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ABSTRACT

In this paper, a rectangular composites double curved shell with four clamped edges is studied under static
distributed and concentrated loads. The governing equations for the laminated and functionally graded
shells with respect to the middle surface are presented, and the fundamental solutions are obtained. The
exact solutions of the laminated and functionally graded shells should serve as the benchmark solutions for
any numerical computation methods and can be used in the boundary element method and meshless
method.

Key words: fundamental solution, composite and functionally graded materials, plate and shell, moderate
thick plate theory.

1. INTRODUCTION

A number of theories exist for layered anisotropic shells [1] and many of them were developed
for thin shells based on the Kirchhoff hypothesis. However, the application of thin plate theory
could lead to 30% or more errors to layered anisotropic composite shells [2]. The higher-order
theory of Reddy [3] for composite shells is based on five degrees of freedom. This theory
assumes a constant transverse deflection through the thickness and the displacements of the
middle surface are expanded, as cubic functions of the thickness coordinate. Exact solutions
were derived for simply supported laminated shells under static loads by Reddy [2], using
double Fourier transform technique. This paper deals with the analytical solutions of the
laminated and orthotropic functionally graded, cross-ply laminated, double curved shells with
four clamped edges under static transverse concentrated loads. Analytical solutions for
transverse deflection, in-plane tensile force and moment are presented for the laminated and
various functionally graded shells. The exact solutions presented herein for cylindrical and
spherical functionally graded shells under uniformly distributed load and concentrated force can
be used as the benchmark results for any numerical methods, such as the finite element, finite
difference, boundary element and meshless methods

2. GOVERNING EQUATIONS FO R ORTHOTROPIC SHELLS

An uniform thickness shell is shown in Figure 1, where &, &, and ¢ denote the orthogonal
curvilinear coordinates, where & and £, are the lines of curvature on the middle surface g = 0.

For cylindrical and spherical shells, the lines of principal curvature coincide with the coordinate
axis. With the assumptions of a moderate thick shell theory, one has the following displacement
fields in the time domain
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where  (Ug, Vo, W,) are  the
displacements of the middle surface and
(¢,,¢,) the rotations of a normal to the
& and &, axes respectively. In the

following analysis coordinate axis is
Figure 1. Geometry of a double curved shell (x,y) for convenience. The resultants per

unit length can be derived by
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where 0, =0,,0,=0,,0,=0,,0,=0,,0; =0,, and x denotes the shear correction

factor (5/6 for the Reissner’s moderate thick plate theory). The stress-strain relations are given,
in the shell coordinate system, as
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where Qij are the stiffness of orthotropic shell which can be determined by the engineering
constants as
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in which E,v and G are Young’s moduli, Poisson’s ratio and shear moduli respectively.
Substituting (3) and (4) into (2) gives the stress resultants, ( N, = N,,,M; =M, for
convenience), as
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where the stiffness coefficients are defined as
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For the laminated shells, we have

A = ZQ(”(M z). B ZQ(“(M {) D, ZQ‘”(M )

where Qi(jk) denotes the lamina stlffness referred to the material coordlnates of the k-th lamina

and n is the number of layers in the laminate. For the gradation of material properties along the
plate thickness, we assume the variation profile for volume fraction obey [4]

P(z)=P, +(P. —PR,)(z/h+0.5) ®)
where P denotes a generic property like modulus, P, and P, denote the property on the top and

the bottom surfaces respectively, and 77 is a parameter that dictates the material variation

profile through the thickness. Poisson ratios and density of mass are assumed to be uniform. In
this case, all material constants, from (7), become

A= Poop g o 1B qopz (9a)
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where g =P, /B, and Qi(,-b) are material stiffness on the bottom surface. Furthermore, we can
also assume that the exponential gradation of material properties in thickness direction,

P(Z) — Pbea(z/h+0.5) (10)
where & = In( £) and hence e = 8. Then material constants can be written as
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o



