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ABSTRACT 

In this paper, a rectangular composites double curved shell with four clamped edges is studied under static 

distributed and concentrated loads. The governing equations for the laminated and functionally graded 

shells with respect to the middle surface are presented, and the fundamental solutions are obtained. The 

exact solutions of the laminated and functionally graded shells should serve as the benchmark solutions for 

any numerical computation methods and can be used in the boundary element method and meshless 

method. 
Key words: fundamental solution, composite and functionally graded materials, plate and shell, moderate 

thick plate theory. 

 

 

1. INTRODUCTION 

A number of theories exist for layered anisotropic shells [1] and many of them were developed 

for thin shells based on the Kirchhoff hypothesis. However, the application of thin plate theory 

could lead to 30% or more errors to layered anisotropic composite shells [2]. The higher-order 

theory of Reddy [3] for composite shells is based on five degrees of freedom. This theory 

assumes a constant transverse deflection through the thickness and the displacements of the 

middle surface are expanded, as cubic functions of the thickness coordinate. Exact solutions 

were derived for simply supported laminated shells under static loads by Reddy [2], using 

double Fourier transform technique. This paper deals with the analytical solutions of the 

laminated and orthotropic functionally graded, cross-ply laminated, double curved shells with 

four clamped edges under static transverse concentrated loads. Analytical solutions for 

transverse deflection, in-plane tensile force and moment are presented for the laminated and 

various functionally graded shells. The exact solutions presented herein for cylindrical and 

spherical functionally graded shells under uniformly distributed load and concentrated force can 

be used as the benchmark results for any numerical methods, such as the finite element, finite 

difference, boundary element and meshless methods 

 

2. GOVERNING EQUATIONS FO R ORTHOTROPIC SHELLS 

An uniform thickness shell is shown in Figure 1, where 
21,  and   denote the orthogonal 

curvilinear coordinates, where 
1  and

2 are the lines of curvature on the middle surface 0 . 

For cylindrical and spherical shells, the lines of principal curvature coincide with the coordinate 

axis. With the assumptions of a moderate thick shell theory, one has the following displacement 

fields in the time domain 
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    Figure 1. Geometry of a double curved shell 
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where ),,( 000 wvu   are the 

displacements of the middle surface and 

),( 21   the rotations of a normal to the 

1  and 
2  axes respectively. In the 

following analysis coordinate axis is 

),( yx  for convenience. The resultants per 

unit length can be derived by 
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where
xzyzxyyx   54621 ,,,,  and  denotes the shear correction 

factor (5/6 for the Reissner’s moderate thick plate theory). The stress-strain relations are given, 

in the shell coordinate system, as 
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where ijQ  are the stiffness of orthotropic shell which can be determined by the engineering 

constants as 
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in which ,E and G  are Young’s moduli, Poisson’s ratio and shear moduli respectively. 

Substituting (3) and (4) into (2) gives the stress resultants, (
126126 , MMNN   for 

convenience), as 
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where the stiffness coefficients are defined as 
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For the laminated shells, we have 
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where )(k

ijQ  denotes the lamina stiffness referred to the material coordinates of the k-th lamina 

and n is the number of layers in the laminate. For the gradation of material properties along the 

plate thickness, we assume the variation profile for volume fraction obey [4]  

  5.0/)()(  hzPPPzP btb
            (8) 

where P denotes a generic property like modulus, 
tP  and 

bP  denote the property on the top and 

the bottom surfaces respectively, and   is a parameter that dictates the material variation 

profile through the thickness. Poisson ratios and density of mass are assumed to be uniform. In 

this case, all material constants, from (7), become 
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where
bt PP / and )(b

ijQ  are material stiffness on the bottom surface. Furthermore, we can 

also assume that the exponential gradation of material properties in thickness direction, 
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where )ln(    and hence . e  Then material constants can be written as 
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Use of the modified strain-displacements relations in Hamilton’s principal yields the 

following equilibrium equations [5] 
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The equations of motion can be expressed in terms of the displacement as 
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3. ANALYTICAL SOLUTION 

3.1. General solution for rectangular shell with two opposite simply supported edges  

Consider a rectangular double curved shell of two dimensions )( ba with two opposite simply 

supported edges, a and b are the dimensions of the shell middle surface along the x and y axes. 

