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Abstract 

Ductular reaction (DR) is observed in virtually all liver diseases both in humans and rodents. 

Depending on the injury, DR is confined within the periportal area or invades the parenchyma. Upon 

severe hepatocellular injury, invasive DR has been proposed to arise for supplying the liver with new 

hepatocytes. However, experimental data evidenced that DR contribution to hepatocyte repopulation 

is at the most modest, unless replicative capacity of hepatocytes is abrogated. Here, we proposed that 

invasive DR could contribute to operating hepatobiliary junctions upon hepatocellular injury. We used 

the choline-deficient ethionine-supplemented (CDE) mouse model of hepatocellular injury and human 

liver samples to evaluate the hepatobiliary junctional role of the invasive form of DR. We showed that 

CDE-induced DR expanded as biliary epithelium into the lobule and established new junctions with the 

canaliculi. By contrast, no new ductular-canalicular junctions were observed in mouse models of biliary 

obstructive injury exhibiting non-invasive DR. Similarly, in humans, an increased number of 

hepatobiliary junctions were observed in hepatocellular diseases (viral, drug-induced or metabolic) in 

which DR invaded the lobule but not in biliary diseases (obstruction or cholangitis) in which DR was 

contained within the portal mesenchyme. In conclusion, our data in rodents and humans support that 

invasive DR plays a hepatobiliary junctional role to maintain structural continuity between hepatocytes 

and ducts in disorders affecting hepatocytes.  
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Introduction 

The biliary tree is an arborizing network of conduits that drains bile secreted by hepatocytes to the gut. 

Bile secretion is an active and tightly regulated process resulting in extrusion of biliary components at 

the apical pole of hepatocytes into a space sealed by tight junctions between adjacent hepatocytes, 

the canaliculus. Coordinated contractions of the pericanalicular microfilaments drain bile downstream 

to bile ductules delineated by cholangiocytes enclosed in the portal mesenchyme. The Canal of Hering 

(CoH), a transitional structure formed by the apical poles of hepatocytes in the periportal region and by 

cholangiocytes of the most proximal extremities of the bile ductules, represents the anatomic interface 

between the canaliculi and the ducts 1. Small ductules converge to form larger ducts, then carry the 

bile to the gallbladder and the gut 2. The morphology and functional properties of cholangiocytes vary 

gradually along the proximal to distal axis 3–5. Cholestasis may be caused by a large variety of 

structural or functional insults that can occur at any level between the hepatocytes and the ampulla of 

Vater, which results in decreased bile secretion or flux 6,7. Cholestasis accordingly encompasses a 

broad variety of liver pathologies, as the three anatomical domains of the biliary tract, namely bile 

canaliculi, intralobular bile ducts and large bile ducts, respond morphologically and functionally 

differently to injury 8.  However, a hallmark of chronic liver diseases, including cholestatic disorders, is 

the appearance of ductular reaction (DR) 9. DR morphology may range from structures formed by 

cuboid cells delineating a clear lumen and constrained within the portal mesenchyme, to elongated 

cells with a migratory phenotype invading the parenchyma. This diversity of DR pattern, observed both 

in humans and rodent models, has been related to the nature and cell compartment being injured9–13. 

Proliferation of pseudo-ducts is typically seen upon cholangiocellular diseases, such as in primary 

biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC). In experimental animals, bile duct 

ligation (BDL) or diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet cause a type of DR that has been 

demonstrated to represent the two-dimensional proliferative rearrangement of the biliary epithelium 

10,14. In hepatocellular diseases, DR manifests as the invasion of the parenchyma by elongated cells 

expressing biliary markers. This is seen in viral hepatitis C or auto-immune disease in humans or in 

the choline-deficient ethionine-supplemented (CDE)  model in rodents 12. Whether DR is ever 

responsible for parenchymal reconstitution remains controversial. Parenchymal reconstitution from DR 

has been suggested in severe acute injury in human livers 15, and in advanced stage chronic human 
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disease 16,17. Some studies in rodent 18,19 and in zebrafish 20 convincingly demonstrated significant 

parenchymal reconstitution from the DR compartment, specifically when proliferative capacity of 

hepatocytes is abrogated or in case of massive parenchymal injury. Singularly, when hepatocytes 

retain some replicative competence, DR contribution to hepatocytes repopulation is at the most 

modest, if not negligible 21–25. This has been well exemplified, by us and others, with the CDE model of 

florid and invasive DR 11,21,22,24–28. Instead of reflecting a lack of functional importance of CDE-induced 

DR, these results could suggest that the invasive form of DR may have physiological functions other 

than parenchymal reconstitution. Hepatocytes could accomplish regeneration in the unlined regions of 

parenchyma while DR compartment could be required to preserve or repair a canalicular-ductal 

morphological link 29,30.  

