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Abstract

In this thesis an adjoint-based multilevel multifidelity Monte Carlo (MLMF) method

is proposed, analysed, and demonstrated using test problems. Firstly, a multifidelity

framework using the approximate function evaluation [1] based on the adjoint error cor-

rection of Giles et al. [2] is employed as a low fidelity model. This multifidelity framework

is analysed using the method proposed by Ng and Wilcox [3]. The computational cost

reduction and accuracy is demonstrated using the viscous Burgers’ equation subject to

uncertain boundary condition.

The multifidelity framework is extended to include multilevel meshes using the MLMF of

Geraci [4] called the FastUQ. Some insights on parameters affecting computational cost

are shown. The implementation of FastUQ in Dakota toolkit is outlined. As a demon-

stration, FastUQ is used to quantify uncertainties in aerodynamic parameters due to

surface variations caused by manufacturing process. A synthetic model for surface vari-

ations due to manufacturing process is proposed based on Gaussian process. The LS89

turbine cascade subject to this synthetic disturbance model at two off-design conditions

is used as a test problem. Extraction of independent random modes and truncation using

a goal-based principal component analysis is shown. The analysis includes truncation

for problems involving multiple QoIs and test conditions.

The results from FastUQ are compared to the state-of-art SMLMC method and the

approximate function evaluation using adjoint error correction called the inexpensive

Monte Carlo method (IMC). About 70% reduction in computational cost compared to

SMLMC is achieved without any loss of accuracy. The approximate model based on the

IMC has high deviations for non-linear and sensitive QoI, namely the total-pressure loss.

FastUQ control variate effectively balances the low fidelity model errors and additional

high fidelity evaluations to yield accurate results comparable to the high fidelity model.
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Chapter 1

Introduction

1.1 Motivation and Context

1.1.1 Why Uncertainty Quantification?

The world we live in is filled with changes, climate change to technology change (machine

learning); some are man-made and some are natural. A key to successful human existence

has been the ability to adapt to uncertainty. Of course this is not possible if humans did

not have the ability to predict changes or portend major events in an uncertain world.

On a more technical note, the growing need to compress time from design to production

and availability of cheap compute power has pushed the reliability of simulation and

modelling to depict reality. As a result hand calculations and experiments on proto-

types are largely replaced with simulations. This has led to two major developments, (i)

extensive use of simulations in design or simulation based designs and (ii) use of simu-

lations to mitigate risk and uncertainty. In fact use of simulations to reduce risk is now

considered as a part of the design failure modes and effects analysis (DFMEA) [8] used

extensively by the industry. The structural engineering community is a classic exam-

ple of how risk based design are being leveraged to develop large reliable and fail safe

structures [9, 10, 11]. More than two decades of research has been devoted to risk and

1
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reliability by the community. In fact, gas turbine structural design under uncertainty

had become a standard practice a decade ago [12]. The same cannot be said about

computational aerodynamics community, which according to the author has just started

realising its potential use [13, 14, 15] due to ease of access to large compute resources

and improvements to simulation tools and methods.

1.1.2 Challenges to Uncertainty Quantification

Three major challenges to uncertainty quantification (UQ) in aerodynamics are (i) com-

putational cost, (ii) availability of fast, accurate and robust methods, and (iii) scalability

of computational cost to large number of sources of uncertainty in the data.

Since uncertainty deals with the analysis of many possible outcomes, a large number of

evaluations of the system (samples) is warranted and leads to an explosion of the com-

putational cost. For example the classical Monte Carlo method has an error convergence

rate of O(1/
√
P ) where, P is the number of samples [16]. This means that quadrupling

the number of sampled points halves the error in the statistics.

During the exhaustive analysis of the various samples one has to frequently compute

outliers (extreme or fringe cases), which are not usually encountered during regular

analysis. The methods used for nominal scenarios can fail catastrophically when applied

to such outliers [17]. For example, Mishra et al. [17] finds that the approximate Riemann

solver used to solve balance laws are usually benchmarked against standard tests. In UQ

one encounters extreme data scenarios, which in the eyes of an expert is seemingly

impossible but physically plausible and the Riemann solver has to provide robust and

accurate results.

Lastly, the third challenge to UQ is the scaling of computational cost to the size of

uncertainties, i.e., an increase in the number of sources of uncertainty should not lead

to a deterioration in the computational efficiency. The number of sources of uncertainty

is mostly problem dependent, which the user usually does not have control over. For

example Lange et al. [18] modelled performance variations in turbine blades due to man-
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ufacturing variations using independent modes obtained from the principal component

analysis of surface coordinate data from a large number of 3-D blade scan measurements.

The authors found that in order to capture the standard deviation of the performance

one needs to include a minimum of 50% of the principal modes. This gives an estimate

of the order of 60 uncertainty parameters for 135 modes.

1.1.3 Some Recent Developments

The recent developments in multilevel [19, 20, 17, 21] multifidelity [3, 22, 23] and mul-

tilevel multifidelity [4, 24] Monte Carlo methods have made it possible to manage the

cost of computations in UQ. In fact, research in the direction of reliability and risk

in aerodynamic design have taken centre stage due to the reduction in computational

cost [13, 14, 15]. Multilevel Monte Carlo methods are motivated from multi-grid methods

used for solving deterministic partial differential equations. These methods assume the

availability of coarse geometric multilevel meshes similar to that of a geometric multi-grid

method [25].

Another key enabler to UQ is the adjoint solution. With the availability of Algorith-

mic Differentiation (AD) tools, automation of discrete adjoint solver development and

maintenance has become less of an issue. Adjoints can provide valuable information

such as sensitivity of the output to changes in input at a computational cost, which is

independent of the number of input parameters [26]. This is an important property UQ

can leverage to bring down the cost of computations. For instance goal-based truncation

of parameters that have very little or nil effect on the measured output quantity [27, 28]

can be employed to reduce the number of uncertain parameters. Ghate [1] proposed

an adjoint-based inexpensive Monte Carlo method (IMC), which uses the adjoint error

correction of Giles et al. [29], to estimate the output variations of integral quantities and

avoids the expensive flow solution for the Monte Carlo samples. One of the IMC vari-

ants, IMC 1, can approximate the output using a single non-linear residual evaluation at

the perturbed state and adjoint solution obtained at a mean state. IMC 1 method was
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shown to be equivalent to a first order moment method [1].

The stability and robustness issues [30, 31, 32, 33] of the adjoint solver had prevented its

wide spread use in UQ research. In fact, the aboutFlow1 Initial Training Network (ITN)

and its predecessor FlowHead2 (a small to medium size focused research project) - both

funded by the European Commission were aimed at tackling stability and robustness

issues of adjoint solvers for automotive and industrial CFD and optimisation. The

present thesis is part of the IODA3 Initial Training Network (third in the series), which

is aimed at application of adjoints to industrial workflows and uncertainty quantifica-

tion. Recent research on stable non-linear flow and discrete adjoint solvers at QMUL

by Xu and Müller [33] has made it possible to have stable convergence of the non-linear

flow solver and its adjoint for mildly separated steady flows. Lastly, the QMUL adjoint

optimisation group has a strong focus and expertise on multi-grid methods and have

developed an in-house mesh coarsening tool HiP for generating coarse multilevel meshes

from hybrid unstructured meshes using the element collapsing algorithm of Müller et

al [25]. The present thesis leverages on these recent algorithmic and theoretical devel-

opments to make UQ practical and affordable.

1.1.4 Types of Uncertainties

Uncertainties are classified into two kinds; (i) aleatoric and (ii) epistemic. Aleatoric

uncertainty is also called stochastic, static, or irreducible uncertainty. They are inherent

to a problem or model and, in principle, cannot be reduced by adding more knowl-

edge [34]. They are typically unbiased, i.e., the sample mean is representative of the

true mean and with enough number of samples one can obtain a good approximation to

the true variation. Therefore, they are readily parametrised using probabilistic models.

On the other hand, epistemic uncertainties are due to simplifying model assumptions,

missing physical models, or lack of basic knowledge of the system. They are often biased

and less amenable to probabilistic modelling.

1http://aboutflow.sems.qmul.ac.uk
2http://flowhead.sems.qmul.ac.uk
3http://ioda.sems.qmul.ac.uk

http://aboutflow.sems.qmul.ac.uk
http://flowhead.sems.qmul.ac.uk
http://ioda.sems.qmul.ac.uk
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3. Methods of Representing Epistemic Uncertainty  
3.1 Probability method 

The probability method is the most common approach in 
representing both epistemic and aleatory uncertainty. In this 
approach, the epistemic uncertainty is given in the form of a 
probability distribution. In the case of sampling error (i.e., 
statistical uncertainty), the epistemic uncertainties in the mean 
and standard deviation can be represented by normal and chi 
distributions, respectively, as shown in Eqs. (5) and (6). In 
the case of modeling error, since the epistemic uncertainty is 
related to the lack of knowledge, a uniform distribution is 
frequently used. However, it is important to note that even if 
the epistemic uncertainty is represented in the form of proba-
bility distribution, its interpretation should be different from 
that of aleatory uncertainty. That is, there is no randomness in 
epistemic uncertainty, but the probability distribution is used 
to shape the form of knowledge regarding the uncertain varia-
ble. Therefore this method is preferable when the information 
on the epistemic uncertainty is detail enough, such as the case 
of sampling error, so that the probability distribution of the 
epistemic uncertainty can be formed. 

The problem formulation in Section 2 is based on the situa-
tion where the form of probability distribution for an uncertain 
variable is known, but the distribution parameters governing 
the distribution are uncertain. In such a case, the estimated 
failure strength essentially becomes a distribution of distribu-
tions. The estimated distribution of the failure strength can be 
obtained using a double-loop Monte Carlo simulation (MCS), 
as shown in Fig. 2. In the figure, the outer loop generates n 
samples from the estimated mean distribution, 
est

(200,250)M U� , from which n sets of normal distribu-
tions, 

est est
( , )iN m s , can be defined. In the inner-loop, m 

samples of failure strengths are generated from each 
est est
( , )iN m s , which represents aleatory uncertainty. Since the 

failure strength is normally distributed, it is also possible that 
the inner-loop can be analytically calculated without generat-
ing samples. 
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Fig. 2. Double-loop Monte Carlo simulation for estimated distribution 
of failure strength. 

 
For each given sample from epistemic uncertainty, the alea-

tory uncertainty is used to build a probability distribution, 
est est
( , )iN m s , from which the probability of failure , i

F
P , can 

be calculated. By collecting all samples, a distribution of 
probability of failure can be obtained, which represents the 
epistemic uncertainty. A conservative estimate of the probabil-
ity of failure, 90

F
P , can be obtained by taking the 90 percen-

tile of the distribution. Therefore, the effect of aleatory uncer-
tainty is considered by calculating i

F
P , while that of epistem-

ic uncertainty is considered by calculating 90
F
P . 

For the given example, the PDF of the probability of failure 
and its 90 percentile conservative estimate is shown in Figure 
3. It is noted that since the PDF of the probability of failure is 
highly skewed, the conservative estimate, 90

F
P , is far from its 

mean value, m
F
P . 
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Fig. 3. PDF of the probability of failure and its 90 percentile conserva-
tive estimate.  

 
In the probability-based method, the epistemic and aleatory 

uncertainties are treated separately, which can have both ad-
vantages and disadvantages. Disadvantages are the computa-
tional cost related to the double-loop MCS and the increase in 
dimensionality. That is, the number of uncertain input varia-
bles increases. Advantages are the separate treatment of epis-
temic and aleatory uncertainty such that it is clear to identify 
the sources of uncertainty.  

 
3.2 Combined distribution method 

In the combined distribution method, the epistemic and 
aleatory uncertainties are combined together and represented 
as a single distribution. Because of that, the advantages and 
disadvantages of the probability method are interchanged in 
this method. That is, the estimated true method is computa-
tionally inexpensive with a less number of uncertain input 
variables, while it cannot separate epistemic uncertainty from 
aleatory uncertainty. 

If MCS-based sampling method is used to calculated the es-
timated true distribution, all n×m samples in Figure 2 are 
used to obtain the estimated distribution of failure strength, 
which includes both aleatory and epistemic uncertainty. How-
ever, the real advantage of the estimated true distribution is 
when an analytical method is used to calculate the combined 
distribution, which eliminates sampling error. In order to 

max
FPmin

FP

Figure 1.1: Double loop Monte Carlo simulation for epistemic uncertainty (from ref. [5])

Some examples of aleatoric uncertainties include free-stream or background disturbances,

fluctuations in measuring instruments due to noise and vibration, small scale unsteadi-

ness due to turbulence, etc. Examples of epistemic uncertainties include assumptions of

linear eddy viscosity model [35], assumptions about the flow like parallel flow [36], invis-

cid/laminar/turbulent flow, constants used in the models, boundary conditions spec-

ification (back-pressure measurements can be slightly offset from the actual plane of

measurement and averaged over the exit plane).

1.1.5 Motivation for Choosing the Aleatoric Kind

In this thesis, uncertainties of the aleatoric kind are considered and the motivation behind

this decision is provided in this section. Aleatoric uncertainties can be represented as

stochastic models and one has all the tools and methods of stochastic modelling at ones

disposal. Epistemic uncertainties can usually be converted to aleatoric ones by better

modelling and adding more knowledge about the system [34]. A real system comprises

of both types of uncertainties [37] and modelling aleatoric uncertainties can serve as a

first approximation to quantify the system behaviour.

In fact methods for epistemic uncertainties can equally benefit from improvements to

aleatoric ones. For example, Yoo et al. [5] modelled the failure strength of material
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as epistemic uncertainty and compared the results for the probability of failure using

epistemic methods based on (i) probability (ii) interval analysis and (iii) evidence theory.

In the probability method, the estimated failure strength was modelled as a distribution

of distributions and the probability of failure was obtained using a double-loop Monte

Carlo simulation (see fig. 1.1). In the outer loop the interval for the failure strength

(epistemic) is modelled using an uniform distribution and in the inner loop the failure

strength is modelled as a normal distribution (with estimated mean failure strength µest

obtained from the outer loop). The inner loop represents aleatory uncertainty where

aleatoric UQ methods are applicable. Therefore, the multilevel multifidelity ideas shown

in the thesis for aleatoric type can be extended to methods for epistemic uncertainty

quantification as well.

Finally, many existing tools in engineering practice are based on statistical and stochastic

models. Therefore, engineers have greater insight and understanding of terms and models

akin to their field for example mean and standard deviation.

1.2 Objectives of the Thesis

In this work, an adjoint based multifidelity multilevel Monte Carlo method for fast and

accurate uncertainty quantification is proposed with emphasis on robustness of compu-

tational efficiency due to increase in number of uncertain parameters. Uncertainties are

considered to be of the aleatoric kind. The multifidelity aspect of the method involves the

development and use of low and high fidelity models and its analysis in the multifidelity

framework.

The method is demonstrated on a model problem of quantifying uncertainties in tur-

bomachinery aerodynamic performance due to manufacturing variations. A synthetic

model is used to represent the surface variations due to manufacturing process. As

a proof of concept the aerodynamic performance UQ of a 2-D turbine cascade whose

surface is subject to the synthetic surface perturbation model is carried out using the
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proposed UQ method.

1.3 Thesis Plan

A detailed survey of UQ methods is presented in ch. 2. The pros and cons of meth-

ods based on Monte Carlo and polynomial chaos expansion are discussed. Reasons for

adopting the multilevel Monte Carlo methods are justified using some of its favourable

properties.

The merits and demerits of low fidelity models for use in multifidelity control variate are

discussed in ch. 3. A multifidelity control variate method based on Ghate’s IMC [1] is

proposed based on its favourable properties. The method is demonstrated on a viscous

Burgers’ problem with uncertain boundary condition. The multifidelity framework is

analysed using the method of Ng and Wilcox [3, 22] closing with a discussion on the pros

and cons. Then this multifidelity method is introduced into a multilevel Monte Carlo

framework, which realises the proposed multifidelity multilevel uncertainty quantification

framework called FastUQ. The implementation of FastUQ using the Dakota toolkit [38]

is outlined.

In ch. 4, the implementation of the high fidelity model; a parallel flow solver based on

the Reynolds Averaged Navier-Stokes (RANS) equation in rotational frame of reference,

discrete adjoint, and the tangent-linear solver are presented. Validation results of the

non-linear flow solver is presented and comparison between sensitivities obtained from

discrete adjoint, tangent-linear and finite-difference is shown.

A brief introduction and survey of methods to model manufacturing variability in tur-

bomachines is presented in ch. 5. A synthetic model for manufacturing variability is

proposed based on the literature survey. A procedure for extracting uncertain surface

modes from the model using goal-based principal component analysis (G-PCA) [39, 27]

for multiple performance parameters is shown.

The proposed synthetic perturbation model and G-PCA technique along with the Fas-
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tUQ method is used to quantify the uncertainty in two cost functions - total-pressure

loss and exit mass flow rate, due to manufacturing variations on a VKI LS89 turbine

cascade at two off-design conditions in ch. 5. In total 25 input uncertainties (surface

perturbation modes) were considered in the UQ problem.

1.4 Contributions

The present work includes advances over the existing state of the art on several aspects,

which are summarised below,

• The reduction factor φ to estimate the reduction of the Multifidelity Monte Carlo

(MFMC) compared to the classical Monte Carlo was derived as an extension to

the analysis of Ng et al. [3]. The contour plot of this reduction factor (a function

of correlation and runtime ration) gives the feasible region of the MFMC.

• IMC as a low fidelity model in the MFMC framework of Ng and Wilcox [3] is

proposed and demonstrated on the hypersensitive viscous Burgers’ equation with

uncertain boundary condition. Reduction estimate φ was verified with the results

of the Burgers’ problem. The multilevel multifidelity Monte Carlo (MLMF) frame-

work proposed by Geraci et al. [4, 24] was derived using the cost model of Ng et

al. [3]. A relation between the reduction factor Λ of the MLMF and φ of MFMC

was derived, which proved the relation φ ≥ Λ, i.e., introducing the multilevel

guarantees improvement of the MFMC.

• The non-linear flow solver shown in ch. 4 uses a two-halo layer partitioning in favour

of the usual single halo layer. The trade-off between lower communication cost at

the expense of additional redundant computations between the two partitioning

is shown. In addition, the two-layer halo partitioning is shown to simplify the

development of the discrete adjoint and tangent-linear solvers.

• Although the surface perturbation model introduced in ch. 5 and the goal-based

principal component analysis to extract dominant surface uncertainty modes is
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not new, application to problems involving multiple QoIs and the modifications

necessary to the truncation procedure is shown with a practical example.

• In ch. 5, the FastUQ method is demonstrated using the 2-D VKI LS89 Turbine

cascade subject to surface perturbations. The method is compared against the

standard MLMC method of Giles [19] and IMC 1. The strengths and limitations

of the method are discussed. The effects of PCA truncation and pilot sampling on

the QoI statistics are shown.

The developments in this work have become part of the FORTRAN based flow solver

STAMPS [40], which is an open-source in-house code of QMUL, maintained by the

QMUL adjoint optimisation group of Dr. Jens-Dominik Müller.



Chapter 2

Methods for Quantifying

Aleatoric Uncertainties
“Study the past if you would define the future.”

— Confucius

2.1 Important Definitions and Concepts

In this section a brief review of widely used concepts and terms in probability and

uncertainty quantification is presented followed by a brief introduction to adjoints and

parameter sensitivity. Concepts such as joint probability, statistical independence, and

adjoint sensitivity introduced in this chapter are also used extensively in ch. 3 and 5.

2.1.1 Probability Space

Probability space is usually denoted by (Ω,B, P ), where Ω is the sample space i.e. a set

of all possible outcomes of a random event. For example, flipping a coin is an event that

has a sample space Ω : {head, tail}. ∅ ⊂ Ω is a special set called the null or empty set.

B is the event space, which is the set of all events that generates the outcomes. Finally

P is called the probability measure (say probability of getting a tail).

10
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2.1.2 Probability Distributions

Consider a continuous random function X(ω) in the probability space (Ω,B, P ), which

maps each result ω ∈ Ω to x ∈ R, and for each event say Ai ∈ B ⊂ Ω in an interval

Bi ⊆ R. X(ω) is called a continuous random variable (RV) and x is called its realisation.

RV cannot be defined at specific values and takes an infinite number of possible values.

Instead they are defined over an interval of values (say [x1, x2]) represented as integrals

over a probability density function (pdf) denoted by p(x).

This function satisfies the criteria (i) p(x) ≥ 0 for all x and (ii)
∫

Ω p(x)dx = 1. The

probability measure of finding X(ω) in [x1, x2] is denoted by P (x1 ≤ x ≤ x2) and it is

evaluated using the integral in eq. (2.1). For example, the area under the curve shown

in fig. 2.1(a) represents the probability in the interval [x1, x2] for some distribution p(x).

P (x1 ≤ x ≤ x2) =

x2∫
x1

p(x)dx (2.1)

The most widely used distribution in numerous applications is the Gaussian (or normal)

distribution given in eq. (2.2) (see fig. 2.1(a)). The parameters µ and σ in eq. (2.2) are

the mean and standard deviation of the distribution, which are defined in the next sub-

section 2.1.3.

p(x) =
1√

2πσ2
exp

[
−
(
x− µx√

2σ

)2
]

(2.2)

It is also possible to consider n-dimensional random vectors i.e., X(ω) and its realisation

(vector) x = [x1 x2 . . . xn]T , where x1 to xn are realisations of continuous scalar random

variables. Here the probability measure for say P (x ≤ x0) becomes an integral in Rn as

P (x ≤ x0) =

x0,1∫
−∞

x0,2∫
−∞

. . .

x0,n∫
−∞

p(x)dx1dx2 . . . dxn =

x0∫
−∞

p(x)dx. (2.3)
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Figure 2.1: Gaussian and joint probability distribution example

2.1.3 Definition of Mean and Standard Deviation

The mean or the expectation of x is denoted by E[x] and variance Var[x] (square of

the standard deviation σ) of a random variable x are both defined using the integrals in

eq. (2.4) and (2.5). Note that the mean is alternatively denoted using the symbols µx in

this thesis.

µx = E[x] =

+∞∫
−∞

xp(x)dx (2.4)

σ2 = Var[x] =

+∞∫
−∞

(x− µx)2f(x)dx (2.5)

2.1.4 Covariance, Cross-covariance, and Joint Probability

The covariance matrix or simply covariance Cx of a random variable x is defined as

Cx =

+∞∫
−∞

(x− µx)(x− µx)T p(x)dx. (2.6)

Note that for a scalar random variable x, the covariance reduces to the variance i.e.,

Cx = σ2. The concept of covariance can be extended to more than one random variable,

say random (vector) variables X and Y, using the cross-correlation matrix Cxy defined

in eq. (2.7). This motivates the concept of a joint probability distribution p(x,y), which
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is a distribution that yields the probability that each x, y falls in any particular spec-

ified range. Examples of negative and zero covariance joint distributions are shown in

fig. 2.1(b-c).

Cxy =

+∞∫
−∞

(x− µx)(y − µy)T p(x,y)dxdy (2.7)

In the field of statistics, the Pearson correlation ρ is often used instead of the cross-

covariance or covariance and it is useful to define it below:

ρ =
Cxy√

Var[x]Var[y]
(2.8)

The value of ρ is bound between [0, 1], where ρ = 0 indicates no-correlation and ρ = 1

indicates maximum correlation.

2.1.5 Statistical Independence and Covariance

Two distributions x and y are statistically independent if their joint probability is the

product of the individual probabilities (see eq. (2.9)), i.e., occurrence of an event in x

does not affect the occurrence of y. In addition, if x and y follow a joint Gaussian dis-

tribution then a zero cross-covariance implies that they are statistically independent [41]

(see fig. 2.1(c) for an example of zero covariance). Note that any set of RVs having a

Gaussian distribution and uncorrelated does not imply they are independent. The dis-

tributions have to be jointly Gaussian i.e., any non-trivial linear combination of them is

a Gaussian RV.

p(x,y) = p(x)p(y) (2.9)

Two or more RV are independent identically distributed (i.i.d) if the RVs are statistically

independent and belong to the same type of probability distribution function.
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Figure 2.2: Forward propagation of uncertainties

2.1.6 Uncertainty Quantification and Model Response

Uncertainty quantification (UQ) can be broadly defined as the science of identifying,

quantifying and reducing uncertainties associated with computational/analysis mod-

els, numerical algorithms, experiments and predicted outcomes of quantities of interest

(QoI) [34]. QoI designate the output of a simulation or decision about the process. QoI is

also referred by the names model-response or model-output. In this thesis QoI is mostly

denoted by J .

Forward propagation of uncertainties deals with the propagation of the input (uncertain-

ties) through the model to obtain the model-response. It is defined as the three step

process [42] of input definition, propagation and output verification/analysis. In fig. 2.2

the input uncertainty x (with pdf p(x)), is propagated through the model to obtain the

model response y having a pdf p(y). Quantification of risk involves the estimation of

the probability P (y1 ≤ y ≤ y2) of the model output by the forward propagation of the

given input x [43] (possibly defined over a range [x1,x2]).

2.1.7 Adjoint and Parameter Sensitivity

Consider a QoI J , which depends on a state u and design parameters α. Let the state

satisfy the solution to the state equation shown below:

R(u, α) = 0 (2.10)
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This equation is a linear or non-linear model depending on the physical problem it

describes. The parameter α is used to control the state of the system R to achieve a

desired J . Let the dimension of the QoI vector be L, the state vector be N , and the design

vector be M . Typically, the dimension of QoI is much smaller than that of the design

variable (M � L). In practical engineering problems QoI are mostly scalar integral

values [2] (L = 1), for example: efficiency, total pressure loss, cost of manufacturing, etc.

