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We demonstrate the application of recent advances in statistical mechanics to a problem in
telecommunication engineering: the assessment of the quality of a communication channel in terms
of rare and extreme events. In particular, we discuss non-Markovian models for telecommunication
traffic in continuous time and deploy the “cloning” procedure of non-equilibrium statistical mechan-
ics to efficiently compute their effective bandwidths. The cloning method allows us to evaluate the
performance of a traffic protocol even in the absence of analytical results, which are often hard to
obtain when the dynamics are non-Markovian.
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I. INTRODUCTION

Natural systems made of many coupled components,
ranging from ideal gases to living organisms and their
communities, have long been of interest to scientists. Re-
cently, by contrast, some of the most studied complex
systems have been man-made, for instance telecommuni-
cation networks, transport infrastructures, and financial
markets. The methods used to approach these technolog-
ical systems are similar to those used in natural sciences.
Indeed, at a sensible level of detail, the system properties
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appear as random variables, and the scientific effort is di-
rected towards the quantification of such randomness, as
well as of its effects. More specifically, in telecommunica-
tion engineering, we are interested in relating the elemen-
tary (“microscopic”) description of a telecommunication
network in terms of packets and servers, to a perceivable
(“macroscopic”) quantity, such as the service that is ef-
fectively available to the final user. Such a programme
looks very similar to the one that led to the the devel-
opment of statistical mechanics, where macroscopic ob-
servables (such as density and energy) are defined based
on microscopic modelling.

Studies comparing communication networks and
many-body physical systems are well-represented in the
literature [12, 16, 17] and it is now well understood that
the analogies are based on the underlying mathematics of
stochastic processes and large deviation theory [58]. This
paper is built around the less well-known notion of effec-
tive bandwidth (EB), which has been introduced in the
90s to weight the effects of large deviation events in re-
source allocation [37], (see also the more recent reference
books [27, 38, 40, 54]). It is worth noting that the effi-
cient numerical evaluation of rare events is central within
such a context, as in the real world a suitable amount of
resources must be allocated even in the absence of an-
alytical solutions for the probability of potentially dis-
ruptive rare events [11, 31, 51]. To do so, we choose a
tool from non-equilibrium statistical mechanics, viz., the
“cloning” method [28]. We are here particularly inter-
ested in systems with non-Markovian dynamics (relevant
to real-world applications as well as statistical mechanics
advances) and so we exploit a recent implementation of
cloning for non-Markovian processes [9].

The text is organised as follows. In section II some
basic concepts from queuing theory are introduced to set
the stage for the following sections. In section III we
present, motivate, and review the notion of EB, which is
connected to a large deviation analysis of the net load.
In sections IV, V, and VI we analyse Markovian and non-
Markovian models of packet traffic modulated by an un-
derlying stochastic process. The cloning method is used
to numerically compute their EBs. In particular, while
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sections IV and V deal with classic teletraffic toy models
whose EBs are known analytically, in section VI we ex-
plore numerically the case of a modified non-Markovian
two-phase process, observing that the EB increases as
the dispersion of the phase lengths increases. Signifi-
cantly, this leads to the observation that the EB in the
new model can be adjusted by tuning the traffic param-
eters, whilst maintaining a fixed mean traffic rate. We
conclude with a discussion in section VII.

II. NET LOAD, BANDWIDTH, AND THEIR
BOUNDS

In a queuing network, we have a collection of servers
that exchange packets or customers. When a collection
of packets leaves a server to reach another one, we say
that a communication channel has been established be-
tween the two servers. In such a channel, we denote the
random amount of work brought by customers passing
through the channel during the interval [0, t) as X(t).
This can be described as the integral over [0, t) of a pro-
cess x(t), which can be a “point” process (thought of as a
series of random events describing customers – or parti-
cles – feeding one of the servers), or a “fluid”/“piece-wise
deterministic” process (supplied continuously and deter-
ministically between random times). We will not deal
with a third possibility where the instantaneous work is
supplied continuously and stochastically; however many
considerations in this paper arguably apply also to such
a case. Similarly, we consider the amount of work Y (t)
that the receiving server is able to perform during the
same amount of time, which is the integral over [0, t)
of another point or fluid process y(t). It is of central
importance here that X(t) and Y (t) are assumed to be
time-extensive, so that they play the role of currents in
standard interacting particle systems [12]. Indeed, such
a setting is quite general. For example, in the context
of economics, X(t) and Y (t) can describe the total pro-
duction and demand, respectively. It is also convenient
to introduce the quantity W (t) = X(t)− Y (t), which we
refer to as the net load, and its derivative w(t).

Figure 1 (left panels) shows an example of such a set-
ting when both X(t) and Y (t) are point processes. In this
case, W (t) has increments at the instants (t1, t2, . . . , tn),
with 0 ≤ t1 ≤ . . . ≤ tn < t, when discrete arrival or
service events occur. ‘ If x(t) or y(t) is fluid, then W (t)
increases or decreases deterministically between the ran-
dom times (t1, t2, . . . , tn). This is illustrated in figure 1
(right panels). Obviously, it is possible to combine fluid
and point processes.

In all the previous cases, the arrival, the service, and
the net load can be regarded as driven by an underly-
ing random process, which influences or modulates their
evolution in a point-wise or piecewise-deterministic fash-
ion. Conversely, the load itself has no influence on
the modulating random process. More specifically, in a
point process, increments occur at the random times ti,

i = 1, 2, . . . , n, and their frequency and magnitude θti can
be thought of as being dictated by the modulating ran-
dom process. On the other hand, in a fluid process, the
tis correspond to the transition times of the underlying
process and at the end of an interval between two con-
secutive transition times ti and ti+1 the net load has in-
creased by an amount that depends on (ti+1−ti); for sim-
plicity, we assume that the fluid rate is constant between
transition times and the load increase is (ti+1 − ti)θti .
To maintain generality, we refer to all types of increment
as Θi.

