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Abstract 

The concepts of allostatic load and overload, i.e. a dramatic increase in the allostatic 

load that predisposes to disease, have been extensively described in the literature. 

Herein we present data to support the hypothesis that some allostatic states (i.e. 

chronic adjustments of physiology away from normal homeostasis) may represent 

adaptive, rather than pathologic, mechanisms to deal with chronic anxiety and stress. 

In a rat model, we demonstrate that chronic stress induces adaptive changes in the 

limbic-hypothalamic-pituitary-adrenal (LHPA) axis, and in lactate and 

glutamate/glutamine metabolism. Compared to rats with passive defensive (PD) 

responses to stress, rats with an active offensive (AO) responses had lower anxiety 

and plasma glucocorticoid levels, and increased lactate and decreased glutamate in 

the amygdala but not in the hippocampus. These data suggest that allostatic states 

may represent adaptive endogenous autonomic nervous system (ANS) strategies to 

calm the animal and restore homeostasis following chronic fear and stress. 
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Introduction 

Allostasis (an adaptive process that adjusts homeostasis after acute stress), 

allostatic load (the physiological “costs” of maintaining allostasis), and allostatic 

overload (an excessive and likely pathologic increase in allostatic load), have been 

described in the literature (Ramsay and Woods, 2014). Neuroendocrinological 

compensation of chronic stress acts as a homeostatic physiological process that 

should improve health and prolong life (De Kloet et al., 1998). A reinterpretation of 

Selye’s theory of General Adaptation Syndrome clarifies that stress mediators can 

have both damaging and protective effects (McEwen, 2005). Biological changes that 

occur during the adaption and exhaustion stages are referred to as allostasis and 

allostatic overload; they include not only activation of the limbic hypothalamic pituitary 

adrenal (LHPA) axis and its downstream effector pathways, but also changes in 

immune responses, cardiovascular and energy metabolism, and hypothalamus-

mediated behavior (Korte et al., 2005). The paradigms of allostatic load and overload 

have been demonstrated in various human and animal models, and the glucocorticoid 

cortisol is implicated as one of four primary allostatic mediators (Seeman et al., 1997). 

An allostatic state is defined by chronic deviation of regulatory systems away from their 

normal state of operation, to establish a new set point (Koob and Le Moal, 2001).  

The limbic system, including the hippocampus and amygdala, is evidenced to 

mediate many neurodevelopmental consequences of childhood abuse. The 

hippocampus and amygdala are both densely populated with glucocorticoid receptors 

(GR), and in adolescents with major depression, increased amygdala-hippocampal 

volume ratios were associated with increased anxiety-related indicators of allostatic 

load (MacMillan et al., 2003), perhaps due to stimulation of dendritic arborization and 

new spine formation on pyramidal cells (Morimoto et al., 1996). GR also localize on 

glial cells in the cerebral cortex, mainly the prefrontal cortex, which in contrast shows 

decreased gray matter volume after stress-related experiences (Hanson et al., 2010). 

The anterior cingulate cortex also contains a high density of GR (Sarrieau et al., 1986), 

and reduced anterior cingulate cortex volume is one of the most consistent findings in 

subjects with chronic mental stress. Moreover, increased cortisol concentration was 

seen in depressed subjects, whereas subjects with chronic mental strain showed 

decreased cortisol levels (Morris et al., 2012). Furthermore, in historically traumatized 

populations, for example Jewish people who were three generations removed from the 

Holocaust, the recall of parental overprotection was associated with higher hair-steroid 



concentrations and dampened LHPA axis activity when compared with German and 

Russian-German subjects who recalled overprotective parenting behavior (Ullmann et 

al., 2018). These findings suggest allostatic load and overload scenarios leading to 

new allostatic set-point, mediated by glucocorticoid signaling. 

Schwabe and Wolf (Schwabe and Wolf, 2013) formulated two basic behavioral 

theories to understand stress responses: "stimulus-response" and "spatial." The 

former is characterized by an active offensive and/or defensive behavior, and the latter 

is characterized by passive avoidance. The LHPA axis plays a key role in the stress 

response. The stimulus-response and spatial stress response strategies involve 

different elements of the LHPA system; the stimulus-response strategy is associated 

with activation of the hippocampus and striatum, whereas the spatial strategy is linked 

to the hippocampus-amygdala circuit (Vogel et al., 2017). The stimulus-response and 

spatial modes were initially characterized in humans (Schwabe et al., 2007), however, 

similar predictable stress reactions also occur in mice (Schwabe et al., 2008). 

