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ABSTRACT 

Photocatalytic cement containing nano-TiO2 has been introduced to the construction industry 

because of its biocidal and self-cleaning properties.  Although, TiO2 is classified as possibly 

carcinogenic to humans, the cancer risk among cement workers is currently unknown. This is 

partly because an assessment of exposures to airborne photocatalytic cement is missing.  We 

characterized airborne photocatalytic cement in an experimental aerosolization set-up and 

compared it to regular cement. Aerosolized nanoparticle size distributions and concentrations 

were measured with a scanning mobility particle sizer ( SMPS)  and a portable aerosol 

spectrometer (PAS) .  Particle morphology was analyzed with a scanning electron microscopy 

( SEM)  and transmission electron microscopy ( TEM) .  Energy Dispersive X- Ray Analysis 

(SEM-EDX) was used for elemental determination.  

The aerosolized photocatalytic cement powder contained 5%  nanosized particles in number 

concentration while regular cement had only a negligible amount.  Airborne photocatalytic 

cement concentration was 14,900 particles per cubic centimeter ( pt/ cm3)  with a geometric 

mean diameter ( GMD)  of 249 nm (geometric standard deviation; GSD ±2 nm).  Airborne 

regular cement concentration and GMD (GSD) were 9,700 pt/ cm3 and 417 nm (±2 nm), 

respectively.  Photocatalytic cement contained 18. 5 times more airborne nano TiO2 ( 37% ) 

compare to bagged powder (2%). 

Aerosolized photocatalytic cement had a significantly smaller particle size distribution and 

greater particle concentration compared to regular cement. Both types of cement had 99% of 

the particles with sizes less than 1 µm.  Nano TiO2 was directly aerosolized from the cement, 

followed with a coagulation/agglomeration process. Future studies should evaluate workers’ 

exposures associated with the use of photocatalytic cement. 
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1. Introduction 

Nanotechnology concerns matter at the nanoscale ranging between 1 nanometer (nm) and 100 

nm, and has led to the production of new materials, devices, and structures ( ISO/TS 2 7 687 

2008) (OSHA 1999) (Surinder Mann 2006) (OSHA 2013). In the construction industry, a new 

generation of “ green”  or “ photocatalytic cement”  has evolved over the past decade. These 

cements contain nanoscale titanium dioxide ( nano TiO2) , which act as a radical- forming 

catalyst in the presence of oxygen.  Radicals do not only react with bacteria, fungi, and other 

microorganisms, but also with air pollutants, deposited volatile organic compounds and soot. 

They thereby act as biocides rendering surfaces as “ self- cleaning”  (Lan, Lu, and Ren 2013) 

(Carp, Huisman, and Reller 2004) (Chen and Poon 2009). The world-wide cement consumption 

was 158 million metric tons in 2013 (PCA 2013). An estimated 319,300 employees or 8% of 

the Swiss workforce work in the Swiss construction industry ( FSO 2 0 1 7 ) .  The amount of 

photocatalytic cement consumed is not known nor is the number of workers using this new 

type of cement.   

 TiO2 was classified by the International Agency for Research on Cancer ( IARC)  in 2006 as 

“possibly carcinogenic to humans” (Group 2B). The inadequate evidence of carcinogenicity in 

humans (WHO 2010) (IARC 2017), came partially from the lack of exposure assessment in 

the epidemiological studies (Baan 2007). No data were available for the IARC Monograph 

working group regarding the characterization or quantification of exposure to ultrafine (<100 

nm) TiO2 particles.  

Nano TiO2 exposures depend on the particles’ physical and chemical properties, working 

conditions, frequency of use, task duration, and air concentration. The latter will depend on the 

particles size.  The amount of inhaled nano-TiO2 will depend on the particle size distribution. 

Particles >10 µm will impact in the upper respiratory region or be carried out by the mucociliar 



escalator; while particles between 1,000 – 10,000 µm will diffuse into the alveoli (Sha et al. 

2015) (Tedja et al. 2011).  Nano- TiO2 particles have been shown to accumulate in the lungs’ 

interstitial tissue, especially in the alveoli, and translocate into the blood circulation where they 

are transported to different target organs (lymph nodes, kidney, liver, heart, and brain) (Wang 

et al. 2008) (Kreyling, Hirn, and Schleh 2010) (Geiser and Kreyling 2010) (Gaté et al. 2017). 

About two percent by weight nano-TiO2 is added to regular cement to make photocatalytic 

cement. We calculated the percentage from the SEM-EDX analysis, as this information is not 

publicly available.  These nano-TiO2 particles are not chemically bound to the cement. 

