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Abstract: Let {
∑n
i=1 λiXi(t), t ∈ [0, T ]} be an aggregate Gaussian risk process with Xi, i ≤

n independent Gaussian processes satisfying Piterbarg conditions and λi’s given positive

weights. In this paper we derive exact asymptotics of the finite-time ruin probability given

by

P

(
sup
t∈[0,T ]

(
n∑
i=1

λiXi(t)− g(t)

)
> u

)
as u → ∞ for some general trend function g. Further, we derive asymptotic results for the

finite-time ruin probabilities of risk processes perturbed by an aggregate Gaussian process.
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1 Introduction

Numerous contributions have discussed the evaluation of the first-passage density of a random process

{X(t), t ∈ [0, T ]} to a given deterministic boundary denoted by u+ g(t) with fixed u ≥ 0. In a concrete

insurance setup, let X(t) model the surplus process of the whole company at time t, the decision to pay

dividends can be objectively made once the surplus process crosses the boundary. Specifically, from the

actuarial point of view, it is of interest to calculate the crossing probability

P (∃t ∈ [0, T ], X(t) > u+ g(t)) (1.1)

for u ≥ 0. However, an explicit formula for (1.1) is hard to obtain except for some very special cases,

e.g., {X(t), t ∈ [0, T ]} is a Brownian motion (Bm) and g(t) is a linear function. Therefore, usually the

aim of the analysis is to find adequate approximations for it. From risk theory point of view Eq. (1.1)

can also be seen as the finite-time ruin probability of an insurance company, i.e.,

P (∃t ∈ [0, T ], X(t) > u+ g(t)) = P
(

inf
t∈[0,T ]

(u+ g(t)−X(t)) < 0

)
,

where u ≥ 0 is the initial capital, g(t) is the premium amount received up to time t, and X(t) represents

the aggregate claim amount up to t. Recently, the study of surplus process with dependent risks becomes

more and more popular since independent risks is not applicable to practice, see e.g., Denuit et al. (2005)

and Constantinescu et al. (2011).
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In Michna (1998) it is shown that the finite-time ruin probability given by

P
(

inf
t∈[0,T ]

(
u+ ct−BH(t)

)
< 0

)
(1.2)

is an adequate approximation of the finite-time ruin probability for a risk process with certain dependent

risks, where {BH(t), t ∈ [0, T ]} is a fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1].

Nowadays, all insurance companies run diverse lines of business, with typically some lines of business (for

non-life insurer) having very high premiums because of high risks. In order to reflect different portfolio

variances, as well as different business volumes, it is adequate to consider a process which is a result of

aggregation of the specific portfolios. A tractable choice here is the aggregate process

X(t) = λ1BH1(t) + · · ·+ λnBHn(t), t ∈ [0, T ], (1.3)

where λi, i ≤ n, are positive weights assigned to the processes {BHi(t), t ∈ [0, T ]}, i ≤ n, being indepen-

dent fBm’s with Hurst indexes Hi ∈ (0, 1], i ≤ n, respectively.

Clearly, X(t), t ∈ [0, T ] is not a fBm anymore; bounds and asymptotics of the finite-time ruin probability

for X(t), t ∈ [0, T ] are given in Dȩbicki and Sikora (2011) for this multiplexed fBm’s with a linear trend.

The asymptotics of the infinite-time ruin probability of the multiplexed fBm’s with a trend is discussed

in Hüsler and Schmid (2006).

The perturbed risk model is an important extension of the classical risk model. Of course, instead of

the Bm, general processes, including Lévy and Gaussian processes, can be considered as perturbations,

see e.g., Schlegel (1998), Furrer (1998) and Frostig (2008). In fact, the Bm (and Lévy processes) can

not be justified if the perturbation terms do not come from an i.i.d. framework, whereas some Gaussian

processes can be. In practice, the surplus is influenced by various uncertainties such as premium ad-

justments, legislation changes, cost of repairs, and other related expanses. Therefore, in order to reflect

different variances of the uncertainties, it is reasonable to consider an aggregate Gaussian process as the

perturbation.