Let the QoI be optimised (minimised) subject to the state equation (shown in eq. (2.10))

and other additional constraints in the design space. This minimisation problem is

defined as

min
α
J(u, α), s.t. R(u) = 0. (2.11)

The sensitivity (dJdα) is an important quantity in design optimisation. Given an initial

design α, the sensitivity can be used to find the search direction to minimise J . The

computational difficulty involved in sensitivity computation is the construction of large

matrices arising from the chain-rule (of calculus) as shown in eq. (2.12). Strang [16]

describes the adjoint method as “a fast way to compute the sensitivity of J with respect

to α when M � L”.

dJ

dα
=
∂J

∂α
+
∂J

∂u

∂u

∂α
(2.12)

The method is best described using the example of a linear state equation and linear QoI

as shown in eq. (2.13) and eq. (2.14), where c is a constant vector of the same dimension

as u and b = b(α) is the forcing term. Applying the chain-rule to eq. (2.12) and after

simplification the sensitivity reduces to eq. (2.15). Computationally, the most expensive

operation is the N ×M matrix-multiplication of the term A−1 ∂b
∂α . The adjoint method

pre-multiplies cTA−1 to avoid the expensive N × M matrix-multiplication operation.

The pre-multiplication is achieved by solving the adjoint equation shown in eq. (2.16).

The adjoint variable v contains the product of pre-multiplication. Thus the sensitivity

can be efficiently obtained using the adjoint value as shown in eq. (2.17). One can observe

that the adjoint variable does not involve the forcing term b. Therefore, the adjoint
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variable once calculated can be used to get the sensitivity of any arbitrary forcing b i.e.,

adjoint solution gives the influence of an arbitrary source term on the QoI.

J(u, α) ≡ cTu (2.13)

R(u, α) ≡ Au− b = 0 (2.14)

dJ

dα
= cTA−1 ∂b

∂α
(2.15)

AT v = c (2.16)

dJ

dα
= vT

∂b

∂α
(2.17)

The method can be extended to non-linear state equation R(u, α) = 0, for instance,

the Reynolds Averaged Navier-Stokes Equation (RANS) shown in ch. 4. Using the

linearised state eq. (2.18) the sensitivity for the non-linear case can be assembled as

shown in eq. (2.19).

∂u

∂α
= −

(
∂R

∂u

)−1 ∂R

∂α
(2.18)

dJ

dα
=
∂J

∂α
− ∂J

∂u

(
∂R

∂u

)−1 ∂R

∂α
(2.19)

The adjoint method involving the non-linear state can be constructed using the same

idea of pre-multiplication. Here the terms ∂J
∂u and

(
∂R
∂u

)−1
are pre-multiplied using the

adjoint equation shown in eq. (2.20).

(
∂R

∂u

)T
v =

(
∂J

∂u

)T
(2.20)

In this thesis the discrete adjoint approach is used where the terms in the adjoint

eq. (2.20) are obtained using algorithmic differentiation (AD). An introduction to AD

and discussion on AD applied to parallel codes involving message passing communica-

tion calls is provided in Appendix C. The parallel implementation of the discrete adjoint

solver for steady RANS equations is provided in ch. 4.
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Figure 2.3: Overview of methods in UQ survey

2.2 A Survey of Uncertainty Quantification Methods

In this section a survey of existing UQ methods is shown. The strengths and weakness of

each method is highlighted and finally justify the choice of multifidelity multilevel Monte

Carlo method based on the survey. The methods are broadly classified into the Monte

Carlo sampling and Polynomial Chaos Expansion. Improvements and variants within

each method is then surveyed as shown in fig. 2.3.

2.3 The Monte Carlo Family of Sampling Methods

The Monte Carlo (MC) method is a popular method in UQ due to its simplicity and

flexibility since the analysis model is treated like a black-box. These methods select

input sample points and run the forward model to estimate the statistics of the QoI. In

addition, MC has a provable convergence behaviour, which is independent of the number

of input (uncertain) parameters. The methods differ mostly in the way the input samples

or population are chosen.

2.3.1 Randomly Sampled Monte Carlo

The randomly sampled MC is the most general implementation, whose pseudo code is

shown in alg. (2.1) on the following page. The algorithm finds an estimate for the mean

and variance of QoI J with input uncertainty α. Jp : {p = 1, . . . , P} are the outputs of

the P input samples.
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input : Maximum mean squared error (ε) and maximum number of sampled P
output: Estimated output statistics (E[J ],Var[J ]) and samples used P

1 Set random seed ;
2 for p← 1 to P do
3 Generate random input sample αp;
4 Evaluate model output J(αp);

5 E[J ] ≈ JMC
p ← 1

p

p∑
i=1

Ji;

6 Var[J ] ≈ Var[J ]MC ← 1
p2

p∑
i=1

(Ji − JMC
p )2;

7 if MSE[JMC
p ] < ε then

8 P ← p;
9 exit;

10 end

11 end
Algorithm 2.1: Monte Carlo Method Algorithm

In step 3 of the MC algorithm pseudo-random numbers are generated following the

input pdf . Step 4 is computationally expensive since it involves model evaluation for

every generated input sample. MC is embarrassingly parallel since each sample can be

evaluated independently. The mean squared error (MSE) is an important quantity in

MC. It gives an estimate of how far the computed statistics are from the true one. In

fact, MSE was used as a termination criteria for the MC in step 7 of alg. (2.1). Note that

the estimator JMC
p is unbiased i.e., E[J ] ≡ E[JMC

p ] and if one assumes that the samples

Jp are i.i.d then the MSE for the MC reduces to the simple expression:

MSE[JMC
p ] = E

[(
JMC
p − E[J ]

)2]
= P−1Var[Jp]︸ ︷︷ ︸

Statistical error

+ (E[Jp]− E[J ])︸ ︷︷ ︸
Bias error

(2.21)

The second term in eq. (2.21) reflects the bias of the estimator. For large P , the estimator

becomes unbiased (E[Jp] → E[J ]) [44] and this term can be neglected, which leads to

the expression (for MSE) below:

MSE[JMC
p ] = P−1Var[Jp] (2.22)

For large number of samples P the MC estimator is unbiased and converges to the
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Figure 2.4: Sobol sequence, pseudo-random, and latin hypercube points

true statistics as O(P−
1
2 ). This slow rate of convergence can be improved by improved

sampling and variance reduction techniques, which are discussed next.

2.3.2 Improved and Adaptively Sampled Monte Carlo

Latin hypercube sampling (LHS) is a widely used sampling procedure for MC. Here the

range of each input parameter is divided into equal probability segments. Samples are

then picked randomly from the row and column intervals of this orthogonal array [45, 46]

(see fig. 2.4(c)). If the output pdf is square integrable then the error falls like O(P−
3
2 ) with

number of samples P [44]. Quasi-Monte Carlo (QMC) methods [47] use points generated

using the quasi-random Sobol sequences [48] (see fig. 2.4(a) for an example). For input

dimensions less than forty (M < 40) the Sobol sequence for the best case scenario gives

O
(
P−1

)
error convergence of QMC (randomised) [49]. Bratley [50] provides FORTRAN

subroutines to generate Sobol points for dimension d < 40. Problems where the QoI is

a probability measure of the output, say rare events [51, 52, 53] near the tail of the

pdf , even LHS or QMC might not have sufficient samples in such regions to obtain the

probability. For such cases the importance sampling is used to reduce the total number

of samples. Importance sampling [43, 15, 44, 54] relies on the importance function, which

are distributions used in lieu of the output distribution and chosen a priori. Corrections

are then applied using a posterior error estimator [44]. The number of samples to estimate

the output probability can be reduced significantly if the prior distribution are chosen

optimally as shown in [55].
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2.3.3 Control Variate Monte Carlo

The control variate approach is based on the idea of replacing the QoI J with an approx-

imation G, which is cheap to evaluate. In addition, G should have a similar expected

value as the original objective, but, with a smaller variance. The goal here is to reduce

the second term of eq. 2.22, which is the estimator variance, without using many samples.

The control variate estimator JCVp including G can be defined as,

JCVp = JMC
p − β

(
GMC
p − E[G]

)
. (2.23)

The estimator JCVp is unbiased irrespective of the value of the control variate parameter

β ∈ R, which is obtained from the variance estimate of G and the cross-covariance (see

eq. (2.7)) between J and G is defined as,

β =
CJG

Var[G]
. (2.24)

The variance of the control variate estimator is related to the MC estimator [4] via the

Pearson correlation coefficient ρ (see eq. (2.8)) as,

Var[JCVp ] = (1− ρ2)Var[JMC
p ] (2.25)

ρ =
CJG√

Var[J ]Var[G]
. (2.26)

Success of control variate approach depends on how good a given low fidelity model (LF)

correlates with a high fidelity model (HF), i.e. ρ should be close or equal to one.

2.3.4 Multifidelity Control Variate of Ng and Wilcox

Ng and Wilcox [3] proposed a practical multifidelity control variate implementation. In

the context of robust aerospace design, the authors extended the same to an information

reuse estimator [22] that reuses information from a previous design step.

In this approach, the number of high fidelity evaluations Jp : {p = 1, . . . , P} is typically
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less than the number of low fidelity model evaluations Gq : {q = 1, . . . ,M} and the mean

of the approximate model E[G] in eq. (2.23) is replaced with the sample estimate E[Gq]

to yield the realtion

JCVp = JMC
p − β

(
GMC
q − E[Gq]

)
. (2.27)

Given a computational budget and the required MSE tolerance, the method optimises

the allocation of resources between the high and low fidelity models. To benchmark

the method with MC consider the computational effort c, which is a measure of the

equivalent number of high-fidelity evaluations defined below:

c = P +
M

w
= P

(
1 +

r

w

)
(2.28)

In eq. (2.28), w is the runtime ratio between the average computational cost per high

and low fidelity model evaluation and r = M
P > 1 is the ratio between the number of high

and low fidelity simulations. For a fixed budget c one is free to choose the parameter

r to vary the resource between high and low fidelity evaluations. The variance of the

multifidelity estimator in terms of c, r, and w (obtained from ref [3]) is shown below:

Var[Jp]CV =
1

c

(
1 +

r

w

)[
Var[J ] +

(
1− 1

r

)(
β2Var[G]− 2βρ

√
Var[G]Var[J ]

)]
=

[
1 +

(
1− 1

r

)(
β2Var[G]

Var[J ]
− 2βρ

√
Var[G]

Var[J ]

)]
Var[J ]

P
(2.29)

For optimal resource allocation, one minimises the variance in eq. 2.29 for both β and r

to yield the optimality condition:

MSE[Jp]
CV = Var[Jp]CVopt =

(
1 +

ropt
w

)(
1− ropt − 1

ropt
ρ2

)
Var[J ]

c
. (2.30)

Where, ropt and βopt are defined as

ropt =

√
wρ2

1− ρ2
, and βopt = ρ

√
Var[J ]

Var[G]
. (2.31)
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When the cost of computing the low fidelity samples is almost free i.e., w → ∞, then

ropt → ∞ and one recovers the classical control variate estimator in eq. (2.25). When

one has a perfect low fidelity model i.e., ρ→ 1 then MSE[Jp]
CV = 1

w
Var[J ]
c . Therefore, a

low fidelity model should not only correlate well but also should be cheaper to evaluate.

If the condition ρ > 1
1+w is not satisfied then it is worthwhile to switch to the classical

MC.

2.3.4.1 Effect of Under Sampling

Practically, it is not possible to compute E[Jp]
CV and Var[Jp]CVopt using eq. 2.29 and

eq. 2.30, because E[J ], Var[J ], Var[G], ρ and β are unknown quantities and the usual

practice is to replace them with sample estimates. For a budget c, one has N samples

of Jp, which can be used to estimate the necessary statistics. Replacing the exact values

with approximate ones introduces errors. Therefore, it is necessary to check if the esti-

mator still yields a reduction in variance. This is checked by plotting the ratio ψ shown

in eq. 2.32 (from ref. [3]). In fig. 2.5 the sample contours for ψ is shown for different

values of r and β for two values of correlation ρ (a) 0.9 and (b) 0.95. For small errors in

the sample estimate of β and r (exact values indicated by ×) are acceptable but optimal

variance reduction cannot be achieved [3].

ψ =
Var[Jp]CV

Var[Jp]
=
(

1 +
r

w

)[
1 +

(
1− 1

r

)(
β2Var[G]

Var[J ]
− 2βρ

√
Var[G]

Var[J ]

)]
(2.32)

2.3.4.2 Convergence Comparison with MC

In the original reference of Ng [3] a comparison with a classical MC estimator was not

shown. In this section a comparison with the classic MC estimator is thus derived using

the ratio of the respective MSE estimates in eq. (2.22) and (2.30) i.e., the ratio between

the MSE of the optimal multifidelity and classical MC estimator. The final expression
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Figure 2.5: Contours of ψ for given ratio of number of model evaluations r and control
parameter β for (a) ρ = 0.9 and (b) ρ = 0.95 from ref. [3]

after replacing ropt with
√

wρ2

1−ρ2 in eq. (2.30) to yield:

φ =
MSE[Jp]

CV

MSE[Jp]MC
=
(

1 +
ropt
w

)(
1− ropt − 1

ropt
ρ2

)

=

(
1 +

√
ρ2

w(1− ρ2)

)[
1−

(
1−

√
1− ρ2

wρ2

)
ρ2

]
. (2.33)

The above equation neglects the bias error in MC and considers that the number of

samples used in the MC estimator is the equivalent number of high fidelity samples of

the multifidelity one (c). Note that there are no terms involving P in eq. (2.33). Clearly

the multifidelity MC has the same O
(
P−

1
2

)
convergence but the entire convergence curve

is shifted (reduced) by the factor shown in eq. (2.33). The shift is only a function of the

correlation ρ and runtime ratio w. To increase the rate of convergence one can combine

the multifidelity method with a better sampling technique such as LHS.

2.3.4.3 Multifidelity Implementation

The algorithmic steps involved in the multifidelity approach is shown in alg. (2.2) on

the following page. The algorithm starts with an initial pilot sample of P0 HF and

LF evaluations. An important aspect in step 6 of the algorithm is that the M − P

samples are run only for the low fidelity model (in addition to the P initial samples).
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The pilot sample size is increased if MSE does not match the tolerance (see step 9).

Peherstorfer[56] derived convergence estimates on multifidelity methods using multiple

input : Target error (ε), HF model (J), LF model (G), Pilot sample size (P0)
output: Output statistics (E[J ],Var[J ]) and equivalent HF samples (c)

1 P ← P0;
2 seed random;
3 draw samples(P, random);
4 estimate ρ, r, β, and Var[Jp];
5 M ← dPre;
6 draw samples(M − P, random);
7 Estimate MSE[Jp]

CV , E[Jp]
CV and Var[Jp]CV ;

8 if MSE[JMC
p ] > ε then

9 P ← P + P0;
10 goto 3;

11 end
Algorithm 2.2: Control variate Monte Carlo algorithm

low fidelity models. The coarse level solutions were considered as multiple low fidelity

models. The multifidelity method was compared to the multilevel Monte Carlo method.

The authors found that both approaches had similar runtimes and convergence. The

multilevel Monte Carlo method is described in the next section.

2.3.5 Multilevel Control Variate Monte Carlo

The control variate approach can be recursively applied to solutions from coarse dis-

cretisation leading to the multilevel Monte Carlo (MLMC) method. MLMC methods

were introduced by Heinrich for numerical quadrature [57, 58, 59]. Kebaier [60] pro-

posed a two-level Monte Carlo method in which a coarse grid numerical approximation

of a stochastic differential equation was used as a control variate to a fine grid numer-

ical approximation. This reduced the number of samples needed on the fine grid and

decreased the total computational burden. Giles later developed the method to enhance

the efficiency of path simulations for Itô stochastic ordinary differential equations in

refs. [61, 19]. The MLMC method due to Giles is usually called the Standard MLMC

or SMLMC [62]. The method was extended to Finite Element Methods (FEM) for

elliptic problems with stochastic coefficients by Barth in ref. [63]. Mishra proposed a
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novel MLMC Finite Volume Method (MLMC-FVM) for scalar conservation laws [20]

and non-linear systems of balance laws [17].

The numerical solution to PDE involves the tessellation of the domain into N degrees-

of-freedom and the QoI JN is obtained using this tessellation. Therefore, as N → ∞,

the truncation error vanishes and one recovers the exact solution JN → J and expected

values E[JN ]→ E[J ]. Similar to multi-grid one can consider a sequence of discretisation

levels {Nl : l = 0, . . . , L} with N0 < N1 < · · · < NL ≡ N . Using the linearity property of

expectation, the expectation at the finest level can be written using the telescopic sum

of the sequence of levels as shown in eq. (2.34). The difference function Yl defined in

eq. (2.35) is introduced to simplify the analysis.

E[JN ] = E[JN0 ] +
L∑
l=0

E[JNl − JNl−1
] =

L∑
l=0

E[Yl] (2.34)

Yl =


JN0 if l = 0

JNl − JNl−1
if l 6= 0

(2.35)

2.3.5.1 Optimal Sample Allocation Between Levels

Similar to the expectation telescopic sum in eq. (2.34), the MLMC estimator can be

written as shown in eq. (2.36), where Pl is the number of MC samples for the discreti-

sation level l and Y
(i)
l is the difference function for the ith sample point of level l. This

estimator is unbiased, which reduces the MSE of the estimator to a simple expression

shown in eq. (2.37). The overall computational cost CML
N can be estimated from the

computational cost per-level Cl using eq. (2.38).

JML
N, p =

L∑
l=0

1

Pl

Pl∑
i=1

E[Y
(i)
l ] (2.36)

E
[(
JML
N, p − E[J ]

)2]
=

L∑
l=0

Var[Yl]
Pl

(2.37)

CML
N =

L∑
i=0

PlCl (2.38)
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From eq. (2.37) it is clear that the number of samples Pl required to resolve the variance at

level l decreases with l. Giles [19] used this idea to derive a strategy to optimally allocate

resources. The optimisation problem for resource allocation is defined in eq. (2.39) using

the overall cost model in eq. (2.38) and MSE of MLMC in eq. (2.37), where λ is the

Lagrangian multiplier and ε2 gives an estimate of the upper bound of the MSE [19].

f(Pl, λ) =
L∑
l=0

PlCl + λ

(
L∑
l=0

Var[Yl]
Pl

− ε2

2

)
(2.39)

The Lagrangian f in eq. (2.39) balances the cost and evaluations per level to achieve

a target MSE of the estimator. Minimisation of the Lagrangian f gives the optimal

number of samples at each level as shown in eq. (2.40).

P optl =
2

ε2

[
L∑
k=0

√
Var(Yk)Ck

]√
Var(Yl)
Cl

(2.40)

2.3.5.2 Optimal Sample Allocation Considering Weighted Error Splitting

Note that in the derivation of eq. (2.40), the bias and statistical error terms (first and

second terms in (2.21)) are given equal weighting. Pisaroni [64] derived the optimal

allocation using a splitting parameter θ ∈ (0, 1) to offer the possibility of weighting the

two MSE contributions differently as shown below,

E
[(
JMC
N, p − E[J ]

)2]
= θ

(
P−1Var[JN ]

)︸ ︷︷ ︸
Statistical error

+(1− θ)
(
E
[
(JN − J)2

])
︸ ︷︷ ︸

Bias error

(2.41)

to yield the following optimal allocation,

P optl =
1

θε2

[
L∑
k=0

√
Var(Yk)Ck

]√
Var(Yl)
Cl

. (2.42)

Note that eq. (2.40) can be recovered from eq. (2.42) by setting θ = 1
2 (equal weighting).
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2.3.5.3 Optimal Sample Allocation for Nested Mesh Levels

Mishra [17] considered a nested mesh tessellation with spatial width at level l satisfying

the condition ∆xl is O
(
2−l∆x0

)
and obtains the following simple estimate for optimal

number of samples per level for MLMC-FVM (second order spatial discretisation),

P optl = PL4(L−l) (2.43)

For practical complex industrial geometries, it is not possible to obtain a nested tessella-

tion of coarse levels satisfying the condition ∆xl is O
(
2−l∆x0

)
for spatial width. Hence,

SMLMC is preferred in this work over the MLMC-FVM method.

The analysis in refs. [63, 20, 17] shows that the MLMC can produce converged numerical

approximations to statistics of uncertain solutions of partial differential equations in

computational complexity comparable to that of one numerical solve of a single path, i.e.

a single realisation of the random input data. The MLMC algorithm is heuristic and is

not guaranteed to achieve an MSE error that is O(ε2), where ε is the tolerance. The

weakness in the heuristic algorithm lies in the bias estimation [19] and accuracy of the

variance estimate at each level depends on the pilot sample size (or the initial sample

set).

Collier et al. [62] introduce the Continuation MLMC (CMLMC), which uses a sequence of

decreasing tolerances on the convergence of the analysis model in addition to the coarse

mesh sequence in the control variate. CMLMC solves the problem of pilot sampling or

screening phase of the SMLMC with an on-the-fly parameter set estimation. CMLMC

was used to propagate operational and geometric uncertainties in internal and external

aerodynamics by Pisaroni [64, 21].

2.3.6 Multilevel Multifidelity Monte Carlo

Geraci et al. [4] recently proposed a multifidelity control variate within each level of

the MLMC and presented the multilevel multifidelity MC (MLMF). Two formulations
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of MLMF were shown in [4] namely, Y and Q correlations. Both methods were shown

to be equivalent and the Q form was slightly better than Y but adds more complexity.

The method was used to solve a model problem of temperature evolution in a rod with

uncertain initial condition and thermal diffusivity. One order reduction in number of

samples (required to attain the same level of MSE) compared to MLMC was reported

using MLMF.

2.3.7 Summary of Monte Carlo Methods

The MSE obtained using the various methods from the Monte Carlo family described in

the previous sections can be summarised using the simple relation shown below:

MSE = constant× P−(1+rate) (2.44)

Variance reduction methods such as control variates, MLMC, and MLMF target the

reduction of the constant in eq. (2.44), while keeping rate = 0. Better sampling tech-

niques such as LHS, QMC, etc. target the reduction of the rate (i.e. rate > 0). In

fact methods that target the reduction of rate have a feature in common, namely the

increased non-randomness or regularity of the sample distribution (see fig. 2.4(a, c)).

For a pseudo-random MC sampling the MSE convergence is independent of the number

of input uncertainties d. But when a better regularity of the sampling is enforced to

improve the rate (for example QMC), the aforesaid property is violated and MSE con-

vergence becomes a function of both P and d. The polynomial based methods described

in the next section target the regularity of the sampling points to improve the conver-

gence of MSE. The various improvements to the polynomial methods strive to balance

the dependence on d and improvement of the rate.

2.4 Generalised Polynomial Chaos Expansion

Polynomial Chaos Expansion (PCE) was first introduced by Wiener [65] in the context

of decomposition of Gaussian processes (refer to sec. 5.3 for an introduction to stochastic
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Probability
distribution

gPC basis Weighting function w(ξ) Support

Gaussian Hermite 1√
2π

exp
(
−ξ2

2

)
[−∞,∞]

Gamma Laguerre ξα exp(−ξ)
Γ(α+1) [0,∞]

Beta Jacobi Γ(α+β+2)

2(α+β+1)Γ(α+1)Γ(β+1)
(1− ξ)α(1 + ξ)β [−1, 1]

Uniform Legendre 1
2 [−1, 1]

Table 2-A: gPCE orthogonal polynomial type and corresponding continuous random
variable (from reference [69])

process). Xiu and Karniadakis [66] proposed the generalised Polynomial Chaos Expan-

sion (gPCE) to handle non-Gaussian processes. The method handles different types of

polynomial bases from the Askey scheme [67, 68] based on the type of input probabil-

ity distribution (shown in tbl. 2-A). A review of orthogonal polynomials and the Askey

scheme can be found in the work of Xiu [69]. In gPCE one expands the output y of

the forward uncertainty propagation as a weighted sum of orthogonal polynomials Ψ

(stochastic) and a deterministic function ai as shown below:

J(α,ω) =

Np∑
i=1

ai(α)︸ ︷︷ ︸
deterministic

Ψi(ξ(ω))︸ ︷︷ ︸
stochastic

(2.45)

For d-dimensional input uncertainty, Ψ becomes a multi-dimensional function of the

uncertain vector ξ(ω) = [ξ1, ξ2, . . . , ξd]
T . The expansion is truncated to Np terms

determined by the number of uncertain variables d and order m of the polynomials Ψ

using the total-order expansion formula in eq. (2.46). The computational cost of the

total order expansion scales with the input dimension d as O(Nd
p ).

Np = 1 +
s=1∑
m

1

s!

s−1∏
r=0

(d+ r) =
m+ d!

m! d!
(2.46)

The mean and variance of the output y are obtained using the integrals shown in

eq. (2.47)-(2.48), where the deterministic function ai can be obtained using orthogo-
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nality condition and inner product 〈.〉 with Ψi as shown in eq. (2.49). The weighting

function w(ξ) for popular distributions are shown in tbl. 2-A.

E[J ] =

b∫
a

J(α,ω(ξ))w(ξ)dξ = a0(α) (2.47)

Var[y] =

b∫
a

[J(α,ω(ξ))− a0(α)]2w(ξ)dξ =

Np−1∑
i=1

a2
i (α) 〈Ψi,Ψi〉 (2.48)

ai(α) =
〈J,Ψi〉
〈Ψi,Ψi〉

=
1

〈Ψi,Ψi〉

b∫
a

J(α,ω(ξ))Ψi(ξ)w(ξ)dξ (2.49)

The total-order expansion shown above requires solution of Np equations for Np unknows

(Np evaluations of the model) and has an error convergence of O(N−2
p ). Alternatively the

expansion can be applied to individual dimensions of polynomial order mi leading to the

tensor product expansion and the number of terms Np takes the form in eq. (2.50). Mon-

tomoli [42] states that polynomial approaches are viable when the number of uncertain

variables are small, typically around five.

Np =

d−1∏
i=0

(mi + 1) (2.50)

2.4.1 Intrusive vs. Non-intrusive Methods

The expansion shown in eq. (2.45) can be introduced directly into the governing equa-

tions of the model for every uncertain parameter and rederive the governing equation as

explained in ref. [70]. This intrusive approach is tedious and requires implementation of

the new set of governing equations in computer code. But the method is very accurate

and has spectral convergence [42].