We require that the limits x̄ = limt→∞X(t)/t and
ȳ = limt→∞ Y (t)/t exist, and we refer to the condition
x̄ < ȳ as stability, which implies that W (t)/t concentrates
around a negative value w̄ = x̄− ȳ as t → ∞. However,
the service cannot be stored, and it is possible that at any
time there is a certain amount of work waiting to be done.
This loosely defines a non-negative random process that
is referred to as the queue length and is denoted by Q(t).
Its dynamics are as follows. For a point process W (t),
the work to be done at time tn is the sum of the length
of the queue at the previous event instant tn−1 and the
net-load increment W (tn)−W (tn−1) during the same in-
terval; however, when W (tn) −W (tn−1) + Q(tn−1) < 0,
the work surplus is wasted, yielding a zero queue length
(instead of a negative one). This can all be expressed
compactly in the recursive relation

Q(tn) = max{0,W (tn)−W (tn−1) +Q(tn−1)}. (1)

In the fluid case the queue dynamics is more subtle, but
can be compactly described as

Q(t) = sup
0<τ≤t

∫ t

τ

duw(u), (2)

if the queue is empty at t = 0, see, e.g., reference [38]. In
this paper, we focus on net-load statistics but will also
discuss queue length statistics.

A convenient simplification consists of assuming deter-
ministic service. When the service is continuously and
deterministically provided at constant rate c, the service
offered during the time interval [0, t) is ct, and the net-
load process is

W (t) = X(t)− ct. (3)

In telecommunications, the quantity c is the data trans-
fer rate of the communication channel, which we refer to
as the bandwidth, and is a quantity that can typically be
controlled by the service provider. In more general terms,
c is a reference deterministic rate at which a service can
be provided. In the following, unless explicitly stated, we
will deal with the EB of an arrival process X(t) which
feeds a net load of the form (3). However, the only condi-
tion required for the EB analysis of X(t) is its extensiv-
ity, hence it is possible to perform a similar treatment for
any observable, as long as it is time-extensive, regardless
whether it is meant to describe the arrival, the service or
the net load.
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FIG. 1. Left and right panels show example settings for point and fluid net loads, respectively. a) x(t) and y(t) represent
discrete arrival and attempted service events, respectively. b) Both request x(t) and service y(t) are carried out continuously
in time. The supply laws change at random time points, but are constant otherwise. c) and d) X(t) is the total amount of
work (e.g., customers to be served) requested during the interval [0, t), while Y (t) is the service that can be provided during
the same amount of time. e) and f) Net-load processes W (t) = X(t) − Y (t).

A very loose bound theorem on a generic random vari-
able X that takes non-negative values with density func-
tion f(u) can be derived from the knowledge of its ex-
pectation value, i.e.,∫ ∞

0

duuf(u) ≥ x
∫ ∞
x

du f(u), (4)

for x ≥ 0. This can be rewritten more conveniently as

Prob{X ≥ x} ≤ 〈X〉
x
, (5)

where the angled brackets denote the average over the
possible realisations of X. A more general version of
the bound (4) valid for non-negative and non-decreasing
functions h of X, which can now have negative support,

is called the Markov inequality and reads,

∫ ∞
−∞

duh(u)f(u) ≥ h(x)

∫ ∞
x

du f(u). (6)

We now consider the function h(x) = esx for s > 0 and
use it in equation (6) to obtain

Prob{X ≥ x} ≤ e−sx〈esX〉. (7)

This inequality, well known in the probability commu-
nity, is referred to as the Chernoff bound [55]. In the
next section we will use the Chernoff bound to compare
request and service in a communication channel after in-
troducing the notion of EB.
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III. EFFECTIVE BANDWIDTH

A. Finite time

We define the finite-time EB function Λ(s, t) of a pro-
cess X(t) of duration t, which describes a time-extensive
observable, as the functional

Λ(s, t) =
ln〈esX(t)〉

st
, (8)

where the angled-bracket notation here represents the av-
erage over histories of the process, which are also referred
to as trajectories. Following references [37, 38], we as-
sume that a number n of sources contributes to an arrival
process X(t), i.e.,

X(t) =

n∑
i=1

Xi(t). (9)

According to the Chernoff bound (7), the probability that
the service request overflows the capacity satisfies

ln Prob{X(t) > ct} ≤ ln〈es(X(t)−ct)〉
= ln〈esX(t)〉 − sct, (10)

for all s > 0. In this context, it is possible to introduce
the notion of quality of service (for which the abbrevi-
ation QoS is commonly used in engineering) in rigorous
terms: for a given positive γ, we say that QoS is guaran-
teed if the condition

Prob{X(t) > ct} ≤ e−γ (11)

is satisfied. For practical purposes, it is convenient to
work with a stronger condition, i.e.,

inf
s>0
{ln〈esX(t)〉 − sct} ≤ −γ, (12)

which is sufficient for equation (11) to hold. This means
that if ln〈esX(t)〉 − sct is less than −γ for some s > 0,
then the promise of QoS to the user is honoured. We
are now in the position to decide whether the server can
accept another service request Xn+1(t), from a source in-
dependent of X(t), without violating the condition (11).
The criterion is that the new request Xn+1(t) is accepted
if there is at least one value s > 0 such that

ln〈esX(t)〉+ ln〈esXn+1(t)〉 − sct ≤ −γ. (13)

Dividing the inequality (13) by st yields

ln〈esX(t)〉
st

+
ln〈esXn+1(t)〉

st
− c ≤ − γ

st
, (14)

which shows that the EBs naturally compare to the true
bandwidth c. For given values of γ and s, the smaller the
EB of a packet traffic model is, the lesser the impact on
the available resources will be. A simple example where
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ln〈es(X(t)+Xn+1(t))〉 − sct
−γ

FIG. 2. QoS control in finite time. X(t) and Xn+1(t) are
Poisson processes of duration t with rates

∑n
i=1 λi = 0.09

and λn+1 = 0.05. The QoS is set at γ = −0.01 , the capacity
is c = 0.23, and t = 1. As there are values of s such that
the cumulant generating function of X(t)+Xn+1(t) is smaller
than sct−γ, the condition (11) for X(t) +Xn+1(t) is satisfied
and the new arrival Xn+1 can be accepted.