Here, we show that CDE-induced DR expands into the parenchyma as biliary epithelium which 

establishes de novo junctions with canaliculi. Reduction of CDE-induced DR extent significantly 

decreased the number of hepatobiliary junctions. By contrast, new ductular-canalicular junctions were 

not observed in the BDL or DDC models of biliary obstructive injury. In a similar fashion, in humans, 

we observed an increased number of hepatobiliary junctions in viral, drug-induced or metabolic 

hepatocellular diseases in which DR invades the lobule but not in biliary diseases (obstruction, PBC or 

PSC) in which DR is contained within the portal mesenchyme. Our findings support that the invasive 

form of DR connects with the canalicular system and operates hepatobiliary junctions following 

disorders affecting predominantly hepatocytes.
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Materials and Methods 

 

Animals. All animal experiments were performed with approval of the University Animal Welfare 

Committee (2012UCLMD026; 2016UCLMD003). Five-week old male C57Bl/6J mice (<18g) obtained 

from Janvier-Breeding Center (Le Genest St. Isle, France) were housed in a conventional facility 

following a 12-hour light/dark cycle. After 1 week of acclimatization, mice received either chow diet 

(control group) or a diet deficient in choline (MP Biomedicals, Irvine, CA) together with drinking water 

supplemented with 0.15% (wt/vol) ethionine (Sigma, Bornem, Belgium) during 3, 9, 14 or 21 days 

(CDE groups). To block Notch signaling, mice were treated with the γ-secretase inhibitor 

dibenzazepine (DBZ) (Syncom BV, Netherlands) 31 via intraperitoneal daily injection for 14 days at a 

dose of 5 µmol/kg in combination with CDE treatment (CDE-DBZ group) or without (DBZ group). To 

mimic obstructive cholestasis, mice received a 3,5-diethoxycarbonyl-1,4-dihydrocollidine-(DDC) 

containing diet (137030; Sigma-Aldrich) during 9 days or bile duct ligation (BDL) was performed by 

double ligation and section of the common bile duct. BDL mice were fed chow diet at all time and 

sacrificed 9 days post-surgery. To identify DR-derived hepatocytes, we used Osteopontin-iCreERT2 

mice crossed with Rosa26-YFP mice. Offspring were then injected with tamoxifen (T5648; Sigma) 

prior to CDE treatment as previously described 22,32. After overnight fasting, mice were sacrificed and 

blood and liver samples collected. Part of the liver was fixed in 4% formalin for histological analyses. 

The remaining liver lobes were immediately snap-frozen in liquid nitrogen and kept at -80°C until use.   

 

Human liver biopsies. Formalin-fixed-paraffin embedded specimens of human liver biopsies (n=20) 

were retrieved from the archives of the Institute of Pathology of Lausanne. Twelve patients had a 

predominant hepatocellular injury: non-alcoholic steatohepatitis (NASH, n=3), drug-induced liver injury 

(DILI, n=6), autoimmune hepatitis (n=2) and viral hepatitis (n=1). Eight patients had a biliary disease: 

primary biliary cholangitis (PBC, n=3), primary sclerosing cholangitis (PSC, n=3) and biliary 

obstruction (n=2). The study was performed in accordance with the cantonal ethic committee 

recommendations and the declaration of Helsinki. A synchronous double anti-CK19 (ductular reaction, 

brown chromogen) – anti-CD10 (hepatocyte canaliculi, red chromogen) immunohistochemical 

detection was performed on a fresh recut of the liver biopsy for each case (CK19 : RCK108 clone from 
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Dako-Agilent, Santa Clara, CA, USA and CD10 : 56C6 clone from Novocastra_Laboratoires LDT, 

Newcastle upon Tyne, UK).  

In these biopsies, when at least one CK19-CD10 junction around a PT was observed >80µm from the 

border of the portal mesenchyma, the associated DR was classified as invasive, when junctions were 

observed between 20 and 80 µm, DR was categorized as minimal invasive and when junctions were 

seen below 20 µm or within the portal mesenchyma, DR was classified as non-invasive. 

