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Abstract

We study incomplete information games with ambiguity averse players. Our focus

is on equilibrium concepts satisfying sequential optimality —each player’s strategy is

optimal at each information set given opponents’strategies. We show sequential op-

timality, which does not make any explicit assumption on updating, is equivalent to

sequential optimality with respect to beliefs updated using a particular generalization

of Bayesian updating. Ambiguity aversion expands the set of equilibria compatible

with players sharing common ambiguous beliefs. We connect ambiguity aversion with

belief robustness. Examples illustrate new strategic behavior, including strategic use

of ambiguity, under ambiguity aversion.

1 Introduction

Dynamic games of incomplete information are the subject of a large literature, both theory

and application, with diverse fields including models of firm competition, agency theory,

auctions, search, insurance and many others. In such games, how players perceive and react

to uncertainty, and the way it evolves over the course of the game, is of central importance. In
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the theory of decision making under uncertainty, preferences that allow for decision makers to

care about ambiguity1 have drawn increasing interest (Gilboa and Marinacci, 2013). That

ambiguity may remain relevant in a steady-state has been demonstrated in e.g., Epstein

and Schneider (2003b), Maccheroni and Marinacci (2005) and Klibanoff, Marinacci and

Mukerji (2009). We propose equilibrium notions for incomplete information games involving

ambiguity about parameters (which could be, for example, privately known types of players).

The parameter space is a modelling device to allow for players to be uncertain (which in

our setting may include both ambiguity and risk) about the payoffs they and the others

face and/or the strategies played by the other players. This allows us to examine effects

of introducing ambiguity aversion in strategic settings, static and dynamic. The definition

and analysis of solution concepts capturing dynamic considerations, such as optimality of

continuation strategies at each information set, are the main contributions of the paper.

Such optimality is absent from almost all existing literature on games with ambiguity averse

players.

In our analysis, players have smooth ambiguity preferences (Klibanoff, Marinacci and

Mukerji, 2005) and may be ambiguity averse. Such preferences for a player i evaluate a

behavior strategy profile σ by

∑
π∈∆(Θ)

φi

(∑
θ∈Θ

Ui(σ, θ)π(θ)

)
µi (π) ,

where Θ is the parameter space modeling the incomplete information, µi is a subjective

probability over ∆ (Θ) (i.e., a second-order probability over Θ), Ui(σ, θ) is i’s expected

payoff from σ given θ, and φi is an increasing function, the concavity of which reflects

ambiguity aversion. All else equal, as φi becomes more concave, player i becomes more

ambiguity averse (see e.g., Theorem 2 in Klibanoff, Marinacci, Mukerji 2005). The presence

of ambiguity is captured by non-degeneracy of µi. In the smooth ambiguity model it is

possible to hold the players’information fixed (by fixing µi) while varying their ambiguity

attitude from aversion to neutrality (i.e., replacing a more concave φi with an affi ne one,

which reduces preferences to expected utility). This facilitates a natural way to understand

the effect of introducing ambiguity aversion into a strategic environment. Our focus is on

extensive form games, specifically multistage games with perfect recall, and on equilibrium

notions capturing perfection analogous to those in standard theories for ambiguity neutral

players, such as subgame perfect equilibrium (Selten, 1965), sequential equilibrium (Kreps

and Wilson, 1982) and perfect Bayesian equilibrium (PBE) (e.g., Fudenberg and Tirole,

1In this literature, ambiguity refers to subjective uncertainty about probabilities (see e.g., Ghirardato,
2004).
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1991a,b).

We use as a running example a variation on the peace negotiation game proposed by

Greenberg (2000) motivated by the common practice of governments to manipulate expecta-

tions of rewards and punishments so as to encourage negotiating parties to cooperate. The

game involves two small countries in peace negotiations but who, left on their own, would

not agree to peace, and a large country that has the power to affect the small countries and

desires peace between them. The large country hopes to induce cooperation by the small

countries by leading each to believe that it will likely be punished by the large country if ne-

gotiations break down (or favored if negotiations succeed). However, uncertainty created by

any single mixture over which country to punish is inadequate to induce both small countries

to agree to peace. More precisely, for the payoffs in the example, any (mixture over) choice of

whom to punish/favor that the large country might make contingent on the success/failure

of the negotiation is insuffi cient to convince both small countries to reach agreement —any

mixture that punishes one of them often enough is inadequate to incentivize the other. This

is true irrespective of ambiguity aversion. However, if the small countries are ambiguity

averse, the large country can, by taking steps to obscure the likelihood of who will be pun-

ished/favored, create ambiguity in the minds of the small countries and push both of them

towards peace. Given suffi cient ambiguity aversion of the small countries, it is thus in the

strategic interest of the large country’s government to try to behave in a way that makes it

diffi cult for both negotiating parties to be confident that it will not be punishing that party

with high probability if negotiations break down.

We would like to model such behavior as an equilibrium (i.e., all parties best responding to

the strategies of the others), capturing, through the use of ambiguous incomplete information

about parameters and the possibility of conditioning strategies on such parameters, the idea

that, in the presence of ambiguity aversion, some players may choose to play in a manner

that is perceived as ambiguous. In the context of the example, one can think of this use of

ambiguous incomplete information about parameters as a reduced form way of accounting

for the fact that opportunities for fully learning which (mixture over) actions the large

country will play after the negotiation are restricted. Motivation for such a reduced form

may be, for instance, that political parties hold government offi ce only temporarily and,

over their time in offi ce, mediate negotiations that are not identical, plausibly giving its

strategies an unpredictably changing nature that Bewley (1988, p.35) identifies as essential

when discussing how “Knightian”uncertainty may exist in a steady state. Or it may be that

players see only coarse descriptions of the parameter profiles realized in previous plays of

the game, implying that they are not able to pin down a unique empirical frequency for the

parameter profile (coarse observability motivates, e.g., Lehrer (2012)’s notion of equilibrium
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with partially specified probabilities).

The uncertainty in a game could also be about payoffs (e.g., an entry game where the

entrant is uncertain about the incumbent’s cost as in Section 5.2) and, because of the relative

novelty of the situation to one or more players, it is plausible that they (e.g., the entrant) view

the uncertainty at least partially as ambiguity. In that example, the entrant is expert enough

to figure out what (possibly mixed) action the incumbent would deploy were they to know the

realized cost. However, unlike the incumbent, since the entrant has not actively participated

in the market/industry they are entering, the entrant is not privy to the (possibly stochastic)

law governing the realized cost, and also, unlike the incumbent, does not directly see the

realized cost before having to make the entry decision. Thus we model the entrant as

having ambiguous uncertainty about the parameter (e.g., cost) while being knowledgeable

enough (e.g., about optimal pricing practices given costs and demand) to correctly anticipate

the incumbent’s best response (e.g., pricing strategy) contingent on the parameter. More

generally, except for the ambiguous nature of the parameter uncertainty, this combination

of uncertainty about parameters and correct anticipation of strategic behavior given the

parameter is central to the standard notion of Bayesian (Nash) equilibrium (BNE). This

motivates the approach of this paper, which starts by generalizing BNE with regard to the

uncertainty about parameters and how players react to that uncertainty.

We first define an ex-ante (Nash) equilibrium concept allowing for aversion to ambiguity

about parameters. When there is no parameter uncertainty, this is simply Nash equilibrium

under complete information. When there are common beliefs and ambiguity neutrality,

it becomes Bayesian Nash equilibrium. Next, we refine ex-ante equilibrium by imposing

perfection in the form of a sequential optimality requirement —each player i’s strategy must

be optimal at each information set given the strategies of the other players and i’s beliefs

at that information set. Sequential optimality does not make any explicit assumption on

updating. When all players are ambiguity neutral, the definition of sequential optimality

reduces to the definition of ex-ante equilibrium plus Kreps and Wilson (1982)’s sequential

rationality. In this ambiguity neutral case, our results show that sequential optimality is

equivalent to the version of Perfect Bayesian Equilibrium (PBE) described in Gibbons (1992,

Chapter 4.1) despite the fact that Bayesian updating is assumed in the latter. As with PBE,

a main motivation for sequential optimality is ruling out ex-ante equilibria that depend

crucially on non-credible off-path behavior and doing so in a way that strengthens subgame

perfection. Sequential optimality and our subsequent analysis and extensions of it are the

main contributions of the paper.

We show that sequential optimality is equivalent to sequential optimality with respect

to beliefs updated using the smooth rule (Hanany and Klibanoff 2009), a generalization of
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Bayesian updating for smooth ambiguity preferences, which coincides with Bayes’rule under

ambiguity neutrality.2 Thus, we show that analysis of sequential optima of a game may be

undertaken under the as if assumption that all players use smooth rule updating, and in this

sense, that sequential optimality, which does not assume particular updating, nonetheless

provides a way of cutting through the vexing issue of what update rule to impose in dynamic

games with ambiguity aversion. Moreover, we show that under a slight strengthening of

the smooth rule, the absence of profitable one-stage deviations can be used for verifying

sequential optimality.

Our characterization of sequential optimality implies that it does not effectively restrict

player i’s beliefs at information sets immediately following a deviation (though it does ef-

fectively restrict beliefs at off-path information sets that are not immediately off-path). We

propose a refinement of sequential optimality restricting such beliefs: sequential equilibrium

with ambiguity (SEA). In addition to sequential optimality, SEA imposes a generalization

of Kreps and Wilson (1982)’s consistency condition from their definition of sequential equi-

librium. Our “as if”result on updating under sequential optimality motivates the use of the

smooth rule in this generalization. We show that in the definition of SEA, sequential opti-

mality may be equivalently replaced by the absence of profitable one-stage deviations. This

implies that checking only one-stage deviations with respect to smooth rule consistent beliefs

is suffi cient to establish that a strategy profile is an SEA. Under ambiguity neutrality, SEA

and sequential equilibrium are equivalent. Finally, we establish that SEA exist for any finite

multistage game with perfect recall and incomplete information, and for any specification of

players’ambiguity aversions and ex-ante beliefs.

Section 4.1 provides results on comparative statics of the equilibrium set in ambiguity

aversion that apply to any of the above three notions of equilibrium. First, for fixed beliefs,

ambiguity aversion may change the equilibrium set in a variety of ways — it can expand,

shrink or simply change the set of equilibria. Second, we take the point of view of an outside

observer who is not willing to assume particular beliefs when describing the equilibrium

predictions of the theory. Holding payoffs and the structure of the game fixed, ambiguity

aversion expands the set of equilibria compatible with players sharing a common belief (i.e.,

µi = µ for all players i, running over all possible µ). Common beliefs are essential to this

result. With unrestricted heterogeneous beliefs (i.e., running over all possible µi), ambiguity

aversion does not affect the set of equilibria. If, as in some existing literature, we were

instead to limit attention to pure strategies (both in terms of the equilibrium profile and,

2Under ambiguity aversion, the smooth rule may be thought of as applying Bayes’rule to the measure
in the local linear approximation of preferences at the given strategy profile. Such local measures have
previously proved useful in economics and decision theory. See e.g., Rigotti, Shannon and Strzalecki (2008),
Hanany and Klibanoff (2009), Ghirardato and Siniscalchi (2012).
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crucially, in terms of the deviations against which optimality is checked), ambiguity aversion

expands the set of such equilibria even when we run over unrestricted heterogeneous beliefs.

Ambiguity averse behavior is often viewed as a robust response to doubts about beliefs

(e.g., Hansen (2007)). We describe a sense in which this robustness extends to properties of

equilibria. Section 4.2 defines robustness of an equilibrium to increases in ambiguity aversion

and shows that this is related to a type of belief robustness (Theorem 4.5).

Section 5 contains an example of a Milgrom and Roberts (1982)-style limit pricing entry

game with ambiguity about the incumbent’s cost. We show that limit pricing arises in an

SEA. The limit pricing in our example is part of a semi-pooling equilibrium and succeeds in

deterring some entry. Pooling equilibria are often sensitive to beliefs. We provide conditions

under which this limit pricing is robust to increased ambiguity aversion on the part of the

entrant and then apply Theorem 4.5 to conclude that under these same conditions ambiguity

aversion can make the set of beliefs supporting limit pricing as large as desired.

Another example in Section 5 is a principal, multi-agent communication game. The

principal is shown to strictly benefit from conditioning his cheap talk message to the agents on

a payoff irrelevant ambiguous event. Our analysis of this example establishes that increasing

the ambiguity of communication can be sequentially optimal, and, moreover, can occur as

part of an SEA. In the context of communication games and mechanism design, sequential

optimality may be viewed as ensuring that players both react optimally to any information

they receive and that participation or design are taken optimally from an ex-ante perspective.

Section 6 discusses some possible extensions of our approach, including to other models

of ambiguity averse players’preferences. Finally, in addition to the discussion of alternative

approaches in Section 3.2.1, Section 7 discusses closely related literature (especially Battigalli

et al. (2017) and Pahlke (2018)) and compares it to our theory. A supplementary appendix

contains all proofs and some further analysis.

2 Model

We begin by defining the central domain of the paper, finite multistage games with incom-

plete information and perfect recall where players have (weakly) ambiguity averse smooth

ambiguity preferences. It is on this domain that we develop and apply our equilibrium con-

cepts. Such games allow for both imperfectly observed actions and private observations as

the game proceeds. Other than perfect recall and finiteness, the multistage structure (i.e.,

the assumption that all players move simultaneously at each point) is the additional poten-

tial limitation on the game forms we consider. While not entirely without loss of generality,

if one doesn’t object to giving a player singleton action sets at stages where this player
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has no “real”move, the multistage assumption is not restrictive. Note that (finite) normal

form games with incomplete information and (weakly) ambiguity averse smooth ambiguity

preferences are the special case where there is a single stage.

Formally, a finite extensive-form multistage game with incomplete information and perfect

recall and (weakly) ambiguity averse smooth ambiguity preferences, Γ, is a tuple (N, H,

(Ii)i∈N , (µi)i∈N , (ui, φi)i∈N) where:

• N is the finite set of players.

• H is the finite set of (terminal) histories, each of which is a finite sequence of length

T + 2 of the form h = (h−1, (h0,i)i∈N , . . . , (hT,i)i∈N).

For 0 ≤ t ≤ T + 1, let H t ≡ {ht ≡ (h−1, (h0,i)i∈N , . . . , (ht−1,i)i∈N) | h ∈ H} be the set
of partial histories up to (but not including) stage t. The set of all partial histories is

H ≡ {∅}∪
⋃

0≤t≤T+1H
t. For each i ∈ N , 0 ≤ t ≤ T and ht ∈ H t, Ai(ht) ≡ {ĥt,i | ĥ ∈

H, ĥt = ht} is the set of actions available to player i at ht. The set of initial partial
histories, Θ ≡ H0, is called the set of “parameters”or “types”.

• Ii ≡
⋃

0≤t≤T Iti are the information sets for player i, where each Iti is a partition of H t

such that, for all ht, ĥt ∈ H t, ĥt ∈ Ii(ht) implies Ai(ht) = Ai(ĥ
t) (where Ii(ht) is the

unique element of Iti containing ht).
Perfect recall means: for each player i, stage 0 ≤ t ≤ T and partial histories ht, ĥt ∈ H t,

Ii(h
t) = Ii(ĥ

t) implies Ri(h
t) = Ri(ĥ

t), where, for each partial history h̄t ∈ H t, Ri(h̄
t)

is the ordered list of information sets i encounters and the actions i takes under h̄t.3

• ui : H → R is the (utility) payoff of player i given the history.4

• µi is a probability over ∆ (Θ) having finite support such that
∑

π∈∆(Θ)

µi(π)π(θ) > 0 for

all i ∈ N and θ ∈ Θ, where ∆ (Θ) is the set of all probability measures over Θ.5

• φi : co(ui(H)) → R is a continuously differentiable, (weakly) concave and strictly

increasing function.

The first three bullet points above describe the game form, while the rest describe pref-

erences. Observe that at each partial history each player (not just those with non-trivial

3Formally, Ri(h̄t) ≡ ((Ii(h̄
s), h̄s,i)0≤s<t, Ii(h̄

t)). For future reference, note that we extend both Ai and
Ri to information sets in the natural way.

4As is usual for preferences in games, we assume that ui may be extended to a larger domain such that
ui(H) is interior to the convex hull of the image of ui on the larger domain, and that φi may be similarly
extended. This ensures the validity of the interior optimality characterizations we use throughout.

5All of our results (except for Theorem 4.3) also hold if the class of games is restricted to those with a
common µ such that µi = µ for all players i. None of our examples rely on differences in the µi.
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Figure 2.1: A peace negotiation game
The vectors give utility payoffs for players 1, 2 and 3, in that order, for each path.

moves at this point) has an information set. The non-standard preference parts of this defin-

ition are φi and µi which are part of the specification of smooth ambiguity preferences, with

the degree of concavity of φi reflecting ambiguity aversion and µi indicating the presence of

ambiguity when suppµi contains multiple probability measures.
6

We remark that the parameter spaceΘmay possibly include payoffrelevant and/or payoff

irrelevant components. The role of payoff irrelevant components is to facilitate our modeling

of the strategic use of ambiguity via conditioning actions on these components.

Though largely standard, as formal objects such games might seem complex. To aid

understanding, we next introduce a concrete example to which we will return at several

points.

Running Example: The game in Figure 2.1 is a variation on the main example in
Greenberg (2000). There are three players. Players 1 and 2 are small countries involved

in peace negotiations. Player 3 is a large country that has the power to affect the small

countries. The parameter space is Θ = {I, II} and represents payoff irrelevant private
information of player 3. Specifically, one should think of this parameter as the outcome of

an ambiguous device that player 3 has access to and may choose to condition its action on.

At t = 0, only player 1 has a non-trivial move, which is either to c(ooperate) or to d(efect)

in the negotiations. If player 1 plays c, then player 2 observes this and may choose either to

c(ooperate) or to d(efect) in the negotiations. If both 1 and 2 cooperate, the negotiation leads

6supp denotes the support of a measure.
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to peace, and then player 3 chooses between favoring 1 under the peace (f1) and favoring 2

under the peace (f2). The favored country receives a payoff (ui) of 5, while the other players

receive 4. If either player defects, then negotiations break down. At that point, player 3,

knowing that negotiations have failed, but not able to observe which country defected, must

choose between an action that punishes player 1 (p1), an action that punishes player 2 (p2),

and a neutral action (n). A player who is punished gets payoff 0, while the unpunished

country is favored and gets a payoff of 10. If player 3 punishes, it prefers to punish the

defector: player 3’s payoff is 1 when punishing the defector, and 0 when punishing the other

player. Player 3 staying neutral leads to a payoff of 6 for players 1 and 2, and a payoff of

x for player 3. The payoff of 6 means that both small countries would prefer negotiations

to fail if they knew there would be no punishment. We leave x as a variable in order to

capture different relative merits for player 3 of staying neutral compared to punishing. A

(terminal) history h consists of complete path through the game tree. For example, one

history is (I, c, c, f2) and (I),(I, c) and (I, c, c) are partial histories.7

The beliefs µ for all players are 1
2
-1

2
over distributions π1 and π2 with π1(I) = 1 and

π2(I) = 0, reflecting the common perception of the ambiguity concerning Θ. The starkness

of the πs is purely for convenience —any beliefs reflecting ambiguity about whether I or II

is more likely would suffi ce for our analysis. �
A strategy for player i specifies the distribution over i’s actions conditional on each

information set of player i. Formally:

Definition 2.1 (Behavior Strategy) A (behavior) strategy for player i in a game Γ is a

function σi such that σi (Ii) ∈ ∆(Ai(Ii)) for each Ii ∈ Ii.

Let Σi denote the set of all strategies for player i. A strategy profile, σ ≡ (σi)i∈N , is a

strategy for each player.

Given a strategy profile σ, history h and 0 ≤ r ≤ t ≤ T + 1, the probability of reaching

ht starting from hr is pσ(ht|hr) ≡
∏
j∈N

∏
r≤s<t

σj (Ij(h
s)) (hs,j).8 It is useful to separate this

probability into a part affected only by σi and a part affected only by σ−i. These are

pi,σi(h
t|hr) ≡

∏
r≤s<t

σi (Ii(h
s)) (hs,i) and p−i,σ−i(h

t|hr) =
∏
j 6=i

∏
r≤s<t

σj (Ij(h
s)) (hs,j) respectively,

7To formally write some histories, one may need to include some of the "dummy" actions chosen from
singleton action sets needed to create the multi-stage structure of the game. These actions are not depicted
in the game tree. For example, if player 1 plays d, to keep the multi-stage structure, this must be followed
by a node where all three players have singleton action sets, before arriving at the stage where player 3 has a
non-trivial move. So an example of such a history could be written as (I, (d, ∅, ∅), (∅, ∅, ∅), (∅, ∅, n)) where ∅ is
used to denote such "dummy" actions and the triples represent the actions of players 1, 2 and 3 respectively.

8If r = t, so that the product is taken over an empty set, invoke the convention that a product over an
empty set is 1.
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with pi,σi(h
t|hr)p−i,σ−i(ht|hr) = pσ(ht|hr). With this notation, we can now state formally the

assumption that players’ex-ante preferences over strategies are smooth ambiguity preferences

(Klibanoff, Marinacci and Mukerji 2005) with the ui, φi and µi as specified by the game.

Assumption 2.1 (Ex-ante Preferences) Fix a game Γ. Ex-ante (i.e., given the empty

partial history), given σ−i, each player i ranks strategies σ′i according to

Vi(σ
′
i, σ−i) ≡

∑
π∈∆(Θ)

φi

(∑
h∈H

ui(h)p(σ′i,σ−i)
(h|h0)π(h0)

)
µi (π) . (2.1)

If there were only a single distribution π over parameters, and so no ambiguity, µi would be

degenerate and φi irrelevant and (2.1) specializes to the usual ex-ante expected payoffs (i.e.,

the expression in the argument of φi) in the context of a game. In the presence of ambiguity

about the parameters, player i aggregates such expected payoffs for each π ∈ suppµi using φi
and beliefs µi. Despite this non-linear aggregation, it proves helpful, in understanding both

optimality and the effect of ambiguity aversion on this aggregation, to examine modified

expected payoffs using local linear approximations.

As is true for any preference represented by a smooth, increasing and concave objective

function, σi is optimal if and only if it is optimal according to the local linear approximation

of the objective function around σi. In the context of (2.1), σi an ex-ante best response to

σ−i for player i given φi and µi is equivalent to σi maximizing, among all σ
′
i, the following

modified expected payoff, ∑
h∈H

ui(h)pi,σ′i(h|h
0)q(σ,µi),i(h) (2.2)

where q(σ,µi),i is i’s ex-ante (σ, µi)- local measure over histories, defined for each h ∈ H by,

p−i,σ−i(h|h0)
∑

π∈∆(Θ)

π(h0)φ′i

∑
ĥ∈H

ui(ĥ)pσ(ĥ|ĥ0)π(ĥ0)

µi(π). (2.3)

Notice that i’s ambiguity aversion leads the marginal of this local measure on parameters,

h0 ∈ Θ, to tilt, via the φ′i term, towards parameters given more weight by π’s for which

i expects to fare less well under σ. This tilting is not present under ambiguity neutrality

(since φ′i is constant). As ambiguity aversion increases, this tilting becomes more severe.

Now turn to defining preferences beyond the ex-ante stage. To do so, we need to define the

notion of a belief at an information set. The only property we require of such a belief is that

it puts weight only on distributions over the partial histories belonging to that information

set. Formally:

10



Definition 2.2 (Belief at an Information Set) A belief for player i in a game Γ given

information set Ii is a finite support probability measure νi,Ii over ∆(Ii). An interim belief

system ν ≡ (νi,Ii)i∈N,Ii∈Ii is a belief for each player at each of that player’s information sets.

Since at any partial history each player has an information set, an interim belief system

specifies a belief for each player at each partial history. Given these beliefs, the following

defines a player’s preferences at an information set:

Assumption 2.2 (Preferences at an Information Set) Fix a game Γ and a strategy

profile σ. Any player i at information set Ii ranks strategies σ′i according to

Vi,Ii(σ
′
i, σ−i) ≡

∑
π∈∆(Ii)

φi

 ∑
h|ht∈Ii

ui(h)p(σ′i,σ−i)
(h|ht)π(ht)

 νi,Ii (π) , (2.4)

where t is the stage at which the information set Ii occurs.

Compared to the ex-ante preferences given in (2.1), the preferences (2.4) at Ii differ only

in that (1) the beliefs may have changed in light of Ii and σ (i.e., µi is replaced by some belief

νi,Ii concentrated on Ii), and (2) the probabilities of reaching various histories according to

the strategy profile are now calculated starting from Ii rather than from the beginning of

the game. Given a strategy σi for player i, the continuation strategy at information set Ii,

σIii , is the restriction of σi to the information sets Îi such that Ii ∈ Ri(Îi). Preferences at

Ii may be equivalently thought of as ranking continuation strategies (i.e., any two strategies

with identical continuations from Ii are treated identically by preferences at Ii).

Just as for the ex-ante preferences, it is useful to observe that σi being a best response to

σ−i for player i at information set Ii given φi and νi,Ii is equivalent to σi maximizing, among

all σ′i, the following modified expected payoff,∑
h|ht∈Ii

ui(h)pi,σ′i(h|h
t)q(σ,ν),i,Ii(h) (2.5)

where q(σ,ν),i,Ii is i’s (σ, ν)- local measure over histories given Ii, defined for each h ∈ H such

that ht ∈ Ii by,

p−i,σ−i(h|ht)
∑

π∈∆(Ii)

φ′i

 ∑
ĥ|ĥt∈Ii

ui(ĥ)pσ(ĥ|ĥt)π(ĥt)

 π(ht)νi,Ii(π). (2.6)

Now, i’s ambiguity aversion leads the marginal of this local measure on Ii to tilt towards
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partial histories given more weight by π’s for which i expects to fare less well under the

continuation σIii .