Physiological mechanism of “Passive defensive behavior” 

Defensive behavior or “freezing” – a universal fear response – can be found in 

many species aiming to avoid detection by a predator, to optimize perceptual and 

attentional processes to prepare for and decide "fight or flight" (Hagenaars et al., 2014). 

Freezing may play a key role in the pathophysiology of threat-induced disorders 

including post-traumatic stress disorder (PTSD) (Rizvi et al., 2008). Physiological 

responses to freezing arise from the conditioned and unconditioned fear response 

systems including the sympathomimetic amines (epinephrine and norepinephrine) 

from the sympathomedullary system, and glucocorticoids from the LHPA system 

(Hagenaars et al., 2014) (Figure 1). Sympathomedullary system responses are 

regulated by sympathetic and parasympathetic impulses from the hypothalamus, 

whereas fight-or-flight and freezing behavior are regulated by the autonomic nervous 

system (ANS). LHPA axis activation with cortisol release occurs in parallel to gradual 

increases in the stimulation threshold (i.e. decreased reactivity) to restore homeostasis 

(Figure 1). 

In animal studies, adrenalectomized subjects exhibit deficits in freezing 

behavior, which can be restored by corticosterone (CORT) injections (Takahashi and 

Rubin, 1993). Increased cortisol levels were also associated with freezing in non-

stressed rhesus monkeys (Kalin et al., 1998). Moreover, maternal nurturing behavior 

reduces LHPA activity in pups (Liu et al., 1997), which in turn is associated with 



freezing (Champagne et al., 2008). Humans presented with pictures of mutilation 

exhibited bradyarrhythmia (reduced asynchronous heart rate) and less body sway 

compared to naive controls, which suggests activation of a neural circuit that promotes 

defensive survival (Azevedo et al., 2005). In addition, more freezing behavior occurs 

in toddlers that have higher cortisol levels and lower heart rates, although fear-behavior 

was not associated with cortisol levels, indicating different physiological pathways 

(Buss et al., 2004). While physiological responses to acute stress events have been 

well studied, we have limited understanding of the processes for restoring homeostasis 

in the context of chronic stress. 

We propose an integrative view whereby allostatic states, i.e. prolonged 

regulatory system departure from its regular functioning level, may increase stress 

resistance by regulating allostatic load. 

Glutamate (Glu) – an excitatory and inhibitory neurotransmitter 

 Glu is a major excitatory neurotransmitter, excess Glu causes damage and 

inflammation, and CORT acts directly via membrane associated mineralocorticoid receptors 

(MR) and GR to cause Glu release (McEwen, 2017). Activation of glutamatergic projections to 

limbic structures, such as the amygdala, and to brainstem structures, such as the solitary 

nucleus, is implicated in the stress response (Mathew et al., 2001). Thus, higher mGluR5 

(metabotropic glutamate receptor 5) and lower FKBP5 (Peptidyl-prolyl cis-trans isomerase FK 

Binding Protein 5) expression were observed in cortical regions of subjects with PTSD (Holmes 

et al., 2017). Dysfunctional Glu neurotransmission is a cardinal feature of stress-related 

psychiatric conditions, especially PTSD (Averill et al., 2017). In a rat model of predator stress 

with implications for PTSD, Glu receptors activate the sympathetic nervous system (SNS) 

(Adamec et al., 1999;Adamec et al., 2010). 

Lactate (Lact) – an endogenous metabolite to deal with chronic stress 

Enhanced physical activity with increased glycolysis leading to higher Lact 

levels may play key roles in PTSD (Rogatzki et al., 2015). Downstream of glycolysis, 

Lact is produced as a byproduct of anaerobic respiration in oxygen-depleted muscle 

cells following heavy exertion. Increased glucose metabolism in the amygdala of 

depressed subjects, and the positive effects of exercise in subjects with fatigue, 

suggest possible antidepressant effects of Lact (Mustian et al., 2017;Magistretti and 

Allaman, 2018). On the other hand, flashbacks, a cardinal symptom of PTSD, were 

precipitated in Vietnam veterans following intravenous administration of sodium Lact 

(Rainey et al., 1987). 