Non-intrusive methods approximate the integral in eq. (2.49) numerically using regres-

sion or by interpolation to obtain ai (and output statistics of y). This approach does

not require changing the governing equation and uses the model as a black-box. There-

fore, non-intrusive methods are more practical. Onorato et al. [71] compared intrusive
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and non-intrusive implementations for fluid flows. The accuracy obtained between both

methods were similar except at regions of high non-linearity such as shocks. QoI such as

mean lift and drag had small over and under-prediction as a result.

2.4.2 Stochastic Collocation vs. gPCE Regression

The total-order expansion (see eq. (2.46)) or the tensor product (see eq. (2.50)) requires

solving Np unknown from Np equations. For robustness, twice the number of samples

(ns = 2Np) are used to solve an over-determined system [42] shown in eq. (2.51). Least-

squares regression is used to solve the resulting system below:



Ψ0(ξ1) Ψ1(ξ1) . . . ΨNp(ξ1)

Ψ0(ξ2) Ψ1(ξ2) . . . ΨNp(ξ2)

...
...

. . .
...

Ψ0(ξns) Ψ1(ξns) . . . ΨNp(ξns)





a0

a1

...

aNp


=



J(ξ1)

J(ξ1)

...

J(ξns)


(2.51)

Stochastic collocation (SC) methods use interpolation functions and employs structured

collocations points to estimate the model response. Since interpolation functions have

the sifting property i.e., a unit value at the evaluation node and zero elsewhere, the coef-

ficients of the polynomial expansion are equal to the model response at the evaluation

node (collocation node). Therefore, SC methods require only a definition of the collo-

cation grid and the expansion coefficients are automatically obtained using the model

response at the grid nodes.

On the contrary, gPCE not only requires the definition of an expansion function in

eq. (2.45) but also requires an approach to estimate the coefficients of the polynomial

expansion (see eq. (2.51)). A detailed comparison of the two approaches was carried out

by Eldred et al. [72] using a series of computational experiments using analytical models

namely, the cantilever beam, short column, the Rosenbrock and the log normal ratio

function with uncertain coefficients. The gPCE regression and SC methods were found

to be very similar in their computational performance and accuracy. When differences
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Figure 2.6: 2-D integration nodes for Chebyshev polynomials with 5 levels; Left: Tensor
grid (1089 nodes) and Right: Equivalent Smolyak sparse grid (145 nodes)

arise collocation was found to be better than the gPCE regression approach.

2.4.3 Curse of Dimensionality : Some Cures and Limitations

When the number of input variables increases the multi-dimensional integral requires

function evaluation on a tensorial grid. This leads to the curse of dimensionality, i.e.,

the number of function evaluations increases exponentially with the number of input

variables O(Nd
p ) (see eq. (2.46) and (2.50)).

Smolyak sparse grid [73] is inspired from the basic observation that the coefficients of

the 1-D polynomial expansion decays rapidly. Therefore one can truncate nodes in the

d-dimensional tensorial expansion (using the 1-D expansion) by neglecting terms with

small coefficient values. This partly alleviate the curse of dimensionality and gives a cost

complexity of O
(
Np log(Np)

d−1
)

and error convergence of O
(
N−2
p log(Np)

d−1
)
. However

it cannot eliminate the problem completely as it is still based on tensor grid [69]. The

2-D node distribution of points are compared between sparse grid and total-order tensor

product in fig. 2.6 for Chebyshev polynomials with five levels. Recently, Ahlfeld et al. [14]

extended Smolyak sparse approximation including anisotropy and adaptivity called the

SAMBA framework. The framework is demonstrated to reduce the computational cost of

problems with input uncertainties as high as 20 using non-intrusive arbitrary polynomial

chaos (aPC) [74, 75]. aPC targets problems of limited data availability by propagating

the given information without making any assumptions. The method is quite flexible
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since it propagates only the raw statistical moments. Therefore, raw test data can be

used without any approximations.

Witteveen [76, 77] proposed the simplex stochastic-collocation approach on non-hypercube

domains to robustly capture and accommodate non-hypercube probability spaces with an

irregular shape of the parameter domain, which is common in engineering. The method

is found to achieve super-linear convergence and a linear increase of the initial number

of samples with increasing dimensionality and applications up to 15 input parameters

was demonstrated in this work.

2.5 Summary

A survey of UQ methods for the forward propagation problem was presented in this

chapter. One finds that there are two classes of methods, methods for higher (MC)

and lower number of uncertainty variables (gPCE/SC). MC suffers from the problems

of slow convergence and gPCE/SC from the curse of dimensionality. Improvements to

MC mostly target convergence rate and computational cost using sampling, multifidelity

and multilevel methods. Similarly for gPCE/SC improved methods target the curse of

dimensionality and the scalability of computational cost to the number of input uncer-

tainties.

Clearly MC is the best choice available when large number of uncertainties are involved

and this thesis targets to improve its convergence by the use of multilevel and multifidelity

control variates. But multifidelity methods depend heavily on the approximate model

(G) used in the control variate approach. The approximate model should not defeat MC’s

ability to handle large number of uncertainties. This is the focus and motivation for the

next chapter.



Chapter 3

Fast Adjoint-assisted Multifidelity

Multilevel UQ

“Prediction is very difficult, especially if it’s about the future.”

— Niels Bohr

3.1 Low Fidelity Models in Multifidelity Monte Carlo

Low fidelity surrogate models are available abundantly in the literature. Smith [34] gives

an exhaustive survey of these models and references. Peherstorfer [6] provides a survey

of low fidelity models used in the context of multifidelity UQ. They are broadly classified

as methods based on (1) Projection, (2) Regression/interpolation, and (3) Simplified

Low fidelity
models

Data-fit models
Projection based

methods
POD

reduced basis method

Krylov subspace

method

Simplified models
Natural problem

hierarchies

Early-stopping criteria 

Coarse-grid approximation 

Interpolation/Regression

Kriging

Support-vector

machines

Figure 3.1: Classification of low fidelity models for multifidelity UQ [6]

34
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models as shown in fig. 3.1.

Projection based methods construct a low fidelity model by projecting higher-dimensional

state and parameters into a low-rank approximation. They are quite useful for time

dependent problems and a popular method is the proper orthogonal decomposition

(POD) [78]. POD constructs low-rank approximations of the system using spectral

decomposition of snapshots in time. Therefore, construction of the reduced model takes

significant computational effort and memory. POD carries too much information when

one seeks to approximate only integral quantities of interest such as losses, drag, etc.

Therefore, the runtime-ratio (w) is quite low and multifidelity approach becomes inef-

fective.

Data-fit models use interpolation (or extrapolation) methods to approximate the model

response. A popular data-fit method is Kriging where one generates an estimated surface

from a scattered set of points. In addition to the interpolation surface, Kriging also

provides the confidence interval or uncertainty in the interpolation [79]. One needs to

run design of experiments (DOE) to sample the response at multiple nodes to create the

kriging model. Mostly the LHS sampling (see sec. 2.3.2) is used for sampling the response

for DOE [80, 81]. Therefore, the computational cost of construction of the LF model is

of the same order of the computational cost of the UQ problem. In addition, for multi-

dimensional Kriging the computational cost scales with the number of dimensions [82].

Therefore, data-fit method also suffers from the curse of dimensionality.

Lastly, simplified models introduce approximations to the analysis model; for example,

use of coarse meshes, lowering convergence tolerance for iterative solvers, etc. Note that

MLMC and Continuation MLMC already use the aforementioned techniques. Recently,

Ghate [1] proposed a MC method based on adjoint error correction of Giles et al. [2]

called the inexpensive Monte Carlo (IMC). The method shows great potential as an

approximate model since it is based on the adjoint solution, whose computational cost

is independent of the input parameter size. IMC as a low fidelity model retains the

independence of computational cost to number of input uncertainties in the multifidelity
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control variate. The method is described in detail in the next section and analysed in a

multifidelity MC framework using a model problem.

3.2 Adjoint Correction as a Low Fidelity Model

Motivated by the adjoint error correction of Giles and Pierce [83], Ghate [1] introduced

an adjoint-based approximate output evaluation called the Inexpensive Monte Carlo

method (IMC). The adjoint error correction is used to improve an approximation for the

QoI J(u∗δ , αδ), where, u∗δ is an approximation for the state uδ due to perturbations in

the design parameter αδ as shown in eq. (3.1). The linearised state equation shown in

eq. (3.2) is substituted in eq. (3.1) to simplify the adjoint correction as shown in eq. (3.3).

J(uδ, αδ) ≈ J(u∗δ , αδ)− vTδ
∂R

∂u

∣∣∣∣
uδ∗

(u∗δ − uδ) +O
(
||u∗δ − uδ||2

)
(3.1)

R(uδ, αδ) ≈ R(u∗δ , αδ)−
∂R

∂u

∣∣∣∣
uδ∗

(u∗δ − uδ) +O
(
||u∗δ − uδ||2

)
= 0 (3.2)

J(uδ, αδ) ≈ J(u∗δ , αδ)− vTδ R(u∗δ , αδ) +O
(
||u∗δ − uδ||2

)
(3.3)

The adjoint vTδ in eq. (3.3) is evaluated at the perturbed state uδ. But one can replace

the adjoint with an approximate one v∗Tδ and the leading error term includes the error

in the adjoint solution approximation as shown below:

J(uδ, αδ) ≈ J(u∗δ , αδ)− v∗Tδ R(u∗δ , αδ) +O
(
max

(
||u∗δ − uδ||2, ||v∗δ − vδ||2

))
(3.4)

Although the IMC formulation in eq. (3.4) is equivalent to the moment method [1] a few

major differences exists. Using IMC one can estimate the complete pdf of the QoI J but

moment methods only provide an estimate of the statistical moments like mean, variance,

etc. IMC requires the evaluation of the non-linear residual R at the perturbed state,

which captures non-linearities in the QoI more effectively than the moment methods.

Overall in IMC there are three possible combinations to the approximation of u∗δ and

v∗Tδ , which leads to the IMC 1–3 formulations.
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IMC 1: Approximates the flow and adjoint values using the unperturbed baseline solu-

tion. This method has an overall leading error of second order and it is equivalent

to the first order moment method.

u∗δ = u

v∗δ = v (3.5)

IMC 2: Approximates the flow values from the baseline tangent-linear solution and

extrapolation to the perturbed state. The adjoint is approximated using the base-

line solution similar to IMC 1. This method has an overall leading error of third

order and it is equivalent to the second order moment method. For α ∈ RM IMC

2 requires M tangent-linear solutions in addition to the baseline non-linear and

adjoint solution.

u∗δ = u+
du

dα
(αδ − α)

v∗δ = v (3.6)

IMC 3: Approximates the flow and adjoint values using gradient extrapolation of the

tangent-linear flow and adjoint solution. This is the most expensive, yet, most

accurate method. The method has an overall leading error of order four. For α ∈

RM , IMC 3 requires M tangent-linear flow and adjoint (Hessian) solutions. The

tangent-linear adjoint solution is calculated using either the Tangent-on-Tangent

or Tangent-on-Reverse strategy [84].

u∗δ = u+
du

dα
(αδ − α)

v∗δ = v +
dv

dα
(αδ − α) (3.7)

The adjoint correction has been employed as an approximate model evaluation in many
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references. Engels-Putzka et al. [85] used the model to estimate the mass flow rate,

total-pressure ratio and total-temperature ratio in the two-stage Darmstadt Transonic

Compressor using the TRACE flow and adjoint solver developed at DLR. Luo et al. [86]

used the adjoint and higher order sensitivities to approximately evaluate the aerodynamic

performance of a turbine blade using Taylor expansion. The authors used a continuous

adjoint approach based on inviscid Euler equations to obtain the adjoint sensitivity

and Hessian solutions. Rumpfkeil et al. [87, 88] used the adjoint and Hessian solution

to perform uncertainty quantification for NACA0012 airfoil subject to random surface

perturbations using the IMC method. All methods in the literature only focused on

using the adjoint correction for approximate QoI evaluation. But this is the first work to

the authors knowledge which uses IMC as a LF model in a multifidelity control variate.

To assess the use of IMC as a LF model in multifidelity control variate it is first applied

to a model problem of viscous Burgers’ equation with uncertain boundary condition.

Various measures such as model correlation and control variate parameter are estimates

and finally used to validate the framework with numerical simulations. First the model

problem is described in the next section followed by the analysis and validation.

3.3 Uncertain Viscous Burgers’ Equation

3.3.1 Analytical Solution to Deterministic Problem

Consider the viscous Burgers’ equation defined in the interval x ∈ [−1, 1], with Dirichlet

boundary conditions specified at the two end points x = −1 and x = 1 as shown in

eq. 3.8-3.10. An uncertain parameter δ is specified at the boundary x = −1, which

controls the perturbation from the unit value.

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ [−1, 1] (3.8)

u(−1, t) = u(−1) = 1 + δ (3.9)

u(1, t) = u(1) = −1 (3.10)
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Figure 3.2: Steady-state solution of viscous Burger‘s equation for indicated input per-
turbation δ and transition point x0 (denoted by a filled circle) and ν = 1

20
.

Xiu [89] gives the detailed analytic solution and procedure for this problem. The steady-

state solution is shown in eq. (3.11), where x0 is the location of the transition point

(u(x0) = 0), and A is the slope (−A = ∂u/∂x|x=x0) at the transition point. The slope A

requires the solution to eq. 3.12, which is solved iteratively using a root finding algorithm.

Once A is determined x0 is obtained by substituting A into any one of the eq. (3.9)-

(3.10). Note that the viscosity ν determines the steepness of the shock at x = x0 and a

fixed value of viscosity ν = 1
20 was used in all simulations.

u(x) = −A tanh

[
A

2ν
(x− x0)

]
(3.11)

f(A, δ) :
(
1 + δ +A2

)
tanh

(
A

ν

)
− (2 + δ)A = 0 (3.12)

The steady state solution of the viscous Burgers equation is plotted in fig. 3.2 for various

values of δ. The QoI considered in this model problem is the location of the transition

point x0 (shown using the black dot in fig. 3.2), which is readily obtained by substituting

the value of A in,

x0 = 1− 2ν

A
tanh−1

(
1

A

)
. (3.13)
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Figure 3.3: Uniform probability distribution for input uncertainty δ

Note that this is a hypersensitivity problem since a small variation of the input causes

huge variations in the QoI x0. The value of the input uncertainty δ is assumed to be

equally likely in the given interval [a, b]. Therefore the occurrence of δ is modelled as a

random variable with a uniform probability distribution p(δ), with mean µδ = 2−1(b−a)

and variance Var[δ] = 12−1(b − a)2, shown in eq. (3.14) (see fig. 3.3 for illustration of

the pdf).

p(δ) =

 (b− a)−1 for a ≤ δ ≤ b

0 otherwise
(3.14)

For the UQ study in this work the values of [a, b] ≡ [0, 0.1] is chosen. This model

problem is simple, but sufficiently complex to demonstrate the proposed UQ methods. At

the same time the viscous Burgers’ equation mimics closely the compressible non-linear

RANS model used in this work. Note that the finite viscosity in the viscous Burgers’

equation actually yields a smooth solution instead of the the abrupt shock (jump) in the

inviscid case, which ensures the validity of the adjoint correction [83]. But the regularity

of the QoI x0 is dictated by the slope A = −∂u/∂x|x=x0 , whose regularity is less than

that of u. This has been deliberately chosen because the higher order IMC corrections

require high regularity of the QoI [1]. Therefore, they suffer from higher errors for this

model problem. But the multifidelity framework is leveraged to accurately capture the

QoI even under such severe circumstances with a reduced computational cost compared
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mgopt developments Uncertainty Quantification Appendix

MONTE CARLO METHOD: BLACK BOX MODEL

�

ut + uux = ⌫uxx

u(�1) = 1 + �

u(1) = �1

R(u, �)

x0 = x0(u, �)

J(u, �)
x0

?
Idea: Generate random �i and estimate x0i

I No changes to the system (black box) 3

I For large enough random samples the values converge 3

I Rate of convergence independent of dimension 3

I Works well for highly non-linear systems 3

I Slow rate of convergence O(
p

N) 7

1 digit " in accuracy of the statistics) 100 " evaluations

Figure 3.4: Block diagram of MC method to estimate QoI x0 for uncertain input δ

Figure 3.5: Convergence of root mean square error of QoI (transition point location x0)
with sample size between random and LHS sampling for the uncertain viscous Burgers’
problem.

to a standard MC.

3.3.2 Baseline Monte Carlo Results

The overall scheme of the MC method applied to the viscous Burgers‘ problem with

uncertain boundary parameter described in the previous section is illustrated in fig. 3.4.

Random samples of input uncertainty parameter δ are generated and the analytical

solution is evaluated for each sample. The output QoI x0 is obtained for each sample

(using eq. (3.13)) and one estimates the statistics such as mean and variance from the

samples. The UQ model problem is simulated using random and LHS sampled MC (see
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Figure 3.6: Monte Carlo solution to the viscous Burgers’ equation; mean solution (umean)
denoted by solid line and the minimum (umin) and maximum (umax) variation shown by
the red and blue dotted lines for indicated number of samples (P )

sec. 2.3.1 and sec. 2.3.2 for random and LHS sampling). The reduction in root mean

square error (RMSE =
√

MSE) with increasing number of MC samples P is compared

between random and LHS sampling in fig. 3.5. The random sampling clearly exhibits the

theoretical O(P−0.5) convergence rate. The LHS sampling initially has an error rate that

is slightly less than the theoretical estimate of O(P−1.5) but for high accuracy, RMSE

≤ 10−6, the rate matches the theoretical limit.

The results of the mean solution u(x, δ) and the extremities obtained from MC applied to

the uncertain viscous Burgers’ problem are plotted in fig. 3.6 for various sample sizes. The

mean is captured to a good approximation using O(100− 1000) samples but it requires

O(104 − 105) samples to capture the extremities. This shows the need for importance

sampling [43] to capture the tail (extreme) events of the probability distribution. The

output distribution of x0 also exhibits high skewness (and skewed towards the boundary

x = 1). Approximate QoI evaluation using the IMC method (described in sec. 3.2)

is applied to the model problem and the approximation error is analysed in the next

section.

3.3.3 Approximating Model Response using Adjoint Correction

The adjoint-based approximate QoI evaluation described in sec. 3.2 is demonstrated on

the uncertain viscous Burgers’ equation. To derive the adjoint for this model consider
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the QoI J to be the transition point location x0 and the non-linear state equation R(A, δ)

(from eq. (3.12)) defined as defined below:

x0(A, δ) = 1− 2ν

A
arctanh

(
1

A

)
(3.15)

R(A, δ) ≡ (2 + δ)A− (1 + δ +A2) tanh

(
A

ν

)
= 0. (3.16)

The adjoint, tangent-linear, and Hessian equations can be formulated as shown in eq. (3.17)-

(3.19) based on the analysis shown in sec. 2.1.7. Ā and Ȧ in eq. (3.17)-(3.19) are the

adjoint and tangent-linear solution variables.

Ā =
dx0

dδ
=

(
∂R

∂A

)−1 ∂x0

∂A
(3.17)

Ȧ =
dA

dδ
=

(
∂R

∂A

)−1 ∂R

∂δ
(3.18)

dĀ

dδ
=
∂Ā

∂A
+
∂Ā

∂δ
=

∂

∂δ

((
∂R

∂A

)−1 ∂x0

∂A

)
+

∂

∂A

((
∂R

∂A

)−1 ∂x0

∂A

)
(3.19)

For the IMC estimator, one first linearises about the mean of the input disturbance

δ ∈ [0, 0.1], which is µδ = 0.05. The perturbation about this mean can be evaluated

from the adjoint and tangent-linear solution using any of the IMC schemes described in

eq. (3.5)-(3.7).

Model E[x0] (% error) σ(x0) (% error) ρ(x0) β(x0)

Exact 0.80728 5.28691× 10−2 - -
IMC 1 0.82335 (+2%) 3.17072× 10−2 (−40%) 0.8760 1.4603
IMC 2 0.78691 (−2.5%) 7.11764× 10−2 (+35%) 0.9446 0.7015
IMC 3 0.71554 (−11%) 1.71379× 10−1 (+225%) 0.9484 0.2925

Table 3-A: Comparison of mean and standard deviation between exact solution and IMC
1 − 3 methods and Pearson correlation ρ and control variate β between the exact and
model solution

In fig. 3.7 the QoI obtained from the various IMC estimators are plotted for a range of

perturbations δ along with the exact value. The mean and standard deviation for the

exact and IMC 1− 3 models and the Pearson correlation ρ between the exact and IMC
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Figure 3.7: Comparison of transition point location x0 between exact solution and
approximate IMC 1 − 3 models for a range of perturbation values δ ∈ (0, 0.1); zoomed
view near the mean value shown on the right.

1− 3 are shown in Table 3-A. An interesting aspect of IMC 2 and 3 for this problem is

that they have quite large errors in predicting the mean and variance compared to the

IMC 1 model. But they closely follow the trend of the exact solution much better than

IMC 1, which is reflected in the high correlation. In fact, Ghate [1] notes a similar trend

in IMC 1 and 3 approximation of lift for flow over an airfoil and proved that quadratic

extrapolation in IMC 3 requires higher regularity of the function space (of the solution

and QoI) than the adjoint corrected linear extrapolation of IMC 1. For the Burgers

problem the QoI x0 has a lower regularity than the solution u, which introduces errors

in the higher order corrections in IMC 2/3. Interestingly the higher order corrections

capture the trends better than the lower order ones for large input perturbations and

the opposite is true for smaller perturbations (see fig. 3.7).

Ghate [1] was mainly interested in using the IMC to approximate the mean and variance

of the QoIs. In contrast in this thesis they are used as low fidelity models in a multifidelity

control variate. Therefore, the correlation is the key parameter that determines the

performance. Even when the errors in the mean and standard deviation values of the

QoI are high due to problems of regularity if the correlations are well approximated by

the IMC model then the multifidelity Monte Carlo (MFMC) can still successfully capture
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Figure 3.8: Contour plots of ψ for IMC 1− 3 LF models using runtime ratio w = 30 (see
tab. 3-A for other details)

the variations in QoI.

IMC 2 and 3 have the highest Pearson coefficient, which makes them the best candidates

amongst the IMC 1-3 models for the multifidelity control variate. When the Hessian

and tangent-linear solutions are expensive to calculate or not available, IMC 1 is the

next better choice in terms of computational cost and better correlation. Moreover,

the computational cost of the adjoint solution is independent of the number of input

parameters whereas the computational cost of the tangent-linear and Hessian solutions

increases with increasing number of input parameters. IMC 1 is the preferred method

when the number of input parameters are high.

To estimate the effect of under sampling, the ψ parameter from the analysis of Ng [3] in

sec. 2.3.4.1 is plotted for the various IMC models in fig. 3.8. The runtime ratio between

the IMC models and the exact Newton solution of the Burgers’ equation is approximately

w ≈ 30. This value of w is used along with parameter ρ from Table 3-A to generate

figs. 3.8(i)-(iii). Values of ψ less than unity indicate that the multifidelity estimator

variance is lower than the MC estimate. Sample estimates around ‘×’ (in fig. 3.8) are

acceptable although optimal variance reduction cannot be achieved when the estimate

is not exactly at ‘×’. The deterioration of variance reduction due to under-sampling is

less severe for the IMC 2 and 3 compared to IMC 1. But the overall acceptable error

band (over/under estimation) of the control variate parameter β is higher for IMC 1.
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3.3.4 Results of the Multifidelity Approach

The root mean squared error (RMSE) reduction with sample size between the three

different control variate MC (with IMC 1-3 as low fidelity models) is compared against

the plain MC estimate in fig. 3.8. The relative reduction in RMSE is indicated in the

plot. For the same number of samples the RMSE is reduced by 54% for IMC 2 and

3 and by 35% for the IMC 1 multifidelity control variate. In fact one can predict the

reduction in computational cost with respect to the classical MC using the estimator

φ derived in sec. 2.3.4.2 of ch. 2. In fig. 3.3.4, the contours of percentage reduction in

RMSE compared to classical MC (1−√φ %) is plotted for different values of correlation

ρ and runtime ratios w. The percentage reduction in RMSE for IMC 1-3 is indicated in

the figure using the “∗” symbol. The predicted values of reduction from the analysis of

MFMC are consistent with the measured ones in fig. 3.3.4. Note that a region 1−√φ < 0

exists (greyed in fig. 3.3.4), where the cost of MFMC is higher than the classical MC.

Therefore, use of MFMC does not provide any benefit and it is worthwhile to use classical

MC in this region.

A major advantage of the proposed multifidelity method with IMC as an LF model

is that the adjoint solution is already available in a gradient based design optimisation

framework. Additional model reductions, samples, or design-of-experiments (DOE) need

not be evaluated to fit surrogate models (see sec. 3.1). But the Hessian and tangent-linear

solutions can be quite expensive to evaluate for IMC 2 and 3, especially for problems

with large number of uncertainties. For the model problem involving the QoI x0 one

finds that IMC 1 is sufficiently accurate LF model that reduces the computational cost

by 35% compared to MC.
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Figure 3.9: Mean squared error (MSE) reduction with sample size of the control variate
MC using different LF models compared against MC with no LF model

3.4 Adjoint-assisted Multilevel Multifidelity Control Vari-

ate (FastUQ)

Recently Geraci et al. [4] proposed a multilevel multifidelity framework (MLMF) to

achieve further reduction in computational cost by combining the multifidelity control

variate in MLMC. In the previous section the multifidelity control variate based on the

IMC was shown to achieve significant reduction in computational cost using a model

problem. In addition the computational cost of QoI evaluation using IMC 1 model is

independent of the number of input uncertainties. Using the approximate QoI evaluation

of IMC as the low-fidelity model in the multilevel multifidelity framework has the benefit

that it reduces the number of samples and maintains the MC property; independence of

convergence rate with respect to the number of input uncertainties. This combination is
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Figure 3.10: Percentage reduction in computational cost of MFMC with respect to the
classical MC (“∗” denotes the predicted reduction for IMC 1-3 models)

the proposed adjoint-assisted multilevel and multifidelity framework (FastUQ).

