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Abstract

We investigate the spectral and spatial characteristics of
the ego-noise of a multirotor micro aerial vehicle (MAV)
using audio signals captured with multiple onboard micro-
phones and derive a noise model that grounds the feasibility
of microphone-array techniques for noise reduction. The
spectral analysis suggests that the ego-noise consists of
narrowband harmonic noise and broadband noise, whose
spectra vary dynamically with the motor rotation speed.
The spatial analysis suggests that the ego-noise of a P -
rotor MAV can be modeled as P directional noises plus
one diffuse noise. Moreover, because of the fixed positions
of the microphones and motors, we can assume that the
acoustic mixing network of the ego-noise is stationary.
We validate the proposed noise model and the stationary
mixing assumption by applying blind source separation to
multi-channel recordings from both a static and a moving
MAV and quantify the signal-to-noise ratio improvement.
Moreover, we make all the audio recordings publicly
available.

1. Introduction
Micro aerial vehicles (MAV) are increasingly used in

a wide range of applications, such as search and rescue
operations, personal and professional video capturing,
and surveillance [1]. Multirotor MAVs can hover above
a target area and can be used as a universal sensing
platform equipped with a variety of sensors, such as
cameras, microphones, laser scanners or ultrasonic radars.
While visual sensing has attracted considerable research
attention [2, 3], despite its potential impact acoustic sensing
using MAVs has been relatively overlooked.

When deploying flying MAVs in search and rescue
operations, microphones would be important to locate
sound-emitting targets (e.g. a person in distress) especially
at night, in low visibility or in the presence of visual
obstacles and occlusions (e.g. a victim under debris) [4,
5, 6]. Flying MAVs can also be deployed for multimedia
broadcasting of an event by transmitting the audio and

video streams to remote locations [7]. The main barrier
for effective MAV-based acoustic sensing is the strong ego-
noise [5, 8], which masks the target sound(s) and degrades
the overall sound recording quality significantly.

The ego-noise is generated mainly by the motors and
propellers, which are closer to the microphones than the
emitter of the target sound, thus leading to extremely low
signal-to-noise ratios. Moreover, because the rotation speed
of each motor dynamically changes during a flight, the
ego-noise is nonstationary. Also, the microphones move
together with the MAV, thus leading to a dynamic acoustic
mixing network. Finally, natural wind increases the noise
components captured by the microphones. The above-
mentioned noise sources are considerable challenges to
existing noise reduction algorithms, which were mainly de-
signed for indoor environments with fixed microphones [9].
Appropriate sound enhancement techniques are therefore
necessary for MAV-based acoustic sensing.

In this paper, we investigate the spectral and spatial
characteristics of the ego-noise using multiple microphones
on the MAV and we propose a noise model that grounds
the feasibility of using microphone-array techniques for
noise reduction. We model the noise as a sum of multiple
directional sounds and a diffuse sound, and we apply
blind source separation to multi-microphone recordings
made with a static MAV and a moving MAV. Moreover,
the experimental results for the moving MAV suggest a
stationary mixing network of the ego-noise, which provides
valuable insights for developing noise reduction algorithms
in dynamic environments.

The paper is organized as follows. Sec. 2 reviews
the related work. Sec. 3 discusses our noise component
analysis and modeling. Sec. 4 validates the proposed model
and presents the noise reduction results using blind source
separation. Finally, conclusions are drawn in Sec. 5.

2. Related Work
Currently only a few works have been presented to

specifically address the challenging MAV ego-noise reduc-
tion problem. These works can be categorized as single-
channel or multi-channel approaches. Single-channel
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approaches mainly exploit the amplitude of the microphone
signal for noise reduction (spectral enhancement). Tradi-
tional spectral enhancement approaches typically require
the noise to be stationary in order to blindly estimate the
noise power spectrum density (PSD). These approaches are
not directly applicable to MAV sound recording because
the PSD of the ego-noise varies dynamically. Since the
MAV ego-noise mainly consists of harmonic components
whose fundamental frequency is proportional to the motor
rotation speed, a template-based approach was proposed
that generates noise spectral templates given the prior
knowledge of motor rotation speed [10]. A drawback of
this approach is the need of additional sensors to provide
information about the motor rotation speed and the MAV
behavior. Using amplitude information only, single-channel
approaches produce severe signal-of-interest distortion and
even fail completely in scenarios with extremely low signal-
to-noise ratios (SNR).

