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Abstract

In this paper we work in the framework of a k-dimensional vector of log-

linear risks. Under weak conditions on the marginal tails and the dependence

structure of a vector of positive risks we derive the asymptotic tail behaviour

of the aggregated risk and present an application concerning log-normal risks

with stochastic volatility.
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1. Introduction

The recent contribution [17] discusses important aspects of linear models of heavy-

tailed risks related to risk diversification. Following the aforementioned paper, a

good starting point for explaining linear models is the stochastic representation of

multivariate normal risks in terms of regression models. For the purpose of this

introduction, we confine ourselves for the moment to two random variables (rvs).

Specifically, if X1 and X2 are jointly normal with mean 0, variance 1 (i.e., with standard
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normal distribution function (df)) and correlation ρ ∈ [0, 1), we assume

Xi =
√
ρW0 +Wi,ρ, Wi,ρ =

√
1− ρWi, i = 1, 2, (1)

where W0,W1,W2 are independent N(0, 1) rvs. Motivated by (1), we refer to the rvs

Z1 = eX1 , Z2 = eX2 as log-linear risks. Clearly, Z1, Z2, are risks with some positive

dependence structure, which is a common feature of many financial and insurance risks.

In numerous finance, insurance and risk management applications a prevailing model

for aggregating dependent risks is the log-normal one with positive dependence; see

[1, 2, 12, 13, 15, 16, 18].

The importance of this paradigm lies in the fact that on the log-scale a linear

relationship such as (1) is assumed. Numerous applications based on the log-normal

assumption explain the behaviour of aggregated and maximum risk. Despite the

tractability and the wide applicability of log-normal based models, the asymptotic tail

behaviour of the aggregated risk S2 = eX1 + eX2 has been unknown for a long time;

in [3] it is first shown that the principle of a single big-jump applies for log-normal rvs

defined by (1), i.e.,

P {S2 > u} ∼ P
{

max(eX1 , eX2) > u
}
∼ 2P {X1 > lnu} , u→∞.

We use the standard notation a(u) ∼ b(u) meaning limu→∞ a(u)/b(u) = 1 for non-

negative functions a(·) and b(·).

In this paper, instead of making specific distributional assumptions on the W ′i s we

shall impose only weak conditions on the marginal tails and on the joint dependence

structure. For instance, for the simple setup of bivariate log-linear risks, the main find-

ing of this contribution is that under such assumptions, the asymptotic tail behaviour

of the aggregated risk S2 is still determined by the tail asymptotics of Z1 and Z2. In

the special case when Wi, i = 1, 2, satisfy

lim
x→∞

P {Wi > x}
P {W > x}

= ci ∈ (0,∞), (2)

where W is an N(0, 1) rv, the tail asymptotics of S2 are determined by those of W .

The organisation of the paper is as follows: Section 2 consists of some preliminary

results. In Section 3 we present our main result. Section 4 discusses a log-normal

model with stochastic volatility. The proofs of the results are relegated to Section 5.
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2. Preliminaries

In this section we briefly discuss some classes of univariate dfs characterised by their

tail behaviour. Additionally we present two results on the tail asymptotics of products

and sums of independent rvs.

A well-known class of univariate dfs with numerous applications to risk aggregation

is that of subexponential dfs, see [7, 11]. A rv U and its df F with support on (0,∞)

are called subexponential if

lim
u→∞

P {U + U∗ > u} ∼ 2P {U > u} , u→∞,

where U∗ is an independent copy of U . It is well-known (e.g., [10]) that a subexponen-

tial df F is long-tailed, i.e., there exists some positive measurable function a(·), such

that limu→∞ a(u) = limu→∞ u/a(u) =∞ and further

P {U > u+ a(u)} ∼ P {U > u} , u→∞.

Canonical examples of such dfs are the Pareto and the log-normal. A further interesting

example is the Weibull df with tail df F (x) = 1 − F (x) = exp(−xβ), β ∈ (0, 1), for

which we can choose

a(u) = o(u1−β), u→∞.

