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Linear non-causal optimal control of an attenuator
type wave energy converter M4

Zhijing Liao, Nian Gai, Peter Stansby, and Guang Li

Abstract—Ocean waves provide a promising and abundant
renewable energy resource. One reason wave energy technology
is still not mature enough for commercialization is the high
unit cost of generated electricity. This needs to be improved
by a combination of device and associated controller design.
A multi-float and multi-mode-motion WEC (M-WEC) enables
much higher energy conversion compared with a single-float,
single-mode WEC (S-WEC); however, the added complexity
in dynamics of a M-WEC makes the corresponding controller
design more challenging. While the majority of current WEC
control research has been based on the control of S-WECs
it has shown that control can significantly improve energy
conversion. This paper aims to design a linear non-causal optimal
controller for a M-WEC to demonstrate that this improvement
also applies to more complex WEC systems. We choose a multi-
body attenuator type M-WEC called M4 as a case study for
which the desirable feature of predominantly linear dynamics
has been demonstrated. This means that a linear controller can
be designed based on a linear hydrodynamic model without
introducing an intractable computational burden for real-time
controller implementation. Numerical results show that the linear
non-causal optimal controller can significantly improve the power
capture of M4 over a broad range of peak spectral wave periods
by 40% to 100%.

Index Terms—Wave energy, Optimal control, Non-causal con-
trol, Wave prediction.

I. INTRODUCTION

Ocean waves have abundant renewable energy which can
be harvested by wave energy converters (WECs). However,
current wave energy technologies are not yet mature with a
relatively high unit cost of the generated electricity compared
to other types of renewable energy generation, specifically
wind and solar energy. The energy conversion of WECs may
be improved by innovative design configuration and associated
control strategies. Multi-float and multi-mode-motion WECs
(M-WECs) enable much improved energy conversion over
single-float and single-motion WECs (S-WECs) , e.g. [1],
[2]. It has also long been recognized that control plays an
important role in significantly improving the energy conversion
of WECs [3]. Early model-free control methods for WECs,
such as latching control and declutch control, are based on
the impedance matching principle [3]. More recent studies
show that advanced model-based control such as optimal
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control [4], model predictive control [5], [6], pseudospec-
tral control [7], [8] have much greater potential to improve
WEC performance. The efficacies of these advanced control
strategies however rely on the fidelity of the WEC dynamic
model. Due to potential high computational demands resulted
from high-order dynamic models, their efficacies have been
mainly demonstrated for S-WECs, with single body heaving
point absorbers being particularly popular. The control of M-
WECs has not been investigated to our knowledge probably
because complex dynamic models and complex controller
design combine to become analytically and computationally
prohibitive.

This is however the aim of this paper where we present a
design case study for a linear non-causal optimal controller
for a M-WEC which is reconfigurable in terms of the number
of floats, known as M4 [1], [2]. This is essentially a raft-
type attenuator device which absorbs energy from the relative
pitch motion of floats connected by beams at a hinge. There
are three rows of floats with a single bow float attached to
a mooring buoy [2]; the floats increase in size downwave
and the device heads naturally into the wave direction. In its
simplest form there is one mid float connected by a beam to
the bow float and a stern float connected by a beam to a hinge
above the mid float at which mechanical damping absorbs
wave energy [1]. The M4 design has relatively high capture
width ratio (CWR) compared to other designs and larger
multi-float systems have capacities comparable to offshore
wind for certain sites [2], [9]. An important attraction of
M4 is that it has inherent linear dynamics in operational
conditions shown by comparing laboratory measurements with
linear diffraction modelling for the original 3-float version
in the frequency domain [10], [11] and the time domain
using the Cummins method [2]. This has now also been
shown for a 6-float version [9] and up to 8 floats have been
modelled [2]. The linear dynamics enable the development of
a concise control-oriented model using model order reduction
techniques. Based on this reduced-order linear model for M4,
a non-causal optimal controller can be developed for its real-
time implementation. For this study we use the original 3 float
version since this is sufficient to provide proof of concept. The
prediction of incoming waves is assumed to be available from
the existing prediction techniques, e.g. the deterministic sea
wave prediction (DSWP) algorithm [12]. This wave prediction
information can be explicitly incorporated into the non-causal
optimal controller design and plays a key role in improving
the performance of M4 as demonstrated in the simulations of
the paper.