 

Objectives 

The aims of this study are to: 1) determine whether there are differences in 

allostatic states for dealing with chronic stress in a threat-induced paradigm, and 2) 

test whether greater physical activity (i.e. an AOR) during chronic anxiety (predator 

stress) is accompanied by altered LHPA axis (CORT) signaling and increased 

anaerobic glycolysis (lactate) in the amygdala, as may occur in the brain under 

conditions of high metabolic demand (Riske et al., 2017) and/or hypoxia (Schurr and 

Rigor, 1998) consequent to greater physical activity. 

We hypothesized that rats engaging in active (offensive) stress responses after 

chronic predator stress will show decreased anxiety and plasma CORT, and 

decreased Glu and higher Lact in the amygdala, compared to rats engaging in passive 

(defensive) stress responses. 

 

Methods 

 Experiments were performed with 28 male Sprague-Dawley rats (3 months-old) 

weighing 240–260g, from the specific pathogen-free (SPF) vivarium of the Institute of 

Cytology and Genetics (ICG), Siberian Branch of the Russian Academy of Science 

(SB-RAS) (Novosibirsk, Russia). Rats were housed in sibling pairs in standard 

ventilated cages (IVC BlueLine, Tecniplast, Italy). Water and granulated forage (Ssniff, 

Soest, Germany) were given ad libitum. Animals were kept in a 14 h light (2am-4pm) 

– 10 h dark (4pm-2am) cycle, temperature (22–24°C), and relative humidity (40–50%) 

controlled environment. The behavioral testing was always initiated at the start of the 

dark cycle, when rodents are most active. 

 For our experiments, we used the standard elevated plus maze (EPM) test 

apparatus TS0502-R3 (http://www.openscience.ru/index.php?page=ts&item=002) 

with the following dimensions: H of the closed branch = 0.3 m; H of the open branch = 

0.01 m; length of the branch = 0.5 m; branch width = 0.14 m; height from the floor = 

0.55 m. The animals were initially placed in the center of the EPM, and were 

considered to have "entered" a branch when all 4 feet where within the branch. Their 

behavior was evaluated using the 3D animal tracking system “EthoStudio” 

(http://ethostudio.com/new/en/about/), and the collector of the behavior previously did 

not work with any rats of our groups. 

http://www.openscience.ru/index.php?page=ts&item=002
http://ethostudio.com/new/en/about/


 

 All animal experiments conformed to the requirements of the Council for 

International Organizations of Medical Sciences (CIOMS) and the International Council 

for Laboratory Animal Science (ICLAS) as described in “International Guiding 

Principles for Biomedical Research Involving Animals” (Geneva, Switzerland, 1990). 

The handling of all animals was identical. The study protocol was approved by the 

Committee for Bioethics and Humane Treatment of Laboratory Animals at South Ural 

State University, Russia. 

 

Behavioral measurements 

Passive defensive and active offensive behavior to predator scent stress (PSS) 

Following exposure to the predator odor stimulus, the rat’s phenotypic 

behavioral pattern was classified into one of two groups (Table 1): Active offensive 

response (AOR), i.e. rats exhibiting the “stimulus-response" behavior pattern, and 

passive defensive response (PDR) groups. For example, increased grooming behavior 

is a characteristic response to increased stress and anxiety in PDR rats (Estanislau, 

2012), whereas higher activity levels, increased marking of territory (by urination), and 

dominant sexual behavior are characteristic responses to stress in AOR animals (Le 

Moene and Agmo, 2017). The control group was exposed to neutral odor. For our 

stress protocol, fresh odor sources were produced daily by urine from one cat and used 

on the same day. Every day, 240 g of sawdust from a single manufacturer (Cats Best 

EkoPlus by J.RETTENMAIER & SÖHNE, GERMANY) was used to generate a one-

day source of urine contaminated sawdust. After being collected from the cat tray, the 

urine contaminated sawdust was thoroughly mixed, put in a plastic container, stored at 

room temperature for 3-5 hours before the experiment started, and separated into 12 

x 20g portions for 12 cages (2 rats per cage). The animals were exposed to the odor 

every day between 1-2 pm, as follows: in each rat cage 20 g of urine contaminated 

sawdust was placed in the Petri dish covered by clear nylon tissue for 10 min, and 

during that period their behavior was registered. A total of 12 cages, each housing two 

rats, were studied per day. The cages with control animals got the clear sawdust 

without cat urine contamination. A total of 14 cages, each housing two rats, were 

studied per day. Animals were grouped by body weight. 