Xi(t) are Poisson processes with rates λi, i = 1, . . . , n+1
is shown in figure 2, where it is easy to check whether
the arrival process Xn+1(t) can be accepted, armed with
the knowledge that the cumulant generating function for
Xi(t) is λit(e

s − 1).
In short, we can now decide whether establishing a new

connection can affect the promised QoS for a given time
by computing the finite-time EB functions of the incom-
ing traffic sources [38]. Clearly, finite-time EB functions
can be also calculated for the net load and the available
work. Considering the long-time limit of Λ(s, t) leads to
natural connections to statistical mechanics and to the
cloning algorithm developed in that field, as discussed in
the following subsections.

B. Asymptotic analysis

To study the long-time limit, we assume that the net-
load process satisfies a large deviation principle, loosely
written in the form

Prob{W (t) = wt} � e−tê(w) (15)

with rate function ê(w), where the symbol � means log-
arithmic equality in the limit as t → ∞. The rate func-
tion ê(w) encodes for the fluctuations around the typical
value w, which are of interest in resource allocation. As
an aside, if ê(w) is convex, then the large deviation prin-
ciple (15) implies

Prob{W (t) > wt} � e−tê(w) (16)

for w > w, as the probability on the left-hand side is
dominated by the slowest decaying contribution. The
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rate function can be obtained from the scaled cumulant
generating function (SCGF)

eW (s) = lim
t→∞

1

t
ln〈esW (t)〉, (17)

when the latter is differentiable, by means of a Legendre–
Fenchel (LF) transform

ê(w) = sup
s
{sw − eW (s)}. (18)

The inverse of equation (18) is also verified, i.e.,

eW (s) = sup
w
{sw − ê(w)}, (19)

as reviewed in reference [58].
More care is needed when the SCGF is non-

differentiable. In fact, more generally, the LF trans-
form of eW (s) yields the convex envelope of ê(w) which

can contain linear sections corresponding to the non-
differentiable points of eW (s), interpreted as dynamical
phase transitions [6]. In this paper, we will not deal with
such circumstances.

Similarly to section III A, we now turn our attention
to the event that the service request overflows the capac-
ity. Specifically, we require that the net load exceeds a
specified q > 0 at any finite time τ in (0, t]. To study this
probability we can make the following heuristic argument
based on the discrete-time analogue (see, e.g., references
[42, 54]).

First we note that to find the supremum of W (τ) it
suffices to consider only the transition times ti and the
final time t. Hence we have the inequality

Prob

{
sup

0<τ≤t
W (τ) > q

}
≤
∞∑
n=1

∫ t

0

dt1

∫ t

0

dt2 . . .

∫ t

0

dtn p(t1, t2, . . . , tn)

n∑
i=1

Prob{W (ti) > q}+ Prob{W (t) > q}, (20)

where p(t1, t2, . . . , tn) is the joint probability density to
have transitions at times t1, t2, . . . , tn. We expect this in-
equality to become tighter for larger q where the proba-
bility of exceedance at more than one time becomes small.

Now, since the net load typically decreases in time
(becomes more negative) according to the stability con-
dition of section II, the probability that W (t) exceeds
q approaches zero as t → ∞. Indeed we anticipate
that the most likely time for exceedance scales with q.
For large q and t this suggests using (16) to approxi-

mate Prob{W (ti) > q} by e
−q ê(q/ti)

q/ti . The right-hand
side of (20) is then dominated by the smallest expo-
nent infw≥q/t ê(w)/w where the condition w ≥ q/t fol-
lows from ti ≤ t. For t � q, this infimum occurs at
a t-independent value arg inf ê(w)/w = q/τ∗, consistent
with our intuition that the most significant contribution
to the probability (20) comes from a time which scales
with q.

Putting everything together, we obtain

Prob

{
sup

0<τ≤t
W (τ) > q

}
� e−qδ, (21)

which expresses an important asymptotic result for t →
∞ and q → ∞, with q/t → 0. The exponent δ is the
largest number s such that s− ê(w)/w ≤ 0 for all w ≥ 0,
or the largest number s such that eW (s) is non-positive,
using equation (19). Hence, the inequality

eW (δ) ≤ 0 (22)

is satisfied.

It is worth noting that the same arguments can be ap-
plied to study the asymptotic probability that the queue
occupation Q(t) (rather than the net load) overflows q,
which is obviously more interesting for applications. In
fact, from equation (2), we get

Prob {Q(t) > q} = Prob

{
sup

0<τ≤t

∫ t

τ

duw(u) > q

}
, (23)

which, by the same heuristic argument used to obtain
equations (20) and (21), gives

Prob {Q(t) > q} � e−qδ. (24)

As in section III A, we focus on net loads of the form
(3), whose exponent δ is given by

δ(c) = sup{s : eX(s)/s ≤ c}, (25)

with the assumption that the stability condition x̄ < c is
satisfied. The functional

Λ(s) =
eX(s)

s
(26)

represents the observable to be compared against the true
capacity c and is referred to as the asymptotic EB func-
tion or simply EB function of the process X(t). Note, we
use the notation δ(c) in equation (25) and elsewhere when
we wish to emphasize dependence of the exponent on c.
The definition (26) holds for generic extensive processes.
However, here we are chiefly interested in the case where
X(t) is the arrival process and cannot decrease in time.
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This implies that its rate function has non-negative sup-
port and the Legendre duality in turn implies that Λ(s)
is a monotonic non-decreasing function of s.