Nanoparticles are in general easily airborne but can also agglomerate/aggregate to larger 

particles depending on their intrinsic physical and chemical properties. This is needed to 

develop protective measures for workers using photocatalytic cement.  

Our aim was to characterize airborne photocatalytic and regular cement by determining size 

distribution, concentration, morphology and elemental composition using an aerosolizing 

system previously described by Ding and Riediker (2015, 2016).  Special attention was given 

to particles in the nano- range both in the obtained cement powders as well as for the airborne 

fraction. 

 

2. Material and Methods 

We compared two types of cement: regular Portland cement type I (cement-clinker; CE number 

266-043-4) produced in Switzerland, and photocatalytic cement obtained from Italcementi 

group. We verified that both cements had similar stochiometric compositions apart from TiO2 

content measured with SEM-EDX. The cement powders were aerosolized using an 

aerosolizing system described earlier ( Ding and Riediker 2 0 1 5 )  following the experimental 

procedures described in Ding & Riediker, (2016) (Ding and Riediker 2016).  Briefly, dry air 



was blown upwards through a glass funnel containing cement powder (2 g).  This aerosolized 

the powder in the bottom of the funnel where the airflow was turbulent ( Figure 1) .  The 

aerosolized particles were then diluted with air, adjusted for temperature and humidity, and led 

into the measurement chamber.  The experiments were repeated three times.  T h e  size 

distribution was measured as soon as the aerosolizing system reached stable particle 

concentration readings.  

 

 

 

 

 

 

 

Figure 1: Schematic of the experimental set-up. Cement powder was deposited in the glass 

funnel and the dry air suspends the particles in the air and moves the fine particle fraction to 

the mixing and measurement chambers. The analytical instruments used are listed on the right. 

 

Nanoparticle size distributions and concentrations were measured with a scanning mobility 

particle sizer ( SMPS; SMPS+ C model 5400, Grimm Aerosol Technik GmbH & Co.  KG, 

Ainring, Germany) ,  configured to measure particle sizes ranging from 11 to 1,083 nm.  The 

SMPS charges the particles that the mobility analyzer classifies by polarity according to their 

electrical mobility; and lastly, the particle counter determines the number concentration of 



the mobility-classified particles. A portable aerosol spectrometer (PAS; model 1.109, Grimm 

Aerosol Technik GmbH & Co. KG, Ainring, Germany) was used to measure concentrations of 

fine particles from 250 to 32,000 nm. The PAS measures the intensity of light scattered from 

aerosol particles through a focused light, and the amount of incident scattered light is a function 

of particle size.  The PAS measures particle number concentrations in 31 bins from 250 nm to 

32,000 nm and calculates mass concentrations in three particle size fractions (PM1, PM2.5, and 

PM10) .  For particle morphology determination, the aerosol particles were collected onto 

transmission electron microscopy ( TEM)  grids ( Quantifoil R1/ 4, Quantifoil Micro Tools 

GmbH, Germany) using a mini particle sampler (MPS, flowrate 0.3 L/min) (Ecomesure, Sacly, 

France). TEM-grid sampling was stopped when the cumulative collected number concentration 

measured by SMPS was around 106 particles.  The TEM grids were analyzed by a  scanning 

electron microscope (SEM) (PHENOM XL BSE detector at 15kV) and a transmission electron 

microscope (TEM) (TEM CM-100 (JEOL, USA) at 80 kV) for morphology; and by energy 

dispersive X-ray spectroscopy (SEM-EDX) for elemental composition. In addition, a sample 

of the cement powders as they existed in the cement bag (“bagged powder”) was obtained and 

analyzed chemically as well as morphologically.  

Statistical analyses were performed using STATA15.  Size difference and concentration 

difference were compared using two sampled t-test. 

 

3. Results 

3.1 Nanoparticle size number distribution and number concentration  

The SMPS showed the photocatalytic cement mean concentration to be 1 4 , 9 0 0  pt/ cm3  and 

9,700 pt/cm3 for regular cement. Photocatalytic cement had a geometric mean diameter (GMD) 

of 2 4 9  nm and a geometric standard deviation ( GSD)  of 2  nm, while regular cement had a 



GMD of 417 nm (GSD 2 nm). The particle size distribution and concentration for aerosolized 

photocatalytic and regular cement are shown in Figure 2. Between 1 1  and 545 nm ( 1 1  and 

1,083 nm SMPS range) (x-axis), the photocatalytic cement had a greater nanoparticle number 

concentration ( y- axis)  than regular cement.  Maximum particle number concentration was 

12,700 pt/ cm3  for photocatalytic cement particles in the range 214.4-241.0 while regular 

cement had two maximum concentrations: 7,250 and 7,150 pt/cm3 at 271.8 nm and 692.1 nm, 

respectively.   