To analyse the properties of the MLMF, the Y correlation form of the multilevel mul-

tifidelity framework of Geraci et al. [4] is rederived using the multifidelity cost model

proposed by Ng et al. [3]. This approach has been adopted in this work in order to

show the connection between the two models. The final expressions in the present work

slightly differ from the results of Geraci [4] due to the definition of the cost model. For

simplicity the number of grid levels for HF and LF models is assumed to be the same

(see ref. [4]). The MLMF estimator in eq. (3.20) is obtained by combining the SMLMC

estimator of Giles [19] in eq. (2.36) and the multifidelity estimator of Ng [3] is shown in

eq. (2.27), where Pl is the number of samples per level, L is the total number of levels

and JMLMF
N, p is the MLMF estimator for the finest level N .

JMLMF
N, p =

L∑
l=0

1

Pl

Pl∑
i=1

E[Y
(i)
l ] (3.20)
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The difference function Y l is obtained using the multifidelity estimator as shown in

eq. (3.21), where Zl is the difference function of the LF model G and Yl is the function

defined below:

Y l = Yl − βl (Zl − E[Zl]) (3.21)

Zl =


GN0 if l = 0

GNl −GNl−1
if l 6= 0

(3.22)

3.4.1 Optimal Sample Allocation between Levels and Models

Let Pl and PLFl denote the number of sample evaluations of the HF and LF models at

level l. Let rl denote the fraction of HF evaluation to the LF evaluation rl = PLFl /Pl.

The cost of computation on a level is expressed in terms of the equivalent number of HF

sample evaluations as shown in eq. (3.23), where cl is the ratio of computational cost

of evaluating a high fidelity sample at level l and the finest level N (note that cN = 1

and cl ≤ 1). Therefore, Cl now contains both the relative computational cost between

models and across levels.

Cl = clPl

(
1 +

rl
wl

)
(3.23)

CMLMF
N =

L∑
l=0

Cl =
L∑
l=0

clPl

(
1 +

rl
wl

)
(3.24)

The total computational budget considering all levels (CMLMF
N ) is shown in eq. (3.24).

The variance of this estimator can be optimised for βl, the final optimal variance and

the optimal number of HF samples per level is defined as,

Var
[
JMLMF
N, p

]
=

L∑
l=0

1

Pl
Var[Yl]Λ(rl) (3.25)

P optl =
2

ε2

[
L∑
k=0

√
Var(Yk)ck

1− ρ2
k

Λk

(
roptk

)]√
(1− ρ2

l )
Var(Yl)

cl
. (3.26)
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The values of roptl and Λl are obtained from eq. (3.27)-(3.28) respectively and ρl is the

Pearson correlation of the HF and LF models per level.

roptl =

√
ρ2
l

1− ρ2
l

wl (3.27)

Λl(rl) =

(
1− rl − 1

rl
ρ2
l

)
(3.28)

3.4.2 An Insight on Model Correlation and Optimal Sampling

The optimal ratio of HF to LF samples ropt in eq. (3.27) obtained for the MLMF is the

same as the one obtained for the multifidelity MC in eq. (2.31). Moreover, the factor

Λ(ropt) is related the reduction factor φ (see eq. (2.33)) of the multifidelity estimator

using the relation shown below:

φ(ropt) =

(
1 +

ropt

w

)
Λ(ropt) (3.29)

Note that since ropt

w ≥ 0 is a positive quantity the identity φ(ropt) ≥ Λ(ropt) holds.

Therefore eq. (3.29) guarantees improvement of the multifidelity control variate when

introduced in a multilevel framework. Eq. (3.29) succinctly summarise the effect of intro-

ducing the multifidelity control variate in a multilevel framework, which is an important

result obtained in this thesis.

To simplify the analysis consider the correlation between the HF and LF model across

levels to be the same (ρl = ρ). Then the optimal number of samples in eq. (3.26) reduces

to the simple expression:

P optl =
2

ε2

L∑
k=0

[√
Var(Yk)ck Λk

(
roptk

)]√Var(Yl)
cl

(3.30)

The optimal number of samples per level P optl in eq. (3.30) is exactly similar to the MLMC

results (in eq. (2.40)) except for the extra Λ term. In ref. [4] Λ was simply referred to as

an additional penalty term to the SMLMC due to the additional evaluation of the LF
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Figure 3.11: Contour plot of φ(ropt) and Λ(ropt) for various values of runtime ratio w
and Pearson coefficient ρ (region where φ(ropt) ≥ 1 and Λ(ropt) ≥ 1 is indicated in grey)

model.

In this thesis a different interpretation is given to Λ based on the optimal number of

samples. The contour plot comparing φ(ropt) and Λ(ropt) for a range of values of corre-

lation ρ and runtime ratio w is shown in fig. 3.11(a-b). The value of Λ(ropt) is mostly

≤ 1 indicating a reduction in the number of samples compared to the standard MLMC

to achieve the same MSE. Therefore, Λ(ropt) is an additional sample reduction factor

due to the multifidelity control variate. Note that the multilevel actually improves the

multifidelity reduction factor φ and the relation is shown in eq. (3.29).

A small region (indicated by the grey area in fig. 3.30(b)) exists, where Λ(ropt) > 1

indicating that the MLMF requires more samples to achieve the same MSE compared to

the SMLMC. From fig. 3.11(b) one can infer that the runtime ratio w should be ≥ 10 and

correlation ρ should be ≥ 0.6 for the MLMF to be effective. P optl is directly proportional

to Λl(r
opt
l ), which is a strong function of the correlation. For large runtime ratios w,

Λ(ropt) ∝ ρ and is almost independent of runtime ratio. The success of the MLMF is

strongly dependent on how well the LF model correlates with the HF model. In addition

P optl ∝ ε−2 so lowering the tolerance by half quadruples the number of samples per level
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Figure 3.12: UQ workflow using Dakota and STAMPS

(similar to the classical MC and SMLMC convergence).

3.5 FastUQ implementation in Dakota toolkit

In this work the Dakota [38] toolkit was used to implement the FastUQ method for

quantifying aerodynamic uncertainties arising in turbomachinery and external flow prob-

lems. The parallel version of Source Transformation Adjoint Multi-Purpose Solver

(STAMPS) [40] developed as part of the thesis work was used as the high fidelity aero-

dynamic model. Parallel discrete adjoint and tangent-linear solver also developed in the

present work (as part of STAMPS) was used to implement the IMC low fidelity model.

The overall block diagram of the implementation using Dakota and STAMPS is presented

in fig. 3.12. A flexible but loose coupling of the STAMPS flow solver and the Dakota

toolkit was implemented using input files. The multilevel meshes, flow and boundary

conditions and the UQ model are used to generate the Dakota input parameters file and

the input files for the HF/LF solver. The existing multilevel multifidelity simulation

setup in Dakota was used and appropriate parameters are set in the Dakota parameter

file (params.in). Unix shell scripts are then used to run the type of model (HF/LF) and

to generate input files for STAMPS for the given sample (input uncertainty) generated

by Dakota. The HF/LF simulation is then carried out for the given sample and the QoI

is output to a results file, which is then read by Dakota. Dakota determines if more
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sample evaluations are required or the simulation should be terminated based on the

MSE tolerance specified by the user.

In this work only the synchronous mode of Dakota was used i.e., the samples are evaluated

one after another serially. But the individual HF samples are run in parallel using

multiple MPI ranks (or processor cores). Since the asynchronous or MPI mode in Dakota

requires more control over the computing environment and infrastructure, it was not

attempted in the present study. Future studies involving UQ of large 3-D cases can

benefit from using asynchronous and parallel execution mode of Dakota. The STAMPS

solver theory, parallel implementation and validation are presented in the next chapter.

The adjoint and tangent-linear solution required for the IMC is also outlined in the next

chapter.

3.6 Summary

A brief survey of low fidelity models used for multifidelity MC was presented. The IMC

model was chosen due to its favourable properties such as low computational cost, which

is independent of the number of input uncertainties. IMC as a low fidelity model in

the multifidelity framework of Ng [3] was analysed using a model problem of viscous

Burgers’ equation with uncertain boundary condition. All variants of the IMC model

showed good correlation with the HF results.

A good correlation does not translate to better prediction of the QoI statistics. It

merely indicates that the LF model captures the trends in the HF model faithfully. For

the Burgers‘ problem, IMC 1 had the best predictions for mean and standard deviation

of the QoI x0 but had a lower correlation with the HF model compared to IMC 2 and

3. The regularity of the QoI x0 was lesser than the regularity of the solution u. Since

higher order IMC corrections require higher regularity of the QoI [1] one finds large

errors in IMC 2 and 3 for this problem. But the general trends in the function are still

captured well by the IMC model even in this circumstance. This shows the superiority
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of the multifidelity IMC proposed in this thesis. By using the IMC as a LF model in the

control variate one can improve the range of its applicability to problems having lesser

QoI regularity and to larger range of input perturbations.

The multilevel multifidelity framework of Geraci et al. [4] was re-derived using a cost

model proposed by Ng [3]. Some useful insights on the performance of the MLMF was

shown. For large runtime ratios (w � 20) the MLMF performance is purely dictated

by the correlation between the LF and HF models and is independent of the runtime

ratio. Introducing the multilevel guarantees improvement of the multifidelity MC. The

FastUQ framework was proposed using the IMC model in the MLMF. The overall imple-

mentation of FastUQ using Dakota toolkit was outlined. STAMPS aerodynamic solver

was used as the HF model and the parallel discrete adjoint and tangent-linear solver

in STAMPS (developed as part of this thesis) was used to implement the IMC model,

which is discussed in the next chapter.



Chapter 4

Aerodynamic Model and

Implementation

“CFD is Constant Frustration and Disappointment”

— Bram Van Leer

The HF model used to estimate the variations in the aerodynamic QoI due to geometric

variations is described in detail in this chapter. In addition, the implementation details

of the adjoint and tangent linear solver used in the LF IMC model is described. The

parallelisation techniques used to reduce computational time is also presented.

The non-linear flow solver used in this thesis is based on the steady Reynolds Averaged

Navier Stokes (RANS) equation. Source Transformation Adjoint Multi-Purpose Solver

(STAMPS), the in-house code developed in QMUL by Mueller et. al. [40] was used in

this thesis. Capabilities for turbomachinery applications such as periodic boundaries,

variable swirl inlet, new objective functions and complete parallelisation of the flow,

adjoint, and tangent linear solvers using the Message Passing Interface (MPI) [90] was

developed as part of this thesis by the present author. The overall solver development

was a joint effort between the present author and Xu [91].

In addition, the non-linear flow solver, adjoint and tangent linear solvers were re-written

to utilise the latest developments in the Algorithmic Differentiation (AD) tool Tape-

55
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nade [92]. The tool is now capable of simultaneously differentiating the source code

in the forward and reverse mode and automatically generates differentiated version of

user-defined data structures common to both modes. This simplifies the automation of

adjoint and tangent-linear solver development.

4.1 Governing Equations in Rotational Frame1 of Refer-

ence

The governing RANS equations are solved in the relative (non-inertial) frame of reference

using pseudo-time τ in conservative form as shown in eq. (4.1). Note that the relative

frame of reference rotates with a constant angular velocity |~ω| along the axis ~ω/|~ω|.

d

dτ

∫
V

UdV −
∫
S

(Fr
c − Fω − Fv) dS = 0 (4.1)

U =


ρ

ρu

ρE

 , Fr
c =


ρur · n

ρuur · n + pn

ρ(E + p)ur · n

 , F~ω =


0

−ρ(~ω × u)

−p(~ω × r)



Fv =

[
0 τ̄ · n (u · τ̄) · n− κ(n · ∇T )

]T
(4.2)

E =
p

ρ(γ − 1)
+

1

2

(
|ur|2 − |~ω × r|2

)
(4.3)

τ̄ = τij = µ
(
∇u +∇uT

)
+ δijλ∇ · u (4.4)

ur = u− ~ω × r (4.5)

This formulation can be used for the flow analysis of a single body rotating in isolation.

For example, helicopter rotors in hover, propellers in forward flight (neglecting fuselage

interactions) and single blade row turbomachinery calculations. In fact, complete simu-

1Rotational frame of reference implemented by Xu and extended to parallel non-linear solver by the
present author
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lation of radial compressor with vaneless diffuser is possible using this formulation. The

particular form of the equations are derived in relative frame but using absolute veloci-

ties. The transformation from the relative to the absolute velocity is given in eq. (4.5).

Agarwal [93] states that using the absolute-velocity formulation allows for more accurate

evaluation of the fluxes in a finite-volume scheme and essential for obtaining accurate

solutions on non-uniform grids.

The working fluid is assumed to be air (perfect gas) obeying the equation of state in

eq. (4.6). The fluid viscosity is modelled as a sum of laminar and turbulent contributions

using the eddy viscosity approach as shown in eq. (4.7). The laminar fluid viscosity is

assumed to follow the Sutherland law in eq. (4.8). The thermal conductivity of air κ is

a sum of the laminar (κL) and turbulence (κT ) contributions as shown in eq. (4.9).

p = ρRT (4.6)

where, R = cp − cv = 287.3 kg m−3, γ =
cp
cv

= 1.4

µ = µL + µT (4.7)

µL = µL(T ) =
1.45T 3/2

T + 110
10−6 kg m−1 s−1 (4.8)

κ = κL + κT (4.9)

κL = cp
µL(T )

PrL
and κT = cp

µT (T )

PrT
where, PrL = 0.72, P rT = 0.9 (for air)

The RANS closure (via µT ) is achieved using the standard one equation Spalart-Allmaras

(SA) Turbulence model and the constants are obtained from ref. [94]. The SA model

requires calculation of distance to wall for each mesh node. An exact wall distance

algorithm based on “Closest Point on Triangle to Point” algorithm is implemented from

sec 5.1.5 of ref. [95]. For quadrilateral surface elements one triangulates the mesh to

obtain the wall distance.
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k

k

=
k∑

Figure 4.1: Dual volume illustrated with internal edge connecting node i to j and edge
coefficient Sij from [97] (left) and the boundary dual with edges Bij (right)

4.2 Edge-based Second Order Finite Volume Spatial Dis-

cretisation

An edge-based node-centred second order finite volume method [96] is used in STAMPS

to discretise the spatial fluxes. A medial dual approach is utilised to construct the dual

elements from the primary mesh (see fig. 4.1). Details on the construction of the medial

dual can be found in ref. [97].

Vi
d

dτ
(Ui)−

∑
j∈in

(
Fr
c,ij − Fω,j − Fv,ij

)
Sij −

∑
j∈bc

(
Fr
c,ij − Fω,j − Fv,ij

)
Bij = 0

V dU
dt
−R[U] = 0 (4.10)

The edges are segregated into internal (in) and boundary (bc) edges and their respective

edge fluxes (Fij) are summed up using the internal and boundary edge coefficients S

and B to yield the residual flux in eq. (4.10). But internally in the STAMPS the residual

calculation is implemented as single loop over edges to reduce memory access and avoid

storage of edge fluxes.



Chapter 4. Aerodynamic Model and Implementation 59

4.2.1 Convective Flux via Roe Approximate Riemann Solver

The Roe approximate Riemann solver is used to obtain the edge flux in the rotational

frame of reference [98] as shown in eq. (4.11). The Harten and Hymen entropy fix [99]

is applied to the acoustic part of the convective fluxes |u + c| and |u− c|, where c is the

speed of sound, but not to the entropic wave |u|. ArRoe is the Roe dissipation matrix

in the rotational frame. The left (UL) and right (UR) states of the edge are computed

using a MUSCL [100] reconstruction technique as shown in eq. (4.12). To prevent over-

and undershoots in the solution a differentiable Venkatakrishnan [101] gradient limiter

(φ in eq. (4.12)) with the corrections proposed by Wang [102] and Michalak [103] was

implemented in STAMPS. The gradients are obtained using the standard Green-Gauss

formula [100].

Fface =
Fr
c(UL) + Fr

c(UR)

2
+

1

2
|ArRoe| (UR −UL) (4.11)

UL = Ui + φi∇Ui · (xj − xi), UR = Uj + φj∇Uj · (xi − xj) (4.12)

4.2.2 Viscous Flux via Green-Gauss Gradient Formula

Viscous flux computation requires both the flow state U and its gradient ∇U defined at

a flux face A-B (see fig. 4.2). Let ∇U denote the arithmetic average of the flow state

across an edge. Then a skew corrected gradient interpolation [104] at a flux face can be

obtained using the formula below,

∇U =
(∇U)i + (∇U)j

2
(4.13)

(∇U)face = ∇U− (∇U · t)
t

n · t +
Uj −Ui

‖xj − xi‖
t

n · t . (4.14)

In the above formulation, t is the unit vector pointing from left to right node, and n is

the unit normal vector of the flux face, as illustrated in Fig. 4.2.

For a skewed mesh (see fig. 4.2) n · t is small because the edge and face are highly non-

orthogonal. Therefore, when n · t divides the correction term it has the equivalent effect
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Figure 4.2: Sketch illustrating a flux face A-B between nodes i and j. The vectors t and
n are the edge and the face normal vectors. The solid lines represent the primary mesh
and the dashed lines represent its dual.

Figure 4.3: Wall boundary node i with near-wall node ii (left) and characteristics at a
boundary (right)

of increasing the resulting gradient on the face and thus adding more dissipation to the

scheme. This added dissipation enhances the robustness of the solver in the presence of

highly non-orthogonal meshes. The main application area of STAMPS is aerodynamic

design, therefore robustness is given higher priority than accuracy.

4.3 Turbomachinery Boundary Conditions

The following three additional types of new boundary conditions have been implemented

in STAMPS.

4.3.1 Variable Swirl Inlet with Specified Total Conditions

A variable swirl inlet with specified total-pressure and total-temperature has been imple-

mented with option to specify piecewise-linear radial profiles for the same. The inlet

values are obtained from the total conditions based on the characteristic analysis in

ref. [105]. The profile is specified as a piecewise linear polynomial for the swirl angle,
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Figure 4.4: Piecewise polynomials fitted for experimentally determined inlet profile (indi-
cated inlet parameters)

total-pressure, total-temperature, and initial guess velocity. A sample piecewise polyno-

mial fitted for an experimentally obtained inlet profile is shown in fig. 4.3.1.

4.3.2 Specified Exit Back Pressure

The ghost state Ub is extrapolated from the interior and modified using a user-defined

back-pressure pback. The Riemann solver is applied at the boundary with the left state

from the interior (Ui) and the right ghost state (Ub) to obtain the boundary flux. The

characteristic Riemann invariants R+/− at the boundary are shown schematically in

fig. 4.3.

Ub = Ui +


0

~0

−pi + pback

 (4.15)

4.3.3 Rotating and Stationary No-slip Viscous Wall

The viscous wall nodes require an additional data structure, namely the near wall node.

It is defined as the node within the first order stencil of the wall node, which is nearest

to the wall (see fig. 4.3). The wall velocity is set to zero value and the pressure is
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extrapolated from the near wall node. The density is calculated based on the formula

shown in eq. (4.16) assuming an adiabatic wall condition ∂T/∂n = 0 (from ref. [106]).

Ustatic
i =


ρi1pi/pi1

~0

pi1

 Urot
i =


ρi1pi/pi1

~ω × r

pi1

 (4.16)

Moreover, for the rotating wall a non-zero velocity equal to ~ω× r is specified for the wall

node and the work term Wd shown below,

Wd = [(~ω × r) · τ ] · B. (4.17)

It is the work done to the fluid by moving walls and should be added to the wall node

energy residual.

4.4 Explicit Time Marching with Implicit Preconditioning

4.4.1 Preconditioned Runge-Kutta Time Marching Scheme

The method of lines is used to discretise the temporal term. Once the spatial residual

is obtained, a Newton-Krylov preconditioned Runge-Kutta explicit time integration of

order 5 (RK5) is used to march in pseudo time as shown in eq. (4.18). The coefficients

αrki of RK5 are obtained from ref. [100]. The pseudo-time step δτ is obtained using

a local time stepping procedure based on the Courant–Friedrichs–Lewy (CFL) number

and maximum wave speed obtained based on the maximum eigenvalues of convective

and viscous term as shown in eq. (4.21). A value of CFLrk = 2.5 for first order and

CFLrk = 1.15 for second order spatial discretisation is fixed based on the stability
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analysis of RK5 scheme [100].

PδU(i) = −αrki
δτ

V R[U(i−1)], i = 1, . . . , 4 (4.18)

δUi = U(i) −U(i−1), U(0) = Un

δτ = CFL
Vi

(Λc + 4Λv)i
, (4.19)

where, (Λc)i =
∑
j

(|uij · nij + cij |)Sij (4.20)

(Λv)i =
1

Vi
∑
j

[
max

(
4

3ρij
,
γij
ρij

)
,

(
µL
PrL

+
µT
PrT

)]
(Sij)2 (4.21)

The time integration scheme is based on the JT-KIRK scheme of Xu et. al. [33] without

the Multi-Grid (MG) acceleration. Since parallel MG is not implemented as part of this

thesis it is not explained here. P in eq. (4.18) is the Newton-Krylov (NK) preconditioner

for the flow equation, which is explained in the next section. A diagonal Jacobi pre-

conditioner is used for the turbulence equation. Note that in STAMPS the turbulence

equation is solved decoupled from the flow equations similar to the turbomachinery CFD

solver Hydra [107].

4.4.2 Preconditioner based on Newton-Krylov Method

The implicit NK preconditioner is derived using the semi-discrete form of the governing

equation shown in eq. (4.22). Note that the pseudo-time τ∗ is different from the pseudo-

time in the RK5 time integration. Similarly, the CFL number (CFLpre) is defined

separately for the implicit preconditioner and the local time step τ∗ is defined using

eq. (4.21).

∂U

∂τ∗
= −R[U] (4.22)
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The temporal term is discretised using backward Euler time integration. Linearising the

residual (see eq. (4.23) ), and rearranging one obtains the preconditioner in eq. (4.24).

δUn

δτ∗
= −R[Un+1] ≈ −R[Un] +

∂R

∂U
δUn (4.23)

PδUn ≡
(

I

δτ∗
+
∂R

∂U

)
δUn = −R[Un] (4.24)

The Jacobian matrix ∂R
∂U is obtained using the first order approximation for the convective

fluxes and the gradients in the viscous fluxes are frozen to reduce the sparsity of the

matrix to the first order stencil. This formulation is similar to the First-Order Jacobian

Krylov Implicit (FOKI) scheme of Dwight [108], inspired from Cantariti et al. [109]. The

present method closely follows the Jacobian assembly procedure in refs. [107, 108]. The

Jacobian matrix is constructed by manually assembling the block matrix entry of every

edge
(
∂Ri
∂Uj

)
into a sparse block matrix by looping over all edges. The block matrix

entry of the edges are obtained using algorithmic differentiation of the Roe approximate

Riemann function in vector forward mode using Tapenade [92]. The residual on the

right hand side is the full second order one without any approximations. The first-order

Jacobian approximation is a standard practice in Newton-Krylov methods to reduce

computational and memory cost [110].

4.4.3 Linearised System Solution using GMRES

The linear system in eq. (4.24) is solved using the left preconditioned restarted generalised

minimal residual method (GMRES) method [111] described in alg. (4.1) on the next page.

The left preconditioner M is an incomplete lower-upper factorisation of the first-order

approximate Jacobian matrix (described in sec. 4.4.2) using zero fill-in (ILU0) [111].

The ILU0 matrix M is used to precondition the implicit update as shown in eq. (4.25).

Since computing the ILU0 factorisation every iteration is computationally expensive,

the preconditioner is lagged, similar to Jacobian lagging [112, 113], for every few (user

defined) iterations.

M−1PδU = −M−1R[Un] (4.25)
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The three main numerical kernels in the GMRES algorithm are the (i) ilu0 (ILU0

factorisation), (ii) SpMV (Sparse Matrix vector product), and (iii) dot (dot product)

operators. The complete GMRES algorithm can be parallelised by simply parallelising

the kernels (i)-(iii). The parallel GMRES implementation and the rank local ILU0

preconditioner is described in the next section.

input : Krylov dimension m, convergence tolerance ε, maximum restarts n
output: Update δUm

1 M← ilu0
(
∂R
∂U

)
;

2 k ← 0, δUk ← [0];

3 r0 ←M−1
[
R[U]−

(
∂R
∂U

)
δU0

]
;

4

�
�

�
�β ←

√
dot(r0, r0) ;

5 v1 ← r0/β;
6 for j ← 1 . . .m do

7 w← SpMV
(
M−1, ∂R∂U

)
≡M−1 ∂R

∂Uvj ;

8 for j ← 1 . . .m do

9

�
�

�
�hi,j ← dot(w, ri);

10 w← w − hi,jvi;
11 end
12 hj+1,j ← ||w||2;
13 vj+1 ← w/hj+1,j ;

14 end
15 Vm ← [v1, . . . ,vm];

16 Hm = {hi,j}1≤i≤j+1,1≤j≤m;

17 ym ← argminy||βe1 −Hmy||2 (Least-squares minimisation) ;

18 γ = e1,m+1 (error due to minimisation);

19 δUm = δU0 + Vmym;

20 if γ > eps then
21 k = k + 1;
22 if k > n then
23 exit;
24 end
25 goto 3;

26 end

Algorithm 4.1: ILU0 preconditioned restarted GMRES (reduction operations are
shown in oval box and halo node exchange in matvec is shown in double box )
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Figure 4.5: The (i) Zero-halo and (ii) one-layer halo based partitioning methods illus-
trated for a sample mesh split into two parts (grey and black); halo/shared nodes denoted
by hollow circles and internal nodes denoted by filled circles

4.5 Parallel Algorithms

Partitioning methods employed for distributed parallel implementation of CFD codes

can be broadly classified into two categories, namely partitioning with (i) zero-halo layer

or with (ii) single or more than one halo layer. An illustration of the two strategies

for partitioning is shown in fig. 4.5. Gicquel et al. [114] found that using a zero-halo

layer (ZHL) approach one can completely eliminate redundant computations due to halo

nodes and achieved good scalability. But adjoint seeding of ZHL fixed-point iteration

was shown to be non-trivial by Mohanamuraly et al. [115] and requires manual seeding

and differentiation of MPI calls. As a result this precludes the automation of the adjoint

code generation using AD tools. Therefore, the zero-halo approach was abandoned in

favour of the halo layer approach.