As we did with equation (14), we can assess the impact
of an incoming service request on the available resources
by computing the residual Λ(s)− c. The stability condi-
tion ensures that, on average, all the incoming requests
are served; i.e., equation (11) is satisfied in the long-time
limit for all real γ. On the other hand, it is of little
practical interest to consider the case where c is larger
than the peak arrival rate, as this would ensure an excel-
lent QoS for all times, but at the cost of having unused
resources for most of the time. To find a more refined
bound, let us request that the probability decays faster
than a certain reference law, i.e.,

Prob

{
sup

0<τ≤t
W (τ) > q

}
< e−qξ. (27)

The exponent ξ is a way of defining a target asymptotic
QoS, and, obviously, the larger its value the better service
the final user is provided with. Using the asymptotic
relation (21) yields δ(c) > ξ, which implies

Λ(δ(c)) > Λ(ξ), (28)

due to monotonicity. We also have that c = Λ(δ(c)), i.e.,
Λ and δ are inverse functions. This gives us the criterion

c > Λ(ξ) (29)

to assess if the capacity c is adequate to service the arrival
process X(t), given a target value of ξ.

It is worth noting that the notions that we have defined
so far have glorious analogues in equilibrium statistical
mechanics [50], which we outline here without aiming at
being exhaustive. In fact, equilibrium statistical mechan-
ics is formulated in the limit of the size n of a macroscopic
system approaching infinity, under the assumption that
the density Ω(ε) of microscopic states having a mean en-
ergy ε satisfies

Ω(ε) � ens(ε); (30)

the total energy nε, which is extensive in the size, has the
same role as the net load, which is extensive in time, while
s(ε) is the micro-canonical entropy function of the system
and is analogous to êW (w). Another fundamental quan-
tity in statistical mechanics is the Helmholtz free energy
A(β), which is obtained from the entropy function via a
Legendre–Fenchel transform, with variable β conjugated
to the mean energy ε, followed by scaling by β. Here β
is the reciprocal 1/(kBT ) of the system temperature T
and kB is the Boltzmann constant. The function A(β)
conveys the same information as the entropy s(ε) (when
that function is strictly concave and differentiable), but
sometimes in thermodynamics it is more convenient to
use the former than the latter. In fact, the Helmholtz
free energy is analogous to the EB function Λ(s) − c
for a net load of the form (3), where the parameter s

is conjugated to the time-averaged load. Similarly to the
thermodynamic analogues, the EB function follows from
a Legendre–Fenchel transform and encodes for the same
information as ê(w), while its use is recommended over
the rate function if one wants to assess to what extent
the fluctuations affect the QoS. We can control the value
of the conjugated variable s by setting it to ξ, which rep-
resents the (rather arbitrary) target exponential tail of
the probability in equation (27) and is positive. The EB
Λ(ξ) can be thought of as a macroscopic quantity, which
describes the resource available to the user and can be
derived from the microscopic dynamics of X(t). Obvi-
ously, Λ(ξ) is additive in the number of service requests
as we can obtain the EB of pooled independent processes
by summing the individual EBs of each process.

The focus on time-extensive observables X(t), Y (t),
and W (t) suggests even closer connections with non-
equilibrium statistical mechanics, which essentially deals
with time-extensive “currents” rather than with the size-
extensive energy [19, 59, 62]. As an aside, it is also worth
noting that the asymptotic result (21) is reminiscent of
recent results on the universal statistics of extrema for
observables such as entropy [48]; see in particular [13]
for analysis of the housekeeping heat, which, similarly to
the net load, is an observable that on average decreases
with time. The analogies outlined in this paragraph
suggest the exploitation of methods borrowed from non-
equilibrium statistical mechanics, such as the so-called
“cloning method” for the computation of Λ(s). This is
the topic of the next subsection.

C. Monte Carlo evaluation

Computing large deviation functionals by means of
Monte Carlo methods is hard, as time-intensive observ-
ables are doomed to converge to their typical values.
An approach that prevents such a fate from happen-
ing in simulations is the “cloning method” [1, 18, 29].
This enables a desired functional to be evaluated di-
rectly by propagating an ensemble of trajectories in
time and cloning/pruning such trajectories appropriately.
The cloning method has deep roots in mathematical
physics [1, 45] and can be thought of as a sequential
Monte Carlo (SMC) strategy, also sometimes referred to
as sequential importance resampling (SIR) [21], tailored
to sample large deviation events. While SMC is typically
presented in a discrete-time setting (but see [24] for rig-
orous details on SMC in continuous time), the cloning
method has been extensively used for continuous-time
Markov processes, as proposed in [41]. For the present
EB formalism it is convenient to adapt the procedure
of reference [9], which also includes the case of non-
Markovian continuous-time processes. Central to this
procedure is to define and simulate the time τ between
two consecutive random events occurring at tn and tn+1

and the corresponding increment Θn in the value of the
driven observable, as defined for n = 1, 2, . . . in section
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II; this can be easily done for both fluid and point pro-
cesses. The aim is to estimate the SCGF as the expo-
nential growth of 〈esX(t)〉, which, loosely speaking, can
be obtained from the ensemble of simulated trajectories if
each is cloned (or pruned) when its configuration changes
from n to n + 1 according to a factor esΘn , while the
average cloning (or pruning) rate is monitored. More
precisely, the algorithm consists of the following steps:

1) Set up an ensemble of N clones, each with a
time variable t, a random configuration x0, and a
counter n = 0. Set a variable C to zero. For each
clone, simulate the time τ until the next event and
set t to τ . Then, choose the clone with the smallest
value of t.

2) For the chosen clone increase the observable by an
amount Θn and update n to n+ 1.

3) Increment the value of t for the chosen clone to t+τ ,
where τ is the waiting time for the clone until the
next event, i.e., until tn+1.

4) Compute y = besΘn + uc, where u is drawn from
the uniform distribution on [0, 1).

1) If y = 0, prune the current clone. Then re-
place it with another one, uniformly chosen
among the remaining N − 1.

2) If y > 0, produce y copies of the current
clone. Then, prune a number y of elements,
uniformly chosen among the existing N + y.

5) Increment C to C + ln[(N + esΘn − 1)/N ]. Choose
the clone with the smallest t, and repeat from 2)
until t for the chosen clone reaches the desired sim-
ulation time T .