The rest of this paper is organized as follows. In Section
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Fig. 1. Diagram of laboratory scale three-float M4 1-1-1 from [2].

2 we introduce the M4 device, and build a control oriented
state-space model. In Section 3 the theory of the linear non-
causal optimal control is introduced along with some other
technical details. Then numerical simulations are demonstrated
in Section 4.

II. THE M4 WEC AND ITS HYDRODYNAMIC MODEL

A. The M4 WEC

The M4 wave energy converter was first introduced in [1]
as a floating line absorber, and the mechanical design has
subsequently been improved [2]. Wave basin experiments were
run at different scales to test energy conversion performance
and the Froude scaling was confirmed [13]. A linear diffraction
model has been built [2] whose fidelity has been validated
by tank experiment results with a well-tuned linear damper
without control. This provides a good basis for validation
of the control-oriented model to be derived. Fig.1 shows the
simplest 3-float (1-1-1) format of the M4 device at laboratory
scale (approximately 1: 40). The floats are named bow float,
mid float and stern float from left to right. 1-1-1 indicates
their number. Increasing the number of mid and stern floats
will increase the number of power take offs (PTOs) but
they are governed by the same operating principles. In this
paper only uni-directional waves are considered and the waves
are assumed to propagate from left to right. To demonstrate
control only the simplest 1-1-1 type is considered, but this
may be extended straightforwardly. The 1-1-1 M4 reacts to
wave motion with adjacent floats predominantly in anti-phase
to generate relative pitch rotation with respect to the hinge
at which a PTO is placed to absorb the kinetic energy. The
controller is to be designed to control this PTO actively to
maximize the energy output.

B. Control-oriented modelling of M4 dynamics

To design an optimal controller for M4, a state-space model
that can describe the M4 dynamics with sufficient accuracy

needs to be derived. A controller designed based on a very
high order state-space model can result in a prohibitive com-
putational load for real-time implementation. We thus need to
develop a state-space model with a sufficiently low order for
computational efficiency without sacrificing modelling fidelity
significantly. We index the bow float, the mid float, the stern
float, the beam connecting the bow and mid float, the beam
connecting the mid and stern float, and the power take-off
(PTO) with numbers from 1 to 6, respectively. Rotations about
the hinge point O in Fig.1 are clockwise positive. Surge, sway,
heave, roll, pitch and yaw of a float are the six degrees of
freedom (DOF), denoted as modes from 1 to 6, respectively.
The working principle determines that M4 only absorbs kinetic
energy due to the relative pitch motion while the roll and yaw
motions do not contribute. In wave basin experiments, the roll
motion of the device is minimised by outrigger buoys either
side of the stern float. Yaw motion is not significant since the
device aligns naturally with the direction of wave propagation.
So it is reasonable to restrict our analysis to the x-o-z plane
with modes 1, 3 and 5 only.

1) Motion equation: To derive the equations of the device’s
motions in the x-o-z plane, a generic and efficient method
is to utilize the Euler-Lagrange equation. The notations for
the following sections are shown in Table I. The generalized
coordinate is chosen as q = [x0 z0 θ1 θ2]>, where > denotes
the transpose of a vector. Then the surge motion and the heave
motion of each part of the device can be expressed as shown in
(1). θ is assumed to be small, so the approximation sin θ ≈ θ
holds in the following relations:

x1 = x0 − v1θ1, z1 = z0 + h1θ1
x2 = x0 − v2θ1, z2 = z0 + h2θ1
x3 = x0 − v3θ2, z3 = z0 − h3θ2
x4 = x0 − v4θ1, z4 = z0 + h4θ1
x5 = x0 − v5θ2, z5 = z0 − h5θ2
x6 = x0 − v6θ2, z6 = z0 − h6θ2