In this thesis, a two-halo layer (THL) approach is adopted instead of the more common

single-halo layer (SHL). THL approach reduces overall communication and simplifies the

algorithmic differentiation (AD) of the parallel fixed-point loop for the time marching

adjoint solver compared to a SHL. Construction of the THL and demonstration of its



Chapter 4. Aerodynamic Model and Implementation 67

Figure 4.6: (a) Rectangular mesh with upper and lower periodic boundary, (b) its col-
lapsed graph for partitioning and (c) first (red) and second (green) order stencil edges
and nodes

aforesaid favourable properties are shown in the next section.

4.5.1 Two-Level Halo Partitioning

The METIS graph partitioning library [116] is used to partition the dependency graph

of the first order computational stencil obtained from the dual mesh. For meshes with

periodicity, vertices of the graph corresponding to the the upper and lower periodic

nodes are collapsed and merged into a single graph vertex as shown in fig. 4.6(a-b).

This technique ensures that periodic pairs are available in a local rank and no MPI

communication is necessary. To ensure optimal load balancing the graph is assigned

vertex weight equal to the total number of connected vertices in the stencil.

The THL partitioning is constructed such that the first and second order computational

stencil shown in fig. 4.6(c) is completely available on a single partition rank for all nodes

owned by the local partition. The typical computation and communication cycle in a

fixed-point iterative flow solver is shown in fig 4.7 for SHL and THL. In THL approach

one communicates smaller amounts of data less frequently compared to SHL resulting

in larger communication to computation ratio between two update steps. Therefore, the

communication in THL can be overlapped with computations more effectively compared

to a SHL approach.

In fig. 4.8, the average communication volume induced by the THL approach is compared
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Figure 4.7: Communication and computation schedule in a typical fixed-point flow solver
(one- and two-halo partitions)
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Figure 4.8: Comparison of average total communication volume (in MB) between the
one-halo and two-halo partitioning for the (a) 2-D cascade (left) and (b) 3-D Tur-
bocharger compressor fine mesh (right) for different partition sizes (error bars indicate
the maximum and minimum deviation from average value).

against the SHL for a single update step of a 3-D Turbocharger compressor (see sec. 4.7.5)

and 2-D cascade (see sec. 4.7.4). THL approach reduces the total communication volume

(compared to SHL) by half and the deviation in communication size between ranks is

much lower.

The reduction in communication comes at the cost of more redundant computations.

Note that only the gradient calculation requires the THL data (second order stencil) and



Chapter 4. Aerodynamic Model and Implementation 69

Figure 4.9: (a) Increase in problem size due to redundant computations in one- and two-
halo partitioning and (b) profile of subroutines with high wall clock timing of the 3-D
turbocharger compressor mesh 64 partitions.

all other computations such as viscous and inviscid flux calculations require values located

at the SHL. In fig. 4.9(b) the relative timing for various subroutines in STAMPS is shown.

The timings were obtained by running 10 update steps of the implicit flow solver on the

3-D Turbocharger mesh (64 partitions). The results show that the gradient calculation

constitutes only 1% of the runtime (much smaller than the halo communication!). Any

additional increase in redundant computation due to THL is only going to affect the

runtime of the low overhead gradient subroutine.

The increase in the problem size δp (due to redundant edges and halo nodes) is plotted

in fig. 4.9(a). The increase in problem size (δp) due to redundant computations can be

estimated using the total number of edges ei in a partition i, the total number of edges

in the unpartitioned mesh ep and total number of partitioned ranks Nrank using the

expression:

δp =

(
Nrank∑
i=1

ei

)
/ep % (4.26)

δp for THL approach is almost thrice that of SHL. But this additional cost is paid only

for the gradient subroutine, which constitutes 1% of the total run-time of the solver.
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In the THL approach (see fig. 4.7), only one communication call appears after update

step and no communication is necessary between gradient, limiter, and flux residual

evaluation. Christianson [117] showed that for a non-linear primal fixed-point iteration

the adjoint gradients can be computed without storing intermediate stages of the primal

loop. To have an efficient adjoint implementation in STAMPS the proof of Christianson is

used to manually assemble the adjoint FPI which follows closely the work of Giering [118].

Note that the adjoint FPI is a one time effort and does not affect the automation of the

adjoint code generation.

From an AD perspective the residual evaluation in a fixed point iteration (FPI) for

the serial and parallel code remains the same in the THL approach since no MPI calls

appear inside the residual evaluation. Only a single MPI call after the update step is

necessary (see fig. 4.7). The reversal of MPI calls for the AD [119] are manually inserted

in the FPI of the time-marching adjoint solver. This greatly simplifies the AD process by

eliminating the need to differentiate MPI calls, which is not a trivial task for manually

assembled FPI [115]. Appendix C outlines the adjoint differentiation of the two-halo

parallel fixed-point iteration in STAMPS.

4.5.2 Reordering and Scalable Assumed Partitioning

The graph partitioner returns a non-contiguous partitioning of the rows of the Jacobian

matrix. To accommodate the use of Algebraic Multi-Grid (AMG) preconditioners using

parallel libraries such as Lis [120] and Hypre [121] (as future extension in STAMPS)

one requires a contiguous partitioning of the rows of the Jacobian matrix (see fig. 4.11).

Therefore, post-partitioning the global mesh is permuted to yield a contiguous partition-

ing of the Jacobian rows. This lends itself to the scalable assumed partitioning algorithm

described in ref. [122].

A schematic of actual and assumed partitions of a (row) vector partitioned on five ranks

is shown in fig. 4.5.2. In assumed partitioning one starts with a contiguous partitioning

of rows and each rank only knows the range of contiguous rows it owns. In addition
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Figure 4.10: Actual and assumed partitioning of a vector (on five ranks); the arrow
indicates the round-robin communication during the learning phase.

another contiguous partitioning of the rows is assumed based on a partition function

F whose inverse F† is also known. A partition function F returns the partition rank

(p) (assumed) given the row index (r). The inverse function F† returns the row index

range (say r ∈ [r1, r2]) given a partition rank (p). For example, F can be defined using

eq. (4.27), where P,N are the total number of partition ranks and rows, and b·c is the

integer floor operator.

p = F(r;P,N) = b(r × P )/Nc (4.27)

Then each processor communicates in a round-robin fashion to learn the missing row

information from the neighbouring ranks as shown in fig. 4.5.2. This assumed partition-

ing distributed directory (see fig. 4.5.2) can be used for scalable range queries on the

Jacobian rows [122] and construct inter-processor communication schedule.

Local reordering of nodes has become a standard practice to improve performance

of unstructured codes [123, 124, 125]. Ordering algorithms based on Cuthill-McKee/

Reverse Cuthill-McKee (RCM) and Space-filling curve (SFC) give good bandwidth reduc-

tion with low computational cost [125]. Local re-ordering of the nodes using Reverse

Cuthill-McKee (RCM) algorithm is adopted in this work to improve memory access

because the computational graph constructed for METIS partitioning can be reused for

the RCM ordering. In fig. 4.11, the reduction in bandwidth achieved using the local
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Figure 4.11: Bandwidth reduction achieved using (a) Reverse Cuthill-McKee (RCM)
reordering of the local partition vertices vs. (b) the original ordering of the mesh nodes
(note the contiguous row partitioning due to global permutation).

RCM is shown for the 2-D VKI LS89 cascade hexahedral mesh (note the contiguous

partition of the rows).

4.5.3 Parallel GMRES with Local ILU(0) Preconditioner

Many parallel GMRES algorithms are available in literature for example, the s-step

method [126], pipelined method [127] and hybrid derivatives thereof [128], and using dif-

ferent strategies for orthogonalisation such as iterative classical Gram-Schmidt (ICG) [129,

130]. Recently, the communication avoiding GMRES (CA-GMRES) algorithms have

gained popularity due to its high scalability [126]. Grigori [131] recently proposed a

communication avoiding version of ILU0 (CA-ILU0) preconditioner for use in a CA-

GMRES framework. The CA-ILU0 when combined with the CA-GMRES shows great

promise for a scalable implementation. Vannieuwenhoven[132], proposed an Incomplete

Multi-Frontal (IMF) method, which uses the block elemental structure of the Jacobian

matrix constructed element-by-element (or edge-by-edge in the present context). Since

IMF retains the block nature of the Jacobian it can achieve better speed up by avoiding

the Jacobian assembly into a sparse matrix format.

Sophisticated algorithms discussed above are postponed to a future study in STAMPS.
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Operation Serial Parallel

dot product d = dot(x,y) d = dot(x,y); allreduce(d,+)
matrix-vector product y = SpMV(A,x) y = SpMV(A,x); halo comm(y)
ILU0 preconditioner M = ilu0(A) A† = nullify halo rc(A); M = ilu0(A†)

Table 4-A: Blocking parallel transformation of GMRES kernels

Only a simple blocking communication GMRES algorithm is adopted in this work. The

transformation of the main numerical kernels of the GMRES algorithm are tabulated in

tbl. 4-A. The allreduce(·,+) is the MPI all-reduce summation operation and halo comm

is the halo data exchange routine (implemented using MPI send/receive) in tbl. 4-A. The

parallel ILU0 preconditioner is based on a rank local Jacobian matrix. Therefore, all

halo row and column off-diagonal entries of the Jacobian are zeroed and a unit diagonal

entry is enforced before the ILU0 factorisation step (using the nullify halo rc routine

as shown in tbl. 4-A). For small partition sizes a local preconditioner can adversely

affect solver convergence. But for large partition sizes O(104) Xu et al. [33] found no

degradation in the convergence. Moreover, the local ILU0 does not require any parallel

communication making it quite scalable. The performance of the ILU0 preconditioner is

presented in sec. 4.7.3.

4.5.4 Implicit Solver Scalability Results

The parallel efficiency of the non-linear solver for a 4M hexahedral mesh computation

of a centrifugal turbocharger compressor is shown in fig. 4.12 for varying number of

decompositions. For details on the geometry and flow conditions the reader is referred

to sec. 4.7.5. The average partition size is also indicated in the figure using bars. Each

compute node in the cluster facility had 24 processor cores and as many partitions as

the number of cores was created for the test. The full scalability run covered 4 compute

nodes (or 96 processor cores) of the cluster.

Up to 2 nodes the efficiency does not deteriorate significantly. For the 4 node (96 pro-

cessor cores) case the efficiency reduces to 50%. The all-reduce operation in the parallel

dot-product of the GMRES is a strong parallel performance bottleneck [127]. Even small
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Figure 4.12: Non-linear implicit flow solver scaling for the turbocharger compressor test
case (average partition size indicated by the bar chart).

imbalances within the ranks can be exaggerated due to the all-reduce operation. The

focus of this thesis has been the initial parallel implement and correctness of the results

from the parallel solver. Some possible ways to mitigate this problems were already

discussed as future developments to the solver in sec. 4.5.3.

4.6 Linearised Solvers and their Implementation

4.6.1 Discrete Adjoint Solver via Reverse Algorithmic Differentiation

As explained in sec. 2.1.7 adjoint method provides an efficient way to compute the

sensitivity dJ
dα of QoI J with respect to a set of input parameters α. The QoI J considered

in the present work are (i) total-pressure loss [133] (Jploss), (ii) exit mass flow rate

(Jmass), and (iii) exit whirl angle (Jwhirl) defined in eq. (4.28). The bar terms indicate

mass-flow averaged quantities over a given boundary surface. The surface integrals are

evaluated on the discrete boundary patches using a mid-point quadrature rule as shown
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in eq. (4.29)-(4.30).

Jploss =
p̄ in0 − p̄ out0

p̄ out0 − p̄ out , Jmass = ṁout, Jwhirl = ᾱout (4.28)

Φ̄ =

∫
Φρ(u · dS) =

∑
i

Φiρi(ui · Bi) (4.29)

ṁ =

∫
ρ(u · dS) =

∑
i

ρi(ui · Bi) (4.30)

The superscript in and out define the mass-flow averaged values over the inlet and outlet

patches respectively. The whirl angle α is defined as (i) α = arctan (uy, ux) for 2-D and

(ii) α = arctan (||u− (u · n)n||,u · n) for 3-D test cases (n is the boundary normal).

Once the cost-functions are defined the adjoint equation can be derived for the RANS

equation using eq (2.20) below:

(
∂R

∂U

)T
v =

(
∂J

∂U

)T
(4.31)

In eq. (4.31), v is the adjoint variable and J is the QoI that depends on the state U.

The pseudo-time form to yield the time-marching adjoint is shown below:

∂v

∂τ∗
+

[(
∂R

∂U

)T
v −

(
∂J

∂U

)T]
︸ ︷︷ ︸

R[v,U]

= 0 (4.32)

The adjoint residual R[v,U] (in eq. (4.32)) is obtained using the Algorithmic Differenti-

ation (AD) of the discrete residual subroutine R[U] of the primal flow solver. Then the

fixed-point iteration (FPI) implicit time marching loop is manually assembled using this

differentiated residual. The implicit preconditioner for the adjoint system can be derived

using the backward Euler time discretisation and linearisation of the residual R[v,U].

The final form is shown in eq. (4.33). Similar to the primal flow solution the precondi-

tioned RK5 scheme is used to solve the adjoint system. The implicit preconditioner for

the adjoint is the transpose of the primal system [33]. The two level halo partitioning

used in this work enables the Jacobian matrix transposition without incurring any par-
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allel communication because all the necessary information is contained within the local

processor. Therefore, computing R is the only extra effort involved in constructing the

adjoint FPI since other components can be reused from the primal FPI.

PT δvn ≡
[

T

∆τ∗
+
∂R

∂U

]T
δvn = −R[vn] (4.33)

4.6.2 Tangent Linear Solver via Forward Algorithmic Differentiation

In this work, the tangent linear solver is obtained by the linearisation of the state R

with respect to the mesh nodes x along a volumetric direction vector δx define as:

∂R

∂U

dU

dx
δx =

∂R

∂x
δx (4.34)

To understand the volumetric directional derivative one should consider the mesh defor-

mation algorithm described in appendix B. A given surface perturbation vector, say the

PCA mode zj described in ch. 5, can be injected into the volumetric mesh, via the mesh

deformation operator A using the relation,

δx = Azj . (4.35)

The directional derivative ∂(.)
∂x Aδx of the PCA mode can be condensed into ∂(.)

∂zj
. Follow-

ing a similar procedure to the adjoint discretisation one obtains the implicit pseudo-time

marching tangent linear form as shown below:

Pδwn ≡
(

I

δτ∗
+
∂R

∂U

)
δwn = −R†[wn] (4.36)

where, R†[wn] =
(
∂R
∂U

)
wn − ∂R

∂zj
and w = dU

dzj
. The left hand side term of the tangent

linear FPI is exactly similar to the primal FPI. But the construction of the right hand side

term requires application of forward-mode of AD to the residual subroutine. Application

of forward and reverse mode of AD to obtain the tangent linear and adjoint terms are

explained in appendix B. Note that the IMC 2 LF model (see sec. 3.2) requires the tangent
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linear solution for every dominant PCA mode. IMC 3 is not used in this work since the

Hessian computation has not been implemented in the current version of STAMPS.

4.6.3 Adjoint and Tangent Linear Sensitivity Assembly

The sensitivity of the QoI J to surface perturbations can be obtained using either the

forward (see eq. (4.37)) or reverse mode (see eq. (4.38)) of AD. Note that the term ∂R
∂zj

in

eq. (4.38) requires differentiation of the mesh metric terms. In STAMPS all mesh metrics

are pre-calculated and stored during the pre-processing or mesh conversion step. The

computational stencil (and edges) are constructed, partitioned, and distributed across

processors. Only this pre-processed data-structure is exposed to the solver. Therefore,

the sensitivity assembly is performed as a serial computation in two stages. Firstly, the

volumetric sensitivity is obtained with respect to S, B and V. These derivatives are then

propagated into the differentiated metric routines to yield the final volumetric derivative

with respect to x. As a final step, volume to surface sensitivity projection is performed

using the mesh deformation adjoint (see appendix B).

dJ

dzj
=
∂J

∂zj
+
∂J

∂U
w (4.37)

(
dJ

dzj

)T
=

(
∂J

∂zj

)T
+

(
∂R

∂zj

)T
v (4.38)

An important aspect of the sensitivity is the adjoint differentiation of the wall distance

function used for the SA model. Brute force differentiation using an AD tool results

in higher runtimes and memory consumption for this routine. Therefore, the routine is

manually differentiated and the various branches of the “Closest Point on Triangle to

Point” algorithm [95] are handled manually using enumerated integer arrays. In this

approach push/pop statements in the adjoint code are avoided using simpler branching

using arrays. Müller et al. [134] found that push/pop statements in the discrete adjoint

code are detrimental to its performance and provide techniques to avoid them in the

context of AD.
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4.7 Non-linear Flow Solver Validation

The validation of the primal solver was carried out using two external and three internal

flow test cases. Since the new developments in the thesis focus on internal flows, more

test cases are shown in this category, namely (i) the Sajben diffuser with a strong shock

condition, (ii) VKI LS89 Turbine cascade and (iii) Turbocharger compressor with a

vaneless diffuser. In the external flow category, the standard flat plate benchmark test

case (both laminar and turbulent solutions) are shown.

4.7.1 Laminar Flow Over Flat Plate with Zero-pressure Gradient

The flow over a flat plate at zero-pressure gradient was simulated for a free-stream Mach

number of 0.2 under standard atmospheric conditions (1 atm and 273.15 K) using the

STAMPS flow solver. The mesh and overall boundary conditions are shown in fig. 4.13

and the flow is assumed to be laminar. The dimension of the computational domain is

(x× y)→ (2.333× 1.0). The inviscid wall constitutes the first 0 ≤ x ≤ 0.333 lengths of

the domain and the viscous wall of the flat plate extents to the next 0.333 ≤ x ≤ 2.333

lengths. The dynamic viscosity was adjusted to maintain the Reynolds number based on

plate length Rex ≈ 2000 (laminar regime). A probe surface is introduced at the middle

of the viscous wall (shown by the yellow line in fig. 4.13) to measure flow quantities for

comparison with the analytical solution of Blasius[135] shown below,

2ff ′′ + f ′′′ = 0, where, η = y

√
u∞
νx

, f ′(η) =
u

u∞

BC: f(0) = f ′(0) = 0, and f ′(∞) = 1 (4.39)

The friction coefficient computed using the STAMPS solution is compared against the

Blasius results given in eq. (4.40). The numerical values for both η and Cf are found to

be in good agreement with the analytical results as shown in fig. 4.14.

Cf =
0.664√
Rex

, Rex =
u∞x

ν
(4.40)
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Figure 4.13: Flat plate mesh coloured by the partition rank (six ranks) with the boundary
condition specification and the measurement probe surface is show in yellow (alternate
mesh lines plotted for clarity).
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Figure 4.14: Laminar flow over a flat plate under zero pressure gradient (Blasius solution
vs. STAMPS): (i) non-dimensional velocity η vs. f ′ (left) and (ii) friction coefficient Cf
vs. wall location x

4.7.2 Turbulent Flow Over Flat Plate with Zero-pressure Gradient

The same setup from the previous laminar zero pressure gradient test case is used in

this validation. But the viscosity is not adjusted and the working fluid is assumed to
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Figure 4.15: Turbulent flow over a flat plate under zero pressure gradient (NASA FUN3D
vs. STAMPS): (i) non-dimensional velocity u+ vs. wall distance log (y+) (left) and (ii)
friction coefficient Cf vs. wall location x

be air obeying the Sutherland law for viscosity. The flow is assumed to be turbulent

(solve the SA turbulence equation) with Rex ≈ 9 × 106 . The free-stream condition

for the turbulent viscosity νT is set three times the free-stream laminar viscosity ν∞

(νT = 3ν∞) and is set to zero-value at the viscous wall. The results from NASA FUN3D

code provided in ref. [136] are used as reference solution to compare the results from

STAMPS. The definitions for the quantities compared are shown in eq. (4.41)-(4.42) and

the results are plotted in fig. 4.15.

τwall = µwall

(
∂u

∂y

)
wall

, Cf =
τwall

1
2ρ∞u2

∞
(4.41)

u+ = u

√
τwall
ρwall

, y+ =
y

νwall

√
τwall
ρwall

(4.42)

Good agreement between the reference FUN3D results are obtained for both the non-

dimensional velocity u+ and friction coefficient Cf . Both laminar and turbulent flat

plate solutions were obtained after a overall residual convergence of 10−10. No limit

cycle oscillation or stalling of convergence was observed in either case.
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Figure 4.16: Sajben diffuser geometry with grid superimposed on top (alternate mesh
line is plotted for clarity) : Throat height HT = 44.07 mm.

Figure 4.17: Sajben diffuser Mach number contour obtained using STAMPS: Shock aft
of throat and the separated flow region are visible.

4.7.3 Sajben Transonic Diffuser

The Sajben transonic diffuser has been extensively studied experimentally by Sajben,

Bogar, and co-workers. The results of the study have been published in a series of

papers provided in ref. [137, 138, 139, 140]. In the so-called “strong shock” condition of

the diffuser, a normal shock wave is present aft of the throat region and in its vicinity

the solution is found to oscillate slightly. The cause for the small shock oscillation is the

self-exited oscillation of this so-called terminal shock [141, 140]. Aft of the shock a region

of subsonic separated flow exists (see fig. 4.17). This test case exhibits a rich variety

of flow features, which makes it a good validation test case. The complete diffuser

geometry is defined in fig. 4.16 in terms of throat height HT = 44.07 mm. A maximum

y+ ≈ 0.7 is used for the near wall grid spacing and a fully turbulent flow is assumed in

the diffuser.

The convergence of the mass and turbulence residual is shown in fig. 4.18(i)-(ii) for a

range of partition sizes. Note that 1000 explicit iterations were run to initialise the
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Figure 4.18: Convergence comparison of (i) primal solver mass residual and (ii) turbu-
lence residual for indicated partition sizes and (ii) primal vs. adjoint mass convergence:
CFL = 100

solution followed by hot-starting the implicit solver using a constant CFL value of 100.

The decoupled ILU0 preconditioner for the flow is quite robust and no significant deteri-

oration in convergence was observed between the various partition sizes. Moreover, the

convergence to steady state was achieved for all partition sizes and the residuals reached

machine zero without stalling.

The total-pressure loss (Jploss in eq. (4.28)) adjoint convergence is plotted against the

primal mass convergence of the diffuser in fig. 4.18(iii). The parallel implicit adjoint

solver was started directly using a zero initialisation. Full convergence was achieved and

the asymptotic rates between the primal and adjoint are found to be similar.

The surface pressure along the top and bottom walls of the diffuser are plotted against

the experimental results from ref. [141] in fig. 4.19(i)-(ii). Good agreement is obtained

for both top and bottom surfaces. The sectional velocity plot in fig. 4.20(i)-(iv) at

stations x/HT = 2.882, 4.611, 6.43 and x/HT = 7.493 also show a good comparison with

the experimental results. Georgiadis et al. [142] compared the solution of the strong

shock case, computed using the NASA PARC code with five different turbulence models;

comprising of algebraic and two-equation turbulence models. Similar under-prediction of

the velocity in the separation zone (see fig. 4.20) and over-prediction of surface pressure
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Figure 4.19: Surface pressure distribution comparison between STAMP and experimental
results in ref. [141] (i) on the top and (ii) bottom surfaces of the Sajben diffuser

(see fig. 4.19) downstream of the diffuser was observed for all turbulence models.

4.7.4 VKI LS89 Turbine Cascade

The LS89 was originally designed and optimised at the Von Karman Institute for Fluid

Dynamics (VKI) for a subsonic isentropic exit Mach number of 0.9 using an iterative

inverse method that modifies a given blade profile such that it fits an input surface veloc-

ity distribution [143]. Experimental measurements consisting of surface pressure and wall

heat transfer were conducted for a range of inlet total-pressure and exit back pressure

ratios [144, 145]. The mesh and the computational domain used for the validation is

shown in fig. 4.21.

The surface isentropic Mach number (Misen) obtained using CFD is plotted against the

experimental results of Arts [144] for the MUR43 to MUR48 test conditions in fig. 4.22,

where Misen is obtained from eq. (4.43), P01 is the total-pressure at the inlet and Ps is

the static pressure at a measurement station.

Each condition MUR43 to MUR48 corresponds to a specific back pressure at the out-

let and total temperature at the inlet, which is tabulate in tbl. 4-B. A constant total
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Figure 4.20: Sectional velocity comparison between experimental measurements [141]
and STAMPS solution at indicated section.

Figure 4.21: LS89 computational domain (every four mesh lines plotted for clarity)

temperature of 420 K was maintained at the inlet for all test conditions.

Misen =

√√√√ 2

γ − 1

[(
P01

Ps

) γ−1
γ

− 1

]
(4.43)
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Condition P01 (bar) Misen

MUR43 1.435 0.840
MUR44 1.433 0.840
MUR45 1.475 0.875
MUR46 1.478 0.875
MUR47 1.596 1.020
MUR48 1.605 1.020

Table 4-B: Test conditions for LS89 turbine cascade

Good overall agreement is obtained between the experimental results and the RANS sim-

ulation. One can observe that the RANS solution deviates from the experimental values

near the aft portion (x > 25 mm) of the blade. A preliminary literature search shows

that a similar trend has been observed by other researchers [146, 147, 148, 149]. In the

experiments the downstream static pressure was measured along a plane parallel to the

trailing edge, located at non-dimensional location x/c = 1.433 or 16.0 mm downstream

of the trailing edge, which is outside the test section and hence outside the computation

domain. Therefore, there is a level of uncertainty involved in the exit back-pressure spec-

ification for the LS89 cascade. In addition, STAMPS does not employ a non-reflecting

exit boundary condition. Therefore, non-reflecting exit boundary with longer inlet and

corrected back pressure may reduce this discrepancy [150]. This uncertainty in back

pressure itself can be an interesting UQ study.

Full convergence of the RANS solver was achieved for all test conditions without any

local limit cycle oscillations (LCO). This is highly essential to ensure the convergence of

the adjoint [33] and tangent linear solution. The near wall spacing of y+ ≈ 1 was used

for all test cases.