Particle number size distributions were measured with two different instruments:  SMPS (11-

1,083 nm) and PAS (250-32,000 nm). For simplicity and because the SMPS is more accurate 

in the nanoparticle region, we used the SMPS results in the overlapping nanoparticle size region 

(250-1,083 nm) when we combined the results from the two instruments. We used the SMPS 

results up to 1,083 nm and PAS results from this size to 32,000 nm.  Figure 2 shows the particle 

size distributions of photocatalytic and regular cement measured by SMPS and PAS.  Table 1 

shows particle number and mass concentration for photocatalytic and regular cement.  The 

photocatalytic cement size distribution had a mean number concentration of 1 6 ,7 1 0  pt/ cm3 

with a GMD of 412 nm and a GSD of 2 nm (Table 1). The regular cement mean was 11,700 

pt/ cm3  with a GMD of 5 9 9  nm and a GSD of 2  nm (Table 1).  The nanoparticle size for the 

photocatalytic cement was significantly smaller than for regular cement (two-sample t-test, p-

value < 0 . 0 0 0 5 ) .  Furthermore, the particle number concentration for photocatalytic cement 

was significantly greater than for regular cement particles (p-value < 0.0005).  

 

 

 

 



 

 

 

 

 

 

 

Figure 2: Particle number size distribution for photocatalytic and regular cement the size 

distribution information obtained by SMPS and PAS. SMPS measure the nanoparticles size 

range from 11 to 1,083 nm, while PAS measure fine particle from 250 to 32,000 nm. 

 

Photocatalytic cement had about 4 . 7  % of the aerosolized particles in the nanoscale, while 

regular cement only had 1/10th of this (0 .4  %). Both cement types had over 90 percent of the 

particle count in the size range less than 1 µm.  The mass concentration measured by PAS 

showed more airborne mass for photocatalytic cement (5,130 µg/m3, SD = 0.3), compared to 

regular cement (1,916 µg/m3, SD = 0.1) as shown in table1.  

 

 

 

 

 



Table1:  Particle number and mass concentration measured for photocatalytic and regular 
cement from triplicate experiments. 

 

Cement type 
Total 
Conc. 

Number concentration (pt/cm3) 

GSD. 
10-100 

nm 
100-1’000 

nm 
1-10 µm >10 µm 

Photocatalytic 

cement 

16,710 

(100%) 
420 

783 

(4.7%) 

14,500 

(86.8%) 

1,430 

(8.5%) 

0 

(0%) 

Regular 

cement 

11,700 

(100%) 
307 

43 

(0.4%) 

10,600 

(90.6%) 

1,050 

(9.0%) 

0 

(0%) 

 Mass concentration (µg/m3) 

Photocatalytic 

cement 

5,103 

(100%) 

 

0.3 
- 

1,210 

(23.7%) 

3,879 

(76.0%) 

14 

(0.3%) 

Regular 

cement 

1,916 

(100%) 
0.1 - 

473 

(24.7%) 

1,442 

(75.3%) 

1 

(0.0%) 

 

Figure 3 shows the mass- size distribution for both cement types. Photocatalytic cement had a 

maximum value at 2.0 µm and regular cement at 2.5 µm. 

 

 

 

 

 

 

Figure 3:  Mass-size distribution of photocatalytic cement and regular cement measured with 
PAS. 



3.2 Elemental composition analysis 

Elemental composition of the bagged powder and their airborne particles collected onto filters 

after aerosolization were determined by SEM- EDX analysis.  As expected, calcium oxide 

(CaO) was the most abundant material by mass followed by silicon dioxide (SiO2), as shown 

in Figure 4. Aerosolized particles from regular cement showed a similar elemental distribution 

as the material powder.  There were however, clear differences in relative mass percentage 

between the cement types.  The relative mass from CaO in photocatalytic cement powder was 

62. 4% , while this only made up 31. 2%  in the aerosolized form.  The relative contribution of 

TiO2 showed the opposite pattern with 2.0% in the raw material and 37.4% in the aerosolized 

particles.  