 

Anxiety measurements – EPM test 



The PSS outcome was evaluated using the EPM test (Lapiz-Bluhm et al., 

2008;Serova et al., 2014). This test is widely used for measuring anxiety-like behavior 

based on the natural aversion of rats for open and elevated areas, as well as on their 

natural spontaneous exploratory behavior in novel environments. Variables recorded 

included time spent in open and closed arms of the maze, and number of entries into 

the open and closed arms. The Anxiety Index (AI) was calculated as follows: AI = 1 – 

[(seconds in open arms / seconds on maze) + (number of entries into open arms / 

number of all entries)]/2 (Cohen et al., 2008). Anxious animals spend less time in the 

open arms of the maze. 

 

Magnetic resonance spectroscopy (MRS) 

Neurometabolites of the amygdala and the hippocampus were measured on a 

horizontal tomograph with a magnetic field of 11.7 Tesla (Bruker, Biospec 117/16 USR, 

Germany). The rats were anesthetized with gas (Isoflurane; Baxter Healthcare Corp., 

Deerfield, IL) using a Univentor 400 Anesthesia Unit (Univentor, Zejtun, Malta). The 

tomograph table contained a water circuit that maintained a surface temperature of 

30°C, to preserve animal body temperature during the test. A pneumatic respiration 

sensor (SA Instruments, Stony Brook, NY), placed under the lower body, controlled 

the depth of anesthesia. 

All proton spectra of the rat amygdala and hippocampus were recorded with 

transmitter volume (T11232V3) and rat brain receiver surface (T11425V3) 1H 

radiofrequency coils (Bruker, Ettlingen, Germany). High-resolution T2-weighted 

images of the rat brain in three (axial, sagittal, and coronal) dimensions (section 

thickness, 0.5 mm; field of view, 2.5 cm × 2.5 cm for axial and 3.0 cm × 3.0 cm for 

sagittal and coronal sections respectively; matrix of 256 × 256 dots) were recorded by 

rapid acquisition with relaxation enhancement (TurboRARE), with the pulse sequence 

parameters TE = 11 ms, TR = 2.5 s for correct positioning of the spectroscopic voxels. 

Voxel dimensions were 3.0 mm × 1.5 mm × 3.0 mm for amygdala and 1.5 mm × 3.0 

mm × 3.0 mm for hippocampus. All voxels were manually placed according to a 

structural T2-weighted MRI images (Figures 2, 3). All proton spectra were recorded 

by spatially localized single-voxel stimulated echo acquisition mode (STEAM) 

spectroscopy with the pulse sequence parameters TE = 3 ms, TR = 5 s, 120 

accumulations. Uniformity of the magnetic field was tuned within the selected voxel 



using FastMap (Gruetter, 1993) before each spectroscopic recording. The water signal 

was inhibited with a variable pulse power and optimized relaxation delays (VAPOR) 

sequence (Tkac et al., 1999). 

Processing of 1H spectra 

The experimental 1H magnetic resonance spectra were processed and the 

quantitative composition of metabolites was determined with a custom program similar 

to the LC Model software package (Provencher, 1993), which assume that the 

spectrum of a mixture of known compounds is a linear combination of analyzed 

components. The details of the data processing were published (Moshkin et al., 2014). 

The baseline correction is conducted automatically by the program in order to 

determine the spectral base-line for fitting of the spectrum obtained by 1H MRS. The 

process of fitting is presented on the real-time plot (Figure 4), and the fitting results 

data are stored in numerical form. The program capabilities allow the following 12 brain 

metabolites to be fitted to the MRS spectrum: N-acetylaspartate (NAA); 

phosphorylethanolamine (PEA); choline compounds (Cho); creatine + 

phosphocreatine (Cr + PCr); myo-inositol (mIno, Ins); alanine (Ala); lactate (Lac); 

glutamate + glutamine (Glu + Gln); aspartate (Asp); γ-aminobutyric acid (GABA); 

glycine (Gly); and taurine (Tau).  

