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Abstract 

Fibrous Dysplasia of bone/McCune-Albright Syndrome (FD/MAS, OMIM#174800) is a crippling 

skeletal disease caused by gain-of-function mutations of Gs. Enhanced bone resorption is a recurrent 

histological feature of FD and a major cause of fragility of affected bones.  Previous work suggests 

that increased bone resorption in FD is driven by RANKL and some studies have shown that the anti-

RANKL monoclonal antibody, denosumab, reduces bone turnover and bone pain in FD patients.  

However, the effect of RANKL inhibition on the histopathology of FD and its impact on the natural 

history of the disease remain to be assessed.  In this study, we treated the EF1-Gs
R201C mice, which 

develop an FD-like phenotype, with an anti-mouse RANKL monoclonal antibody.  We found that the 

treatment induced marked radiographic and microscopic changes at affected skeletal sites in two-

month-old mice.  The skeletal segments involved became sclerotic due to the deposition of new, 

highly mineralized bone within developing FD lesions and showed a higher mechanical resistance 

compared to affected segments from untreated transgenic mice.  Similar changes were also detected 

in older mice with a full-blown skeletal phenotype.  The administration of anti-mouse RANKL 

antibody arrested the growth of established lesions and, in young mice, prevented the appearance of 

new ones.  However, after drug withdrawal, the newly formed bone was remodeled into FD tissue 

and the disease progression resumed in young mice. Taken together, our results demonstrate that the 

anti-RANKL antibody significantly affected the bone pathology and natural history of FD in the 

mouse.  Pending further work on the prevention and management of relapse after treatment 

discontinuation, our pre-clinical study suggests that RANKL inhibition may be an affective 

therapeutic option for FD patients. 
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Introduction 

Fibrous Dysplasia of bone/McCune-Albright Syndrome (Polyostotic FD/MAS, OMIM#174800) is 

a genetic, non-inherited disease caused by gain-of-function mutations (mainly R201H and R201C) 

of the  subunit of the stimulatory G protein (Gs)(1,2) encoded by the GNAS gene (GNAS complex 

locus;GNAS, OMIM *139320). Consistent with the origin of the mutation in a pluripotent cell of 

the developing embryo,(3) mutated cells in post-natal life may be found in derivatives of all three 

embryonic germ layers.  Thus, a wide range of tissues and organs (e.g., skin, endocrine glands, 

skeletal muscles, bone) may be affected in variable combinations in FD/MAS patients.  However, 

except for MAS cases with very early neonatal onset,(4) skeletal lesions usually represent the most 

severe, and less treatable, expression of the clinical phenotype due to bone pain, fracture and 

deformity.(5)  

The histopathology of FD typically features marrow fibrosis (fibroblast-like osteogenic precursors 

replacing adipocytes and hematopoiesis), abnormal bone trabeculae (with site-specific patterns of 

distribution), defective bone mineralization and dysregulated osteoclast formation.(5-10)  Overall, 

these changes convert normal bone and bone marrow into an architecturally disorganized and 

mechanically unsound fibro-osseous tissue.  Increased osteoclastogenesis is thought to play a role in 

the establishment and progression of FD lesions and currently represents the only target for a 

medical therapy of the disease.  Indeed, multiple studies have tested the effect of bisphosphonates 

(BPs) in FD patients, showing some clinical benefits (reduction of bone pain), but, in the absence of 

significant changes in the histology and evolution of the skeletal phenotype.(11-15) Potential 

alternative approaches rely on the identification of the specific cellular and molecular mechanism(s) 

leading to the enhanced osteoclast formation within FD lesions.  Increased expression of IL-6 has 

been previously identified as a molecular link between gain-of-function mutations of Gs  and 

enhanced osteoclastogenesis in FD.(10,16,17) Consequently, inhibition of IL6 by has been considered 

as a potential treatment for the disease.(18) 
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Recently, a role for RANKL (Receptor Activator of Nuclear factor Kappa-B Ligand, a member of 

the Tumor Necrosis Factor superfamily and a potent stimulator of osteoclastogenesis(19,20)), in the 

disease has emerged from studies performed on human skeletal progenitors transduced with 

