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Abstract: Technologies such as Cognitive Radio and Dynamic Spectrum Access rely on spectrum sensing which provides wire-
less devices with information about the radio spectrum in the surrounding environment. One of the main challenges in wireless
communications is the interference caused by malicious users on the shared spectrum.
In this manuscript, an artificial intelligence enabled (AI-enabled) cognitive radio framework is proposed at system-level as part of
a Cyclic Spectrum Intelligence (CSI) algorithm for interference mitigation in wideband radios. It exploits the cyclostationary feature
of signals to differentiate users with different modulation schemes and an artificial neural network as classifier to detect potential
malicious users.

A dataset consisting of experimental modulated and dynamic signals is recorded by spectrum measurements with an in-house
software defined radio testbed and then processed. Cyclostationary features are extracted for each detected signal and fed to a
neural network classifier as training and testing data in a complex and dynamic scenario. Results highlight a classification rate
of approximately 1 in most of cases, even at low transmission power. A comparison with two previous works with hand-crafted
features, which employ an energy detector-based classifier and a naive Bayes-based classifier, respectively, is discussed.

1 Introduction

Recent advances in Software Defined Radio (SDR) and Machine
Learning (ML), in addition to results obtained in computational neu-
roscience [1], open new horizons towards innovative technologies in
different fields including Cognitive Radio (CR) [2]. Basically, CR
deals with the growing demand and shortage of the wireless spec-
trum. In order to utilize the spectrum efficiently, TV white spaces
(TVWS) [3–7] allows secondary users to use licensed spectrum
bands provided that they change their access strategies to avoid
or reduce interference to the primary users. Dynamic Spectrum
Access (DSA), or dynamic channel access, assumes an important
role in both TVWS cognitive radio networks [8] and the recent 5G
technology [9].

On the other hand, though, signals can be transmitted in the
shared spectrum with different objectives which means that legiti-
mate signals use the spectrum in a legitimate way complying with
the security requirements and avoiding interference to other users,
while malicious signals are transmitted with the objective of causing
interference or disrupting legitimate communications of the targeted
system. Indeed, radio communications in wireless environments
introduce security issues due to external attacks from malicious
devices owing to the broadcast nature of radio propagation. In par-
ticular, the physical-layer (or PHY-layer) is extremely vulnerable to
jamming attacks.

Nowadays, the need for measurable security in the context of
interoperating services, applications, systems, and devices in a
Cyber-Physical-Systems (CPSs) and Internet-of-Things (IoT) [10]
framework requires the development of an appropriate paradigm. A
step forward in that direction is made by SHIELD which consists of
methodologies for building secure embedded systems [11]. Recently,
the problem of malicious user detection has also been addressed by
TVWS research in [12].

Spectrum sensing information plays a key role in anti-jamming
systems. This information may be used to detect potential jamming

entities [13] and to take proactive measures, as the channel hopping
strategy in [14], to ensure communication continuity and security
[15]. Moreover, a history of observations can be maintained and used
to devise more effective anti-jamming tactics.

In literature, various spectrum sensing techniques have been pro-
posed for CRs [16], such as energy detector (ED) [17], cyclostation-
ary feature detector (CFD) [18], matched filtering detector (MFD)
[19], and wavelet transform (WT)-based detector [20]. Among these
methods, the CFD is capable of detecting the primary signal from
the interference and noise even in very low signal-to-noise ratio
(SNR) regions. This detection performance is achieved at the cost
of increased implementation complexity. The Federal Communica-
tions Commission (FCC) of the United States has suggested CFD as
an alternative to improve the detection sensitivity in CR networks.
Generally, energy detector fails at low SNRs while matched filter-
ing detector requires a dedicated receiver structure which may not
be possible in a practical cognitive radio terminal. CFD exploits the
cyclostationarity of modulated signals by detecting spectral peaks
in spectral correlation function (SCF) or spectral coherence func-
tion (SOF) [21–23], which are sparse in both angular (f ) and cyclic
(α) frequency domain. Major advantage of CFD based detector lies
on its abilities to perform better than energy detector at low SNR
values and to distinguish different modulated signals. Furthermore,
the cyclic spectral analysis has been used as a robust tool for signal
classification when the carrier frequency and bandwidth information
is unavailable [24, 25]. Compressed sensing (CS), investigated in
wideband (WB) cognitive networks [26], has also been applied to
a cyclostationary based detector in [27]. A comparison among the
most common sensing methods (energy detection, cyclostationary,
radio identification, match filtering, and waveform-based sensing) in
terms of complexity and accuracy is made in [28]. Features-based
algorithms require classification methods to evaluate the most prob-
able class where the observed features belong to. Choosing the most
suitable classification algorithm is not the only challenge to obtain
satisfying performance and classification accuracy. Indeed, selection
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Fig. 1: Proposed artificial intelligence enabled (AI-enabled) cognitive radio framework with CSI algorithm.

of features and the feature extraction algorithm play a fundamen-
tal role as they strongly influence the accuracy on the classified
signals. Spectrum intelligence algorithms in [29] and [30] utilize
hand-crafted features such as bandwidth, magnitude, and variance
for each of the signals. The former employs an ED-based classifier
with a hypothesis test, while the latter proposes a Bayes-based classi-
fier. The main drawback related to these two approaches is that both
the variability of the extracted features and noise prevent to obtain
accurate classification especially at low SNR level.

A Cyclic Spectrum Intelligence algorithm, Fig. 1, is proposed in
this manuscript in an AI-enabled cognitive radio framework as an
alternative to the existing solutions in [29, 30] and based on a cogni-
tive cycle to acquire self-awareness from spectrum measurements.
Firstly, instantaneous spectrum data is collected at sensing stage
through a SDR testbed and, then, the wideband spectrum is pro-
cessed to identify fast Fourier transform (FFT) bins corresponding to
single waveforms and group them. Afterwards, analysis is applied.
Unlike the spectrum intelligence in [29, 30], CSI employs a CFD
to extract more advanced features and an Artificial Neural Network
(ANN) [31] to classify the observed signals and perform interference
mitigation in a WB spectrum. Specifically, the cyclostationary fea-
ture, called α-profile, of each detected signal in the band-of-interest
is classified through the ANN-based recognizer. Results are promis-
ing and show high classification rate even for low transmission
power case. Moreover, CSI produces better or comparable classi-
fication rates with respect to the existing approaches. Cyclic spectral
analysis and complexity are discussed throughout the manuscript.
For the sake of completeness, learning and acting blocks are also
introduced.

The main novelty is then the newly proposed analysis block as
part of a new CSI algorithm for interference mitigation in wide-
band radios at system level. This improves the resulting performance
of two major previous works in the literature for spectrum intelli-
gence algorithms. Moreover, unlike previous work, our classification
scheme is tested in a complex dynamic environment which is the
most probable scenario in CR applications.

The remainder of the paper is organised as follows: the proposed
CSI algorithm and the experimental set-up for the sensing block are
described in Sec. 2. Data acquisition and the processing block are
introduced in Sec. 3; while cyclostationary feature analysis and the
neural network classifier in the analysis block are described in Sec.
4 which also includes a discussion on cyclic spectral analysis and
complexity. In Sec. 5, Learning and Acting blocks conclude the cog-
nitive cycle. Validation of the proposed approach with experimental
data is analysed in Sec. 6 along with a comparison with two previ-
ous works. Some conclusive considerations and future work can be
found in Sec. 7.