Immunohistochemistry and immunofluorescence. Mouse liver sections were incubated with 

primaries antibodies against cytokeratin 19 (CK19; 1:10; DSHB,University of Iowa), then with a HRP-

conjugated secondary antibody and binding revealed with DAB. DAB-stained sections were digitalized 

with a SCN400 slide scanner (Leica, Wetzlar, Germany). On CK19-stained slides, the stained area 

was measured using Tissue IA software (Leica Biosystems, Dublin, Ireland). For immunofluorescence 

labeling, liver sections were exposed to antibodies directed against CK19 (1:10; DSHB,University of 

Iowa), mucin-1 (1:200, MUC-1 Ab-5, NeoMarkers, ThermoScientific), laminin (1:50, ab11575, Abcam), 

acetylated α-tubulin (1:1000 ; T6793, Sigma), ceacam-1 (1:500 ; LS-C106710, LifeSpan Biosciences), 

YFP (1:250; ab6673, Abcam). Secondary antibodies were anti-rat IgG, anti-goat IgG or anti-rabbit IgG 

combined to either AlexaFluor 594, AlexaFluor 488 or AlexaFluor 647 (1:1000, Invitrogen, Merelbeke, 

Belgium) as appropriate. For mucin-1 immunodetection, sections were incubated with anti-hamster 

IgG (1:250; 127-065-160, Jackson ImmunoResearch) then with Alexa Fluor 488 (1:1000; Invitrogen, 

Merelbeke, Belgium). Hoechst (1:10 000) was used to reveal the nuclei. After double 

immunofluorescence of ceacam-1 and mucin-1, optical sections were generated by structured 

illumination using an AxioImager microscope (Zeiss) and then analyzed using the image analysis tool 

Author version 6.0.0 (Visiopharm, Hørsholm, Denmark). Portal fields were delineated manually, then a 

concentric area of 170 µm was automatically extended by the software. The junctions between mucin-

1 (green) and ceacam-1 (red) were assessed manually and the shortest distance between each 

junction and the portal vein was measured by the software. For Z-stack imaging, 100µm-tick liver 

slides (vibratome) were exposed under agitation for two days at 4°C first to primary antibody against 

mucin-1 then for two days at 4°C to primary antibod y against ceacam-1 followed by two days at 4°C 

with secondary antibody anti-hamster IgG and finally with a mixture of AlexaFluor 488, secondary 

antibody anti-mouse IgG combined to AlexaFluor 594 and Hoechst. Liver sections were examined with 

a Zeiss LSM510 confocal microscope. 
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RNA extraction and RT qPCR. Total RNA was extracted using TRIzol (Invitrogen). Quantitative real-

time polymerase chain reaction (qRT-PCR) was performed by AB StepOne Plus (Applied Biosystems 

Foster City, CA) using SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA). 36B4 was 

used as an internal standard. Results are expressed as fold expression relative to expression in the 

control (value set at 1) using the ∆∆Ct method. 

 

Statistical analysis. All data are presented as means ± standard deviation or ±  SEM when indicated, 

and were compared using the unpaired two-tailed Student t test or one-way analysis of variance. 

 

Results 

 

DR invades the lobule as biliary polarized epithelium in CDE livers. 

CDE-fed mice display a DR that progressively invades the hepatic lobule 33. In livers of mice controls 

or fed with CDE diet for 3 days, staining of the well-established biliary/DR marker cytokeratin19 

(CK19) was restricted to cholangiocytes of the bile ducts and single isolated cells around the portal 

tracts (PT), corresponding to CoH (Fig.1). After 9 days of CDE, CK19+ DR expands outside the portal 

area and after 21 days, DR number significantly increased as they invaded the hepatic lobule (Fig.1A). 

Mucin-1 is a glycoprotein produced by and lining the apical surface of cholangiocytes facing bile ducts 

lumen in normal livers (Fig. 1B). While on the basal side, cholangiocytes (but not hepatocytes) lie on a 

basement membrane (Fig. 1C) 22. Like for cholangiocytes, mucin-1 staining was polarized at the apical 

pole of DR cells (Fig. 1B) while laminin located at their basal pole (Fig. 1C). Cholangiocytes carry a 

primary cilium, a sensory organelle that protrudes from the apical pole into the duct lumen and detects 

changes in bile flow and composition. As in bile ducts, CDE-induced DR exhibited acetylated α-tubulin 

positive staining  however aligning longitudinally along the lumen (Fig. 1D). Cholangiocytes release  

bicarbonate3, through activation of the secretin receptor (SR), the cystic fibrosis transmembrane 

conductance regulator (CFTR) and the Cl−/HCO3− anion exchanger 2 (AE2). Hepatic mRNA 

expression levels of SR and CFTR (but not of AE2, data not shown) were significantly increased in 9 

and 21 days CDE livers, when infiltrative DR was seen and positively correlated with CK19 mRNA 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
8 

 

hepatic expression (Fig. 1E-F). Altogether, these data support that DR expand as polarized biliary 

epithelium expressing the machinery needed to sense and modify bile (flow).   