(1)
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TABLE I
NOTATION LIST

Symbol Description

i index of each part
ri radius of float i
xi surge motion of i
zi heave motion of i
x0 surge motion of hinge O
z0 heave motion of hinge O
θ1 pitch of i which are on the left of the hinge O
θ2 pitch of i which are on the right of the hinge O
q generalized coordinate
hi horizontal distance from COG of i to hinge O
vi vertical distance from COG of i to hinge O
mi mass of i, including ballast for floats
Ii inertia of i relative to its own COG
ρ water density
g gravitational constant

The dynamics of the M4 device can be obtained from the
generic Euler-Lagrange equation

d
dt

(
∂L

∂q̇

)
− ∂L

∂q
= Q (2)

where the Lagrangian L := T −V , with T as the total kinetic
energy

T =
∑

i=1,2,4

[
1

2
mi(ẋ

2
i + ż2i ) +

1

2
Iiθ̇

2
1

]
+
∑

i=3,5,6

[
1

2
mi(ẋ

2
i + ż2i ) +

1

2
Iiθ̇

2
2

]
(3)

and V as the total potential energy:

V =

6∑
i=1

migzi (4)

Q is the generalized force acting on the system:

Q = fb,q + fw,q + fmoor,q + fdrag,q + fpto,q (5)

Here fb,q denotes the buoyancy force, which is cancelled by
the potential energy derivative term. fw,q denotes the linear
wave forces. fmoor,q denotes the mooring force which has a
negligible influence on the energy conversion, and is neglected
here. fdrag,q denotes the drag force on the device, which
is also negligible for M4 because of its rounded float base
design. This is supported by experiment and computational
fluid dynamics and drag is reduced further at full scale [14].
fpto,q denotes the PTO unit torque.

According to the linear diffraction theory, the linear wave
force fw,q is composed of the excitation force, the radiation
damping force combined with the added mass force and the
hydrostatic restoring force [15], and is denoted by

fw,q = fe,q + frd,q + frs,q (6)

Excluding these negligible terms from the Lagrangian equa-
tion, we derive

Mq̈(t) = fe,q(t) + frd,q(t) + frs,q(t) + fpto,q(t) (7)

Here M comes from the kinetic energy derivative, shown in
(8). The diagonal terms of M are due to the summation of the
mass and inertia of each float. Non-diagonal terms account for
the coupling dynamics between displacements and rotations.

We replace the generalized coordinate index q by i,j to
denote the forces or torques acting on float i in mode j, with
j = 1, 3, 5 denoting surge, heave and pitch mode, respectively.
Thus, the generalized linear wave forces can be calculated as
(9), (10), and (11). Note that all ‘f ’s are functions of time.
Linear wave forces are exerted only on floats. Beams and the
PTO unit are above the water surface and have no interaction
with waves.

2) Hydrodynamic coefficients and linear wave forces:
Hydrodynamic coefficients, derived from a hydrodynamic
potential-flow software WAMIT [16], are used to calculate
the linear wave forces for each float. The coefficients include
excitation force amplitude Fex, excitation force phase φ, added
mass matrix Ainf for infinite frequency and radiation damping
coefficient matrix B(ω) which provides impulse response
functions in the convolution integral as shown below.

Wave excitation force is treated as a disturbance input to
the control system. We use the JONSWAP (Joint North Sea
Wave Project) wave model with spectral peakedness factor of
unity to generate irregular wave spectra with 200 frequency
intervals up to maximum of 4 Hz at model scale which is 3−4
times of the peak frequency, as for wave profiles used in [2].
Thus, Fex and φ are matrices of size 200 × 18 (here 18 = 3
floats × 6 DOFs). The excitation force for float i in mode j
is

fe,i,j(t) =

200∑
n=1

H(n)Fex(n, 6(i− 1) + j)

cos(φ(n, 6(i− 1) + j) + φran(n)) (12)

where H(n) and φran(n) are the amplitude and random phase
of JONSWAP wave spectrum, of size 200 × 1. Substituting
all the ‘f ’ terms in (9) by (12) yields the final generalized
excitation force, which is a 4× 1 vector.