Using the above preferences, Section 3 turns to equilibrium analysis. The main focus is

describing and analyzing sequential optimality —the assumption that each player is best re-

sponding to σ−i according to their preferences at each information set —including its relation

with updating of beliefs. Observe that Definition 2.2 assumes no particular connection be-

tween beliefs at different information sets, the ex-ante beliefs, and the strategy profile. Our

Theorem 3.1 will show that strategic behavior under sequential optimality is as if beliefs are

related by a particular update rule. In the case of expected utility preferences, this update

rule is exactly Bayes’rule given the strategy profile. More generally, this update rule ensures

that, given the strategy profile, i’s local measure at Ii, q(σ,ν),i,Ii , is the Bayesian update of

i’s local measure at the previous information set (or of i’s ex-ante local measure if Ii is an

initial information set).

3 Equilibrium

3.1 Ex-ante Equilibrium

As a step toward defining sequential optimality, we use the ex-ante preferences to define

ex-ante (Nash) equilibrium:

Definition 3.1 (Ex-ante Equilibrium) Fix a game Γ. A strategy profile σ is an ex-ante

(Nash) equilibrium if, for all players i,

Vi(σ) ≥ Vi(σ
′
i, σ−i)

for all σ′i ∈ Σi.

An equilibrium requires each player i, given ex-ante beliefs µi, to best respond to the

(parameter-contingent) strategies of the other players. To the extent that the play that

strategies specify varies with the parameter, ambiguity about parameters (as reflected in be-

liefs) translates into ambiguity about play in equilibrium. In the case of ambiguity neutrality,

where the φi are linear (i.e., subjective expected utility), and homogeneous ex-ante beliefs,

µi = µ for all players i, the definition reduces to the usual (ex-ante) Bayesian Nash Equilib-

rium definition. More generally, ex-ante equilibrium is the same as the ex-ante equilibrium

defined in the context of strategic form games with ambiguity averse players by Azrieli and

Teper (2011) applied to our setting of extensive form games and smooth ambiguity prefer-
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ences. Similar ex-ante concepts also appear in Kajii and Ui (2005), Bade (2011), Riedel and

Sass (2013), Kellner (2015) and Grant, Meneghel and Tourky (2016).

When there is ambiguity about parameters, the motive for conditioning play on them can

come from a mix of direct payoff concerns and/or indirect strategic advantage from having

others be ambiguous about one’s play. When, however, some or all of the parameter space is

payoff irrelevant, the only motive for conditioning play on these payoff irrelevant aspects is

indirect strategic advantage. This approach to modeling “pure”strategic ambiguity in equi-

librium via strategies conditioning play on payoff irrelevant parameters follows Bade (2011),

who extends to ambiguity Aumann (1974)’s modeling of equilibrium strategic uncertainty

through conditioning on such parameters.

An alternative approach is to model ambiguity directly over opponents’strategies without

requiring a parameter space. In any such approach, unlike in ours, the Nash assumption

that each player is best responding to the strategies of the others is problematic as it leaves

no possibility of strategic ambiguity. Thus, such approaches, while maintaining that each

player’s strategy is a best response to their beliefs about strategies, necessarily relax the

assumption that these beliefs are correct. Examples of such approaches in the literature

include Dow and Werlang (1992), Klibanoff (1996), Lo (1996, 1999), Eichberger and Kelsey

(2000), Marinacci (2000), Lehrer (2012), Battigalli et al. (2015) and Battigalli et al. (2017).

When there is some ambiguity aversion (one or more φi concave) and ambiguity (µ non-

degenerate), ex-ante equilibrium behavior can differ from that in Bayesian Nash Equilibrium.

Intuition for this is that at an ex-ante equilibrium, each player is behaving as if they maximize

expected payoff with respect to their local measure (2.3) at that strategy profile. Even with

common beliefs µ, ambiguity averse players will generally have different local measures, in

particular, different local marginals on parameters. Thus, ambiguity aversion leads players

with common beliefs to act, locally, as if they were standard ambiguity neutral players with

heterogeneous beliefs.

Running Example continued: Returning to the peace negotiation example, we an-
alyze the ex-ante equilibria of the game which helps illustrate some of the above. First,

suppose that both small countries are ambiguity neutral (i.e., φ1 and φ2 are affi ne). In this

case, no ex-ante equilibrium results in a positive probability of peace. In contrast, whenever

players 1 and/or 2 are suffi ciently ambiguity averse (e.g., φ1 = φ2 = −e−ax with a ≥ ln(5
4
)),

peace with probability 1 is an ex-ante equilibrium outcome. Formally:

Proposition 3.1 (i) If players 1 and 2 are ambiguity neutral (i.e., φ1 and φ2 are affi ne),

no ex-ante equilibrium results in a positive probability of peace. This also holds for any other

specification of common belief µ.

13



(ii) If players 1 and/or 2 are suffi ciently ambiguity averse, there is an ex-ante equilibrium

yielding peace with probability 1 (i.e.,with σ1(c) = σ2(c) = 1).

The proof of this and all subsequent results in the paper may be found in the Appendices.

Intuitively, players 1 and 2 are willing to cooperate only if each is suffi ciently worried that

they will be punished if negotiations break down. Given the specified payoffs and beliefs

in combination with ambiguity neutrality, this is impossible because any strategy of 3 that

incentivizes one of them to cooperate will lead the other to defect. Peace does not occur in

a Bayesian Nash equilibrium.

How do ambiguity and ambiguity aversion change the story? Consider the strategy profile

where 1 and 2 cooperate and player 3, when the payoff irrelevant parameter is I, punishes 1 if

there is defection and favors 2 if there is peace, and does the opposite when the parameter is

II. Since the beliefs µ reflect ambiguity about the parameters, 3’s strategy creates ambiguity

in the minds of players 1 and 2 about who will be punished or favored. Observe that player

1 does worse under parameter I than under parameter II and the reverse is true for player

2. Recall from the discussion following equation (2.3) that ambiguity aversion would then,

at this strategy profile, tilt the marginals of their local measures on parameters in different

directions —1’s towards I and 2’s towards II. Given suffi cient ambiguity aversion (to generate

enough tilting), cooperation will be a best response for both because deviating is unattractive

under parameter I for player 1 and unattractive under parameter II for player 2. Finally,

given cooperation by 1 and 2, any strategy of player 3 is an ex-ante best response because 3

is indifferent among all actions that follow cooperation, and actions following defection are

off the equilibrium path. �
Observe that, as in the example, equilibrium disciplines the strategic ambiguity that

appears. Given that a player knows that by conditioning his play on ambiguous parameters

he can induce strategic ambiguity in the minds of others, the decision to condition in this

manner is a decision about whether it is advantageous to play ambiguously. Equilibrium

requires that such ambiguity inducing play is permitted only when it is a best response.

3.2 Sequential Optimality

Fundamental to our theory will be sequential optimality. It requires that, given the strategies

of the others, each player’s strategy is optimal at each of that player’s information sets. Since

at each partial history each player has an information set containing that partial history,

sequential optimality imposes an analogue of ex ante equilibrium at each partial history in

the game. Under ambiguity neutrality, the definition of sequential optimality specializes to

ex-ante equilibrium plus Kreps and Wilson (1982)’s sequential rationality. Formally:
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Definition 3.2 Fix a game Γ. A pair (σ, ν) consisting of a strategy profile and interim belief

system is sequentially optimal if, for all players i and all information sets Ii,

Vi(σ) ≥ Vi(σ
′
i, σ−i) (3.1)

and

Vi,Ii(σ) ≥ Vi,Ii(σ
′
i, σ−i) (3.2)

for all σ′i ∈ Σi, where the Vi and Vi,Ii are as specified in (2.1) and (2.4).
9

A strategy profile σ is said to be sequentially optimal whenever there exists an interim

belief system ν such that (σ, ν) is sequentially optimal.

As is standard for perfection-like equilibrium concepts, a major motivation for sequential

optimality is to rule out non-credible off-path behavior, and off-path restrictions are the only

means through which it refines ex-ante equilibrium. Any ex-ante equilibrium for which all

information sets are on-path is also sequentially optimal (see Theorem A.1 in the Appendix).

How does sequential optimality relate to familiar concepts? Sequential optimality with a

common µ implies (and is stronger than) subgame perfection adapted to allow for smooth

ambiguity preferences. To see this, recall that a proper subgame follows a partial history at

which all information sets are singletons. Since in our games all players have an information

set at each partial history, for any proper subgame (3.2) ensures that the continuation

strategy profile derived from σ forms an ex-ante equilibrium of the subgame with respect to

degenerate beliefs. For the overall game, (3.1) ensures σ is an ex-ante equilibrium. When

preferences are expected utility and there is a common µ, we show (see Corollary 3.1) that

sequential optimality identifies the same strategy profiles as the version of Perfect Bayesian

Equilibrium (PBE) defined in Gibbons (1992, pp. 177-180) (sometimes called weak PBE).10

Both PBE and sequential optimality go well beyond subgame perfection in several re-

spects. First, they rule out off-path play that is not optimal against any belief given the

strategy profile at partial histories that generate non-singleton information sets (where sub-

game perfection has no bite). Second, if, for example, a simultaneous move game is triggered

immediately following a deviation, they require play of an equilibrium of that incomplete

information simultaneous move game given beliefs and the strategy profile. Note that this

9Note that since Vi,Ii(σ̃i, σ−i) = Vi,Ii(σ̂i, σ−i) if σ̃
Ii
i = σ̂Iii , requiring the inequalities for the Vi,Ii to hold

as i changes only her continuation strategy given Ii would result in an equivalent definition.
10In games where at some partial histories information sets are specified for only a subset of players (for

example, as is frequently done, only for the player(s) having a non-trivial move at that point), ex-ante
equilibrium plus sequential rationality need not imply subgame perfection (see e.g., Mas-Colell et al. (1995,
p. 290)’s Example 9.C.5) and thus the same is true of sequential optimality. However, once the “missing”
information sets are added (in the case of Example 9.C.5, specify an information set for the incumbent
containing the partial history “In”) the implication of subgame perfection is restored.
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second implication is generally more restrictive than simply ruling out strategies that are

(iteratively) strictly dominated given the information set.

Running Example continued: Earlier we showed that only when players 1 and/or

2 are suffi ciently ambiguity averse is there an ex-ante equilibrium resulting in peace with

probability 1. This equilibrium is also subgame perfect, since there are no off-path proper

subgames. Is such behavior sequentially optimal? The answer depends on x, the payoffplayer

3 receives when staying neutral after negotiations break down. Only when x is suffi ciently

low (specifically x ≤ 1) will there be a sequentially optimal strategy profile leading to peace

for sure (or even to a positive probability of peace). Why? When x > 1, staying neutral is

more attractive for player 3 than punishing, and thus punishment, at least some of which

is necessary to incentivize successful peace negotiations, becomes a non-credible threat and

cannot be sustained as an optimal response to any beliefs after negotiations break down.

When x ≤ 1, some ambiguous punishment strategies by 3 (e.g., playing p1 if the parameter

is I and p2 if the parameter is II) are best responses to some beliefs of 3 about who deviated

from playing c. Given suffi cient ambiguity aversion of players 1 and 2, such punishment

strategies are enough to ensure cooperation. Formally:

Proposition 3.2 If x > 1, then in all sequential optima players 1 and 2 play d with prob-

ability 1. If x ≤ 1 and players 1 and 2 are suffi ciently ambiguity averse, then there is a

sequential optimum yielding peace with probability 1.

Remark 3.1 When 0.5 < x ≤ 1, to have a sequential optimum yielding peace with probabil-

ity 1 may require strictly more ambiguity aversion than would be necessary to have an ex-ante

equilibrium doing so. For example, if φ1 (x) ≡ −e−x ln(5/3) = −(5
3
)−x (so that φ

′
1(x)

φ′1(y)
= (5

3
)y−x)

and player 2 is ambiguity neutral, then, as is shown in the proof of Proposition 3.1, there

is an ex-ante equilibrium yielding peace with probability 1. However, there is no sequential

optimum yielding peace with probability 1. The intuition is that when 0.5 < x ≤ 1, optimality

for player 3 when given the move limits the ability to punish the less ambiguity averse player

2 by ruling out mixtures that include both p1 and p2. In contrast, when x ≤ 0.5 enough

punishment strategies are credible that there is a sequential optimum yielding peace whenever

there is an ex-ante equilibrium doing so.

�

Do sequential optima always exist? In Section 3.3 we explore a refinement of sequential

optimality. We show existence for this refinement, thus implying existence of sequential

optima.

The definition of sequential optimality does not assume particular updating. Neverthe-

less, we show that analysis of sequential optima of a game may be undertaken under the as if
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assumption that all players use an update rule, proposed by Hanany and Klibanoff (2009),

called the smooth rule. Under ambiguity neutrality, the smooth rule reduces to Bayes’rule.

More generally, the smooth rule applied to beliefs implies the local measures, q(σ,ν),i,Ii(h), as

defined in (2.6), are related by Bayes’rule.

We now define the smooth rule in the game-theoretic context. Though it is notationally

complex, at this point all that is important to take from this definition is that i’s updated

beliefs are proportional to i’s beliefs at the previous information set times i’s subjective

likelihood of reaching from the previous information set to the current one given σ−i, weighted

by a term (involving a ratio of φ′i expressions) that can be non-constant only when the

player is ambiguity averse. Thus, smooth rule updating is a re-weighted version of Bayesian

updating. When this weighting term is constant, as is the case under ambiguity neutrality,

the smooth rule reduces to Bayes’rule.11 For clarity, the smooth rule formula is stated in

two pieces, one for updating to an initial information set from the ex-ante stage, and the

other for updating to a current information set from the previous one. The smooth rule pins

down i’s updating at all information sets (both on and off path) except those that i does not

view as reachable from the immediately preceding information set given σ. We also define

a strong version of the smooth rule which additionally pins down updating at information

sets that i does not view as reachable given σ only because of i’s own strategy σi (under

ambiguity neutrality, this will be referred to as strong Bayes’rule12). Notice, as with Bayes’

rule in PBE, that the updating formula applies “wherever possible”including at all on-path

and some off-path information sets. We defer further discussion of the rule, and suggest that

the reader may also wish to defer parsing its formal definition.

Notation 3.1 For information set Ii, define s(Ii) to be such that Ii ∈ Is(Ii)i , i.e., at what

stage of the game is Ii. Given a partial history ht ∈ H and −1 ≤ s ≤ t− 1, hs is the partial

history formed by truncating ht just before stage s.

Notation 3.2 For information set Ii * Θ, define I−1
i to be the information set immediately

preceding Ii in Ri(Ii).

Definition 3.3 An interim belief system ν satisfies the smooth rule using strategy profile σ

if the following holds for each player i and information set Ii, letting t denote the stage at

which the information set Ii occurs (i.e., t = s(Ii)):

11More generally, these weighting terms reflect differences in the motive to hedge against ambiguity at
different information sets (see Hanany and Klibanoff 2009 and Baliga, Hanany and Klibanoff 2013).
12Such a version of Bayes’rule is discussed, e.g., in Hendon, Jacobsen and Sloth (1996) and Perea (2002).
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If Ii ⊆ Θ, then for all π ∈ ∆(Ii),

νi,Ii(π) ∝
∑

π̂∈∆(Θ)|π̂Ii=π

φ′i

(∑
h∈H

ui(h)pσ(h|h0)π̂(h0)

)
φ′i

( ∑
h|ht∈Ii

ui(h)pσ(h|ht)π(ht)

) π̂(Ii)µi(π̂), (3.3)

where π̂Ii ∈ ∆(Ii) is given by π̂Ii(θ) = π̂(θ)∑
θ̂∈Ii

π̂(θ̂)

; and

if Ii * Θ and
∑
ht∈Ii

∑
π̂∈∆(I−1

i )

pσ(ht|ht−1)π̂(ht−1)νi,I−1
i

(π̂) > 0, then for all π ∈ ∆(Ii),

νi,Ii(π) ∝
∑

π̂∈∆(I−1
i )|π̂Ii=π

φ′i

( ∑
h|ht−1∈I−1

i

ui(h)pσ(h|ht−1)π̂(ht−1)

)

φ′i

( ∑
h|ht∈Ii

ui(h)pσ(h|ht)π(ht)

) (3.4)

·

∑
ht∈Ii

p−i,σ−i(h
t|ht−1)π̂(ht−1)

 νi,I−1
i

(π̂),

where π̂Ii ∈ ∆(Ii) is given by π̂Ii(h
t) =

p−i,σ−i (h
t|ht−1)π̂(ht−1)∑

ĥt∈Ii

p−i,σ−i (ĥ
t|ĥt−1)π̂(ĥt−1)

for all ht ∈ Ii.

If (3.4) additionally holds for all Ii * Θ for which
∑
ht∈Ii

∑
π̂∈∆(I−1

i )

p−i,σ−i(h
t|ht−1)π̂(ht−1)νi,I−1

i
(π̂) >

0, then we say ν satisfies the strong smooth rule using strategy profile σ.

We are now ready to state our result that analysis of sequential optima of a game may

be undertaken under the “as if”assumption that all players use smooth rule updating.

Theorem 3.1 Fix a game Γ and a strategy profile σ. Then σ is sequentially optimal if and

only if there exists an interim belief system ν̂ satisfying the smooth rule using σ such that

(σ, ν̂) is sequentially optimal.

Outline of the proof: The if direction follows by definition. The only if direction
proceeds by considering each player i and information set Ii separately (and has analogues

for the ex-ante stage). Pair each Ii with its collection of immediate successors Ji. The

argument makes use of the following construction of the interim belief system ν̂: let ν be an

interim belief system such that (σ, ν) is sequentially optimal; at information sets where the
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smooth rule is unrestrictive let ν̂i,Ii = νi,Ii ; given this and the ex-ante beliefs, the smooth

rule formula then pins down ν̂ at all other information sets.

Three steps are key to showing that (σ, ν̂) is sequentially optimal. First, as is true for any

preference represented by a smooth, increasing and concave objective function, σi is optimal

at Ii if and only if it is optimal according to the local linear approximation around σi given

in (2.5). Second, perfect recall and the linearity of this objective allows us to conclude that

σi maximizes (2.5) implies that, for each Ji, σi maximizes the part of the summation in (2.5)

taken only over Ji. Finally, the smooth rule formula in (3.4) implies that the (σ, ν̂)- local

measure given each Ji is the Bayesian update, given Ji and σ, of (and therefore proportional

to) the (σ, ν̂)- local measure given Ii. Thus, applying this and again the first step, for each

Ji, σi is optimal at Ji given ν̂. Therefore (σ, ν̂) is sequentially optimal. �
Note that Theorem 3.1 would be false if we were to replace the smooth rule with Bayes’

rule —restricting attention to interim belief systems satisfying Bayesian updating generally

rules out some (or all) sequentially optimal strategies. This is so because applying Bayes’

rule to beliefs does not generate Bayesian updating of the local measures, q. The latter was

the implication of smooth rule updating of beliefs essential to proving the theorem.

One characteristic of smooth rule updating that will be unfamiliar to many readers is that

it is “non-consequentialist”in the sense that its formula includes expected payoffs under σ

at all (terminal) histories reachable from the immediately preceding information set, as well

as ambiguity aversion via φi. Importantly however, it is consequentialist in the weaker sense

that preferences at any information set Ii rank strategies only through their continuation

from Ii since beliefs, however determined, are concentrated on measures over Ii. The reader

might nevertheless be worried by the fact that the evaluation of a continuation strategy at

an information set depends on updated beliefs, but updated beliefs under the smooth rule

depend on the continuation strategy at the information set. This should not be a concern,

because the only comparisons that are meaningful when checking if σi is a best response to

σ−i at an information set Ii are those evaluating σi and each alternative σ′i according to the

same belief, νi,Ii, whatever it is. Theorem 3.1 says that this belief may be determined by

updating according to the smooth rule using σ = (σi, σ−i).

Non-consequentialist updating more generally has been criticized in the context of dy-

namic decision-making under ambiguity by e.g., Siniscalchi (2009) as violating the spirit

of ambiguity being purely an “informational” phenomenon, in the sense that it may gen-

erate updated perceptions of ambiguity that depend on contextual factors such as payoffs

and attitudes. While there are types of analysis which become problematic given non-

consequentialism, such as studies of learning or inference carried out in isolation, separate

from any decision or game context, an important takeaway from our analysis (including
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Theorem 3.2 below on the suffi ciency of checking one-stage deviations) is that the non-

consequentialism of smooth rule updating doesn’t introduce any new conceptual diffi culties

into the analysis of dynamic games. For example, just as with Bayesian updating, once

one fixes some beliefs at an information set, to proceed with analysis of play at that and

successor information sets does not require any knowledge of parts of the game outside of

this continuation sub-tree.

Recall that, restricting attention to expected utility preferences, the smooth rule special-

izes to Bayes’rule. In this case, we have the following corollary:

Corollary 3.1 Fix a game Γ with all players ambiguity neutral and a strategy profile σ.

Then σ is sequentially optimal if and only if there exists an interim belief system ν̂ satisfying

Bayes’rule such that (σ, ν̂) is sequentially rational.

Thus, under ambiguity neutrality, sequential optimality identifies the same set of strategy

profiles as Kreps and Wilson (1982)’s sequential rationality plus the assumption of Bayesian

updating given σ, which are, in turn, the same as perfect Bayesian equilibrium (PBE) as

defined in, for example, Gibbons (1992).13

When applying concepts like subgame perfection, PBE and sequential equilibrium, it is

extremely useful, when verifying optimality, to only need to check “one-stage” deviations

(as opposed to general deviations), i.e., check that for each player i and information set Ii,

there are no profitable deviations by i at Ii alone. These one-stage deviations are typically a

small fraction of the deviations available to players. Formally, the absence of these profitable

one-stage deviations is the following:

Definition 3.4 The pair (σ, ν) has no profitable one-stage deviations if for each player i

and each information set Ii, Vi,Ii(σ) ≥ Vi,Ii(σ
′
i, σ−i) for all σ

′
i agreeing with σi everywhere

except possibly at Ii.

For finite horizon games, in the standard ambiguity neutral case and under the assumption

that beliefs are related by strong Bayes’rule given the strategy profile σ, having no profitable

one-stage deviations is suffi cient for sequential optimality of σ (see Hendon, Jacobsen and

Sloth 1996). Is there an analogous statement that applies under ambiguity aversion? As we

show next, the answer is yes. In this analogue, the role of strong Bayesian updating given σ

is played by the strong smooth rule.

13Shimoji and Watson (1998) prove a related result in the context of defining extensive form rationaliz-
ability — the set of such rationalizable strategies when defined using best responses given any conjectures
about others’play remains the same when limiting attention to conjectures consistent with Bayes’rule.
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Theorem 3.2 Fix a game Γ and a pair (σ, ν) such that ν satisfies the strong smooth rule

using σ. Then (σ, ν) is sequentially optimal if and only if (σ, ν) has no profitable one-stage

deviations.

3.2.1 Comparison with an alternative approach

Sequential optimality refines ex-ante equilibrium to deal with non-credible threats by re-

quiring players to be optimizing over continuation strategies at each information set given

the strategies of the other players. It follows that for any strategy profile that is not se-

quentially optimal, there must be at least some information set at which some player could

strictly improve by shifting to a different continuation strategy. However, this has not been

the approach to non-credible threats generally taken in the small body of existing literature

on dynamic games with ambiguity aversion that addresses the issue. These alternative ap-

proaches instead require no profitable one-stage deviations (or the slightly stronger Strotzian

consistent planning, see Appendix B) with respect to exogenously imposed particular update

rules.14,15 They start from the principle that, at any information set, players choose only

current actions (or mixtures over actions) rather than continuation strategies. Thus, when

best responding, players take as given not only other players’strategies, as in our approach,

but also their own future continuation strategy. While such approaches emphasize the con-

flicting views of optimality at different information sets that may arise for a player under

ambiguity aversion when using particular update rules, sequential optimality emphasizes the

unity of a player in requiring that strategies are optimal from the point of view of all of the

player’s information sets simultaneously, while taking a more agnostic or endogenous view

of updating.

How do such approaches compare with sequential optimality? Without exogenous as-

sumptions on updating, sequential optimality is a stronger requirement than consistent plan-

ning, which is, in turn, stronger than requiring no profitable one-stage deviations. It then

follows from Theorem 3.2 that all three concepts are equivalent under strong smooth rule up-

dating. This finding generalizes the fact that under expected utility, the three are equivalent

under strong Bayes’rule updating. However, the no profitable one-stage deviations and sim-

ilar approaches under ambiguity aversion have been most commonly applied together with

different updating. In the context of smooth ambiguity preferences, Bayesian updating is

often assumed. As noted earlier, because of the conflicts this generates between preferences

at a player’s different information sets, this may rule out some (or all) sequential optima.
14Examples of such literature include Bose and Renou (2014), Battigalli et al. (2017), Beauchêne, Li and

Li (2017) and Kellner and Le Quement (2018).
15A second approach appearing in the literature is based on recursive preferences. We relate sequential

optimality to this approach in the latter part of Section 7.
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This may occur even when all information sets are on-path. Thus, differently from sequential

optimality, this approach may eliminate an ex-ante equilibrium by restricting on-path as well

as off-path behavior.