 

Invasive biliary DR establishes new junctions with intralobular canaliculi in CDE livers. 

DR and bile ducts constitute together a continuous network in CDE livers 10,34. Whether these ductular 

ramifications emerging in the continuity of the biliary tree connect, on the other side, to the canalicular 

system has never been explored. To visualize the ductular-canalicular junctions, we performed double 

staining with mucin-1 to label the apical pole of biliary/DR cells and ceacam-1 was used for the 

hepatocyte canaliculi 22,35–37. The mucin1-ceacam1 junctions appeared either as continuous on the 

same plane, either as overlapping depending on the angle of the 2D analysis (Fig. 2B). We identified 

between 0 and 2 ductular-canalicular junctions per portal tract (PT) in control livers (Fig. 2B). As 

confirmed using tamoxifen injected Osteopontin-iCreERT2;Rosa26-YFP mice in which biliary cells are 

readily identified by their YFP tag 22, mucin-1 expressing cells engaged in these junctions were 

isolated periportal biliary YFP+ cells, corresponding to CoH and not the biliary cells forming the bile 

ducts (Fig. 2A). Similarly to controls, 0 to 2 ductular-canalicular junctions were observed around each 

PT in 2D liver sections in mice fed CDE for 3 days (Fig. 2B-C). In contrast, in 9 and 21 days CDE 

livers, the number of mucin-ceacam junctions per PT increased markedly to three to five-fold, 

respectively (Fig. 2C). In controls and 3 days CDE livers, ductular-canalicular junctions located at the 

edge of the portal mesenchyme (Fig. 2D) while in the 9 and 21 days CDE livers, the ductular-

canalicular junctions were found inside the lobule, at a mean distance of 30 and 70 µm from the portal 

vein, respectively (Fig. 2D). Since the count of junctions can be underestimated on 2D-slices, we 

performed Z-stack imaging. Z-stack imaging offered an elegant visualization of the biliary tree 

encompassing its canalicular part in control livers (Fig. 2E) and clearly confirmed the higher number of 

junctions between the ductular and the canalicular network deep inside the parenchyma upon CDE 

injury (Fig. 2E and Supplemental Movie S1).  

The point of transition between hepatocyte-lined and cholangiocyte-lined lumens implies the presence 

of a transitional polarized cell able to tightly interact with a hepatocyte on one side and with a 

cholangiocyte on the other side. To interrogate whether such transitional cell emerges from the DR, 

we used the tamoxifen injected Osteopontin-iCreERT2;Rosa26-YFP mice as a genetic tool to trace 

~90% of cholangiocytes 22,37. Upon CDE diet, a large bulk of DR cells was YFP+ and interestingly all 
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the mucin+ cells engaged in a junction were YFP+, meaning that they derived from pre-existing biliary 

cells, further confirming that DR expand from the biliary tree (Fig. 3A). Furthermore, as already 

described in CDE livers, YFP expression is also found in a limited number of hepatocytes which have 

differentiated  from biliary/DR cells22. As seen on 2D liver slides, one third of DR-derived YFP+ 

hepatocytes were engaged in the junctions (i.e. YFP+ hepatocytes with a ceacam-1+ apical pole in 

contact with mucin-1+ DR cells) (Fig. 3B, 3D upper right and 3E; see also Supplemental Fig. S1 for 

schematic representation). Another third of DR-derived hepatocytes were observed directly adjacent to 

cells forming the junction (Fig. 3C and  3E) and one third without any contact with junctions (Fig. 3D 

lower left and Fig. 3E). The last third were not topographically related to a junction here. However, 

they might be connected to a duct and further 3D analysis will better define this contribution. 

Nevertheless, these data further confirm that DR expand from biliary epithelium to establish new 

junctions with canaliculi. They also interestingly suggest that the few hepatocytes in CDE livers that 

differentiate from DR cells may be located in the close vicinity of the neo-formed hepatobiliary 

junctions.  

 

DR inhibition correlates with reduced number of DR-canaliculi junctions.     

We then administrated DBZ, an inhibitor of Notch signaling shown to decrease DR in other mouse 

models of liver injury 31,38 to CDE-fed mice. DBZ treatment reduced significantly DR extent in CDE 

mice (Fig. 4A). This resulted in a reduced number of hepatobiliary junctions compared to untreated 

CDE livers (Fig. 4B-C). Moreover, these junctions were found less deep into the lobule when CDE 

mice were treated with DBZ (Fig. 4D). Thus reduction of CDE-induced DR extent correlates with 

reduced morphological DR-canalicular junctions, consistent with a role of DR in preserving or repairing 

a morphological link between hepatocyte and duct lumens.    