Radiation damping force can be expressed by the Cummins
equation [17] which is a convolution of impulse response
function (IRF) and the first derivative of a motion. The IRF
Lmn is calculated by the radiation damping matrix Bmn for
m, n = 1 . . . 18,

Lmn(t) =
2

π

∫ ∞
0

Bmn(ω) cos(ωt)dω (13)

Thus the radiation damping force for float i in mode j in time
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M =


∑6

i=1 mi 0 −m1v1−m2v2−m4v4 −m3v3−m5v5−m6v6

0
∑6

i=1 mi m1h1+m2h2+m4h4 −m3h3−m5h5−m6h6

−m1v1−m2v2−m4v4 m1h1+m2h2+m4h4
∑

i=1,2,4(Ii+mi(h
2
i+v2

i )) 0

−m3v3−m5v5−m6v6 −m3h3−m5h5−m6h6 0
∑

i=3,5,6(Ii+mi(h
2
i+v2

i ))

 (8)

fe,q(t) =


fe,1,1 + fe,2,1 + fe,3,1
fe,1,3 + fe,2,3 + fe,3,3

fe,1,5 + fe,2,5 − fe,1,1v1 − fe,2,1v2 + fe,1,3h1 + fe,2,3h2
fe,3,5 − fe,3,1v3 − fe,3,3h3

 (9)

frd,q(t) =


frd,1,1 + frd,2,1 + frd,3,1
frd,1,3 + frd,2,3 + frd,3,3

frd,1,5 + frd,2,5 − frd,1,1v1 − frd,2,1v2 + frd,1,3h1 + frd,2,3h2
frd,3,5 − frd,3,1v3 − frd,3,3h3

 (10)

frs,q(t) =


frs,1,1 + frs,2,1 + frs,3,1
frs,1,3 + frs,2,3 + frs,3,3

frs,1,5 + frs,2,5 − frs,1,1v1 − frs,2,1v2 + frs,1,3h1 + frs,2,3h2
frs,3,5 − frs,3,1v3 − frs,3,3h3

 (11)

domain can be calculated as,

frd,i,j(t) =

3∑
n=1

ẋn ∗ L6(i−1)+j,6(n−1)+1

+

3∑
n=1

żn ∗ L6(i−1)+j,6(n−1)+3

+

2∑
n=1

θ̇1 ∗ L6(i−1)+j,6(n−1)+5

+ θ̇2 ∗ L6(i−1)+j,6(n−1)+5|n=3
(14)

Here the summation index n refers to a float. Notation ‘∗’
denotes convolution. For example, the portion of radiation
damping force acting on float 1 in surge direction caused by
the heave motion of float 2 is,

f(t) =

∫ t

−∞
L1,9(t− τ)ż2(τ)dτ (15)

The lower limit can be set to t− 4Tp with sufficient accuracy
[2], where Tp is the wave peak period. The convolution
calculation is time-consuming, and there are 81 convolutions
in total to be calculated according to the above analysis.
Substituting all ‘f ’s in (10) by (14) and applying the linear
property of convolution and introducing the motions of each
float into the generalized variable by (1), we can write the
generalized radiation force as

frd,q(t) =

∫ t

t−4Tp

Frd(t− τ)q̇(τ)dτ (16)

where Frd is a 4 × 4 matrix with an IRF of length 4Tp
in each entry. q̇ is the first derivative of the generalized
coordinate vector. Now the number of convolutions to be
calculated is reduced to 16. A state-space model can be derived
from each convolution term, as shown in [18]. The Hankel
singular value decomposition algorithm is used to convert each
convolution term to a state-space model. The order of the
model is proportional to the length of the IRF Frd,mn and