 

Glucocorticoid measurements 

Between 11:00 AM and 1:00 PM on experimental day 28, rats were sacrificed 

by decapitation and blood samples were collected in tubes with heparin. Blood 

samples were then centrifuged at 3000 rpm for 15 min at +4 °C. Plasma samples were 

aliquoted and stored in a -80°C freezer until use. After thawing, plasma CORT 

concentrations were measured by ELISA (Cusabio ELISA Kit, Texas, USA) per 

manufacturer’s instructions. The assay sensitivity was 0.25 ng/ml, and the intra- and 

inter-assay coefficients of variation were both <5%. 

 

Experimental Protocol 

To induce chronic stress, rats were exposed to cat urine scent in a Petri dish 

with litter for 10 min daily for 10 days (20 rats were submitted to stress exposure; 8 

control rats were exposed to a neutral scent). All procedures were performed between 



1:00 and 2:00 PM. During the scent exposure protocol, anxiety behavior was captured 

daily via web-camera. The protocol for modeling PSS, the evaluation of stress-related 

behavior and anxiety, and measurements of metabolites (CORT, Glu/Gln, Lact) in 

plasma and brain, were obtained according to the following flowchart: 

Days 1-10:  PSS  

Days 11-22:  Rest 

Day 23: Elevated plus-maze test 

Day 27: Amygdala metabolite measurement by MRS 

Day 28:  Euthanasia, harvest blood and organs 

 

Data Analyses 

 Data were analyzed with STATISTICA 10.0 and MS Excel software. 

Quantitative data are presented as mean ± SEM. One-way ANOVA with Fisher-LSD 

post-hoc tests were used to compare all outcome measures between two groups (e.g. 

control vs. AOR; control vs. PDR; AOR vs. PDR). P < 0.05 was considered significant. 

 

Results 

Behavioral strategies to deal with chronic anxiety-stress 

Chronically stressed rats were divided into 2 phenotypes based on their 

behavior in anxiety-related situations, as described above. The first phenotype was 

labeled AOR, i.e. rats exhibiting the “stimulus-response" behavior pattern (n=9). The 

second phenotype was labeled PDR, i.e. rats exhibiting the “spatial” stress response 

strategy (n=11). There were significant differences between the mean freezing 

frequencies of PDR and AOR rats (5.16±1.85 and 2.2±0.85, mean ± SEM, respectively; 

P<0.005).  

The animals' anxiety levels were evaluated using the EPM test 14 days after 

PSS cessation in AOR and PDR PSS exposed groups and controls. There was a 

significant influence of behavioral phenotype in response to PSS on relative number of 

branch entries (F2,24=10.84, p<0.001), exploring (F2,24 =14.3, p<0.001), and time 



(F2,24=21.04, p<0.0001) in open arms (OA). PSS led to increased OA entries, OA 

exploring, and OA times in the AOR rats versus the PDR rats or unstressed controls. 

The behavioral phenotype also had a significant impact on the relative numbers of 

entries (F2,24 =10.84, p<0.001) and time in closed arms (F2,24=10.84, p<0.001). PSS 

led to less closed arms entries and closed arm times in the AOR rats. However, 

exploring in OA was similar in both groups subjected to PSS, and there were no 

differences with control. Overall, the different behavioral phenotypes in response to 

PSS exposures were characterized by the differences in anxiety levels 14 days post 

PSS cessation. AOR rats exhibited lower anxiety levels at 14-days post PSS compared 

to PDR rats. 

Long-term consequences of PSS on anxiety levels (Figure 5a) 

An animal's behavioral phenotype in response to PSS significantly influenced 

anxiety measurements by the EPM test (F2,24=12.57, p<0.005). AOR rats had lower 

anxiety levels (as they spent more time in the open arms of the maze) compared with 

PDR rats (0.79±0.031 and 0.97±0.014, respectively; p<0.005;), as well as compared 

with control (0.98±0.017; p<0.005). The anxiety levels between control and PDR rats 

were not significantly different.  

Long-term consequences of PSS on plasma CORT levels (Figure 5b) 

CORT levels in AOR rats (12.49pg/mg±2.03) were decreased compared to 

control (42.4pg/mg±9.46) and PDR (49.2pg/mg±11.38) rats (p<0.05 and p<0.01, 

respectively). No significance differences in plasma CORT levels were found between 

control and PDR rats. 