The EB is finally recovered as C/(sT ) for large T . This
prescription can suffer from finite-ensemble error if any
of the numbers sΘn is large enough for a single clone to
replace a conspicuous fraction of the existing ensemble
elements. Such an effect can be alleviated by choosing
large N ; for further discussion on this and related points,
see [3, 7, 10, 35, 47].

In the next sections we will consider selected Marko-
vian and non-Markovian processes (fluid processes in sec-
tion IV and point processes in sections V and VI) and
demonstrate that the cloning method reproduces exact
analytical solutions within numerical accuracy and thus
can be reliably used as an automated way to compute
the EB.

IV. MARKOV FLUID PROCESS

Introducing the EB in the previous section involved us
defining a service that is provided at a constant deter-
ministic rate c. This lead to the notion of a fluid pro-
cess, which describes the continuous flow in or out of

a source (or server) subject to random periods of fill-
ing and emptying. The fluid process was arguably first
introduced by P. A. P. Moran to describe the level of
a dam, based on a discrete-time stochastic process [46].
Since then, continuous-time variants have also been anal-
ysed, with remarkably many contributions to modelling
of high-speed data-networks, building on reference [4].
Although Markov fluids are well known to many special-
ists in traffic and queueing modelling [27], it is worth
dedicating a whole section to them, as they provide an
elegant setting to demonstrate the EB and the cloning
method.

We call an observable a Markov fluid if its time deriva-
tive is a function of a continuous-time Markov process.
To illustrate this, we consider a server that can be in
many states, and during the stay in each state releases a
fluid with a certain deterministic rate. In such a model,
deterministic and stochastic dynamics coexist, and the
traffic generated can be thought of as a piece-wise con-
tinuous flow, in contrast with standard discrete-packet
models. The flow intensity varies according to the state
of an underlying continuous-time stochastic process with
state space S and generator G. Each state i ∈ S cor-
responds to a different flow intensity bi. This generates
a process which we refer to as B(t) and can generically
represent an arrival, a service or a net-load process.

As an example of an arrival process we can combine
a number |S| of identical sources, which can be active
or inactive. In this case the configuration state of the
underlying Markov chain has dimension |S|, each state
corresponding to the number of active sources, with the
total flow at its peak when all the sources are active [4].

For a general fluid, the rates bi, i = 1, 2, . . . , |S| are
organised into the matrix B = diag(b1, b2, . . . , b|S|). If
the underlying Markov chain has transitions at times
t1, t2, . . . , tn, with 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t, the fluid
process can be written as the continuous functional

B(t) = t1bs(0) +

n−1∑
i=1

(ti+1 − ti)bs(ti) + (t− tn)bs(tn), (31)

where s simply maps the transition time to the underlying
configuration immediately after it. We have chosen the
symbol B in allusion to the “type B” observables defined
in non-equilibrium statistical physics [26, 36]. Similarly
to such observables, each term of B(t) only depends on
the configuration immediately after ti and the time in-
crement ti+1 − ti (except for the last term which only
contributes until t).

We now define a joint configuration–flow space and
denote the probability of having a configuration i, at time
t, with a value B for the observable B(t) as Pi(B, t). This
probability is propagated for a short time interval τ , up
to the first order in τ , as

Pi(B, t+ τ) =
∑
j 6=i

[G]ijτPj(B, t)

+ (1 + [G]iiτ)Pi(B− biτ, t), (32)



8

which yields, in the limit as τ → 0, the master equation

d

dt
Pi(B, t) =

∑
j

[G]ijPj(B, t)− bi
∂

∂B
Pi(B, t), (33)

where i, j = 1, 2, . . . , |S| are generic configurations of the
underlying Markov process and [G]ij is the generic entry
of G. In matrix form we get

d

dt
|P (B, t)〉 = G|P (B, t)〉 −B

∂

∂B
|P (B, t)〉, (34)

where |P (B, t)〉 is the column vector with entries
P1(B, t), P2(B, t), . . . , PS(B, t). In the limit as t ap-
proaches infinity, the observable B(t)/t concentrates
around its typical value

b̄ = 〈1|B|P ∗〉, (35)

where 〈1| is the row vector with all entries equal to one
and |P ∗〉 is the stationary distribution of the underlying
Markov chain, i.e., the solution of G|P ∗〉 = 0.

Now, the full system can be diagonalised with respect
to the subspace of the Bs by means of an integral trans-
form, which yields the biased master equation

d

dt
P̃i(t) =

∑
j

[G]ijP̃j(t) + sbiP̃i(t), (36)

where P̃i(t) =
∫∞

0
dB esBPi(B, t) and we assume that the

boundary conditions are such that esBPi(B, t)|∞0 = 0;
more care is needed when these boundary conditions are
not satisfied, but cloning simulations confirm that the ap-
proach works well in practice. Equation (36) corresponds
to the dynamics of a system that changes configuration
according to G, whose weight evolves exponentially with
rate sbi during the stay in state i, and feeds B(t) an
amount biτ after each visit to i of duration τ . In matrix
form this is equivalent to

d

dt
|P̃ (t)〉 = (G + sB)|P̃ (t)〉 (37)

and has formal solution

|P̃ (t)〉 = exp [(G + sB)t] |P̃ (0)〉. (38)

The finite-time EB of a Markov fluid can be expressed
as follows. The aim is to find Λ(s, t) = ln〈esB(t)〉/(st),
where the angled-bracket expectation value is obtained
by averaging over both the configuration and flow
space, i.e.,

〈esB(t)〉 =

∫
dB 〈1|esB|P (B, t)〉. (39)

Integrating over B component-wise and using equa-
tion (38) gives the form

Λ(s, t) =
1

st
ln〈1| exp [(G + sB)t] |P̃ (0)〉, (40)

which also shows that the EB can be obtained by prop-
agating in time an initial state |P̃ (0)〉.