Such approaches also differ from sequential optimality in the other direction — under

Bayesian updating, some strategy profiles that are not even ex-ante equilibria may satisfy no

profitable one-stage deviations. One type of such behavior that has been a source of criticism

often discussed in the literature (see e.g., Machina (1989), Siniscalchi (2011)) is a player in

a dynamic decision problem strictly preferring not to obtain freely available information. As

Siniscalchi (2011) explains, information is typically bundled together with the future ability

to condition one’s action on that information, and therefore increases the flexibility given

to the player at future information sets. When there are conflicts between the current and

future objectives of the player, such flexibility can be strictly costly for the player at the

current information set. Thus what might appear to be negative value of information is

reinterpreted as valuable information outweighed by a costly increase in future flexibility

(or, as more commonly referred to, loss of commitment power). Such behavior cannot occur

under sequential optimality, as future flexibility is never costly given the unified agreement on

optimality it entails. The following example illustrates another consequence of this difference

between the approaches:

Example: Consider the game in Figure 3.1. Player 2 is privately informed of θ ∈
{I, II, III} at the beginning of the game. Observe that for each θ, player 2 has a strictly

dominant strategy if given the move: types I and II play U , and type III plays D. Let

φ1(x) = −e−10x and the common µ be 1
2
-1

2
on (1/3, 1/9, 5/9) and (1/3, 5/9, 1/9). Then the

unique strategy profile satisfying no profitable one-stage deviations combined with updating

according to strong Bayes’rule has 1 playing o with positive probability and then the mixture
1
2
u + 1

2
d if given the move, and 2 playing her dominant strategy. However, the unique

sequential optimum is player 1 playing i and then d if given the move, together with 2

playing her dominant strategy.

What drives this difference in 1’s behavior? Playing i rather than o gives player 1

flexibility at the final information set. With Bayesian updating, 1 uses this flexibility to

play 1
2
u+ 1

2
d rather than d, and this is costly from the perspective of player 1 at the initial

information set. Since, for some θ, 1’s payoffs from o are higher than those from i followed

by 1
2
u+ 1

2
d, and the reverse is true for other θ, 1 is motivated to hedge against ambiguity by

mixing between o and i at the initial information set. The details may be found in Appendix

B.16 In contrast, observe that for player 1, given 2’s dominant strategy, the payoff to playing

16There we also show that strengthening the no profitable one-stage deviation criterion to a Strotzian
consistent planning requirement does not eliminate the play of o with positive probability in the example.
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Figure 3.1: Game contrasting the approaches.
The vectors give utility payoffs for players 1 and 2, in that order, for each path.

i followed by d is, θ-by-θ, strictly higher than the payoff to playing o. Thus, no strategy

involving playing o with positive probability can be an ex-ante best reply to 2’s optimal

strategy no matter how player 1 perceives and treats the uncertainty about θ. This is why

o is not part of any ex-ante equilibrium, let alone a sequential optimum.

More generally, sequential optimality always rules out the play of type-by-type (itera-

tively) strictly dominated strategies in dynamic settings while no profitable one-stage devi-

ations combined with Bayesian updating does not. �
As observed in this section, an ambiguity averse player who exogenously adopts, for

example, Bayesian updating will generally have disagreement (across information sets) on

the optimal strategy, and therefore may suffer from future flexibility. In contrast, a player

who, either ex-ante or at an early information set, both recognizes updating as the generator

of these costly disagreements and is able to influence their own future information processing

would generally be better off departing from Bayesian updating in order to remove these

diffi culties. One possible view of sequential optimality is as modelling the outcomes of

strategic interaction of such players.
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3.3 Sequential Equilibrium with Ambiguity

To define sequential equilibrium with ambiguity (SEA), we consider a condition, smooth rule

consistency, that imposes requirements on beliefs that may have bite even at information

sets that i does not view as reachable from their immediate predecessor given σ.17 Our con-

dition extends Kreps and Wilson (1982)’s consistency condition used for the same purpose in

defining sequential equilibrium. We extend consistency in order to accommodate ambiguity

aversion by replacing Bayes’rule in their definition with the smooth rule. This replacement

is justified by Theorem 3.1, since, by that result, sequential optima are as if players are

responding to beliefs generated using smooth rule updating. Just as consistency uses limits

of Bayesian updates to deliver beliefs consistent with small trembles converging to sequen-

tially optimal strategies under ambiguity neutrality, limits of smooth rule updates deliver

this under ambiguity aversion. Recall that if we simply limited attention to Bayes’ rule,

then sequentially optimal strategies might fail to exist under ambiguity aversion. Smooth

rule consistency is defined as follows:

Definition 3.5 (Smooth Rule Consistency) Fix a game Γ. A pair (σ, ν) consisting of

a strategy profile and interim belief system satisfies smooth rule consistency if there exists

a sequence of completely mixed strategy profiles {σk}∞k=1, with limk→∞ σ
k = σ, such that

ν = limk→∞ ν
k, where each νk is the interim belief system satisfying the smooth rule using

σk.

Observe that smooth rule consistency is a true extension of Kreps and Wilson’s consis-

tency because Bayes’rule and the smooth rule coincide under ambiguity neutrality. SEA

strengthens sequential optimality exactly by adding the requirement of smooth rule consis-

tency:

Definition 3.6 (SEA) A sequential equilibrium with ambiguity (SEA) of a game Γ is a pair

(σ, ν) consisting of a strategy profile and interim belief system such that (σ, ν) is sequentially

optimal and satisfies smooth rule consistency.

We may use Theorem 3.2 and that smooth rule consistency delivers a ν satisfying the

strong smooth rule using σ to conclude that replacing sequential optimality in the definition

of SEA by having no profitable one-stage deviations would not change the set of equilibrium

strategies.

17If there are no such information sets, any sequentially optimal strategy profile is also part of an SEA
(see Theorem A.3).
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Theorem 3.3 A pair (σ, ν) is an SEA if and only if (σ, ν) has no profitable one-stage

deviations and satisfies smooth rule consistency.

An implication of this last result together with Corollary 3.1 is that SEA and sequential

equilibrium are equivalent under the assumption of ambiguity neutrality.

Running Example continued: Let’s apply SEA to our running example. We show
that if peace is an ex-ante equilibrium outcome, then it is also an SEA outcome if and only

if the large country’s payoff x to staying neutral after a breakdown is at most 0.5. Notice

that this is strictly lower than the bound of 1 we saw when applying sequential optimality.

Proposition 3.3 Suppose there is an ex-ante equilibrium yielding peace with probability 1.

Then there exists an SEA yielding peace with probability 1 if and only if x ≤ 0.5.

The key is that smooth rule consistency forces beliefs of player 3 about which player

defected to be the same at both information sets that follow defection. This is not implied

by sequential optimality alone, and when 0.5 < x ≤ 1, attaining peace requires player 3 to

hold different beliefs across these information sets. Once these beliefs are forced to be the

same, it is not in 3’s interest to play in a way such that both players 1 and 2 think there

is a chance they will be punished following defection. Therefore, at least one of the small

countries will find it in their interest to defect.

In contrast, when x ≤ 0.5, at each of 3’s information sets following defection, any mixture

over punishing 1 and punishing 2 is a best response to beliefs such that the two nodes in the

information set are unambiguously equally likely. Thus, given such beliefs, 3 is willing to

punish in a way suffi cient to ensure peace. Such beliefs satisfying smooth rule consistency

can be generated, for example, by a completely mixed sequence of strategies converging to

always cooperating that give, along the sequence, the same probability to 1 defecting as to

2 defecting after 1 cooperates. �
We next show that every game Γ has at least one SEA (and thus also at least one

sequential optimum and ex-ante equilibrium). Since the functions φi describing players’

ambiguity attitudes are part of the description of Γ, this result goes beyond the observation

that an SEA would exist if players were ambiguity neutral, and ensures existence given any

specified ambiguity aversion and ex-ante beliefs. The manner in which the smooth rule

generalizes Bayes’ rule allows us to prove this result by adapting known techniques from

existence proofs for sequential equilibrium.

Theorem 3.4 An SEA exists for any game Γ.

In Appendix A (see Theorem A.2), we show that SEA implies that beliefs are uniquely

defined at all information sets according to a version of the smooth rule formula using
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limits of likelihoods. This provides a method for constructing beliefs satisfying smooth rule

consistency.

4 Effects of ambiguity aversion on equilibria

4.1 Comparative statics in ambiguity aversion

In this section, we explore the extent to which changes in ambiguity aversion affect equi-

librium play. When we say equilibrium in this section, it will not matter whether we refer

to ex-ante equilibria, sequential optima or SEAs, as the comparative statics in ambiguity

aversion will be the same for all of these. We start with the simplest and most direct compar-

ative statics question: Holding all else fixed about a game (which, recall, includes specifying

beliefs), do changes in ambiguity aversion affect the set of equilibrium strategy profiles (and

play paths)? The answer is yes they can, as was true in our running example. In fact, the

set of equilibria can change entirely, as the following result shows:

Theorem 4.1 For some game form, payoffs and beliefs, the set of equilibrium strategy pro-

files under ambiguity neutrality is disjoint from that under some ambiguity aversions.

What if, as an outside observer, one is not willing to fix particular beliefs when describing

the equilibrium predictions of the theory, but is willing to assume that all players share the

same belief? How do such predictions change when ambiguity aversion is introduced?

Theorem 4.2 Fix any game form and payoffs. Taking the union, over beliefs µ, of the set

of equilibria generated if the common belief were µ, ambiguity aversion makes this union

weakly larger (in the superset sense) compared to ambiguity neutrality, and, for some games

and ambiguity aversions, this expansion is strict.

Thus, under an assumption of common beliefs, ambiguity aversion may not only generate

new equilibrium behavior (and new paths of play), but also does not eliminate equilibria

possible under ambiguity neutrality. For instance, strict expansion occurs in the running

example with suffi cient ambiguity aversion and x ≤ 0.5.

Does dropping the restriction to common beliefs change the answer to the question in

the previous paragraph? It does, and quite dramatically so —in this case, we show that the

predictions of the theory do not change with ambiguity aversion:

Theorem 4.3 Fix any game form and payoffs. Ambiguity aversion never affects the union,
over beliefs (µi)i∈N , of the set of equilibria generated if beliefs were (µi)i∈N .
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To gain intuition for the previous two results, it is useful to rewrite the linear approxi-

mation in (2.2) as follows:

∑
π∈∆(Θ)

(∑
h∈H

ui(h)p(σ′i,σ−i)
(h|h0)π(h0)

)
φ′i

(∑
h∈H

ui(h)pσ(h|h0)π(h0)

)
µi(π) (4.1)

Equation (4.1) is a linear aggregation of the expected payoffs for each π with weights on

the π given by the φ′i term times µi. We will refer to the normalized-to-one version of these

weights on the π as i’s effective beliefs (at σ), since they are the local analogue of beliefs µi in

the ex-ante preferences. We see from (4.1) that the impact of changing ambiguity aversion on

equilibria comes from the effect that ambiguity aversion has in generating different effective

beliefs for different players. In Theorem 4.2, this is what may generate new equilibria. In

Theorem 4.3, observe that any change in effective beliefs coming from changes in φ′i can be

offset by corresponding changes in µi. This offsetting is not possible under the restriction to

a common µ because the offsetting required for each player may differ.

Theorem 4.3 has analogues in the literature. For a result that in individual decision

problems, under standard assumptions (including reduction, broad framing, statewise dom-

inance and expected utility evaluation of objective lotteries), all observed behavior optimal

according to ambiguity averse preferences is also optimal for some subjective expected utility

preferences, see e.g., Kuzmics (2015). Bade (2016) independently shows that without restric-

tions on beliefs, predictions using ex-ante equilibria do not change with ambiguity aversion.

Considering a type of self-confirming equilibria, Battigalli et al. (2015, p. 667) show that

the set of these equilibria does not change as ambiguity aversion changes.

Battigalli et al. (2015) have as their main finding a result (their Theorem 1 together with

an example of strict inclusion), which Battigalli et al. (2017) focuses on partially extending to

dynamic games, in which they show that the set of their self-confirming equilibria increases as

ambiguity aversion increases and that this increase can be strict. This result relies crucially

on limiting attention to pure strategies (both in terms of the equilibrium profile and in terms

of the deviations against which optimality is checked). If we were also to limit attention to

pure strategies in both these respects, an analogous result would apply to our equilibria:

Theorem 4.4 Fix any game form and payoffs. Taking the union, over beliefs (µi)i∈N , of

the set of pure equilibria with respect to pure strategy deviations generated if the beliefs were

(µi)i∈N , increasing ambiguity aversion of one or more players weakly expands (in the superset

sense) this union. For some games and increases in ambiguity aversion, this expansion is

strict.
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4.2 Robustness

To introduce our discussion of robustness, we begin with an example. Consider a two player

one-stage game, where each player has a choice between two actions A and B. The parameter

space about which there is ambiguity is Θ = {θ1, θ2}. Both players have beliefs µ such that
µ(π1) = µ(π2) = 1

2
, where π1(θ1) = 2

3
and π2(θ1) = 1

2
, and do not learn anything about

θ before choosing their action. They both share the same φ. Payoffs as a function of the

actions and θ are as follows:

θ1 A B

A 0, 0 1,−8

B −8, 1 −6,−6

θ2 A B

A 6, 6 1, 16

B 16, 1 12, 12

(4.2)

Observe that given θ1, A is strictly dominant for each player, while given θ2, B is strictly

dominant. Under ambiguity neutrality, i.e. φ affi ne, both (A,A) and (B,B) are equilibrium

strategy profiles. We claim that (A,A) is robust to increased ambiguity aversion (i.e., remains

an equilibrium when φ becomes more concave), but (B,B) is not. To see that (A,A) is

robust, note that, assuming her opponent plays A, a player evaluates the mixed strategy

λA + (1 − λ)B according to 1
2
φ(2λ) + 1

2
φ(4 − λ), which is maximized at λ = 1 for any

concave φ. To see that (B,B) is not robust, note that for example, if φ(x) = −e−αx with
α > ln(1+

√
5

2
) ≈ 0.48, it is profitable to deviate to A.

Another sense of robustness is that an equilibrium supported for a wider range of beliefs

is more robust. Consider the set of weights µ on π1 and π2 that support (A,A) as an

equilibrium. Such weights are those satisfying µ(π1) ≥ φ′(3)
2φ′(2)+φ′(3)

. Notice that as φ becomes

more concave, φ′(3)
2φ′(2)+φ′(3)

decreases, approaching 0 in the limit as φ′(3)
φ′(2)

approaches 0, and

thus suffi cient ambiguity aversion results in a large set of weights µ supporting (A,A). The

fact that ambiguity aversion leads to such a large set of beliefs supporting (A,A) is not

special to this example. We show, under some conditions, that equilibria that are robust

to increased ambiguity aversion must be supported by a large set of beliefs for suffi cient

ambiguity aversion, and furthermore, this supporting set of beliefs may be made as large as

desired (see Theorem 4.5 and Remark 4.1). We refer to this as ambiguity aversion making

an equilibrium belief robust.

One use of our robustness result is as follows: Consider a population having heterogeneous

beliefs. Equilibria that, under ambiguity neutrality, are not supported by many beliefs might

not be expected to occur often. Our result offers ambiguity aversion as a possible explanation

for unexpected prevalence of such equilibria. Specifically, if such an equilibrium is, like (A,A),

robust to increased ambiguity aversion, ambiguity aversion can make it an equilibrium for
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more of the population (i.e., for more beliefs).

We turn to formal definitions of these two robustness notions and our result relating

them. An equilibrium strategy profile is robust to increased ambiguity aversion if it remains

an equilibrium whenever one or more of the φi becomes more concave:

Definition 4.1 For a game Γ, an equilibrium σ is robust to increased ambiguity aversion

if it remains an equilibrium whenever, for each i, φi is replaced by an at least as concave φ̂i.

Ambiguity aversion makes an equilibrium strategy profile σ belief robust if suffi cient

increases in players’ambiguity aversion, holding the π’s in the supports of players’beliefs

(µi)i∈N fixed, make all beliefs placing suffi cient weight on each such π support σ as an

equilibrium:

Definition 4.2 For a game Γ, consider an equilibrium σ. Ambiguity aversion makes σ belief

robust if, for each i and εi ∈ (0, 1
|suppµi|

), there exists φ̄εii at least as concave as φi so that:

σ is an equilibrium of this game with (µ̂i)i∈N and (φ̂i)i∈N whenever the (µ̂i)i∈N have the same

supports as the (µi)i∈N and, for each i, minπ∈suppµi µ̂i(π) > εi and φ̂i at least as concave as

φ̄
εi
i .

The next result shows, under some conditions on how expected payoffs vary with π, the

tight connection between robustness to increased ambiguity aversion and belief robustness.

Theorem 4.5 Fix a game Γ. The following is true when either ex-ante equilibrium or

sequential optimality are used as the notion of equilibrium:

If an equilibrium σ is robust to increased ambiguity aversion and, for each player i, the

expected payoff
∑

h∈H ui(h)pσ(h|h0)π(h0) can be strictly ordered across the π in the support

of µi, then ambiguity aversion makes σ belief robust.

Theorem 4.5 also holds when SEA is used as the equilibrium concept under the following

modification: In addition to SEA, require that there is a sequence of completely mixed

strategy profiles {σk}∞k=1, such that limk→∞ σ
k = σ, with respect to which smooth rule

consistency simultaneously holds for any interim belief systems used to support σ as an SEA

in the theorem or associated definitions.

Remark 4.1 Suppose φi is twice continuously differentiable with φ
′
i > 0 everywhere. Then

Theorem 4.5 remains true when, in the definition of belief robust, φ̄εii is restricted to be of

the constant absolute ambiguity aversion form, φ̄εii (x) ≡ −e−α(εi)x where α(εi) > 0.
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Intuition for the theorem in the case of ex-ante equilibrium is as follows: Robustness to

increased ambiguity aversion implies that σi must be a best response given the minimizing π,

since, as long as there is a unique expected payoffminimizing π, one can always find increases

in ambiguity aversion that generate effective beliefs that are any interior convex combination

of the effective beliefs under the original φi and degenerate beliefs on the minimizing π. Given

this, if one were to go to the limit (i.e., all effective weight placed on the minimizing π),

then the beliefs over the π cease to matter and all beliefs with the same support make σi a

best response. The proof of the theorem reveals that the arguments required along the way

toward the limit are more subtle, making use of concave transformations tailored to generate

specific shifts in effective beliefs when defining threshold φ̄εii that do the job and relaxing all

beliefs to all beliefs up to the εi constraints. As Remark 4.1 indicates, if one doesn’t mind

bounds that may be much less tight, comparison to the threshold φ̄εii may be simplified by

taking the threshold to have a constant coeffi cient of ambiguity aversion α(εi) (see Klibanoff,

Marinacci and Mukerji (2005), pp. 1865-6).

Without the assumption on expected payoffs, the theorem would be false. The role of this

assumption is to ensure enough flexibility in the manner in which more ambiguity aversion

can shift the effective weight placed on expected payoffs for the various π.

In Section 5.2, we apply Theorem 4.5 in analyzing the effect of the entrant’s ambiguity

aversion on the robustness of limit-pricing equilibria.

5 Examples

5.1 Example: Ambiguous Cheap Talk

The example is a game in which deliberately introducing ambiguity about actions without

payoff consequences (“ambiguous cheap talk”) proves valuable in equilibrium (ex-ante, se-

quentially optimal or SEA) for a principal communicating to two agents. The equilibrium

we identify would not be a solution under no profitable one-stage deviations (or Strotzian

consistent planning) together with Bayesian updating. It is only under the latter approach

that existing literature (see e.g., Bose and Renou (2014), Beauchêne, Li and Li (2017), Kell-

ner and Le Quement (2018)) has been able to establish, through arguments relying in an

essential way on violations of sequential optimality, a value for ambiguous cheap talk. As

was discussed in Section 3.2.1, such approaches may lead ambiguity averse players to reject

freely available, relevant information, and thus it is not clear whether the value of ambigu-

ous communication could survive in the absence of such an effect. Thus, our analysis of this

example establishes a new reason why ambiguous cheap talk can be valuable: like the ambi-
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guity about payoff-relevant actions in our running example, increasing the ambiguity of the

communication can enhance the ability to provide incentives to both agents simultaneously

by moving their effective beliefs further apart in the desired directions.

There are three players, a principal, P , and two agents, r(ow) and c(olumn). P wishes

to induce the agents to w(ork) for him rather than start their own b(usinesses). There is

uncertainty about the value to an agent of b relative to w. P has private information about

these values. By making an informative public announcement, P hopes to improve the

chances that the agents find w attractive. We show an ambiguous communication strategy

is optimal for P and is part of an SEA.

The parameter space has two components, a payoff relevant component, which can take

the value I or II, related to market-relevant characteristics of a technology, and a payoff

irrelevant component, which can take the value U orD, related to the findings of a laboratory

experiment. Thus the parameter space is Θ = {IU, ID, IIU, IID} = {I, II} × {U,D}. At
stage t = 0, only P has a non-trivial move, which is to send a message α or β. At t = 1,

only the agents have non-trivial moves, and each chooses b or w. P is privately informed of

θ ∈ Θ before sending his message. The message is publicly observed by both agents before

they choose their actions. Payoffs are given in the following matrices, where each cell lists

the payoff to P , r, and c in that order:

I b w

b 0, 0, 5 0, 0, 1

w 2, 1, 5 2, 2, 2

II b w

b 0, 5, 0 0, 5, 1

w 0, 1, 0 2, 2, 2

Notice that P’s message is cheap talk. To understand the above payoffs, begin with P . He

has an idea concerning the use of the technology and the skills and labor of the agents to

make a product. Full success of the product occurs under technology I if r works for P

(no matter what c does), but under technology II requires both agents to work for P as

both of their skills are crucial in this case. Partial success occurs under I if only c works

for P , and under technology II if either of the agents works alone for P . If neither agent

works for P , nothing is accomplished with regard to the product and no payment is made

by P . Now turn to the agents. If an agent works for P , she gets some benefit, but she also

incurs an effort cost that is higher than when both agents work for P (thus her payoff of 1

from working alone increases to 2 when working together). If an agent does not work for P ,

she starts an independent business based on her own idea for using the technology. Agent

r’s business idea will be a huge success under technology II but amount to nothing under

technology I, while the reverse is true of c’s business idea. Agent r is ambiguity averse with

φr(x) = −e−11x. The exact specification of φP and φc will not be important for our analysis
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of the game.

The beliefs µ for all players are 1
2
-1

2
over distributions π1 and π2 given by (where the

numbers on the top and left edges are the corresponding marginals):

3/4 1/4

π1 I II

1/3 U 3/12 1/12

2/3 D 6/12 2/12

1/5 4/5

π2 I II

1/4 U 1/20 4/20

3/4 D 3/20 12/20

Notice that there is ambiguity about the payoff relevant component of θ and, fixing that

component, ambiguity about the payoff irrelevant component of θ. This belief structure is,

for example, consistent with there being an underlying factor which affects (the likelihood of)

both components. The factor might be some scientific principle that is not well understood,

which influences both the functioning of the technology (I vs. II) as well as the findings of

the laboratory experiment (U vs. D) not affecting any of the players’business ventures.

First consider the case where all players are ambiguity neutral. If P plays an uninforma-

tive strategy (e.g., sends the same message for all values of the parameter), then calculation

shows that both agents will respond by playing b for sure, and P would get a payoff of

0. However, P can do better. The following strategy profile is an ex-ante equilibrium un-

der ambiguity neutrality: P fully reveals the payoff relevant component of the parameter,

and the agents play their dominant strategies in response. That is: If the payoff relevant

component of the parameter is I, P sends message α, otherwise P sends message β; after

message α, r plays w and c plays b, while after message β, r plays b and c plays w. Under

this strategy, P gets his maximal payoff of 2 when I occurs, but gets 0 when II occurs.

Why isn’t there an equilibrium where P does better than this? Any possible improvement

must involve incentivizing both agents to play w with positive probability when II occurs.

However, since the only way to convince r to play w is to have her put suffi cient weight on

I occurring while c is convinced to play w only if she puts suffi cient weight on II occurring,

it is impossible under ambiguity neutrality for P to have it both ways.

Next reintroduce r’s ambiguity aversion (φr(x) = −e−11x), and consider the following

strategy profile, σ∗: If the parameter is IU , P sends message α, otherwise P sends message

β; after either message, r plays w; after message α, c plays b, and after β, c plays w. Observe

that P is making use of the payoff irrelevant component of the parameter. We show that

this strategy profile is an equilibrium (Proposition 5.1), and, that the principal does strictly

better than if he were not allowed to use the payoff irrelevant component (Proposition 5.2).

Formally:
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Proposition 5.1 The strategy profile σ∗ is an SEA. In this equilibrium, P attains his max-
imum possible payoff for each parameter.

Remark 5.1 The strategy profile σ∗ remains an equilibrium for any φr more concave than

the one in the example.

Proposition 5.2 If P were not allowed to make his strategy depend on the payoff irrelevant
component of the parameter (i.e., U or D), there would be no ex-ante equilibrium yielding P

the maximum possible payoff for each parameter.

How does playing the ambiguous communication strategy σ∗P help P do better in the

example? It allows P to expose r to more ambiguity in equilibrium than r would be exposed

to under the optimal communication strategy that does not make use of U vs. D. To

understand this, first note that the best strategy, σ̂∗P , for P that does not depend on U vs.

D is: if I then send message α with probability ρ ≈ 0.267, and otherwise send message β.

One can then show that the only ambiguity that is relevant to r’s payoffs under each of these

strategies is that concerning the event that the message α is sent. This event is assigned

probabilities πk(I)ρ under σ̂∗P , and πk(I)πk(U) under σ∗P . As π1(U) > ρ > π2(U), there is

more ambiguity under σ∗P . This additional ambiguity about the event where α is sent helps

P provide incentives to both agents simultaneously, by moving their effective beliefs further

apart in the desired directions.

