocity defined as the 

inverse of the gradient in activation times across the array (Figure 1A-C). Electrodes with 

significant noise were excluded, and all electrograms and time points were checked manually. 

Mean increase in delay (MID), a well-validated measure of inducibility of conduction delay, 

was calculated by determining the area under the conduction-delay curve (15) and according 

to the equation  
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Where MID is Mean Increase in Delay, S1 CI is the coupling interval of steady state pacing 

(S1) and minS2 CI is the minimum coupling interval above ERP. The integral was calculated 

using the trapz function in Matlab. 

 The mean timing of the activation time of all recording electrodes was used for each 

measurement of conduction delay, and the MID defined as the unit increase in conduction 

delay per unit reduction in S1S2 coupling interval (ms/ms). Stimulation protocols were 

performed in normal Kreb’s solution, in baseline (control) conditions or with isoprenaline 

100 nM and/or carbachol 10 µM. 

 

Immunofluorescence of cardiac sections 

 Mouse hearts were rinsed in PBS and cut longitudinally with a blade and tissue 

holder.  The hearts were fixed in 10% formalin (Sigma) for at least 24 hours followed by two 

PBS washes and stored in 70% ethanol before paraffin embedding.  Paraffin-embedded hearts 

were cut to 5 m thick sections and mounted on Superfrost plus microscope slides.  Sections 

were then deparaffinized with xylene and rehydrated with 4 ethanol washes (from 100%-

50%) before heat-mediated antigen retrieval with citrate buffer (pH 6.0).  Following antigen 

retrieval, sections were washed several times in PBS, permeabilized with 0.1% Triton X-100 

for 15 minutes and blocked with 5% goat serum in PBS for 1 hour at room temperature.  

Sections were then incubated with primary antibodies with 1% goat serum overnight at 4°C:  

Mouse monoclonal Cx43 clone 4E6.2 (Millipore MAB3067) and rabbit polyclonal N 

cadherin antibody (Santa Cruz SC-7939).  The sections were incubated with fluorescently 

labelled secondary antibodies Alexa Fluor goat anti-mouse 488 and goat anti-rabbit 555 

secondary antibodies (Invitrogen, UK) for 1 hour at room temperature in the dark.  Sections 

were washed several times with PBS and co-stained with DAPI (nuclear stain) and stored in 

the dark until further analysis.  The samples were analyzed using confocal microscopy (LSM 
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510, Carl Zeiss with DAPI: Excitation 405 nm, Emission  LP420, FITC:  Excitation 488 

nm, Emission  BP 505-550 and Cy3: Excitation 543 nm, Emission  LP 560. Images were 

acquired sequentially. Quantitative analysis of the images was performed using ImageJ. 

Thresholding was applied to the images and they were then converted to binary files. The 

Cx43 stained image was subtracted by the N-cadherin stained image and represented “Cx43 

not located at the intercalated disk”.  

 

Statistical analysis 

 All statistical analysis was performed using R software (The Comprehensive R 

Archive Network (CRAN)). Continuous parametric data are presented as means ± standard 

deviations (SD) or, in the case of significance derived from regression models, mean with 

[95% confidence interval], unless otherwise specified. Comparisons in which a single 

measurement was taken for each subject, e.g. ventricular effective refractory period (VERP), 

dispersion of repolarisation time, were made using Student’s t-test with post-hoc correction 

for multiple comparisons. Continuous parametric data derived from electrogram data were 

modelled using mixed-effects linear regression (software: Linear and Nonlinear Mixed 

Effects (NLME) package running in R version 2.14) and statistical significance was inferred 

from the model. Quartile regression with bootstrapping (Quantile Regression Description 

Estimation and inference (QUANTREG) package) was used to compare non-parametric 

continuous data. Statistical significance is indicated by *p<0.05, **p<0.01 and ***p<0.001. 
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Results 

  

 There are conflicting reports of the effects of autonomic modulation on 

electrophysiological parameters in ventricular tissue such as conduction velocity (7). We 

accordingly investigated the effects of autonomic challenge on indices representing activation 

and recovery in littermate normal murine hearts and Scn5a-haploinsufficient heterozygous 

(Scn5a+/-) mice. We used two approaches to examine tissue level electrophysiology: tissue 

slices from juvenile animals (aged 2-3 months) placed on a MEA system, and ex-vivo 

Langendorff perfused hearts from mature animals (aged 9 months to a year) studied using an 

externally applied electrode array. Previous studies in older Langendorff perfused hearts had 

associated arrhythmic phenotypes with the Scn5a+/- genotype but we were unable to obtain 

viable tissue slices from older animals for multi-electrode array studies. We applied 

isoprenaline as a β-adrenoreceptor activator to mimic sympathetic activation and the 

muscarinic receptor agonist carbachol, to approximate vagal activation.  