can be very high; in this case study, it is around 400. Then
assembling the 16 converted state-space models into one state-
space model gives an order of around 6400×6400, which is too
high for controller design and real-time implementation of a
model-based control algorithm. Thus, model order reduction is
necessary for each state-space model. The truncated balanced
reduction method is employed to reduce the state-space model
for each subsystem corresponding to each convolution term of
radiation force from an order of around 400 to a model with
an order of 3 to 8. System identification and the truncated
balanced reduction method are implemented using MATLAB
routines imp2ss() and balmr(), respectively. A model
with an order of 8 for each subsystem is chosen for simulation.
Validation is shown in the next section. Now the generalized
radiation damping force can be expressed as,

żs = Aszs +Bsq̇(t)

frd,q(t) = Cszs +Dsq̇(t) (17)

where zs is the state variable of the identified and assembled
system with an order of 128. As, Bs, Cs, Ds are the state-
space realisation matrices. Their sizes are 128× 128, 128× 4,
4 × 128, 4 × 4, respectively. The added mass matrix Ainf

when the frequency approaches infinity is of size 18×18, with
only a constant value in each entry. The added mass term can
be viewed as a force related to the second derivative of the
generalized vector variable, q̈(t). It can also be added to the
matrix M , after reassembling as a 4×4 matrix m∞ following
the same method for calculating radiation damping force in
(10), which is adopted here.

Hydrostatic restoring force is dependent on the heave dis-
placement and pitch rotation, but not on surge in a linear
context, i.e. frs,i,1 = 0. The heave restoring force for float
i is frs,i,3 = −ρgπr2i zi, and the pitch restoring torque for
float i is frs,i,5 = −ρgπ r4i

4 θ1or2. From (11), the generalized
hydrostatic restoring force can be written in a matrix form as

frs,q(t) = Kq(t) (18)
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where K is the 4× 4 hydrostatic restoring force matrix

K =

 0 0 0 0
0

∑3
i=1 kzi kz1h1+kz2h2 −kz3h3

0 kz1h1+kz2h2
∑2

i=1 kri+kzih
2
i 0

0 −kz3h3 0 kr3+kz3h
2
3

 (19)

kzi = −ρgπr2i , kri = −ρgπ r4i
4 .

3) Final state-space representation: To sum up, the motion
equation for M4 can be written as

(M +m∞)q̈(t) + frd,q(t) +Kq(t) = fe,q(t) + fpto,q(t)

żs = Aszs +Bsq̇(t)

frd,q(t) = Cszs +Dsq̇(t) (20)

When no active control is applied, the PTO is a passive
damper, and the PTO torque Mmech is modelled as Mmech =
−Bmechθ̇r, where Bmech is a constant damping ratio and
θ̇r := θ̇1 − θ̇2 is the relative pitch rotation velocity. When
designing a controller, the PTO force is viewed as a manipu-
latable control input to the WEC system.

By defining a new state vector x := [q, q̇, zs]
> and the

system output z = θ̇r, the final state-space representation of
the control-oriented model for M4 can be written as

ẋ = Ax+Bwfe,q(t) +Bufpto,q(t)

z = Cx

(21)

where the system matrices are

A =

[
04×4 I4×4 04×n

−(M+m∞)−1K −(M+m∞)−1Ds −(M+m∞)−1Cs

0n×4 Bs As

]
(22)

Bw =

[
04×4

(M+m∞)−1

0n×4

]
(23)

Bu =

[
04×1

(M+m∞)−1[0,0,1,−1]>
0n×1

]
(24)

C = [ 01×6 1 −1 01×n ] (25)
(26)

with A ∈ R136×136

This results in a single-input-single-output state-space
model. The single input is the manipulatable PTO control input
fpto,q(t), and single output is the relative pitch velocity θ̇r.
The wave excitation force is treated as a persistent disturbance
to the system. The resulting state-space model for M4 is
marginally stable. It is also controllable and observable.