2 Cyclic Spectrum Intelligence (CSI) algorithm
and experimental set-up

The principal idea behind the CSI algorithm is to continuously
monitor relevant radio-frequency (RF) spectrum activities, identify
potential threats to the communication, and take proactive measures
to ensure communication robustness and secrecy. For doing so, the
algorithm relies on the reliable spectrum sensing mechanism, correct
identification and extraction of the relevant parameters, and secure
software unsubjected to tampering. In comparison with the spectrum
intelligence algorithm in [29], the proposed CSI algorithm employs
a cyclostationary feature algorithm to extract the α-profile feature
from the detected signals which is then fed to a neural network to
classify the waveforms present into the observed spectrum.

The functional process of the CSI algorithm can be represented
in the form of the Cognitive Cycle, as shown in Fig. 1, consisting
of 5 blocks: Sensing, Processing, Analysis, Learning, and Acting.
Sensing and Acting blocks represent the interface with the external
radio environment. The Cognitive Cycle is described throughout the
manuscript.

At the sensing phase, data acquisition systems consisting of physi-
cal devices such as antennas, sensors and processing units are used as
interface. Hardware architectures have been used in the literature to
implement spectrum sensing in cognitive radio systems, such as the
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Fig. 2: SDR testbed utilised to generate the dataset with wideband
spectrum measurements: hardware platform.

universal software radio peripheral (USRP) in a GNU-Radio frame-
work in [32, 33]. While, to validate the proposed CSI algorithm, a
SDR hardware platform has been employed to generate modulated
signals in a specified band, namely 0-120 MHz which includes the
Very High Frequency (VHF) band at 30-88 MHz. Alternatively, the
Ultra High Frequency band (UHF) band can be selected. The testbed
is remotely controlled and can be employed in on-line applications.
Although previous work based on the aforementioned testbed was
carried out in anti-jamming scenarios such in [30], it has never been
collected a large amount of experimental data in dynamic environ-
ments in which signals change either their carrier frequency or their
transmission power (or both of them), stored in a complex dataset
with a wide range of signal characteristics and shapes, and organized
for off-line applications.

The testbed employed to generate real-data is a SDR platform
which consists of two Secure Wideband Multi-role - Single-Channel
Handheld Radios (SWAVE HHs) shown in Fig. 2, the first one is
the transmitter while the second one receives the wideband signal,
connected through a dual directional coupler.

The fully operational SDR radio terminal SelexES (2013),
SWAVE HH (from now on referred to as HH), is capable of generat-
ing a multitude of wideband and narrowband waveforms. Currently,
two functional waveforms are installed on the radio: SelfNET Sol-
dier Broadband Waveform (SBW), whose channel bandwidth is
adjustable in the range 1.25 MHz to 5 MHz with channel spacing
of 2 MHz and data is modulated using a fixed digital modulation
technique, and VHF/UHF Line Of Sight (VULOS), which supports
two analog modulation techniques, Amplitude Modulation (AM)
and Frequency Modulation (FM), while both channel bandwidth and
channel spacing are adjustable up to 25 kHz [34].

The radio provides operability in both VHF (30 - 88 MHz) and
UHF (225 - 512 MHz) bands. When VHF is selected, analog to
digital conversion is performed directly at RF and the frequency
band scanned is always 0-120 MHz; while in the case of UHF,
the conversion is performed at intermediate frequency (IF) and the
frequency band scanned depends on the center carrier frequency
fc of the radio ([fc − 35; fc + 85] MHz). No selective filtering
is applied before analog-to-digital conversion. Broadband digitized
signal is then issued to the field-programmable gate array (FPGA),
where it undergoes digital down conversion, matched filtering and
demodulation.

Several interfaces are provided by the hypertach expansion placed
at the bottom of each HH, specifically, 10/100 Ethernet, USB 2.0,
RS-485 serial, DC power interface (max 12.7V), and PTT. The
software architecture of the radio is compliant with the Software
Communications Architecture (SCA) 2.2.2 standard.

Maximum transmission power of the HH is 5W, with the harmon-
ics suppression at the transmitter side over -50 dBc. Superheterodyne
receiver has specified image rejection better than -58 dBc. Because
of the high output power of the radios, one programmable attenua-
tor is included in the communication path and programmed to their
maximum attenuation value -30 dB.

Fig. 3: Diagram of the main components of the testbed and their
connections.

Agilent 778D 100MHz-2GHz dual directional coupler with 20dB
nominal coupling is used as communication medium between the
two HHs.

Guided propagation exhibits several important advantages with
respect to the over-the-air implementation: accurate and stable RF
levels, repeatability of the experiments without the uncertainties
characteristic to wireless transmission, possibility to connect test
instruments and generators, avoiding regulatory issues related to
transmitting outside of the allowed frequency bands.

The testbed provides support for remote control of HH’s trans-
mission and reception parameters through Ethernet and the Simple
Network Management Protocol (SNMP v3). The general diagram of
the testbed is shown in Fig. 3. Full details on the testbed architecture
may be found in [34].

Concerning the spectrum sensing process, the HH’s 14-bit
Analog-to-Digital-Converter (ADC) performs sampling at 250
Msamples/s. Every 3 seconds, a burst of 8192 consecutive samples
is buffered, and then output over the serial port at 115200 bauds.
The samples are then parsed and transformed into the frequency
domain using the FFT. The bandwidth of the corresponding spec-
trum is 120 MHz wide around the center carrier frequency of the
radio. Consequently, the effective resolution is 29.3 kHz/sample. In
order to obtain higher frequency resolutions, two possible changes
to the testbed are increasing the buffer size on the HHs, and finding
ways to transfer spectrum data at higher baud rate. Further details
can be found in [34].

3 Data acquisition and processing

Acquisition of the wideband RF spectrum, is performed period-
ically for the frequency band of interest. This may be done by
taking either a quiet or an active approach, depending on the
implementation of the architecture. Quiet approach implies that the
radio is able to performing sensing simultaneously with transmit-
ting/receiving, whereas in active sensing, the radio needs to stop
transmitting/receiving while sensing takes place.

3.1 Data Acquisition

By means of the testbed described in the previous section, real-data
is collected and stored in a dataset. To this end, the VHF transmission
band where the radios are operable has been utilized, meaning that
the spectrum sensing is performed for the frequency band of 0-120
MHz.

The data consists of a large amount of spectrum observations con-
taining a number of narrowband signals. More specifically, as shown
in Fig. 4 (thin solid blue line), each spectrum consists of a SBW
signal (digitally modulated signal) transmitted by the transmitting
HH device and a number of signals (from the environment) such as
the FM signal (in the 88-108 MHz band) and an unknown signal at
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Fig. 4: Spectrum observation in the 0-120 MHz band (1 burst) which
includes the SBW signal at 61 MHz and with transmission power
equal to -3dBm as well as other signals from external environment.