Multi-channel approaches mainly exploit the phase in-
formation and the correlation among multiple microphones
for noise reduction. Delay-and-sum (fixed) beamforming
was used for target sound acquisition with a microphone
array, which was optimally designed in terms of array size
and sensor placement [8, 11]. Fixed beamforming is robust
to low SNR and MAV movement. However, it usually
requires a large array to get satisfactory noise reduction
performance and also requires the knowledge of the target
location to steer the beam. A reference-based approach [7]
uses reference microphones, which are installed close to the
propellers, to pick up motor noises and cancel them with an
adaptive filter. The results reported in [7] are promising for
a static MAV, but still quite limited for a moving MAV.

The above methods were applied to MAVs and are
summarized in Table 1. In addition to these methods, other
noise reduction approaches for voice communication or
ground robot audition [9] could be used. For instance, non-
negative matrix factorization (NMF) [12] was employed
for single-channel spectral enhancement for ground robots.
NMF estimates the noise bases from pre-recorded training
data and then estimates the noise PSD from the noisy
recording. Multi-channel adaptive beamforming [13] and
blind source separation [14] perform more efficiently than a
delay-and-sum beamformer for noise reduction. However,
applying these methods to a moving MAV is challenging
because the acoustic mixing network changes dynamically.
Template-based approaches [15, 16] construct noise corre-
lation matrices as a function of the behavior of the robot
and use them to design an adaptive beamformer. This
can be seen as a multi-channel extension of the single-
channel template [10], which only considers the spectral
amplitude. Template-based approaches were applied to
source localization with MAVs [17]. However, application
to MAV ego-noise reduction has not been reported yet.

Table 1. Single-channel (SC) and multi-channel (MC) noise
reduction approaches applied to MAV sound recording.

Method Ref.

SC Template-based spectral enhancement [10]

MC Fixed beamforming [8, 11]

MC Reference-based noise reduction [7]

3. Noise component modelling

3.1. Preliminaries

Let an MAV equipped with M microphones capture the
sound emitted by a target (e.g. a person). The microphone
signal, x(n) = [x1(n), · · · , xM (n)]T, contains both the
target sound, s(n) = [s1(n), · · · , sM (n)]T, and the ego-
noise, v(n) = [v1(n), · · · , vM (n)]T, i.e.

x(n) = s(n) + v(n). (1)

We aim to answer the following questions: (i) What are
the spectral characteristics of the constituent components
of the ego-noise? (ii) Does the ego-noise show strong cor-
relation among multiple microphones? (iii) Do the spatial
characteristics of the ego-noise vary with the movement of
the MAV?

To this end, we built a circular microphone array
consisting of eight Boya BY-M1 omnidirectional lavelier
microphones to be fixed on the top of the MAV (Fig. 1).
The diameter of the array is 0.2 m and the distance from the
array to the top side of the MAV is 0.15 m. The signals from
the eight microphones are sampled simultaneously with a
Zoom R24 multi-channel audio recorder, at a sampling rate
of 44.1 kHz (downsampled to 8 kHz before processing).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

(a) 

(b) 

7 
8 6 

5 

4 

1 

2 3 

Figure 1. The circular microphone array mounted on the MAV. (a)
Top view. (b) Side view.



3.2. Noise components

The ego-noise consists of three main components,
namely the mechanical noise generated by the rotation of
the motors, the air flow noise generated by the rotation of
the propellers cutting the air, and the wind noise blowing
directly to the microphones from the propellers.

The propeller noise was analyzed experimentally in
order to optimally design the MAV propulsion system [18,
19]. The wind noise may significantly deteriorate the
recording quality. The relationship between microphone
positioning and noise reduction was examined experimen-
tally in [20], where it was concluded that positions below
the MAV receive more wind noise than positions above and
beside the MAV. Since the wind from the propellers blows
downwards, we positioned the microphones above the MAV
to avoid the influence of the self-generated wind (Fig. 1(b)).
Thus, we only need to consider the first two noise elements
in the experiments: the mechanical noise and the air flow
noise.

One favorable factor for ego-noise reduction is that
the noise sources are fixed with respect to the positions
of the microphones and thus prior knowledge can be
used to choose appropriate noise reduction approaches.
We thus investigate the correlation information of the
microphone signals, which plays crucial role on the noise
reduction performance. If the target signal shows high
correlation at the microphones while the noise signal shows
low correlation, we can employ a simple delay-and-sum
beamformer for noise reduction [13]. If both the target
and noise signals show high correlation at the microphones,
we can employ more advanced algorithms, such as adaptive
beamforming or blind source separation, which work more
efficiently for noise reduction [13].