III. LINEAR NON-CAUSAL OPTIMAL CONTROLLER
DESIGN FOR M4

A. The control problem formulation

With the control-oriented model presented in the last sec-
tion, we can formulate the optimal control problem as follows:

min
u0,...,uN

ΣN
k=0

{
zkuk +

1

2
xTkQxk +

1

2
ru2k

}
(27)

subject to the discrete-time model state-space model

xk+1 = Axk +Bwwk +Buuk

zk = Cxk (28)

which is discretized from the continuous time model (21).
Here wk is the wave excitation force at time k and uk is the
control input at time k. The cost function consists of three
terms. For the first term, since the power output is Pk =
−zkuk, minimisation of zkuk is equivalent to maximizing the
power output. The second term represents the soft constraints
on the state vector xk. The weight Q is tuned to penalize
some motions of M4. The third term aims to penalize the
PTO torque by tuning the weight r. A good trade-off between
these tuning weights needs to be determined to achieve the
maximum energy output while not violating the constraints
on the PTO limit and M4 motions for its safe operation. N
is the number of time steps in the optimization process. In
this case it is set to N →∞. The weighting matrices Q and
r are positive definite. They are tuning parameters to ensure
stability of the control system and handle state constraints and
input constraints respectively.

B. Non-causal control policy

The control law [4] derived from resolving the non-causal
optimal control problem presented in the last sub-section has
the form of

uk = Kxxk +Kdwk,np (29)

which consists of a feedback term for the system states xk and
a feed-forward term to incorporate the prediction of the incom-
ing wave excitation force wk,np := [wk, wk+1, . . . , wk+np−1]
where np is the length of wave prediction horizon. A non-
causal controller means the future information contributes to
the controller’s decision making. In this paper, we assume
the incoming wave prediction available. Kx and Kd are
constant coefficient matrices that can be pre-calculated off-
line. According to [4], the formulae for calculating them are

Kx = −(r +BT
u V Bu)−1(C +BT

u V A) (30)

Kd = −(r +BT
u V Bu)−1BT

u Ψ (31)

and

V = Q+ATV A− (C +BT
u V A)T

(r +BT
u V Bu)−1(C +BT

u V A) (32)

where V is the algebraic Ricatti equation. Results in [4] show
that with an infinite control horizon N → ∞ and a finite
wave prediction horizon np, the control law yields an unique
solution.

The only remaining unknown is Ψ which is needed to
calculate the feed-forward gain Kd. Let Φ := (A+BuKx)T ,
then Ψ := [V Bw,ΦV Bw, . . . ,Φ

np−1V Bw].

C. State observer design

Since the optimal controller has a state feedback term, it
requires all state information xk to be available, which in our
case is not realistic. This is because the states for the radiation
damping do not have physical meanings. Thus, a state observer
has to be designed to provide the information of these states
for the controller.

A standard Kalman state observer is adopted in this case.
The Kalman observer has the M4 control input uk and



6

output yk from measurement as the observer’s inputs, and an
estimated state information x̂k as the output. It runs at every
time step for the state estimation.

We denote the former input of non-causal controller with
observer ûk−1, and the estimated state x̂k−1. The Kalman
observer algorithm runs as follows: firstly, calculate a priori
estimation with the former state information

x̂−k = Ax̂k−1 +Buûk−1 +Bwwk−1 (33)

and then the error covariance P−k of this priori estimation is
calculated with the predefined model error covariance Qkal

P−k = APk−1A
T +Qkal (34)

The Kalman observer gain is

Kkal =
P−k C

T

CP−k C
T +Rkal

(35)

where Rkal is the covariance of the measurement. The esti-
mated state information can be calculated as

x̂k = x̂−k +Kkal(yk − Cx−k ) (36)

The last step in a Kalman algorithm loop is to update the error
covariance matrix Pk for the next time step

Pk = (I −KkalC)P−k (37)

The non-causal optimal control policy with the states estimated
by a Kalman observer can be rewritten as

ûk = Kxx̂k +Kdwk,np (38)

In simulation, the measurement of system output yk is set to
be the state space model output zk = yk = Cxk with added
random measurement errors which have a pre-defined error
covariance.