 

 

 

 

 

 

 

Figure 4: Elemental composition analysis (SEM-EDX) given in percent for each substance 

contained in regular and photocatalytic cements, both in powder and aerosol forms. 

 

 

 



3.3 Morphology study 

Analysis by SEM and TEM found similar morphology for photocatalytic and regular cement 

bagged powder (Figures 5A and 5B).  Particles collected onto filters after aerosolization, 

however, differed considerably depending on cement type:  photocatalytic cement showed a 

much greater number of small particles than regular cement.  The TEM images also suggest 

that photocatalytic cement consisted of two distinct particle types that differed in morphology 

and in size ( c. a.  50 nm and > 200 nm, respectively ( Figure 5C and 5D) magnification with 

focus on particles of around 50 nm size) .  The regular cement contained only coarse particles 

(Figure 5D).  The presence of nano- ranged spherical particles that was only found in the 

photocatalytic cement might possibly be attributed to nano TiO2 (Figure 5E). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Schematic of SEM and TEM images of photocatalytic and regular cement. 

 

  



4. Discussion  

Aerosolized photocatalytic cement had a greater concentration of nanoscale particles compared 

to aerosolized regular cement. The morphology results confirmed that (1) the photocatalytic 

cement contained nanoparticles and (2) TiO2 is a constituent of the photocatalytic cement 

aerosol. Taken together, this suggests that nano TiO2 can be easily mobilized from 

photocatalytic cement powder when aerosolized.  This can be expected if the nano TiO2 

particles are not chemically bound to the larger cement particles.  

It is important to note that the TiO2 content in photocatalytic bagged cement powder was only 

2 % while reaching 37 % in the aerosolized form.  In stable conditions, the aerosolized 

photocatalytic cement contained about 5% of airborne nanoparticle numbers, presumably TiO2. 

It is likely that a part of the airborne nanoTiO2 was present in the form of agglomerates as seen 

previously by (Ding and Riediker 2015); however, we did not verify this in our experiments. 

Since cement particles were only 5% of the nanosized particles, this would not be sufficient to 

contribute 37% of aerosolized mass. We suggest that these were attachment to larger sized 

cement particles which was suggested by the morphological examination (Figure 7A).  

The size distribution curve obtained for the regular cement showed an unusual discontinuous 

profile for particles larger than 200 nm. A non-ideal behavior could be due to limitations in the 

multiple-charge correction (MCC) algorithm applied to the aerosol sample data in the SMPS 

measurements. For large and anisometric particles the relationship between the aerodynamic 

and the electrical mobility diameters typically makes the algorithm approximations inaccurate 

(He and Dhaniyala 2013). The SMPS data obtained without MCC treatment confirmed this 

hypothesis showing a smooth size distribution profile for the larger particle range (Figure S1) 

in regular cement. However, the comparative analysis of both regular and photocatalytic 

cement in the absence of MCC showed qualitatively similar trend, the mean concentration for 



the photocatalytic cement being greater than for regular cement. The MCC algorithms for these 

types of particles should be developed in the future. 

Exposure to regular cement is associated with lung function decline at elevated exposures 

(Nordby et al. 2016). The majority of the particle material found in both regular and 

photocatalytic cement was CaO.  Inhaled CaO dust can cause inflammation in the upper 

respiratory tract due to its alkalinity (Toxicology data network (TOXNET) 2014). The second 

most abundant particle material was silica ( SiO2).  Exposure to crystalline silica can lead to 

health effects such as silicosis, tuberculosis, chronic bronchitis, COPD and lung cancer (IARC 

1997)) (Merget et al. 2002) (Kaewamatawong et al. 2005)) (Napierska et al. 2010). Amorphous 

silica is associated with reversible inflammation, granuloma formation and emphysema 

(McLaughlin, Chow, and Levy 1997) (Merget et al. 2002) (Kaewamatawong et al. 2005). 

Cement dust as such has been associated with impaired lung function, inflammation, bronchitis, 

chronic obstructive pulmonary disease, restrictive lung disease, and pneumoconiosis ( Eom et 

al. 2017) (Maciejewska and Bielichowska-Cybula 1991) (Meo 2004) (Penrose 2014). None of 

these toxicological assessments were made with nano-sized particles. We therefore concluded 

that exposures to these nano-sized particles could lead to unexplained effects on human health, 

and consequently, safety and environmental burden should not be neglected (Maynard et al. 