 Ventricular slices obtained from juvenile Scn5a+/- mice required higher stimulus 

voltages than did wildtype (4.0 ± 0.7 vs 2.7 ± 0.4 V at baseline, **) for consistent capture, 

both before, and following all the different pharmacological manipulations. Untreated slices 

from Scn5a+/-  hearts showed a trend towards lower conduction velocities than WT hearts 

(0.31 ± 0.04 vs 0.40 ± 0.7 m/s), but this was not statistically significant. Isoprenaline (100 

nM) challenge increased conduction velocity in slices from wildtype (0.58 ± 0.11 m/s) but 

not in Scn5a+/- heart slices (0.34 ± 0.05 m/s) *. The increase in conduction velocity was 

reversed with carbachol co-application (Figure 2). Tissue slices from Scn5a+/- hearts showed 

consistently longer effective refractory periods both before (means ± SEM: Scn5a+/- 79 ± 4 

vs WT 63 ± 4 ms, ***) and during isoprenaline challenge (73 ± 7 vs 52 ± 7 ms). Carbachol 
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markedly shortened the VERP in slices from WT but not Scn5a+/- hearts (Scn5a+/-: 76±7 

ms, WT: 41±5 ms **).  

 In Langendorff-perfused isolated hearts, S1S2 decremental protocols were attempted 

before pharmacological challenge, and in the presence of isoprenaline 100 nM, and/or 

carbachol 10 µM. However, pacing capture became inconsistent during carbachol 

administration in 6 out of 8 Scn5a+/- hearts, despite attempts at increasing stimulation 

amplitude. Data from Langendorff-perfused Scn5a+/- hearts were therefore formally 

analysed for isoprenaline effects only (n=11) and were compared to littermate WT hearts 

(n=10).  Washout (5 mins) was performed between drug challenges. Scn5a+/- hearts showed 

blunted responses to isoprenaline, mimicking the data from the cardiac tissue slice 

preparations (Figure 3).  Notably, a 16% increase in conduction velocity observed in WT 

hearts in response to isoprenaline was again blunted in Scn5a+/- hearts (normalised 

conduction velocity control vs Scn5a -/- response to isoprenaline **), which exhibited a 

marginal decrease in conduction velocity. No consistent changes in electrophysiological 

parameters were observed during carbachol administration in the WT group. 

 Induced conduction delay in response to premature extrastimuli was also investigated. 

Mean increase in delay was almost double in Scn5a+/- hearts compared to WT controls 

(***).  Controls and Scn5a+/- murine hearts studied through these procedures did not show 

differences in arrhythmia inducibility under control conditions, or isoprenaline 100 nM or 

carbachol 10 µM challenge (arrhythmic phenomena shown in 1/7 hearts in both drug 

challenges, with no sustained arrhythmias in either Scn5a -/+ or controls).  Little consistent 

change in VERP with drug challenge was observed in whole heart preparations (Figure 3C). 

 Finally we investigated a possible relationship between haploinsufficiency of Scn5a 

and the localization and expression of Cx43 in the juvenile animals. The expression of Cx43 

was not grossly changed but there was an impression of localisation away from the 
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intercalated disc (marked by N-Cadherin staining) and into the cytosol (Figure 4). We 

confirmed this by quantifying the redistribution as detailed in the Methods.  We expressed the 

localisation as a ratio of the amount of Cx43 not at the intercalated divided by the total 

expression of Cx43. In wildtype mice this number was 53.7 ± 3.9% and in Scn5a+/- mice 

71.6% ± 2.7% (n=5 both groups, P<0.01). 
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Discussion 
  

 In this study we have investigated the tissue level electrophysiological properties of 

ventricles from Scn5a haploinsufficient mice and compared these to littermate controls. Our 

main finding is that there is an impairment of the response of conduction velocity to 

autonomic challenge in Scn5a+/- mice. In hearts from control mice, isoproterenol increased 

conduction velocity and decreased mean propagation delays. Scn5a+/- hearts demonstrated a 

reduced response of conduction velocity with increased mean propagation delays in response 

to isoprenaline. This effect was reversed by further challenge with carbachol, a muscarinic 

agonist although carbachol alone did not have prominent effects. This is consistent with 

previous reports that sympathetic activation increases conduction velocity in normal hearts (2; 

7). In heart slice preparations in juvenile animals, ERP was prolonged in Scn5a+/- hearts 

whilst in older animals there was no significant difference when studied in Langendorff 

perfused intact hearts. 