4.7.5 Turbocharger Compressor with Vaneless Diffuser2

A centrifugal turbocharger compressor with a vaneless diffuser provided by Mitsubishi

Heavy Industries (MHI) was used in the present solver validation study. The impeller

2Joint work with Dr. Xu
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Figure 4.22: Surface distribution of isentropic Mach number for the VKI LS89 turbine
cascade at indicated test conditions from ref. [144]

has a tip radius in the range of 25− 30 mm and has six main blades and corresponding

number of splitter blades. The tip clearance is few tenths of a millimetre. One sixth of

the full annulus was used for the steady state calculation. The computational domain

comprises of (i) an inlet pipe, (ii) an impeller, and (iii) a vaneless diffuser as shown in
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Figure 4.23: Centrifugal turbocharger compressor (a) computational domain and (b)
impeller CAD model

fig. 4.23(a). The CAD model of the impeller wheel is shown in fig. 4.23(b).

Due to axisymmetry the entire configuration is considered a single rotating zone in order

to avoid the use of an interface between the rotating zone and the diffuser. Standard

atmospheric conditions were specified at the inlet where the flow enters axially (zero pre-

swirl). The compressor rotates at a design rotation speed in the range of around 1.3 −

1.8 × 105 RPM, where RPM is revolutions per minute. The calculation was performed

using three different mesh densities (i) coarse mesh with 76k nodes, (ii) medium mesh

with 550k nodes, and (iii) fine mesh with 4M nodes. The meshes were provided by MHI,

which were generated using the Ansys Turbogrid mesh generation software.

The compressor map of pressure ratio and efficiency for various back-pressures from

choke to stall condition for the design RPM was simulated and the results are plotted in

fig. 4.24. For comparison purpose fine mesh results from Ansys CFX commercial solver is

plotted along with STAMPS results in fig. 4.24. A total-pressure and total-temperature

inlet condition was imposed and a constant back-pressure was imposed at the outlet. To

ensure accurate comparison: the Roe Riemann solver for convective fluxes, Green-Gauss

gradient, SA turbulence model, and same inlet/outlet boundary conditions were used in
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Figure 4.24: Map of pressure ratio (left) and efficiency (right) vs. mass flow rate at design
RPM for the Turbocharger compressor (scales are non-dimensional due to confidentiality)

both solvers (namely Ansys CFX and STAMPS). The STAMPS fine mesh results (solid

orange line in fig. 4.24) agree well with the ones obtained using Ansys CFX (solid black

line in fig. 4.24). The solver had stable convergence for the range of back pressures used

in this validation. In addition, both compressor map results converges well with grid

refinement from coarse to fine meshes.

4.8 Surface Sensitivity Verification

The surface sensitivity verification is conducted using the LS89 turbine cascade test case.

The MUR43 test condition is considered and the gradients of the QoI, namely exit mass

flow rate and total-pressure loss are verified in this study. The gradient results obtained

using adjoint, tangent-linear and finite-difference are compared using two types of ver-

ification, namely, (i) the stronger point-wise (Fréchet) and (ii) the weaker directional

derivative (Gâteaux). The verification in each type of derivative is shown in the next

sub-sections.
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4.8.1 Point-wise Sensitivity Verification

As the name suggests, here one choses an arbitrary point on the surface of the cascade.

Then the point is perturbed in either x or y direction with varying finite-difference step

sizes. In fig. 4.25(a) the point P1 is perturbed along the x-axis by step size δx. The

first order Taylor remainder convergence (forward difference) can be defined as shown in

eq. (4.44).

|J(x+ δx)− J(x)| → 0, at O(δx) (4.44)

To evaluate the term J(x+δx) the surface perturbation must be converted to a volumetric

perturbation using the IDW mesh deformation (see appendix B). The flow is solved on

the perturbed mesh to obtain the cost-function value J(x+δx). The volume deformation

field generated by the perturbation of surface node P1 is shown in fig. 4.25(b). Note that

one can obtain the value of dJ
dx using the tangent linear or the adjoint sensitivity. The

adjoint sensitivity is simply the x-component of the surface sensitivity at node P1. But

the tangent linear sensitivity requires the solution to the volumetric deformation field

due to unit perturbation (δx = 1) at the surface node (fig. 4.25(b)). Gradients obtained

from both sensitivities are tabulated in tab. 4-C.

Cost function Adjoint Sensitivity (at P1) Tangent Sensitivity (at P1)

Exit Mass flow +6.482080 +6.482012

Total-pressure loss −3.465840 −3.465725

Table 4-C: Adjoint and Tangent sensitivity at surface node P1 with respect to x direction

The first order Taylor remainder is plotted fig. 4.26(left) and the relative error in sensi-

tivity between the adjoint and finite-difference results are plotted as a function of step

size in fig. 4.26(right). For both cost-functions large step size has a large truncation

error, which reduces with step size. But below a step size of 10−6 the round-off error

dominates.
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Figure 4.25: (a) Surface displacement of point P1 (x-axis) and (b) generated volumetric
displacement after IDW mesh smoothing (for point-wise gradient verification)

Figure 4.26: First order Taylor remainder O(h) vs. step size (left) and relative error
between the finite-difference and adjoint sensitivity for surface point P1 (right) for the
exit mass flow rate (blue) and total-pressure loss (orange) cost functions

4.8.2 Directional Derivative Verification

To obtain the directional derivative one needs to define a direction vector h. Extraction

of surface modes using principal component analysis (PCA) is shown in the next chapter

in sec. 5.5.4. In this verification exercise the surface mode obtained using the PCA in

sec. 5.5.4 is considered as the surface direction vector h ≡ zj . Then using Taylor expan-

sion one obtains the finite-difference form (forward difference) as shown in eq. (4.45),
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Figure 4.27: (a) Surface displacement of PCA mode 8 and (b) generated volumetric
displacement after IDW mesh smoothing (for directional derivative verification)

The first order Taylor remainder convergence is defined as shown in eq. (4.46).

dJ

dzj
=
J(x + εzj)− J(x)

ε
+O(ε) (4.45)

|J(x + εzj)− J(x)| → 0, at O(ε) (4.46)

The term J(x + εzj) is obtained from the flow solution at the perturbed mesh due to

the surface deformation x + εzj . PCA mode 8 from sec. 5.5.4 is used for the present

gradient verification exercise. The adjoint and tangent linear sensitivities obtained for

this surface mode are tabulated in tab. 4-D. Overall the the variations in the computed

sensitivities of the various methods (finite-difference, adjoint, and tangent linear) are

within a tolerance band of < 0.1% of the cost-function.

Cost function Adjoint Sensitivity Tangent Sensitivity

Exit Mass flow −6.717423× 10−2 −6.717341× 10−2

Total-pressure loss +1.260466× 10−2 +1.260385× 10−2

Table 4-D: Adjoint and Tangent sensitivity for surface mode 8
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Figure 4.28: First order Taylor reminder O(h) vs. step size (left) and relative error
between the finite-difference and adjoint sensitivity for surface PCA mode 8 (right) for
the exit mass flow rate (blue) and total-pressure loss (orange) cost functions

4.9 Summary

The parallel aerodynamic primal, adjoint, and tangent linear solver implementation and

performance improvements were discussed in this chapter. The two-halo partitioning

scheme used in this work was shown to reduce the overall communication by half com-

pared to a one-halo partition. In addition the adjoint and tangent-linear solver develop-

ment was simplified by avoiding MPI calls inside the residual evaluation function. The

time-implicit method was outlined and validation results from three preliminary test

cases were shown. The implemented solver proved to be robust and provided reasonable

solution accuracy for the chosen test cases and serves as the HF model for the FastUQ

method.



Chapter 5

Modelling Geometric

Uncertainties
“The strength of numbers bolstered by the power of images is enough to

sustain in the public an irrational, quasi-mystical mind-set.”

— Pierre-Giles de Gennes & Jacques Badoz, Fragile Objects

5.1 Manufacturing Uncertainties in Turbomachines

Various sources of geometric uncertainties exist in turbomachinery, for example, noisy

manufacturing processes, wear, foreign object damage and deformations under loading.

The variations due to manufacturing is considered in this work. In fig. 5.1, two types of

blade manufacturing processes are shown namely, (i) Flank milling (FM) and (b) Point

milling (PM). In FM, a conical tool is used to cut the entire surface of the blade from a

blank material in a single pass [151]. In PM, a ball cutter removes material from a block

based on the planned tool path. PM is disadvantageous because of slower manufacturing

time and poor surface finish when compared with FM. Chattering occurs due to inherent

vibration of the tool which also generates surface imperfections. Similarly, in FM, it is

not possible for the tool to cut exactly along a ruled surface, thereby generating under

and over-cuts (see fig. 5.1). The tool also wears out in due course of manufacturing and

empirical tool compensations are applied, which add to the uncertainty. The measured

93
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Figure 5.1: Flank and point milling process and sources of noise in manufacturing
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Figure 5.2: Measured deviation of leading edge thickness for sample point and flank-
milled integrally bladed rotor (from ref. [152])

deviation in leading edge (LE) radius of an integrally-bladed rotor (IBR) between point

and flank milling process in shown in fig. 5.1 (from Garzon [152]). An IBR is a type of

rotor where the blade and the disk are manufactured as a single part. Large deviations

from the design intent surface were observed for the leading edge thickness of the blade

(see fig. 5.1), which is a important parameter affecting turbomachine performance. Gar-

zon [152] estimates that the mean polytropic efficiency of a six stage axial compressor

decreases by 1% due to manufacturing variations. In turbomachines even a gain of 1%

in losses can create a big impact on the overall design.
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Figure 5.3: Overview of models for surface imperfection due to manufacturing

5.2 State-of-art in Surface Imperfection Models

An overview of surface imperfection models available in literature is summarised in

fig. 5.3. Two main approaches to modelling surface variations due to manufacturing

are adopted widely in the literature. In the first approach, a database of manufactured

shapes is built by measuring real manufactured samples. Then this databased is used to

create stochastic models for surface variations, whose effect on performance is quantified.

For example, Lange [18] considered blade measurements from 3-D surface scan data of

a high pressure compressor stage. The correlated coordinates from the 3-D scan were

translated into mode shapes and uncorrelated modal amplitudes using principal compo-

nent analysis (PCA) [153]. Garzon [152] used a similar PCA based approach to model

measurements for a compressor blade geometry. The principal modes and amplitudes

were used to model surface variations in his robust shape optimisation framework.

In the second approach, one resorts to synthetic, but, heuristically-based models for geo-

metric variability. The blade geometries and associated measurement data are classified

information and most manufacturers are unwilling to share them for academic or research

purpose. Such synthetic models for variability are mostly modelled as Gaussian processes

(GP) or Gaussian fields (GF) in the literature. Roughly speaking, a stochastic process is

a generalisation of a probability distribution (which describes a finite-dimensional ran-

dom variable) to functions [154], when the collection of distributions are jointly Gaussian
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then the stochastic process is called a Gaussian process. One can also consider a general

parameter space such that the stochastic process becomes a random function of more

than one variable. This type of stochastic process is usually called a random field [155].

An introduction to stochastic process and GP is provided in sec. 5.3 for the interested

reader.

Some examples of GP models include the work of Hacker [156] who used principal com-

ponent analysis and other statistical techniques to produce reduced-order models of

compressor blade performance. Hacker [156] used heuristically-based models for geo-

metric variability using Gaussian distributions for the surface perturbations on turbine

blades. Schillings [39] used a Gaussian random field with an analytically specified mean

and covariance function to model surface variations of an airfoil. Schillings [39] avoided

parametrisation of the uncertainties and the stochastic model considered the random per-

turbation of every point on the airfoil surface. This gives the maximum possible space of

perturbed geometries or shapes. A similar approach to Schillings [39] has been adopted

by Wang [157], and Dow [158] to model surface variations on compressor blades. In

ref. [159], Dow and Wang modelled manufacturing tolerances as Gaussian random fields

and obtain optimal tolerance distribution on the blade by associating tolerance to man-

ufacturing cost. In addition, proper orthogonal decomposition was used to represent

the random tolerance field as a spectral decomposition of its covariance function. An

advantage of using GP is that the variability is modelled simply by defining a mean and

covariance function. In addition, uncorrelated Gaussian fields (principal components)

are statistically independent [154], which is an important property to have for an input

random field.

The methods surveyed in the preceding paragraphs considered all nodes on the surface

as an uncertain parameter without any parametrisation. An alternate approach is to

model geometric variability using a parametric space [160, 161, 162]. Typically, in the

parametric approaches a set of geometric parameters such as stagger angle, chord length,

leading edge thickness, maximum camber, etc., are empirically or synthetically obtained
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for a large sample set of blades. One fits probability distributions to model each param-

eter using this database of blade profiles. Ghate [1] used a parametric model of an airfoil

geometry, randomly perturbed the parameters to model surface uncertainties and used

independent component analysis [41] to account for non-Gaussianity. Pisaroni et al. [21]

used PARSEC airfoil parametrisation [163] and modelled the PARSEC parameters using

random distributions. An advantage of the parametric approach is that the geometric

variability is described purely using design parameters. This aids in maintaining smaller

input dimensions, which is required for certain UQ methods such as polynomial chaos

expansion discussed ch. 2. However, one severely restricts the space of possible perturbed

blade shapes neglecting shapes that can adversely impact the performance of the blade.

5.3 Background on Stochastic Processes

5.3.1 Definition of Stochastic Process

The stochastic or random process (SP) extends the concept of a random variable to

functions of some independent random variable. Usually, they are used to model time

varying random functions but the independent variable has no restriction on what it can

represent. A stochastic process in this thesis is denoted by f(x). It is best described

using an example.

Consider a plane surface Γ whose surface coordinates are x ∈ Γ, (denoted by the green

line in fig. 5.4). Assume that the surface undergoes random perturbation modelled using

the stochastic process f(x). Sample measurements of this random surface x (denoted by

red lines in fig. 5.4) yields the samples {fi(x)}, i = 1, 2, . . . etc. If one were to observe

the sample measurements at a fixed spatial location x = x1 then one obtains a random

variable x1 with an associated probability distribution p(x1). Similarly every sample

fi(x) itself is a random variable. Therefore, to characterise the process f(x) completely

one needs to know the joint probability distributions of {fi(x1)}, {fi(x2)}, . . . etc. (see

sec. 2.1.4 for definition of joint probability distribution).
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Figure 5.4: Stochastic process example: original unperturbed coordinate x shown using
solid green line and three sample perturbed surfaces from the Gaussian model shown
using solid red line.

5.3.2 Stationarity, Mean, and Covariance Function

A stochastic process is said to be stationary in the strict sense if its joint distribution is

invariant under spatial shifts of origin i.e, the pdf only depends on |xi − xj | (for some

location i, j) and does not directly depend on individual locations x1,x2, . . . etc.

The mean function µf or E[f(x)] of a stochastic process f(x) is defined using eq. (5.1).

The mean is usually a function of space x but for a stationary process it is a constant

(µf ) for all random variables belonging to different spatial realisations with the same

pdf defined by p(f).

µf = E[f(x)] =

∞∫
−∞

f(x)p(f(x))df(x) (5.1)

One can define two types of variance for a stochastic process. The usual variance defini-

tion is shown in eq. (5.2) and the covariance for two spatial locations xi and xj given in
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eq. (5.2). Note that for δx = xj − xi = 0 in eq. (5.3) one recovers eq. (5.2).

σf (x) = E
[
(f(x)− µ(x)) (f(x)− µ(x))T

]
(5.2)

Cij = E
[

(f(xi)− µ(xi)) (f(xj)− µ(xj))
T
]

(5.3)

Similar to the mean, the variance and covariance functions are spatially invariant con-

stants for a stationary process. In addition, the covariance function is symmetric [154].

For a discrete spatial domain a covariance function becomes a covariance matrix (Gram

matrix).

5.3.3 Gaussian Process

A Gaussian process (GP) is a special case of SP, where the collection of random vari-

ables fi(x1), fi(x2), . . ., etc., any finite number of which have a joint Gaussian distribu-

tion [154]. A GP can be completely defined by its mean function µf and co-variance

function Cij and it is usually denoted using the short notation f(x) ∼ GP(µf ,Cij).

5.4 Stochastic Surface Variation Model

In this work a synthetic surface perturbation model based on GP similar to the approach

presented in refs. [39, 164, 156, 165] has been adopted due to a lack of access to empir-

ical blade measurements. In addition, parametrisation of the perturbations is avoided

since this would lead to a reduction in the space of possible perturbed geometries [166].

Therefore, a free node parametrisation [166] is used where every surface node is a ran-

dom parameter defining the blade shape. The infinite dimensional probability space is

approximated using a finite number of random variables, where every surface mesh node

is a parameter [164].

Let x = {x1, x2, ..., xN}, where each xi ∈ R3, be the set of coordinates defining the

nominal surface of the blade and let n̂ denote the normal vector of this nominal surface.

A zero-mean Gaussian process δ(x) is imposed along the normal direction to this nominal
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surface to generate the perturbed surface xδ as,

xδ = x + δ(x)n̂. (5.4)

In addition, the random variables δi = δ(xi) and δj = δ(xj) at any two arbitrary points

i and j on the surface (see fig. 5.5) are assumed to have a squared exponential spatial

covariance as shown in eq. (5.5). The squared exponential covariance has been extensively

used in robust optimisation studies involving surface perturbations (see ref. [167, 28,

168]). This covariance function is infinitely differentiable, which means that the GP

with this covariance function has derivatives of all orders (in the mean square sense),

and is thus very smooth [154]. In eq. (5.5), the parameter b controls the height of the

perturbations and l is the characteristic correlation length of the perturbation. A large

value of l results in a larger spread of the disturbance around a given surface node. In this

work, the perturbation height b and the correlation length l are assumed be a fraction

of some characteristic dimension. The parameters b and l are illustrated for the surface

perturbation over the LS89 cascade surface in fig. 5.5. The model is used to represent

the surface variations over the LS89 turbine cascade, which is shown in the next section.

Cij = b2 exp

(
−||xi − xj ||

2

2l2

)
(5.5)

5.4.1 LS89 Geometry and Surface Variation Model

The aerodynamic uncertainty quantification due to surface variation using FastUQ is

demonstrated using the LS89 turbine cascade presented in sec. 4.7.4. The aim here is

to estimate the statistics (mean and variance) of the QoIs mass flow rate (Jmass) and

total pressure loss (Jploss), subject to the surface perturbations on the cascade surface

using the model described in the previous section. The surface disturbance model is a

zero-mean Gaussian process imposed normal to the blade surface and follows a squared

exponential spatial covariance function as discussed in the previous section. The height

b is assumed to be approximately 10% of the trailing edge radius and the length l is
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Figure 5.5: Surface node distribution on LS89 cascade surface along with the two arbi-
trary surface nodes i and j used to illustrate the spatial covariance function in eq. 5.5

Quantity Value

Pitch 57.500 mm
Axial chord 36.985 mm
Leading-edge radius 4.127 mm
Trailing-edge radius 0.710 mm
Perturbation height (b) 0.1 mm
Perturbation width (l) 10.0 mm

Table 5-A: VKI LS89 cascade geometry

Quantity MUR43 MUR47

Inlet total-pressure (P01) 1.435 bar 1.596 bar
Inlet total-temperature (T01) 420 K 420 K
Outlet back-pressure 0.904 bar 8.236 bar
Outlet isentropic Mach (Misen) 0.8 1.2

Table 5-B: MUR43 and MUR47 test conditions

approximately equal to the leading edge diameter of the cascade turbine cascade (see

fig. 5.5). The various geometric parameters of the cascade are shown in tab. 5-A.

Two test conditions, namely the MUR47 (transonic flow) and MUR43 (subsonic flow)

are used for the UQ study. The details of the test conditions are tabulated in Table 5-B

and 5-A.
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5.5 Model Improvements Using Dimensionality Reduction

and Independence

The convergence properties of uncertainty quantification methods such as Monte Carlo,

gPCE, and Stochastic Collocation (discussed in ch. 2) are valid under the assumption

of independent identically distributed (i.i.d) input parameter space [44] (for definition

see sec. 2.1.5). Therefore, statistical independence is an important property to have for

the input variations. For a joint Gaussian distribution to be independent its covariance

function must be uncorrelated (from sec. 2.1.4) i.e., the covariance matrix Cij in eq. (5.5)

should be transformed to a diagonal matrix Λ to make the input uncertainties indepen-

dent. Principal components are linear combinations of random or statistical variables

having special properties in terms of variances [169] and the first principal component

is the normalised linear combination with maximum variance. The eigen decomposition

of the Covariance matrix Cij (shown in eq. (5.6)) yields the linear combinations with

maximal variances. Estimation of the eigenvalues Λ and eigenvectors Z is also called the

principal component analysis (PCA).

ZCij = ZΛ (5.6)

In eq. (5.6), Z = {z1, . . . , zn} are the eigenvectors or PCA modes and Λ = diag(λ1, . . . , λn),

λ1 ≥ . . . ≥ λn are the eigenvalues. The principal components of Cij can be shown to be

equivalent to its Singular Value Decomposition (SVD) in reduced form [170]. Consider

the SVD decomposition of the real symmetric matrix Cij as shown in eq. (5.7), where

U and V are the left and right singular vectors and Σ is the diagonal matrix whose

diagonal entries are the singular values.

Cij = UΣV (5.7)

For a symmetric matrix, (i) the eigenvectors and left singular vectors are the same i.e.,

U = Z, (ii) the entries of the singular value matrix Σ are nonnegative singular values or
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nonnegative eigenvalues i.e., Σ = |Λ| and (iii) the right singular vectors V are related to

the eigenvectors using a matrix T, whose diagonal entries are ±1 corresponding to the

parity/sign of the eigenvalues of Λ i.e., V = TZ [170]. For a positive definite Cij the

parity matrix is the identity matrix (T ≡ I).

The SVD is a numerically stable algorithm to compute the eigen decomposition of Cij

because it can handle rank deficient matrices (near zero-diagonal entries). The expan-

sion using the eigenvalues and vectors of the discrete zero-mean surface perturbation

is shown in eq. (5.8), where, Yi(ω)’s are uncorrelated Gaussian random variables with

zero mean and unit variance [171] (see eq. (2.2) for definition of Gaussian distribution).

The definition of the random variable Yi(ω) (ω ∈ Ω) follows the same convention for

probability space as show in sec. 2.1.1.

δ(xi, ω) =
n∑
i=1

√
λiziYi(ω) ≈

m∑
i=1

√
λiziYi(ω) (5.8)

The expansion is usually truncated to the first m dominant eigenmodes for reducing the

input dimension. Using Mercer‘s theorem one can show that the truncated expansion is

a suitable approximation, if the eigenvalues decay sufficiently fast and m is sufficiently

large [166]. For a Gaussian covariance function one can prove that the eigenvalues will

exponentially decay towards zero [172]. Therefore, with a fraction of the total number

of modes one can reliably approximate the variations.

5.5.1 Truncation Using Partial Modal Fraction

The modal fraction λ̄i and the partial modal fraction Λ̄i shown in eq. (5.9) are useful

quantities to aid the truncation. Partial modal fraction can be used to estimate the value

of m given a user specified threshold error. For example, if one truncates after the ith

PCA mode and Λ̄i = 0.9 then 90% of the total input variations (spectral content) are

captured using the truncated set. A value of λ̄i = 0.1 denotes that the ith PCA mode
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Figure 5.6: Modal fraction for the LS89 turbine cascade first 20 PCA modes

accounts for 10% of the total input variations (spectral content).

λ̄i =
λi
n∑
j=1

λj

, Λ̄i =

i∑
j=1

λi

n∑
j=1

λj

(5.9)

5.5.2 LS89 Partial Modal Fraction Truncation Results

The modal and partial modal fraction for the first 20 PCA modes computed for the LS89

turbine cascade subject to the GP surface disturbance model (see sec. 5.4.1) is shown in

fig. 5.6 and 5.7. The exponential decay to zero of the mode strength can bee seen in

fig. 5.6. The first 20 PCA modes are necessary to capture 99% of the spectral content

of the input uncertainty Using the first 10 PCA modes one can capture slightly greater

than 90% of the spectral content.

While PCA yields independent vectors having maximal variance, it does not contain the

influence of these vectors on the function of interest. PCA modes cannot be truncated

reliably unless this additional information is available. This motivates the goal-based

PCA approach [168] using the adjoint sensitivity information presented in the next sec-

tion.
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Figure 5.7: Partial modal fraction for the LS89 turbine cascade first 20 PCA modes

5.5.3 Goal-based Truncation for Multiple QoIs

The impact of an input variation α on the QoI J is encoded in the adjoint sensitivity.

Therefore, by replacing α with the eigen modes of the PCA one can estimate the influence

of the mode on QoI J . Since the adjoint sensitivity is independent of the number of input

parameters, it is evaluated once and used for all the PCA modes.

ηPCAi = λi
dJ

dzi
≈ λi

dJ

dx
· zi (5.10)

Once the PCA modes are obtained they are projected on to the sensitivity field to obtain

the effectiveness factor (ηPCA) as shown in eq. (5.10). The PCA modes are sorted using

ηPCA and truncated using a new modal fraction defined in eq. (5.11). Note that eq. (5.11)

is obtained by replacing λ with the ηPCA in eq. (5.9). The projected PCA modes are

called the goal-based PCA modes or simply G-PCA.

λ̄i =
ηPCAi
n∑
j=1

ηPCAj

, Λ̄i =

i∑
j=1

ηPCAi

n∑
j=1

ηPCAj

(5.11)

Most references on G-PCA applied to surface perturbation models consider only a single

QoI or a single flow condition for the truncation, for example ref. [39]. In this work,
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multiple QoIs at multiple flow conditions are considered for the G-PCA truncation.

For example, if one has multiple objectives, say J1 and J2, the ranking and truncation

are performed individually for each objective and combined into a single set (union) of

truncated G-PCA modes. A similar procedure is followed for multiple flow conditions.