An important property of log-normal and Weibull rvs is that their dfs are in the

Gumbel max-domain of attraction (MDA) with some positive scaling function b(·)

meaning that

lim
u→∞

P {U > u+ tb(u)}
P {U > u}

= exp(−t) , t > 0 . (3)

Condition (3) is equivalent to the fact that the rv U has df in the Gumbel MDA; see

[7, 21]. We shall abbreviate the limit relation (3) as U ∈ GMDA(b). Random variables

satisfying (3) have rapidly varying tail df F , i.e., for any λ > 1,

lim
u→∞

F (λu)

F (u)
= 0 . (4)

The next lemma is crucial for the derivation of the asymptotic tail behaviour of the

product of two independent non-negative rvs.
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Lemma 1. Let X,Y, Y ∗ be non-negative rvs with infinite right endpoint and such that

X is independent of (Y, Y ∗). If the tail df F of X satisfies (4) for some λ0 > 1 and

further limu→∞ P {Y > u} /P {Y ∗ > u} = c ∈ (0,∞), then we have that

P {XY > u} ∼ cP {XY ∗ > u} , u→∞. (5)

Remark 1. a) The class of dfs F with infinite right endpoint and such that (4) holds

for some λ0 > 1 strictly contains the class of dfs with a rapidly varying tail. For F

rapidly varying, (5) was proved in [23], Lemma A.5.

b) We notice that condition (4) on X = eW holds if and only if the rv W has an infinite

right endpoint and for some η > 0,

lim
u→∞

P {W > u+ η}
P {W > u}

= 0 . (6)

Lemma 1 implies the following result for convolutions.

Corollary 1. Let W1, . . . ,Wk be independent rvs with infinite right endpoints. Sup-

pose that condition (6) holds for each Wi with a suitable constant ηi > 0, i = 1, . . . , k.

Further, if the independent rvs V1, . . . , Vk satisfy limu→∞ P {Wi > u} /P {Vi > u} =

pi ∈ (0,∞), i ≤ k, then for any positive constants θ1, . . . , θk we have

P

{
k∑
i=1

θiWi > u

}
∼
( k∏
i=1

pi

)
P

{
k∑
i=1

θiVi > u

}
, u→∞. (7)

Remark 2. If W1, . . . ,Wk are independent rvs satisfying P {Wi > u} ∼ piu
αie−u

2/2

as u→∞ for some αi ∈ R, pi ∈ (0,∞), i ≤ k, then Wi ∈ GMDA(b) with b(u) = 1/u,

see e.g., [7], p. 155. Consequently, (7) holds for any θ1, . . . , θk positive and V1, . . . , Vk

independent rvs such that each Vi has a density fi satisfying fi(u) ∼ uαi+1e−u
2/2 as

u→∞. By Theorem 1.1 in [22] we obtain

P

{
k∑
i=1

θiVi > u

}
∼ (
√

2π)k−1σ1−2k−2α
k∏
i=1

θαi+1
i uα+k−1e−u

2/(2σ2) (8)

as u→∞, where α =
∑k
i=1 αi, σ

2 =
∑k
i=1 θ

2
i . The asymptotic expansion (8) is shown

in [19], Lemma 8.6; see also [9], Theorem 2.2.



Aggregation of Log-Linear Risks 5

3. Main Result

Motivated by (1), we introduce a k-dimensional log-linear model of positive risks.

For this reason, let Wi, i = 0, . . . , k, be independent rvs. Writing for non-negative

constants ρ ∈ [0, 1), Wi,ρ =
√

1− ρWi, we introduce the linearly dependent rvs Xi =
√
ρ0W0 +Wi,ρi , for constants ρ0 > 0 and ρi ∈ [0, 1) and define the log-linear model for

positive constants θi as follows

Zi = θie
Xi , i = 1, . . . , k. (9)

In the credit risk literature, the model (9) with iid standard normal W0, . . . ,Wk is

usually referred to as the one-factor (or Vasicek) model and forms the mathematical

basis underlying the CreditMetricsTM/KMV approach; see for instance [6], Section

2.5.