Long-term consequences of PSS on amygdala metabolites in vivo (Figure 5c/d) 

Proton MRS was used to quantify amygdala metabolomics in control, AOR, and 

PDR rats after the final PSS exposure. There was a significant impact of behavioral 

phenotype on amygdala Lact concentrations (F2,24=4.68, p<0.05). AOR rats exhibited 

increased Lact concentrations compared to PDR rats (5.81±0.93 and 2.32±0.76, 

respectively; p<0.05). There was no significant difference in Lact concentrations 

between PDR and control (3.97±0.98; P>0.1) rats. Furthermore, there was significantly 

(F2,24=3.65, p<0.05) less mean Glu and Gln in AOR versus PDR rats (13.41±0.9 and 

17.68±1.42, respectively; p<0.05). No significant differences in the concentrations of 

other metabolites were found between the groups (one-way ANOVA). Thus, as with 



the other parameters measured, the significant differences were found only in the AOR 

group (when compared to PDR or control groups), as we hypothesized. Time in OA in 

AOR rats was positively correlated with lactate level in amygdala (r=0.721, p=0.024) 

and negatively correlated with plasma corticosterone level (r=-0.645, p=0.032). In 

addition, plasma corticosterone level was negatively correlated with lactate 

concentration in amygdala (r=-0.721, p=0.017). We used the hippocampus, a limbic 

structure, as control and we found no significant differences between AOR and PDR, 

or between AOR/PDR and control (Figure 6). Spectral pictures of an AOR rat, a PDR 

rat, and a control rat are demonstrated in Figure 7. 

Discussion 

This study demonstrated decreased CORT, Glu/Gln, and anxiety in AOR versus 

PDR rats after chronic predator stress, suggesting a possible endogenous calming 

psychophysiological mechanism in the AOR phenotype. In addition, Lact levels were 

elevated in the amygdala of AOR compared to PDR animals, which would be 

consistent with increased metabolic demand (Riske et al., 2017) and/or hypoxia 

(Schurr and Rigor, 1998) as might be expected with a more "active" (AOR) versus 

passive (PDR) behavioral phenotype. Interestingly, time in the open-arm of the maze 

(indicating less-anxious behavior) was positively correlated with lactate levels in the 

amygdala of AOR rats, suggesting a possible link between the behavioral phenotype 

and physiology. Such changes were not found in the hippocampus, suggesting this 

may be a local rather than global phenomena, and future studies in additional brain 

regions can shed further light on the regional versus global nature of these findings. 

The progression from homeostasis to allostatic overload has been well 

established and includes hormonal, structural and epigenetic changes (Mathew et al., 

2001;MacMillan et al., 2003;Morris et al., 2012;Klengel et al., 2013;Holmes et al., 

2017). As evidence of increased dendritic remodeling in the hippocampus during 

allostatic load, it has been shown that dendritic remodeling can be blocked by 

phenytoin, which in turn inhibits Glu release and antagonizes sodium and likely T-type 

calcium channels that are activated during glutamate-induced excitation (Korte et al., 

2005). 

At first glance, our results showing decreased CORT levels in AOR rats may 

appear to conflict with those findings. However, the recurrent nature of the predator 

stress stimuli in our study suggests a switch from increased glucocorticoid levels in 

response to the acute stress, to an allostatic state with decreased glucocorticoid levels 



following continued predator stress. We propose these allostatic states may be 

described as: 1) an allostatic flight/fight response mechanism, and 2) an allostatic 

freezing/passive response mechanism. Others (Bowen et al., 2014) have referred to 

these adaption processes as "active and passive coping styles." However, we suggest 

that the endogenous/biological nature of these adaption states are not adequately 

reflected by the term "coping styles," as hormonal changes, dendritic remodeling, and 

gene methylation processes occur. The physiological changes seen within these two 

threat-induced behavior responses (AOR and PDR) allowed us to assess the allostatic 

load in behaviorally active versus passive animals (whose stress responses require 

minimal physical or physiological exertion).  

The amygdala is a glucocorticoid-responsive structure, lower CORT levels lead 

to lower amygdala activity, and glutamatergic neurons mediate amygdala excitation 

(McEwen, 2017). We posit that lower Glu levels in the AOR animals may represent low 

level activity of glutamatergic neurons in the amygdala, whereas the higher Glu levels 

in PDR rats may reflect dendritic remodeling not only in the hippocampus (McEwen et 

al., 2016) but also in the amygdala.  