5.5.4 LS89 Goal-based Truncation Results

The eigenvalues of the first ten eigenmodes of the PCA and corresponding G-PCA eigen-

value of the surface perturbation over the LS89 cascade are plotted in fig. 5.8 for both test

conditions MUR43 and MUR47. The ranking of the first ten dominant mode numbers

are tabulated in tab. 5-C for the exit mass flow G-PCA (EM-GPCA), and total-pressure

loss G-PCA (TP-GPCA) eigenmodes. The G-PCA gives quite different ranking of the

modes in comparison to PCA. In particular, the difference is quite dramatic for the

MUR47 condition. Here PCA modes number 1 and 2 are in fact the least dominant in

comparison to the TP-GPCA and the mode 3 is the most dominant TP-GPCA mode.

The reason becomes clear when one plots the PCA modes against the surface sensitivity

field as shown in fig. 5.9(a)-(l). PCA mode 2 in fig. 5.9(k) has deformations occurring

only in regions of very low sensitivity. Similarly, PCA modes 2 and 3 are amongst the

least dominant EM-GPCA and mode number 4 is the most dominant EM-GPCA mode.

In particular, PCA mode 8 is highly dominant (considering EM-GPCA) for both test

conditions. From fig. 5.9(a,d) one finds that mode 8 has a constructive superposition

with the sensitivity field, which makes it quite effective.

Combining the (most dominant) five G-PCA modes in each QoI for the MUR43 test

case i.e., {1, 4, 5, 6, 8} one can capture 50% of the variations (in the G-PCA sense).

Considering the 7 modes {1, 3, 4, 5, 6, 7, 8} one can capture 50% of the spectral content

of the input variations (G-PCA) considering both test conditions and QoIs. Clearly

modes that are effective for a particular QoI and test condition need not be effective for

another. Therefore, when more QoIs and test conditions are considered the number of

G-PCA modes necessary to capture the spectral content of the input variations increases.
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Figure 5.8: First ten PCA eigenmodes (along with the G-PCA counter-part) of the
surface perturbation field over the LS89 cascade for indicated test condition and cost-
function; modes with very low effectiveness (< 10−2) are indicated by (*).

Figure 5.9: PCA eigenmode (coloured) and sensitivity (black) vector for the QoIs : exit
mass flow (red) and total-pressure loss (green) plotted for test conditions MUR43 (top)
(a)-(f) and MUR47 (bottom) (g)-(l) for indicated mode (trailing edge sensitivity clipped
for better visualisation)
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Table 5-C: Ranking of EM-GPCA and TP-GPCA modes w.r.t PCA for MUR43 and
MUR47 test conditions: most-dominant (left) to least-dominant (right)

Condition Type PCA mode #

MUR43

EM-GPCA 1 4 8 6 5 3 9 2 7 10
Λ̄i(%) 17 30 42 52 62 70 77 80 83 86

TP-GPCA 1 4 8 5 6 9 2 7 10 13
Λ̄i(%) 35 45 53 60 68 73 78 83 87 89

MUR47

EM-GPCA 1 4 3 7 5 9 8 11 13 2
Λ̄i(%) 17 33 47 57 65 73 76 82 85 88

TP-GPCA 3 7 6 4 5 11 10 15 14 1
Λ̄i(%) 17 33 46 54 61 68 73 77 81 84

5.6 FastUQ for Aerodynamic Uncertainties due to Surface

Variations

To the authors knowledge this is the first work to use MLMF Monte Carlo method for

the UQ of surface variations. Therefore, a practical implementation of this approach is

provided for reference. The method is shown schematically in fig. 5.11. To begin with the

method assumes that a surface disturbance model is available. In this work, the G-PCA

modes and amplitudes are extracted from the GP model of the surface variations. The

modes are typically obtained for the finest mesh (in the sequence of meshes) to maximise

the space of possible perturbed geometries. The selected modes are interpolated from

the surface mesh of the finest to all coarse levels. A piecewise-linear interpolation along

the cascade surface (see fig. 5.10) is employed in this work to interpolate the PCA modes.

The local parametric coordinate t along the cascade surface used for the piecewise-linear

interpolation is shown in fig. 5.10. The interpolation ensures that the samples across

levels belong to the same random path [19].

Independent Gaussian random samples with zero-mean and unit variance are generated

for the selected G-PCA modes. One can reconstruct the surface disturbance sample

using the weighted summation in eq. (5.8). A parallel fast mesh smoother is used to

propagate the surface perturbations into the volume. In this work inverse distance-

weighted interpolation (IDW) mesh smoothing is used for this purpose. The parallel
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Figure 5.10: Interpolation of PCA mode #4 from the fine to the medium and coarse
meshes

Figure 5.11: FastUQ workflow for surface variations

mesh smoother and its adjoint implementation are shown in Appendix B. The perturbed

mesh is then used to run either the HF or LF model to obtain the output QoI. Therefore,
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the total computational cost of a sample evaluation is a sum of the computational cost

of mesh smoothing and QoI evaluation (using HF or LF model).

The FastUQ sampler runs the initial sampling for the LF and HF model at each level

to construct the model correlations and multilevel parameters. Then based on the MSE

tolerance the number of additional LF and HF samples are estimated at each level

using eq. (3.26). Iteratively samples are added based on the MSE estimates derived in

sec. 3.4.1. The implementation of FastUQ in the Dakota toolkit was already presented

in sec. 3.5. The workflow presented in sec. 3.5 is adopted while choosing the surface UQ

model for the input uncertainties.

5.7 Results and Discussion

Using the multilevel framework and the combination of HF and LF models one can

generate a family of UQ methods. A summary of the methods is shown in tbl. 5-D. The

IMC versions proposed by Ghate occupies the first row in tbl. 5-D. This is the fastest

amongst the four methods summarised in tbl. 5-D but least accurate since it employs

only a LF approximate QoI evaluation. The proposed FastUQ method employs both

IMC LF (multifidelity) evaluation and multiple levels to accelerate the MC and is shown

in the second row. The standard MLMC method (SMLMC) is used as the benchmark

model to compared the FastUQ and IMC results. In terms of fidelity this has the highest

fidelity amongst the three methods since it does not employ any LF model.

Method HF LF Levels

Incomplete Monte Carlo (IMC) - IMC Single (Finest)

Multilevel Multifidelity Monte Carlo (FastUQ) RANS IMC Multiple

Standard Multilevel Monte Carlo (SMLMC) RANS - Multiple

Table 5-D: Summary of combinations of UQ methods using multiple levels and models

5.7.1 MUR43 and MUR47 Flow Condition

The MUR43 and MUR47 flow conditions are chosen for quantifying the aerodynamic

uncertainty due to surface variations. The Mach number contours for the two flow
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Figure 5.12: Mach number contours for the LS89 cascade at indicated test condition (for
the unperturbed mesh)

Figure 5.13: Mean and standard deviation of surface isentropic Mach number distribution
at indicated flow condition (±σ shown using error bars) obtained using 20 pilot samples
from the surface GP.

conditions are shown in fig. 5.12. MUR47 has a supersonic exit isentropic Mach number

of 1.02 and MUR43 has a subsonic exit isentropic Mach number of 0.84. One can notice

the presence of a shock wave in MUR47 near the trailing edge of the cascade, which

extends all the way into the exit. The total-pressure loss QoI is especially sensitive due

to the presence of this shock. The mean and standard deviation in the surface isentropic

Mach number is plotted in fig. 5.13. One finds that the surface isentropic Mach number

becomes quite sensitive after mid-chord of the cascade geometry on the suction side. The

variations are quite high for MUR47 due to the presence of the shock aft of the cascade.



Chapter 5. Modelling Geometric Uncertainties 112

Figure 5.14: Computational cost comparison of non-linear solution

5.7.2 Cost model parameters

The SMLMC and FastUQ adjoint-assisted MLMF requires a cost model for the multilevel

non-linear flow solution. The computational cost for the baseline (unperturbed) mesh

with a residual convergence tolerance of 10−11 is tabulated in fig. 5.14. The runtime

ratio wl for each level is also shown in fig. 5.14. Note that the runtime ratio for both

MUR43 and MUR47 are quite similar (see fig. 5.14). Hence a fixed runtime ratio of

{0.2 : 0.35 : 1.0} was used throughout. The computational cost for the baseline geometry

(nominal or unperturbed cascade surface) shown in fig. 5.14 is obtained using an uniform

flow initialisation. Note that the flow field for every HF sample evaluation in the UQ

analysis is initialised using this nominal solution to reduce the number of iterations

required for convergence. In addition, the number of iterations to convergence varies

depending on the size of the perturbation. If the perturbations are large then more

iterations are necessary and vice versa. To simplify the analysis, the runtime ratio wl is

assumed fixed based on the nominal cost and one ignores the variations in computational

cost due to difference in the perturbation size.

The cost of the adjoint solution and the relative cost ratio with respect to the HF solution

at each level is shown in fig. 5.15. Note that the adjoint solution is significantly cheaper

than the non-linear solution because the Jacobian matrix computation and its ILU0

factorisation are performed once during the first iteration and reused for all subsequent

iterations. But the non-linear primal requires re-computation of the Jacobian matrix and

its ILU0 factorisation for every iteration. The computational cost of the tangent solution
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MUR47 3.3 6.5 28.3
MUR43 0.3 0.2 0.4
MUR47 0.1 0.1 0.2
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MUR47 2.8 5.1 29.2
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MUR47 0.1 0.1 0.2
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Figure 5.15: Computational cost comparison of adjoint solution

Figure 5.16: Computational cost comparison of tangent solution for mode #4 (fine mesh)

for G-PCA mode #4 for MUR43 and MUR47 flow condition is shown in fig. 5.16. Using

the cost of the adjoint (see fig. 5.15) and tangent solution (see fig. 5.16) one can estimate

the setup cost of the IMC 1/2 model using the eq. (5.12) shown below.

Setup cost of IMC 1 = #QoI×AdjointCost

Setup cost of IMC 2 = #QoI×AdjointCost + #Modes× TangentCost (5.12)

Note that the cost model shown in eq. 5.12 is for a single flow condition whose cost of

adjoint and tangent linear solution is AdjointCost and TangentCost. #QoI and #Modes

in eq. 5.12 denotes the number of QoIs and G-PCA mode included in the analysis.

5.7.3 Effects of G-PCA Truncation

To quantify the effect of G-PCA truncation the UQ of the LS89 cascade for the MUR47

flow condition was carried out using the SMLMC. Two sets of SMLMC simulations were

run, (i) using 7 and (ii) 25 G-PCA modes (combining modes based on both QoIs and
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flow conditions as shown in sec. 5.5.3). The 7 G-PCA modes capture 50% and the

25 G-PCA modes capture 99% of the total variations in the input uncertainty. Two

levels of coarsening of the original mesh was performed maintaining a near wall spacing

y+ ≈ 1− 2. The fine, medium and coarse meshes have approximately 90k, 60k, and 40k

nodes respectively. The cost model parameters from sec. 5.7.2 are used in the current

SMLMC simulation. For both sets 10 pilot samples were used per level to obtain the

initial model correlations. An MSE tolerance of 0.1 was specified for the simulations.

The mean and standard deviation obtained from the simulation are tabulated in tab. 5-

E. Inclusion of more modes does not dramatically alter the mean value of the exit mass

flow rate but the mean total-pressure loss is quite sensitive. Although the variation in

the mean of the QoI (between 7 and 20 modes) is < 2% the standard deviation has a

high variation in the QoI (around 36%). Therefore, all simulations henceforth use 25

G-PCA modes since it captures 99% of G-PCA variation and the predicted variations

with 7 modes differed significantly from the 25 G-PCA modes.

# G-PCA modes Exit mass flow Total-pressure loss

7 modes 4.62604 (±2.07639× 10−2) 1.85356 (±1.07648× 10−1)

25 modes 4.62286 (±2.64565× 10−2) 1.89269 (±1.48167× 10−1)

Table 5-E: SMLMC mean and standard deviation of indicated cost function obtained
using 7 and 25 dominant (combined) G-PCA modes for the MUR47 test case (MSE
tolerance 0.1)

Lange et al. [18] considered blade measurements from 3-D surface scan data of a high

pressure compressor stage. The correlated coordinates from the 3-D scan were translated

into mode shapes and uncorrelated modal amplitudes using PCA. Lange et al. included

all 135 PCA modes in their perturbation model within the MC simulations and compared

it with MC results considering 20 and 60 PCA modes. Lange [18] concludes that 60 PCA

modes (half of the total number of PCA modes) were necessary to correctly model the

manufacturing variability on the blades. Inclusion of 25 G-PCA modes of the LS89

cascade already increases the input uncertainty space quite dramatically. But a large

number of input uncertainties can be handled using FastUQ with IMC 1 LF model (see
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sec. 3.2) and the G-PCA can help truncate the statistically independent PCA modes

that do not contribute to the change in QoI. Therefore, this suggests that FastUQ with

IMC 1 LF model and G-PCA based truncation are well suited methods for the problem

under consideration.

5.7.4 Effect of Pilot Sampling

The accuracy of the variance estimate at each level depends on the size of the initial

samples set considered, which are also called the pilot samples. One needs to ensure

that the bias error in the initial sampling is minimal because the estimation of the bias

error is not considered in SMLMC [19]. Giles [19] suggests that the bias error be made

proportional to ε−p, where p is bound by 0 < p < 2 − 1
α and for a second order spatial

discretisation α ≈ 1
2 . To test the bias error in the pilot sampling, the number of pilot

samples was doubled from 10 to 20 and the change in QoI for an MSE tolerance (ε) of

0.1 was recorded for the SMLMC and is shown in tbl. 5-F. The results indicate that

the change in the mean and standard deviation of QoI between the two pilot samples

satisfies the aforementioned bound. Therefore, the 10 pilot sample run was used for all

subsequent calculations. Note that the bias error and the initial sampling of MLMC

demands further investigation. Adopting the CMLMC method can help resolve this

problem but it has been postponed to a future study (see ch. 6).

# pilot samples Exit mass flow Total-pressure loss

10 4.62286 (±2.64565× 10−2) 1.89269 (±1.48167×10−1)

20 4.62267 (±2.64368× 10−2) 1.89274 (±1.48438×10−1)

Table 5-F: QoI statistics with different pilot samples in SMLMC (MUR47 condition with
MSE tolerance 0.1)

5.7.5 Optimal Resource Allocation and MSE Convergence (SMLMC)

The SMLMC using 25 G-PCA modes was run for four MSE tolerances, 1.0, 0.1, 0.05,

and 0.01 respectively for the MUR47 flow condition. The resource allocation between

the three mesh levels (coarse, medium, and fine) to achieve the aforesaid MSE tolerances
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Figure 5.17: SMLMC results for the LS89 test case MUR47; (a) optimal sample allocation
based on eq. (3.26) and (b) MSE convergence.

is shown in fig. 5.17 (a) (based on eq. (3.26) for optimal resource allocation). Results in

fig. 5.17 (a) show that all computations required sample evaluation only on the coarsest

mesh up to an MSE tolerance of 0.05 (excluding the 10 pilot samples at each level).

This is primarily due to well correlated values of the QoI between levels i.e, the gross

variations are captured by the coarse levels. This is an important requirement for mul-

tilevel methods [24]. The mean and standard deviation values obtained for the various

MSE error tolerance are tabulated in tbl. 5-G. In tbl. 5-G one observes that for an MSE

tolerance of 0.01 more equivalent HF samples are necessary to capture the finer details

of the variations. The equivalent HF samples are still cheaper to evaluate because most

of the samples are computed from the coarse level solution (see fig. 5.17(a)). The con-

vergence of the MSE with equivalent HF samples P is plotted in fig. 5.17 (b), where the

dotted trend-line indicates the O(P−1) convergence. The initial convergence is sharp for

MSE< 0.05 but for larger MSE> 0.05 the convergence matches O(P−1).

MSE Exit mass flow Total-pressure loss Eqv. HF

1.0 4.62043 (±3.31661× 10−2) 1.90907 (±1.92868× 10−1) 23

0.1 4.62286 (±2.64565× 10−2) 1.89269 (±1.48167×10−1) 29

0.05 4.62339 (±2.43004× 10−2) 1.89003 (±1.53320×10−1) 37

0.01 4.62408 (±2.42732× 10−2) 1.89980 (±1.47926×10−1) 182

Table 5-G: SMLMC mean and standard deviation of indicated cost function obtained
using 25 dominant (combined) G-PCA modes for the MUR47 test case
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5.7.6 Accuracy of Adjoint Correction

To test the accuracy of the IMC LF model the aerodynamic UQ of LS89 cascade at

the MUR47 condition for the two QoIs, namely, exit-mass flow and total-pressure loss

was carried out. IMC 1 LF model requires only a single adjoint solution per QoI and

its computational cost is independent of number of PCA modes (see sec. 3.2). For each

level the IMC 2 LF model requires as many tangent linear solutions as the number of

G-PCA modes (in addition to the cost of the adjoint solution). Note that the above

estimates are the number of solution evaluations to construct the LF model per level in

the case of FastUQ and it is a one time cost associated with the LF model setup.

The results presented in sec. 5.7.3 showed that 25 G-PCA modes were necessary to

capture 99% of the input variations and using lower number of G-PCA modes gave large

variations in the standard deviation of the QoI for the MUR47 test condition. The setup

cost of the IMC 2 LF model for 25 modes is 17 equivalent HF samples (calculated based

on eq. (5.12)). This setup cost is in fact greater than the computational cost in equivalent

HF samples for the entire IMC 1 simulation for an MSE tolerance of 0.01 (see tbl. 5-

H). Therefore, for large number of input uncertainties IMC 2 setup cost becomes quite

high. In addition, the MUR47 condition has a shock discontinuity in the solution. This

reduces the regularity of the solution, which introduces large errors in the higher order

adjoint corrections [1, 29, 2] (also see sec. 3.3.3) Therefore, the analysis using IMC 2/3

models is postponed to a future study and only the IMC 1 LF model is considered in all

simulations.

The results of the IMC 1 are compared against the SMLMC results in tab. 5-H for the

same prescribed MSE tolerance of 0.01. Note that the sample allocation per level for

SMLMC is shown in fig. 5.17(a) and the IMC 1 is run on the finest mesh level. The

equivalent HF samples for the IMC 1 simulation is obtained by multiplying the total

runtime of the IMC 1 simulation with the ratio of the SMLMC equivalent HF samples

to the SMLMC runtime (for the prescribed MSE tolerance).
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Type Exit mass flow Total-pressure loss Eqv. HF

SMLMC 4.62408 (±2.42732× 10−2) 1.89980 (±1.47926× 10−1) 182

IMC 1 4.62367 (±2.41368× 10−2) 1.77778 (±1.52438× 10−1) 12

Table 5-H: Mean and standard deviation of indicated cost function obtained using 25
dominant (combined) G-PCA modes for the MUR47 test case (SMLMC and IMC 1)

Two important observations can be made from the results shown in tbl. 5-H. Firstly, the

IMC 1 takes only a fraction of the cost of the SMLMC (≈ 1
10) for the same MSE tolerance.

The SMLMC took close to 27h to complete whereas the IMC took 1.7h. Secondly, the

total-pressure loss (mean and variance) obtained using IMC 1 has large deviations from

the SMLMC results but the deviation of the exit mass flow rate QoI is lower. This clearly

shows the shortcoming of the IMC 1 model for sensitive and non-linear QoIs, which can

be remedied using the FastUQ method.

5.7.7 FastUQ Results

The performance of the multilevel multifidelity FastUQ method described in sec. 5.6 is

a strong function of the correlation between the HF and IMC LF model (see eq. (3.26)).

Therefore, the correlation at each level for the MUR43 and MUR47 test case is plotted

in fig. 5.18 (obtained from the 10 pilot samples). One finds that the correlation is quite

high for both MUR47 and MUR43 test conditions (average correlation for both cases is

≥ 0.95). But the coarse level in MUR43 has a lower correlation value of 0.76. Therefore,

one can expect more HF sample evaluation at the coarse level for MUR43 to compensate

for the lower correlation. This is clearly reflected in the resource allocation shown in

fig. 5.22, where 151 additional HF samples are evaluated for the MUR43.

The QoI statistics for both MUR43 and MUR47 test conditions were computed using

all three UQ methods for an MSE tolerance of 0.01 and the results are summarised in

fig. 5.19-5.21. The computational cost reduction in comparison to the runtime of the

SMLMC achieved by FastUQ and IMC are shown in fig. 5.19. The percentage variation

in the mean and standard deviation from SMLMC results for FastUQ and IMC are

shown in fig. 5.20 and 5.21. The computational cost comparison in fig. 5.19 shows that
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Figure 5.18: Pearson correlation between HF and LF model for each mesh level (MUR43
and MUR47 test condition and indicated QoI)

Figure 5.19: Percentage reduction in computational cost compared to SMLMC results.

Figure 5.20: MUR47 mean and standard deviation variation with respect to SMLMC
results

FastUQ gives ≈ 70% reduction in computational cost over SMLMC and the variations in

mean and standard deviation of the QoI are within 1% variations of the SMLMC results.

IMC achieves an additional 25% reduction compared to FastUQ. Although the mean and

standard deviation for the exit mass flow rate QoI is captured within 1% tolerance, IMC
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Figure 5.21: MUR43 mean and standard deviation variation with respect to SMLMC
results

Figure 5.22: Computational resource allocation across levels and models

has significantly large deviations for the total-pressure loss QoI. Variations as large as

10% can be observed in the standard deviation and 6% in mean values.

FastUQ on the other hand uses the LF model only in regions where it is applicable and

resorts to using the model correlation or running the HF model when the LF model has

large deviations (lower correlation). This behaviour can be confirmed using the FastUQ

resource allocation shown in fig. 5.22. Since the model correlation for MUR47 test case

are higher (in the range 0.98-0.99 show in fig. 5.18) more LF samples are evaluated using

the IMC 1 model and the correlation is used to correct the QoI. On the contrary the

correlation for the coarse mesh is lower in MUR43 so additional HF samples are used to

compensate this error.
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5.8 Summary

In this chapter the FastUQ method was used to obtain the uncertainty in aerodynamic

performance, namely total-pressure loss and exit mass flow, due to surface variations

caused by manufacturing process. A Gaussian process model for surface variation was

proposed and goal-based PCA was used to truncate and reduce the number of input

surface uncertainties. The method was demonstrated on the LS89 turbine cascade for

two sensitive flow conditions. When UQ analysis for multiple flow conditions and QoIs

are desired the number of surface G-PCA modes required to capture the input variations

can increase significantly. In this study, 25 G-PCA modes were necessary to capture the

variations in the QoIs for the cascade. In additions, the goal-based truncation was

necessary since not all dominant PCA modes were actually dominant in the G-PCA

sense.

The performance and accuracy of FastUQ was compared with SMLMC and IMC 1

methods. FastUQ is similar in accuracy to SMLMC but the computational cost is 70%

lower than SMLMC. FastUQ does not suffer from the loss of accuracy compared to the

IMC 1 since the control variate corrects the approximate LF evaluations using model

correlations and resorts to using HF samples when model correlations are low.



Chapter 6

Summary and Recommendations

“Oh! Arjuna surrender the fruits of your action to me and do not worry;

you are neither the doer nor the cause . . .”

— Shri Krishna, Bhagavathgeetha

In this thesis an adjoint-based multilevel multifidelity Monte Carlo method was proposed,

analysed, and used to quantify uncertainties in aerodynamic parameters due to surface

variations caused by manufacturing process. The following is a recapitulation of the

thesis.

• A survey of uncertainty quantification methods was presented in ch. 2. Convergence

of methods based on Monte Carlo (MC) sampling was found to be independent

of number of input uncertainties while methods based on generalised polynomial

chaos expansion (gPCE) and Stochastic Collocation (SC) was shown to suffer from

the curse of dimensionality. But gPCE and SC gives O(P−2) rate of convergence

(with samples P ) but the MC suffers from the slow convergence rate O(P−0.5)

of the Root Mean Square Error (RMSE). Improvements to both methods target

these deficiencies. The multilevel and multifidelity Monte Carlo methods were

motivated using the control variate framework. Control variate (CV) accelerates

the MC by employing an approximate evaluation of the QoI (in addition to the

original estimator also called the high-fidelity (HF) model). If the approximate or

low-fidelity model (LF) is cheap to evaluate and has a reduced variance then one
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can prove that a linear correction to the estimator (see eq. (2.23)) improves the

predicted output with lower equivalent high-fidelity (HF) samples. In addition,

high correlation between the HF and LF models was identified to be crucial for

the success of CV. The reduction factor due to MFMC compared to MC φ was

derived as an extension to the multifidelity Monte Carlo (MFMC) framework of

Ng et al [3].

• The multifidelity control variate requires one to carefully choose the LF model.

The LF model should not destroy the favourable property of MC i.e., a conver-

gence independent of number of input uncertainties. The IMC approximate QoI

evaluation using adjoint correction [1] was proposed as a LF model in ch. 3. The

multifidelity framework was analysed based on the work of Ng et al. [3] and demon-

strated on the viscous Burgers’ equation analytical model with uncertain boundary

condition. The multifidelity reduction factor φ derived in ch. 3 was validated using

the Burgers’ model problem. The framework was extended to the multilevel mul-

tifidelity (MLMF) framework of Geraci et al. [4]. The main result of the analysis

presented in the thesis is the link between the multifidelity reduction factor φ and

the the MLMF reduction factor Λ. The factor φ ≥ Λ (see eq. (3.29)), which guar-

antees improvement of MF when introduced in a multilevel framework. Another

insight from the analysis was the strong dependence of the computational reduc-

tion on the correlation between HF and LF model. Implementation of the proposed

multilevel multifidelity FastUQ framework in the Dakota toolkit was presented.

• The high fidelity (HF) model used in this work is a parallel solver based on a second

order edge based finite volume discretisation of the RANS equation. A two-halo

layer (THL) partitioning algorithm was used to parallelise the flow solver. The THL

reduced the total communication by half with negligible increase in the number

of redundant computations compared to a single-halo layer partitioning (SHL)

approach. Moreover the partitioning simplified the adjoint and tangent linear

solver development by eliminating MPI call within the residual routine compared
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to the zero-halo layer (ZHL) or the SHL approach. The non-linear solver was

validated against external and internal flow test cases. The gradients obtained

from adjoint and tangent linear solution compared well with the finite-difference

counterpart.