Gs
R201C(21), transgenic mice expressing Gs

R201C in skeletal cells(22) and human FD tissue and 

cells.(23-25)  In addition, serum levels of RANKL have been reported to be increased in mouse 

models that replicate human FD,(22,26) as well as in FD patients, in which they strongly correlated 

with the burden of the disease.(25)  Accordingly, a limited number of studies have already tested the 

effect of the humanized anti-RANKL antibody, denosumab, in FD patients and have reported a 

positive effect on bone turn-over, on the growth rate of lesions, as assessed by CT analysis, and on 

bone pain.(23,27-29) However, the role of RANKL in the histopathology of FD, as well as the effect of 

RANKL inhibition on the natural history of the disease, need to be further investigated.  

We have previously generated transgenic mouse models with ubiquitous and constitutive expression 

of Gs
R201C (EF1-Gs

R201C and PGK-Gs
R201C mice)(30) that faithfully reproduce the essential 

pathological features of human FD and allow for controlled radiographic and histological studies in 

a sizable number of individuals.  In this study, we have tested the effect of RANKL inhibition on the 

skeletal phenotype of the EF1-Gs
R201C model.  Following the assessment of RANKL expression in 

developing skeletal lesions, we have treated transgenic mice with an anti-mouse RANKL antibody 

and performed micro-radiographic, histological, biochemical and mechanical studies during the 

treatment and after its discontinuation.  Overall, our results demonstrate that inhibition of RANKL 

profoundly affects the bone pathology and natural history of FD in the mouse, thus confirming that 

RANKL inhibition may be an effective therapeutic option for FD patients. 

 

Materials and Methods 

Mice and experimental groups 
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Generation and characterization of EF1-Gs
R201C mice were reported previously.(30) Briefly, the 

transgenic line was generated by lentiviral transgenesis using the constitutive promoter human 

elongation factor 1 (EF1). In this mouse model, the mutant Gs
R201 sequence is germline 

transmitted and the genetic mosaicism typical of human FD is not reproduced. However, similarly 

to the human disease, FD-like lesions appear in the post-natal life and develop according to an 

asymmetric and methacronous temporo-spatial pattern. The animals were maintained in cabin-type 

isolators at standard environmental conditions (temperature 22–25°C, humidity 40–70%) with 

12:12 dark/light photoperiod. Food and water were provided ad libitum.  

All studies were performed in compliance with relevant Italian laws and Institutional guidelines and 

all procedures were IACUC approved.  Transgenic mice were selected based on radiographically 

detectable FD-like lesions in the tail vertebrae and femurs and were treated with an anti-mouse 

RANKL monoclonal Antibody (mAb, BioXCell Clone IK22/5, West Lebanon, NH, USA).  

Twenty-four EF1-Gs
R201C young mice (22 females and 2 males of two months of age) with 

developing FD-like skeletal lesions and 4 EF1-Gs
R201C adult mice (2 females of eight months of 

age and 1 female and 1 male of twelve months of age) with extensive, full-blown FD-like lesions 

were treated with 300 g/mouse of either anti-RANKL mAb(31)  or rat IgG2a Isotype Control 

(BioXCell, clone 2A3, West Lebanon, NH, USA) by intra-peritoneal injection, twice a week for 14 

weeks.  

 In the 2-month-old group, half of the mice were euthanized at the end of treatment (anti-RANKL 

group n=6; Isotype Control group n=6) and the other half underwent a 12-week follow-up (anti-

RANKL group n=6; Isotype Control group n=6).  Radiographic analysis was performed at different 

time points when serum samples were also collected for the evaluation of biochemical markers of 

bone turnover. During all of the experiments, mice were carefully monitored and no important 

adverse events were observed. In addition, to test the effect of anti-RANKL administration and 

cessation in the absence of any Gs
R201C dependent change, such as endocrine abnormalities, which 
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could potentially affect the result, 4 FVB/NJ wild type mice (WT) (Jackson Laboratories, Bar 

Harbor, ME) were treated at 2 months of age according to the same regimen used for transgenic 

mice. Two mice were sacrificed after 14 weeks of treatment and 2 mice after 14 weeks of treatment 

plus 12 weeks of follow-up.  