Use of the modified strain-displacements relations in Hamilton’s principal yields the

following equilibrium equations [5]
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The equations of motion can be expressed in terms of the displacement as
A 62u0 1 ow, VA 82v0 1 ow, 62@ a¢2 VA AA Guo
1 % R1 X 2 axay R, X “ ® axay o’y
4, o’d, o’u, 0%, o, o,
B, +C,D +C - C,By| —=
( 6 66{a y  oxdy (azy 8X6’yJ:|+ 0 66{6X8y+ azy
+m55 %+¢1—u—° =0
R\ ox R
o’u, 1 ow, aZV0 1 ow, o° ¢1 6 ¢2 o° v0 oy,
AiZ(aXay R1 Wj AZZ[ y R ay BlZ + 22 ABG X axay
o’y 0% o%u, 0%, o, ou
(Bee_CoDee{a ?y 82 2+C (axa;_ az;H_CoBee( 52 &+ axa;)
KAAA 0+¢2 VO =0
R\ oy R,
w, o¢ 1 au, o’w, (04 10w
'“6‘5[ o o Rléxj m““(azy oy R,y
S N e % pf Lo Yol g 04 g 00 (13)
R1 ox 1oy R ox oy
1 ou WO o, W, o¢, o¢,
- —2 4+ =2 = 0
Rz{a(a R Az{ay+Rj+Bn +By k| <A



2 2 2, 2
B, 62u +B, aV°+i% +Dllaz¢1+Dlza¢z+B66 8vo+82u0
0°X R1 ax oxoy R, ox 0°X Oxoy oxoy 0%y
2
D a¢1 a¢2 zuo aVo _’90\55 %4_@_& =0
y 6x8y &%y oxdy OX R,
2 2 2 2 2
B12 +B,, av0+16W +D128¢1+D2262¢2+B66 62v0+au0
axay R ay o’y R, oy oxoy oy o°X  oxoy
2
D,, o’p 62(;52 8u0_62v0 iy +¢2 o
oxoy 0°X axay 0°X oy R,

3. ANALYTICAL SOLUTION

3.1. General solution for rectangular shell with two opposite simply supported edges

Consider a rectangular double curved shell of two dimensions (a x b) with two opposite simply

supported edges, a and b are the dimensions of the shell middle surface along the x and y axes.
The boundary conditions on these two edges are expressed, called Case (1), as

Uy (%,0) = N, (x,0) =W, (x,0) = 4,(x,0) = M,(x,0)=0 (14a)
Uy (X,0) = N, (x,b) =w,(X,b) = ¢ (x,b) =M, (x,b) =0. (14b)
Then the exact form of the spatial variations of displacement and rotation can be written [6] as

UO(x,y) = S UL (s B,y
n=1

VO (x,y) = S VO (x)cos 4,y
n=1

wh(x,y) = iwn“)(x)sin B.Y (15)
n=1

(%, y) =D XD (x)sin By
n=1

O(x,y) = 3O (x)cos B,y
n=1

where B =nz/b. Substituting (15) into (13) gives a set of differential equations with respect
to x, when the applied load q =0, as
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where elements in the matrix are presented in [6]. We have the following equation
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where coefficients c,, i =0,1,2,3,4,5, can be obtained by expansion of determinant of matrix
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in (16) in the order of A by the mathematical tool such as Maple. For example, one of the
constants in (17)

Cs = ’ga‘ﬁs (AllAGG D11D66 + 81218626 - BlzlAGG Dee - A118626 Dll)' (18)
Other coefficients are too lengthy to be listed here. However, we can determine these
coefficients easily by selecting arbitrary six values of/Tk, k =0,1,2,..5. Substituting the value of