As a simple example, we focus now on a source mod-
ulated by a telegraph process, i.e., a two-state (1 and 2)
continuous-time Markov process with generator

G =

(
−α β
α −β

)
, (41)

where α and β are transition rates. The service request
is produced deterministically at rate b1 or b2, when the
configuration is 1 or 2, respectively, while the typical be-
haviour is given by

b =
βb1 + αb2
α+ β

. (42)

The biased master equation explicitly reads

d

dt

(
P̃1(t)

P̃2(t)

)
=

(
−α+ b1s β

α −β + b2s

)(
P̃1(t)

P̃2(t)

)
.

(43)
Such a model can describe a source that is either in an
idle state, i.e., transmitting only a few packets, or in a
active state and transmitting at its peak rate. Further
assuming that the observation starts in the stationary
distribution

|P ∗〉 =

(
β

β+α
α

β+α

)
, (44)

we can compute the finite-time EB function

Λ(s, t) =
1

st
ln〈1| exp

[(
−α+ b1s β

α −β + b2s

)
t

]
|P ∗〉.

(45)
We now turn to consider the asymptotic properties

of a stable net load, fed by a telegraph-modulated fluid
source and serviced by a channel of constant capacity c.
Such a system is described by a master equation equiv-
alent to equation (33), with the addition of a loss term
c ∂Pi(B, t)/∂B, which in matrix form reads

d

dt
|P (B, t)〉 = G|P (B, t)〉 − (B− c1)

∂

∂B
|P (B, t)〉. (46)

The observable B(t) now represents a net load of the
form (3). Upon a bilateral integral transform, equa-
tion (46) can be written instead as

d

dt
|P̃ (t)〉 = [G + s(B− c1)] |P̃ (t)〉, (47)

where the entries of |P̃ (t)〉 are P̃i(t) =
∫∞
−∞ dB esBPi(B, t)

and we now assume that the boundary conditions are
such that esBPi(B, t)|∞−∞ = 0.

For the fluid modulated by a telegraph process it is
straightforward to verify that the asymptotic EB func-
tion is given by

Λ(s) = − 1

2s

{
α+ β − (b1 + b2)s

−
√

[α+ β − (b1 + b2)s]2 − 4[b1b2s2 − (b1β + b2α)s]
}
,

(48)



9

−4 −2 0 2 4

s

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Λ
(s

)
Cloning

Analyt. sol.

b

FIG. 3. EB function for the telegraph fluid model with pa-
rameters (α, β, b1, b2) = (0.1, 5, 0, 0.9). Markers correspond
to cloning simulations with (t,N) = (104, 104), which un-
derestimate the exact solution for large values of s due to
finite-ensemble effects (see main text).

which is the leading eigenvalue of the biased generator of
equation (43), divided by s. In figure 3 it is shown that
the result obtained using the cloning method of subsec-
tion III C is consistent with the exact analytic solution,
except for well documented finite-ensemble errors [9, 35]
at large positive values of s. Now, we are ready to tackle
the problem of deciding whether, for this fluid traffic
model, it is possible to guarantee a promised asymp-
totic QoS in the terms of inequality (27) with target ξ.
The criterion (29) ensures that as long as the EB Λ(ξ) is
smaller than c, the user receives service as agreed with
the provider.

V. MARKOV MODULATED POISSON
PROCESS

In this section, we consider sources modelled by
Markov modulated Poisson processes (MMPPs), which
can be thought of as the discrete counterparts of the
fluid sources seen in the previous section, and, similarly
to those, are ubiquitous in traffic and queueing mod-
elling [25, 27, 55]. As in fluid processes, in MMPPs, the
load is modulated by the generator G and its intensity
is defined by the diagonal matrix B = diag(b1, . . . , b|S|).
When the Markov chain is in state i, with i = 1, . . . , |S|,
events occur according to a pure birth process (Poisson
process) with state space N0 and rate bi. In fact, MMPPs
and fluid processes share a number of additional fea-
tures; for example, the parallelism between the concept of
EB function for fluid processes and MMPPs is detailed
in reference [22]. Similarly to fluid processes, MMPPs
have been extensively used for telecommunication mod-

elling [25] (see also the application in appendix A) but
have also been exploited for biological modelling [20]. A
further interesting remark is that, even if MMPPs are
modulated by a Markovian stochastic generator, the se-
quence of arrival events is non-Markovian, hence this
framework can be used, in general, to model events that
occur with time-varying rates [25]. If increments occur
at times t1, t2, . . . , tn, the count process can be written
as the functional

B(t) =

∞∑
i=1

1ti<t, (49)

where 1x is the indicator function of x.
The master equation for the joint MMPP and its un-

derlying Markov process is

d

dt
Pi,B(t) =

∑
j

[G]ijPj,B(t) + biPi,B−1(t)− biPi,B(t),

(50)
where B is the number of birth events which have oc-
curred by time t and i, j = 1, 2, . . . , |S| are generic con-
figurations of the modulating Markov process. A matrix
representation akin to equation (46) is

d

dt
|P (t)〉 = G⊗ 1|P (t)〉+ B⊗ (a+ − 1)|P (t)〉, (51)

where |P (t)〉 ∈ S ⊗ N0 has elements Pi,B(t), while a+

and 1 are the creation and the identity operators, re-
spectively, in N0. After a transform with P̃i(t) =∑

B esBPi,B(t) and suitable boundary conditions, equa-
tion (50) can be written as

d

dt
P̃i(t) =

∑
j

[G]ijP̃j(t) + bi(e
s − 1)P̃i(t). (52)

In vector form we have

d

dt
|P̃ (t)〉 = [G + B(es − 1)]|P̃ (t)〉, (53)

where |P̃ (t)〉 has entries P̃1(t), P̃2(t), . . . , P̃n(t). The
finite-time EB function can be formally expressed as

Λ(s, t) =
1

st
ln〈1| exp{[G + (es − 1)B]t}|P̃ (0)〉, (54)

which is an analogue of equation (40). As a simple toy
model, we consider the Poisson process modulated by
the telegraph process with generator (41). Despite its
simplicity, such a model captures the stochastic dynamics
of gene expression when the gene is not self-regulated and
switches between high and low activity phases, see, e.g.,
references [32, 39, 57]. Its EB function can be easily
derived as