In this paper we present some extensions of Dȩbicki and Sikora (2011) and consider further the perturbed

risk process. Specifically, instead of dealing with the aggregation of independent fBm’s, we consider the

aggregation of independent centered Gaussian processes {Xi(t), t ∈ [0, T ]}, i ≤ n, with some positive

weights λi, i ≤ n. Our analysis then focusses on the asymptotics of the finite-time ruin probability

P

(
sup
t∈[0,T ]

( n∑
i=1

λiXi(t)− g(t)
)
> u

)
, as u→∞,

with some bounded measurable trend function g(t). It is worth noting that the aggregate Gaussian process∑n
i=1 λiXi(t) is also a Gaussian process, but in order to see which of the components will contribute

more to the asymptotics we would like to deal with the aggregate Gaussian process other than one single

Gaussian process. This might also be necessary from practical point of view. Moreover, the finite-time

ruin probability of a perturbed risk process with perturbation modeled by an aggregate Gaussian process

defined by

P

(
sup
t∈[0,T ]

(
U(t)− c(t) +

n∑
i=1

λiXi(t)
)
> u

)
, u ≥ 0,

is also discussed, where U(t) − c(t) is the claim surplus process, and
∑n
i=1 λiXi(t) is the aggregate

Gaussian perturbation.

In the first result Theorem 3.1 we provide the asymptotic behaviour of the finite-time ruin probability for

the aggregate Gaussian process, which indicates that the processes which have the smallest characteristic
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constants will contribute more to the asymptotics. Furthermore, our second result Theorem 4.1 derives a

novel asymptotic result for the finite-time ruin probabilities of some quite general perturbed risk processes

including Gaussian perturbed risk process as a special case.

This paper is organized as follows. In Section 2 we introduce some notation. The main results are given

in Section 3 and Section 4. Section 5 presents several examples. Proofs of all the results are relegated to

Section 6.

2 Notation and Preliminaries

In this section we mention several abbreviations and notation needed in this paper and present the main

assumptions. There are mainly two well known constants, namely Pickands constant and Piterbarg

constant, which play important roles in the extreme theory of Gaussian processes. The former is defined

by

Hα/2 = lim
T→∞

T−1E

(
exp

(
sup
t∈[0,T ]

(√
2Bα/2(t)− tα

)))
, α ∈ (0, 2],

and the latter is defined by

PRα := lim
S→∞

E

(
exp

(
sup
t∈[0,S]

(√
2Bα/2(t)− (1 +R)tα

)))
, α ∈ (0, 2], R > 0,

where {Bα/2(t), t ∈ [0,∞)} is a fBm with Hurst index α/2. See Pickands (1969) or Piterbarg (1996), for

the main properties of Pickands and Piterbarg constants.

We shall impose two main common assumptions on the Gaussian processes of interest. Let {ξ(t), t ∈
[0,∞)} be a centered Gaussian process with variance function σ2

ξ (·). Throughout this paper the process

ξ with a bar represents a standardized process i.e., ξ̄(t) := ξ(t)/σξ(t).

Assumption A1. The standard deviation function σξ(·) of the Gaussian process ξ(t) attains its maxi-

mum, denoted by σ̃, over [0, T ] at the unique point t = T . Further, there exist some positive constants

α ∈ (0, 2], β, A,D such that

σξ(t) = σ̃ −A(T − t)β + o((T − t)β), t→ T, (2.4)

and

Cov
(
ξ̄(s), ξ̄(t)

)
= 1−D|t− s|α + o(|t− s|α), min(t, s)→ T.

Assumption A2. There exist positive constants C, δ and γ such that, for all s, t ∈ [δ, T ],

E
(
(ξ(t)− ξ(s))2

)
≤ C|t− s|γ . (2.5)

Some recent studies in financial markets indicate that the class of H-self-similar (H-ss) Gaussian processes

can adequately model the long-range dependence structure of the real financial data. Let us recall that

a centered Gaussian process {X(t), t ∈ [0,∞)} with X(0) = 0 is H-ss with an exponent H ∈ (0, 1] if the

covariance function satisfies the condition

Cov (X(at), X(as)) = a2HCov (X(t), X(s)) , ∀a ∈ (0,∞).

A prominent example of self-similar Gaussian processes is the bi-fractional Brownian motion (bi-fBm)

{BK,H(t), t ∈ [0,∞)} with covariance function given by

Cov (BK,H(t), BK,H(s)) =
1

2K
[(t2H + s2H)K − |s− t|2KH ], K ∈ (0, 1], H ∈ (0, 1).
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Another interesting self-similar Gaussian process is the sub-fractional Brownian motion (sub-fBm) {SH(t), t ∈
[0,∞)} with covariance function given by

Cov (SH(t), SH(s)) = t2H + s2H − 1

2

[
(s+ t)2H + |t− s|2H

]
, H ∈ (0, 1).