 

No new ductular-canalicular junctions are established following biliary obstructive cholestasis. 

Livers from DDC-fed and bile duct ligated (BDL) mice were evaluated to investigate whether DR 

participates to new hepatobiliary junctions in models of intra- and extrahepatic bile duct obstruction, 

respectively. BDL surgery and DDC feeding both induced DR confined to the portal mesenchyme and 

forming pseudo-ductular structures, contrasting with the invasive CDE-induced DR pattern (Fig. 5A). 

Following both BDL and DDC, the number of hepatobiliary junctions did not significantly vary 
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compared to controls, as assessed by double-staining with biliary apical mucin and hepatocyte 

canalicular ceacam (Fig. 5B,C). Moreover, like in controls, the few observed junctions were in the 

vicinity of the limiting plate (Fig. 5B). These data show that obstructive cholestasis in BDL and DDC 

does not foster novel hepatobiliary connections.    

 

Invasive DRs establish new junctions with intralobular canaliculi in human disorders affecting 

predominantly hepatocytes. 

We then explored the ductular-canalicular junctions in human liver disorders using a double-

immunostaining with biliary CK19 and canalicular CD10. Normal human portal tracts showed CK19+ 

bile ducts, with no or very few bile ductules and CoH defined as the junction between CK19+ cells and 

CD10+ canaliculi of periportal hepatocytes (Fig. 6A). We analyzed each PT individually and evaluated 

DR on the basis of CK19 staining and classified each portal tract as (i) normal when normal BD but no 

DR was seen, (ii) non-invasive when the number of CK19+ biliary structures was increased and 

constrained to portal mesenchyme, comparable to BDL and DDC models, (iii) minimally invasive 

referred to increased number of CK19+ cells found outside the border of the portal mesenchyme, and 

(iv) invasive when CK19+ cells were observed outside the portal mesenchyme and expanded into the 

parenchyma, as seen in the CDE model (Fig. 6A). The non-invasive DR phenotype was largely 

observed in all patients with predominant biliary diseases (such as PSC, PBC and biliary obstruction) 

and less strikingly in patients with hepatocellular dysfunctions (such as DILI, hepatitis or non-alcoholic 

steatohepatitis (NASH)) (Table 1). The minimally invasive phenotype was not specific of hepatocellular 

or biliary liver disorders, whereas the invasive type was clearly observed in cases with hepatocellular 

damage but not in livers of patients with biliary disorders. The average number of junctions observed 

per portal area showing non-invasive DR within a liver sample had a tendency to  decrease compared 

to controls, however not significantly (Fig. 6B). In contrast, there was a higher average number of 

junctions  per PT exhibiting invasive DR (mean around 2 for minimally invasive DR and more than 4 

for invasive DR compared to <1 in normal PT) (Fig. 6B). These junctions were located into the 

parenchyma at a mean distance of approximatively 30 and 60µm, respectively, from the edge of the 

portal mesenchyme while in normal PT and PT exhibiting non-invasive DR, junctions were found 

within 20µm from the edge of the mesenchyme (Fig. 6C). These observations show that invasive DR, 
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mostly associated with hepatocellular injury, establishes de novo junctions with canaliculi inside the 

parenchyma in humans, as in rodent models.  
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Discussion 

Ductular response is encountered in almost all chronic and severe liver diseases in humans but its 

physiological role in liver repair is still not well understood. To explore DR, several mouse models have 

been developed and used interchangeably. However, accumulative data support that DR differ 

depending on the type of the injury, and thereby of the model used 10,11,21. Therefore, DR function 

should be addressed in the context of the underlying injury. In this study, we investigated the 

hepatobiliary junctions operated by DR in experimental models as well as in human samples of liver 

diseases representative of both hepatocellular damage and biliary obstructive injury. We used the 

CDE mouse model to mimic hepatocellular diseases and the DDC and BDL for biliary chronic disease.  

Recent work reported that CDE-induced DR organized as tubular structures connected to the 

preexisting bile ducts 10,14. Accordingly, plastination of the bile duct system revealed a denser 

intrahepatic biliary network in CDE livers 12. In line with these reports, we show here that DR expands 

in the CDE-damaged parenchyma as polarized biliary cells expressing the machinery needed to sense 

and modify bile. We further show that those biliary ramifications form de novo junctions with the 

canalicular network, thus establishing a solution of continuity between the primary site of bile secretion 

(canaliculi) and the bile duct drainage system. 2D examinations as well as Z-stack imaging of CDE 

livers show topographical connection between the most proximal extremities of DR and canaliculi. 