Reduced CORT appears to be associated with less freezing behavior 

(Takahashi and Rubin, 1993), and increased CORT is associated with freezing 

behavior in non-stressed rhesus monkeys (Kalin et al., 1998). Both those studies are 

consistent with our findings of lower CORT in AOR (i.e. non-freezing) rats, suggesting 

dampened LHPA axis responsiveness to fear. This physiological reaction may occur 

via gene methylation processes (Klengel et al., 2013; Holmes, et al., 2017), although 

our changes in neurotransmitters (e.g. Glu/Gln) are also consistent with the time scale 

of the observed LHPA axis down regulation in AOR rats.  

Historically, some have postulated that corticosteroids and the 

sympathomimetic amines have analogous roles because their multiple action sites and 

the nature of their induced responses are often similar (Ramey and Goldstein, 1957). 

However, while their roles are complementary and integrative, they are not 

interchangeable. Many actions of the sympathomimetic amines are not elicited in the 

absence of corticosteroids. Steroids maintain the integrity and responsiveness of 

tissues that are in the process of reacting to the sympathomimetic amines. This 

relationship is best seen on exposure to stress, when lower steroid levels may be 

elicited by heightened sympathetic-medullary activity. In the absence of 



corticosteroids, responses to neurohormones are diminished, and the deleterious 

effects of adrenal insufficiency are amplified. 

Given the closely intertwined roles of the sympathomimetic amines and 

glucocorticoids, theoretically it would be conceivable that the glucocorticoids may also 

have roles analogous to sympathetic functions, and vice-versa the sympathomimetic 

amines may have roles analogous to parasympathetic functions. Mounting evidence 

in recent years suggests an interaction between the adrenal medulla and adrenal 

cortex, and an influence of adrenal innervations on adrenocortical functions (Ehrhart-

Bornstein et al., 1998). Additionally, glutamatergic hippocampal giant mossy fiber 

terminals (MFTs) play a key role after chronic restraint stress, along with multiple 

interacting mediators of neuronal remodeling that include brain derived neurotrophic 

factor (BDNF) (McEwen et al., 2016). With respect to cholinergic modulation of 

amygdala circuits in the formation and retention of fear memories (Jiang et al., 2016), 

we postulate that excitatory and inhibitory glutamatergic functions may exist within the 

ANS in anxiety-related disorders. 

Additionally, the effects of higher physical activity include increased glucose 

metabolism and, in extreme stress, increased lactate levels, which also ensure that 

brain and muscle metabolism can continue when glucose levels fall. Increased glucose 

metabolism in the amygdala of depressed subjects, and the positive effect of exercise 

in subjects with fatigue, suggest possible antidepressant effects of Lact (Magistretti & 

Allaman, 2018; Mustian et al., 2017). We found increased Lact levels in our AOR rats, 

as might be expected with this more "physically active" behavioral phenotype. 

 

 

 

 

Limitations and Future Directions 

 In this study, we found that rats demonstrating an AOR to chronic predator 

stress have less anxiety behavior, lower plasma corticosterone levels, and higher 

lactate and lower glutamate/glutamine levels in amygdala, compared to rats 

demonstrating a PDR to chronic predator stress. Integrating these results with 

supporting studies and existing literature, one possible explanation is that AOR rats 

enter an allostatic state in which adaptive autonomic nervous system responses serve 

to calm the animal and restore homeostasis following chronic fear and stress. However 



our current data cannot exclude the possibility that animals stratify into AOR and PDR 

groups on the basis of their pre-existing underlying physiologies – i.e. perhaps AOR 

rats have "less anxious" physiology and neurochemistry/neurocircuitry to begin with. 

Therefore follow-up studies will incorporate baseline reads for all animals, to help 

clarify whether the observed physiologic differences, suggestive of allostatic adaptive 

states, exist prior to or newly accompany the AOR versus PDR behavioral phenotypes. 

These studies, together with appropriate blockade studies, will provide a clearer picture 

of which physiological changes may be causal versus consequential to the AOR versus 

PDR behavioral phenotypes. We also do not know and cannot predict the evolutionary 

or "survival" consequences of AOR versus PDR phenotypes in a natural environment: 

perhaps AOR rats would be more likely to get eaten (which would make for a poor and 

evolutionarily short-lived adaptive strategy)! Finally, we will look for similar 

physiological changes in other brain areas involved in the fear response, such as the 

hypothalamus and prefrontal cortex (Steimer, 2002). 