Important results for the bi-fBm and sub-fBm can be found in Houdré and Villa (2003) and Bojdecki et

al. (2004).

3 Exact Asymptotics of the Finite-time Ruin Probability

Given n independent centered Gaussian processes {Xi(t), t ∈ [0, T ]}, i ≤ n, with a.s. continuous sample

paths and standard deviation functions σi(·), i ≤ n, respectively, the extended Dȩbicki-Sikora Gaussian

model consists in the specification of the aggregate Gaussian process

X(t) := λ1X1(t) + · · ·+ λnXn(t), t ∈ [0, T ], (3.6)

with λi ≥ 0, i ≤ n. The finite-time ruin probability of this risk model is defined as

P

(
sup
t∈[0,T ]

(
X(t)− g(t)

)
> u

)
,

for the deterministic bounded measurable trend function g(t) and u ≥ 0.

In order to obtain the exact asymptotics of the finite-time ruin probability, some conditions on the

Gaussian processes and the bounded measurable trend function g(t) needed are fully described in Theorem

3.1. For our results below we need the following notation

Λα,β (u) :=


(

u+g(T )√∑n
i=1 λ

2
i σ̃i

2

)2/α−2/β

, if α < β,

1, if α ≥ β,
with σ̃i := σi(T ).

Further, Γ(·) stands for the Euler Gamma function and I(·) for the indicator function. Next we state our

first result.

Theorem 3.1. Let {Xi(t), t ∈ [0, T ]}, i ≤ n, be independent centered Gaussian processes with a.s. contin-

uous sample paths and standard deviation functions σi(·), i ≤ n, and define {X(t), t ∈ [0, T ]} as in (3.6).

If Assumptions A1 and A2 hold for each {Xi(t), t ∈ [0, T ]}, i ≤ n, with constants αi, βi, Ai, Di,C, δ, γi, i ≤
n, respectively, then, for any bounded measurable trend function g(t) satisfying∣∣g(T )− g(t)

∣∣ ≤M(T − t)mini≤n βi , ∀t ∈ [ν, T ] (3.7)

for some constant M and ν ∈ (0, T ), we have

P

(
sup
t∈[0,T ]

(X(t)− g(t)) > u

)
∼ Cα,βΛα,β (u)Ψ

 u+ g(T )√∑n
i=1 λ

2
i σ̃i

2

 , u→∞, (3.8)

where

Cα,β =


Hα/2Γ(1/β + 1)Ñ−1/βG̃1/α

(∑n
i=1 λ

2
i σ̃i

2
)1/β−1/α

, if α < β,

PÑ/G̃α , if α = β,

1, if α > β,

with

α = min
i≤n

αi, β = min
i≤n

βi, Ñ =

n∑
i=1

λ2i σ̃iAiI(βi = β), G̃ =

n∑
i=1

λ2iDiσ̃i
2I(αi = α).
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Corollary 3.2. Let {Xi(t), t ∈ [0, T ]}, i ≤ n, {X(t), t ∈ [0, T ]} and g(t) be as in Theorem 3.1.

(i) If {Xi(t), t ∈ [0, T ]}, i ≤ n, are bi-fBm’s with parameters Ki, Hi ∈ (0, 1], i ≤ n, satisfying 0 < KH :=

K1H1 < K2H2 ≤ · · · ≤ KnHn, then we have

P

(
sup
t∈[0,T ]

(X(t)− g(t)) > u

)
∼ C2KH,1Λ2KH,1(u)Ψ

 u+ g(T )√∑n
i=1 λ

2
i σ̃i

2

 , u→∞, (3.9)

where

C2KH,1 =


HKH

(∑n
i=1 λ

2
i σ̃i

2
) 2KH−1

2KH ( 1

2K
λ2
1)

1/(2KH)T∑n
i=1 λ

2
iKiHiσ̃i

2 , if KH < 1/2,

1 +
λ2
1T

2K(
∑n
i=2 λ

2
iKiHiσ̃i

2+λ2
1T/2)

, if KH = 1/2,

1, if KH > 1/2,

and σ̃i = TKiHi .