10

Λ(s) = − 1

2s

{
α+β− (b1 +b2)(es−1)−

√
[α+ β − (b1 + b2)(es − 1)]2 − 4[b1b2(es − 1)2 − (b1β + b2α)(es − 1)]

}
. (55)
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k = 1.2

k = 1.5

Analyt., k = 1

b(es − 1)/s

FIG. 4. EB function for the two-state modulated Poisson
process with (b1, b2) = (0, 2) and Weibull distributed switch-
ing times (56) and (57). Weibull distributions have rate pa-
rameters as defined in (58), with (α, β) = (0.01, 0.1) and
varying values of the shape parameter k. The case k = 1
corresponds to an MMPP. Markers are results of cloning sim-
ulations with (t,N) = (104, 104). For comparison, the dashed
line indicates the EB of a homogeneous Poisson process of
rate b̄.

The random variable B(t)/t concentrates around the
most probable value b given by equation (42). It is also
worth noting the similarity in the form of equation (55)
with the fluid EB function of equation (48); indeed the
two expressions are the same to first-order approxima-
tion in s. In figure 4 the MMPP EB function (solid line
in the figure) is shown to be accurately reproduced by
cloning simulations (dot markers).

As a remark, in the modulated Poisson processes, there
are several net-load increments between two configura-
tion changes, each increment being of unit magnitude.
As a result, finite-ensemble effects are smaller than those
of the fluid net load, where, in our simulations, incre-
ments are added only at configuration changes and de-
pend exponentially on the inter-event time.

VI. NON-MARKOV MODULATED POISSON
PROCESS

Finally, and significantly, we introduce a generaliza-
tion of the two-phase model described in section V by
now considering that the arrival rate of the Poisson pro-
cess is modulated by a semi-Markov process. Here the
distributions of the lengths of the phases 1 and 2 are
non-exponential thus exacerbating temporal correlations.
Our choice is to draw the duration of phases 1 and 2 from

the Weibull distributions

f1(t|k, α̃) = kα̃ktk−1e−(α̃t)k , (56)

f2(t|k, β̃) = kβ̃ktk−1e−(β̃t)k , (57)

with shape k and rates α̃ and β̃, respectively. The rate
parameters are chosen to be

α̃ = αΓ(1 + 1/k), β̃ = β Γ(1 + 1/k), (58)

where Γ(x) is the Gamma function. This guarantees that
each phase has the same mean duration as the process
considered in the previous section and that the resulting
modified arrival process converges to the same typical
value (42); tuning the parameter k only alters the fluc-
tuation scenario.

Generally, for a non-Markov model such as the one
described in this section, analytical progress is difficult;
however the cloning method remains a powerful way to
evaluate the EB and thus assess the QoS numerically.
This is illustrated in figure 4, where the EB functions for
our semi-Markov modulated processes (non-dot markers
in the figure) are compared to the standard MMPP case
(which is obtained for k = 1). The figure also shows
the analytical result for a (homogeneous) Poisson pro-
cess with identical value of b, which clearly has very low
effective bandwidth—adding a source of this type to the
net load has little effect on the QoS.

On increasing the value of k in the semi-Markov mod-
ulated process, the distributions of the durations become
more peaked around their expected values, the traffic can
be thought of as being more regular, and the effective
bandwidth decreases (recall that s > 0 is the relevant
case here). Similarly, broad phase-length distributions
(obtained by decreasing the value of k) correspond to
strong fluctuations and high EB.

As a demonstration, we target an exponential decay
with specific exponent ξ for the net load and plot the
EB Λ(ξ) as function of k in figure 5. For a given ser-
vice capacity c, the statistics of the arrival requests can
be modified by changing k so that Λ(ξ) < c (shaded
area in figure 5) in order to provide the desired asymp-
totic QoS whilst maintaining the mean arrival rate (35).
This type of modification is akin to the so-called “traffic
shaping” [52]. As alluded to above, having more regu-
lar on and off periods lowers the EB, thus leaving re-
sources available for other requests but still maintaining
the mean traffic b̄. Being given a general way to obtain
Λ(s) finally allows the use of criterion (29) to assess the
asymptotic QoS. We see in figure 5 that, for c = 1.7, this
simple toy model achieves a target exponent of ξ = 0.5
when k exceeds a value around 2. Arguably, similar con-
siderations apply to more realistic models whose EBs can
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FIG. 5. Cloning-simulation EB of semi-Markov modulated
Poisson process with target exponent and bandwidth (ξ, c) =
(0.5, 1.7). Parameters α, β, t are as in figure 4. Simulations
with different values of N are compared and suggest that
finite-ensemble effects do not play a significant role, at least
for k < 2.

also be investigated by cloning; having a general numer-
ical method to obtain Λ(s) finally allows the use of cri-
terion (29) to assess the asymptotic QoS.

VII. DISCUSSION

While physicists have been regarding the large devia-
tion theory as an elegant way to formulate statistical me-
chanics, teletraffic engineers and operational researchers
have been using large deviation results to estimate the
likelihood that a demand in service overflows the avail-
able resources. A central role in teletraffic engineering
is played by the effective bandwidth (EB) function Λ(s).
This function facilitates the construction of a neat cri-
terion to decide whether a promised “quality of service”
can be maintained in finite time and in the long-time
limit, despite the threat of disruptive rare events. In this
paper, we reviewed the concept of EB, showing that the
function Λ(s) can be thought of as a Helmholtz free en-
ergy and demonstrating that the cloning method, which
has been developed in non-equilibrium statistical physics,
is a general numerical scheme for the evaluation of Λ(s).