• A probabilistic model for geometric perturbations based on Gaussian Process (GP)

was proposed in ch. 5 using a square exponential correlation function. The correla-

tion length and height were made problem-specific parameters, which a user has to

specify. A procedure to separate statistically independent modes and to truncate

them considering multiple QoIs using the adjoint effectiveness factor ηPCA was

proposed. The FastUQ framework was used to obtain the statistics of the QoIs,

namely total-pressure loss and exist mass flow for the VKI LS89 turbine test case

subject to the proposed geometric disturbance model at two sensitivity flow con-

ditions. The G-PCA truncation was performed and its effect on the QoI statistics

was analysed. The results showed that modes dominant in PCA can be ineffective

in goal-based measure and can differ greatly between QoIs. In addition, signifi-

cant increases in G-PCA modes after truncation was observed when one considers

multiple flow conditions and QoIs. The FastUQ results were compared against

the SMLMC one for the LS89 cascade subject to the truncated G-PCA surface

perturbation GP model. No significant loss of accuracy was observed but a 70%

reduction in computational cost was achieved. Results from IMC 1 LF model (from

sec. 3.2) was compared with FastUQ. Differences close to 10% in standard devia-

tion and 6% in mean was observed for the IMC 1 due to its approximate nature.

Overall the FastUQ has lower computational cost for maintaining similar solution

accuracy as SMLMC. In addition the use of IMC 1 LF model in FastUQ retains

the independence of convergence to number of input uncertainties.



Chapter 6. Summary and Recommendations 125

 

12 ▪ VOL. 43, No 1, 2015 FME Transactions 
 

coincide with the disk thickness (dz) used for 
discretizing the tool in the model to be used for force 
predictions. Machining was performed with a high-
speed cutting steel (NSSE 8% Co) ball-end mill with a 
12 mm in diameter with 2 teeth and a helix angle of 300 
on a horizontal machining centre ILR HMC500/40. 
Measurements were performed at four positions along 
the tool axis, i.e., at three positions along the ball part 
and at one along the cylindrical part of the cutter. The 
experimentally determined values of the cutting force 
coefficients along the tool axis are presented in Table 1. 
Table 1. Dependence of the cutting force coefficients on 
cutting edge segment location along the tool axis 

Z/R Ktc[N/mm2] Krc[N/mm2] Kte[N/mm2] Kre[N/mm2]

0.03 1230 348.4 16.6 5.6 

0.33 957.8 443.5 6.8 3.8 

0.67 930 442.9 6.5 3.3 

1 940 557.1 6 0.9 

 
In order to verify the applicability of the determined 

cutting force coefficients comparative analysis of the 
cutting forces obtained by simulation and experiments 
was carried out under the following machining 
conditions: axial depth of cut of 2 mm, radial depth of 
cut od 12 mm, feedrate per tooth 0.07 mm/tooth and 
cutting speed of 40 m/min performed with a ball-end 
mill of 12 mm in diameter with 2 teeth. 

The cutting forces were simulated using MATLAB 
code that was developed in accordance with the 
algorithm described in [20]. A comparison of the 
experimentally determined and simulated cutting forces, 
based on the cutting force coefficients in Table 1, for a 
complete revolution of the tool, are given in Fig. 4. A 
slight disagreement between the simulation results 
(Sym-1) and the experimentally determined values of 
the cutting forces (Exp) is caused by the tool’s radial 
eccentricity, amounting to 0.01 mm. Simulation results 
with included radial eccentricity are represented by the 
line Sym-2. Based on the above, it can be concluded 
that the applied model for cutting force prediction 
produces results acceptable for further use in the 
toolpath generation algorithm. 

 
Figure 4. Comparison of cutting forces determined based 
on simulation and experiment 

4. TOOL PATH OPTIMIZATION 
 
4.1 Algorithm 
 
Using the developed cutting force model for the given 
combination of tool and workpiece material, CAM 
software has been developed and employed to generate 
tool paths according to the iso-parametric method, using 
as an example bicubic Bézier surfaces. The software 
generates a surface grid according to the equation: 
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where the basic functions bi(u) and bj(v), i,j=0,1,2,3 are 
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where t is a parameter defined in the range of [0,1] and 
Pij are control points whose coordinates are inputed into 
the MATLAB code. Further, in accordance to the tool 
radius used the software determines the Cl points which 
lie in the direction of the surface normal vector offset 
from the surface by a distance equal to the tool radius 
(R). The normal vector can be calculated from: 

 u v

u v

S S
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S S
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u
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where Su represents the partial derivate of surface S with 
respect to the parameter u, and Sv with respect to v. 
According to the workpiece geometry and tool radius, 
the developed software determines at each point of the 
grid the axial and radial depth of cut according to the 
scheme in Fig. 2c. For the recommended cutting speed 
and the initial value for the feedrate per tooth that is 
defined according to the recommendations of the tool 
manufacturer the maximum value of the resulting 
cutting force in the plane perpendicular to the tool axis 
is calculated according to: 

 2 2
XY X YF F F F  �  (8) 

where FX and FY are determined according to the 
method described in Section 3 for the given 
combination of the workpiece and tool material. Based 
on the defined maximum value of the cutting force the 
software performs a correction of the initial feedrate if 
necessary, so that the cutting force is maintained (within 
a tolerance limit of ±5%) at the user specified level 
(FXYmax). 

The described procedure is summarized by the flow 
chart of the algorithm shown in Fig. 5. 

According to the procedure described above the 
software generates tool paths for which the cutting force 
is maintained at a constant value by varying the feedrate 
in the specified range, e.g., from 0.015-0.13 mm/tooth 
for a cutting speed of 40 m/min used above. In the case 
that the value of the feedrate reaches the minimum 
allowable value, and the cutting force value is higher Figure 6.1: Simulation and experimentally determined tool cutting force (from ref. [7])

6.1 Recommendations For Future Work

6.1.1 Model Improvements

The proposed surface disturbance model for geometric variations is synthetic. A more

realistic model should be based on empirical blade measurements [18]. Another approach

to modelling surface perturbations due to machining that has not received much atten-

tion is the use of techniques already available in the field of CAD/CAM, namely tool

path design and tolerancing [7, 173]. Any machining system works on removing or adding

material using a tool to manufacture a given design. The characteristics like tool vibra-

tion, cutting forces, material property of the working material, etc. play a pivotal role in

determining the final finished surface. For example the assumed and measured cutting

forces in a steel ball-end tool from ref. [7] is shown in fig. 6.1. Therefore, there are many

deterministic parameters that are ignored due to an aleatoric modelling of the uncer-

tainty. Practically the problem consists of both epistemic and aleatoric uncertainties.

Approaching the problem from the perspective of manufacturing and tolerancing [165]

can bring more insight into the UQ analysis and on the final design optimisation of the

blades. In fact one can link CAM and tool path via CAD into the design.
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6.1.2 MLMC improvement

The continuation MLMC proposed by Pisaroni et al. [21] solves the problem of pilot

sampling using a sequence of decreasing tolerances and an online algorithm to obtain the

problem dependent rates and constants of the SMLMC. CMLMC reduces the ambiguities

with bias error in the initial sampling of the SMLMC. Currently, the Dakota toolkit does

not support CMLMC and this can be a useful addition if implemented in Dakota.

6.1.3 Comparison with other UQ methods

In the present work the full MC simulation of the LS89 turbine cascade was not carried

out. Therefore, a comparative study with plain MC in combination with other sampling

techniques like LHS and QMC is proposed. In addition, comparison of accuracy and

computational cost with gPCE and SC is proposed to be carried out for the surface UQ

problem.

6.1.4 Better than O(P−1) Convergence

Recently Peherstorfer [174] proposed an adaptive goal-based model selection framework

for multifidelity control variates. Here multiple LF models are used to accelerate the

control variate, where the coarse grid solutions are also considered as LF models. The

author proves that the method has a convergence rate O(P−1−α), where P is the number

of samples and α is a positive quantity compared to the usual O(P−1) convergence of

multilevel methods.

6.1.5 Solver Improvements

Although the present solver is quite robust it is not robust enough to be applied to large

perturbations of the surface. A full Newton-Krylov solver with pre-conditioner based

on the the second order Jacobian matrix has strong stability properties. Using AD and

graph colouring approach [175] it is simple to construct the full second order matrix.

Use of a scalable GMRES and pre-conditioner algorithm as recommend in ch. 4 should

help the scalability of the solver to large test cases.
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6.1.6 New application areas

The FastUQ method can be applied to new problem areas like robust optimisation

and risk based design under manufacturing uncertainties by including importance sam-

pling [43, 15, 176]. The computational gain can significantly improve such workflows.

The IMC method can be used as an outline or approximate method in the robust opti-

misation. The FastUQ can then be used after a rough initial design has been obtained

using IMC.
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Inverse Distance Weighted

Interpolation Mesh Smoothing

and Adjoint

Mesh deformation, smoothing or morphing is a critical aspect of the present UQ analysis.

Firstly, the quality of the mesh smoother affects the numerical solution. Secondly, the

computational cost of mesh smoothing adds to the cost of UQ. Lastly, the IMC model

requires the adjoint of the mesh smoothing algorithm. Therefore, an ideal mesh smoother

should satisfy the following key criteria,

• Computationally efficient and easily parallelisable

• Zero or minimal deterioration of mesh quality post-smoothing

• Easily and efficiently adjoinable (transpose)

The aim of a mesh smoother is to generate a map A that projects the displacement field

δxb defined on a boundary ∂Ω onto a displacement field δx defined over the volumetric

domain Ω as shown in eq. (B.1). The map A is expected to satisfy the aforementioned
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criteria for an ideal smoother. The mesh smoothers available in literature can be classified

into two broad categories, namely, (i) methods involving solution to linearised systems

(SLS), and (ii) direct or algebraic methods (DAM).

δxb︸︷︷︸
∂Ω

A−−−→ δx︸︷︷︸
Ω

(B.1)

The methods based on the solution to linearised system usually involves the inversion of

a linear system to obtain the final smoothed deformation field as shown in eq. (B.2). M

is a non-square permutation matrix to match up the dimensions of ∂Ω and Ω.

δx = A−1Mδxb (B.2)

In contrast, DAM does not require inversion of a matrix system but involves a pure

matrix multiplication as shown in eq. (B.3). But the matrix A in eq. (B.3) is usually a

dense rectangular matrix and one in eq. (B.2) is a sparse square one.

δx = Aδxb (B.3)

Mesh smoothing based on linear or torsional spring model and linear elasticity are typ-

ical examples of smoothing base on SLS. Linear elasticity is a robust mesh smoothing

algorithm for large deformation (see ref. [177, 178, 179, 180]). Yang and Mavriplis [179]

derived the adjoint of the linear elasticity and used the same to optimise the Young’s

modulus to yield mesh with minimum skewness. But the authors report that the adjoint

is computational expensive. Xu et al. [181] used linear elasticity for mesh smoothing and

an inexpensive linear spring model to obtain the adjoint. Although this is an attractive

alternative it brings inconsistencies and uncertainties into the workflow. The primary

aim in the present work is to have a consistent mesh smoothing and sensitivity projec-

tion (adjoint mesh smoothing). In addition, the MLMC requires generation of a large

number of deformed mesh samples. Therefore, it is necessary to keep the computational

cost as low as possible.
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Inverse Distance Weighted (IDW) interpolation is an explicit technique for multivari-

ate interpolation of scattered data points. It was first introduced by Shepard within

the framework of geographical information systems [182]. IDW as a DAM type mesh

smoother was first proposed by Witteveen [183]. The author observed that to achieve

good mesh quality it is necessary to also interpolate the rotation. But this destroys

the extremum conserving property of IDW i.e, internal nodes could move outside of the

domain. To prevent this situation various checks are usually added to the algorithm,

which are summarised in ref. [184].

The implementation of the IDW smoother is fairly straightforward since no mesh con-

nectivity information is necessary. Therefore, arbitrary mesh topologies, and hanging

nodes, can be deformed without any modifications to the algorithm. In addition, the

internal node in IDW only depends on the boundary node deformation which simplifies

parallelisation. Luke and co-workers [185] used a fast multipole method (FMM) to speed-

up the dense matrix-multiplication in IDW. In addition, the authors demonstrated the

distributed parallelisation of the FMM based IDW smoother. Uyttersprot [184] gives a

detailed comparison of IDW with other mesh smoothers for various types of meshes and

deformation fields. The author concludes that IDW is comparable to linear elasticity

and radial basis function (RBF) based mesh smoothers. In addition, the author provides

an implementation of the IDW including local rotations and mesh sliding.

B.1 Mesh Smoothing Implementation

The basic kernel in IDW is eq. (B.4), where a volumetric field φ(x) is obtained from

a boundary field φb(x) based on an inverse distance weighting kernel wb(x) defined in

eq. (B.5). Luke [185] suggests a value for the power parameters a = 3 and b = 5 based

on their numerical tests. The parameter Ldef is chosen to be the furthest distance from

any mesh node to the centroid of the mesh. The parameter α controls the weighting

of near boundary nodes over more distant ones. Uyttersprot [184] recommends to use

a value of α ≥ 0.1 to guarantee good near-boundary mesh quality. The parameter A
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is the boundary face area weighting and Uyttersprot [184] recommends to ignore this

parameter (i.e, A = 1). The OpenMP parallel C++ code of the IDW kernel is shown in

listing 1. The norm2 function is the L2 norm function and Cilk array notations [186] are

used to concisely represent the code.

φ(x) =

nb∑
b=0

wb(x− xb)φb(x)

nb∑
b=0

wb(x− xb)

=
p

q
(B.4)

wb(x− xb) = A

[(
Ldef
||x− xb||

)a
+

(
αLdef
||x− xb||

)b]
(B.5)

1 /* Constants A, a, b, LDEF, ALPHA assumed pre-defined */

2 void PrimalKernelIDW

3 ( const int n, const int nb,

4 const float x[][3], const float xb[][3],

5 float dx[][3]/* in */ , float dxb[][3]/* out */ )

6 {

7 #pragma omp parallel for

8 for ( unsigned i = 0; i < n; ++i ) {

9 float p[1:3] = 0.0;

10 for ( unsigned j = 0; j < nb; ++j ) {

11 float temp = 1.0 / norm2( x[i][1:3] - xb[j][1:3] );

12 float wb = A * ( pow( LDEF * temp, a ) +

13 pow( ALPHA * LDEF * temp, b ) );

14 p[1:3] += wb * dxb[j][1:3];

15 q += wb;

16 }

17 dxb[i][1:3] = p[1:3] / q;

18 }

19 }

Listing 1: OpenMP parallel C++ code for the IDW kernel

Boundary deformation for two test cases is shown in fig. 2.1(a-b). In the first test case

(fig. 2.1(a)) two types of deformation field are imposed on the square hole inside a plate

(butterfly mesh topology). The deformation shown in red deforms the square to a circular

hole and the one in green rotates the square by 10o in anti-clockwise direction. Note

that the mesh is stretched towards the square hole. The deformation results from linear
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(a) (b)

Figure 2.1: Two test cases for mesh smoothing (a) square hole in a butterfly mesh
topology transforming to a circle (red) and rotation by 10o anti-clockwise (green) (b)
square hole in cartesian mesh topology transforming to a circle (red) and outer square
boundary transforming to a circle (green)

spring, linear elasticity, and IDW mesh smoother is shown in fig. 2.2. The IDW performs

on par with linear elasticity and the linear spring generates highly skewed elements near

the hole. This is usually remedied by including rotations. Since no such rotations were

used in the IDW it is fair to make this comparison.

A similar result is obtained for the second test case (fig. 2.1(b)), where the first defor-

mation field (in red) transforms the square hole (in a cartesian mesh topology) into a

circular one and the second (in green) transforms the outer plate boundary to a circle.

The total serial runtime (of core numerical kernel) to generate the deformed meshes for

the three mesh smoothing methods are tabulated in tab. 2-A. IDW outperforms the

other two mesh smoothers and the quality of the deformed mesh is comparable to the

linear elasticity results.

Linear Spring Linear Elasticity IDW

2.3s 57.1s 1.5s

Table 2-A: Serial runtime comparison between various mesh smoothers (linear solver
convergence tolerance of linear elasticity and spring set to 10−10)
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Spring Elasticity Inverse distance
weighted

Inverse
distance
weighted

Spring Elasticity

Figure 2.2: Results of the boundary deformation define in fig. 2.1(a) for the linear spring,
linear elasticity and IDW (zoomed near the corner and inverted elements marked in red)

B.2 Adjoint of Mesh Smoother

The IDW is a simple mathematical kernel and hence it is simpler to manually derive

the adjoint rather than using AD tools. Moreover, manual adjoining results in a more

efficient code (free from push/pop). The form of IDW shown in eq. (B.5) is a matrix-free

from and it is first necessary to bring that into matrix form. Let the superscript on

xj denote a boundary node and subscript on xi denote an internal volume node and

rewriting eq. (B.5) in this new notation one obtains eq. (B.6).

δxi =

∑
j∈∂Ω

w(xi − xj)δxj∑
j∈∂Ω

w(xi − xj)
=
∑
j∈∂Ω

aji δx
j =

[
aji

]
nb×n︸ ︷︷ ︸
A

δxj i ∈ Ω (B.6)

Note that the term aji = w(xi−xj)∑
k∈∂Ω

w(xi−xk)
=

pji
qi

. The adjoint model can be readily derived as

shown in eq. (B.7), where the transpose IDW mesh smoothing operator AT is given in

eq. (B.8). Similar to the primal smoother, the adjoint can be implemented using a matrix-
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Figure 2.3: Results of the boundary deformation define in fig. 2.1(b) for the linear spring,
linear elasticity and IDW (zoomed near the corner and inverted elements marked in red)

free approach. The parallel OpenMP implementation of the matrix-free adjoint IDW is

shown in listing 2. In comparison to the primal mesh smoothing the adjoint performs

less operations per loop count and involves OpenMP reduction operation. Therefore,

the scalability of the adjoint is worser than the primal algorithm.

δx̄j = δx̄j + AT δx̄i (B.7)

AT δx̄i =


a1

1 . . . . . . . . . a1
n

...
. . .

. . .
. . .

...

anb1 . . . . . . . . . anbn


nb×n



δx̄1

...

...

...

δx̄n


n×1

=


p1

1
q1
δx̄1 + . . .+ p1

n
qnb
δx̄n

...

p
nb
1
q1
δx̄1 + . . .+ p

nb
n
qnb
δx̄n


nb×1

(B.8)
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1 /* Constants A, a, b, LDEF, ALPHA assumed pre-defined */

2 void AdjointKernelIDW

3 ( const int n, const int nb,

4 const float x[][3], const float xb[][3],

5 float dx[][3]/* in */ , float dxb[][3]/* out */ )

6 {

7 for ( unsigned i = 0; i < n; ++i ) {

8 float q = 0.0;

9 #pragma omp parallel for reduction(+:q)

10 for ( unsigned j = 0; j < nb; ++j ) {

11 // Lambda function to obtain p^j

12 p[j] = [&]()

13 {

14 float dr = 1.0 / norm2( x[i][1:3] - xb[j][1:3] );

15 return A * ( pow( LDEF * dr, a ) +

16 pow( ALPHA * LDEF * dr, b ) );

17 }();

18 q += p[j];

19 }

20 q = 1.0 / q;

21 #pragma omp parallel for

22 for ( unsigned j = 0; j < nb; ++j )

23 dxb[j][1:3] += p[j] * q * dx[i][1:3];

24 }

25 }

Listing 2: OpenMP parallel C++ code for the IDW adjoint kernel
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Algorithmic Differentiation and

Seeding

Algorithmic Differentiation (AD) is a technique to obtain derivatives of a computer

code or program using the chain rule of calculus. This is in stark contrast to numerical

differentiation (eg. finite-difference), which incurs truncation error. In AD the derivatives

are exact to machine round-off. At the same time they are not symbolic differentiation

because the final and intermediate results are always numerical values in finite precision.

In principle, AD takes a computer program or code and parses it into a computational

graph of primitive mathematical operations. Then each primitive is individually differ-

entiated and assembled using the chain rule to yield the final output. Two important

quantities must be know a priori for the differentiation (i) input and (ii) output vari-

ables. The AD process is quite amenable to automation as the rules of differentiation for

the primitives are simple to encode into an AD software tool. There are two competing

ways to implement AD, namely, Operator overloading (OO) and Source Transformation

(ST) [187, 92] and each have their own merits and shortcomings. In this work the ST

AD using Tapenade [92] is used to obtain derivatives for the scientific code STAMPS.

137
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C.1 Forward and Reverse Mode of AD

The program code whose derivative needs to be calculated using AD can be considered

as a multivariate vector function F of an independent variable x as defined in eq. (C.1).

The function F maps an input vector x ≡ (xi), i = 1, . . . , n ∈ Rn onto an output

vector y ≡ (yi), i = 1, . . . , m ∈ Rm.

y = F (x) (C.1)

The entries of the Jacobian ∇F (x) ∈ Rm×n exist if F is continuously differentiable

in the neighbourhood of all arguments. In order to compute this Jacobian using AD,

one has the tangent-linear model (forward mode) and the adjoint model (reverse mode)

at his disposal. The computational complexity of the Jacobian accumulation based on

the tangent-linear model depends on the dimension of the input n. In contrast, the

complexity of the adjoint model depends on the output dimension m. The tangent and

adjoint model of F are shown in eq. (C.2)-(C.3).

ẏ = ẏ +∇F (x) · ẋ (C.2)

x̄ = x̄ +∇F (x)T · ȳ (C.3)

Seeding is best described as the process of retrieval of the directional derivative in

eq. (C.3) or (C.2) by initialising appropriate values for x̄, ȳ or ẋ, ẏ. For example,

the Jacobian matrix can be constructed row-by-row in x̄ by initialising or seeding

x̄ ≡ (x̄i), i = 1, . . . , n = 0 followed by seeding ȳ = (ei), i = 1, . . . , m over the

range of Cartesian unit basis vectors ei ∈ Rm. Note that m evaluations are necessary to

assemble the complete Jacobian matrix. Moreover, when m = 1 only one evaluation is

necessary to assemble all the entries of the gradient in contrast to n evaluations in the

tangent-linear mode.

Consider the FORTRAN residual subroutine signature shown in listing 3(a). The func-

tion takes the state Q as input and outputs the residual R. The signature of the function
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! Original function call

subroutine residual(Q, R)

implicit none

real, intent(in) :: Q(:,:)

real, intent(out) :: R(:,:)

...

...

...

end subroutine residual

(a) Residual subroutine

! Generated tangent code

subroutine residual_d(Q, Qd, R, Rd)

implicit none

real, intent(in) :: Q(:,:)

real, intent(in) :: Qd(:,:)

real, intent(out) :: R(:,:)

real, intent(inout) :: Rd(:,:)

...

end subroutine residual_d

(b) Residual tangent AD generated code

Listing 3: Residual subroutine and its generated Tapenade forward AD code

! Original function call

subroutine residual(Q, R)

implicit none

real, intent(in) :: Q(:,:)

real, intent(out) :: R(:,:)

...

...

...

end subroutine residual

(a) Residual subroutine

! Generated adjoint code

subroutine residual_d(Q, Qb, R, Rb)

implicit none

real, intent(in) :: Q(:,:)

real, intent(inout) :: Qb(:,:)

real, intent(out) :: R(:,:)

real, intent(in) :: Rb(:,:)

...

end subroutine residual_b

(b) Residual reverse AD generated code

Listing 4: Residual subroutine and its generated Tapenade reverse AD code

returned by Tapenade after forward and reverse mode differentiation is shown in list-

ing 3(b) and listing 4(b). The signatures are consistent with the forward and adjoint

model shown in eq. (C.2)-(C.3). By properly seeding the inputs to the subroutine it

is possible to assemble the vairous terms of the tangent linear and adjoint solver. For

example, seeding Rd = −∂R
∂Z and Qd = wn one can assemble the right hand side term of

the tangent linear solver (see eq (4.36)). Similarly, if Qb is seeded with −
(
∂J
∂Q

)T
and Rb

with v one obtains the right hand side term in eq. (4.32) directly in Qb. In conclusion,

seeding is a key ingredient in AD practice and the models in eq. (C.2)-(C.3) help to

understand the seeding process.
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do iter = 1, nIter

...

...

...

...

call mpi_send(Q)

call mpi_recv(Q_halo)

call residual(Q, R)

call update(Q, R)

call costFunction(Q, J)

end do

(a) Primal fixed point iteration (FPI)

do iter = 1, nIter

Jb = 1

Qb = 0

call costFun_b(Q, Qb, J, Jb)

Rb = v

call residualLocal_b(Q, Qb, R, Rb)

call mpi_send(Qb_halo)

call mpi_recv(t)

Qb = Qb + t

call update(v, Qb)

end do

(b) Adjoint fixed point iteration (FPI)

Listing 5: Fixed point iteration of primal and adjoint solver with manually differentiated
MPI calls

C.2 Adjoining MPI Calls

Application of AD to MPI parallel codes especially in reverse mode remains a challenge.

A major step forward has been made with the development of the AMPI library [119]

which, under certain restrictions, allows to automatically derive the required MPI com-

munications for the reverse and forward-differentiated code. AMPI focuses on the correct

differentiation of an individual piece of code, but does not automate the integration of

the differentiated elements into a driver code. In particular, the user has to provide

appropriate seeding for the relevant inputs in order to obtain correct gradients. But this

is far from trivial in practical application.

The two level halo partitioning scheme used in this work simplifies the differentiation of

the parallel fixed-point iterative solver. In fact no MPI calls are actually present in the

residual subroutine. The blocking halo data exchange is pushed outside the residual

function and can be manually differentiated and inserted in the fixed point iteration

loop. Using the analysis in ref. [119] the only change required for the adjoint MPI code

is the reversal of the send/recv and accumulation of the values to the received buffer (see

listing 5). In the forward mode, the MPI calls are simplified because every primal MPI

call of Q has a corresponding pair for Qb as shown in listing 6.
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! primal mpi call

call mpi_send (Q)

call mpi_recv (Q_halo)

...

...

! tangent call

call mpi_send (Q)

call mpi_recv (Q_halo)

call mpi_send (Qd)

call mpi_recv (Qd_halo)

Listing 6: Pairing of MPI calls in forward mode
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