Notice that the only interesting updated beliefs are those of the agents after having

observed the message β (as following α the agents know the payoff relevant component of

the parameter is I). By Theorem 3.1, it is suffi cient to consider smooth rule updated beliefs.

Recall that π1 puts more weight on I than does π2. Since σ∗ performs worse for r under I

than under II, r does worse under π1 than under π2 in equilibrium. Therefore, ambiguity

aversion leads r’s smooth rule updated belief to place more weight on π1 than Bayesian

updated beliefs would. This is crucial in ensuring sequential optimality of σ∗ following β, as

r placing more weight on I pushes r towards playing w. For c it is the reverse, i.e., since σ∗

performs better for c under I than II, c does better under π1 than under π2 in equilibrium,

and therefore c’s smooth rule updated belief places weight on π1 that is (weakly) less than

the Bayesian updated belief. To ensure that both players coordinate on playing w after β,

differing updated beliefs are crucial:18 if they shared a common updated belief, at least one

agent would deviate.

18In the context of individual decisions, such belief polarization under ambiguity is explored in Baliga,
Hanany and Klibanoff (2013).
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Remark 5.2 If agent r becomes suffi ciently more ambiguity averse, Proposition 5.2 no
longer holds: in addition to the equilibrium in Proposition 5.1, there will be an equilibrium

where P conditions his play only on I vs. II and also obtains his maximum possible payofffor

each parameter. Intuitively, with enough ambiguity aversion on the part of r, the additional

ambiguity generated by conditioning on U vs. D is no longer needed.

5.2 Example: Limit Pricing under Ambiguity

In this section, we use a parametric class of games based on Milgrom and Roberts (1982)’s

limit pricing entry model with the twist that the entrant has ambiguity about the incumbent’s

cost and is ambiguity averse. In this application, SEA refines ex-ante equilibrium and we

find conditions under which the entrant’s ambiguity aversion makes limit pricing behavior

more robust compared to ambiguity neutrality.

The game is as follows: An incumbent monopolist has private information concerning

its per-unit production costs cI (which is one of cL < cM < cH). Thus the parameter space

is Θ = {L,M,H}.19 In the first stage, the incumbent chooses a quantity that, together

with inverse market demand, P (Q) = a − bQ, a, b > 0, and cI determines its first period

profit. A potential entrant with known per-unit production costs cE observes this quantity

and decides whether or not to enter at the second stage. If no entry is chosen, in the final

stage the incumbent remains a monopolist and again chooses a quantity while facing the

same market demand and costs as in the first stage, and the entrant gets a payoff of zero.

If entry is chosen, the entrant pays a fixed cost K ≥ 0, the incumbent’s cost is learned by

the entrant, and in the final stage the two firms compete in a complete information Cournot

duopoly with the same market demand. To make this a finite game, suppose a finite set of

feasible quantities Q (including at least the monopoly quantities for each possible production
cost and the complete information Cournot quantities).20 Denote the entrant’s beliefs and

ambiguity aversion by µ and φ respectively. The incumbent’s beliefs and ambiguity aversion

play no role in our analysis.

We construct an SEA strategy profile σLP where in the first stage, incumbent types M

and L pool at the monopoly quantity for L, and type H plays the monopoly quantity for H.

Then the entrant enters after observing any quantity strictly below the monopoly quantity

for L and does not enter otherwise, and in the final stage they play the monopoly or duopoly

quantities accordingly. These strategies involve limit pricing by incumbent typeM —it raises

19The use of at least three costs is necessary to have non-trivial updating on the equilibrium path under
pure strategy limit pricing. With only two possible costs, pure limit pricing strategies involve full pooling.
20The strategies we construct remain SEA strategies no matter what finite set of feasible quantities is

assumed as long as the monopoly and Cournot quantities for each cost are included.
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its quantity (thus lowering price) in the first stage in order to successfully deter entry.

For later reference, we collect here conditions assumed explicitly or implicitly already

plus restrictions equivalent to all monopoly and duopoly quantities being positive:

Assumption 5.1 a, b > 0, K ≥ 0, cH > cM > cL ≥ 0, cE ≥ 0, a > cH , a + cE − 2cH > 0

and a+ cL − 2cE > 0.

The following proposition provides suffi cient conditions for σLP to be not only part of

an SEA, but also robust to increased ambiguity aversion and more belief robust. One way

in which SEA refines ex-ante equilibrium in this example is by requiring that the Cournot

quantities in the complete information duopoly game following entry are played (there are

ex-ante equilibria violating sequential optimality that involve the incumbent deterring all

entry by threatening to flood the market if entry occurs). The robustness results tell us

that ambiguity aversion can enlarge the circumstances under which limit pricing can be

equilibrium behavior.

What is the role of the conditions in the proposition? The first three conditions corre-

spond to the following incentives in the game: ICH for I ensures that a type H incumbent

does not want to pool with the other types to deter entry, ICM for I ensures that a type M

incumbent does not want to separate from type L and stop deterring entry, and ICH for E

ensures that the entrant strictly wants to enter when it is sure the incumbent is type H. The

combination of the two subsequent conditions on the beliefs and the assumption of suffi cient

ambiguity aversion of the entrant ensure that it does not want to enter after observing the

limit price (i.e., the monopoly quantity for type L).

Proposition 5.3 Under Assumption 5.1, the limit pricing strategy profile σLP is part of an
SEA if

(
a+ cE − 2cH

3
)2 ≥ a− cL

2
(a− a− cL

2
− cH), (ICH for I)

a− cL
2

(a− a− cL
2
− cM) ≥ (

a+ cE − 2cM
3

)2, (ICM for I)

b(
a+ cH − 2cE

3b
)2 > K, (ICH for E)

some π ∈ suppµ makes entry conditional on {L,M} strictly unprofitable, all π ∈ suppµ can

be ordered in the likelihood-ratio ordering, and the entrant is suffi ciently ambiguity averse.

Moreover, under the same conditions, σLP is SEA robust to increased ambiguity aversion,

and ambiguity aversion makes it SEA belief robust.

The proof uses the formula for an interim belief system ν satisfying smooth rule consis-

tency provided by Theorem A.2 to establish that (σLP, ν) is an SEA and uses Theorem 4.5
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to establish belief robustness. It follows from the above result that for any beliefs such that

some π ∈ suppµ makes entry conditional on {L,M} strictly unprofitable and all π ∈ suppµ

can be ordered in the likelihood-ratio ordering and that lead an ambiguity neutral entrant

to want to enter even after observing the limit price, there exists a large enough increase in

the entrant’s ambiguity aversion such that the entrant would be deterred by the limit price.

In this way, increasing ambiguity aversion leads to expansion in the set of beliefs µ that can

support such a limit pricing SEA.

6 Extensions

6.1 Other models of ambiguity averse players

We have assumed players have smooth ambiguity preferences (Klibanoff, Marinacci and

Mukerji, 2005), which proved very convenient in many respects. Can our approach be applied

to players with other kinds of ambiguity averse preferences? We suggest how to do so for any

preferences that can be represented byWi(Ui(σ, θ)θ∈Θ), whereWi is a continuous, monotonic

and quasi-concave aggregator (across the parameters θ ∈ Θ) of the vector Ui(σ, θ)θ∈Θ of i’s

expected utilities of σ. Quasi-concavity of Wi reflects ambiguity aversion. This is essentially

what Cerreia-Vioglio et al. (2011) call Uncertainty Averse preferences, and includes smooth

ambiguity preferences along with many other models from the literature, some of which are

recursive. Note that Maxmin Expected Utility (Gilboa and Schmeidler, 1989) is a subclass

of Uncertainty Averse preferences, and if the set of probability measures in the Maxmin EU

representation is taken to be the (convex hull of) the support of µi, then these preferences

can be interpreted as a model of an infinitely ambiguity averse player with beliefs given by

the support of µi.

By modifying our framework to specify Wi rather than µi and φi, the definition of ex-

ante preferences and equilibrium are easily adapted. However, since such preferences do not

necessarily have separately specified beliefs and ambiguity aversion, the notion of interim

belief system would need to be replaced by an interim preference system (i.e., an interim

preference for each player and information set). Given that change, sequential optimality

could be defined. Based on our proof of Theorem 3.1, we conjecture the following would be

true: σ is sequentially optimal if and only if there exists an interim preference system derived

by updating preferences so that the local measure in some local linear approximation of the

updated preferences at σ is the Bayesian update of the local measure in some local linear

approximation of the preferences from the previous information set at σ with respect to which

σ is sequentially optimal. An analogously modified version of Theorem 3.2 is conjectured to
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hold as well. Observe that there are two key differences from our current results: first, the

reference to some local linear approximation is needed to reflect the possibility of non-smooth

preferences, and, second and more importantly, only updating of local approximations is

specified in the new result, and not updating of beliefs themselves or even of the preference

representation as a whole. Specifying an update rule for the preferences themselves requires

more structure. While smooth rule updating of beliefs generates such updating for smooth

ambiguity preferences, updates generating the local approximations property for, among

others, Maxmin EU and Variational preferences (Maccheroni, Marinacci and Rustichini,

2006) are described in Hanany and Klibanoff (2007, 2009). In defining SEA, replacement of

smooth rule consistency with a consistency condition based on preference updates satisfying

a similar local approximations updating property would be needed.

Providing results and examples involving comparative statics in ambiguity aversion and

robustness to increased ambiguity aversion and belief robustness would, even to pose the

relevant questions properly, require some kind of separate specification and manipulation

of ambiguity aversion and of beliefs. Here the smooth ambiguity model, with ambiguity

aversion (via φi) and beliefs (via µi) separately and conveniently specified, was especially

helpful. We conjecture that if one had some other class of Uncertainty Averse preferences

where these components could be sensibly specified then one could investigate these issues.

6.2 Implementation of mixed actions

Players choose behavior strategies, which, for each type of the player, specify a mixture over

the available actions at each information set. Suppose at some point a player’s strategy spec-

ifies a non-degenerate mixture, and, as can happen under ambiguity aversion, this strategy

is strictly better than any specifying a pure action. If such a mixture is to be implemented

by means of playing pure actions contingent on the outcome of a (possibly existing in the

player’s mind only) randomization device, then an additional sequential optimality concern

beyond that formally reflected in Definition 3.2 may be relevant. Specifically, after the real-

ization of the randomization device is observed, will it be optimal for the player to play the

corresponding pure action? A way to ensure this is true is to consider behavior strategies

that, instead of specifying mixed actions, specify pure actions contingent on randomization

devices, and extend the specification of beliefs and preferences of a player to include points

after realization of her randomization device but before she has taken action contingent on

the device, and add to Definition 3.2 the requirement of optimality also at these points. The

properties of sequential optimality shown and used in this paper would remain true under

these modifications.
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6.3 Other extensions

We briefly discuss a final pair of possible extensions. First, in the running example, there

is only one payoff irrelevant component of the parameter. Suppose one wanted to allow the

players to condition on any payoff irrelevant ambiguity they wish. This may be (approxi-

mately) achieved by enriching the parameter space to include many such components, and

specify µ so that these reflect a rich (but finite) collection of ambiguous devices. Such enrich-

ment would allow, for instance, explicitly modeling the large country in the running example

as choosing to condition on a payoff irrelevant component having the “optimal”ambiguity

about it. Furthermore, our point that the large country will strictly want to condition its

play on some such ambiguous component is robust to any enrichment of this form. The same

applies to the ambiguous cheap talk example.

Second, as written, our theory does not allow a player to be uncertain about the ambiguity

aversion, i.e. φi, of other players. This might be done as follows: Introduce a φi-type

component of the parameter space that φi is allowed to depend on, and assume that the

first thing that happens in the game is that each player learns their own φi-type. The point

immediately after this occurs would be treated as the ex-ante stage of the game, and the

analysis would then proceed exactly as in the paper.

7 Closely related literature

To the best of our knowledge, we are the first to propose an equilibrium notion for dynamic

games with incomplete information that requires sequential optimality while allowing for

ambiguity averse preferences. In this section we relate our approach to the few papers which

investigate general dynamic games with incomplete information and ambiguity aversion.21

There have been only a very few papers investigating general dynamic games with incom-

plete information and ambiguity aversion. The two most closely related to ours are Battigalli

et al. (2017) and Pahlke (2018). Battigalli et al. (2017) explores a notion of self-confirming

equilibrium in dynamic games where players are ambiguity averse with smooth ambiguity

preferences (building on Battigalli et al. (2015), which did the same for games in strategic

form, and so took a purely ex-ante perspective). There are a number of key differences

21In addition to the papers we mention when discussing ex-ante equilibrium in Section 3.1, a number of
previous papers have analyzed incomplete information games with ambiguity sensitive preferences in settings
without dynamics, including Salo and Weber (1995), Levin and Ozdenoren (2004), Bose, Ozdenoren and Pape
(2006), Chen, Katuscak and Ozdenoren (2007), Lopomo, Rigotti and Shannon (2010), Bodoh-Creed (2012),
Wolitzky (2013, 2016), Ayouni and Koessler (2017), di Tillio, Kos and Messner (2017) and Auster (2018).
Additional papers on dynamic games with ambiguity not discussed here include Eichberger and Kelsey (1999,
2004), Dominiak and Lee (2017), Muraviev, Riedel and Sass (2017) and Eichberger, Grant and Kelsey (2018).
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from our approach. First, by building on self-confirming equilibrium they are able to tightly

link their solution concept to steady-state learning. In contrast, the Nash-like and stronger

equilibrium notions we build on are not as linked to learning foundations. While the In-

troduction offered some thoughts about how restrictions on learning opportunities might

relate to our equilibria, whether and how such ideas can be formalized and their lessons

for the equilibrium concepts we explore is left for future research. Second, self-confirming

equilibrium places essentially no restriction on off-path beliefs or behavior and so is not

designed to address strategic concerns such as perfection and credibility of off-path threats

that are central to our analysis. Third, they limit attention to Bayesian updating of beliefs

µi, leading to violations of sequential optimality even at on-path information sets. Instead of

sequential optimality, they require “unimprovability”which can be thought of as roughly no

profitable one-stage deviations at on-path information sets.22 Fourth, they assume players

choose only pure actions at each information set, with any randomization being modeled by

explicitly included moves of an artificial separate player who is assumed to randomize over

actions using commonly known probabilities. A practical consequence of this is that their no

profitable one-stage deviations requirement is generally strictly more permissive under am-

biguity aversion than ours at a given information set because they are only checking against

a (at most) finite selection of mixed actions (which, recall, under ambiguity aversion may be

strictly better than any pure action). Though mixed strategy profiles appear in their defin-

ition of equilibrium, those are mixtures only in the population sense of distributions over a

population of players in the same role who may have some heterogeneity in the pure strategy

they play. The main result of Battigalli et al. (2015) was a comparative static: the set of

self-confirming equilibria was shown to expand as players became more ambiguity averse. A

main focus in Battigalli et al. (2017) is investigating the extent to which this result carries

over to dynamic games. They find it does not carry over in general due to possible on-path

dynamic inconsistency, but does extend under conditions where this is not an issue (see their

Section 6). This finding complements our Theorem 4.4 showing that, when similarly limiting

attention to pure strategies and pure-strategy deviations, the sets of ex-ante, sequentially

optimal and SEA profiles expand as players become more ambiguity averse (see Section 4.1

and Appendix A.4.2). As Battigalli et al. (2015) showed for self-confirming equilibria, this

expansion depends crucially on the restriction on mixed strategies and becomes equality once

the full set of mixtures is considered (our Theorem 4.3).

Subsequent to our paper, Pahlke (2018) explores a notion of sequential equilibrium in

22In an extension, they explore a rationalizable version of their self-confirming equilibrium, where ratio-
nality is defined in terms of unimprovability at all information sets. This yields some restrictions on off-path
behavior.
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dynamic games where players are ambiguity averse with Recursive Maxmin Expected Util-

ity preferences (preferences shown by Epstein and Schneider (2003a) to be equivalent to

Maxmin Expected Utility (MEU) preferences (Gilboa and Schmeidler, 1989) together with

prior-by-prior Bayesian updating, where the set of priors satisfies a condition known as

rectangularity). In Pahlke’s definition of a game, a notable non-standard aspect is that

the specific preferences, even ex-ante, are not a primitive. Rather, these ex-ante prefer-

ences for each player i are derived according to a procedure that generates a rectangular set

Πi ⊆ ∆ (Θ) for each player depending on the (other players’part of the) strategy profile σ

under consideration, a set P ⊆ ∆ (Θ) which is a primitive of the game, and the filtration

defined by player i’s information sets. That the Πi may vary across players is important

in ensuring existence of Pahlke’s equilibria when the Πi are non-singleton, i.e., when there

is non-trivial ambiguity. This heterogeneity explains how Pahlke’s approach overcomes the

specialization of the results of Ellis (2018) to MEU preferences, which imply that when Θ

consists of privately known types for each player and there is a common rectangular set of

priors across players, ex-ante preferences must be ambiguity neutral.23 We make four ob-

servations comparing Pahlke (2018) to our framework and approach when adapted to MEU

preferences (see Section 6.1). Fix a game form and payoffs. First, for each (P , σ), Pahlke’s

analysis of whether σ is an equilibrium corresponds to checking whether it is so according

to our approach in the game in which each player i has ex-ante MEU preferences with set

of priors Πi. Second, as generally Πi 6= P, equilibria Pahlke identifies for a given P will

differ from the ones we would identify for that P. Third, since the Πi vary with σ, Pahlke’s

determination of the set of equilibria given a particular P involves potentially analyzing a
different game in our framework for each candidate σ. Fourth, since each generated Πi must

be rectangular, the strategy profiles that are an equilibrium for at least one P according to
Pahlke form a subset of those that are an equilibrium according to our approach for at least

one assignment of sets of priors to each player i.

The literature also includes papers presenting analysis restricted to specific applications

of dynamic games of incomplete information with ambiguity. These include Bose and Daripa

(2009), Bose and Renou (2014), Kellner and Le Quement (2017, 2018), Beauchêne, Li and

Li (2017), Auster and Kellner (2018), and all focus on behavior that cannot occur under

ambiguity neutrality. Their approach is to assume MEU preferences and prior-by-prior

Bayesian updating and use as an equilibrium concept optimality under consistent planning

23Grant, Meneghel and Tourky (2016, Section 5) also provide an example illustrating that in Bayesian
games with recursive strictly ambiguity averse preferences, when the commonality condition in Ellis (2018) is
relaxed, an ex-ante equilibrium may exist. We observe that the combination of no off-path information sets
in Bayesian games and such recursion ensure that any ex-ante equilibrium will also be a sequential optimum
with respect to the interim preferences aggregated in the recursion.
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in the spirit of Strotz (1955-56) (see Appendix B for a definition). Thus, as was discussed

and illustrated in Section 3.2, the set of equilibria identified by this approach include strategy

profiles that are not sequentially optimal, and exclude some or all of the sequentially optimal

strategy profiles. In fact, all of the behavior they emphasize violates sequential optimality.
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A Appendix: Proofs

A.1 Proofs related to the running example

Proof of Proposition 3.1. To prove (i), suppose φ1 and φ2 are affi ne. Fix any σ such that

peace (i.e., 1 and 2 play c) occurs with positive probability. We will show that at least one

player has a profitable deviation. Denoting the total probability (
∑

π∈∆(Θ) µ(π)π(θ)σ3(θ)(a))

that player 3 assigns to each action a by ρ(a), player 1 and 2’s ex-ante preferences are,

respectively, given by:

V1(σ) = σ1(c)σ2(c)(4ρ(f2) + 5ρ(f1)) + (1− σ1(c)σ2(c)) (6ρ(n) + 10ρ(p2)) ,

and

V2(σ) = σ1(c)σ2(c)(5ρ(f2) + 4ρ(f1)) + (1− σ1(c)σ2(c))(6ρ(n) + 10(1− ρ(n)− ρ(p2))).

If it is not profitable to deviate to σ1(c) = 0 for player 1, then

6ρ(n) + 10ρ(p2) ≤ 4ρ(f2) + 5(1− ρ(f2)) = 5− ρ(f2),

while if it is not profitable to deviate σ2(c) = 0 for player 2, then

4ρ(n) + 10ρ(p2) ≥ −5ρ(f2)− 4(1− ρ(f2)) + 10 = 6− ρ(f2),

a contradiction. Thus at least one player wants to deviate to playing d. Observe that this

argument holds for any common µ not just the one specified in the example.

Turning to (ii), fix a strategy profile σ defined by σ1(c) = σ2(c) = 1 and σ3(I)(p1) =

σ3(II)(p2) = σ3(I)(f2) = σ3(II)(f1) = 1. First, observe that any strategy by player 3 is an

ex-ante best response, since on the equilibrium path 3 receives a payoff of 4 no matter what

strategy 3 plays. Second, player i ∈ {1, 2}, when choosing the probability λi with which to
play c, is ex-ante best responding if and only if

1 ∈ arg max
λi∈[0,1]

1

2
φi (4λi) +

1

2
φi (5λi + 10(1− λi)) .

This is equivalent to

4φ′i (4)− 5φ′i (5) ≥ 0
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which is
φ′i (4)

φ′i (5)
≥ 5

4
. (A.1)

Observe that by increasing the concavity of φi one can increase
φ′i(4)

φ′i(5)
as much as desired.

Suppose one player is suffi ciently ambiguity averse that (A.1) is satisfied, but the other is

not. When is there an ex-ante equilibrium yielding peace with probability 1? It is necessary

to consider more general strategies of player 3 than specified above. Again let σ denote the

strategy profile and again require σ1(c) = σ2(c) = 1. We leave player 3’s strategy flexible.

Player 1 is ex-ante best responding if and only if

1 ∈ arg max
λ1∈[0,1]

1

2
φ1

(
(4σ3(I)(f2) + 5(1− σ3(I)(f2))λ1

+(10σ3(I)(p2) + 6σ3(I)(n))(1− λ1)

)

+
1

2
φ1

(
(4σ3(II)(f2) + 5(1− σ3(II)(f2))λ1

+(10σ3(II)(p2) + 6σ3(II)(n))(1− λ1)

)
.

This is equivalent to

(4σ3(I)(f2) + 5(1− σ3(I)(f2))− 10σ3(I)(p2)− 6σ3(I)(n))

·φ′1 (4σ3(I)(f2) + 5(1− σ3(I)(f2)))

+(4σ3(II)(f2) + 5(1− σ3(II)(f2))− 10σ3(II)(p2)− 6σ3(II)(n))

·φ′1 (4σ3(II)(f2) + 5(1− σ3(II)(f2)))

≥ 0. (A.2)

Player 2 is ex-ante best responding if and only if

1 ∈ arg max
λ2∈[0,1]

1

2
φ2

(
(5σ3(I)(f2) + 4(1− σ3(I)(f2))λ2

+(10(1− σ3(I)(n)− σ3(I)(p2)) + 6σ3(I)(n))(1− λ2)

)

+
1

2
φ2

(
(5σ3(II)(f2) + 4(1− σ3(II)(f2))λ2

+(10(1− σ3(II)(n)− σ3(II)(p2)) + 6σ3(II)(n))(1− λ2)

)
.
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This is equivalent to

(5σ3(I)(f2) + 4(1− σ3(I)(f2))− 10(1− σ3(I)(n)− σ3(I)(p2))− 6σ3(I)(n))

·φ′2 (5σ3(I)(f2) + 4(1− σ3(I)(f2)))

+(5σ3(II)(f2) + 4(1− σ3(II)(f2))− 10(1− σ3(II)(n)− σ3(II)(p2))− 6σ3(II)(n))

·φ′2 (5σ3(II)(f2) + 4(1− σ3(II)(f2)))

≥ 0. (A.3)

Suppose, for example, that player 2 is not ambiguity averse enough to satisfy (A.1). If we

set σ3(II)(p2) = σ3(I)(f2) = σ3(II)(f1) = 1 and σ3(I)(p2) = 1−σ3(I)(p1), then (A.2) and

(A.3) become

(4− 10σ3(I)(p2))φ′1 (4)− 5φ′1 (5) ≥ 0

and

(5− 10(1− σ3(I)(p2)))φ′2 (5) + 4φ′2 (4) ≥ 0.

If we set σ3(I)(p2) = 0.1, then even an ambiguity neutral player 2 will have c as a best

response. As long as player 1 has
φ′1 (4)

φ′1 (5)
≥ 5

3

then this is an ex-ante equilibrium.

Similarly, if player 2 has
φ′2 (4)

φ′2 (5)
≥ 5

3

then setting σ3(I)(p1) = σ3(I)(f2) = σ3(II)(f1) = 1 and σ3(II)(p2) = 0.9 gives an ex-ante

equilibrium without conditions on 1’s ambiguity aversion.

Proof of Proposition 3.2. Suppose x > 1. Following the play of d by either 1 or 2,

the only best response to any updated belief of player 3 is to play n with probability 1 as

this yields 3 a payoff of x > 1 > 0. Thus σ3(I, d)(n) = σ3(II, d)(n) = 1 in any sequential

optimum. Given that, both players 1 and 2 expect to get a payoff of 6 if they deviate to d,

which is higher than any payoff to playing c (i.e., 4 or 5).

Suppose x ≤ 0.5 and fix an ex-ante equilibrium σ yielding peace with probability

1. We will construct a sequential optimum (σ̂, ν) yielding peace with probability 1. Set

σ̂3(I, d)(p1) = σ3(I, d)(p1)+σ3(I,d)(n)
2

, σ̂3(I, d)(p2) = σ3(I, d)(p2)+σ3(I,d)(n)
2

, and σ̂3(I, d)(n) =

0, and use the analogous construction to determine σ̂3(II, d). At all other information sets,

let σ̂ = σ. Observe that σ̂ yields peace with probability 1. We next verify that σ̂ is an ex-ante

equilibrium. Player 3 is trivially ex-ante best responding, so it suffi ces to show that 1 and
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2 are as well. Since 10
2
< 6, for both parameters I and II, player 1 and 2’s expected payoff

to deviating towards d is less under σ̂3 than under σ3. Therefore c remains an ex-ante best

response for both players and σ̂ is an ex-ante equilibrium. It remains to specify beliefs and

check optimality for all players at all information sets. Given beliefs satisfying the strong

smooth rule using σ̂, by Theorem 3.2, it is suffi cient to check optimality against one-stage

deviations, and therefore only at information sets where the player has a non-trivial move.