The control block diagram is illustrated in Fig. 2.

Fig. 2. Linear non-causal optimal control framework [4].

IV. NUMERICAL RESULTS AND DISCUSSION

Numerical simulations are carried out to compare energy
conversion with the designed non-causal optimal controller
and a well-tuned passive damper. Simulations are presented
in the following order.

Firstly, simulation with a JONSWAP wave profile (tested
with Hs = 0.04m,Tp = 1.8s) is used to validate the controller
performance. Controller is implemented with the pre-tuned
parameters Q, r and fixed wave prediction horizon np. Energy,
power, control input and relative pitch angle of the device are
all plotted to give complete observation and comparison.

Secondly, prediction errors are introduced to demonstrate
how robust the controller is to wave prediction errors, and
the length of wave prediction np is varied to show how it
affects the controller performance. This is a rather important
issue because generally the prediction error increases with the
length of the prediction horizon.

Thirdly, simulations of different wave profiles (defined by
significant wave height Hs and peak period Tp) are run, to
compare the controller performance in different sea states. To
normalise the average power capture Pav the wave energy
propagation per metre crest width Pw is used to define capture
width as Pav/Pw. The maximum capture width for point
absorbers [19] and hinged rafts [20] in regular waves has
been shown theoretically to be proportional to wave length.
In the irregular waves of this study we normalise capture
width by the wavelength for the energy period to define the
capture width ratio which can thus be compared with some
reference values. It has also been shown experimentally that
the variation of CWR defined in this way with peak period is
almost independent of typical spectral peakedness values of 1
and 3.3 [9]. Note the body width has sometimes been used to
define capture width ratio.

Finally, a series of controllers with different weighting
parameters Q and r are adopted to provide some indications
of how to tune the controller to achieve better performance.

A. Discussion of results

Fig. 3 and Fig. 4 show that with the same wave profile
(Hs = 0.04m,Tp = 1.8s) as in the modelling stage, the non-
causal optimal controller with a 3.6 seconds (2Tp) forward
wave excitation force prediction remarkably improves the
energy output (at 50 seconds going from 6.06J with a well-
tuned passive damper to 10.89J with the controller). The
relative pitch angle also has an increase from 1.54◦ to 3.74◦

RMS value. The input torque maximum amplitude resulting
from a control signal is however quite similar to the case when
no control is applied. This means the non-causal controller
does not require a higher demand on the torque limit of the
actuator.

Fig. 5 shows the energy conversion when wave predictions
are subject to errors. We introduce two types of errors to the
prediction as can be seen in the upper sub-plot of Fig. 5. The
black line shows the case when prediction is contaminated
by measurement noise represented by White Gaussian Noise
(WGN). For the pink line a sequence of noises with ramped
magnitudes are added to prediction to enlarge the prediction
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Fig. 3. Relative pitch and input torque, JONSWAP wave Hs = 0.04m,
Tp = 1.8s, prediction horizon 2Tp = 3.6s (np = 400).
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error with time. The reason for doing this is that most of the
wave prediction techniques can provide better prediction in
the near future than for longer times. Energy conversion of
both cases can be seen in the bottom sub-plot of Fig. 5 and
compared to the results of Fig. 4. For the WGN case energy
conversion is hardly affected. This shows the controller is very
robust against this kind of prediction error, which normally
occurs with sensors. When the prediction error increases with
time, the controller performs slightly worse compared with the
WGN case.

Fig. 6 shows the non-causal optimal controller’s perfor-
mance with different prediction horizons. The length of pre-
diction is normalised with the peak wave period Tp. CWR
plot shows that with a longer prediction horizon np, the
controller has better performance. However, the influence of
the prediction horizon starts to decrease as np increases to a
big enough value. np = 3Tp provides almost optimal control
performance, and this length of prediction horizon can be
achieved by the DSWP technique [12]. Fig. 7 provides better
observation for the feed-forward gain Kd which decreases to
0 as the prediction horizon prolongs.