The study design schema and the experimental groups are summarized in Table 1 and in Table 2 

respectively. 

Additional methods [microradiography, biochemical markers, histology, histomorphometry, Back 

Scattered Scanning Electron Microscopy (BSE-SEM), RANKL immunolocalization, biomechanical 

analysis and statistics] are reported in the online Supplemental Material.  

 

Results 

RANKL inhibition reverted osteolysis and prevented progression of the radiographic FD-like 

phenotype in EF1-Gs
R201C mice 

The expression of RANKL in the FD-like tissue of EF1-Gs
R201C mice was confirmed by 

immunohistochemistry (Fig. S1). Twenty-four transgenic mice at two months of age were selected 

based on the radiographic phenotype, randomly assigned to the anti-RANKL (n=12) or Isotype 

Control (n=12) group and treated for 14 weeks. All mice showed irregular endosteal/medullary 

profiles and cortical lytic areas in the tail vertebrae (Fig. 1, T0) consistent with FD lesions at 

early/intermediate stage of development. Early endosteal changes were also present in 4 femurs in 

the anti-RANKL group and in 5 femurs in the Isotype Control group (Fig. 1, T0).   

In mice receiving the anti-RANKL mAb, cortical lytic areas in the tail vertebrae were no longer 

detectable at the first radiographic survey performed after 7 weeks of drug administration (Fig. 1 A, 

T7). At this time, the radiodensity of the tail vertebrae was higher compared to the pre-treatment 

stage and, in some segments, further increased during the following 7 weeks of drug administration 

(Fig. 1 A, T14). However, at all time points during the treatment, the radiographic aspect of the 
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individual vertebrae was variable and apparently dependent on the initial burden of the disease. 

Segments with large osteolytic lesions and prominent irregularity of the endosteal profile at T0 

showed a sclerotic appearance with narrowing/obliteration of the medullary cavity (Fig. 1 A). On 

the other side, slightly affected or apparently unaffected vertebrae, maintained their normal shape 

with no significant change in the profile and transparency of the medullary canal (Fig. 1 A). Neither 

new osteolytic lesions nor bone deformities were detected during or at the end of the treatment. In 

contrast, in control mice, the radiographic phenotype steadily progressed with enlargement of pre-

existent areas of cortical radiolucency and appearance of new lytic foci and bone deformities, also 

in vertebrae that were not affected at T0 (Fig. 1 B). Similar findings were observed in the affected 

femurs (Fig. 1 A and B). Importantly, radiographic analysis of all femoral segments clearly 

demonstrated that RANKL inhibition also prevented the progression of the phenotype across the 

skeleton (Fig. S2).  None of the 20 unaffected femurs of the anti-RANKL treated mice developed 

radiographically detectable lesions during the treatment (Fig. S2 A). In contrast, at T14, a 

radiographically detectable phenotype appeared in 11 out of 19 femurs that were normal at T0 in the 

Isotype Control group (Fig. S2 A), in agreement with the emergence of femoral lesions between 2 

and 5 months of age in the EF1-Gs
R201C mouse strain.(30) To assess whether RANKL inhibition 

could also modify the radiographic phenotype in fully developed (final stage) murine FD, we then 

treated two adult EF1-Gs
R201C mice bearing lytic-sclerotic (ground-glass) FD-like lesions.  After 

14 weeks of treatment, a homogeneous opacity of the tail vertebrae and femurs was observed in 

both animals receiving the anti-RANKL mAb (Fig. 2 A), while the radiographic phenotype became 

more severe in control mice (Fig. 2 B).  

 

RANKL inhibition led to deposition of highly mineralized bone within FD-like lesions of EF1-

Gs
R201C mice  

After 14 weeks of treatment, we euthanized 6 anti-RANKL-mAb mice and 6 rat IgG2a Isotype mice 

that started the treatment at 2-3 months of age, and all of the adult mice.  Consistent with the 
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radiographic results, histology of the tail vertebrae demonstrated that RANKL inhibition led to 

deposition of newly formed bone within the lesions. In young mice (Fig. 3), the amount of bone 

tissue clearly varied in the different segments according to the radiographic phenotype at the 

beginning of the anti-RANKL mAb administration. Bone deposition was extensive in vertebrae 

with pronounced lesions and led to the virtual obliteration of the medullary cavity (Fig. 3 A, E and 

G).  In contrast, no evidence of intramedullary bone formation was observed in tail vertebrae that 

were radiographically free of the disease at T0 (Fig. 3 C) or in other unaffected skeletal segments. 