The notion of EB is based on comparing the incom-
ing requests (forming the packet traffic) with a very ide-
alised protocol to process them, i.e., deterministic service
of constant rate c. This is easily demonstrated in the
Markov fluid process, for which analytical and numerical
solutions are shown to be in excellent agreement. Nev-
ertheless, non-Markovian systems are among those that
can benefit the most from tools to predict the probability
of large deviation events as has been discussed, e.g., in
recent physics literature [2, 9, 10, 30, 44, 56]. Hence, we
focused on models from two classes of non-Markovian ar-
rival processes (viz., the Markov and semi-Markov modu-

lated Poisson processes) showing the extent to which the
service request statistics affect the EB. Simulation re-
sults on simple on-off toy models show that having more
regular on and off periods lowers the EB, thus leaving
resources available for other requests.

One can conceive further augmentation of the stan-
dard Markov modulated Poisson process (MMPP) by
replacing, e.g., the modulated Poisson process with a
generalised birth-death process. This generalization has
been used to model populations in randomly switch-
ing environments modulated by a Markov generator
(see, e.g., [34] and references therein). The lowest-
order approximation of modulated birth-death processes
leads to the piecewise-deterministic Markov processes
(PDMPs) [15], which have also been recently shown to be
appropriate for the natural sciences (where the underly-
ing Markov process represents the extrinsic noise) [34, 43,
49, 61]. Such PDMPs are reminiscent of the Markov fluid
of section IV, but more general than that, as the deter-
ministic evolution between jumps can be non-linear and
the transition rate of the underlying process can depend
on the fluid variable. We believe that the cloning method
and the EB can contribute to straightforwardly exploring
these more complex processes upon defining the correct
cloning factor, with exponent given by an increment Θn

which is non-linear in τ . It is also worth mentioning that
a non-equilibrium statistical mechanics of PDMPs has
been presented in references [14, 23].

Despite the fact that the specialised literature is rich
in exact solutions (mainly for Markov processes, see,
e.g., [8, 37, 42, 53, 60] and references therein), a system-
atic and general numerical scheme to compute the EB
function Λ(s) may be of practical interest. In this contri-
bution we have argued that the cloning method of non-
equilibrium statistical mechanics provides such a scheme
and, significantly, can also be applied to non-Markovian
processes. In fact realistic traffic models often incorpo-
rate memory as they convey the patterns of human dy-
namics, which are non-Markovian [5, 33]. Hence, there
is potentially much more that could be done in terms of
actual applications, such as in the validation of traffic
protocols and beyond.
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warmly thank Raúl J. Mondragón for bringing the prob-
lem of performance evaluation in telecommunications to
our attention and for sharing valuable insights. RJH
gratefully acknowledges an External Fellowship from the
London Mathematical Laboratory. The research utilised
Queen Mary’s MidPlus computational facilities, sup-
ported by QMUL Research-IT and funded by EPSRC
grant EP/K000128/1.



12

Appendix A: Statistics of packet loss

Let us consider modelling the occupation of a queue by
one-dimensional random walk on a linear chain of length
N. When the walker is in position N, a new arrival (with
rate λ) causes the total-current counter to tick, but leav-
ing the occupation number (i.e., the underlying config-
uration i) unchanged. Such a system has a lucid in-
terpretation in queuing theory and is referred to as an
M/M/1/N queue in the so-called Kendall notation [55].
Customers arrive according to a Poisson process at rate
λ and are processed by a single server at rate µ, but
there is space in the server for only N customers. When
the server is fully occupied, there is no interruption of
the arrival process; however the new customers do not
alter the queue, simply disappearing instead. In commu-
nication systems, such customers are said to be “lost”.
Formally, the occupation number of the queue follows a
birth-death process, where the new arrivals can be ne-
glected when i ≥ N. Hence, the stationary state has

grand-canonical distribution

P ∗i =
(1− λ/µ)

[1− (λ/µ)N+1]
(λ/µ)i, i ≤ N, (A1)

if λ 6= µ, or P ∗i = 1/(N + 1), if λ = µ, and satisfies
the detailed-balance condition. Now suppose we are in-
terested in the statistics of particle loss, i.e., we want to
count the number of customers that arrive when the oc-
cupation number of the queue is N. In the context of the
present paper, we point out that this can be encoded into
an MMPP with [B]ii = 0, i < N, and [B]NN = λ. The
mean packet loss rate is simply given by the arrival rate
λ times the probability P ∗N that the queue is full. Such
arrivals correspond to jumps that leave that state as it is,
but still contribute a factor es in the modified dynamics
(defined in equation (53)). The MMPP framework thus
provides one way to access fluctuations of the packet loss
around its mean rate.
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B. Finkenstädt. Bayesian inference on stochastic gene
transcription from flow cytometry data. Bioinformatics,
34(17):i647–i655, 2018.

[58] H. Touchette. The large deviation approach to statistical
mechanics. Phys. Rep., 478(1-3):1–69, 2009.

[59] Hugo Touchette and Rosemary J. Harris. Large deviation
approach to nonequilibrium systems. In Nonequilibrium
Statistical Physics of Small Systems: Fluctuation Rela-
tions and Beyond, pages 335–360. Wiley-VCH, 2013.

[60] A. Weiss. An introduction to large deviations for com-
munication networks. IEEE J. Sel. Areas Commun.,
13(6):938–952, 1995.

[61] S. Zeiser, U. Franz, and V. Liebscher. Autocatalytic
genetic networks modeled by piecewise-deterministic
Markov processes. J. Math. Biol., 60(2):207–246, 2010.

[62] R. K. P. Zia and B. Schmittmann. Probability cur-
rents as principal characteristics in the statistical me-



14

chanics of non-equilibrium steady states. J. Stat. Mech.,
2007(07):P07012, 2007.


	Effective bandwidth of non-Markovian packet traffic
	Abstract
	Contents
	Introduction
	Net load, bandwidth, and their bounds
	Effective bandwidth
	Finite time
	Asymptotic analysis
	Monte Carlo evaluation

	Markov fluid process
	Markov modulated Poisson process
	Non-Markov modulated Poisson process
	Discussion
	Acknowledgments
	Statistics of packet loss
	References