 The findings in murine hearts may correlate with previous reports that β-

adrenoreceptor activation increases sodium currents and therefore action potential conduction 

velocity through a protein kinase A dependent mechanism (20); reduced effects of 

isoprenaline could then be associated with the Na+ channel haploinsufficiency in Scn5a+/- 

hearts. There is also the possibility that signalling pathways downstream of the β- adrenergic 

signalling pathway may also modulate gap junction density at the intercalated disc (7; 16).
 

We also saw a potential mislocalization of Cx43 away from the intercalated disk in sodium 

channel haploinsufficient mice and this may contribute to the conduction slowing. It is 

plausible that some form of interaction with scaffolding or other proteins may be responsible 

for maintaining stoichiometry of Cx43 and Scn5a at the intercalated disk. A number of 

interacting sodium channel proteins are known and Cx43 can influence the trafficking of 

Scn5a (1; 27). This is a topic for investigation in future studies. We did not see prominent 
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responses to carbachol in tissue level electrophysiological parameters after washout of 

isoprenaline. However, combined application of both isoprenaline and carbachol in wildtype 

tissue slices reversed the effect of isoprenaline on conduction velocity. This likely involves 

receptor activation of M2 muscarinic receptors coupled to inhibitory G-proteins that directly 

antagonise the response at the level of adenylate cyclase (10). The Gi2 isoform seems to be 

central to muscarinic receptor signalling: L-type calcium channel modulation in ventricular 

myocytes is known to be abolished in Gi2 knockout mice (8). The slow conduction may be 

pro-arrhythmic through promotion of re-entry and wavebreak. Importantly, the increases in 

MID observed in Scn5a+/- hearts provide evidence of the propensity for this group to have 

greater induced (rather than fixed) conduction velocity slowing. The implication therefore is 

that the consistency of conduction may become destablised when challenged by premature 

extrastimuli in the context of autonomic modulation; whilst in the steady-state or resting 

condition these hearts exhibit conduction velocity dynamics similar to those in wild-type 

littermates. 

The marked differences in baseline conduction velocities between the tissue slice 

preparations and the whole heart Langendorff preparations may result from the involved 

tissue preparation techniques required to obtain viable slices. Even limited tissue disruptions 

that may have occurred during slice preparation could lead to reductions in cell-to-cell 

coupling, and thus accentuate pre-existing conduction delays.  

 In understanding the human Brugada syndrome two main hypotheses have been 

advanced (3; 15; 22): either that conduction is slowed and thus activation delayed or that 

repolarisation occurs prematurely.  More specifically, coved ST segment elevation in ECG 

leads V1-V3, often taken as the hallmark of the syndrome, equates to either delayed 

depolarisation from the RV body to the RVOT or a shortened action potential in the 

epicardium leading to repolarisation gradients across the right ventricular wall. The present 
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findings in this mouse model show that autonomic activation has the potential to significantly 

modulate conduction delays, particularly in the context of pre-existing conduction deficiency.  

Our major finding is that adrenergic increases in conduction velocity are impaired in the 

Scn5a+/- mouse. This process in the normal murine heart is antagonised by muscarinic 

receptor activation but lost in the sodium channel haploinsufficient mouse. In the intact 

animal there will be a degree of autonomic balance and even at rest vagal tone will be 

modified by a degree of sympathetic drive. The absolute slowing may then be greatest when 

high vagal tone is combined with cardiac sodium channel haploinsufficiency. We have 

recently completed a study in man examining the effects of edrophonium on endocardial and 

epicardial right ventricular electrophysiology (5). We demonstrated that edrophonium 

appears to modulate both conduction and repolarisation in patients with BrS, particularly 

delaying activation and repolarisation in the right ventricular epicardium, in line with these 

presented results.  