FD-like changes were observed in all of mice that received rat IgG2a Isotype (Fig. 3 B, D, F and 

H). Furthermore, a thorough histological analysis of multiple radiographically normal skeletal 

segments from both experimental groups confirmed the absence of lesions in the anti-RANKL mAb 

treated mice, but revealed the presence of microscopic foci of disease in bones from the Isotype 

Control group (Fig. S2 B).  Analysis of von Kossa/Methylene Blue stained sections and BSE-SEM 

images demonstrated the absence of excess osteoid in the newly formed bone (Fig. 4 A, C and E) 

in contrast with samples from rat IgG2a Isotype treated mice (Fig. 4 B, D, F). In addition, qBSE 

showed a higher mineral content in the newly formed bone compared to both FD-bone and 

unaffected cortical bone (Fig. 4 G and H). Consistent with the histological changes, the mechanical 

properties of anti-RANKL mAb treated tail vertebrae improved.  Compressive tests analysis 

revealed that the maximum load and axial stiffness of the specimens from treated mice were 

significantly increased compared to control samples (Fig. 5 A and B). Neither multi-nucleated 

osteoclasts nor mono-nucleated osteoclast-progenitors were recognized by morphology, TRAP 

histochemistry or iodine stained BSE-SEM image analysis in RANKL inhibited mice (Fig. S3 A 

and C), whereas they were numerous and irregularly distributed within the fibrosis and on the bone 

surfaces in control mice (Fig. S3 B and D).  In addition, in mice treated with the anti-RANKL 

mAb, inhibition of osteoclastogenesis prevented the resorption of the metaphyseal mineralized 

cartilage at the growth plates.  As a consequence, metaphyses appeared radiographically sclerotic 

(Fig. S4 A and B) and showed persistence of cartilaginous cores reflecting the failure of transition 
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from primary to secondary spongiosa (Fig. S4 C, D and E). Increased density at the methaphyseal 

regions was the only radiographically detectable change induced by RANKL inhibition in WT mice 

(data not shown). Extensive bone deposition was also observed during anti-RANKL mAb treatment 

in adult mice with full-blown FD-like phenotype (Fig. S5). However, in these mice, at variance 

with young animals, small areas of fibrotic tissue persisted among the newly formed bone. 

Histomorphometry demonstrated that in young mice the mean amount of total bone was 

significantly higher in the anti-RANKL mAb group compared to controls (Fig 5 C), due to the 

replacement of the pre-existing FD tissue by newly formed bone.  The mean amount of adipose 

marrow was also significantly higher compared to controls indicating that marrow adipocytes were 

not replaced by the FD tissue during the anti-RANKL mAb treatment.  In the tail vertebrae of adult 

mice treated with the anti-RANKL mAb (Fig 5 D), the increase in the total amount of bone was 

even more evident due to the greater extent of the lesional tissue at the beginning of the treatment, 

although the fibrotic marrow was not entirely replaced by bone.  

 

Recurrence of the radiographic and histological FD-like phenotype in EF1-Gs R201C mice during 

the follow-up 

To assess whether, and how long, the radiographic and microscopic changes induced by RANKL 

inhibition persisted after the withdrawal of the antibody, we carried out a follow-up study on some 

mice that started the treatment at two months of age.  Mice were radiographically monitored for 12 

weeks (Fig. 6, T18-T26).  The first Faxitron analysis performed after 4 weeks from the last 

injection of the drug showed a reduction in the radiodensity and the appearance of small lytic areas 

in some tail vertebrae (Fig. 6 A, T18).  At the end of the follow-up, radiographically evident lesions 

were detected in the tails (Fig. 6 A, T26) and in other skeletal segments (data not shown) and the 

phenotype was overall comparable to that of control mice (Fig. 6 B, T26).  Accordingly, a fibro-

osseous tissue including abnormal and osteomalacic trabeculae and multiple osteoclasts was 

observed by microscopic analysis (Fig. 7). In WT mice, following anti-RANKL withdrawal, a 
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reduction of the methaphyseal density compared to T14 was observed at the end of follow-up (data 

not shown). 