The correlation information can be represented with the
correlation coefficient between two microphone signals in
the time-frequency domain. By applying the short-time
Fourier transform (STFT) to two time-domain signals x1(n)
and x2(n), the time-frequency signals are obtained and
represented as X1(k, l) and X2(k, l), respectively; where
k and l are the frequency and frame indices, respectively.
The correlation coefficient γ(k, l) is defined as

γ(k, l) =

∣∣∣∣∣
∑l+δ
l′=l−δX

∗
1 (k, l

′)X2(k, l
′)∑l+δ

l′=l−δ |X1(k, l′)X2(k, l′)|

∣∣∣∣∣ , (2)

where the superscript ∗ denotes conjugate and δ = 3
indicates the number of consecutive frames that are used
for the calculation of the coefficient.

3.3. Noise modelling

We analyze the spectral and spatial characteristics of
the ego-noise using real-recorded data. We design two
scenarios to investigate the first two types of noise. In

 

 

Figure 2. The sound recording setup.

the first scenario we record the sound from an MAV
without propellers, so that the recording only contains the
mechanical noise from the rotating motors. In the second
scenario we record the sound from an MAV with propellers,
so that the recording contains both the mechanical noise
from the rotating motors and the airflow noise from the
rotating propellers cutting air. The experiment is conducted
in a room of size 6m×5m×3m with a reverberation time of
around 200 ms. A 3DR Iris quadcopter 1 is fixed on a tripod
at a height of 1.8 m (Fig. 2). The size of the MAV is about
0.55m×0.55m. The motor rotation speed is modified with a
remote controller. A loudspeaker is placed 3 m away from
the MAV, at a height of 1.3 m.

Fig. 3(a) depicts the spectrum of the microphone signal
for a one-minute long segment from an MAV without pro-
pellers. The motor rotation speed is rising monotonically
during the first 10 s, remains constant during the following
10 s, and then varies randomly during the last 40 s. The
motor noise mainly consists of harmonic components, with
energy peaks at multiple isolated frequency bins. The
fundamental frequency (pitch) of the harmonic noise varies
corresponding to the motor rotation speed: the pitch rises
monotonically during the first 10 s, remains stable during
the following 10 s, and then varies dynamically during the
remaining 40 s. The MAV has four motors, each with
a different rotation speed, and the superimposition of the
pitches from these motors leads to a complex spectrum
structure. Fig. 3(b) depicts the time-frequency correlation
between two microphone signals. It can be observed that
the two microphones show strong correlation in the time-
frequency domain, especially at harmonic frequencies with

1https ://store.3drobotics.com/products/iris
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Figure 3. Sound recording from an MAV without propellers. (a)
time-frequency spectrum (dB); (b) time-frequency correlation.

high energy. We thus assume that the harmonic noise can be
modeled as directional point sources located at the engine
houses.

Fig. 4(a) depicts the spectrum of the microphone signal
for a one-minute long segment from an MAV with pro-
pellers. The motor rotation speed is rising monotonically
during the first 20 s, remains constant during the following
20 s, and then varies randomly during the last 20 s. The
noise signal mainly consists of two components: harmonic
noise, whose energy peaks at isolated frequency bins,
and broadband noise, whose energy spreads throughout
the whole frequency band. Similarly to Fig. 3(a), the
pitch of the harmonic noise varies based on the motor
rotation speed. In addition to this, the harmonic noise
is more intense in Fig. 4(a) than in Fig. 3(a) due to the
influence of air resistance, which slows the rotation of the
motors and propellers, and also introduces broadband noise.
The energy of the broadband noise is proportional to the
propeller rotation speed: a faster rotation generates a more
rapid airflow and thus a stronger noise. Fig. 4(b) depicts
the time-frequency correlation between two microphone
signals. Strong correlation can be observed only at low
frequencies and only at harmonic frequencies with high
energy. This is mainly due to the influence of broadband
noise. The superimposition of the noise from the four
propellers may generate diffuse-like characteristics, i.e.
with low correlation at high frequencies but high correlation
at low frequencies.

Based on the above analysis, we model the ego-noise,
v(n), as a sum of multiple directional point-source noises
and one directionless diffuse noise:
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Figure 4. Sound recording from an MAV with propellers. (a) time-
frequency spectrum (dB); (b) time-frequency correlation.

v(n) =

P∑
p=1

vd p(n) + vf (n) (3)

where P is the number of motors, vd p(n) is the directional
noise from the p-th motor and vf (n) is the diffuse noise
generated by the P propellers jointly.