0-7 MHz. Two interference signals at 20 MHz and 80 MHz, respec-
tively, are also observed. Further details are given in Sec. 4. The
parameters of the SBW signal can be set remotely and, in particular,
the transmission power and the carrier frequency of the transmitted
SBW signal have been considered which are given 3 different values
(7dBm-full, 4dBm-half, and -3dBm-one-tenth for the transmission
power; 51MHz - 61MHz - 71MHz for the carrier frequency). Conse-
quently, the dataset consists of spectrum measurements grouped in
9 different configurations, as shown in Table 1. Each configuration
consists of more than 2500 bursts. The corresponding time-domain
samples have also been stored in the dataset. The experimental step
is discussed in Sec. 6.

3.2 Processing

This section describes the pre-processing block of real-data to
detect frequency bins belonging to the different waveforms inside
the spectrum. The main parameters for the pre-processing are also
described.

First of all, the received spectrum observations are smoothed in
the frequency domain through a simple moving average applied to
the samples in order to reduce the sharp fluctuations due to noise
which can be seen in each received spectrum.

Then, based on a sensible choice for a specific threshold, the back-
ground noise is eliminated, keeping only the FFT bins corresponding
to actual signals. Basically, this process can be thought as an energy
detection and formally corresponds to solving the decision problem
between the following two hypotheses:

Z (n) =

{
η (n) H0
S (n) + η (n) H1

; n = 1, ..., NS (1)

where Z (n), S (n) and η (n) are the received signal, the transmitted
signal and the noise samples, respectively. H0 is the null hypothesis
corresponding to the absence of the signal (in this case, received
signal consists only of noise), and H1 is the alternative hypothesis
corresponding to the presence of the signal, while NS is the number
of samples acquired during the sampling process.
Based on the Neyman-Pearson lemma, the most common
approaches to finding the appropriate threshold are the Constant
Detection Rate (CDR) and Constant False Alarm Rate (CFAR)
detectors, where threshold is set adaptively depending on the SNR
regime and the characteristics of the sensed wideband signal. How-
ever, even in adaptive thresholding, presence of interference may
make the energy detector come to incorrect decisions.

Table 1 Configurations for the values of the transmission
parameters (carrier frequency and transmission power) of the
SBW signal in the collected dataset.

7dBm - Full Power

I II III
f c = 51 MHz f c = 61 MHz f c = 71 MHz

4dBm - Half Power

IV V VI
f c = 51 MHz f c = 61 MHz f c = 71 MHz

-3dBm - Onetenth Power

VII VIII IX
f c = 51 MHz f c = 61 MHz f c = 71 MHz

In most applications, the analysed spectrum is underutilised
(usage of licensed bands is an example [35, 36]) which means that
there is only a limited number of actual narrowband signals in the
scanned wideband signal at any instant of time. In this scenario, sub-
optimal thresholding algorithms with low computational complexity,
where CFAR or CDR performance is not necessarily achieved, can
be considered. Indeed, it has been shown that the threshold δ̂ may be
adaptively set based only on the mean value of the magnitudes of the
scanned wideband signal [29], and given by:

δ̂ = 2 · 1

n

NS∑
n=1

|Z (n) | (2)

K frequency bins are identified as a result of the thresholding
process.

In a wideband and sparse spectrum observation there are L actual
signals (K > L) each of them consists of a number of bins. For
this reason, frequency bins corresponding to the same signal need to
be grouped together. In high-SNR environments, consecutive sam-
ples can be grouped together and classified as single waveforms.
However, in practical situations, some frequency bins may have erro-
neous magnitude values as a result of imperfect sampling and would
thus be discarded during the thresholding phase. In this case, the bin
grouping process considers two (o more) groups of consecutive bins
as a single signal if they are close enough each other. More formally,
the maximum acceptable distance (in Hz) between the two samples
belonging to the same waveform is defined as:

dMAX = M · df (3)

M is the maximum number of consecutive samples that could be
erroneously disregarded, and df is the frequency resolution of the
FFT, given by:

df =
2 · fmax
NS

(4)

where fmax is the maximum resolvable frequency (which in case of
Nyquist sampling equals to half of the sampling frequency). After
the thresholding step, grouped waveforms undergo smoothing, in
order to reduce impacts of the imperfect and erroneous sampling.
For achieving this, a second stage moving average filter has been
implemented. For a waveform that consists of nG grouped bins
with magnitudes S1, . . . , SnG, filtering with the window length W
results in the filtered bins given by [30]:

Sf (ni) =
1

P

i∑
j=i−P+1

Sj ; i = P, ..., nG (5)

Consequently, each element in Eq. (5) is an average of the preceding
P points.
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Fig. 5: Pre-processing applied to the WB signal (in both the pictures,
only the SBW signal is shown): (a) WB signal, smoothed signal,
thresholding and bin grouping, and threshold; (b) also includes the
waveform after group smoothing.

Fig. 5 illustrates the difference between the original transmit-
ted SBW signal, the corresponding smoothed signal, the sensed
FFT bins, and the estimated signal after performing thresholding/bin
grouping. The smoothed group corresponding to the SBW signal is
also shown.

A comparison between the original wideband signal (thin dotted
blue line) and the corresponding signal after having undergone the
pre-processing (thick dash-dotted red line) is made in Fig. 6.

This concludes the frequency domain pre-processing phase which
is applied to the collected wideband signals.

After this phase, the inverse Fourier transform is applied to pro-
duce the corresponding time domain signals from the pre-processed
wideband spectrum measurements and, then, the CFD algorithm pro-
duces the α-profile from the time-domain sub-signals as described in
the following section.

4 Cyclostationary feature analysis and neural
network

In this section, the classification process is described in order to
present an application of the dataset to theoretical framework. After
the pre-processing phase in Sec. 3.2, the waveforms are classified as
either “potentially malicious” (PM) or “friendly” (FR). The former
class refers to signals which aim to disrupt or degrade communica-
tions among legitimate users (belonging to the latter class). In the
0-120MHz wideband spectrum, the jammer is supposed to be the
SBW signal (which is capable of changing its transmission param-
eters), while legitimate waveforms as in Fig. 6 are the base-band
(BB) signal, interference at 20 MHz (we call it medium-band, MB,
interference) and 80 MHz (we call it high-band, HB, interference),
and the FM signal. In order to differentiate them, a cyclostationary
feature based algorithm with an ANN as classifier is applied to the
dataset.

4.1 Cyclostationary feature analysis

When signal processing techniques assume communication signals
as being stationary, their statistical parameters such as mean and
variance do not vary with time. In this case, signals are modelled
as one-dimensional (1D) autocorrelation function and the corre-
sponding power spectrum density (PSD) can be obtained through
Fourier transform of the autocorrelation function [37]. On the other
hand, most of the signals in communication systems are in fact

Fig. 6: Wideband spectrum measurement before pre-processing
(thin dotted blue line) and after pre-processing (thick dash-dotted
red line).

cyclostationary [38]. This means that their statistical parameters are
periodically or cyclically stationary. A two-dimensional (2D) auto-
correlation function is used to model cyclostationary signals where
the additional dimension is the cycle frequency, denoted as α, at
which the 1D autocorrelation function is computed. For each α, a
cyclic-spectrum-cut is produced which is a function of the param-
eter α and denoted as Sα=f0x (f), namely a cyclic-spectrum-cut
at α = f0. Considering the whole set of values for α, a three-
dimensional (3D) cyclic spectrum function is obtained where the
three dimensions are: f , α, and magnitude of the SCF. When α = 0,
the cyclic-spectrum-cut corresponds to the conventional PSD since
the spectrum completely correlates with itself.