2006) (Oberdörster, Oberdörster, and Oberdörster 2005). The inhalation pathway is considered 

the major route of nanoparticle exposure, and the lungs and pleura are the major primary targets 

for adverse effects (Donaldson and Poland 2012) (Oberdörster, Oberdörster, and Oberdörster 

2005). It is difficult to say how nano TiO2 might change health hazards already associated with 

cement exposure, but this should be considered when assessing exposure risks among cement 

workers. 

We have shown that the particle size distribution for photocatalytic cement contain more 

particle in the smaller size range (<1 um) (Figure 2) and have a greater mass concentration 



(Figure 4) than regular cement. In order to provide a safe working environment, the industry 

should develop risk management strategies, (Hämeri et al. 2009) (Friedrichs and Schulte 2007). 

We suggest that the amount of nanoparticles added to the product should be publicly available, 

and that the risk management strategies should account for the readily airborne nanoparticles.  

A number of instruments are available to measure particle distribution as well as physical and 

chemical properties of airborne nanoparticles. Real time instruments provide information on 

the metrics under study; however, they are generally unable to differentiate between types of 

nanoparticles. We used SMPS and PAS in our experiments. These are complimentary as they 

measure somewhat different particle size ranges; however, they both lack specificity. We used 

the morphology results to verify that the aerosolized nanoparticles were indeed TiO2 in our 

experiments.  

Understanding the relationship between airborne nano-sized particles and exposure is of great 

importance for developing efficient control measures. Our experiments are a step in this 

process; understanding the aerosolized part of bagged powder. We found that aerosolized 

photocatalytic cement contained 5% nanoparticles compared to the 2% added to the bagged 

powder. We therefore conclude that we cannot assume the nanoparticles distribution to be the 

same in aerosolized as in the bagged powder.  

The protection measures needed when working with photocatalytic cement should be similar 

to recommendations made for nano TiO2 exposures. Engineering control is preferred such as 

closed process chambers installed with high- efficiency particulate air ( HEPA)  filters (Goede 

et al. 2018). Indeed, most large construction sites have the cement already mixed with water in 

Switzerland thereby controlling for dust exposure. Other activities where workers may be 

especially exposed to nanoscale particles are during bagging and cleaning operations (Fonseca 

et al. 2015) (Plitzko 2009) (associated with dry cement).  When work operations cannot be 



enclosed, it is necessary to implement control measures to mitigate worker exposures. 

Occupational hygiene strategies should be implemented to reduce exposure to the dry cement 

(NIOSH 2011) (NIOSH 2012) (NIOSH 2013) (OSHA 2013). Use of personal respiratory 

protection (PRP) is of last resort. Current PRP recommendations for working with 

nanoparticles are for the US: N100, R100, and P100 (OSHA 2011) (NIOSH 2014) and Europe 

( EN 143 EN 149): Class P3 filtering face pieces ( FFP3)  (Goede et al. 2018) ( Rengasamy, 

Eimer, and Shaffer 2009).  

In conclusion, we were able to show that in experimental conditions the photocatalytic cement 

had significantly smaller particle size distribution than the regular cement; and the cement 

particle concentration was significantly greater for the photocatalytic compared to regular 

cement. Ninetynine percent of the particles were <1 µm for both cement types. Nano TiO2 can 

be directly aerosolized from the cement, and a coagulation process is likely followed. Future 

studied should evaluate exposures associated with the use of photocatalytic cement by 

construction workers. 
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Supplementary Information 

 

SMPS measurements and multiple charge correction (MCC) 

To evaluate the contribution of the applied MCC algorithm to the discontinuous distribution 

profile obtained for large regular cement particles, the corresponding SMPS raw data were 

treated without MCC step. As shown in Figure S1, in the absence of MCC the size distribution 

becomes smoother and exhibits higher particle concentration, as expected. In the case of 

photocatalytic cement, the particle concentration is similarly affected since multiply-charged 

particles do contribute to the overall counted particles. Providing the nature of the regular 

cement composed of irregularly-shaped particles with high an isometry, the use of alternative 

MCC algorithm for more accurate SMPS measurements is currently foreseen.  

 

 

 

 

 

 

 

 

 

PhC MCC; Photocatalytic cement with multiple charge correction (solid cubic) 

RC MCC; Regular cement with multiple charge correction (solid triangle) 

PhC no MCC; Photocatalytic cement without multiple charge correction (solid diamond) 

RC no MCC; Regular cement without multiple charge correction (solid circle) 

 

Figure SI1: Particles size distributions and concentrations for aerosolized cement particle 

with and without multiple charge correction treatment. 


