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asymptotic expansion of this probability as u tends to infinity. Furthermore, we
establish the tail asymptotics of the supremum of the order statistics processes
of skew-Gaussian processes and a Gumbel limit theorem for the minimum
order statistics of stationary Gaussian processes. As a by-product we derive a
version of Li and Shao’s normal comparison lemma for the minimum and the
maximum of Gaussian random vectors.
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1 Introduction and Main Result

Let {X(t), t ≥ 0} be a stationary process with almost surely (a.s.) continuous
sample paths and denote by X1, . . . , Xn, n ∈ N mutually independent copies
of X. Of interest in this contribution is the rth order statistics process Xr:n

of X1, . . . , Xn, i.e., for any t ≥ 0

Xn:n(t) ≤ · · · ≤ X1:n(t). (1.1)

Throughout the paper, Xr:n is referred to as the rth order statistics process
generated by the process X. Order statistics play a central role in many sta-
tistical applications. Naturally, the order statistics processes are of particular
interest in statistical applications which involve the time-dynamics. If Xi(t) is
the value of a certain object (say image) i measured at time point t, and u is a
fixed threshold, then the set of points that the rth conjunction occurs before
some time point T is defined by

Cr,T,u := {t ∈ [0, T ] : Xr:n(t) > u}.

In applications it is of interest to calculate the probability that Cr,T,u is not
empty, which is given by

pr,T (u) := P (Cr,T,u 6= φ) = P

(
sup
t∈[0,T ]

Xr:n(t) > u

)
. (1.2)

Clearly, in an engineering context where Xi’s model some random signals,
pr,T (u) relates to the probability that at least r signals overshoot the thresh-
old u at some point during the time interval [0, T ]. Most prominent statistical
applications, concerned with the analysis of the surface roughness during all
machinery processes and functional magnetic resonance imaging (FMRI) data,
relate to the calculations of pr,T (u). A methodology for the analysis of FMRI
is established in the seminal contribution [31]. Therein the authors derive ap-
proximations of pn,T (u) by calculating the expectation of Euler characteristic
of Cn,T,u for a fixed high threshold u.

For certain smooth Gaussian random fields approximations of pn,T (u) have
been discussed in [7,14,31], whereas results for some non-Gaussian random
fields are derived in [9]. Exact asymptotic expansion of pr,T (u) for the class of
stationary Gaussian processes X was recently derived in [15]. Obviously, the
Gaussian random field cannot be used to model phenomena and data sets that
exhibit certain non-Gaussian characteristics such as skewness. It arises in many
applied-oriented fields including engineering, medical science, agriculture and
environmental studies; see, e.g., [1,8,33]. In recent years, new technologies such
as FMRI and positron emission tomography have been used to collect data
concerning the living human brain as well as astrophysics. As mentioned in
the literature, these images can be efficiently modeled by stationary random
fields.

Since the exact calculation of pr,T (u) is not possible in general, in this
contribution we derive approximations of pr,T (u) for u large.
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For the formulation of our main result we need to introduce Albin’s con-
ditions imposed on X as suggested in [2,3,6]. In what follows, let D be a
non-empty subset of R.
Condition A(D): (Gumbel MDA and conditional limit) Suppose that X(0)
has a continuous df with infinite right endpoint, and it is in the Gumbel max-
domain of attraction (MDA), i.e., for some positive scaling function w(·) we
have as u→∞

P
(
X(0) > u+

x

w(u)

)
= P (X(0) > u) e−x(1 + o(1)), ∀x ∈ R. (1.3)

Let q = q(u) satisfying limu↑∞ q(u) = 0 be a strictly positive non-increasing
function. Assume that for any y ∈ D there exists a random process {ξy(t), t ≥
0}, such that for any grid of points 0 < t1 < · · · < td < ∞ we have the

convergence in distribution (denoted by
d→)(

w(u)(X(qt1)− u), . . . , w(u)(X(qtd)− u)
)∣∣∣(w(u)(X(0)− u) > y

)
d→
(
ξy(t1), . . . , ξy(td)

)
, u→∞. (1.4)

Condition B: (Short-lasting-exceedance) For all positive constants a, T

lim
N→∞

lim sup
u→∞

[T/(aq)]∑
k=N

P (X(aqk) > u|X(0) > u) = 0, (1.5)

where q is given as in condition A(D) and [x] denotes the integer part of x.
Condition C: Suppose that there exist positive constants λ0, ρ, b, C and d > 1
such that

P
(
X(qt) > u+

λ

w(u)
, X(0) ≤ u

∣∣∣X(qt) > u

)
≤ Ctdλ−b (1.6)

holds for all u large and all t positive such that 0 < tρ < λ < λ0. Here w and
q are given as in condition A(D).

Here we have chosen a simpler condition C than that in [2,3]. It has been
shown in [6] that condition C above is sufficient for the validity of condition
C given in [2,3]; see also Proposition 2 in [4].

Note that the Albin’s conditions A(D),B,C given above are satisfied by
many well-known stationary processes such as χ2, Γ and

√
F processes in

[2]. A concrete example is the Slepian process, see for other examples [6,10,
29,30]. However, showing the validity of these conditions requires in general
significant efforts.