Specifically, a process x(t) is said to be wide-sense cyclostation-
ary with period T0 if its mean E[x(t)] = µx(t) and autocorrelation
E[x(t)x∗(t+ τ)] = Rx(t, τ) are both periodic with period T0, in
such case, they can be defined respectively as:

µx(t+ T0) = µx(t) ; Rx(t+ T0, τ) = Rx(t, τ) . (6)

The autocorrelation function of a wide-sense cyclostationary process
can be expressed in terms of its Fourier series components:

Rx(t, τ) =
∑
α

Rαx (τ) ej2παt (7)

where α = a
T0

with a integer, E[·] is the expectation operator, α
is the set of Fourier components, and Rαx (τ) represents the cyclic
autocorrelation function (CAF) and gives Fourier components. CAF
is given by:

Rx(τ) = lim
T→∞

1

T

∫ T
2

−T
2

Rx(t, τ)e−j2παtdt . (8)

When Rx(t, τ) is periodic in t with period T0, (7) can be expressed
as:

Rαx (τ) =
1

T0

∫ T0
2

−T0
2

Rx(t, τ)e−j2παtdt . (9)

The Fourier Transform of the CAF is known as SCF and is given
by:

Sαx (f) =

∫∞
−∞

Rαx (τ)e−j2πfτdτ (10)

where α is the cyclic frequency and f the angular frequency. The
major benefit of spectral correlation is its insensitivity to background
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(a) SCF of the 3-7 MHz BB signal (b) SCF of the SBW signal

Fig. 7: SCF of two of the detected signals in the WB spectrum: (a) BB signal and (b) SBW signal.

noises. Since the temporal correlation of different spectral com-
ponents are measured, and the spectral components of noise are
completely uncorrelated in time due to the fact that noise is wide-
sense stationary process, such noise does not play significant factor
in the SCF. In other words, the existence of correlation between sep-
arated spectral components, with separation equal to α, is called
spectral redundancy [37] which is found in cyclostationary signals,
while it is not usually observed in noise. This fact allows the spectral
correlation of a signal to be accurately calculated even at low SNRs.
Furthermore, different types of modulated signals - AM, FM, phase
shift keying (PSK), frequency shift keying (FSK), minimum-shift
keying (MSK), quadrature amplitude modulation (QAM), pulse-
amplitude modulation (PAM), and so forth - with overlapping power
spectral densities have highly distinct SCFs.

The SCF of the SBW signal and the 3-7 MHz BB signal in the
0-120 MHz spectrum are shown in Figs. 7(a) and 7(b), respectively.

Since SCF computation requires large amount of data, which
makes it unreasonable for a classifier to operate on it in real time, the
cycle frequency profile (α-profile) has been employed in this paper
as feature for classification. Specifically, the α-profile of SCF for a
signal x is given by:

I(α) = maxf [Sαx ] (11)

The α-profile of signals in the wideband spectrum of interest is
shown in Sec. 6, while a more detailed description about SCF of
some modulated signals can be find in Sec. 4.3 addressing the
theoretical framework.

4.2 Neural network classifier

Our proposed system uses an ANN as classifier due to its ease of
implementation and potential to generalize any carrier frequency,
symbol rate and phase offset. The system was designed to clas-
sify PM and FR signals. We trained the ANN to identify the two
classes of signals defined at the beginning of this section. The SCF
of the detected signals produces a large amount of data, which makes
impossible for a classifier to work on it in real time. In order to
reduce the amount of data for a classification stage, we used the
α-profile as input feature for an ANN. Accordingly, the proposed
ANN in Fig. 8 is composed of I inputs related to the dimension-
ality of α-profile, a single hidden layer whose N neurons use the
hyperbolic tangent sigmoid as neural transfer function, and an out-
put layer of two neurons related to each class of signal considered

Algorithm 1 Pseudo-code for proposed algorithm

1: function SIGNAL RECOGNITION IN WB SPECTRUM
2: Set the number of bursts to be acquired→ k
3: Receive and sample the wideband signal at or above Nyquist

rate for all k bursts→ NS amplitude values
4: Data parsing→ NS = 2x amplitude values
5: Perform FFT→ NS

2 frequency bins with magnitudes M
6: Fisrt smooth by moving average
7: Calculate mean value of M →Mmean

8: Based on Mmean, set the energy thethreshold→ η̂
9: for i = 1 to NS

2 do (for each frequency bin)
10: if M (i) > η̂ then
11: Bin i belongs to the signal
12: Change channel state of bin i to “occupied”
13: if any of M (i−K) : M (i− 1) > MT then
14: Group these bins as a single waveform
15: Perform waveform smoothing
16: end if
17: end if
18: end for
19: Estimate the SCF of detected signals
20: Extract the α-profile
21: Feed α-profile to previously trained Neural Network
22: Decision← Licit or Jammer
23: end function

in this work. Each output value is in the range (0, 1). Accordingly,
the output class with the highest value between (0, 1) is considered
as the signal class. An ANN training based on the scaled conjugate
gradient (SCG) back-propagation [39] is adopted.

The selection of a single hidden layer is proposed due to the clas-
sification process simplicity of this particular problem, it was found
that with a single layer results over the 99% of true positive classi-
fication were obtained for the 2 types of signal classes considered
in this work. Employing more hidden layers would increment the
training time and overall results would not be significantly improved.

The corresponding pseudo-code of the proposed algorithm is
outlined in Algorithm 1.

It can be summarized as follows: the receiver observes a WB
signal and then energy detection and pre-processing are performed.
The α-profile of SCF for each detected sub-signal is subsequently
extracted. After that, detected signals go through the classification
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Fig. 8: Proposed Artificial Neural Network used as classifier in the
CSI algorithm with I inputs, one hidden layer with N neurons, and
2 outputs.

process. The α-profile of detected signals are fed to a previously
trained ANN. The ANN classifies the received narrowband signal,
in the WB spectrum, as either a licit or a potential malicious user.

4.3 Cyclic spectral analysis

Theoretical analysis of cyclic spectrum for a number of different
modulation types (both analog and digital) can be found in the lit-
erature [40–42]. From the spectrum representation in Fig. 6, signals
with different modulation schemes can be observed. For exam-
ple, the BB signal found at low-frequency band 3-7 MHz is an
AM signal, while the SBW is a digitally modulated signal with
quaternary-PSK (QPSK) scheme. The two interferences are also dig-
ital modulated signals. Finally, the FM signal is observed on the right
side of the spectrum. In the following, SCF of QPSK, AM, and FM
signals is detailed as an example.