Thus cells at the extremity of the DR must be capable of forming tight cellular interactions with 

hepatocytes. In a normal liver, this unique property is the prerogative of the cells of the CoH 9,39. As 

shown here, invasive DR creates new and more numerous CoH and relocates them inside the 

parenchyma. Yet, the molecular nature of the cell:cell connection between cholangiocytes and 

hepatocytes, whether occurring at the physiological CoH or at the extremity of the DR still remains to 

be identified. Previous data, by us and others, demonstrated that (some) DR cells differentiate into 

hepatocytes 21,22,25,40. Here we showed that around two-third of hepatocytic differentiation of DR cells, 

analyzed by 2D observations, occurs at the close vicinity of the neo-formed junctions supporting the 

proposed idea that DR in CDE livers may generate asymmetric hepatocytes able to link DR/biliary 

cells on the one side with pre-existing hepatocytes on the other side to establish a continuum 29. Thus 

the low number of DR-derived hepatocytes reported by many groups in this model 21,22,25,40 could 

correspond to the generation of a specific subpopulation able to establish hepatobiliary connection. 

Therefore, although apparently insignificant in terms of parenchymal regeneration, the process 
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maintains morphological link between hepatocytes and bile ducts and may physiologically benefit to 

intralobular bile drainage. This DR role in bile drainage is supported by the very recent study of 

Pradhan-Sundd et al, released while writing this manuscript, where the authors used quantitative liver 

intravital microscopy to show recovery of the hepatic canaliculi integrity and function after 

establishment of DR upon prolonged CDE injury 41. This finding goes in the same direction as our 

above observations that the reduction of DR in CDE-injured mice may impair the reparative process. 

Future studies employing in vivo imaging and digital reconstruction of 3D analysis would be needed to 

provide even deeper insight into the spatio-temporal remodeling and functional importance of CDE-

associated DR. 

Importantly, rearrangement of the bile network upon CDE injury differs from the biliary plasticity 

observed following biliary obstructive injury. Bile ducts obstruction by surgical ligation in BDL or by 

porphyria plugs in DDC does not cause infiltration of DR into the parenchyma, instead a denser mesh 

of interlobular ducts around the portal vein is formed 12,14,42. In these models, bile retention in bile ducts 

stimulates the proliferation of cholangiocytes 43. In BDL, this causes first corrugation of luminal duct 

surface, then elongation and branching of interlobular ducts leading to a five-fold increase of the ductal 

surface within the portal mesenchyme 14. In DDC-induced mechanical duct obstruction, this drives 

dilatation of intrahepatic ducts 42. The increase in the surface of the interphase between bile and 

cholangiocytes favors bile resorption while ducts elongation in BDL and ductal dilatation in DDC 

attempt to overcome bile flow obstruction. The number of hepatobiliary junctions remain unchanged 

during the course of biliary obstructive BDL and DDC injury (Fig.5) and 14. In contrast, in the CDE 

model, bile duct obstruction is not the issue. Rather, hepatocellular injury will cause disruption of the 

canalicular continuity. CDE-induced DR invade into the parenchyma and connect proximal canaliculi 

with pre-existing ducts to maintain morphological continuity between hepatocytes and biliary tree. In a 

similar fashion, invasive DR seen in livers of patients with disorders that predominantly damage 

hepatocytes established several new junctions with canaliculi. In contrast, the non-invasive DR 

confined to portal mesenchyme found in livers of patients with biliary diseases, did not. Our findings 

provide a demonstration of the contribution of invasive DR to operate hepatobiliary junctions 

supposedly for biliary drainage. 

Finally, the molecular mechanisms driving DR proliferation, migration and differentiation remain poorly 

understood. Works during the last decade support a key role of the pathological specific surrounding 
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niche in shaping DR 44. In the CDE injury model, spatially intimate correlation of DR with the 

extracellular matrix has been precisely described, with matrix components such as laminin-basal 

membrane shown to contribute to DR biliary phenotype maintenance 22,36,45,46. Notch signaling 

pathway has been also identified as driving biliary fate 47–49 and promoting DR expansion in the DDC 

and methionine-choline deficient (MCD) mouse models 31,38. Here, we showed that inhibition of Notch 

signaling significantly reduced the extent of CDE-induced DR, supporting Notch relevance in 

regulating biliary DR expansion in the CDE injury model as well. Additionally, the inflammatory 

response, with secreted cytokines such as tumor necrosis factor-alpha (TNF-a) and the receptor TNF-

like weak inducer of apoptosis (TWEAK), was described as key modulators of DR in the CDE model 