In Theorem 1 below, an explicit expansion for the tail of the aggregated risk is

derived by assuming subexponentiality of certain factors, which in particular im-

plies that the aggregated risk Sk =
∑k
i=1 Zi is tail equivalent to the maximum risk

Mk = max1≤i≤k Zi. As in the log-normal case, investigated by Asmussen and Rojas-

Nandayapa in [3], the principle of a single big-jump applies in our framework; see [11]

for an insightful explanation of this phenomenon. In fact, the asymptotic tail behaviour

of the aggregated risk is controlled by the base risk W0 and the index set

J = {1 ≤ j ≤ k : ρj = %}, where % = min1≤i≤k ρi.

Theorem 1. Consider the log-linear model Z1, . . . , Zk defined by (9). In addition, we

assume the following conditions.

1. The rvs Wi satisfy the tail equivalence condition (2) for a rv W and positive

constants ci, i = 1, . . . , k.

2. The rv W satisfies (6) for some η > 0 and e
√
1−%W is subexponential.

3. The rv W0 satisfies (6) for some η = η0 > 0.

Then the following relation holds as u→∞,

P {Sk > u} ∼ P {Mk > u}

∼
∑
i∈J

ci P
{√

ρ0W0 +
√

1− %W ∗ > ln(u/θi)
}
,
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where W0 and W ∗ are independent and W ∗ is an independent copy of W . Moreover,

if θ̃ = maxi∈J θi and

0 < η ≤ (1− %)−1/2 min
i∈J:θi<θ̃

ln(θ̃/θi), (10)

we have

P {Sk > u} ∼ P {Mk > u}

∼
∑

i∈J:θi=θ̃

ci P
{√

ρ0W0 +
√

1− %W ∗ > ln(u/θ̃)
}
.

In this context, we interpret mini∈J:θi<θ̃ ln(θ̃/θi) =∞ if θi = θ̃ for all i ∈ J .

Theorem 1 can be formulated to cover also differences of log-linear risks by allowing

some θi’s to be negative. Under the assumptions of the aforementioned theorem, if

θ̃ > 0, then any i such that θi < 0 does not belong to the index set J .

Theorem 1 does in general not follow from the results in [12] since we do not impose

conditions on the hazard rate function. In this context, we also mention the recent

contribution [13] which investigates the asymptotic tail behaviour of the differences of

log-normal risks.

Example 1. If W ∈ GMDA(b) with scaling function b(u) = 1/u, then e
√
1−%W ∈

GMDA(b∗) with b∗(u) = (1 − %)u/ lnu and e
√
1−%W is subexponential by virtue of

the Goldie-Resnick condition; see e.g., [7] p. 149. In particular, if V is an N(0, 1) rv

with density ϕ, then V ∈ GMDA(b) with b(u) = 1/u. Hence for W0 and W with tail

behaviour proportional to that of the standard normal rv V , i.e., for positive ν, ν0,

P {W0 > u} ∼ ν0 P {V > u} , P {W > u} ∼ ν P {V > u} u→∞, (11)

the conditions of Theorem 1 are satisfied. In view of Corollary 1, for an independent

copy V ∗ of V and with σ =
√

1 + ρ0 − %,

P
{√

ρ0W0 +
√

1− %W ∗ > u
}
∼ ν0νP

{√
ρ0V +

√
1− %V ∗ > u

}
= ν0νP {σV > u} ∼ ν0ν

σ

u
ϕ
(u
σ

)
, u→∞.

Thus we derived the following result under the assumptions of Theorem 1 and the

additional conditions (10) and (11):

P {Sk > u} ∼ P {Mk > u} ∼ ν0 ν
∑
j∈J

cj
σ

ln(u/θ̃)
ϕ
( ln(u/θ̃)

σ

)
, u→∞ .
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We mention in passing that, under the assumptions above, each rv eWi,ρi has df in the

Gumbel MDA, hence the approach suggested in [18] is applicable.

4. Log-Normal Risks with Stochastic Volatility

Next we discuss the log-normal model with stochastic volatility. We consider the log-

linear model of the previous section, where we assume that the rvs Wi are independent

conditionally mean-zero normal rvs with stochastic volatility Ii > 0, i = 0, . . . , k. This

means we have the representation

Wi = IiYi , i = 0, . . . , k ,

where Yi, Ii, i = 0, . . . , k, are independent rvs and (Yi) is an iid N(0, 1) sequence.