 Though the use of isolated tissue from transgenic mice permits study of tissue-level 

phenomena, this approach does have limitations which are reflected in this study. The 

relatively small anatomy and thin ventricular walls did not permit detailed examination of 

differential epicardial and endocardial characteristics or selective studies of the right 

ventricular outflow tract. However with some adaptation of the array technology this may be 

possible in the future. In a previous study, only a trend to an increase in conduction velocity 

with isoprenaline was observed which did not reach statistical significance. (17). Variations 

in animal lines may explain such variance. Sodium channel mutations leading to phenotypic 

disease can occur in families where BrS is inherited in an autosomal dominant fashion. In 

general these mutations lead to a loss of sodium channel function and the disease is generated 

by SCN5A haploinsufficiency (13; 26). However in the majority of patients no mutation is 

obvious, the disease occurs sporadically and may have a different pathogenesis (13; 26). 
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Caution must therefore be exercised in applying the results of animal studies to this human 

syndrome. 

 In conclusion we have examined the influence of autonomic regulation on tissue level 

cardiac electrophysiology in a mouse model of BrS. Haploinsufficiency of Scn5a leads to 

impairment of conduction velocity reserve with blunting of sympathetically mediated 

increases and reversal by muscarinic receptor activation compared to littermate control mice.  
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Figure Legends 

 

Figure 1. Measurement of conduction velocity and Mean Increase in Delay from 

multielectrode array. A. An example electrogram from a single electrode of a multielectrode 

array is shown. The local activation time is taken as the dV/dt min(arrow), during calculation 

the pacing artefact is blanked. B. Each electrogram and activation time is assigned to a 2D 

coordinate on a grid reflecting the geometry of the multielectrode array. Local activation time 

is determined for all the electrodes on the grid. Electrode numbers are given as E1, E2 etc. C. 

The gradient of activation times is then determined by interpolation (shown as a colourmap). 

The inverse of this “activation time gradient” can be determined to give the conduction 

velocity. The median conduction velocity over the multielectrode array was used for 

measurement. D. Determination of Mean Increase in Delay.  The activation time is plotted for 

a series of S1S2 coupling intervals. The mean change in activation time over this interval (the 

Mean Increase in Delay, MID) is calculated by determining the area of the activation time 

change with coupling interval change (shaded area in figure). This area is divided by the 

Change in Coupling Interval to give the unit Mean Increase in Delay. The MID allows the 

susceptibility to conduction slowing with coupling interval changes to be compared.  

   

Figure 2. Murine tissue slice conduction velocity (CV) measurements. A. Light 

microscope image of ventricular slice section on multielectrode array. B. Example 

electrograms acquired from WT and Scn5a+/- mice hearts under baseline and isoprenaline 

challenge. C. The effects of isoprenaline (Iso) and the ACh agonist carbachol (Carb) are 

shown in the 2 murine groups. A significant increase in CV is seen in response to isoprenaline 

which is absent in the Scn5a+/-  mice. This effect is abolished by carbachol. Asterisks indicate 
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statistical significances from comparisons between Scn5a+/- and wild type (** p<0.01, 

***p<0.001).  

 

Figure 3. Electrophysiological properties of Langendorff-perfused hearts from Scn5a+/- 

and wild type mice under isoprenaline challenge. A. Conduction velocity dynamics 

mirrored those seen in tissue slice preparations, with paradoxical responses to isoprenaline 

challenge in the heterozygous mouse hearts. The MID of Scn5a+/- hearts was markedly 

greater than those of WT animals (B). Unlike tissue slices, only marginal differences in ERP 

were observed in whole heart preparations (C). Asterisks indicate statistical significances from 

comparisons between Scn5a+/- and wild type (** p<0.01, ***p<0.001).  

 

Figure 4. The localisation of Cx43 in Scn5a+/- and wild type mice using laser scanning 

confocal microscopy. Representative heart sections are shown with N-cadherin staining 

marking the intercalated disc and DAPI the nucleus. Cx43 is expressed and present at the 

intercalated disc however there is an impression of mislocalisation of Cx43 away from the 

intercalated disc. This is confirmed using a numerical approach as detailed in the text. The 

sections are representative of a number of sections from a single mouse and the experiment 

was repeated in an additional littermate control and Scn5a+/- mouse (n=5 total sections in 

each group).  
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