This ego-noise model provides us with valuable insights
for noise reduction: the directional components could
be suppressed with advanced microphone-array techniques
such as adaptive beamforming [13] or blind source sep-
aration [21]; moreover, because the model consists of
P + 1 independent noise components, at least P + 2
microphones are required to satisfactorily suppress the
ego-noise while preserving the target signal. Finally,
since the relative locations between the motors and the
microphones are fixed, we can presume that the acoustic
mixing paths between them remain constant even during
MAV movement. This presumption and the validity of the
noise model will be verified in the next section.

4. Model validation
4.1. Noise reduction method

Assuming that all the source signals (target and noise)
are statistically independent, we use Blind Source Separa-
tion (BSS) to estimate a demixing system that separates all
the sources in the microphone signals. BSS does not need
prior knowledge on the source locations and can effectively
suppress directional noises that show strong correlation
across microphones. However, to estimate the demixing



system satisfactorily BSS typically works in a batch style
and requires the acoustic mixing network to be fixed for a
certain interval (e.g. > 10 s) [21]. The stationary mixing
condition is satisfied with physically static sound sources
and microphones, e.g. an MAV hovering stably in the air
and recording a static speaker.

We use a frequency-domain implementation of the BSS
algorithm [14], with a filter length Lw = 1024 at sampling
rate 8 kHz. The noise reduction performance of BSS can
be evaluated with the global SNR measure. Suppose the
spatial filter corresponding to the target signal is w(n) =
[w1(n), · · · , wM (n)], the target signal is estimated as

y(n) = w(n) ∗ x(n) =
Lw−1∑
p=0

w(p)x(n− p)

= ys(n) + yv(n) = w(n) ∗ s(n) +w(n) ∗ v(n),
(4)

where ∗ denotes the convolutive filtering procedure [14]; ys
and yv are respectively the target and noise components at
the output. The global SNR is calculated in target-signal-
active periods S as [13]

SNR = 10 log10

∑
n′∈S y

2
s(n
′)∑

n′∈S y
2
v(n
′)
. (5)

4.2. Discussion

We first evaluate the performance of BSS when the
stationary mixing condition is satisfied, i.e. the MAV, the
microphones and the loudspeaker are physically fixed. The
speech signal and noise signal are recorded separately, and
the noisy signal is generated by summing the two signals
at different input SNRs, which vary from -25 dB to 10 dB,
with an interval of 5 dB. We examine the performance of
BSS with the number of microphones, M , varying from
2 to 8. For each configuration of M and input SNR,
we implement 10 realizations, where in each realization
the speech and noise are both randomly chosen from the
recording with 12 s duration. The SNR improvement (i.e.
the difference between input and output SNRs) is calculated
by averaging the 10 realizations.

Fig. 5 depicts the SNR improvement achieved by BSS
at different input SNRs ∈ [−25, 10] dB, with an interval of
5 dB, when using different M ∈ [2, 8] on a static MAV.
BSS can improve the SNR in all testing scenarios. The
amount of SNR improvement varies with M . The SNR
improvement is quite limited when M ≤ 3, but increases
significantly when M gets from 3 to 6. Then the amount of
increase slows when M gets from 6 to 8. This suggests that
the recording contains 6 independent elements: one speech
(target signal) element and five noise elements (cf. (3)).
Increasing M helps to capture all the elements and thus
improves the noise suppression performance effectively.
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Figure 5. SNR improvement by BSS with a static MAV and signal
duration of 12 s when varying the input SNR and the number of
microphones, M , of the array.
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Figure 6. Time-domain waveforms and time-frequency spectra of
a microphone signal before and after BSS for a 12 s signal and a
static MAV with 8 microphones. The input and output SNRs are
-10 dB and 11.5 dB, respectively.

When M ≥ 6 the SNR improvement still rises slowly since
the additional microphones may help suppress uncorrelated
noise. However, the improvement when M ≥ 6 appears
less evident. The amount of SNR improvement also varies
with the input SNR. The SNR improvement is quite limited
when SNRin ≤ −20 dB, but increases significantly when
SNRin rises from -20 dB to -5 dB, and then slows or even
decreases when the noise becomes less dominant for SNRin
from -5 dB to 10 dB.