The boundary conditions on these two edges are expressed, called Case (1), as 

 0)0,()0,()0,()0,()0,( 21020  xMxxwxNxu         (14a) 

 0),(),(),(),(),( 21020  bxMbxbxwbxNbxu  .       (14b) 

Then the exact form of the spatial variations of displacement and rotation can be written [6] as 
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where bnn /  . Substituting (15) into (13) gives a set of differential equations with respect 

to x, when the applied load 0q , as  



                                                      

 - 6 - 

  















































































0

0

0

0

0

)1(

)1(

)1(

)1(

)1(

)1(

55

)1(

54

)1(

53

)1(

52

)1(

51

)1(

45

)1(

44

)1(

43

)1(

42

)1(

41

)1(

35

)1(

34

)1(

33

)1(

32

)1(

31

)1(

25

)1(

24

)1(

23

)1(

22

)1(

21

)1(

15

)1(

14

)1(

13

)1(

12

)1(

11

n

n

n

n

n

Y

X

W

V

U

SSSSS

SSSSS

SSSSS

SSSSS

SSSSS

         (16)  

where elements in the matrix are presented in [6]. We have the following equation 
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where coefficients 5,4,3,2,1,0  , ici
, can be obtained by expansion of determinant of matrix 

in (16) in the order of n  by the mathematical tool such as Maple. For example, one of the 

constants in (17)  
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Other coefficients are too lengthy to be listed here. However, we can determine these 

coefficients easily by selecting arbitrary six values of 5,..2,1,0 , kk . Substituting the value of 

  into (17) gives 
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Then, six coefficients kc  can be obtained. Substituting coefficients kc into (17), one can obtain 

ten roots 10,...,2,1  ),( inni  . For each root, 
ni , let  1),1(

5 n

iA in (17) and we have four linear 
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Introducing a unit vector of coefficient in complex value as 
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then the  general solution can be obtained by 
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where coefficients ,10,...,2,1  ),,()( isB n

n

i  are unknowns in complex value. In the same way, 

the boundary conditions with other two opposite simply supported edges, defined as Case 2, can 

be described  

 0),0(),0(),0(),0(),0( 121  yMyywyNyv         (23a) 

 0),(),(),(),(),( 121  yaMyayawyaNyav  .       (23b) 

Then the exact form of the spatial variations of displacement and rotation can be written as 

 





1

)2()2( cos)(),(
m

mm xyUyxu               

 





1

)2()2( sin)(),(
m

mm xyVyxv               

 





1

)2()2( sin)(),(
m

mm xyWyxw              (24) 

 





1

)2()2(

1 cos)(),(
m

mm xyXyx               

 





1

)2()2(

2 sin)(),(
m

mm xyYyx               

where amm /  . Assuming that the general solutions have the following form as 
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where 
),2( m

iA  are unknown coefficients. Same as Case 1, we have the following equation 

 010

5

8

4

6

3

4

2

2

10  mmmmm dddddd          (26) 

where coefficients 5,4,3,2,1,0  , idi
, can be obtained by expansion of determinant of matrix 

in (16) in the order of )( mm  . The general solution can be obtained by 
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where coefficients ,10,...,2,1  ),,()( isC m

m

i  are unknowns in complex value. 
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3.2. Particular solution 

For general distribution of transverse load, such as a concentrated force, we can use the 

double Fourier transform method and obtain 

dxdyyxyxq
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Then the particular solution can be written as 
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Five coefficients  ***** ,,,, mnmnmnmnmn YXWVU  can be determined directly.  

3.3. Analytical solutions with four clamped edges 

According to the principal of superposition, the exact form of the spatial variation of 

displacement and rotation should be in the following form 
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where coefficients MmiCB mini ,...,2,1 ;10,...,2,1  ),( ),(  and Nn ,...,2,1  are unknowns 

and M and N  are the numbers of truncation term of Fourier series. Clamped edge boundary 

conditions indicate 
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at all boundaries.  Therefore, from (30) and (31), one obtains following linear equations 
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for 0x , where L is a large number (50 in all numerical examples) and 
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For the second edge, one has 
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on ax  and for the last edge  

 








































 





 





0)1()1(

 0

,...,2,1                                                                    0

0)1()1(

0

1

*
10

1

)(),2(

,5

1

10

1

)(),1(

,5

10

1

)(),2(

,4

10

1

)(),2(

,3

1

*
10

1

)(),2(

,1

1

10

1

)(),1(

,1

1

)(),2(

,1

L

n

mn

n

i

m

i

bm

i

N

n i

n

i

n

imni

n

i

m

i

bm

i

i

m

i

bm

i

L

n

mn

n

i

m

i

bm

i

N

n i

n

i

bn

imni

n

i

m

i

bm

i

YCeeBeb

Cee

MmCee

VCeeBeeb

Cee

mi

mi

mi

imi

mi











 

on by  . We should have )(10 MN   linear algebraic equations to determine the same 

number unknown coefficients, i.e. )(n

iB  and )(m

iC . Therefore, the analytical solutions for the 

rectangular double covered shells with four clamped edges are obtained. 

 

4. EXACT SOLUTION FOR DISTRIBUTED AND CONENTRATED FORCES 

One cross-ply laminates is considered ]90/0[ 00  in this example with the same constants of 

material property in the above example. Truncation number of the Fourier series ),( NM  is 

taken to be 10. Spherical and cylindrical shells are investigated with different boundary 

constrains under static transverse load 
0q . Non-dimensional transverse deflection 

),/10( 4

0

33

200 aqhEww   normalised resultants of stresses )/( 0aqNN ii  and 

)/( 2

0aqMM ii   at the centre of the shell are presented in Tables 1 and 2 respectively for 

various values of radius-to-side )/( aR ratios and two values of thickness-to-side )/( ah ratios. 