(ii) If {Xi(t), t ∈ [0, T ]}, i ≤ n, are sub-fBm’s with parameters Hi ∈ (0, 1), i ≤ n, satisfying H := H1 <

H2 ≤ · · · ≤ Hn, then

P

(
sup
t∈[0,T ]

(X(t)− g(t)) > u

)
∼ C2H,1Λ2H,1(u)Ψ

 u+ g(T )√∑n
i=1 λ

2
i σ̃i

2

 , u→∞, (3.10)

where

C2H,1 =


HH

(∑n
i=1 λ

2
i σ̃i

2
) 2H−1

2H ( 1
2λ

2
1)

1/(2H)T∑n
i=1 λ

2
iHiσ̃i

2 , if H < 1/2,

1 +
λ2
1T

2
∑n
i=2 λ

2
iHiσ̃i

2+λ2
1T
, if H = 1/2,

1 if H > 1/2,

and σ̃i
2 = (2− 22Hi−1)T 2Hi .

4 Perturbed Risk Processes

This section is devoted to the analysis of finite-time ruin probabilities of some general perturbed risk

models. In particular, we focus on perturbed risk processes, where the perturbation is an aggregate

centered Gaussian process representing the aggregation of different types of perturbations. Consider the

claim surplus process of an insurance company defined by

S(t) = U(t)− c(t), t ≥ 0, (4.11)

where {U(t), t ∈ [0,∞)} is the aggregate claim process and c(t) is a nonnegative increasing function

modeling the premium income. Further, define the claim surplus process of the perturbed risk process as

S̃(t) = S(t) +X(t), t ≥ 0, (4.12)

where the process {X(t), t ∈ [0,∞)} is a perturbation assumed to be independent of {S(t), t ∈ [0,∞)}.
For any T ∈ (0,∞), the finite-time ruin probability for the processes (4.11) and (4.12) are defined as

ψ(u, c, T ) = P

(
sup
t∈[0,T ]

S(t) > u

)
and ψ̃(u, c, T ) = P

(
sup
t∈[0,T ]

S̃(t) > u

)
,

respectively, where u ≥ 0 is the initial surplus. In general, the calculation of the finite-time ruin proba-

bility is more difficult than the infinite-time ruin probability. Therefore, often the aim of the analysis is

to find good approximation for it. For notational simplicity set below

F1(u) = P

(
sup
t∈[0,T ]

U(t) ≤ u

)
, F2(u) = P

(
sup
t∈[0,T ]

X(t) ≤ u

)
, u ≥ 0.
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Let us first recall the class of long-tailed distributions and that of heavy-tailed distributions.

Heavy-tailed distribution class (H): A distribution function F is said to be heavy-tailed if and only if∫ ∞
−∞

eλxF (dx) =∞ for all λ > 0.

Long-tailed distribution class (L): A distribution function F is said to be long-tailed if and only if

lim
x→∞

1− F (x+ y)

1− F (x)
= 1 for all y ∈IR.

It is well-known that L ⊂ H, see e.g., Embrechts et al. (1997) and Foss et al. (2011) for the basic properties

of heavy-tailed distributions. In addition, F ∈ L implies that there exists some function d(u), u ≥ 0 such

that

lim
u→∞

u

d(u)
= lim
u→∞

d(u) =∞

and

1− F (u+ d(u)) ∼ 1− F (u), u→∞, (4.13)

see e.g., Foss et al. (2011). Next, we present the main result of this section.

Theorem 4.1. Assume that F1 ∈ L and 1− F2(u) = o(1− F1(u)) as u→∞, then

ψ̃(u, c, T ) ∼ 1− F1(u) ∼ ψ(u, c, T ), u→∞. (4.14)

In the following, we consider Gaussian perturbed Lévy risk processes, where the perturbation is an

aggregate Gaussian process X(t) =
∑n
i=1 λiXi(t), t ≥ 0, discussed in Section 3.

Corollary 4.2. If {U(t), t ∈ [0,∞)} is a Lévy process such that

U(T ) ∈ L, (4.15)

and {X(t), t ∈ [0, T ]} is an aggregate Gaussian process satisfying the conditions of Theorem 3.1, then

ψ̃(u, c, T ) ∼ P (U(T ) > u) as u→∞.

Remark 4.3. In the light of Albin and Sundén (2009), for a Lévy process {Y (t), t ∈ [0,∞)} with

characteristic triple (d, σ2,Π),

Π([1,∞) ∩ ·)
Π([1,∞))

∈ L

implies that Y (T ) ∈ L.

5 Examples

In this section, we present several illustrating examples.