Begin with player 3. Following the play of c, c, 3 is indifferent among any mixture over f1

and f2 and is thus best responding. Following the breakdown of negotiations, observe that

at either of player 3’s two non-singleton information sets the strong smooth rule does not

restrict 3’s beliefs, and any mixture over actions p1 and p2 is a best response to some beliefs.

Let 3’s respective beliefs at these information sets be such that σ̂3(I, d) and σ̂3(II, d) are,

respectively, best responses. Next, specify beliefs for players 1 and 2 that place probability
1
2
on each of the two degenerate π on the corresponding information set. Since these beliefs

maintain the ex-ante µ-weights and there is no change in payoffs compared to the ex-ante

evaluations, these beliefs satisfy the strong smooth rule using σ̂ and playing c is a best re-

sponse for 1 and 2 at the information sets where they move because it was an ex-ante best

response.

Suppose 0.5 < x ≤ 1. Then no non-degenerate mixture over p1 and p2 can be a best

response at either of player 3’s non-singleton information sets because it would be dominated

by replacing one of them in the mixture by n. If players 1 and 2 are both suffi ciently ambiguity

averse so that (A.1) is satisfied, the proof of part (ii) of Proposition 3.1 shows that there is an

ex-ante equilibrium yielding peace with probability 1 in which player 3 uses only degenerate

mixtures of p1 and p2. The arguments in the x ≤ 0.5 case applied to this ex-ante equilibrium

show that it is also sequentially optimal.

Proof of Remark 3.1. Observe that under 0.5 < x ≤ 1, player 3 is limited to mixtures

of p1 and n or p2 and n in order to be best responding. Inequalities (A.2) and (A.3) are

necessary for players 1 and 2 to be best responding. We now show that, under (A.3), the

maximal value of the left-hand side of (A.2) is negative, contradicting (A.2). Since the payoffs

do not depend on the parameter (I or II), we may assume without loss of generality that

σ3(I)(f2) ≥ σ3(II)(f2). Fixing σ3(I)(f2) and σ3(II)(f2), since the coeffi cients of σ3(I)(n),

σ3(I)(p2), σ3(II)(n) and σ3(II)(p2) are negative in (A.2) and positive in (A.3), the maximal

value of the left-hand side of (A.2) is obtained when (A.3) is binding. This equality under

ambiguity neutrality of player 2 is equivalent to

σ3(II)(p2) =
12− σ3(I)(f2)− σ3(II)(f2)− 4σ3(I)(n)− 10σ3(I)(p2)− 4σ3(II)(n)

10
.
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Substituting using this and φ1 (x) = −e−x ln(5/3), the left-hand side of (A.2) becomes (up to

multiplication by a positive constant)

(5− σ3(I)(f2))(
3

5
)5−σ3(I)(f2) + (−7 + σ3(I)(f2))(

3

5
)5−σ3(II)(f2)

−σ3(I)(n)[6(
3

5
)5−σ3(I)(f2) − 4(

3

5
)5−σ3(II)(f2)]

−σ3(I)(p2)[10(
3

5
)5−σ3(I)(f2) − 10(

3

5
)5−σ3(II)(f2)]− 2σ3(II)(n)(

3

5
)5−σ3(II)(f2).

To maximize this expression, which is linear in σ3(I)(n), σ3(I)(p2) and σ3(II)(n) with

negative coeffi cients, the three variables must be as low as possible. Therefore σ3(II)(n) = 0

and σ3(II)(p2) = 1, implying σ3(I)(n) = 1
2
− σ3(I)(f2)+σ3(II)(f2)+10σ3(I)(p2)

4
and σ3(I)(p1) =

1
2

+ σ3(I)(f2)+σ3(II)(f2)+6σ3(I)(p2)
4

. Since σ3(I)(p2) > 0 implies σ3(I)(p1) > 0, the restriction

to mixtures of p1 and n or p2 and n implies σ3(I)(p2) = 0. Simplifying using these values

yields

4 + σ3(I)(f2) + 3σ3(II)(f2)

2
(
3

5
)5−σ3(I)(f2) − (5 + σ3(II)(f2))(

3

5
)5−σ3(II)(f2)].

This expression is increasing in σ3(I)(f2), and under σ3(I)(f2) = 1, is decreasing in σ3(II)(f2),

thus it is maximized when σ3(I)(f2) = 1 and σ3(II)(f2) = 0 at the value of − 81
1250

. Therefore

(A.2) and (A.3) cannot be simultaneously satisfied.

The x ≤ 0.5 statement follows from the proof of Proposition 3.2.

Proof of Proposition 3.3. Fix an ex-ante equilibrium σ yielding peace with prob-

ability 1. Suppose x > 0.5, and that an SEA yielding peace with probability 1 exists.

Theorem A.2 implies that formula (A.12) is necessary for smooth rule consistency. For

player 3, since any σ yielding peace with probability 1 has p̄−i,σ−i(I, d|I) = p̄−i,σ−i(II, d|II)

and p̄−i,σ−i(I, c, d|I) = p̄−i,σ−i(II, c, d|II) irrespective of the sequence σk of completely mixed

strategy profiles chosen to converge to σ, formula (A.12) implies that beliefs are the same

at both information sets where 3 has a non-trivial move. Furthermore, x > 0.5 implies that

given such beliefs, either all of 3’s best responses never involve p1 or all of them never involve

p2. In the former case, player 1 will play d with probability 1, and in the latter case, player

2 will play d with probability 1. This contradicts the existence of such an SEA.

Suppose x ≤ 0.5. We will construct an SEA (σ̂, ν) yielding peace with probability 1.

Construct σ̂ as in the part of the proof of Proposition 3.2 that assumes x ≤ 0.5. By the

argument there, σ̂ is an ex-ante equilibrium. It remains to specify an interim belief system

satisfying smooth rule consistency and check optimality for all players and information sets.

Consider any sequence σ̂k of completely mixed strategies converging to σ̂ such that, for

51



players 1 and 2, σ̂k1(c) = 1 − 1
k+1
, σ̂k1(d) = 1

k+1
and σ̂k2(c) = 1 − 1

k+1
, σ̂k2(d) = 1

k+1
. By

Lemma A.4 and Theorem A.2, formula (A.12) identifies an interim belief system ν̂ satisfying

smooth rule consistency. By Theorem 3.3, for optimality, it is suffi cient to check against

one-stage deviations, and therefore only at information sets where the player has a non-

trivial move. Begin with player 3. Following the play of c, c, 3 is indifferent among any

mixture over f1 and f2 and is thus best responding. Off the equilibrium path, observe that

at either of player 3’s two information sets where 3 has a non-trivial move, since x ≤ 0.5, any

mixture over actions p1 and p2 is a best response to beliefs placing all weight on a half-half

measure over the two elements of the information set. At either of these information sets,

since p̄−i,σ−i(h
t|h0) = limk→∞

1
k+1

1
k+1

+ k
(k+1)2

= 1
2
, ν̂3,Ii is degenerate on a half-half measure over

the two elements of the information set. Therefore σ̂3(I, d) and σ̂3(II, d) are, respectively,

best responses given ν̂3,Ii at those information sets. Next turn to players 1 and 2. Since

no uncertainty resolves for either player before they make their respective non-trivial move,

their beliefs ν̂i,Ii place probability
1
2
on each of the two degenerate π on the corresponding

information set, where the 1
2
is inherited from µ. Therefore playing c is a best response given

ν̂i,Ii at those information sets for 1 and 2 because it was an ex-ante best response.

A.2 Proofs of results in Section 3.2

We next state and prove a key lemma on the preservation of optimality under smooth rule

updating:

Definition A.1 (Reachability) Player i views information set Ii * Θ as reachable from

information set I−1
i given σ and ν if

∑
hs(Ii)∈Ii

∑
π̂∈∆(I−1

i )

pσ(hs(Ii)|hs(Ii)−1)π̂(hs(Ii)−1)νi,I−1
i

(π̂) > 0.

Lemma A.1 Fix a game Γ, a (σ, ν) such that σ is an ex-ante equilibrium, a player i and

an information set Ii such that either Ii ⊆ Θ or i views Ii as reachable from I−1
i given σ and

ν. If νi,Ii is derived from νi,I−1
i
(or, if Ii ⊆ Θ, from µi) via the smooth rule using σ and, for

all σ′i ∈ Σi,

Vi,I−1
i

(σ) ≥ Vi,I−1
i

(σ′i, σ−i),

(or, if Ii ⊆ Θ, given ex-ante optimality), then, for all σ′i ∈ Σi,

Vi,Ii(σ) ≥ Vi,Ii(σ
′
i, σ−i).

Proof of Lemma A.1. The inequalities Vi,Ii(σ) ≥ Vi,Ii(σ
′
i, σ−i) (respectively, Vi(σ) ≥

Vi(σ
′
i, σ−i)) for all σ

′
i are equivalent to the condition that σ

′
i = σi maximizes (2.5) (respec-

tively, σ′i = σi maximizes (2.2)).
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We want to show that Vi,Ii(σ) ≥ Vi,Ii(σ
′
i, σ−i) for all σ

′
i. By the above, it is suffi cient to

show that σ′i = σi maximizes (2.5).

Let t = s(Ii). Consider the case where t > 0 (the case where t = 0 is similar, using

(2.2) instead of (A.4), and is omitted). By assumption in the statement of the lemma,

Vi,I−1
i

(σ) ≥ Vi,I−1
i

(σ′i, σ−i) for all σ
′
i ∈ Σi. As in (2.5), this is equivalent to the condition that

σ′i = σi maximizes ∑
h|ht−1∈I−1

i

ui(h)pi,σ′i(h|h
t−1)q(σ,ν),i,I−1

i (h). (A.4)

Notice that, since i’s strategy is a function only of i’s information sets and, by perfect recall,

Ri(h
t) = Ri(Ii) for any h such that ht ∈ Ii, pi,σ′i(h

t|ht−1) is the same for any such h. Thus,

the objective function in (A.4) can be equivalently written as∑
h|ht−1∈I−1

i

and ht /∈Ii

ui(h)pi,σ′i(h|h
t−1)q(σ,ν),i,I−1

i (h)

+pi,σ′i(h̄
t|h̄t−1)

∑
h|ht∈Ii

ui(h)pi,σ′i(h|h
t)q(σ,ν),i,I−1

i (h)

for any h̄ such that h̄t ∈ Ii. The advantage of doing so is making clear that only the term∑
h|ht∈Ii

ui(h)pi,σ′i(h|h
t)q(σ,ν),i,I−1

i (h) (A.5)

is affected by the specification of σ′i from Ii onward and no other part of σ′i affects (A.5).

Therefore, since reachability implies pi,σ′i(h̄
t|h̄t−1) > 0, σi maximizes (A.4) implies that

σi maximizes (A.5). For that to imply σi maximizes (2.5), it is suffi cient to show that

q(σ,ν),i,Ii(h) ∝ q(σ,ν),i,I−1
i (h) holds for {h | ht ∈ Ii}. This proportionality may be shown by

using the local measure definition (2.6), applying the smooth rule to substitute for νi,Ii(π)

for all π ∈ ∆(Ii) and then using the expression for π̂Ii and cancelling terms.

Theorem A.1 Fix a game Γ. Suppose σ is an ex-ante equilibrium and, for each player

i and each information set Ii * Θ,
∑

hs(Ii)∈Ii
pσ(hs(Ii)|hs(Ii)−1) > 0. Then, σ is sequentially

optimal.

Proof of Theorem A.1. By ex-ante optimality of σ, (3.1) in the definition of sequential
optimality is satisfied. Since

∑
hs(Ii)∈Ii

pσ(hs(Ii)|hs(Ii)−1) > 0 for all Ii * Θ, recursive substitution

in the smooth rule formula using σ starting from Ii ⊆ Θ implies that i views Ii as reachable

from I−1
i given σ and any ν satisfying the smooth rule using σ. Therefore, by Lemma A.1,

(3.2) in the definition of sequential optimality is satisfied for all i and Ii.
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Proof of Theorem 3.1. The if direction follows by definition. We show the only if

direction. Suppose (σ, ν) is sequentially optimal. We show that (σ, ν̂), where, for all i, Ii, if

Ii ⊆ Θ or if i views Ii as reachable from I−1
i given σ and ν, ν̂i,Ii is derived via the smooth

rule, and ν̂i,Ii = νi,Ii everywhere else, is sequentially optimal. By construction, ν̂ satisfies

the smooth rule using σ except, possibly, for Ii not viewed as reachable from I−1
i given σ

and ν. However, from the definition of the smooth rule (Definition 3.3), observe that it is

exactly in such cases where the smooth rule allows any updated beliefs. Thus ν̂ satisfies the

smooth rule using σ. Since ν̂ does not enter into the ex-ante function Vi, the fact that (σ, ν)

is sequentially optimal directly implies that Vi(σ) ≥ Vi(σ
′
i, σ−i) for all σ

′
i ∈ Σi. To see that

(σ, ν̂) satisfies the optimality conditions Vi,Ii(σ) ≥ Vi,Ii(σ
′
i, σ−i) for all σ

′
i ∈ Σi, observe that

(a) where ν̂i,Ii = νi,Ii , it directly inherits this from (σ, ν) and (b) everywhere else, Lemma

A.1 shows that smooth rule updating ensures the required optimality.

Proof of Theorem 3.2. The only if direction follows by definition. For the if direction,

suppose ν is an interim belief system satisfying the strong smooth rule using σ such that

(σ, ν) has no profitable one-stage deviations. First, for each player i, observe that having

no profitable one-stage deviations implies optimality of σi according to Vi,Ii for all Ii ∈ ITi .
Proceed by induction on the stage t. Fix any t such that 0 < t ≤ T , and suppose that, for

each player i, σi is optimal according to Vi,Ii for all Ii ∈ Iti . We claim that, for each player

i, σi is optimal according to Vi,Ii for all Ii ∈ It−1
i . The argument for this is as follows. Fix a

player i and Ii ∈ It−1
i . Consider any strategy σ′i for player i. For any Ji ∈ Iti , the optimality

of σi according to Vi,Ji implies (see (2.5))∑
h|ht∈Ji

ui(h)pi,σi(h|ht)q(σ,ν),i,Ji(h) (A.6)

≥
∑

h|ht∈Ji

ui(h)pi,σ′i(h|h
t)q(σ,ν),i,Ji(h).

Since ν satisfies strong smooth rule updating using σ, for all such Ji for which Ii = J−1
i and∑

ht∈Ji

∑
π̂∈∆(Ii)

p−i,σ−i(h
t|ht−1)π̂(ht−1)νi,Ii(π̂) > 0, q(σ,ν),i,Ji(h) ∝ q(σ,ν),i,Ii(h) holds for {h | ht ∈

Ji}. This proportionality follows from using the local measure definition (2.6), applying the

strong smooth rule iteratively to substitute for νi,Ii and simplifying. After substituting in

(A.6) for q(σ,ν),i,Ji , cancelling the constant of proportionality and multiplying by pi,σ′i(h
t|ht−1),

which is constant for any h such that ht ∈ Ji because i’s strategy is a function only of i’s
information sets and, due to perfect recall, Ri(h

t) = Ri(Ji) for any h such that ht ∈ Ji, (A.6)
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becomes ∑
h|ht∈Ji

ui(h)pi,σ′i(h
t|ht−1)pi,σi(h|ht)q(σ,ν),i,Ii(h) (A.7)

≥
∑

h|ht∈Ji

ui(h)pi,σ′i(h
t|ht−1)pi,σ′i(h|h

t)q(σ,ν),i,Ii(h)

=
∑

h|ht∈Ji

ui(h)pi,σ′i(h|h
t−1)q(σ,ν),i,Ii(h).

If Ii = J−1
i but

∑
ht∈Ji

∑
π̂∈∆(Ii)

p−i,σ−i(h
t|ht−1)π̂(ht−1)νi,Ii(π̂) = 0, then q(σ,ν),i,Ii(h) = 0 for all h

with ht ∈ Ji. Thus, summing (A.7) for all Ji ∈ Iti for which Ii = J−1
i and∑

ht∈Ji

∑
π̂∈∆(Ii)

p−i,σ−i(h
t|ht−1)π̂(ht−1)νi,Ii(π̂) > 0 is the same as summing for all Ji ∈ Iti such

that J−1
i = Ii, yielding: ∑

h|ht−1∈Ii

ui(h)pi,σ′i(h
t|ht−1)pi,σi(h|ht)q(σ,ν),i,Ii(h) (A.8)

≥
∑

h|ht−1∈Ii

ui(h)pi,σ′i(h|h
t−1)q(σ,ν),i,Ii(h).

The absence of profitable one-stage deviations implies σi is optimal according to Vi,Ii among

all strategies deviating only at Ii. By (A.6) applied to Ii and restricted to such deviations,∑
h|ht−1∈Ii

ui(h)pi,σi(h|ht−1)q(σ,ν),i,Ii(h) (A.9)

≥
∑

h|ht−1∈Ii

ui(h)pi,σ′i(h
t|ht−1)pi,σi(h|ht)q(σ,ν),i,Ii(h).

Combining (A.9) and (A.8) implies∑
h|ht−1∈Ii

ui(h)pi,σi(h|ht−1)q(σ,ν),i,Ii(h) (A.10)

≥
∑

h|ht−1∈Ii

ui(h)pi,σ′i(h|h
t−1)q(σ,ν),i,Ii(h).

Since (A.10) holds for any σ′i, it is the same as (A.6) with t − 1 in the role of t and Ii in

the role of Ji. Therefore σi is optimal according to Vi,Ii . Since this conclusion holds for

any Ii ∈ It−1
i , the induction step is completed. It follows that (σ, ν) satisfies the optimality

conditions (3.2) in the definition of sequentially optimal.
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It remains to show that σ also satisfies the ex-ante optimality conditions (3.1). Since

ν satisfies smooth rule updating using σ, for all Ii ⊆ Θ, q(σ,ν),i,Ii(h) ∝ q(σ,µi),i(h) holds for

{h | h0 ∈ Ii}. Using this to substitute for q(σ,ν),i,Ii in (A.10) with t = 1, cancelling the

constant of proportionality and summing for all Ii, yields:∑
h

ui(h)pi,σi(h|h0)q(σ,µi),i(h) (A.11)

≥
∑
h

ui(h)pi,σ′i(h|h
0)q(σ,µi),i(h).

Since (A.11) holds for any σ′i, σ maximizes (2.2) which is equivalent to the ex-ante optimality

condition (3.1).

Proof of Corollary 3.1. Assume ambiguity neutrality. From Theorem 3.1 and the fact

that under ambiguity neutrality the smooth rule specializes to Bayes’rule, σ is sequentially

optimal if and only if there exists an interim belief system ν̂ satisfying Bayes’rule such that

(σ, ν̂) is sequentially optimal. Sequential optimality is sequential rationality plus ex-ante

equilibrium, immediately implying the only if direction of the corollary. To show the if

direction, repeat the argument in the last paragraph of the proof of Theorem 3.2 showing

that, for each i, optimality of σi at all Ii ⊆ Θ using smooth rule updated beliefs implies

ex-ante optimality of σi.

A.3 Proofs of results in Section 3.3

Lemma A.2 If (σ, ν) satisfies smooth rule consistency, then ν satisfies the strong smooth

rule using σ.

Proof of Lemma A.2. By definition of smooth rule consistency, there exists a

sequence of completely mixed strategy profiles {σk}∞k=1, with limk→∞ σ
k = σ, such that

ν = limk→∞ ν
k, where each νk is the interim belief system satisfying the smooth rule using

σk. Since
∑

hs(Ii)∈Ii
pσk(h

s(Ii)|hs(Ii)−1) > 0 for all Ii * Θ, recursive substitution in the smooth

rule formula using σk starting from Ii ⊆ Θ implies that, for any k, i views Ii as reachable

from I−1
i given σk and νk and so the formulas (3.3) and (3.4) hold for all Ii. For any player

i and Ii, if either Ii ⊆ Θ or
∑
ht∈Ii

∑
π̂∈∆(I−1

i )

p−i,σ−i(h
t|ht−1)π̂(ht−1)νi,I−1

i
(π̂) > 0, then, by con-

tinuity in the strategy profile of the formulas (3.3) and (3.4), ν satisfies the strong smooth

rule using σ at such information sets. Finally, notice that at all remaining information sets,

ν trivially satisfies the strong smooth rule given σ since this rule does not restrict beliefs

there.
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Proof of Theorem 3.3. One direction is by definition. For the other direction it is

enough to show that if (σ, ν) has no profitable one-stage deviations and satisfies smooth rule

consistency then (σ, ν) is sequentially optimal. This follows directly from Lemma A.2 and

Theorem 3.2.

Proof of Theorem 3.4. Fix a sequence εk = (εkI )I∈∪i∈NIi of strictly positive vectors

of dimension |∪i∈NIi|, converging in the sup-norm to 0 and such that εkIi ≤
1

|Ai(Ii)| for all

players i and information sets Ii. For any k, let Γk be the restriction of the game Γ defined

such that the set of feasible strategy profiles is the set of all completely mixed σk satisfying

σki (Ii) (ai) ≥ εkIi for all i, Ii and actions ai ∈ Ai(Ii). Consider the agent normal form Gk of

the game Γk (see e.g., Myerson, 1991, p.61). Since the payoff functions are concave and the

set of strategies of each player in Gk is non-empty, compact and convex, Gk has an ex-ante

equilibrium by Glicksberg (1952). Let σ̂k be the strategy profile in the game Γk corresponding

to this equilibrium. Then σ̂k is an ex-ante equilibrium of Γk. By Theorem A.1, since all

information sets are on the equilibrium path, there exists an interim belief system νk such

that
(
σ̂k, νk

)
is sequentially optimal. By Theorem 3.1, there exists an interim belief system

ν̂k satisfying the smooth rule using σ̂k such that
(
σ̂k, ν̂k

)
is a sequential optimum of Γk. By

compactness of the set of strategy profiles, the sequence σ̂k has a convergent sub-sequence,

the limit of which is denoted by σ̂. By continuity in the strategy profile of the smooth rule

formula and compactness of the set of interim belief systems, an associated sub-sequence

of ν̂k converges to a limit interim belief system which we denote by ν̂. By continuity of

the payoff functions, σ̂ is an ex-ante equilibrium of Γ. Given any information set Ii and

continuation strategy σ̃Iii of player i in Γ, let σ̃k,Iii be a feasible strategy in Γk for this player

that is closest (in the sup-norm) to σ̃Iii . Since, by sequential optimality of (σ̂k, ν̂k) for each

k, σ̂k,Iii is weakly better than σ̃k,Iii for player i given belief ν̂ki,Ii , and since, along the sub-

sequence, σ̃k,Iii converges to σ̃Iii and ν̂
k
i,Ii
converges to ν̂i,Ii, continuity of the payoff functions

implies that σ̂Iii is weakly better than σ̃
Ii
i for this player given belief ν̂i,Ii . Therefore (σ̂, ν̂)

satisfies sequential optimality. Finally, observe that (σ̂, ν̂) satisfies smooth rule consistency

(since it is explicitly constructed as the limit of an appropriate sequence). Therefore (σ̂, ν̂)

is an SEA of Γ.

Our next result provides an explicit formula for interim belief systems satisfying smooth

rule consistency. This smooth rule-like formula, which will be generally useful when working

with SEA, uses a limit of likelihoods of the partial histories in an information set given θ

and σk−i. Before stating the result, we need some notation and a lemma:

Notation A.1 Let p̄−i,σ−i(h
t|h0) denote limk→∞

p−i,σk−i
(ht|h0)∑

ĥt∈Ii

p−i,σk−i
(ĥt|ĥ0)

, where t = s(Ii). For each
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information set Ii, consider the smallest 0 ≤ r ≤ t such that there exists h ∈ H and Îi for

which ht ∈ Ii, hr ∈ Îi and pσ(ht|hr) > 0. This generates an Îi for each Ii. Let Fi,σ denote
the set of all these Îi that are non-singleton and for which Îi * Θ.

The next lemma shows that existence of p̄−i,σ−i(h
t|h0) need be checked only at information

sets in Fi,σ.

Lemma A.3 Fix a game Γ, a strategy profile σ and a sequence of completely mixed strategy

profiles {σk}∞k=1 such that limk→∞ σ
k = σ. If p̄−i,σ−i(h

t|h0) exists for each player i and each

ht ∈ Ii ∈ Fi,σ, then p̄−i,σ−i(ht|h0) exists for each i and ht ∈ Ii ∈ Ii.