A into (17) gives

Co+ O +CA¢ +C A +C A8 +CA° =[S(4,), k=012,..5. (19)
Then, six coefficients C, can be obtained. Substituting coefficients C, into (17), one can obtain
ten roots 4 (A,), i=12,...10. For each root, 4, let A%™ =1 in (17) and we have four linear

equations to determine rest constants A", j =1,2,3,4, by
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Introducing a unit vector of coefficient in complex value as
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then the general solution can be obtained by
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where coefficients B™ (5, s), i =1,2,...,10,are unknowns in complex value. In the same way,

the boundary conditions with other two opposite simply supported edges, defined as Case 2, can
be described

V(Ov y) = N1(01 y) = W(O’ y) = ¢2 (01 y) = Ml(o! y) =0 (23a)
v y)=N(ay)=w(a y)=¢(y) =M ay)=0. (23b)
Then the exact form of the spatial variations of displacement and rotation can be written as
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where «,, =ms/a. Assuming that the general solutions have the following form as
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where A‘Z'm) are unknown coefficients. Same as Case 1, we have the following equation
do +dyn + 0,7 +dy7p +dyn +dsyy =0 (26)
where coefficients d,, i =01,2,3,4,5, can be obtained by expansion of determinant of matrix
in (16) in the order of y_(«,, ). The general solution can be obtained by
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where coefficients Ci(m) (ay,8), 1=12,...,10, are unknowns in complex value.



3.2. Particular solution

For general distribution of transverse load, such as a concentrated force, we can use the
double Fourier transform method and obtain

w0 o ab
90X, y) =D Gy Sin a,Xsin BY, Gy, = %”q(x, y)sin o xsin g3, ydxdy (28)
00

n=1l m=1
Then the particular solution can be written as

u(x,y,s) =iiu;n cosa, xsin B,y

m=1 n=1

V(X Y,8) =D >V, sin a, xcos By
m=1 n=1

W (X, Y,8) =Y > W, sin a,xsin B,y (29)
m=1 n=1

¢ (X, Y,8)=D.> X, cosa,xsin B,y
m=1 n=1

#(X,Y,8) =D > Y, sin o, Xcos B,y -
m=1 n=1

Five coefficients {U c Ve W XY } can be determined directly.

3.3. Analytical solutions with four clamped edges

According to the principal of superposition, the exact form of the spatial variation of
displacement and rotation should be in the following form

u(x,y) = ZU (x)sin B, y+ZU(2)(y)COSa x+i
2

cosa, xsin By
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w(x,y) = Zw(l’(x)sm B, y+ZW @ (y)sin a, x + sin o, xsin By (30)
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where coeff|0|ents B.(8,), Ci(e.), |_1,2,...,10,m_1,2,..,,|\/| and n=12,...,N are unknowns

and M and N are the numbers of truncation term of Fourier series. Clamped edge boundary
conditions indicate
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at all boundaries. Therefore, from (30) and (31), one obtains following linear equations
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for X = 0, where L is a large number (50 in all numerical examples) and
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For the second edge, one has
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For the third edge, we have
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ony =Db. We should have 10x (N + M) linear algebraic equations to determine the same
number unknown coefficients, i.e. B! and C(™ . Therefore, the analytical solutions for the
rectangular double covered shells with four clamped edges are obtained.

4.  EXACT SOLUTION FOR DISTRIBUTED AND CONENTRATED FORCES
One cross-ply laminates is considered [0° /90°] in this example with the same constants of

material property in the above example. Truncation number of the Fourier series (M,N) is
taken to be 10. Spherical and cylindrical shells are investigated with different boundary
constrains under static transverse load (¢, . Non-dimensional transverse deflection

W, (= w,E,h*x10%/qg,a*), normalised resultants of stresses N,(=N,;/qg,a) and
M, (=M, /q,a®) at the centre of the shell are presented in Tables 1 and 2 respectively for
various values of radius-to-side (R/a)ratios and two values of thickness-to-side (h/a) ratios.
In addition, spherical and cylindrical shells subjected to a concentrated load P, are considered.