Biochemical profile of EF1-Gs R201C mice during and after RANKL-inhibition  

Serum samples from young mice were harvested before (T0), during (T7) and at the end (T14) of 

the treatment and once a month (T18, T22 and T26) during the follow-up.  Serum total calcium 

levels (Fig. 8 A) remained similar in the anti-RANKL mAb and control group during the treatment.  

As expected, they significantly increased in mice that received the anti-RANKL mAb shortly after 

the discontinuation of the drug.  However, at the end of the follow-up no statistically significant 

difference was observed between the two cohorts of animals.  Serum phosphate levels (Fig. 8 B) 

remained comparable in the two groups throughout the treatment and during follow-up.  CTX-1 

levels (Fig. 8 C) significantly decreased at week 7 and 14 in the anti-RANKL group and 

significantly increased shortly after drug withdrawal (T14 vs T18, p = 0.0029).  Serum levels of 

P1NP (Fig. 8 D) were significantly reduced during the anti-RANKL mAb treatment compared to 

controls and significantly increased during the follow-up (T14 vs T22, p = 0.0220). Serum levels of 

both markers returned to the initial values (T0) at the end of the follow-up. 

 

DISCUSSION 

The genetic nature of FD calls for the development of therapies based on transplantation of normal 

skeletal stem cells (keeping in mind the somatic mosaic nature of the disease) and/or genetic 

correction as the only possibility to eradicate the disease.(3)  These approaches are feasible in 

principle and have also been shown to be effective in appropriate experimental systems.(21)  

However, translational studies are impeded by the complex structure and physiology of the 

skeleton, in addition to the gain-of-function effect of the Gs mutation.  Besides corrective surgery, 

alternative, although not radical, modalities of intervention rely on approaches able to target the key 

morbidity factors of the disease.  Recently, attention has been focused on denosumab,(32) an FDA 
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approved therapeutic option for osteoporosis and skeletal conditions featuring increased osteoclast 

activity, such as giant cell tumor of bone, and cancer metastasis.(33-37)  

To clarify the effect of RANKL-inhibition on the radiographic and histological expression of FD, 

we took advantage of our transgenic murine model of the disease(30) that allowed us to investigate 

the effects of an anti-mouse RANKL-mAb in a sizable number of individuals, homogenous for age 

and type of lesion.  The use of our model was further validated by the demonstration that, as in FD 

patients,(23-25) in EF1-Gs
R201C mice the fibro-dysplastic tissue was a source of RANKL.  In 

addition, as in primates and humans under treatment with denosumab,(35-38) a sustained decrease of 

both CTX-1 and P1NP occurred during the administration of the anti-RANKL mAb.   

Our data show that RANKL inhibition in EF1-Gs
R201C mice led to the deposition of highly 

mineralized bone at affected skeletal sites.  In contrast, changes in non-affected bones were similar 

to those observed in WT mice and consisted in sclerotic metaphyseal bands that resulted from the 

failure of transition from primary to secondary spongiosa and reduced after cessation of the anti-

RANKL mAb administration. According to our preliminary data, these physeal cartilage changes 

did not interfere with the growth of the skeletal segments (data not shown). However, further in-

depth studies are required to better assess this point, which represents a very important question in 

children with FD. 