Proof of Lemma A.3. If Ii is a singleton, p̄−i,σ−i(h
t|h0) = 1. If Ii * Θ, consider the

Îi ∈ Fi,σ corresponding to Ii, and if Ii ⊆ Θ, set Îi = Ii. Let r = s(Îi). Observe that for all

ht ∈ Ii, p̄−i,σ−i(ht|h0) = limk→∞

p−i,σk−i
(ht|hr)

p−i,σk−i
(hr |h0)∑

h̃r∈Îi

p−i,σk−i
(h̃r |h̃0)

∑
ĥt∈Ii

p−i,σk−i
(ĥt|ĥr)

p−i,σk−i
(ĥr |ĥ0)∑

h̃r∈Îi

p−i,σk−i
(h̃r |h̃0)

=
p−i,σ−i (h

t|hr)p̄−i,σ−i (h
r|h0)∑

ĥt∈Ii

p−i,σ−i (ĥ
t|ĥr)p̄−i,σ−i (ĥr|ĥ0)

,

where the last equality follows since
∑
ĥt∈Ii

p−i,σ−i(ĥ
t|ĥr) > 0 and p̄−i,σ−i(h

r|h0) exists for all

hr ∈ Îi (either by assumption since Îi ∈ Fi,σ, or, if Îi ⊆ Θ, because it is constant in k). Thus

p̄−i,σ−i(h
t|h0) exists.

Theorem A.2 Fix a game Γ, a strategy profile σ and a sequence of completely mixed strategy

profiles {σk}∞k=1 such that limk→∞ σ
k = σ. Then (σ, ν) satisfies smooth rule consistency

using {σk}∞k=1 if and only if, for {σk}∞k=1, p̄−i,σ−i(h
t|h0) exists for each player i and each

ht ∈ Ii ∈ Fi,σ, and ν satisfies the formula

νi,Ii(π) ∝
∑

π̂∈∆(Θ)|π̂Ii=π

φ′i

(∑
h∈H

ui(h)pσ(h|h0)π̂(h0)

)
φ′i

( ∑
h|ht∈Ii

ui(h)pσ(h|ht)π(ht)

) (A.12)

·

∑
ht∈Ii

p̄−i,σ−i(h
t|h0)π̂(h0)

µi(π̂)

for each i and Ii, where π̂Ii ∈ ∆(Ii) is given by π̂Ii(h
t) =

p̄−i,σ−i (h
t|h0)π̂(h0)∑

ĥt∈Ii

p̄−i,σ−i (ĥ
t|ĥ0)π̂(ĥ0)

for all ht ∈ Ii.
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Proof of Theorem A.2. We first establish that the formula and the assumed existence

of p̄−i,σ−i(h
t|h0) imply that (σ, ν) satisfies smooth rule consistency using {σk}∞k=1. Fix i, Ii.

Since each σk is completely mixed, the smooth rule using {σk}∞k=1 has bite at each information

set and so, applying the formulas in the smooth rule iteratively starting from µi, for each k,

the belief νki,Ii determined by smooth rule updating using {σ
k}∞k=1 satisfies: for π ∈ ∆(Ii),

νki,Ii(π) ∝
∑

π̂∈∆(Θ)|π̂Ii=π

φ′i

(∑
h∈H

ui(h)pσk(h|h0)π̂(h0)

)
φ′i

( ∑
h|ht∈Ii

ui(h)pσk(h|ht)π(ht)

) (A.13)

·

∑
ht∈Ii

p−i,σk−i(h
t|h0)π̂(h0)

µi(π̂),

where

π̂Ii(h
t) =

p−i,σk−i(h
t|h0)π̂(h0)∑

ĥt∈Ii

p−i,σk−i(ĥ
t|ĥ0)π̂(ĥ0)

for all ht ∈ Ii.

It remains to show that the limit of νki,Ii equals νi,Ii (as defined in (A.12)). Divide (A.13)

by
∑
ĥt∈Ii

p−i,σk−i(ĥ
t|ĥ0) > 0, which is constant with respect to π. Then the limit of νki,Ii(π) is

proportional to:

lim
k→∞

∑
π̂∈∆(Θ)|π̂Ii=π

φ′i

(∑
h∈H

ui(h)pσk(h|h0)π̂(h0)

)
φ′i

( ∑
h|ht∈Ii

ui(h)pσk(h|ht)π(ht)

) (A.14)

·

∑
ht∈Ii

p−i,σk−i(h
t|h0)∑

ĥt∈Ii

p−i,σk−i(ĥ
t|ĥ0)

π̂(h0)

µi(π̂).

By Lemma A.3, p̄−i,σ−i(h
t|h0) exists. Then (A.14) is proportional (in π ∈ ∆(Ii)) to the right-

hand side of (A.12) since, whenever it exists, limk→∞ π̂Ii(h
t) = limk→∞

p−i,σk−i
(ht|h0)π̂(h0)∑

ĥt∈Ii

p−i,σk−i
(ĥt|ĥ0)∑

ĥt∈Ii

p−i,σk−i
(ĥt|ĥ0)π̂(ĥ0)∑

ĥt∈Ii

p−i,σk−i
(ĥt|ĥ0)

=
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p̄−i,σ−i (h
t|h0)π̂(h0)∑

ĥt∈Ii

p̄−i,σ−i (ĥ
t|ĥ0)π̂(ĥ0)

= π̂Ii(h
t). Therefore (σ, ν) satisfies smooth rule consistency using {σk}∞k=1.

Next assume that (σ, ν) satisfies smooth rule consistency using {σk}∞k=1. Therefore

ν = limk→∞ ν
k, where each νk is the interim belief system determined by smooth rule

updating using σk (see (A.13) for the formula). Fix any i, Ii. The existence of limk→∞ ν
k, as

described in (A.14), requires the existence of limk→∞
p−i,σk−i

(hs(Ii)|h0)∑
ĥs(Ii)∈Ii

p−i,σk−i
(ĥs(Ii)|ĥ0)

for each hs(Ii) ∈ Ii.

Therefore, using {σk}∞k=1, p̄−i,σ−i(h
s(Ii)|h0) exists for all information sets. Then (A.12) yields

a well defined interim belief system ν̂, and, by the argument in the earlier direction of this

proof, (σ, ν̂) satisfies smooth rule consistency using {σk}∞k=1. Thus ν̂ = limk→∞ ν
k = ν.

Therefore ν satisfies (A.12) using {σk}∞k=1.

Theorem A.3 Fix a game Γ. Suppose (σ, ν) is sequentially optimal and for each player i,

and each information set Ii * Θ,
∑

hs(Ii)∈Ii
pσ(hs(Ii)|h0) > 0. Then there exists ν̂ satisfying

(A.12) such that (σ, ν̂) is an SEA.

Proof of Theorem A.3. Consider a sequence of a completely mixed strategy profiles

converging to σ. Since the limits p̄−i,σ−i(h
si(Ii)|h0) in TheoremA.2 exist if

∑
hs(Ii)∈Ii

pσ(hs(Ii)|h0) >

0 for all Ii * Θ, there exists ν̂ satisfying (A.12). Theorem A.2 then implies that (σ, ν̂) satisfies

smooth rule consistency, and is thus an SEA.

Finally, the next lemma shows that for many common specifications of completely mixed

sequences {σk}∞k=1, p̄−i,σk−i(h
t|h0) exists everywhere and has a simple formula.

Lemma A.4 Suppose σk is such that, for each i and Ii, for all ai ∈ Ai(Ii), σki (Ii) (ai) ∝
caik

dai with cai > 0 and dai ≥ 0. Then p̄−i,σk−i(h
t|h0) exists for all i and Ii.

Proof of Lemma A.4. Under the assumption on σk, for each i, Ii and ht ∈ Ii,

p̄−i,σk−i(h
t|h0) = lim

k→∞

∏
j 6=i

∏
0≤s<t

σkj (Ij(h
s)) (hs,j)∑

ĥt∈Ii

∏
j 6=i

∏
0≤s<t

σkj

(
Ij(ĥs)

)(
ĥs,j

) = lim
k→∞

Chtk
Dht∑

ĥt∈Ii

Cĥtk
Dĥt
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for Cht =
∏
j 6=i

∏
0≤s<t

chs,j and Dht =
∑
j 6=i

∑
0≤s<t

dhs,j . This limit exists and is equal to

∑
ĥt∈{ht}|Dĥt=maxh̄t∈Ii

Dh̄t

Cĥt

∑
ĥt∈Ii|Dĥt=maxh̄t∈Ii

Dh̄t

Cĥt
.

A.4 Proofs of results in Section 4.1

This subsection contains an example and formal results on comparative statics in ambiguity

aversion.

A.4.1 Example: New Strategic Behavior in Equilibrium

We present a 3-player game, with incomplete information about player 1, in which a path of

play can occur as part of an SEA when players 2 and 3 are suffi ciently ambiguity averse, but

never occurs as part of even an ex-ante equilibrium if we modify the game by making players

2 and 3 ambiguity neutral (expected utility). Furthermore, under the SEA we construct,

player 1 achieves a higher expected payoff than under any ex-ante equilibrium of the game

with ambiguity neutral players, and even outside the convex hull of such ex-ante equilibrium

payoffs. The game is depicted in Figure A.1.

There are three players: 1,2 and 3. First, it is determined whether player 1 is of type I or

type II and 1 observes her own type. Players 2 and 3 have only one type, so there is complete

information about them. The payoff triples in Figure A.1 describe vNM utility payoffs given

players’actions and player 1’s type (i.e., (u1, u2, u3) means that player i receives ui). Players

2 and 3 have ambiguity about player 1’s type and have smooth ambiguity preferences with an

associated φ2 = φ3 = φ and µ2 = µ3 = µ. Player 1 also has smooth ambiguity preferences,

but nothing in what follows depends on either φ1 or µ1. Player 1’s first and only move

in the game is to choose between action P (lay) which leads to players 2 and 3 playing a

simultaneous move game in which their payoffs depend on 1’s type, and action Q(uit), which

ends the game.24

24Note that to eliminate any possible effects of varying players’risk aversion, think of the playoffs being
generated using lotteries over two “physical”outcomes, the better of which has utility u normalized to 5/2
and the worse of which has u normalized to 0. So, for example, the payoff 1 can be thought of as generated
by the lottery giving the better outcome with probability 2/5 and the worse outcome with probability 3/5.
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Figure A.1: New equilibrium behavior with ambiguity aversion
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Proposition A.1 Suppose players 2 and 3 are ambiguity neutral and have a common belief

µ. There is no ex-ante equilibrium such that player 1 plays P with positive probability.

Proof of Proposition A.1. Observe that player 1 is willing ex-ante to play P with

positive probability if and only if, after the play of P , (U,R) will be played with probability

at least 1
2
. Suppose there is an ex-ante equilibrium, σ, in which P is played with positive

probability. Let pI and pII denote the probabilities according to σ that types I and II,

respectively, of player 1 play P . Then player 2 is finds it optimal to play U with positive

probability if and only if

pI
∑

π∈∆(Θ)

µ(π)(π(I)) + pII
∑

π∈∆(Θ)

µ(π)(1− π(I)) ≥ 5

2
pII

∑
π∈∆(Θ)

µ(π)(1− π(I))

which is equivalent to

pI
∑

π∈∆(Θ)

µ(π)(π(I)) ≥ 3

2
pII

∑
π∈∆(Θ)

µ(π)(1− π(I)). (A.15)

Similarly, player 3 finds it optimal to play R with positive probability if and only if

pI
∑

π∈∆(Θ)

µ(π)(π(I)) + pII
∑

π∈∆(Θ)

µ(π)(1− π(I)) ≥ 5

2
pI

∑
π∈∆(Θ)

µ(π)(π(I))

which is equivalent to

pI
∑

π∈∆(Θ)

µ(π)(π(I)) ≤ 2

3
pII

∑
π∈∆(Θ)

µ(π)(1− π(I)). (A.16)

Since (A.15) and (A.16) cannot both be satisfied when pI + pII > 0 (i.e., P is played with

positive probability), σ must specify that (P,U,R) is never realized as part of a history. This

implies that player 1 has an ex-ante profitable deviation to the strategy of always playing

Q, contradicting the assumption that σ is an ex-ante equilibrium.

Since σ being part of a sequentially optimal (σ, ν) implies σ is an ex-ante equilibrium,

Proposition A.1 immediately implies that none of the stronger concepts such as SEA, PBE

or sequential equilibrium can admit the play of P with positive probability under ambiguity

neutrality. The next result shows that the situation changes dramatically under suffi cient

ambiguity aversion.

Proposition A.2 There exist φ and µ (e.g., φ(x) ≡ −e−x and µ(π0) = µ(π1) = 1
2
, where

π0(I) = 1 and π1(I) = 0) such that in an SEA both types of player 1 play P with probability
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1, and (U,R) is played with probability greater than 1
2
.

Proof of Proposition A.2. Let µ put probability 1
2
on π0 and 1

2
on π1, where π0(I) = 1

and π1(I) = 0.25 Let φ(x) ≡ −e−x.26 Let σ be a strategy profile specifying that both types
of player 1 play P with probability 1, player 2 plays U with probability λ∗ if given the move

and player 3 plays R with probability λ∗ if given the move, where λ∗ = 1− 2
5

ln(3/2). Notice

that according to σ, (P,U,R) occurs with probability
(
1− 2

5
ln(3/2)

)2
> 7

10
. Observe that

player 1 strictly prefers ex-ante to play P with probability 1 for both types if and only if,

after the play of P , (U,R) will be played with probability greater than 1
2
. The same is true

for each type of player 1 after her type is realized as well. Player 2 ex-ante chooses the

probability, λ ∈ [0, 1], with which to play U if given the move to maximize

−1

2
e−λ − 1

2
e−(λ+ 5

2
(1−λ)).

One can verify that the maximum is reached at λ = λ∗. Similarly, player 3 ex-ante chooses

the probability, λ ∈ [0, 1], with which to play R if given the move to maximize

−1

2
e−(λ+ 5

2
(1−λ)) − 1

2
e−λ

which is again maximized at λ = λ∗.

Now consider the following sequence of completely mixed strategies with limit σ: σk has

each type of player 1 play P with probability 1− 1
k+1
, and leaves the strategies otherwise the

same as in σ. By Lemma A.4, Theorem A.2 provides a formula (A.12) for an interim belief

system ν satisfying smooth rule consistency. Recall that player 1 learns the parameter at the

beginning of the game. Thus we need only be concerned with the beliefs of players 2 and 3.

Therefore (σ, ν) satisfies smooth rule consistency. It remains to show (σ, ν) is sequentially

optimal. Since

ν2,{I,II}×{P}(δ(I,P ))

ν2,{I,II}×{P}(δ(II,P ))
=
ν3,{I,II}×{P}×{U,D}(δ(II,P ))

ν3,{I,II}×{P}×{U,D}(δ(I,P ))
=

φ′i(λ
∗)

φ′i(λ
∗)

1
2

φ′i(λ∗+ 5
2

(1−λ∗))
φ′i(λ∗+ 5

2
(1−λ∗))

1
2

= 1,

σ remains optimal for players 2 and 3 following the play of P given ν. Thus, (σ, ν) is

sequentially optimal. It is therefore an SEA.

As the proof of Proposition A.2 mentions, the example µ is chosen for simplicity, and

25The degeneracy of the π in the support of µ is not necessary for the argument to go through —it merely
shortens some calculations and reduces the ambiguity aversion required.
26Any more concave φ will also work, as will any φ more concave than −e−αx for α = −4(ln(2/3))

5(2−
√
2)
≈ 0.554.
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degeneracy of the measures in its support is not necessary for the result.

A.4.2 Formal Comparative Statics in Ambiguity Aversion

Notation A.2 For a game Γ = (N,H, (Ii)i∈N , (µi)i∈N , (ui, φi)i∈N), let EΓ((µ̂i)i∈N , (φ̂i)i∈N)

denote the set of all ex-ante equilibria of the game Γ̂ = (N,H, (Ii)i∈N , (µ̂i)i∈N , (ui, φ̂i)i∈N)

differing from Γ only in ambiguity aversions and beliefs. Let QΓ((µ̂i)i∈N , (φ̂i)i∈N) denote

the analogous set of sequentially optimal strategy profiles and SΓ((µ̂i)i∈N , (φ̂i)i∈N) denote the

analogous set of SEA strategy profiles.

Notation A.3 Denote the identity function by ι.

Proof of Theorem 4.1. We show that there exists a game Γ and (φ̂i)i∈N such that

EΓ((µi)i∈N , (φ̂i)i∈N) ∩ EΓ((µi)i∈N , (ι)i∈N) = ∅.

Modify Example A.4.1 by removing the action Q for Player 1. For each player i, let µi = µ

where µ puts probability 1
2
on π0 and 1

2
on π1, where π0(I) = 1 and π1(I) = 0, and let

φ̂i(x) = −e−x for all i. With these preferences, the unique ex-ante equilibrium has player 2

play U with probability λ∗ and player 3 play R with probability λ∗, where λ∗ = 1− 2
5

ln(3/2).

In contrast, when φi = ι for all i, using the same µ, then the unique ex-ante equilibrium has

player 2 playing D with probability 1 and player 3 play L with probability 1.

Examination of the proof shows that, fixing beliefs, not only are the equilibrium strategies

distinct under ambiguity aversion compared to ambiguity neutrality, but it can also be

that the strategies under ambiguity aversion generate paths of play that do not occur in

equilibrium under ambiguity neutrality. An analogue of Theorem 4.1 is true for sequential

optima, SEA and any other refinement of ex-ante equilibria as well, as they are all ex-ante

equilibria. Thus, with fixed beliefs, change in ambiguity aversion can impact the set of

equilibrium strategies and realized play.

Further examination of the proof shows that ambiguity aversion continues to affect the

equilibrium set even if we impose common beliefs (i.e., µi = µ for all players i). The next

result addresses the question of whether ambiguity aversion plus the assumption of common

beliefs has equilibrium implications that are different from ambiguity neutrality plus the

assumption of common beliefs. It shows that, in this case, ambiguity aversion always weakly

expands the set of equilibria compared to ambiguity neutrality and may do so strictly:

Proof of Theorem 4.2. We show: For all games Γ and (φ̂i)i∈N ,
⋃
µ̂EΓ((µ̂)i∈N , (φ̂i)i∈N) ⊇⋃

µ̂EΓ((µ̂)i∈N , (ι)i∈N), and the same holds when Q or S replaces E; moreover, there exists a

game Γ and (φ̂i)i∈N such that all these inclusions are strict and some of the new equilibrium
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strategies induce new paths of play. That
⋃
µ̂EΓ((µ̂)i∈N , (φ̂i)i∈N) ⊇

⋃
µ̂EΓ((µ̂)i∈N , (ι)i∈N)

follows by considering only degenerate beliefs on the left-hand side and choosing them to

have the same reduced measure as the right-hand side beliefs.
⋃
µ̂QΓ((µ̂)i∈N , (φ̂i)i∈N) ⊇⋃

µ̂QΓ((µ̂)i∈N , (ι)i∈N) follows using the same construction and additionally taking the left-

hand side updated beliefs at each information set to be degenerate with the same reduced

measure as the right-hand side updated beliefs at the corresponding information set and

noting that this preserves optimality at each information set.
⋃
µ̂ SΓ((µ̂)i∈N , (φ̂i)i∈N) ⊇⋃

µ̂ SΓ((µ̂)i∈N , (ι)i∈N) follows using the same construction as for sequential optima, observing

that the left-hand side degenerate beliefs satisfy smooth rule consistency since the right-hand

side beliefs do so. As shown by Propositions 3.1 and 3.3, in the running example with suffi -

cient ambiguity aversion and x ≤ 0.5 the inclusion is strict and the new strategies generate

new paths of play.

Next, in the constructive proof of Theorem 4.3, we show that beliefs µ̂i and ν̂i,Ii that

support a given equilibrium profile σ are related to the beliefs µi and νi,Ii in the game with

the original ambiguity aversion(s) by the formulae in (A.17) and (A.18) where the φi are the

original and φ̂i the new specifications of ambiguity aversions.

Proof of Theorem 4.3. Fix a game Γ. We show: For all (φ̂i)i∈N ,⋃
(µ̂i)i∈N

EΓ((µ̂i)i∈N , (φ̂i)i∈N) =
⋃

(µ̂i)i∈N
EΓ((µ̂i)i∈N , (φi)i∈N),

and the same holds when Q or S replaces E.

Let σ ∈ EΓ((µi)i∈N , (φi)i∈N). Ex-ante equilibrium is equivalent to ex-ante optimality for

all players i of σi according to i’s preferences given σ−i. This ex-ante optimality is equivalent

to σ′i = σi maximizing (4.1) with respect to σ′i. Let µ̂i be the probability measure such that

µ̂i(π) ∝ φ′i (
∑

h ui(h)pσ(h|h0)π(h0))

φ̂
′
i (
∑

h ui(h)pσ(h|h0)π(h0))
µi(π). (A.17)

Observe that replacing φi and µi with φ̂i and µ̂i leaves the effective beliefs at σ, and so also

(4.1), unchanged up to proportionality. Thus σi is ex-ante optimal for player i given φ̂i, µ̂i
and σ−i. As this is true for each player i, σ ∈ EΓ((µ̂i)i∈N , (φ̂i)i∈N).

Turn now to sequentially optimal strategy profiles. Suppose σ ∈ QΓ((µi)i∈N , (φi)i∈N) and

ν is an interim belief system such that (σ, ν) is sequentially optimal for Γ. Let µ̂i be defined

as in (A.17) and for each Ii, ν̂i,Ii be the probability measure such that

ν̂i,Ii(π) ∝
φ′i

(∑
h|hs(Ii)∈Ii ui(h)pσ(h|hs(Ii))π(hs(Ii))

)
φ̂
′
i

(∑
h|hs(Ii)∈Ii ui(h)pσ(h|hs(Ii))π(hs(Ii))

)νi,Ii(π). (A.18)
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By the argument in the ex-ante equilibrium part of this proof, σ ∈ EΓ((µ̂i)i∈N , (φ̂i)i∈N).

Optimality for player i at Ii as a function of σ′i is equivalent (see (2.5) and (2.6)) to σ
′
i = σi

maximizing

∑
π∈∆(Ii)

 ∑
h|hs(Ii)∈Ii

ui(h)p(σ′i,σ−i)
(h|hs(Ii))π(hs(Ii))

φ′i

 ∑
h|hs(Ii)∈Ii

ui(h)pσ(h|hs(Ii))π(hs(Ii))

 νi,Ii(π)

(A.19)

with respect to σ′i. Observe that replacing φi and νi,Ii with φ̂i and ν̂i,Ii leaves (A.19) un-

changed up to proportionality. This is true for each player i and Ii. Thus, (σ, ν̂) is sequen-

tially optimal in Γ̂.

We now extend the argument to SEA. Suppose σ ∈ SΓ((µi)i∈N , (φi)i∈N) and ν is an

interim belief system such that (σ, ν) is an SEA for Γ (with corresponding sequence of

completely mixed strategy profiles {σk}∞k=1). By Theorem A.2, ν satisfies (A.12) using

{σk}∞k=1. As above, let µ̂i be as in (A.17) and for each Ii, ν̂i,Ii be defined as in (A.18). By

our previous arguments, (σ, ν̂) is sequentially optimal in Γ̂. It remains to show that (σ, ν̂)

satisfies smooth rule consistency in Γ̂. Observe that replacing φi, µi and νi,Ii with φ̂i, µ̂i
and ν̂i,Ii in (A.12) preserves its validity. Thus, by Theorem A.2, (σ, ν̂) satisfies smooth rule

consistency in Γ̂. Therefore (σ, ν̂) is an SEA of Γ̂.

The above arguments have shown EΓ((µi)i∈N , (φi)i∈N) ⊆
⋃

(µ̂i)i∈N
EΓ((µ̂i)i∈N , (φ̂i)i∈N),

QΓ((µi)i∈N , (φi)i∈N) ⊆
⋃

(µ̂i)i∈N
QΓ((µ̂i)i∈N , (φ̂i)i∈N) and SΓ((µi)i∈N , (φi)i∈N) ⊆⋃

(µ̂i)i∈N
SΓ((µ̂i)i∈N , (φ̂i)i∈N). Applying these arguments twice (the second time with the roles

of φi and φ̂i interchanged), we obtain that, for any game, the union over all beliefs of the set

of equilibrium strategy profiles is independent of ambiguity aversion.

Finally, turn to the case of pure strategies and only pure strategy deviations as in Batti-

galli et al. (2015). Modify the equilibrium set notation to restrict attention to pure strategies:

Definition A.2 For a game Γ = (N,H, (Ii)i∈N , (µi)i∈N , (ui, φi)i∈N), let ẼΓ((µ̂i)i∈N , (φ̂i)i∈N)

be the set of all ex-ante equilibria with respect to pure strategies of a game Γ̂ = (N , H,

(Ii)i∈N , (µ̂i)i∈N , (ui, φ̂i)i∈N) differing from Γ only in ambiguity aversions and beliefs. Let

Q̃Γ((µ̂i)i∈N , (φ̂i)i∈N) and S̃Γ((µi)i∈N , (φi)i∈N) be the analogous respective sets of sequentially

optimal and SEA strategy profiles with respect to pure strategies.

Proof of Theorem 4.4. Fix a game Γ. We show that: For all (φ̂i)i∈N such that, for

each i, φ̂i is at least as concave as φi, ẼΓ((µi)i∈N , (φi)i∈N) ⊆
⋃

(µ̂i)i∈N
ẼΓ((µ̂i)i∈N , (φ̂i)i∈N),

and the same holds when Q̃ or S̃ replaces Ẽ. There exists a game Γ and (φ̂i)i∈N such that

for each i, φ̂i is at least as concave as φi, all these inclusions are strict and some of the new

equilibrium strategies induce new paths of play.
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Suppose ς ∈ ẼΓ((µi)i∈N , (φi)i∈N), for each i, φ̂i = χi(φi) for some increasing, differentiable

and concave χi (note that differentiability of χi is implied by the continuous differentiability

of φ̂i in the class of games considered in this paper) and µ̂i is the probability measure such

that

µ̂i(π) ∝ µi(π)

χ′i (φi (
∑

h ui(h)pς(h|h0)π(h0)))
. (A.20)

By definition of ẼΓ((µi)i∈N , (φi)i∈N), for each i and each ς ′i,

∑
π

φi

(∑
h

ui(h)pς(h|h0)π(h0)

)
µi(π) ≥

∑
π

φi

(∑
h

ui(h)p(ς′i,ς−i)
(h|h0)π(h0)

)
µi(π).