In this case, the non-dimensional transverse deflection W,(=w,E,h*®x10°/P,a?),
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normalised resultants of stresses N, (= N;a/P,) and M, (= M, /P,) at the centre of the shell
are presented in Table 3 for various values of radius-to-side (R/a) ratios and two values of
thickness-to-side (h/a) ratios. As the in-plane force and moment at the point of concentrated
force are singular, they divergent with the number of truncation of Fourier series (M,N).
However, the resultants of stresses are regular and convergent in the domain of shell elsewhere.

Table 1. Normalised deflection, in-plane force and moment for a laminated spherical shell
[0°/90°] (R, =R, =R).

h/a=0.01 h/a=0.1

Rla "g" R M N M, | W, N M N W

0 1 1 2 2 0 1 1 2 2
1 00044 05006 00011 04990  -0.0011 | 05456 05072 00126 05045  -0.0102
2 00187 10024 00023 09965  -0.0023 | 19548 08283 00247 08201 -0.0124
3 00463 15320 00035 15223  -0.0035 | 32671 09047 00313 08890  -0.0092
4 00908 20939 00048 20832  -0.0046 | 42024 08684 00339 08469  -0.0048
5 01528 26645 00063 2.653  -0.0057 | 48277 07977 00346 07721  -0.0008
10 06511 50750 00144 50392  -00085 | 59965 05013 00323 04681  0.0104
© 39782 01817 00239 01817 00239 | 65150 00183 00233 -0.0183  0.0233

Table 2. Normalised deflection, in-plane force and moment for a laminated cylindrical shell
[0°/90°] (R =R, =R).

h/a=0.01 h/a=0.1

Rla "w "N M, N v, | W NOMN, W

0 1 1 2 2 0 1 1 2 2
1 00135 00269 00000 10000  -00022 | 11762 00246 00029 09075 -0.0167
2 00572 00555 00001 19880  -0.0042 | 31310 00360 00100 12210 -0.0170
3 01306 00854 00001 30104  -0.0061 | 44235 00377 00150 11500 -0.0108
4 02338 01163 00004 40588  -0.0079 | 51545 00364 00179 10026  -0.0049
5 03630 01468 00009 50709  -0.0094 | 55775 00346 00196 08652  -0.0003
10 1.1995 0.2653 0.0057 8.4974 -0.0124 6.2562 0.0281 0.0223 0.4767 0.0110
o 39782 01817 00239 -0.1817 00239 | 65150 00183 00233 -0.0183  0.0233

Table 3. Normalised deflection W, for a laminated spherical shell [0° /90°].

Spherical shell (R, =R, = R)

Cylindrical shell (R, = o0, R, = R)

R/a
h/a=0.01  0.05 0.1 0.15 0.2 001  0.05 0.1 0.15 0.2
1 0.0044 05006 0.0011 04990  -0.0011 | 0.5456 05072 0.0126 0.5045  -0.0102
2 0.0187  1.0024 00023 009965  -0.0023 | 1.9548 0.8283 0.0247 0.8201  -0.0124
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0.0463 1.5320 0.0035 1.5223 -0.0035 | 3.2671 0.9047 0.0313 0.8890  -0.0092
0.0908 2.0939 0.0048 2.0832 -0.0046 | 4.2024 0.8684 0.0339 0.8469  -0.0048
0.1528 2.6645 0.0063 2.6536 -0.0057 | 4.8277 0.7977 0.0346 0.7721  -0.0008
10 0.6511  5.0750 0.0144  5.0392 -0.0085 | 59965 0.5013 0.0323 0.4681 0.0104
0 3.9782 0.1817 0.0239 -0.1817 0.0239 6.5150 0.0183 0.0233 -0.0183  0.0233

5. CONCLUSIONS

In this paper, the exact solutions for the double curved laminated and functionally graded
rectangular shells with four clamped were derived subjected to static distributed and
concentrated transverse loads. The governing equations for the laminated and functionally
graded shells with respect to the middle surface were presented with the moderate thick plate
theory. The fundamental solution can be applied to the boundary element and the method of
fundamental solution. In addition, these solutions can be used to access the degree of accuracy
for any numerical methods.
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