27,50–52. In the light of our data, it is tempting to speculate that signals emanating from sensing of the 

modifications of bile (flow and composition) and BA pool are also involved in DR modulation. Indeed, 

CDE injury modifies in quantity and composition the bile in contact with the hepatocyte canalicular pole 

and the biliary epithelium. In support to a BA-driven remodeling, previous studies established a role for 

BA in modulating cholangiocytes proliferation through a mechanism involving SR 53. Furthermore, BA 

also function as potent signaling molecules that modulate key metabolism pathways and could play a 

role in the inflammasome and healing response 54–57. In that view, in the same injured liver, DR could 

function as biliary structures as well as differentiate into hepatocytes responding to the intricated 

signals from the closely injury-induced surrounding niche.   

 

In conclusion, our findings demonstrate a hepatobiliary junctional role of the invasive form of DR. Next 

to bile ducts remodeling and potentiality to generate new hepatocytes, this further highlights the 

remarkable cellular plasticity of cells of the ductular response. Increasing our understanding of injury-

specific mechanisms and signals regulating DR will identify tools to manipulate the system and test the 

therapeutic impact on chronic liver diseases, including cholestatic pathologies.  
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Figure Legends  

 

Figure 1. DR expands as polarized biliary epithelium in CDE livers. (A) Liver sections from mice 

receiving chow diet (CTL) or CDE diet for 3, 9 or 21 days (CDE 3d-9d-21d) were stained with 

cytokeratin 19 (CK19). Scale bar: 100µm. Morphometrical quantification of the area occupied by 

CK19+ cells in livers confirmed DR expansion in CDE livers. Values are expressed as means +/- SEM 

(n=6 per group). Significance was calculated compared to controls. **p<0.01, ***p<0.001. (B) Liver 

sections from controls (CTL) and from mice receiving 9 days of CDE (CDE) were co-stained with 

CK19 (red) and mucin-1 (green); (C) with CK19 (red) and laminin (green) and (D) with CK19 (red) and 

acetylated α-tubulin (green). Hoechst was used to stain the nuclei (blue). Scale bar: 20µm. Higher 

magnifications of the area marked with a rectangle in the CDE livers are shown in the smaller panels. 

PV: portal vein; BD: bile ducts; DR: ductular reaction. (E) Hepatic mRNA expression levels of secretin 

receptor (SR) and cystic fibrosis transmembrane conductance regulator (CFTR) from mice fed a chow 

diet (black) or receiving 3, 9 or 21 days of CDE diet (grey). Values are expressed as mRNA arbitrary 

units compared to controls (means +/- SD) and normalized to 36B4 mRNA  (n= 5-7 per group). 

*p<0.05, **p<0.01. (F) Hepatic expression of SR and CFTR mRNA positively correlated with that of 

CK19 mRNA in CDE livers exhibiting invasive DR (n=11). 

 

Figure 2. New duct-canaliculi junctions are established upon CDE hepatocellular injury. (A)  

Liver sections from Osteopontin-iCreERT2;Rosa26-YFP mice fed 9 days of CDE regimen (CDE) were 

co-stained with ceacam-1 (red), mucin-1 (green) and YFP (magenta). Hoechst was used to stain the 

nuclei (blue). Scale bars: 50µm. PV: portal vein; BD: bile duct; CoH: Canal of Hering.  (B) Liver 

sections from mice receiving control diet (CTL) or CDE treatment for 3, 9 or 21days (CDE 3d-9d-21d) 

were co-stained with ceacam-1 (red), mucin-1 (green) and Hoechst (blue). White arrows indicate 

caecam-1/mucin-1 junctions. Scale bars: 100µm. Higher magnifications of the area marked with a 

rectangle are shown in the lower panels. PV: portal vein. (C) These liver sections were used to 

quantify the number of junctions (white arrows in panel B) and (D) to measure the distance between 

the junctions and the wall of the closest portal vein. Data are expressed as means +/- SD (3-5 mice 

per group). Significance was calculated compared to controls. *p<0.05, **p<0.01. (E) Z-stack imaging 
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of 100 µm liver section from mice receiving a chow (CTL) or CDE diet for 9 days (CDE) stained with 

ceacam-1 (red), mucin-1 (green) and Hoechst (blue). Depth: 100µm (CTL) and 40 µm (CDE). White 

scale bar, 100 µm; green scale bar, 40 µm.  