Fig. 6 shows sample time-domain waveforms and time-
frequency spectra for one microphone signal before and
after BSS. Before BSS, the speech signal is hardly distin-
guishable from the noisy background (input SNR: -10 dB).
After BSS, the speech signal can be clearly observed in
the enhanced output (SNR: 11.5 dB). Moreover, the strong
harmonic noises are almost completely removed in the
output spectrum.

Fig. 7 compares the performance of BSS, fixed beam-
forming and adaptive beamforming using the same data
used for Fig. 5. A delay-and-sum beamformer is used
for fixed beamforming, assuming the location of the
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Figure 7. SNR improvement by BSS, fixed beamforming and
adaptive beamforming for a static MAV with 8 microphones. Note
that adaptive beamforming assumes the noise correlation matrix to
be known. A demo with the audio signals corresponding to this
figure is available [22].

target speaker to be known. The MaxSNR beamformer
implemented in [13] is employed for adaptive beamform-
ing, assuming the noise correlation matrix to be known.
BSS outperforms fixed beamforming, which can only
improve the SNR by around 2 dB for all cases. This
shows that the directional components of the ego-noise
are better suppressed by BSS. The adaptive beamforming
results provide a benchmark for this problem as it uses
the knowledge of the noise correlation matrix, whose
estimation is still an open problem [13]. BSS does not
need to know the noise correlation matrix and the obtained
noise reduction performance is close to the benchmark at
high input SNRs (e.g. ≥ -10 dB). However, at low SNRs
BSS performs worse than the benchmark. We expect to
improve the performance of BSS if additional information
of the noise correlation matrix is available, e.g. estimated
by using template-based methods [17].

In summary, the ego-noise contains directional compo-
nents and thus can be suppressed effectively with BSS.
The SNR improvement slows down when the number of
microphones is larger than 6 thus suggesting that the ego-
noise contains 5 noise components. The above observations
are consistent with the model proposed in (3).

Finally, we investigate whether the acoustic transfer
paths of the ego-noise remain constant with a moving MAV.
We move the MAV with the tripod and generate noisy
signals by summing speech signals, which are recorded
when the MAV is static, and noise signals, which are
recorded when the MAV is moving. Since BSS works
well only for a stationary mixing network and the acoustic
paths between the speaker and microphones are fixed in the
simulation, the stationary mixing assumption of the ego-
noise can be easily verified based on the BSS performance
for the simulated data. We test BSS using different signal
durations, which vary from 12 s to 60 s. For each duration,
we use different input SNRs, which vary from -25 dB to
10 dB, with an interval of 5 dB, and different M , which

Signal length [s]

12 20 30 40 50 60

S
N

R
im

p
 [

d
B

]

0

5

10

15

20
M=8

M=7

M=6

M=5

M=4

M=3

M=2

Figure 8. SNR improvement by BSS for a moving MAV. The
signal duration is varying from 12 s to 60 s (input SNR: -5 dB)
and the number of microphones, M , varies from 2 to 8.

varies from 2 to 8. For each configuration of M and input
SNR, we implement one realization. Fig. 8 depicts the SNR
improvement achieved by BSS at input SNR −5 dB, when
using different signal lengths, varying from 12 s to 60 s,
and different number of microphones M ∈ [2, 8]. The SNR
improvement increases significantly when M is rising from
2 to 6, and the increase slows when M is rising from 6 to 8.
This is similar to the observation made for Fig. 5. For each
M , the SNR improvement does not degrade evidently when
increasing the signal length, thus confirming the stationary
mixing assumption of the ego-noise for a moving MAV.

5. Conclusion
In this paper, we modelled the ego-noise of a P -rotor

MAV as P directional noises (each coming from a motor)
plus one diffuse noise (coming from the propellers) and val-
idated the noise model by applying blind source separation
to MAV sound recording. At least P + 2 microphones are
required to suppress the noise satisfactorily. Due to fixed
relative locations between the motors and the microphones,
the acoustic mixing network of the ego-noise tends to
remain stationary during the movement of the MAV. This
finding is very promising for developing efficient noise
reduction algorithms in practical applications, where the
acoustic mixing network of the target always changes due
to MAV movement.

To facilitate comparisons and reproducibility we make
all the audio recordings discussed in this paper publicly
available [22].

Our future work includes using the proposed noise model
to design a new BSS algorithm that works outdoors with
moving MAVs and in conditions where natural wind and
surrounding noises impose additional challenges, and also
real-time implementation on a practical UAV system.
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