QPSK: a PSK signal can be thought either as a binary amplitude-
shift keying (ASK) forM = 2 or as a QAM whenM > 2 (M is the
number of points in the signal constellation), namely

m (t) = uI (t) cos (2πf0t+ p0)− uQ (t) sin (2πf0t+ p0) (12)

with in-phase and quadrature components uI (t) and uQ (t). f0 is
the carrier frequency and p0 is a phase factor. In the specific case of
QPSK signal, phases are separated by π/2 rad and the in-phase and
quadrature components are time-aligned as follows

uI (t) =

∞∑
n=−∞

uI
nq (t− nT0 − t0) (13)

and

uQ (t) =
∞∑

n=−∞
uQ
nq (t− nT0 − t0) (14)

respectively; the keying rate is defined by 1/T0, while t0 is a fixed
pulse-timing phase parameter. The carrier function q (t) is a deter-
ministic finite-energy pulse and modulated by uI

n and uQ
n which are

random sequences assumed to be purely stationary. Consequently,
the SCF can be written as [41]:

Sαm (f) =
1

2T0

[
Q (f + α/2 + f0)Q (f − α/2 + f0)SαuI

(f + f0)

+ Q (f + α/2− f0)Q (f − α/2− f0)SαuQ
(f − f0)

]
e−i2παt0

(15)

where the in-phase and quadrature components are assumed to be
balanced such that SαuI

(f)− SαuQ
(f) ≡ 0. In this way, SαuI

(f) =
SαuQ

(f) = 1 if α = k/T0, and SαuI
(f) = SαuQ

(f) = 0 if α 6=
k/T0. The function Q (f) is defined in [40] for a linear periodically
time-variant system.

AM: when a random lowpass signal a (t) with PSD Sa (f) is used
to modulate the amplitude of a sine wave, the resulting amplitude
modulated signal m (t) is given by [43]

m (t) = a (t) cos (2πf0t+ p0) (16)

and the general formula of its SCF is given by

Sαm (f) =


1
4e
±i2p0Sa (f) , if α = ±2f0

1
4Sa (f + f0) + 1

4Sa (f − f0) , if α = 0

0, otherwise
(17)

FM: in many cases, the transmitted signal is modulated as

m (t) = a cos (2πf0t+ ϕ (t)) (18)

where ϕ (t) is the phase of the FM signal, a is the carrier amplitude,
and f0 is the carrier frequency. The corresponding SCF is given by
[44]

Sαm (f) =


1
4 [Ψr (f)] e±i2ϕ0 , for α = ±2f0
1
4 [Ψr (f + f0) + Ψr (f − f0)] , if α = 0

0, otherwise
(19)

where Ψr (f) is the Fourier transform of the joint characteristic
function for ϕ (t+ τ/2) and ϕ (t− τ/2) given in [37].

Further details and SCF of other modulation schemes (both
analog and digital) can be found in [37, 40, 41, 43, 44].

4.4 Complexity analysis

SCF computation complexity: efficient algorithms to compute SCF
are defined as FFT time smoothing algorithms, In this work, the strip
spectral correlation algorithm (SSCA) has been considered. Basi-
cally, SSCA is computed by multiplying the complex envelope with
the conjugate of the received signal. The corresponding block dia-
gram is discussed in [45] where 2 FFT blocks are employed. The
complex envelope is a function of the frequency f , thus, the num-
ber of the first FFT points N ′ is inversely related to the frequency
resolution ∆f . While, the SCF formula is a 2D function in terms of
f and α and the number of the second FFT points N is inversely
proportional to the cyclic frequency resolution ∆α. This mean that
an increase in the values of ∆f and ∆α will result in larger com-
putational complexity although random effects are reduced and,
consequently, the SCF reliability increases. The complexity of the
SSCA algorithm is summarised in Tab. 2 in terms of the num-
ber of complex multiplications required to estimate the cyclic cross
spectrum of two complex signals [45].

The total complexity is then given by N′N
(
3 + 1

2 log2N
′N
)
.

The SSCA is a highly parallel algorithm.

ANN computation complexity: a feedforward neural network is
characterised by the total number of weights and biases, N , which
form a weight vector w. In the conventional back-propagation (BP)
algorithm, a global error function E (w) can be computed with
one forward step, while its gradient E′ (w) with one forward and
one backward step. The complexity of calculating the error func-
tion and its gradient is O(N2) and O(3N2), respectively. The BP
algorithm often behaves very badly on large-scale problems and user
dependent parameters, like learning rate, determine its performance.
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Table 2 Computational complexity for SSCA algorithm [45].

Computational Data
N ′-FFT

section tapering

SSCA N ′N N ′N
2 log2N

Down- Sequences N -FFT
conversion multiplication

N ′N N ′N N ′N
2 log2N

Alternatively, conjugate direction methods, such as the conjugate
gradients (CG) method, exploit second order approximation of the
error function which, in addition to the gradient, utilizes the Hessian
matrix denoted as E′′ (w). There exists a unique global minimum
only if the Hessian matrix is positive definite. But in many cases, it
has shown to be indefinite in different areas of the weight space and
the CG fails in the attempt to minimize the error function. Further
details can be found in [39] which also proposes the scaled conju-
gate gradient back-propagation algorithm. As mentioned in Sec. 4.2,
the SCG is adopted to train the ANN used as classifier. In this case,
a calculation complexity per iteration of O(7N2) has been deter-
mined. When the algorithm is implemented, this complexity can be
reduced to O(6N2).

5 Learning and acting algorithms

After the new Analysis block proposed in this manuscript and
belonging to the cognitive cycle, Leaning and Acting blocks pre-
sented in [30] conclude the proposed CSI algorithm.

5.1 Learning

After having identified occupied channels and spectrum holes in the
0-120 MHz band, and classified the detected signals through the
cyclostationary feature algorithm with an artificial neural network as
classifier, the CSI algorithm is thought to include a learning process
strategy based on a Temporal Frequency Map which summarises
previous occurrences of waveforms inside the band-of-interest, Fig.
9. The 0-120 MHz band is divided into n channels. In each cycle of
the cognitive strategy, the proposed algorithm accesses the Temporal
Frequency Map which is a n× 3 matrix where the number of occur-
rences of FR waveforms (mFR), PM waveforms (mPM ), defined
in Sec. 4, and spectrum holes (mSH ) for each of the n channels are
stored. Then previous values are updated with the newly acquired
and processed information. The learning process can implement
temporal forgiveness in order to include into the computation only
the spectrum activities corresponding to the last k spectrum obser-
vations which are used to predict future activities and make suitable
decisions. This reduces the probability of data becoming obsolete, at
the expense of the lower amount of accessible information.

5.2 Acting

Finally, based on the processed spectrum information, current trans-
mission parameters (channel and transmission power) and the his-
tory obtained from the Temporal Frequency Map, the CR device may
decide to act in order to improve its chances of reliable transmis-
sion. The actions consist of proactive changes of the transmission
frequency (channel surfing), or the transmission power whenever a
threat is detected. The system is considered “under threat” when a
“potentially malicious” waveform is identified on the channel close
to the channel currently used for transmission. The new channel for
the transmission is then chosen according to:

ct+1 ∈ (ct = SH|X (ct) = min) . (20)

Fig. 9: Temporal Frequency Map in the Learning block which
summarises previous occurrences of waveforms inside the band-of-
interest.