(A.21)

Since χi is increasing, differentiable and concave, for each π,

χi

(
φi

(∑
h

ui(h)pς(h|h0)π(h0)

))
− χi

(
φi

(∑
h

ui(h)p(ς′i,ς−i)
(h|h0)π(h0)

))

≥ χ′i

(
φi

(∑
h

ui(h)pς(h|h0)π(h0)

))

·
[
φi

(∑
h

ui(h)pς(h|h0)π(h0)

)
− φi

(∑
h

ui(h)p(ς′i,ς−i)
(h|h0)π(h0)

)]
.

Thus, dividing both sides by χ′i (φi (
∑

h ui(h)pς(h|h0)π(h0))) and taking the expectation with

respect to µi yields

∑
π

χi

(
φi

(∑
h

ui(h)pς(h|h0)π(h0)

))
− χi

(
φi

(∑
h

ui(h)p(ς′i,ς−i)
(h|h0)π(h0)

))
µ̂i(π)

≥
∑
π

[
φi

(∑
h

ui(h)pς(h|h0)π(h0)

)
− φi

(∑
h

ui(h)p(ς′i,ς−i)
(h|h0)π(h0)

)]
µi ≥ 0,

where the last inequality follows from A.21. Since this is true for each i and each ς ′i, ς ∈
ẼΓ((µ̂i)i∈N , (φ̂i)i∈N). This shows ẼΓ((µi)i∈N , (φi)i∈N) ⊆

⋃
(µ̂i)i∈N

ẼΓ((µ̂i)i∈N , (φ̂i)i∈N).

Turn now to the part of the theorem about sequentially optimal strategy profiles. Suppose

ς ∈ Q̃Γ((µi)i∈N , (φi)i∈N) and ν is an interim belief system such that (ς, ν) is sequentially

optimal for Γ with respect to pure strategies. Further suppose that for each i, φ̂i = χi(φi)

for some increasing, differentiable and concave χi, µ̂i is defined as in (A.20), and for each Ii,
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ν̂i,Ii is the probability measure such that

ν̂i,Ii(π) ∝ νi,Ii(π)

χ′i

(
φi

(∑
h|hs(Ii)∈Ii ui(h)pς(h|hs(Ii))π(hs(Ii))

)) .
By the argument in the ex-ante equilibrium part of this proof, ς ∈ ẼΓ((µ̂i)i∈N , (φ̂i)i∈N). By

definition of Q̃Γ((µi)i∈N , (φi)i∈N), for each i, each Ii and each ς ′i,

∑
π

φi

 ∑
h|hs(Ii)∈Ii

ui(h)pς(h|hs(Ii))π(hs(Ii))

 νi,Ii(π) (A.22)

≥
∑
π

φi

 ∑
h|hs(Ii)∈Ii

ui(h)p(ς′i,ς−i)
(h|hs(Ii))π(hs(Ii))

 νi,Ii(π).

Since χi is increasing, differentiable and concave, for each π we repeat the argument in the

ex-ante equilibrium part of this proof to conclude that ς ∈ Q̃Γ((µ̂i)i∈N , (φ̂i)i∈N). This shows

Q̃Γ((µi)i∈N , (φi)i∈N) ⊆
⋃

(µ̂i)i∈N
Q̃Γ((µ̂i)i∈N , (φ̂i)i∈N).

Finally, turn to the part of the theorem about SEA strategy profiles. Suppose ς ∈
S̃Γ((µi)i∈N , (φi)i∈N) and ν is an interim belief system such that (ς, ν) is an SEA for Γ with

respect to pure strategies, where the sequence used in satisfying smooth rule consistency is

{σk}∞k=1. By Theorem A.2, ν satisfies (A.12) using {σk}∞k=1. Further suppose that for each

i, φ̂i = χi(φi) for some increasing, differentiable and concave χi, µ̂i is defined as in (A.20),

and, for each Ii, ν̂i,Ii is defined as in (A.22). By the arguments in the sequentially optimal

part of the proof, ς ∈ Q̃Γ((µ̂i)i∈N , (φ̂i)i∈N). Observe that replacing φi, µi and νi,Ii with φ̂i,

µ̂i and ν̂i,Ii in (A.12) preserves its validity. Thus, by Theorem A.2, (σ, ν̂) satisfies smooth

rule consistency in Γ̂. Thus ς ∈ S̃Γ((µ̂i)i∈N , (φ̂i)i∈N). This shows S̃Γ((µi)i∈N , (φi)i∈N) ⊆⋃
(µ̂i)i∈N

S̃Γ((µ̂i)i∈N , (φ̂i)i∈N).

To prove that strict inclusions may happen, consider the game depicted in Figure A.2.

There are two players, 1 and 2. First, it is determined whether player 2 is of type I or type

II and 2 observes the type. Player 1 does not observe the type. The payoff pairs in Figure

A.2 describe vNM utility payoffs given players’actions and type (i.e., (u1, u2) means that

player i receives ui). Player 1’s first move in the game is to choose between action T (wo)

which gives the move to player 2 and action B(et) (i.e., betting that player 2 is of type II)

which reveals the type and ends the game. If T , then player 2’s move is a choice between

C(ontinue) which leads to player 1 again having a non-trivial move, and S(top) which reveals

the type and ends the game. If C, then player 1 has a choice between G(amble) and H(edge)

after which the game ends.

69



I

II

1

T

T

B

B

2

2

S

S

C

C

1

H

H

G

G

(0,0)

(4,0)

(0,2)

(0,2)

(2,3)

(2,3)

(6,   )

(0,1)

2
3

Figure A.2: Ambiguity aversion generates new equilibria with respect to pure strategies

Under ambiguity neutrality for both players,
⋃

(µi)i∈N
ẼΓ((µi)i∈N , (ι)i∈N) = {(B, (S, S), H),

(B, (S, S), G), (B, (C, S), H), (B, (C, S), G), (B, (S,C), H), (B, (S,C), G), (B, (C,C), H),

(B, (C,C), G)}. To see this, first note that if
∑

π π(I)µ1(π) ∈ (0, 2
5
), then all the pure

profiles where 1 plays B are ex-ante equilibria under ambiguity neutrality. Second, any pure

profile where 1 plays T cannot be an ex-ante equilibrium under ambiguity neutrality. Ob-

serve that 2 plays C following T (under either type) only if 1 plays H, 1 can play H rather

than G on-path if and only if 2 ≥ 6
∑

π π(I)µ1(π), and 1 can play T followed by H rather

than B if and only if p(C)2 ≥ 4(1−
∑

π π(I)µ1(π)) where 0 ≤ p(C) ≤ 1 is 1’s reduced prob-

ability that the type is such that 2 plays C. Since
∑

π π(I)µ1(π) cannot be simultaneously

≤ 1
3
and ≥ 1

2
, 1 cannot play T in pure strategy equilibrium under ambiguity neutrality.

By the weak inclusions already shown, and since SEA implies sequentially optimal,

which in turn implies ex-ante equilibrium, it is enough to show that for some strictly con-

cave φ̂1 there is an SEA strategy profile with respect to pure strategies not contained in⋃
(µi)i∈N

ẼΓ((µi)i∈N , (ι)i∈N). To this end, suppose φ̂1(x) ≡ −e−2x, φ̂2 ≡ ι and µ1(π1) =

µ1(π2) = 1
2
, where π1(I) = 1

4
and π2(I) = 3

4
. Consider the pure strategy profile (T, (C,C), H)

and a sequence of completely mixed strategy profiles approaching it where the kth element

of the sequence has player 1 and each type of player 2 playing the action not assigned by

(T, (C,C), H) with probability 1
k+1

at any point they are given the move. By Lemma A.4

and Theorem A.2, ν calculated using (A.12) with φ̂1 and µ1 satisfies smooth rule consis-

tency. By Theorem 3.3, for sequential optimality, it is suffi cient to check against one-stage

deviations, and therefore only at information sets where the player has a non-trivial move.
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For I1 = {I, II} and I1 = {I, II} × {T} × {C}, ν1,I1((π1)I1) = ν1,I1((π2)I1) = 1
2
. Since

φ̂1(2) > 1
2
(φ̂1(3) + φ̂1(1)) and φ̂1(2) > 1

2
(φ̂1(3

2
) + φ̂1(9

2
)), 1 is best responding, and since C

is a best response for player 2 given any beliefs, (T, (C,C), H) is sequentially optimal with

respect to pure strategies given ν. Therefore (T, (C,C), H) ∈ S̃Γ((µi)i∈N , (φ̂i)i∈N) and the

proof is complete.

A.5 Proofs of results in Section 4.2

Parts of the next proof (of Theorem 4.5) make use of the following particularly convenient

set of φ̂i at least as concave as φi, parametrized by l ≥ 1 and b ≥ 1, with φ̂i strictly more

concave than φi when b > 1 and equal to φi when b = 1:

Let eli denote the l
th lowest distinct value of

∑
h∈H ui(h)pσ(h|h0)π(h0) generated by π in

the support, Πi, of µi.

Definition A.3 For any l ≥ 1 such that el+1
i exists, for b ≥ 1 let φ̂

l

i ≡ ψli ◦ φi, where ψli is
defined by

ψli(y) =


y + 1

2
(b− 1)[φi

(
eli
)

+ φi
(
el+1
i

)
] , y ≥ φi

(
el+1
i

)
−(b−1)y2+2[bφi(el+1

i )−φi(eli)]y−(b−1)[φi(eli)]2

2[φi(el+1
i )−φi(eli)]

, φi
(
eli
)
< y < φi

(
el+1
i

)
b · y , y ≤ φi

(
eli
)
.

When b > 1, it may be verified that any ψli is continuously differentiable, concave, strictly

increasing and not affi ne. Notice that for all x ≤ eli, φ̂
l′
i (x) = bφ′i (x) and for all x ≥ el+1

i ,

φ̂
l′
i (x) = φ′i (x).

Proof of Theorem 4.5. This proof makes use of the EΓ, QΓ and SΓ notations

for sets of equilibria given in Notation A.2 (see p. 65). Fixing an ex-ante equilibrium

σ ∈ EΓ((µi)i∈N , (φi)i∈N) (resp. QΓ with associated interim belief system ν or SΓ with

associated ν and sequence of completely mixed strategy profiles {σk}∞k=1) and a player i, say

that ambiguity aversion makes σi ex-ante (resp. sequentially optimal or SEA) belief robust if

for each εi ∈ (0, 1
|suppµi|

), there exists φ̄εii at least as concave as φi so that σi is an ex-ante best

response to σ−i given each µ̂i and φ̂i such that minπ∈suppµi µ̂i(π) > εi and µ̂i has the same

support, Πi, as µi, and such that φ̂i at least as concave as φ̄
εi
i (resp. that plus also a best

response to σ−i at each information set Ii given φ̂i and νi,Ii or (for SEA) all of the previous

plus satisfying the part for player i of smooth rule consistency using {σk}∞k=1). To prove

that ambiguity aversion makes σ ex-ante (resp. sequentially optimal or SEA) belief robust,

it is suffi cient to show, for each player i, that ambiguity aversion makes σi ex-ante (resp.

sequentially optimal or SEA) belief robust. The argument is the same for each player, so
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for the remainder of the proof fix a player i. Also assume for the remainder of the argument

that |Πi| > 1, as otherwise the result follows immediately because there is only one possible

belief with that support.

We begin by proving that ambiguity aversion makes σi ex-ante belief robust. Recall

that σi is an ex-ante best response to σ−i for player i given µ̂i and φ̂i if and only if σi
maximizes, among all σ′i, (4.1) with µ̂i replacing µi and φ̂i replacing φi. Observe that

any strategies σ′i that are weakly worse than σi (in terms of ex-ante expected payoff,∑
h∈H ui(h)p(σ′i,σ−i)

(h|h0)π(h0)) for all π ∈ Πi can never interfere with optimality of σi and

will thus, without loss of generality, be ignored whenever making statements about strategies

other than σi in what follows. For each l, denote by πli the unique π ∈ Πi under which σi
gives eli, the l

th lowest distinct ex-ante expected payoff generated by Πi. For each strategy

σ′i and 1 ≤ l ≤ |Πi|, denote

dli(σ
′
i) ≡

(∑
h∈H

ui(h)pσ(h|h0)πli(h
0)−

∑
h∈H

ui(h)p(σ′i,σ−i)
(h|h0)πli(h

0)

)

·φ′i

(∑
h∈H

ui(h)pσ(h|h0)πli(h
0)

)
.

The conclusion of the theorem in the ex-ante case is immediate when all strategies σ′i are

weakly worse than σi for all πli (i.e., d
l
i(σ
′
i) ≥ 0 for all l), so assume that there exists a

strategy σ′i with d
l
i(σ
′
i) < 0 for some 1 ≤ l ≤ |Πi|.

We next show that all strategies σ′i must have d
1
i (σ
′
i) ≥ 0. To see this, suppose, to the

contrary, there exists a strategy σ̂i with d1
i (σ
′
i) < 0. Since σ is ex-ante robust to increased

ambiguity aversion, σi is an ex-ante best response to σ−i for player i given µi and φ̂
1

i (from

Definition A.3), and, in particular, is at least as good as σ̂i. Using (4.1) with φ̂
1

i replacing

φi, this implies
|Πi|∑
l=1

dli(σ̂i)µi(π) + (b− 1)d1
i (σ̂i) ≥ 0.

Since the value of the first term is bounded and d1
i (σ̂i) < 0, taking b large enough generates

a contradiction.

For each pure strategy ς ′i, let m(ς ′i) < |Πi| be the smallest number l for which dl+1
i (ς ′i) <

0. By the previous paragraph, m(ς ′i) ≥ 1. By the definition of m(ς ′i), d
l
i(ς
′
i) ≥ 0 for all

1 ≤ l ≤ m(ς ′i). Furthermore, d
l
i(ς
′
i) > 0 for some 1 ≤ l ≤ m(ς ′i), because otherwise ς

′
i could

be used together with µi and φ̂
m(ς′i)+1

i to generate a contradiction to σi being ex-ante robust

to increased ambiguity aversion. Thus
∑m(ς′i)

l=1 dli(ς
′
i) > 0 and minm(ς′i)+1≤l≤|Πi| d

l
i(ς
′
i) < 0. For

each 1 ≤ m < |Πi|, if there exists no pure strategy ς ′i with m(ς ′i) = m, then let B(m) = 1,
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otherwise let

B(m) ≡ max{1, max
ς′i|m(ς′i)=m

−minm+1≤l≤|Πi| d
l
i(ς
′
i)

εi
∑m

l=1 d
l
i(ς
′
i)

},

which is well defined because the set of pure strategies is finite. Define φ̄εii = ψ1
i ◦...◦ψ

|Πi|−1
i ◦φi,

for ψmi with b = B(m) for each 1 ≤ m < |Πi|. Consider φ̂i at least as concave as φ̄
εi
i , i.e.,

φ̂i = ψi ◦ φ̄
εi
i for some ψi continuously differentiable, concave and strictly increasing. For

any µ̂i such that minπ∈suppµi µ̂i(π) > εi and µ̂i has the same support as µi, and any pure

strategy ς ′i,

∑
π∈Πi

(∑
h∈H

ui(h)pσ(h|h0)π(h0)−
∑
h∈H

ui(h)p(ς′i,σ−i)
(h|h0)π(h0)

)

·φ̂′i

(∑
h∈H

ui(h)pσ(h|h0)π(h0)

)
µ̂i(π)

=

|Πi|∑
l=1

dli(ς
′
i)ψ
′
i

(
φ̄
εi
i

(∑
h∈H

ui(h)pσ(h|h0)πli(h
0)

))|Πi|−1∏
m=l

B(m)

 µ̂i(π
l
i)

≥ ψ′i

(
φ̄
εi
i

(∑
h∈H

ui(h)pσ(h|h0)π
m(ς′i)
i (h0)

)) |Πi|−1∏
m=m(ς′i)+1

B(m)


·

B[m(ς ′i)]εi

m(ς′i)∑
l=1

dli(ς
′
i) + min

m(ς′i)+1≤l≤|Πi|
dli(ς

′
i)


≥ 0,

where the last inequality follows by applying the definition of B[m(ς ′i)]. Therefore, σi does

at least as well as any pure strategy ς ′i given σ−i according to (4.1) with µ̂i and φ̂i replacing

µi and φi. Since (4.1) is linear in the mixing weights in σ
′
i, this is suffi cient to conclude that

σi is a best response to σ−i given µ̂i and φ̂i. Therefore ambiguity aversion makes σi ex-ante

belief robust.

Consider now sequential optimality. Consider φ̄εii and φ̂i as defined above. Since σ is

sequentially optimal robust to increased ambiguity aversion, σi is an ex-ante best response to

σ−i given µi and φ̂i, and for each information set Ii there exists a belief νi,Ii such that σi is a

best response at Ii to σ−i given νi,Ii and φ̂i. Consider any µ̂i such that minπ∈suppµi µ̂i(π) > εi

and µ̂i has the same support as µi. By the ex-ante equilibrium argument above, σi is an

ex-ante best response to σ−i given µ̂i and φ̂i. Given µ̂i and φ̂i, derive ν̂i,Ii from the smooth

rule using σ for those information sets Ii for which that rule implies that ν̂i,Ii must vary with

ex-ante beliefs. By Lemma A.1, σi an ex-ante best response to σ−i given µ̂i and φ̂i implies
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σi is a best response to σ−i at these information sets given φ̂i and ν̂i,Ii. Extend ν̂ by setting

ν̂i,Ii = νi,Ii elsewhere. Thus σi is a best response to σ−i also at these remaining information

sets given ν̂i,Ii and φ̂i, as this fact is not affected by the shift from µi to µ̂i. This shows that

ambiguity aversion makes σi sequentially optimal belief robust.

Finally turn to SEA. We establish the existence of beliefs at each Ii so that i’s part of

both sequential optimality and smooth rule consistency are satisfied. Since (σ, ν) satisfies

smooth rule consistency using {σk}∞k=1, Theorem A.2 yields that p̄−i,σ−i(h
t|h0) exists for each

player i and each ht ∈ Ii ∈ Fi,σ. Given any φ̂i, for each Ii, construct a belief ν̂i,Ii as defined
in (A.12) using {σk}∞k=1 with µ̂i and φ̂i replacing µi and φi. Theorem A.2 applied with µ̂i
and φ̂i replacing µi and φi (and noting that p̄−i,σ−i(h

t|h0) is independent of the choice of µ̂i
and φ̂i) implies that σ together with ν̂ satisfies player i’s part of smooth rule consistency

using {σk}∞k=1 given µ̂i and φ̂i.

Showing that σi is a best response to σ−i for player i at each Ii given ν̂i,Ii and φ̂i is

equivalent to showing that

σi ∈ arg max
σ′i

∑
π̂∈Πi

 ∑
h|hs(Ii)∈Ii

ui(h)p(σ′i,σ−i)
(h|hs(Ii))p̄−i,σ−i(hs(Ii)|h0)π̂(h0)

 (A.23)

·φ̂′i

(∑
h∈H

ui(h)pσ(h|h0)π̂(h0)

)
µ̂i(π̂),

as can be seen by considering (A.19) with ν̂i,Ii replacing νi,Ii and φ̂i replacing φi, substituting

for ν̂i,Ii and π̂Ii using (A.12), replacing the summation over π ∈ ∆ (Ii) and π̂ ∈ ∆ (Θ) such

that π̂Ii = π with summation over π̂ ∈ Πi since each element in the support of ν̂i,Ii is π̂Ii
for some π̂ in the support of µ̂i, and simplifying, including, since π no longer appears in the

expression, replacing the notation π̂ ∈ ∆ (Θ) with π ∈ ∆ (Θ).

Since σ is SEA robust to increased ambiguity aversion, σi is an ex-ante best response

to σ−i given µi and φ̂
1

i , and for any Ii there exists a belief νi,Ii , constructed as was ν̂i,Ii at

the beginning of the SEA part of the proof except now using µi and φ̂
1

i , such that σi is a

best response to σ−i given νi,Ii and φ̂
1

i . From the definition of φ̂
1

i , the assumption that π
1
i

is well-defined and the assumption that the same sequence {σk}∞k=1 can be used in smooth

rule consistency for each φ̂i (which ensures use of the same p̄−i,σ−i(h
s(Ii)|h0)), (A.23) with

µ̂i = µi and φ̂i = φ̂
1

i with b large enough (i.e., φ̂
1

i suffi ciently concave) implies that, for each

Ii, σ′i = σi must maximize the following expected payoff under π1
i ,∑

h|hs(Ii)∈Ii

ui(h)p(σ′i,σ−i)
(h|hs(Ii))p̄−i,σ−i(hs(Ii)|h0)π1

i (h
0),
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and, by the corresponding argument for ex-ante equilibrium, also maximizes the ex-ante

expected payoff under π1
i .

For each Ii, σ′i and 1 ≤ l ≤ |Πi|, denote

dli,Ii(σ
′
i) ≡

 ∑
h|hs(Ii)∈Ii

ui(h)pσ(h|hs(Ii))p̄−i,σ−i(hs(Ii)|h0)πli(h
0)

−
∑

h|hs(Ii)∈Ii

ui(h)p(σ′i,σ−i)
(h|hs(Ii))p̄−i,σ−i(hs(Ii)|h0)πli(h

0)

 · φ′i
(∑
h∈H

ui(h)pσ(h|h0)πli(h
0)

)
.

That σi is a best response to σ−i for player i at Ii is immediate when dli,Ii(ς
′
i) ≥ 0 for

all pure strategies ς ′i and l, so assume that dli,Ii(ς
′
i) < 0 for some ς ′i and 1 ≤ l ≤ |Πi|.

For each Ii and any such ς ′i (as any other strategy can never interfere with optimality of

σi at Ii and thus, without loss of generality, may be ignored), let mi,Ii(ς
′
i) < |Πi| be the

smallest number l for which dl+1
i,Ii

(ς ′i) < 0. By the previous paragraph, mi,Ii(ς
′
i) ≥ 1. By

the definition of mi,Ii(ς
′
i), d

l
i,Ii

(ς ′i) ≥ 0 for all 1 ≤ l ≤ m(ς ′i). Furthermore, d
l
i,Ii

(ς ′i) > 0 for

some 1 ≤ l ≤ mi,Ii(ς
′
i), because otherwise ς

′
i could be used together with µi and φ̂

mi,Ii (ς
′
i)+1

i

to generate a contradiction to σi being SEA robust to increased ambiguity aversion. Thus∑mi,Ii (ς
′
i)

l=1 dli,Ii(ς
′
i) > 0 and minmi,Ii (ς

′
i)+1≤l≤|Πi| d

l
i,Ii

(ς ′i) < 0. For each 1 ≤ m < |Πi|, if there
exists no pure strategy ς ′i with mi,Ii(ς

′
i) = m, then let Bi,Ii(m) = 1, otherwise let

Bi,Ii(m) ≡ max{1, max
ς′i|mi,Ii (ς

′
i)=m

−minm+1≤l≤|Πi| d
l
i,Ii

(ς ′i)

εi
∑m

l=1 d
l
i,Ii

(ς ′i)
},

which is well defined because the set of pure strategies is finite. Define φ̄εii = ψ1
i ◦...◦ψ

|Πi|−1
i ◦φi,

for ψmi with b = B̄(m) ≡ max{B(m),maxIi∈Ii Bi,Ii(m)} for each 1 ≤ m < |Πi|, where B(m)

is as defined in the ex-ante part of the proof. Consider φ̂i at least as concave as φ̄
εi
i , i.e.,

φ̂i = ψi◦φ̄
εi
i for some ψi continuously differentiable, concave and strictly increasing. Consider

any µ̂i such that minπ∈suppµi µ̂i(π) > εi and µ̂i has the same support as µi. By the argument

above for ex-ante equilibrium, σi is an ex-ante best response to σ−i given µ̂i and φ̂i. For any
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Ii and pure strategy ς ′i,

∑
π∈Πi

 ∑
h|hs(Ii)∈Ii

ui(h)pσ(h|hs(Ii))p̄−i,σ−i(hs(Ii)|h0)π(h0)

−
∑

h|hs(Ii)∈Ii

ui(h)p(σ′i,σ−i)
(h|hs(Ii))p̄−i,σ−i(hs(Ii)|h0)π(h0)

 · φ̂′i
(∑
h∈H

ui(h)pσ(h|h0)π(h0)

)
µ̂i(π)

=

|Πi|∑
l=1

dli,Ii(ς
′
i)ψ
′
i

(
φ̄
εi
i

(∑
h∈H

ui(h)pσ(h|h0)πli(h
0)

))|Πi|−1∏
m=l

B̄(m)

 µ̂i(π
l
i)

≥ ψ′i

(
φ̄
εi
i

(∑
h∈H

ui(h)pσ(h|h0)π
mi,Ii (ς

′
i)

i (h0)

)) |Πi|−1∏
m=mi,Ii (ς

′
i)+1

B̄(m)


·

B̄[mi,Ii(ς
′
i)]εi

mi,Ii (ς
′
i)∑

l=1

dli(ς
′
i) + min

mi,Ii (ς
′
i)+1≤l≤|Πi|

dli(ς
′
i)


≥ 0,

where the last inequality follows by applying the definition of B̄[m(ς ′i)]. Therefore, σi does

at least as well as any pure strategy ς ′i given σ−i according to (A.23) with µ̂i and φ̂i replacing

µi and φi. Since (A.23) is linear in the mixing weights in σ
′
i, this is suffi cient to conclude

that σi is a best response to σ−i for player i at each Ii given ν̂i,Ii and φ̂i. Furthermore,

by construction, σ together with beliefs ν̂i,Ii for player i satisfy player i’s part of smooth

rule consistency using {σk}∞k=1 given µ̂i and φ̂i. Therefore ambiguity aversion makes σi SEA

belief robust.