The replacement of the FD tissue with mineralized bone implies that the treatment reverted the two 

major tissue changes that underlie the bone fragility and the clinical morbidity of the disease; i.e., 

osteolysis and osteomalacia. It must be noted that the radiographic and/or histological changes 

observed with the anti-RANKL mAb have never been reported following treatment of FD lesions 

with BPs,(11-13) which inhibit the activity but not the formation of osteoclasts. The different effect of 

the two types of anti-resorptive agents strongly suggests that osteoclasts and/or osteoclast 

precursors, independent on their resorption activity, negatively modulate osteogenic differentiation 

within the FD tissue and the deposition of mineralized bone. If the recently reported secretion of 
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molecular factors and extracellular vesicles by osteoclasts(39,40) is involved in the effect of RANKL 

inhibition in FD  must be investigate in future studies. Interstingly, Ohishi and colleagues(41) 

previously compared the effect of Osteoprotegerin (OPG) and BPs in a mouse model of constitutive 

activation of the PTH/PTHrP receptor that transiently reproduces histological features of FD.(42)  

They reported that OPG (which reduced osteoclast activity and number), but not BPs (which 

reduced only osteoclast activity), abrogated marrow fibrosis in their mouse model and suggested 

that the differential effect could be dependent on the reduced number of osteoclasts in OPG treated 

mice.  

Another interesting finding of our work was the increased mineral content of the newly formed 

bone compared to the untreated FD-bone and also to cortical unaffected bone, as established by 

qBSE analysis.  This result could be directly dependent on the inhibition of remodeling within the 

FD tissue.  As previously reported(43) in high bone-remodeling conditions, Bone Multicellular Units 

(BMUs) do not reach the maximum levels of mineralization since their lifespan is reduced by the 

continuous appearance of new BMUs.  Accordingly, the reduction in the remodeling rate associated 

with the anti-resorptive drugs might favor the mineralization of the extracellular matrix by allowing 

a higher number of BMUs to reach their maximal mineralization capacity.(38)  It is possible that in 

our mouse model, inhibition of bone resorption resulted in the saturation of calcium hydroxyapatite 

in pre-existing under-mineralized bone matrix as well as in the osteoid that was rapidly deposited 

during the treatment with the anti-RANKL mAb.(44)  Even though we cannot exclude the occurrence 

of a dystrophic calcification rather than a physiological mineralization process (because we did not 

compare the structure and mechanical properties of the newly formed bone to those of wild type 

mouse bone), the deposition of a highly mineralized bone in anti-RANKL treated mice translated 

into a significant improvement in the biomechanical properties (namely maximum load and axial 

stiffness) of the FD-affected skeletal segments compared with those obtained from  rat IgG2a 

Isotype treated mice. 

Our data also show that treatment of older mice with an advanced bone phenotype with anti-
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RANKL mAb, did not completely reproduced the effect observed in young mice with recent 

lesions.  Although this result could be potentially ascribed to an insufficient drug dosage in old mice 

with full-blown disease, it may also suggest that in long standing FD lesions, the Gs mutated, and 

perhaps the genetically normal, osteogenic cells have a reduced ability to complete osteoblastic 

differentiation per se, due the abnormal microenvironment and/or aging.  This would imply that the 

anti-RANKL treatment should be started as early as possible in FD in order to achieve the best 

results, not only for the prevention but also for the reversion of the disease. Finally, as expected the 

withdrawal of the anti-RANKL antibody in FD mice was associated with the resumption of 

osteoclast formation and bone resorption. This was associated with the recurrence of skeletal lesions 

for which the impact of the germline mutation in our mouse model (compared to the somatic 

mosaicism observed in humans) remains to be assessed.  

In conclusion, our data demonstrate that RANKL inhibition in mice reproducing human FD had a 

relevant effect on the radiographic and histological appearance of the skeletal phenotype and 

suggest that denosumab may be a treatment option for the human disease, even though the disease 

relapse observed with discontinuation of treatment remains problematic. In addition, further studies 

are required to test in mice dosing regimens comparable to those currently used in human diseases. 

In our study, the used dosing of anti-RANKL mAb was estimated (45,46) to be lower compared to the 

12-month course of denosumab that was planned in Boyce et al(23) and to a greater extent, to those 

currently used in human diseases such as Giant Cell Tumor of Bone(47). Our work also suggests that 

osteoclasts may be involved in the pathogenesis of FD through mechanisms not necessarily related 

to bone resorption.  Unveiling these molecular mechanisms could lead to a better understanding of 

the pathogenesis of the disease and to the identification of new specific therapeutic targets.  
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Table 1. Study design schema. 
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Figure 1.  Skeletal radiographic changes during treatment with either anti-RANKL mAb (A) or rat 

IgG2a Isotype (B) in 2 young EF1-Gs
R201C mice.  A) Serial Faxitron analysis of two 

representative tails and femurs at different time points during the treatment with anti-RANKL mAb. 