This means that the new channel ct+1 is selected among all the
channels ct that are currently spectrum holes, such that the X(ct)
is minimum. X(ct) represents the expected channel occupancy,
defined as:

X (ct) = l2 ·mPM/ct + (l + 1) ·mF/ct −mSH/ct , (21)

where mPM/ct , mFR/ct and mSH/ct represent the occurrences
of the PM waveforms, FR waveforms, and spectrum holes on the
channel ct over the last l steps, respectively. The coefficients l2

and (l + 1) are assigned in order to give highest priority to actions
which avoid channels with history of occurrences of PM waveforms,
followed by the channels with history of occurrences of FR wave-
forms. In this way, it is ensured that each possible channel occupancy
corresponds to a unique combination of FR waveforms, PM wave-
forms, and spectrum holes. The new transmission power is chosen
according to:

Pt+1 ∈ P s.t. P > 10 log10 δ̂ + 3dB. (22)

where δ̂ is the threshold of the energy detector defined in Eq. (2).
Further applications include the capability of the cognitive system

to learn from the actions of a human operator through a graphical
user interface (GUI) allowing the human operator to overrule the
decision of the cognitive algorithm and change transmission param-
eters such as the operating frequency and the transmission power.
The role of the GUI is then to allow the human operator to take deci-
sions irrespectively of the decisions of the CSI algorithm. However,
it also presents an interesting motivation for considering principles
of cognitive refinement, i.e., refining the reasoning behaviour of the
algorithm, which is currently policy-based, by learning from the
actions of the human operator.

6 Validation of the proposed algorithm

In order to evaluate the performance of the newly introduced anal-
ysis block of the cognitive cycle in the CSI algorithm (based on
spectral correlation detector and neural network classifier for inter-
ference mitigation) a set of experiments is performed using the
software defined radio testbed architecture described in Sec. 2. The
sampling rate is set at Nyquist rate for each type of detected sig-
nals. In our experiments, the SBW signal represents the “potentially
malicious” waveform and is transmitted by the transmitting HH. Its
transmission parameters are given different values according to the
Table 1 in Sec. 3.1, namely the carrier frequency and the trans-
mission power of the SBW signal assume one among the nine
configurations with full, half, and one-tenth transmission power.
All other detected signals mentioned in Sec. 3.1 are considered as
“friendly”. The objective of this section is to show the performance
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Fig. 10: α-profiles extracted from four different detected signals in the WB spectrum: a) baseband signal, b) SBW signal, c) interference at 80
MHz, d) one peak of the FM signal.

of the proposed algorithm in classifying the signals detected in the 0-
120 MHz band-of-interest based on the α-profile which is extracted
from each detected waveform in the wideband spectrum and then fed
to the neural network used as classifier.

Each detected waveform in the wideband spectrum, obtained after
the pre-processing block in Sec. 3.2, is characterized by its own α-
profile which encompasses the cyclostationary feature. Specifically,
each generated α-profile consists of 200 cyclic frequency points
which are the input of the ANN (I = 200 in Fig. 8). Figs. 10 (a)-
(d), show the α-profiles for 4 of the different signals detected in the
0-120 MHz band: the 3-7 MHz signal, SBW signal, interference at
80 MHz, and one peak of the FM signal.

It is worth noticing, that the frequency content of a single cyclo-
stationary signal is mainly characterized by both its fundamental
frequency and its cyclic frequency (the former is usually higher
than the latter for RF signals). It can be expected that the cyclic
frequency is independent of the fundamental frequency and, conse-
quently, the shape of the α-profile of that signal does not change
with the fundamental frequency and the ANN is able to classify
the signal independently of the part of the spectrum in which it is
detected. Future work will analyse signals located at RF, TVWS
or ISM (industrial, scientific, and medical) band, for example, and
the effective applicability of the proposed approach to signals in a
spectrum beyond 120 MHz could be demonstrated.

The ANN architecture employed to validate the analysis block
of the CSI algorithm consists of with 10 neurons in the hidden layer
(N = 10 in Fig. 8). For our experiments, a dataset composed of 4.500
samples (500 for each configurations) is used in order to train (70%),

validate (15%) and test (15%) the ANN architecture. The overall per-
formance can be observed in the 2-classes confusion matrix of Fig.
11 corresponding to the testing phase of the ANN which highlights a
classification rate approximately equal to 1. In this confusion matrix
the tested waveforms are 15% of the all waveforms fed to the ANN
in order to train it.

After having trained and tested the ANN with 4500 samples, fur-
ther assessment of the performance is obtained with a different set
of waveforms which are tested by using the trained neural network.
Specifically, the performance of the system is evaluated for 1000
independent testing samples for each of the configuration with dif-
ferent carrier frequencies (51-61-71 MHz) and transmission powers
(7, 4, and -3 dBm). The confusion matrices in Tab. 3 show the clas-
sification accuracy for the 9 different configurations. The proposed
method based on the cyclostationary feature algorithm combined
with an artificial neural network provides good performance with
high classification rate in most of the configurations, even for low
transmission power case.

A comparison with results in the literature is also presented. For
example, in [29] spectrum sensing is performed through an energy
detector to identify the occupied bands in the widedand spectrum.
Center frequency, bandwidth and maximum value of magnitude are
extracted for each of the identified narrowband waveforms. To per-
form classification, these parameters extracted from the identified
waveforms are compared to parameters stored in a dataset contain-
ing pre-defined parameters of the FR and/or PM waveforms. This
results in classification of each waveform as either FR or PM.
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Fig. 11: Confusion matrix of the proposed ANN with two target and
two output classes: FR and PM.

For the sake of clarify, comparison is made on the percentage
values in the confusion matrices.

In Tab. 4, the percentage values relative to all the configurations
analysed in this manuscript, from I to IX, are shown, while in Tab. 5
results from [29] can be seen where observed wideband spectrum,
corresponding to both 61 MHz and 71 MHz centre frequencies,
have been contemporary tested with 200 independent samples (or
bursts). Two different feature vectors have been investigated, namely
bandwidths of the detected waveforms in Tab. 5(a), while both band-
widths and magnitudes in Tab. 5(b). Specifically, different confusion
matrices are obtained for each of the two type of feature vector by
varying the number of bursts (Nb) - over three levels (1, 3, and 5) -
which are averaged in order to increase the frequency resolution of
the observed spectrum and to investigate its influence to the classifi-
cation accuracy.

From comparison between these confusion matrices computed in
[29] and the percentage values in Tab. 4 (considering only 61 MHz
and 71 MHz) obtained with the CFD and ANN implemented for
the proposed algorithm, our results either outperform or are com-
parable with the ones in the literature, unless one specific case, for
several reasons as discussed below. First of all, the percentage val-
ues are better or comparable in most of the cases. In addition, for
the case of only bandwidths in the confusion matrices of Tab. 5,
high PM and FR classification accuracies cannot be contemporary
obtained with the same Nb value, namely good accuracy for PM
classification is reached with high Nb, while low Nb values are rec-
ommended for better FR classification accuracy. While, in case of
both bandwidths and magnitudes, results that could be comparable
with our percentage values are reached with Nb = 5. This produces
an increased complexity of their algorithm and computational time
as shown in [29]. Moreover, it should be noticed that by increasing
Nb the amount of testing bursts is dramatically reduced (from 200
to 40) which may reduce the reliability of the obtained classification
rates. While in our case (which would correspond toNb = 1), firstly
all the 1000 samples are used to perform the testing step with better
reliability of classification results and, secondly, high FR classifica-
tion and PM classification are contemporary obtained for each of the
analysed configurations.