Example 1. Let X(t) = BH(t)+B1/2(t2H), t ∈ [0, T ], with H ∈ (0, 1/2). Assume that the trend function

g(t) satisfies (3.7) with some constant M and some d ≥ 1. We have

P
{

sup
t∈[0,T ]

(
X(t)− g(t)

)
> u

}
∼ HH

4
1

2HH
Λ1/H−2
u Ψ

(
Λu

)
, u→∞,

with

Λu =
u+ g(T )√

2TH
.
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The following time average Gaussian process was discussed in Dȩbicki and Tabís (2011).

Example 2. Let {BHi(t), t ∈ [0, T ]}, i ≤ n, be independent fBm’s with Hurst parameters Hi ∈ (0, 1],

i ≤ n, satisfying H1 < H2 < · · · < Hn. Set

Xi(t) =

{ √
2Hi + 2 1

t

∫ t
0
BHi(s)ds, t > 0,

0, t = 0.

Assume that the trend function g(t) satisfies (3.7) with some constant M and some d ≥ 1. It follows

from Theorem 3.1 that

P

(
sup
t∈[0,T ]

(
n∑
i=1

λiXi(t)− g(t)

)
> u

)
∼ Ψ

(
u+ g(T )√∑n
i=1 λ

2
iT

2Hi

)
.

Example 3. Assume that U(t) =
∑N(t)
i=1 Zi, t ≥ 0, is a compound Poisson process, with i.i.d. claim

inter-arrival times τi, i ∈ IN , being exponentially distributed with parameter µ > 0, and i.i.d claim sizes

Zi, i ∈ IN, having a Weibull distribution F (y) = 1 − exp(−yτ ), y ≥ 0, with shape parameter τ ∈ (0, 1).

Furthermore, let X(t) =
∑n
i=1 λiB1/2(t2Hi) with Hi ∈ (0, 1], λi > 0, i ≤ n. In view of Corollary 4.2, we

conclude that

ψ̃(u, c, T ) ∼ µTe−u
τ

, as u→∞.

Example 4. Consider a Gaussian perturbed α-stable risk process. Specifically, let {U(t), t ∈ [0,∞)} be

an α-stable Lévy process with α ∈ (1, 2), i.e. U(t)
d
= Sα(t1/α, β, 0), where Sα(σ, β, d) denotes a stable

random varible with index of stability α, scale parameter σ, skewness parameter β and drift parameter

d (see e.g., Samorodnitsky and Taqqu (1994)). Moreover, let X(t) =
∑n
i=1 λiBHi(t) with BHi , i ≤ n,

being independent fBm’s and Hi ∈ (0, 1], λi > 0, i ≤ n. It is known that (4.15) is satisfied. Consequently,

it follows from Corollary 4.2 and the tail behavior of stable distribution (e.g., Samorodnitsky and Taqqu

(1994)) that

ψ̃(u, c, T ) ∼ P (U(T ) > u) ∼ Cα,T 1/α

(
1 + β

2

)
u−α, as u→∞,

where

Cα,T 1/α =
T (1− α)

Γ(2− α) cos(πα/2)
.

6 Proofs

In this section we give detailed proofs of our previous results. Recall that X(t) =
∑n
i=1 λiXi(t) is

the aggregate centered Gaussian process with variance function σ2
X(t) :=

∑n
i=1 λ

2
iσ

2
i (t) and X̄(t) :=

X(t)/σX(t).

Proof of Theorem 3.1 Define

mu(t) :=
u+ g(t)

σX(t)
and π(u) := P

(
sup
t∈[δ,T ]

X̄(t)
mu(T )

mu(t)
> mu(T )

)
.

For any u ≥ 0, as in Dȩbicki and Sikora (2011), we may further write

π(u) ≤ P

(
sup
t∈[0,T ]

(X(t)− g(t)) > u

)
≤ P

(
sup
t∈[0,δ]

(X(t)− g(t)) > u

)
+ π(u).
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Obviously,

1− mu(T )

mu(t)
=
σX(T )− σX(t)

σX(T )
+
σX(t)[g(t)− g(T )]

(u+ g(t))σX(T )
.