We note that there is a close relationship of our model with normal variance mixture

models; see e.g., [4].

In a practical setting, the Ii’s can be understood as random deflators. Therefore we

assume that the Ii’s are supported on (0, 1] with an atom at 1, i.e., for every i ≤ k

there exists ci = P {Ii = 1} > 0. The asymptotic tail behaviour of the Wi’s in this

model is very close to that of the Yi’s; see Lemma 2 in Section 6.

4.1. Maximum and Aggregated Risk

The log-normal model with stochastic volatility, defined for given constants θ1 ≥

· · · ≥ θk > 0 by

Zi = θi exp(
√
ρ0I0Y0 +

√
1− ρiIiYi), i = 1, . . . , k,

is of special interest since it allows for the incorporation of random deflation effects. The

positive weights θi correspond to a deterministic trend ln θi in the log-linear relationship

for Zi.

In view of Lemma 2 in the Appendix we have

P {Wi > u} ∼ ci
ϕ(u)

u
, u→∞ , i = 0, . . . , k ,

where ϕ is the density of anN(0, 1) rv. Applying Example 1 and assuming for simplicity

that % = ρ1 and θi = 1 for all i ∈ J , we obtain for fixed k ≥ 1,

P {Sk > u} ∼ P {Mk > u} ∼ c0
∑
j∈J

cj
σ

lnu
ϕ
( lnu

σ

)
, u→∞, (12)
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where σ =
√

1 + ρ0 − ρ1.

4.2. Asymptotic Behaviour of VAR and CTE

Since the Yi’s have continuous dfs, the Zi’s have continuous dfs as well. Hence by

definition the conditional tail expectation (also referred to as Expected Shortfall) of

Sk is given by

CTEq(Sk) = E{Sk|Sk > VaRq(Sk)},

where q ∈ (0, 1) is a predefined confidence level and VaRq(X) is the Value-at-Risk at

level q for the risk X, i.e., VaRq(X) = inf{s ∈ R : P {X ≤ s} ≥ q}.

Relation (12) implies

E{(Sk − u) | Sk > u} ∼ b(u) ∼ σ2u/ lnu , u→∞

see e.g., [7]. Since vn = VaR1−1/n(Sk)→∞ as n→∞, we obtain

CTE1−1/n(Sk) = E{(Sk − vn)|Sk > vn}+ vn

= vn

( σ2

ln vn
(1 + o(1)) + 1

)
∼ VaR1−1/n(Sk) , n→∞ . (13)

In practice, the level q = 1 − 1/n is fixed with n typically large leading to confidence

levels 0.95, 0.99, 0.995, 0.999 and even 0.9997. For instance, the capital charge for

credit and operational risk is calculated with a confidence level of q = 0.999 and a

holding period (horizon) of one year. For the calculation of economic capital, one

typically takes q = 0.9997. Although CTEq is more conservative than VaRq, (13)

implies that their asymptotic behaviour (for q close to 1) is similar. The conclusion is

that, in terms of the asymptotic behaviour of VaR and CTE this model is similar to

the log-normal model.

Remark 3. These properties of VaR and CTE very much link up with the recent

discussion around the regulatory document [5]. On p. 41 of the latter document,

Question 8 reads as: ”What are the likely constraints with moving from Value-at-

Risk (VaR) to Expected Shortfall (ES = CTE), including any challenges in delivering

robust backtesting and how might these be best overcome?” The ”moving from” has

to be interpreted as ”using ES as an alternative risk measure to VaR for setting
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capital adequacy standards”. An important aspect of this discussion concerns the

understanding of portfolio structures where it does not matter much (hence Section

4.2), and more importantly those for which significant differences do exist. For a

discussion on the latter, see for instance [20]. For results on risk measure estimation

and model uncertainty (mainly at the level of VaR), see [8].