The only configuration in our results that produces minor PM
classification accuracy than the other configurations, and then
slightly smaller accuracy than the corresponding results for ED-
based classifier, is V III which corresponds to -3 dBm at 61 MHz.
This could be due to a possible reduced quality of the SBW wave-
form in our newly created dataset for this configuration which could
produce weaker performance of the classifier.

Nevertheless, even if the SNR level becomes low, the perfor-
mance relative to configurations form IV to IX is still sufficient
to guarantee good accuracy of the classification rate. It is also worth

Table 3 Confusion matrices with absolute values from testing on
independent samples applied to the neural network; each configura-
tion (from I to IX ) has been tested separately.

FULL POWER (7 dBm)
SIGNAL

CLASS FR PM FR PM FR PM

FR 960 40 970 30 981 19

PM 0 1000 1 999 0 1000

51MHz 61MHz 71MHz
(I) (II) (III)

HALF POWER (4 dBm)
SIGNAL

CLASS FR PM FR PM FR PM

FR 985 15 996 4 999 1

PM 0 1000 0 1000 0 1000

51MHz 61MHz 71MHz
(IV) (V) (VI)

ONETENTH POWER (-3 dBm)
SIGNAL

CLASS FR PM FR PM FR PM

FR 997 3 997 3 997 3

PM 20 980 88 912 0 1000

51MHz 61MHz 71MHz
(VII) (VIII) (IX)

Table 4 Confusion matrices with percentage values corresponding to the
absolute values in Tab. 3 for all the analysed configurations, I-IX. Using the
notation in the comparison with previous work, these confusion matrices
are obtained with Nb = 1.

FULL POWER (7 dBm)
SIGNAL

CLASS FR PM FR PM FR PM

FR 96.0% 4.0% 97.0% 3.0% 98.1% 1.9%

PM 0% 100% 0.1% 99.9% 0% 100%

51MHz 61MHz 71MHz
(I) (II) (III)

HALF POWER (4 dBm)
SIGNAL

CLASS FR PM FR PM FR PM

FR 98.5% 1.5% 99.6% 0.4% 99.9% 0.1%

PM 0% 100% 0% 100% 0% 100%

51MHz 61MHz 71MHz
(IV) (V) (VI)

ONETENTH POWER (-3 dBm)
SIGNAL

CLASS FR PM FR PM FR PM

FR 99.7% 0.3% 99.7% 0.3% 99.7% 0.3%

PM 2.0% 98.0% 8.8% 91.2% 0% 100%

51MHz 61MHz 71MHz
(VII) (VIII) (IX)

noticing that, unlike the previous work in [29], in this manuscript the
proposed feature-based classifier is validated on a dynamic environ-
ment in which signals change either their carrier frequency or their
transmission power (or both of them) in different cognitive cycles.
Consequently, the training step is performed on a more complex
dataset with a wider range of signal characteristics and shapes than
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Table 5 Confusion matrices with percentage values corresponding to
the results in [29] obtained with ED-based classifier. Two different fea-
ture variables are considered: a) only bandwidth of each signal and b)
bandwidth + magnitude for each signal. Bursts corresponding to two trans-
mission frequencies, 61-71 MHz, are used together as input data. Each
of these two tables consists of three different levels (1, 3, and 5) for the
amount of bursts averaged (Nb) to increase the frequency resolution.

61-71 MHz - only bandwidths [29]
SIGNAL

CLASS FR PM FR PM FR PM

FR 95.5% 4.5% 59% 41% 15% 85%

PM 35% 65% 7.6% 92.4% 0% 100%

no. of bursts (Nb): 1 3 5
a)

61-71 MHz - both bandwidths and magnitudes [29]
SIGNAL

CLASS FR PM FR PM FR PM

FR 100% 0% 100% 0% 100% 0%

PM 38.5% 61.5% 18.2% 81.8% 7.5% 92.5%

no. of bursts (Nb): 1 3 5
b)

in the previous work employing ED-based classifier in an almost sta-
tionary environment. This means that higher classification capability
is required for dynamic scenarios.

From the literature, [30] proposes an interference mitigation
algorithm for Spectrum Intelligence employing a naive Bayes classi-
fier to discriminate FR from PM waveforms in a stationary environ-
ment. In Tab. 6, the corresponding results are shown in percentage
values. Specifically, the SBW signal, which is considered as PM
waveform, is transmitted with onetenth (-3 dBm) power at 51 MHz
central frequency.

Different combinations of available features are used to evalu-
ate the performance of the classifier. Namely, four combinations
of bandwidth, maximum magnitude, and variance for each of the
extracted waveform (both PM and FR) from the spectrum of interest
as shown in the confusion matrices in Tab. 6: i) classification rates
when the classifier combines all the three features, ii), iii), and iv)
classification rates when classifier combines bandwidth and maxi-
mum magnitude, maximum magnitude and variance, and bandwidth
and variance, respectively.

The naive Bayes classifier is trained with 50 bursts while addi-
tional 50 bursts, independent from the training data, are used for the
testing step. For each burst there is just one PM signal (the SBW)
and several FR waveforms. Consequently, the classifier is tested on
50 PM samples and almost 2000 FR samples.

By comparison with our results with onetenth power and 51 MHz,
in the FR classification case the CFD and ANN-based algorithm
produces better or comparable percentage classification rates than
the naive Bayes-classifier in Tab. 6 for all the four combinations
of features. Concerning the PM classification, the performance of
our algorithm for configuration V II , namely -3 dBm / 51 MHz, is
not as good as in the other configurations and, consequently, lower
values when compared with the percentage rates in Tab. 6. This
has been discussed previously for configuration V III and may be
due to a possible reduced quality of the SBW waveform. In addi-
tion, it is worth noticing that for classifier in [30], only 50 samples
corresponding to SBW vaweform in a stationary environment are
used both during training step and during testing step which could
produce unreliably classification rates. Again, dynamic scenarios
require higher classification capability than stationary ones, which
means that results in this paper could be underestimated with respect
to the previous work.

Considering that, the newly implemented analysis block in our
proposed work shows promising performance for the CSI processing
in complex dynamic environments that also include signals with low
SNR level.

Table 6 Confusion matrices in [30] for the parameter configuration -3 dBm
/ 51 MHz (corresponding to configuration V II, if notation in this paper is
considered). Combinations of the considered features are: i) bandwidth +
amplitude + variance ii) bandwidth + amplitude iii) amplitude + variance iv)
bandwidth + variance.