Further, in view of (3.7), δ can be suitably chosen such that∣∣g(T )− g(t)
∣∣ ≤ Const(σX(T )− σX(t))

for all t ∈ [δ, T ]. Therefore, for any ε > 0, when u is sufficiently large, we have, uniformly in [δ, T ],

1− (1 + ε)
σX(T )− σX(t)

σX(T )
≤ mu(T )

mu(t)
≤ 1− (1− ε)σX(T )− σX(t)

σX(T )
. (6.16)

Consequently, it follows from (6.16) that, for u sufficiently large,

π+ε(u) := P

(
sup
t∈[δ,T ]

Y+ε(t) > mu(T )

)
≤ π(u) ≤ π−ε(u) := P

(
sup
t∈[δ,T ]

Y−ε(t) > mu(T )

)
,

where

Y±ε(t) := X̄(t)

(
1− (1± ε)σX(T )− σX(t)

σX(T )

)
, t ≥ 0.

Next, we analyse π−ε(u) for fixed ε ∈ (0, 1), the asymptotics of π+ε(u) follows with the same arguments.

Obviously, the standard deviation function σY−ε(t) attains its unique maximum over [δ, T ] at t = T , with

σY−ε(T ) = 1. Further, by Assumption A1 (recall that σ̃i = σi(T )),

σY−ε(t) = 1− (1− ε) Ñ∑n
i=1 λ

2
i σ̃i

2 (T − t)β + o((T − t)β)

as t ↑ T, with

Ñ = lim
t→T

n∑
i=1

λ2i σ̃iAi(T − t)(βi−β) ∈ (0,∞),

and

1− Cov
(
Ȳ−ε(s), Ȳ−ε(t)

)
=

G̃∑n
i=1 λ

2
i σ̃i

2 |t− s|
α + o(|t− s|α)

as min(s, t)→ T , with

G̃ = lim
t,s→T

n∑
i=1

λ2iDiσ̃i
2|t− s|(αi−α) ∈ (0,∞).

Moreover, in view of Assumption A2, we have, for s, t ∈ [δ, T ] and some C > 0,

E
(
(Y−ε(t)− Y−ε(s))2

)
= E

((
ε(X̄(t)− X̄(s)) +

1− ε
σX(T )

(X(t)−X(s))

)2
)

≤ 2ε2E
(
(X̄(t)− X̄(s))2

)
+

2(1− ε)2

σ2
X(T )

E
(
(X(t)−X(s))2

)
≤

(
2ε2

σ2
X(δ)

+
2(1− ε)2

σ2
X(T )

)
E
(
(X(t)−X(s))2

)
≤ C|s− t|min1≤i≤n γi .

Therefore, the Gaussian process {Y−ε(t), t ∈ [0, T ]} satisfies the conditions of Theorem 8.2 of Piterbarg

(1996) with

A =

(
(1− ε) Ñ∑n

i=1 λ
2
i σ̃i

2

)1/β

, C =

(
G̃∑n

i=1 λ
2
i σ̃i

2

)1/α

,

and thus, as u→∞,
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π−ε(u) ∼


Hα/2β−1Γ(1/β)A−1CΛα,β (u)Ψ̃(u), α < β,

P(1−ε)Ñ/G̃
α Ψ̃(u), α = β,

Ψ̃(u), α > β,

with Ψ̃(u) := Ψ

 u+ g(T )√∑n
i=1 λ

2
i σ̃i

2

 .

Consequently, letting ε→ 0,

π(u) ∼


Hα/2β−1Γ(1/β)C

(
Ñ∑n

i=1 λ
2
i σ̃i

2

)−1/β
Λα,β (u)Ψ̃(u), α < β,

PÑ/G̃α Ψ̃(u), α = β,

Ψ̃(u), α > β,

as u→∞. Finally, using Borell-TIS inequality (e.g., Adler and Taylor (2007)) we conclude, as u→∞,

P

(
sup
t∈[0,δ]

(X(t)− g(t)) > u

)
≤ P

(
sup
t∈[0,δ]

X(t) > u+ inf
t∈[0,δ]

g(t)

)

≤ exp

−
(
u+ inft∈[0,δ] g(t)− E

(
supt∈[0,δ]X(t)

))2
2σ2

δ

 = o(π(u)),

since σ2
δ := supt∈[0,δ](

∑n
i=1 λ

2
iσ

2
i (t)) <

∑n
i=1 λ

2
i σ̃i

2. The proof is complete. 2

The next lemma is crucial for the proof of Corollary 3.2. Details of its proof are omitted here since there

are only some algebra calculations involved.