In the tails (mice #1 and #2, upper panel), bone density increased in all the affected vertebrae, with 

progressive disappearance of the intracortical lytic lesions (arrowheads).  In slightly affected or 

apparently unaffected segments (arrows), the vertebral shape and the profile and transparency of the 

medullary canal were maintained. In the femurs (mice #3 and #4, lower panel), in which very early 

lesions were recognized as thickening of the cortex at midshaft (T0), no progression of the disease 

was observed (T14).  B) Serial Faxitron analysis of two representative tails (mice #5 and #6, upper 

panel) and two femurs (mice #7 and #8, lower panel) at different time points during the treatment 

with rat IgG2a Isotype.  The disease evolved in all the affected vertebrae (arrowheads) and appeared 

in unaffected vertebrae (arrows) with progressive deformity and lytic changes.  In the femurs, the 

lesions expanded progressively and at T14 almost the whole skeletal segment was involved with a 

combined lytic and sclerotic phenotype.  
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Figure 2.  Skeletal radiographic changes during treatment with either anti-RANKL mAb (A) or rat 

IgG2a Isotype (B) in adult EF1-Gs
R201C mice.  A) Serial Faxitron analysis of two mice (mice #9 

and #10) treated with the anti-RANKL mAb showing tail vertebrae (upper panel) and femurs (lower 

panel).  At T0 all bones bore FD-like lesions with a ground-glass appearance, and, as in young 

mice, the treatment progressively enhanced their radiographic density (T14).  B) Serial Faxitron 

analysis of two adult mice (mice #11 and #12) treated with rat IgG2a Isotype at the same time 

points showing tail vertebrae (upper panel) and femurs (lower panel).  The lesions progressed 

leading to deformities of the skeletal segments. 
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Figure 3.  A-D) Correlation between radiographic and histological changes in young EF1-

Gs
R201C mice.  H&E-stained histological sections of tail vertebrae that were radiographically 

affected at T0 revealed newly deposited bone after anti-RANKL mAb treatment (A) and FD-like 

fibro-osseous tissue after rat IgG2a Isotype treatment (B).  Tail vertebrae that were radiographically 

free of disease at T0 showed a normal morphology after anti-RANKL mAb treatment (C) and a FD-
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like appearance after rat IgG2 Isotype administration (D).  Replacement of the FD-like fibro-

osseous tissue by newly formed bone occurred in the anti-RANKL mAb treated mice (E:  H&E, 

transmitted light; G:  Sirius Red, polarized light), but not in mice receiving the rat IgG2a Isotype (F:  

H&E, transmitted light; H:  Sirius Red, polarized light). 
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Figure 4.  Von Kossa/Methylene Blue stained sections of non-decalcified bone samples showed 

extensive mineralization of the bone matrix in tail vertebrae from young anti-RANKL mAb treated 
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mice (A, C) and excess of osteoid (i.e., unmineralized bone matrix) in tail vertebrae from rat IgG2a 

Isotype treated mice (B, D).  The same findings were observed in BSE-SEM images of tail 

vertebrae from anti-RANKL mAb treated (E) and rat IgG2a Isotype treated (F) mice. Qualitative 

BSE (qBSE) analysis revealed a higher level of mineralization of the newly formed bone in the tail 

vertebrae of anti-RANKL mAb treated mice (G) compared with cortical unaffected bone (G) and 

FD bone of tail vertebrae from rat IgG2a Isotype treated mice (H). Black asterisks in B, D and F: 

osteoid. White asterisk in G: cortical unaffected bone. 
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Figure 5.  A, B) Biomechanical analysis of the tail vertebrae.  Panel A shows two representative 

load–displacement curves generated from vertebral compression test performed on one tail vertebra 

from an anti-RANKL mAb treated mouse and one tail vertebra from a rat IgG2a Isotype treated 

mouse.  In Panel B the comparative analysis of maximum load and stiffness, computed from the 

load-displacement curves, reveals an increase of 180% and 90% respectively in anti-RANKL mAb 

compared to rat IgG2a Isotype treated mice.  C, D) Histomorphometric analysis of volumes of bone 