-3 dBm / 51 MHz [30]
SIGNAL

CLASS FR PM FR PM

FR 99.1% 0.9% 99.8% 0.2%

PM 0% 100% 0% 100%

i ii

-3 dBm / 51 MHz [30]
FR PM FR PM

98.5% 1.5% 99.1% 0.9%

4.0% 96% 0% 100%

iii iv

7 Conclusion and future work

In the manuscript, a new AI-enabled cognitive radio framework
is proposed as part of a Cyclic Spectrum Intelligence algorithm
to enable interference mitigation in wideband radios. The CSI
algorithm is based on a Cognitive Cycle consisting of 5 blocks:
Sensing, Processing, Analysis, Learning, and Acting. The Cognitive
Cycle interacts with the radio environment through the sensing block
which obtains instantaneous spectrum data in the band of interest and
the acting block whose task is to decide and change the transmis-
sion parameters such as the carrier frequency and the transmission
power. The main novelty introduced by our work is the analysis
block. After having identified occupied channels and spectrum holes
in the observed wideband signal, the stationary spectral analysis is
performed, based on the cyclostationary feature of modulated sig-
nals, to extract the α-profile from the SCF of the detected signals.
Afterwards, the extracted α-profile of a number of samples of the
different waveforms detected in the wideband spectrum are fed to a
pre-trained ANN to classify the waveforms as “friendly” or “poten-
tial malicious”. In addition, a software defined radio testbed has been
employed to generate an experimental dateset and validate the analy-
sis block. Real data consists of spectrum measurements in the 0-120
MHz in which there are different signals including the SBW signal
whose carrier frequency and transmission power are given differ-
ent values. Consequently, a large amount of experimental data in a
dynamic environment is collected and stored in a complex dataset
with a wide range of signal characteristics and shapes, and orga-
nized for off-line research applications. Nine different configurations
of these values have been used in the validation step of the proposed
analysis block.

Results show high classification rate in most of the configura-
tions even for low transmission power case making the new block
based on cyclostationary feature detector with artificial neural net-
work a promising methodology for the CSI processing in complex
dynamic environments that also include signals with low SNR level.
In support of this claim, a comparison with existing works has also
been carried out. The main drawback related to these two previous
approaches is that the variability of both the hand-crafted features
and noise do not guarantee accurate classification especially at low
SNR level. While, the proposed approach overcomes that thanks to
better extracted features and the neural network classifier. In one of
the considered previous works, an ED-based classifier was employed
to differentiate FR class from PM class in an almost stationary
environment. Our algorithm for dynamic environments proposed
in this paper produces better (in some cases) and comparable (in
other cases) results than the ED-based algorithm. However, it is
worth noticing that these results are obtained without resorting to
multiple-bursts average (namely withNb = 1) necessary to improve
the performance of the classifier in the previous work. This avoids,
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consequently, an increased complexity and computational time as
well as a reduced data-samples set for both training and testing
which could reduce the reliability of the resulting classification rates.

A naive Bayes-based classifier has also been previously investi-
gated in a stationary spectrum. Although our CFD and ANN-based
algorithm is trained and tested on a large number of samples from
a dynamic scenario, it still produces better or comparable classifi-
cation rates with respect to the existing approach for the FR class.
Concerning the PM class, a possible loss of quality in the SBW sig-
nal in the newly created dataset may be the cause of obtaining not
as good results as the ones obtained for all the other configurations.
However, since the Bayes-based classifier is trained and tested by
using much less samples concerning the PM class, the corresponding
results may be not enough accurate. In addition, our classifier is anal-
ysed in a dynamic environment which means higher classification
capability is required.

Future work includes analysis of fully autonomous systems capa-
ble of dynamically access the spectrum in a cognitive radio frame-
work for applications such as PHY-layer security against jamming
attacks as well as TVWS. The effective applicability of the pro-
posed approach to signals in a spectrum beyond 120 MHz can also
be investigated and demonstrated, although it is expected that the
shape of the α-profile of a signal is independent of its fundamental
frequency. In addition, Stealthy Jammer Detection Algorithm inves-
tigated in [46] and in [47] can be validated on the experimental
dataset described in this manuscript.

8 References
1 Friston, K., Sengupta, B., Auletta, G.: ‘Cognitive dynamics: From attractors to

active inference’, Proceedings of the IEEE, 2014, 102, (4), pp. 427–445
2 Haykin, S.: ‘Cognitive dynamic systems: Radar, control, and radio [point of view]’,

Proceedings of the IEEE, 2012, 100, (7), pp. 2095–2103
3 Office of Communications (Ofcom), Feb. 2015, ‘Implementing tv white spaces,

[online], available: http://stakeholders.ofcom.org.uk/binaries/consultations/white-
space-coexistence/statement/tvws-statement.pdf’

4 Holland, O., Ping, S., Aijaz, A., Chareau, J., Chawdhry, P., Gao, Y., et al.: ‘To white
space or not to white space: That is the trial within the ofcom tv white spaces pilot’,
In: 2015 IEEE International Symposium on Dynamic Spectrum Access Networks
(DySPAN), 2015, pp. 11–22

5 Qin, Z., Gao, Y., Parini, C.G.: ‘Data-assisted low complexity compressive spec-
trum sensing on real-time signals under sub-nyquist rate’, IEEE Transactions on
Wireless Communications, 2016, 15, (2), pp. 1174–1185

6 Qin, Z., Gao, Y., Plumbley, M.D., Parini, C.G.: ‘Wideband spectrum sensing on
real-time signals at sub-nyquist sampling rates in single and cooperative multiple
nodes’, IEEE Transactions on Signal Processing, 2016, 64, (12), pp. 3106–3117

7 Ma, Y., Gao, Y., Liang, Y., Cui, S.: ‘Reliable and efficient sub-nyquist wide-
band spectrum sensing in cooperative cognitive radio networks’, IEEE Journal on
Selected Areas in Communications, 2016, 34, (10), pp. 2750–2762

8 Martin, J.H., Dooley, L.S., Wong, K.C.P.: ‘New dynamic spectrum access
algorithm for tv white space cognitive radio networks’, IET Communications,
2016, 10, (18), pp. 2591–2597

9 Lin, S., Kong, L., Gao, Q., Khan, M.K., Zhong, Z., Jin, X., et al.: ‘Advanced
dynamic channel access strategy in spectrum sharing 5g systems’, IEEE Wireless
Communications, 2017, 24, (5), pp. 74–80

10 Gao, Y., Qin, Z., Feng, Z., Zhang, Q., Holland, O., Dohler, M.: ‘Scalable and
reliable iot enabled by dynamic spectrum management for m2m in lte-a’, IEEE
Internet of Things Journal, 2016, 3, (6), pp. 1135–1145

11 Fiaschetti, A., Noll, J., Azzoni, P., Uribeetxeberria, R.: ‘Measurable and Com-
posable Security, Privacy, and Dependability for Cyberphysical Systems: The
SHIELD Methodology’, CRC Press, 2017

12 Qin, Z., Gao, Y., Plumbley, M.D.: ‘Malicious user detection based on low-rank
matrix completion in wideband spectrum sensing’, IEEE Transactions on Signal
Processing, 2018, 66, (1), pp. 5–17

13 Mohammadi, J., Stańczak, S., Zheng, M.: ‘Joint spectrum sensing and jamming
detection with correlated channels in cognitive radio networks’, In: 2015 IEEE
International Conference on Communication Workshop (ICCW), 2015, pp. 889–
894

14 Chang, G.Y., Wang, S.Y., Liu, Y.X.: ‘A jamming-resistant channel hopping scheme
for cognitive radio networks’, IEEE Transactions on Wireless Communications,
2017, 16, (10), pp. 6712–6725
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