 

Figure 3. DR-derived hepatocytes are located close to hepatobiliary junctions. (A-B-C-D) Liver 

sections from Osteopontin-iCreERT2;Rosa26-YFP mice fed 9 days of CDE regimen (CDE) were co-

stained with ceacam-1 (red), mucin-1 (green) and YFP (magenta). Hoechst was used to stain the 

nuclei (blue). Scale bars: 20µm. PV: portal vein; BD: bile duct; Hep: hepatocyte. The white arrows 

indicate hepatobiliary junctions. (E) Percentage of YFP+ hepatocytes with a ceacam-1+ pole that were 

observed either in contact with a mucin-1+ cell (engaged in the junction), in contact with a cell at a 

ceacam1-mucin1 junction (adjacent to a cell engaged in the junction), or without any close contact with 

a junction (no topographical relation with the junction). 4 mice, 12 liver slices and 16 YFP+ 

hepatocyte(s) were analyzed.  

 

Figure 4. DR inhibition correlates with decreased number of duct-canaliculi junctions in CDE 

livers. (A) Liver sections from mice receiving chow diet (CTL), chow diet with dibenzazepine treatment 

(DBZ), CDE diet for 14 days (CDE) and CDE diet for 14 days in combination with daily DBZ treatment 

(CDE-DBZ) were stained with CK19. Morphometrical quantification of the area occupied by CK19+ 

cells in livers confirms invasive DR upon CDE diet and reduction of CDE-induced DR extent with DBZ 

treatment (3-5 mice per group). Scale bar: 100µm. (B) Liver sections from the same mice were co-

stained with ceacam-1 (red), mucin-1 (green) and Hoechst (blue). White arrows indicate caecam-

1/mucin-1 junctions. Scale bars: 100µm. (C) These liver sections were used to quantify the number of 

junctions (white arrows from panel B) per portal vein and (D) to measure the distance between the 

junctions and the closest portal vein (4-5 mice per group). Values are expressed as means +/- SEM. 

Significance was calculated compared to controls, except when indicated. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. PV: portal vein. 

 

Figure 5. No novel ductular-canalicular junctions are established upon DDC and BDL biliary 

damage. Liver sections from mice fed control diet (CTL), fed 9 days of CDE regimen (CDE), 9 days 

after bile duct ligation surgery (BDL) or receiving 9 days of DDC diet (DDC) were (A) stained for 
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cytokeratin 19 (CK19) and (B) co-stained with ceacam-1 (red), mucin-1 (green) and Hoechst (blue). 

Scale bars: 100µm. PV: portal vein. These liver sections were used to quantify the number of junctions 

(white arrows) per portal vein. Data are expressed as means +/- SD (3-5 mice per group). Significance 

was calculated compared to controls, except when specified. *p<0.05, **p<0.01.   

 

Figure 6. Invasive DRs establish new junctions with lobular canaliculi in human disorders 

affecting predominantly hepatocytes. (A) Human liver sections from patients with various hepatic 

disorders were co-stained for cytokeratin 19 (CK19) and CD10. Arrows point towards CK19/CD10 

junctions.  White scale bar, 100µm; black scale bar, 50µm. PV: portal vein. CoH: Canal of Hering. 

These liver sections were used to quantify (B) the number of CK19-CD10 junctions (as identified by 

arrows in panel A) per PT and (C) to measure the distance between the junctions and the border of 

the portal mesenchyma as the mean per portal tract per case. When at least one junction around a PT 

was seen >80µm from the border of the portal mesenchyma, the associated DR was classified as 

invasive, when junctions were observed between 20 and 80 µm, DR was categorized as minimal 

invasive and when junctions were seen below 20 µm or within the portal mesenchyma, DR was 

classified as non-invasive. Significance was calculated compared to the mean. *p<0.05, **p<0.01, 

****p<0.0001.  
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Table 1.  

normal non-invasive 
minimal 

invasive 
invasive 

PSC 0 13 5 0 

PBC 2 17 5 0 

biliary obstruction 0 13 18 2 

(N)ASH 14 6 20 2 

hepatocellular damage 12 10 33 34 

 Table 1. Number of individual PT exhibiting the different DR phenotype relative to the human 

disease etiology. Each PT was analyzed individually and associated DR phenotype was classified as 

(i) normal when normal CK19+ BD but no DR was seen; (ii) non-invasive when the number of CK19+ 

cells increased but remained constrained to portal mesenchyme; (iii) minimal invasive when CK19+ 

cells were found outside the border of the portal mesenchyme, and (iv) invasive when CK19+ cells 

were observed deep into the parenchyma. A total of 18 PT were analyzed for PSC, 24 for PBC, 33 for 

biliary obstruction, 42 for NASH and 89 for DILI and hepatitis. 
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FIGURE 3.
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