(Bone Volume/Total Volume, BV/TV), fibrous (Fibrous tissue Volume/Total Volume, FbV/TV), 

and adipose (bone marrow Adipose tissue Volume/Total Volume, AdV/TV) tissues performed on 

histological sections obtained from the tail vertebrae at the end of the treatment with either anti-

RANKL mAb or rat IgG2a Isotype in young (C) and adult (D) mice.  In both groups, the mean 

amount of BV/TV and AdV/TV was significantly higher and that of FbV/TV significantly lower in 

anti-RANKL mAb treated mice compared to the rat IgG2a Isotype groups.  *: p<0.05; **: p<0.01; 

***: p<0.001; ****: p<0.0001.  
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Figure 6. Radiographic changes during the 12-week follow-up in the tail vertebrae of EF1-

Gs
R201C mice treated for 14 weeks with either anti-RANKL mAb (A, mice #13 and #14) or rat 

IgG2a Isotype (B, mice #15 and #16).  Reduced bone density and osteolytic areas were detected in 

some anti-RANKL mAb treated mice at the first radiographic analysis performed after drug 

discontinuation (T18, mouse #14).  At the end of the follow-up (T26) radiographs of the tail 

vertebrae of mice treated with the anti-RANKL mAb showed recurrence of original lesions 

(arrowheads) and completely new lesions in vertebrae that were radiographically unaffected at the 

beginning of the treatment (arrows).  
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Figure 7.  Histology of tail vertebrae of mice sacrificed at the end of the 12-week follow-up (T26).  

In H&E stained sections of anti-RANKL treated mice (A) the amount of osteoclasts (arrows) and 

fibrous tissue (asterisks) was comparable to that observed in rat IgG2a Isotype treated animals (B).  
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Undecalcified, Von Kossa/Methylene Blue stained sections showed numerous tiny bone trabeculae 

with a thick layer of osteoid in both anti-RANKL mAb (C, asterisks) and rat IgG2a Isotype (D, 

asterisks) treated mice. BSE-SEM images of vertebrae from mice treated with anti-RANKL mAb 

(E) and rat IgG2a Isotype (F) showed fibrous marrow (asterisks), osteoclasts (arrows) and intra 

lesional under-mineralized bone trabeculae (arrowheads).  Qualitative BSE (qBSE) revealed a 

similar content of mineral in the bone matrix of the lesional bone in anti-RANKL (G) and rat IgG2a 

Isotype (H) treated mice. 

 

Figure 8.  Serum analysis performed during the treatment and follow-up in anti-RANKL mAb treated 

mice and in rat IgG2a Isotype treated mice. Box plots show the serum levels of total Calcium (A), 

Phosphate (B), CTX-1 (C) and P1NP (D) at different time points. Outliers are represented as single 

spot outside the limits of the box. The significant p-values from t test comparison of anti-RANKL 

mAb vs rat IgG2a Isotype mice at specific time points are reported. The grey field in all graphs shows 

the follow-up period. During treatment, serum calcium (A) and phosphate (B) levels did not show 

significant changes.  In contrast, CTX1 (C) and P1NP (D) significantly reduced in the anti-RANKL 

group. In the follow-up period, a statistically significant difference was observed for total Calcium 

and P1NP serum levels at 22 and 18 weeks respectively.   
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Moreover, comparative analysis between the mean values for all the measured parameters at the end 

of the treatment (T14) and at the different time points during the follow-up in the anti-RANKL 

group demonstrated an increase, even though not significant, for calcium and phosphate at T18 and 

a significant increase for CTX at T18 (p = 0.0029) and for P1NP at T22 (p = 0.0220). At the end of 

follow up, serum levels for all the measured parameters were not significantly different between 

anti-RANKL mAb and rat IgG2a Isotype treated mice.  