 

Conclusions 

Dealing with acute and chronic stress is an evolutionary challenge that affects 

all of us. Allostasis (from allostatic load to allostatic states) leads to decreased Glu/Gln 

levels, an effect also observed in our over-stressed AOR rats. Based on this and other 

data shown herein, we posit that allostasis may be a protective mechanism in rats for 

adapting to chronic stress, and further studies are warranted to expand these findings 

in rodents, and determine whether similar mechanisms exist for dealing with chronic 

stress in humans. Chronic stress affects not only our mental health and well-being, but 

also our physical health, and plays multiple roles in anxiety, depression, and other 

psychiatric disorders, as well as diabetes, cardiovascular and neurologic diseases, and 

a range of inflammatory and metabolic conditions. The body and the brain have 

substantial capacity for adaptive plasticity, thus all changes described here are not 

necessarily irreversible (Korte et al., 2005). Our results provide new insights into the 

integrated roles of the autonomic and central nervous systems in regulating 

mammalian stress responses. 
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Figure 1: Endogenous mechanisms to deal with chronic anxiety-stress 

Figure 2: Voxel position during 1H MRS of the amygdala. 
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Figure 3: Voxel position during 1H MRS of the hippocampus. 

 

 

Figure 4: The process of spectral fitting and baseline correction. 

 

 



Figure 5a: Long-term consequences of PSS on anxiety index (AI) in chronically stressed rats 

 
Legend: PDR=passive defensive response; AOR=active offensive response; ordinate scale represents the AI=1–[(seconds in 

open arms / seconds on maze) + (number of entries into open arms / number of all entries)]/2; *P<0.005 AOR rats (N=9) in 

comparison with control (N=8), #P<0.005 AOR rats in comparison with PDR rats (N=11). 

 

Figure 5b: Long-term consequences of PSS on plasma CORT levels

 
Legend: PDR=passive defensive response; AOR=active offensive response; *P<0. 05 AOR rats (N=9) in comparison with 

control (N=8), #P<0.05 AOR rats in comparison with PDR rats (N=11) 



Figure 5c/d: Long-term consequences of PSS on in vivo amygdala (c) Lactate and (d) 
Glutamate-Glutamine concentrations. 

Legend:  PDR=passive defensive response; AOR=active offensive response; #P<0.05 AOR rats in comparison with PDR rats 
(N=11) 
 
Figure 6a/b: Long-term consequences of PSS on in vivo hippocampus (a) Lactate and (b) 
Glutamate-Glutamine concentrations. 

 
Legend:  PDR=passive defensive response; AOR=active offensive response  
 

 



Figure 7: Spectral fitting (Proton-MRS) of metabolites in the amygdala of one representative rat from each of the three behavioral subtypes. 

 
Legend: N-acetylaspartate (NAA); phosphorylethanolamine (PEA); choline compounds (Cho); creatine (Cr); alanine (Ala); lactate (Lact); glutamate +  
glutamine (Glu + Gln); aspartate (Asp); γ-aminobutyric acid (GABA); glycine (Gly); and taurine (Tau). Red spectrum = PDR rat; blue spectrum = control  
rat (no chronic stress); green spectrum = AOR rat; ppm = parts per million; y-axis represents relative units in percentage; double peaks results from  
protons with different chemical environments.



Table 1: Behavior of the rats during exposure to cat urine 
 

Passive Defensive Response (PDR) Control Active Offensive Response (AOR) 

Grooming behavior 
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Actively smelling the stimulus throughout the 
exposure; occasionally licking and/or biting 
the Petri dish where the urine is located 

"Freezing" in one place for more than 10 
seconds to a few minutes 

Escaping to the furthest corner of the cage, 
with head positioned furthest away from 
the source of the smell (Petri dish) 

Attempting to tear the protective material 
(tear-resistant nylon stocking) to get at the 
source of the odor 

Trying to hide under or behind another 
animal 

Marking territory by urinating and/or 
"climbing" the stimulus - the rat sits on top of 
the Petri dish with the stimulus 

 