5. Proofs

Proof of Lemma 1 Let F and G denote the dfs of X and Y , respectively. Since

X and Y are independent, for 0 < δ < γ <∞ given constants and any u > 0 we have

that

P {XY > u} =

∫ δ

0

P {X > u/y} dG(y) +

∫ γ

δ

P {X > u/y} dG(y)

+

∫ ∞
γ

P {X > u/y} dG(y).

Choosing γ such that γ/δ > λ0, condition (4) for λ = λ0 implies as u→∞ that∫ δ
0
P {X > u/y} dG(y)∫∞

γ
P {X > u/y} dG(y)

≤ P {X > u/δ}
P {X > u/γ}P {Y > γ}

→ 0.

Since we also have

P {XY > u} ≥
∫ ∞
δ

P {X > u/y} dG(y)

for any u > 0, we conclude that the following relation holds for any fixed δ > 0,

P {XY > u} ∼
∫ ∞
δ

P {X > u/y} dG(y), u→∞.

Next, applying integration by parts, we have that∫ ∞
δ

P {X > u/y} dG(y) = F (u/δ)P {Y > δ}+

∫ u/δ

0

P {Y > u/y} dF (y)

= (1 + o(1))

∫ u/δ

0

P {Y ∗ > u/y}
( P {Y > u/y}
P {Y ∗ > u/y}

− c
)
dF (y)

+(1 + o(1))c

∫ u/δ

0

P {Y ∗ > u/y} dF (y).

The first term on the right hand side is of smaller order than the second one because

limu→∞ P {Y > u} /P {Y ∗ > u} = c and one can choose δ > 0 arbitrarily large. More-

over, another integration by parts and the first part of the proof show that the second
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term has the asymptotic order

c

∫ u/δ

0

P {Y ∗ > u/y} dF (y) ∼ cP {XY ∗ > u} ,

for any fixed δ > 0. This finishes the proof. �

Proof of Corollary 1 In what follows, we assume without loss of generality that

all θi = 1. We can make this assumption because Wi satisfies (6) for η = ηi if and

only if θiWi does it for η = ηi/θi. We prove the result by induction on k. For k = 1,

the result is just a consequence of the condition limu→∞ P {W1 > u} /P {V1 > u} = p1.

Let (V ′i ) be a copy of (Vi) which is independent of (Wi). For k = 2, take X = eW2 ,

Y = eW1 and Y ∗ = eV
′
1 . In view of (6) for W2 the assumptions of Lemma 1 are

satisfied. Therefore

P {W1 +W2 > u} = P {XY > eu} ∼ p1P {XY ∗ > eu} = P {V ′1 +W2 > u} .

Next choose X = eV
′
1 , Y = eW2 and Y ∗ = eV

′
2 and apply Lemma 1 to obtain (7) for

k = 2. Notice that we also used the fact that (6) holds for V ′1 .

Now assume that (7) holds for k = n ≥ 2. In view of the proof above we may also

assume that we proved
n∏
i=2

piP {(V ′2 + · · ·+ V ′n) +Wn+1 > u} ∼ P {(W2 + · · ·+Wn) +Wn+1 > u} . (14)

Take X = eWn+1 , Y = eW1+···+Wn and Y ∗ = eV
′
1+···+V

′
n . By the induction hypothesis

and (6) for Wn+1 the assumptions of Lemma 1 are satisfied. Therefore

P
{(
W1 + · · ·+Wn

)
+Wn+1 > u

}
= P {XY > eu}

∼
n∏
i=1

piP {XY ∗ > eu}

=

n∏
i=1

piP
{(
V ′1 + · · ·+ V ′n

)
+Wn+1 > u

}
. (15)

Now we choose X = eV
′
1 , Y = e(V

′
2+···+V

′
n)+Wn+1 and Y ∗ = e(W2+···+Wn)+Wn+1 and

again apply Lemma 1:
n∏
i=1

pi P
{(
V ′1 + (V ′2 + · · ·+ V ′n

)
+Wn+1 > u

}
∼ p1 P

{(
V ′1 + (W2 + · · ·+Wn

)
+Wn+1 > u

}
∼ P

{
n+1∑
i=1

Wi > u

}
,
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also taking into account (14). Together with (15) this proves (7) for k = n+ 1. �

Proof of Theorem 1 First assume that the index i ≤ k is such that ρi > % =

min1≤j≤k ρj . Then for sufficiently large u,

P
{
θie

Wi,ρi > u
}
≤ P

{
θ̃eWi,ρi > u

}
= P

{
Wi > ln(u/θ̃)(1− %i)−0.5

}
∼ ci P

{
W > ln(u/θ̃)(1− %)−0.5 +

(
(1− ρi)−0.5 − (1− %)0.5

)
ln(u/θ̃)

}
≤ ci P

{
W > ln(u/θ̃)(1− %)−0.5 + η

}
= o

(
P
{
θ̃e
√
1−%W > u

})
, u→∞ . (16)

In the last step we used (6) for any choice of η > 0.

Next consider an index i ∈ J . A similar argument as above shows that

P
{
θie

Wi,ρi > u
}

= P
{
Wi > ln(u/θi)(1− %)−0.5

}
∼ ci P

{
W > ln(u/θi)(1− %)−0.5

}
, u→∞ ,

and under the additional assumption (10) a similar argument proves (16) if θi < θ̃. By

subexponentiality of e
√
1−%W , applying Corollary 3.19 in [11], we get that

P
{ k∑
i=1

θie
Wi,ρi > u

}
∼

k∑
i=1

P
{
θie

Wi,ρi > u
}

∼
∑
i∈J

ci P
{
θie
√
1−%W > u

}
, u→∞ . (17)

Moreover, under the additional condition (10), the right hand side is equivalent to∑
i∈J:θi=θ̃

ci P
{
θ̃e
√
1−%W > u

}
.

By assumption, W0 satisfies (6) for some η = η0 > 0, hence X = e
√
ρ0W0 satisfies (4)

for some λ0 > 1. Writing Y =
∑k
i=1 θie

Wi,ρi and interpreting (17) as the right tail of

a rv Y ∗ = Θe
√
1−%W∗ , where W ∗ is a copy of W independent of W0, and Θ is a rv

independent of W ∗, we obtain from Lemma 1 that

P {XY > u} ∼ P {XY ∗ > u} =
∑
i∈J

ci P
{
θie
√
ρ0W0+

√
1−%W∗ > u

}
, u→∞.

In view of Bonferroni’s inequalities, we also have

P
{

max
1≤i≤k

θie
Wi,ρi > u

}
∼

k∑
i=1

P
{
θie

Wi,ρi > u
}
∼
∑
i∈J

ci P
{
θie
√
1−%W > u

}
, u→∞ .
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Again applying Lemma 1 for Y = max1≤i≤k θie
Wi,ρi and Y ∗ = Θe

√
1−%W∗ , we obtain

P
{
e
√
ρ0W0 max

1≤i≤k
θie

Wi,ρi > u

}
∼

∑
i∈J

ci P
{
θie
√
ρ0W0+

√
1−%W∗ > u

}
, u→∞ .

This concludes the proof. �

6. Appendix

Below we give the tail asymptotics of deflated risks assuming that the deflator is

bounded and the risk has a rapidly varying tail. For the case that the deflator is

bounded and has a regularly varying tail at the right endpoint of the df, see e.g., [14].

Lemma 2. Consider independent rvs I,W such that I is supported on (0, 1] and the

tail of W is rapidly varying. Then

lim
u→∞

P {IW > u}
P {W > u}

= P {I = 1} . (18)

Proof of Lemma 2 For any u > 0, z ∈ (0, 1),

P {IW > u} = P {IW > u, I ∈ (0, z]}+ P {IW > u, I ∈ (z, 1)}+ P {IW > u, I = 1} .

We observe that P {IW > u, I = 1} = P {W > u}P {I = 1},

lim
z↑1

lim sup
u→∞

P {IW > u, I ∈ (z, 1)}
P {W > u}

≤ lim
z↑1

P {I ∈ (z, 1)} = 0 ,

and by rapid variation,

lim sup
u→∞

P {IW > u, I ∈ (0, z]}
P {W > u}

≤ lim
u→∞

P
{
W > uz−1

}
P {W > u}

= 0 .

This proves the lemma. �
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