Fig. 8 shows the CWR of the device obtained from a
wide range of simulations under JONSWAP wave spectra with
Hs = 0.035m, Hs = 0.05m and Hs = 0.07m. Wave peak
period ranges from 0.7s to 2s with 0.1s interval. Results with
a passive damper (dashed line) are close to CWR obtained in
a tank experiment [2], validating the modelling fidelity. With
our non-causal controller (solid line), the CWR of the device
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improves across a wide range of peak periods. Within peak
wave periods of 1-1.8 seconds tank scale (6-11 seconds in
full scale), the improvement changes from 40% at wave peak
period Tp = 1s to 100% at wave peak period Tp = 1.8s.
Note that the same controller parameters Q and r are used
for different wave conditions (significant heights and peak
periods), and the results show that tuning of Q and r is
not sensitive to wave conditions. This will ease the controller
implementation efforts in real applications. It can also be seen
that CWR is almost independent of the significant wave height
and is determined by the wave peak periods as expected with
this form of non-dimensional CWR.

Figs. 9,10,11 provide more insights on how to tune the
controller weighting matrices Q and r. Simulations are run
using JONSWAP waves with Hs = 0.035m, and a wave
prediction horizon of 3.6 seconds (np = 400). The red line is
the CWR of the device with a passive damper for comparison
purpose. The states weighting matrix Q is divided into two
parts which are tuned separately. The first part is for the
first eight states which are the displacement and velocity of
the device, denoted by q1. The second part is for the states
without any physical meaning corresponding to the radiation
subsystems, denoted by q2. The structure of Q is in the form
of

Q =
[
q1I8 0
0 q2In

]
(39)

with In denoting an n by n identity matrix. Control input
weighting is denoted by r. Note that tuning of parameter r
should be considered together with the control actuator torque
limit since a smaller value of r can lead to larger control input
magnitude. r = 0.08 is chosen for simulations carried out in
this paper after the tuning procedure.

B. Implications

These improvements in CWR require mechanical PTO hard-
ware and power electronics to be available but this is an area
of active development, notably for wind turbines. For wave
energy estimates of annual electricity generation for various
worldwide sites have been made without control for configura-
tions with 3 to 8 floats [2], [9]. Electricity cost estimates were
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also made following standard discounting practices. The basic
3-float (1-1-1) system investigated here provides an annual
average power at Wave Hub in Cornwall of 280 kW and for
the 6-float (1-3-2) system with two PTOs the annual average
becomes 660 kW. For Belmullet in W Ireland a somewhat
larger scale system is desirable to minimise electricity cost
giving an average power for the 1-1-1 system of 970 kW
and 2290 kW for the 1-3-2 system. This gives capacities
similar to offshore wind turbines and control will increase
energy yield and hence capacities substantially. Since control
is relatively inexpensive electricity cost will almost certainly
be reduced although this is hard to quantify as hardware
implications are not known. An important consideration is that
the improvement in CWR by control increases as wave period
increases. This means that the device size required to minimise
electricity cost will be smaller with control than without,
thereby reducing the overall cost which is proportional to
scale to a power between 2 and 3. Accurate costing obviously
requires detailed engineering design of all aspects.
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V. CONCLUSION

A linear non-causal optimal controller is designed for M4, a
reconfigurable multi-float and multi-mode-motion wave energy
converter. The simplest 3-float version considered here can
be straightforwardly generalised to a larger number of floats
with multiple PTOs. The dynamics of M4 can be described
by a reduced-order linear model with sufficient fidelity, which
enables the design and implementation of the linear non-causal
optimal controller. Numerical simulations show that the con-
troller with a limited horizon of wave prediction incorporated
can significantly improve the capture width by between 40%
and 100% over a broad range of sea states. Exact improvement
in cost of electricity requires detailed engineering design of all
aspects.
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