Lemma 6.1. Under the conditions of Corollary 3.2, for any i ≤ n and T > 0, we have, as s, t→ T

(i) if {Xi(t), t ∈ [0, T ]} is a bi-fBm , then

σi(t) = TKiHi −KiHiT
KiHi−1(T − t) + o((T − t)),

1− Cov
(
X̄i(t), X̄i(s)

)
=

1

2KiT 2KiHi
|t− s|2KiHi + o(|t− s|2KiHi);

(ii) if {Xi(t), t ∈ [0, T ]} is a sub-fBm, then

σi(t) =
√

2− 22Hi−1THi −
√

2− 22Hi−1HiT
Hi−1(T − t) + o((T − t)),

1− Cov
(
X̄i(t), X̄i(s)

)
=

1

2(2− 22Hi−1)T 2Hi
|t− s|2Hi + o(|t− s|2Hi);

Additionally, the process {Xi(t), t ∈ [0, T ]} satisfies the condition of Assumption A2 for some positive

δ,C, and γi = 2KiHi and Hi/2 for bi-fBm and sub-fBm, respectively.

Proof of Corollary 3.2 The claim follows from Theorem 3.1 and Lemma 6.1, where β := β1 = β2 =

· · · = βn = 1, Ai = KiHiT
KiHi−1, αi = 2KiHi and Di = 1

2KiT 2KiHi
for the bi-fBm; β := β1 = β2 = · · · =

βn = 1, Ai =
√

2− 22Hi−1HiT
Hi−1, αi = 2Hi and Di = 1

2(2−22Hi−1)T 2Hi
for the sub-fBm. 2

Proof of Theorem 4.1 We first give the proof of the second tail equivalence of (4.14). It is easy to

see that

P

(
sup
t∈[0,T ]

(U(t)− c(t)) > u

)
≤ P

(
sup
t∈[0,T ]

U(t) + sup
t∈[0,T ]

(−c(t)) > u

)
(6.17)

and thus

lim sup
u→∞

P

(
sup
t∈[0,T ]

(U(t)− c(t)) > u

)
1− F1(u)

≤ 1. (6.18)
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Further we can write

P

(
sup
t∈[0,T ]

(U(t)− c(t)) > u

)
≥ P

(
sup
t∈[0,T ]

U(t)− sup
t∈[0,T ]

c(t) > u

)

≥ P

(
sup
t∈[0,T ]

U(t)− sup
t∈[0,T ]

c(t) > u, sup
t∈[0,T ]

c(t) ≤ d(u)

)

≥ P

(
sup
t∈[0,T ]

U(t) > u+ d(u)

)
P (c(T ) ≤ d(u)) ,

which together with (4.13) yields

lim inf
u→∞

P

(
sup
t∈[0,T ]

(U(t)− c(t)) > u

)
1− F1(u)

≥ 1,

and thus the second tail equivalence of (4.14) is established. Since F1 ∈ H, it follows using similar

arguments and Theorem 2.13 in Foss et al. (2011) that

lim sup
u→∞

P

(
sup
t∈[0,T ]

(U(t)− c(t) +X(t)) > u

)
1− F1(u)

≤ lim inf
u→∞

1− (1− ψ(·, c, T )) ∗ F2(u)

ψ(u, c, T )

ψ(u, c, T )

1− F1(u)
= 1,

where (1−ψ(·, c, T )) ∗F2(u) denotes the convolution of distributions 1−ψ(u, c, T ) and F2(u). Moreover

P

(
sup
t∈[0,T ]

(U(t)− c(t) +X(t)) > u

)
≥ P

(
sup
t∈[0,T ]

(U(t)− c(t)) > u+ d(u)

)
P

(
sup
t∈[0,T ]

(−X(t)) ≤ d(u)

)

∼ P

(
sup
t∈[0,T ]

U(t) > u+ d(u)

)
P

(
sup
t∈[0,T ]

(−X(t)) ≤ d(u)

)

as u→∞, which together with (4.13) yields

lim inf
u→∞

P

(
sup
t∈[0,T ]

(U(t)− c(t) +X(t)) > u

)
1− F1(u)

≥ 1.

Consequently,

P

(
sup
t∈[0,T ]

(U(t)− c(t) +X(t)) > u

)
∼ 1− F1(u)

as u→∞, and thus the claim follows. 2

Proof of Corollary 4.2 By Theorem 4.1 of Albin and Sundén (2009) U(T ) ∈ L and sup
t∈[0,T ]

U(t) ∈ L

are equivalent. Consequently, the claim follows applying Theorem 3.1 and Theorem 4.1. 2
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