Proof of Remark 4.1. Assume φi is twice continuously differentiable with strictly

positive first derivative and recall that, all along, it was assumed to be strictly increasing

and concave. In the proof of Theorem 4.5, φ̄εii was taken to be ψ
1
i ◦ ...◦ψ

|Πi|−1
i ◦φi. From the

definition of the ψmi , it follows that φ̄
εi
i is twice differentiable, strictly increasing, and concave

and has bounded second derivative. Take this φ̄εii and let (φ̄
εi
i )−1 be its inverse. We want to

show that there exists an α(εi) > 0 and an increasing, concave transformation ζ such that

−e−α(εi)x = ζ[φ̄
εi
i (x)] for all x ∈ co(ui(H)). For any y ∈ φ̄εii [co(ui(H))], −e−α(εi)x = ζ[φ̄

εi
i (x)]

implies ζ(y) = −e−α(εi)(φ̄
εi
i )−1(y), which is increasing. Thus ζ ′(y) = α(εi)e

−α(εi)(φ̄
εi
i

)−1(y)

(φ̄
εi
i )′[(φ̄

εi
i )−1(y)]

, and

the sign of ζ ′′(y) is the sign of −α(εi)e
−α(εi)(φ̄

εi
i )−1(y)

(
α(εi)− (− (φ̄

εi
i )′′[(φ̄

εi
i )−1(y)]

(φ̄
εi
i )′[(φ̄

εi
i )−1(y)]

)
)
, so ζ is

concave for all suffi ciently large α(εi), since − (φ̄
εi
i )′′(x)

(φ̄
εi
i )′(x)

, the coeffi cient of ambiguity aversion

at x ∈ co(ui(H)) is non-negative and bounded above. Note that (φ̄
εi
i )′′(x) is bounded

because the composition of any functions f and g that have bounded second derivatives and
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continuous, strictly positive first derivatives has bounded second derivatives and continuous,

strictly positive first derivatives as follows from the formula f [g(x)]′′ = [f ′[g(x)]g′(x)]′ =

f ′′[g(x)][g′(x)]2+ f ′[g(x)]g′′(x) and the fact that since φi has bounded derivatives, as do the

ψmi . Observe that the α(εi) may need to be much higher than some − (φ̄
εi
i )′′(x)

(φ̄
εi
i )′(x)

since it must

be at least the supremum of this over x.

A.6 Proofs of results in Section 5

The next result relates to analysis of the ambiguous cheap talk example.

Proof of Proposition 5.1. Since all information sets are on-path under the given

strategies, by Theorems A.1 and A.3 it is suffi cient to establish that the given strategies

form an ex-ante equilibrium. P’s strategy is an ex-ante best response because it leads to

payoff 2 for all parameters, which is the highest feasible payoff for this player. Let γm be

the probability with which agent r plays w after message m ∈ {α, β}, and similarly let
δm be the corresponding probabilities for agent c. The proposed strategies correspond to

γα = γβ = δβ = 1 and δα = 0. We now verify that these are ex-ante best responses. Denoting

πk(IIU) + πk(IID) by πk(II), given the strategies of the others, r maximizes

1

2

2∑
k=1

φr
(
πk(IU)γα + 2πk(ID)γβ + πk(II)[2γβ + 5(1− γβ)]

)
.

Since this function is strictly increasing in γα, it is clearly maximized at γα = 1. The first

derivative with respect to γβ evaluated at γα = γβ = 1 is

1

2

2∑
k=1

[2πk(ID)− 3πk(II)]φ′r (2− πk(IU))

=
11

8
e−11· 39

20

(
e−11( 7

4
− 39

20
) − 42

5

)
> 0,

where the last line uses φr(x) = −e−11x and the values of the πk. Thus, by concavity in γβ,

the maximum is attained at γα = γβ = 1. Similarly, given the strategies of the others, c

maximizes

1

2

2∑
k=1

φc (πk(IU)[2δα + 5(1− δα)] + πk(ID)[2δβ + 5(1− δβ)] + 2πk(II)δβ) .

Since this function is strictly decreasing in δα, it is clearly maximized at δα = 0. The first
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derivative with respect to δβ evaluated at δα = 0 and δβ = 1 is

1

2

2∑
k=1

[−3πk(ID) + 2πk(II)]φ′c (3πk(IU) + 2)

= −1

2
φ′c

(
11

4

)
+

23

40
φ′c

(
43

20

)
≥ 3

40
φ′c

(
11

4

)
> 0,

where the last line uses the values of the πk. Since φc is weakly concave, the problem is

weakly concave in δβ, thus the maximum is attained at δα = 0 and δβ = 1.

Proof of Proposition 5.2.
Limit attention to strategies for P conditioning only on the payoff relevant component

of the parameter, I and II. Denote P’s probability of playing α conditional on the payoff

relevant component by ρI and ρII , respectively. Let γm be the probability with which r plays

w after message m ∈ {α, β}, and similarly let δm be the corresponding probabilities for c.
Given ρI and ρII , r chooses γα, γβ to maximize

1

2

2∑
k=1

φr

 πk(I)[ρI(1 + δα)γα + (1− ρI)(1 + δβ)γβ]

+πk(II)[ρII((1 + δα)γα + 5(1− γα))

+(1− ρII)((1 + δβ)γβ + 5(1− γβ))]

 (A.24)

and c chooses δα, δβ to maximize

1

2

2∑
k=1

φc

 πk(I)[ρI((1 + γα)δα + 5(1− δα))

+(1− ρI)((1 + γβ)δβ + 5(1− δβ))]

+πk(II)[ρII(1 + γα)δα + (1− ρII)(1 + γβ)δβ]

 . (A.25)

The proof proceeds by considering four cases, which together are exhaustive:

Case 1: When ρI = ρII = 1 (resp. ρI = ρII = 0) so that only one message is sent, for

P to always receive the maximal payoff of 2 it is necessary that the agents play w,w with

probability 1 after this message, i.e. γα = δα = 1 (resp. γβ = δβ = 1). But w is not a best

response for c, as can be seen by the fact that the partial derivative of (A.25) with respect

to δα (resp. δβ) evaluated at those strategies is

1

2
(4− 5

2∑
k=1

πk(I))φ′c(2) = −3

8
φ′c(2) < 0.

Similarly, one can show that w is not a best response for r.

Case 2: When 0 < ρII < 1, since under II, P sends both messages with positive
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probability, it is necessary that w,w is played with probability 1 after both messages in

order that the principal always receive the maximal payoff of 2. A necessary condition for

this to be a best response for c is that the partial derivatives of (A.25) with respect to δα, δβ
are non-negative at γα = γβ = δα = δβ = 1. This is, respectively, equivalent to 14ρII ≥ 19ρI

and 14(1− ρII) ≥ 19(1− ρI), which implies 14 ≥ 19, a contradiction.

Case 3: When ρII = 0 and 0 < ρI ≤ 1, (A.25) is strictly decreasing in δα, thus the

maximum is attained at δα = 0. For P to always receive the maximal payoff of 2, it is

necessary that γα = γβ = δβ = 1. However, this is not a best response for r because the

partial derivative of (A.24) with respect to γβ evaluated at these strategies using the values

for the πk is,
3

4
(
1

2
− ρI)φ′r(2−

3

4
ρI) + (−1

5
ρI − 1)φ′r(2−

ρI
5

) < 0.

To see this, note that the second term is always negative, the first term is non-positive for
1
2
≤ ρI ≤ 1, and, when 0 < ρI <

1
2
, substituting φr(x) = −e−11x yields that the left-hand

side is negative.

Case 4: When ρII = 1 and 0 ≤ ρI < 1, the argument is identical to Case 3 except the

roles of the messages α and β are swapped.

The next result relates to analysis of the limit pricing example. Denote the entrant’s

Cournot profit net of entry costs when facing an incumbent of type θ by wθ ≡ b(a+cθ−2cE
3b

)2−
K.

Lemma A.5 Under Assumption 5.1, σLP is an ex-ante equilibrium if and only if (ICH for

I), (ICM for I), wH ≥ 0 and∑
π

µ(π)(π(L)wL + π(M)wM)φ′ (π(H)wH) ≤ 0. (ICL for E)

The conditions above correspond to the following incentives in the game: (ICH for I),

(ICM for I) were described in the main text, wH ≥ 0 ensures that the entrant is willing to

enter when it is sure the incumbent is type H, and ICL for E ensures the entrant does not

want to enter after observing the monopoly quantity for type L.

Proof of Lemma A.5. Since there is complete information in the final stage, the

Cournot or monopoly quantities respectively are ex-ante optimal there. Taking the incum-

bent’s point of view, consider its action in the first stage. Since the incumbent learns its cost

before taking any action and there is no other uncertainty, checking ex-ante optimality for

the incumbent is equivalent to checking optimality for each incumbent type separately given

the entrant’s strategy. This is true no matter what the incumbent’s ambiguity aversion or

beliefs.
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When does type H not prefer to pool with M,L at the monopoly quantity for L and thereby

deter entry? Profits for H in the conjectured equilibrium are b(a−cH
2b

)2 +b(a+cE−2cH
3b

)2. Profits

if it instead pools with M,L at monopoly quantity for L and deters entry are a−cL
2b

(a− a−cL
2
−

cH) + b(a−cH
2b

)2. H at least as well off not pooling if and only if

b(
a+ cE − 2cH

3b
)2 ≥ a− cL

2b
(a− a− cL

2
− cH).

This is equivalent to (ICH for I).

When does type M not prefer to produce the monopoly quantity for M and fail to deter

entry? Profits for M in the conjectured equilibrium are a−cL
2b

(a − a−cL
2
− cM) + b(a−cM

2b
)2.

If it instead produced at the monopoly quantity for M and fails to deter entry, profits are

b(a−cM
2b

)2 + b(a+cE−2cM
3b

)2. M is at least as well off pooling with L if and only if

a− cL
2b

(a− a− cL
2
− cM) ≥ b(

a+ cE − 2cM
3b

)2.

This is equivalent to (ICM for I).

Type L is playing optimally since its monopoly quantity also deters entry.

It remains to examine the entry decision of the entrant. As a best-response to the

incumbent’s strategy, ex-ante the entrant wants to maximize∑
π

µ(π)φ [λL(π(L)wL + π(M)wM) + λHπ(H)wH ] (A.26)

with respect to λH , λL ∈ [0, 1], where λH and λL are the mixed-strategy probabilities of

entering contingent on seeing the monopoly quantity for H and the monopoly quantity for

L, respectively. When is this maximized at λH = 1 and λL = 0? Notice, by monotonicity,

some maximum involves λH = 1 if and only if wH ≥ 0, and wH > 0 is equivalent to λH = 1

being part of every maximum. This says that entering against a known high cost incumbent

is profitable. Assuming this is satisfied, so that λH = 1 is optimal, then λL = 0 is optimal if

and only if the derivative of (A.26) with respect to λL evaluated at λL = 0 and λH = 1 is

non-positive, which yields (ICL for E).

Before turning to the proof of Proposition 5.3, we remark that we actually prove a slightly

stronger result, allowing for the possibility that µ ({π | π(L)wL + π(M)wM = 0}) = 1 (i.e.,

that the entrant unambiguously believes that it will exactly break even if it enters conditional

on the incumbent’s type being in {L,M}). This appears in the proof only in the proof of
Lemma A.6.

Proof of Proposition 5.3. Consider the limit pricing strategy profile σLP.
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By Lemma A.6, under the assumptions of the proposition there exists a φ̂ such that if

the entrant’s φ is at least as concave as φ̂, then (ICL for E) is satisfied. By Lemma A.5,

the assumptions of the proposition together with (ICL for E) are suffi cient for σLP to be an

ex-ante equilibrium.

Next, we construct an interim belief system that, together with σLP, satisfies smooth rule

consistency. Consider a sequence of completely mixed strategy profiles, σk, where γkθ,q > 0

is the probability that type θ of the incumbent chooses first period quantity q, λkq > 0

is the probability that the entrant enters after observing quantity q, δkθ,(q,enter,r) > 0 and

δk(q,enter,r) > 0 are the probabilities of second period quantity r being chosen by, respectively,

type θ of the incumbent and the entrant, after observing first period quantity q followed by

entry and revelation of θ, and δkθ,(q,no entry,r) > 0 is the probability of second period quantity

r being chosen by type θ of the incumbent after observing first period quantity q followed

by no entry. Specifically, let γkθ,q ≡
βkθ,q∑
q̂∈Q β

k
θ,q̂
for k = 1, 2, ..., where βkθ,q is defined by

q ∈ Q
θ q = qH q = qL qH 6= q < qL q > qL

L 1 k2 1 k

M 1 k2 1 1

H k2 1 k 1

, λkq converge to 1 as k →∞ when q < qL and converge to 0 otherwise, δkθ,(q,enter,r) converge to

1 as k →∞ when r is the Cournot quantity for type θ and converge to 0 otherwise, δk(q,enter,r)
converge to 1 as k → ∞ when r is the Cournot quantity for the entrant and converge to 0

otherwise, and δkθ,(q,no entry,r) converge to 1 as k → ∞ when r is the monopoly quantity for

type θ and converge to 0 otherwise. Note that σk converges to σLP. By Lemma A.4, Theorem

A.2 delivers an interim belief system ν such that
(
σLP, ν

)
satisfies smooth rule consistency.

The final step in the proof is to verify that
(
σLP, ν

)
satisfies the optimality conditions

(3.2) at all information sets. By Theorem 3.3, for optimality, it is suffi cient to check against

one-stage deviations, and therefore only at information sets where the player has a non-

trivial move. The Cournot strategies in the last stage given entry are optimal because all

distributions over type become degenerate when conditioned on the entrant learning the

incumbent’s type. The fact that wL < 0 plus wH ≥ 0 implies that it is optimal for the

entrant to stay out if its objective function after observing q places all weight on type L and

to enter if that objective function places all weight on type H. We now verify that when

q 6= qL this objective function does exactly that when entry/no entry are supposed to occur

according to σLP. Entry is supposed to occur if and only if q < qL. When q = qH , since πIi
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is the degenerate distribution on type H for all π that may be so conditioned, it is optimal

to enter. When qH 6= q < qL, since p̄−i,σLP−i (θ, q|θ) places all weight on (H, q), (A.12) implies

that all π in the support of νE,Θ×{q} puts weight only on (H, q), and so it is again optimal

to enter. Similarly, when q > qL, since p̄−i,σLP−i (θ, q|θ) places all weight on (L, q), all π in the

support of νE,Θ×{q} puts weight only on (L, q), and so it is optimal not to enter.

Not entering being optimal after observing q = qL is equivalent (see 4.1) to the following:∑
π∈∆(Θ×{qL})

(π(L, qL)wL + π(M, qL)wM)φ′(0)νE,{L,M}×{qL}(π) ≤ 0. (A.27)

Using the formula (A.12) to substitute for νE,qL(π) in (A.27) yields that not entering re-

maining optimal is equivalent to (ICL for E). Therefore
(
σLP, ν

)
satisfies the optimality

conditions (3.2) at all information sets as long as the entrant’s φ is at least as concave as

the φ̂ identified from Lemma A.6. For such suffi ciently concave φ, having shown
(
σLP, ν

)
is

sequentially optimal and satisfies smooth rule consistency, it is therefore an SEA.

Since the only assumption on φ made in the above argument that σLP is part of an SEA

was that it was suffi ciently concave for the entrant, the argument goes through in its entirety

for all φ̃ at least as concave as φ. Furthermore, the same sequence {σk}∞k=1 may be used for

all φ̃. Thus, σLP is SEA robust to increased ambiguity aversion.

We next verify that the other conditions in the antecedents of Theorem 4.5 are satisfied.

We begin by showing that, for each player,
∑

h∈H ui(h)pσLP (h|h0)π(h0) can be strictly ordered

across the π in the support of µ. For the entrant,∑
h∈H

ui(h)pσLP (h|h0)π(h0) = π(H)wH .

Thus, strict ordering corresponds to strict ordering by π(H). The assumption that the

support of µ can be ordered in the likelihood-ratio ordering ensures the latter, as it implies

that for any two distinct π, π′ ∈ suppµ, π(H) 6= π′(H). To see this, suppose to the contrary

that π(H) = π′(H). By distinctness and that weights must sum to one, π(M) 6= π′(M),

π(L) 6= π′(L) and π(M) > π′(M) if and only if π(L) < π′(L), a violation of likelihood-ratio

ordering. For the incumbent,∑
h∈H

ui(h)pσLP (h|h0)π(h0) = π(L)2b(
a− cL

2b
)2

+π(M)[
a− cL

2b
(a− a− cL

2
− cM) + b(

a− cM
2b

)2]

+π(H)[b(
a− cH

2b
)2 + b(

a+ cE − 2cH
3b

)2].
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By Assumption 5.1 and (ICM for I), the expression multiplied by π(L) is strictly larger

than the one multiplied by π(M), which is, in turn, strictly larger than the one multiplied

by π(H). Thus, likelihood-ratio ordering of the support of µ implies strict ordering of∑
h∈H ui(h)pσLP (h|h0)π(h0). By Theorem 4.5, ambiguity aversion makes σLP SEA belief

robust.

Lemma A.6 Under the assumptions of Proposition 5.3 there exists an α > 0 such that if φ

is at least as concave as −e−αx then (ICL for E) is satisfied.

Proof. Assume the conditions of the proposition. We show that (ICL for E) is satisfied
for concave enough φ. The assumption in the proposition that some π ∈ suppµ makes en-

try conditional on {L,M} strictly unprofitable means µ ({π | π(L)wL + π(M)wM < 0}) > 0.

If µ ({π | π(L)wL + π(M)wM ≤ 0}) = 1 then (ICL for E) is trivially satisfied for any φ.

For the remainder of the proof, therefore, suppose that µ ({π | π(L)wL + π(M)wM > 0}) >
0. Let Π− ≡ {π | π(L)wL + π(M)wM < 0}, Π+ ≡ {π | π(L)wL + π(M)wM > 0}, N ≡∑

π∈Π− µ(π)(π(L)wL + π(M)wM), and P ≡
∑

π∈Π+ µ(π)(π(L)wL + π(M)wM). Let π− ∈
arg maxπ∈Π− π(H) and π+ ∈ arg minπ∈Π+ π(H). The left-hand side of (ICL for E) can be

bounded from above as follows:∑
π∈Π−

µ(π)(π(L)wL + π(M)wM)φ′ (π(H)wH) +
∑
π∈Π+

µ(π)(π(L)wL + π(M)wM)φ′ (π(H)wH)

≤
∑
π∈Π−

µ(π)(π(L)wL + π(M)wM)φ′
(
π−(H)wH

)
+
∑
π∈Π+

µ(π)(π(L)wL + π(M)wM)φ′
(
π+(H)wH

)
= Nφ′

(
π−(H)wH

)
+ Pφ′

(
π+(H)wH

)
.

Consider φ(x) = −e−αx, α > 0. The upper bound above becomes

αNe−απ
−(H)wH + αPe−απ

+(H)wH .

We show that this upper bound is non-positive for suffi ciently large α, implying (ICL for

E). The upper bound is non-positive if and only if Pe−απ
+(H)wH ≤ −Ne−απ−(H)wH if and

only if eα(π−(H)−π+(H))wH ≤ −N
P
if and only if α (π−(H)− π+(H))wH ≤ ln(−N

P
). Since

π−(L)wL + π−(M)wM < 0 < π+(L)wL + π+(M)wM and cL < cM , we have wL < 0 < wM .

Thus, π−(L)
π−(M)

> −wM
wL

> π+(L)
π+(M)

. By our assumption on the support of µ and Lemma A.7,
π−(L)
π−(M)

> π+(L)
π+(M)

implies π−(H) < π+(H). Therefore, α (π−(H)− π+(H))wH ≤ ln(−N
P

) if

and only if α ≥ ln(−N
P

)

(π−(H)−π+(H))wH
.

To complete the proof, fix α satisfying this inequality and consider φ such that φ(x) =

h(−e−αx) for all x with h concave and strictly increasing on (−∞, 0). We show that (ICL
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for E) holds. Observe that φ′(x) = h′(−e−αx)αe−αx. Since π−(H)−π+(H) < 0 and wH > 0,

we have

−e−απ−(H)wH ≤ −e−απ+(H)wH

and, by concavity of h,

h′(−e−απ−(H)wH ) ≥ h′(−e−απ+(H)wH ).

Therefore the upper bound derived above satisfies

Nφ′
(
π−(H)wH

)
+ Pφ′

(
π+(H)wH

)
= αNe−απ

−(H)wHh′(−e−απ−(H)wH ) + αPe−απ
+(H)wHh′(−e−απ+(H)wH )

≤ (αNe−απ
−(H)wH + αPe−απ

+(H)wH )h′(−e−απ−(H)wH ) ≤ 0

by the first part of the proof and the assumption on α. This implies (ICL for E).

Lemma A.7 If the support of µ can be ordered in the likelihood-ratio ordering, then, for
any π, π′ ∈ suppµ, π(L)

π(M)
> π′(L)

π′(M)
implies π(H) < π′(H).

Proof. Suppose the support of µ can be so ordered. Fix any π, π′ ∈ suppµ. Suppose
π(L)
π(M)

> π′(L)
π′(M)

. Then π′(L)
π(L)

< π′(M)
π(M)

, and thus, by likelihood-ratio ordering, π′(L)
π(L)

< π′(M)
π(M)

≤
π′(H)
π(H)

. This implies π′(H) > π(H) since the last two ratios cannot be less than or equal to 1

without violating the total probability summing to 1.

B Appendix: Details on the analysis of the game in

Figure 3.1 and the comparison with no profitable

one-stage deviations and consistent planning

A strengthening of no profitable one-stage deviations used in some of the existing literature

investigating games with ambiguity is the following condition, describing a consistent plan-

ning requirement in the spirit of Strotz (1955-56) (for a formal decision theoretic treatment

see Siniscalchi 2011):

Definition B.1 Fix a game Γ and a pair (σ, ν) consisting of a strategy profile and interim

belief system. Specify Vi and Vi,Ii as in (2.1) and (2.4). For each player i and information

set Ii ∈ ITi , let
CPi,Ii ≡ argmax

σ̂i∈Σi

Vi,Ii(σ̂i, σ−i).
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Then, inductively, for 0 ≤ t ≤ T − 1, and Ii ∈ Iti let

CPi,Ii ≡ argmax
σ̂i∈

⋂
Îi∈I

t+1
i
|Î−1
i

=Ii

CPi,Îi

Vi,Ii(σ̂i, σ−i).

Finally, let

CPi ≡ argmax
σ̂i∈

⋂
Îi∈I0

i

CPi,Îi

Vi(σ̂i, σ−i).

(σ, ν) is optimal under consistent planning if, for all players i,

σi ∈ CPi.

Equivalently, (σ, ν) is such that for all players i,

Vi(σ) ≥ Vi(σ̂i, σ−i) for all σ̂i ∈
⋂
Îi∈I0

i

CPi,Îi

and, for all information sets Ii ∈ Iti , 0 ≤ t ≤ T − 1,

Vi,Ii(σ) ≥ Vi,Ii(σ̂i, σ−i) for all σ̂i ∈
⋂

Îi∈It+1
i |Î−1

i =Ii

CPi,Îi

and, for all information sets Ii ∈ ITi ,

Vi,Ii(σ) ≥ Vi,Ii(σ̂i, σ−i) for all σ̂i ∈ Σi.

If (σ, ν) is sequentially optimal then it is also optimal under consistent planning. However,

if (σ, ν) is optimal under consistent planning it may fail to be sequentially optimal (even

when limiting attention to ambiguity neutrality). For such a failure to occur, the optimal

strategy from player i’s point of view at some earlier stage must have a continuation that

fails to be optimal from the viewpoint of some later reachable stage. This is what makes the

extra constraints imposed in the optimization inequalities under consistent planning bind.

Just as with no profitable one-stage deviations, when updating is according to the smooth

rule, (σ, ν) optimal under consistent planning implies (σ, ν) is sequentially optimal, making

the three equivalent under smooth rule updating.

Recall that the example in Figure 3.1 in Section 3.2 showed how the no profitable one-

stage deviation criterion under Bayesian updating allowed strategy profiles that are not ex-
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ante equilibria of a game (and thus clearly not sequentially optimal). Replacing no profitable

one-stage deviations by consistent planning does not change this fact. The main text used

the following specification of preferences for the example: φ1(x) = −e−10x, µ is 1/2 on

(1/3, 1/9, 5/9) and 1/2 on (1/3, 5/9, 1/9), and 1’s beliefs after seeing U are given by Bayes’

rule applied to µ: 1/3 on (3/4, 1/4, 0) and 2/3 on (3/8, 5/8, 0). With these parameters

and beliefs, the following strategy profile satisfies no profitable one-stage deviations and

consistent planning: player 1 plays o with probability 1− 9
20

ln(29
11

) ≈ 0.564 and mixes evenly

between u and d if U , while player 2 plays her strictly dominant strategy if given the move.

Notice, if we consider any more concave φ1, playing o with even higher probability will be

consistent with consistent planning or no profitable one-stage deviations given these beliefs.

In the limit where the decision maker is Maxmin EU with set of priors equal to the convex

combinations of (1/3, 1/9, 5/9) and (1/3, 5/9, 1/9) and applies Bayes’rule to each measure in

the set, playing o with probability 1 is consistent with consistent planning and no profitable

one-stage deviations.
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