In addition, spherical and cylindrical shells subjected to a concentrated load 
0P  are considered. 

In this case, the non-dimensional transverse deflection ),/10( 2

0

33

200 aPhEww   
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normalised resultants of stresses )/( 0PaNN ii   and )/( 0PMM ii   at the centre of the shell 

are presented in Table 3 for various values of radius-to-side )/( aR  ratios and two values of 

thickness-to-side )/( ah  ratios. As the in-plane force and moment at the point of concentrated 

force are singular, they divergent with the number of truncation of Fourier series ),( NM . 

However, the resultants of stresses are regular and convergent in the domain of shell elsewhere.   

 

Table 1. Normalised deflection, in-plane force and moment for a laminated spherical shell 

]90/0[ 00 )( 21 RRR  . 

aR /  

01.0/ ah  1.0/ ah  

0w  
1N  

1M  
2N  

2M  0w  
1N  

1M  
2N  

2M  

1 0.0044 0.5006 0.0011 0.4990 -0.0011 0.5456 0.5072 0.0126 0.5045 -0.0102 

2 0.0187 1.0024 0.0023 0.9965 -0.0023 1.9548 0.8283 0.0247 0.8201 -0.0124 

3 0.0463 1.5320 0.0035 1.5223 -0.0035 3.2671 0.9047 0.0313 0.8890 -0.0092 

4 0.0908 2.0939 0.0048 2.0832 -0.0046 4.2024 0.8684 0.0339 0.8469 -0.0048 

5 0.1528 2.6645 0.0063 2.6536 -0.0057 4.8277 0.7977 0.0346 0.7721 -0.0008 

10 0.6511 5.0750 0.0144 5.0392 -0.0085 5.9965 0.5013 0.0323 0.4681 0.0104 

∞ 3.9782 0.1817 0.0239 -0.1817 0.0239 6.5150 0.0183 0.0233 -0.0183 0.0233 

 

 

Table 2. Normalised deflection, in-plane force and moment for a laminated cylindrical shell 

]90/0[ 00 ),( 21 RRR  .  

aR /  

01.0/ ah  1.0/ ah  

0w  
1N  

1M  
2N  

2M  0w  
1N  

1M  
2N  

2M  

1 0.0135 0.0269 0.0000 1.0000 -0.0022 1.1762 0.0246 0.0029 0.9075 -0.0167 

2 0.0572 0.0555 0.0001 1.9880 -0.0042 3.1310 0.0360 0.0100 1.2210 -0.0170 

3 0.1306 0.0854 0.0001 3.0104 -0.0061 4.4235 0.0377 0.0150 1.1500 -0.0108 

4 0.2338 0.1163 0.0004 4.0588 -0.0079 5.1545 0.0364 0.0179 1.0026 -0.0049 

5 0.3630 0.1468 0.0009 5.0709 -0.0094 5.5775 0.0346 0.0196 0.8652 -0.0003 

10 1.1995 0.2653 0.0057 8.4974 -0.0124 6.2562 0.0281 0.0223 0.4767 0.0110 

∞ 3.9782 0.1817 0.0239 -0.1817 0.0239 6.5150 0.0183 0.0233 -0.0183 0.0233 

 

 

 

 

Table 3. Normalised deflection 
0w for a laminated spherical shell ]90/0[ 00 . 

aR /  

Spherical shell
 

)( 21 RRR   Cylindrical shell ),( 21 RRR   

h/a=0.01 0.05 0.1 0.15 0.2 0.01 0.05 0.1 0.15 0.2 

1 0.0044 0.5006 0.0011 0.4990 -0.0011 0.5456 0.5072 0.0126 0.5045 -0.0102 

2 0.0187 1.0024 0.0023 0.9965 -0.0023 1.9548 0.8283 0.0247 0.8201 -0.0124 
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3 0.0463 1.5320 0.0035 1.5223 -0.0035 3.2671 0.9047 0.0313 0.8890 -0.0092 

4 0.0908 2.0939 0.0048 2.0832 -0.0046 4.2024 0.8684 0.0339 0.8469 -0.0048 

5 0.1528 2.6645 0.0063 2.6536 -0.0057 4.8277 0.7977 0.0346 0.7721 -0.0008 

10 0.6511 5.0750 0.0144 5.0392 -0.0085 5.9965 0.5013 0.0323 0.4681 0.0104 

∞ 3.9782 0.1817 0.0239 -0.1817 0.0239 6.5150 0.0183 0.0233 -0.0183 0.0233 

  

 

5. CONCLUSIONS 

In this paper, the exact solutions for the double curved laminated and functionally graded 

rectangular shells with four clamped were derived subjected to static distributed and 

concentrated transverse loads. The governing equations for the laminated and functionally 

graded shells with respect to the middle surface were presented with the moderate thick plate 

theory. The fundamental solution can be applied to the boundary element and the method of 

fundamental solution. In addition, these solutions can be used to access the degree of accuracy 

for any numerical methods.    
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