Let ξ
(i)
0 , i ≤ n be independent copies of the random process ξ0 given in con-

dition A({0}). In order to derive the exact asymptotics of pr,T (u) we introduce
the following constants

Ar := lim
a↓0

1

a
P
(

sup
k≥1

min
1≤i≤r

ξ
(i)
0 (ak) ≤ 0

)
, r ≤ n, (1.7)
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which we refer to as the generalized Albin constants. The finiteness and pos-
itiveness of it will be established in Theorem 1.1 below. For notational sim-
plicity we set hereafter cr,n = n!/(r!(n− r)!). Next, we state our principle
result.

Theorem 1.1 Let {Xr:n(t), t ≥ 0} be the rth order statistics process generated
by the stationary process X. If conditions A({0}), B and C hold for X, then
for any T > 0, as u→∞,

P

(
sup
t∈[0,T ]

Xr:n(t) > u

)
= TArcr,n

(
P (X(0) > u)

)r
q(u)

(1 + o(1)), (1.8)

where Ar defined in (1.7) is finite and positive.

This paper is organized as follows: In Section 2 we discuss an application
of Theorem 1.1 concerning the skew-Gaussian processes and then derive the
Gumbel limit theorem for the minimum order statistics process generated by
a stationary Gaussian process X. All the proofs are presented in Section 3.
Section 4 gives an Appendix which establishes a version of Li and Shao’s
normal comparison lemma for the minimum and maximum order statistics of
Gaussian random vectors.

2 Skew-Gaussian Processes and Gumbel Limit Theorem

Throughout this section we assume that {X(t), t ≥ 0} is a centered stationary
Gaussian process with a.s. continuous sample paths and covariance function
ρ(·) such that, for some α ∈ (0, 2]

ρ(t) < 1, ∀t > 0 and ρ(t) = 1− |t|α + o(|t|α), t→ 0. (2.9)

It is known (see, e.g., [3,25,17]) that the process X satisfies the assumptions
of Theorem 1.1 with the process ξ0 in condition A({0}) given by

ξ0(t) =
√

2Z(t)− tα + E, t ≥ 0, (2.10)

where E is a unit exponential random variable (rv) and {Z(t), t ≥ 0} is a
(independent of E) standard fractional Brownian motion (fBm) with Hurst
index α/2 ∈ (0, 1], i.e., Z is a centered Gaussian process with a.s. continuous
sample paths and covariance function

Cov(Z(s), Z(t)) =
1

2

(
sα + tα − |s− t|α

)
, s, t ≥ 0.

We note in passing that the findings of Theorem 1.1 for such X coincide with
those of Theorem 2.2 in [15]. Our setup here is however more general than
that of the aforementioned paper, as we demonstrate below. Let {Xi(t), t ≥
0}, i ≤ m+ 1,m ∈ N be independent copies of X. For any δ ∈ (0, 1] define the
skew-Gaussian process ζ as

ζ(t) = δ |X(t)|+
√

1− δ2Xm+1(t), |X(t)| =
( m∑
i=1

X2
i (t)

) 1
2 , t ≥ 0. (2.11)
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Theorem 2.2 Let {ζr:n(t), t ≥ 0} be the rth order statistics process generated
by the skew-Gaussian process ζ. If the stationary Gaussian process X has
covariance function ρ(·) which satisfies (2.9), then for any T > 0, as u→∞,

P

(
sup
t∈[0,T ]

ζr:n(t) > u

)

= T Ãr,αcr,nδrm−r
2r−rm/2

(Γ (m/2))r
u

2
α+rm−2re−

ru2

2 (1 + o(1)), (2.12)

where Ãr,α is determined by (1.7) with ξ
(i)
0 , i ≤ n being n independent copies

of ξ0 given in (2.10), and Γ (·) stands for the Euler Gamma function.

Remarks. a) The special case of Theorem 2.2, for δ = 1, coincides with that
obtained in Corollary 7.3 in [25]; see also [17,20].

b) The Pickands constant Hα coincides with Ã1,α if n = 1. It is well-known
that H1 = 1 and H2 = 1/

√
π. For other values of α the recent contribution [16]

(see also the excellent monograph [32]) suggests an efficient algorithm to simu-

late Hα. For n > 1 both calculation and simulation of Ãr,α are open problems.

In extreme value analysis (see, e.g., [12,21,17]) it is also of interest to find
some normalizing constants aT > 0, bT ∈ R so that the linear normalization of

the supremum aT

(
supt∈[0,T ]Xr:n(t)−bT

)
converges in distribution as T →∞,

where Xr:n is the rth order statistics process generated by the stationary
Gaussian process X. The following theorem gives a Gumbel limit result for
Xn:n generated by a weakly dependent stationary Gaussian process.

Theorem 2.3 Let {Xn:n(t), t ≥ 0} be the minimum order statistics process
generated by the stationary Gaussian process X with covariance function ρ(·)
satisfying (2.9). If ρ(t) ln t = o(1) holds as t→∞, then

lim
T→∞

sup
x∈R

∣∣∣∣P
(
aT

(
sup
t∈[0,T ]

Xn:n(t)− bT
)
≤ x

)
− exp

(
−e−x

)∣∣∣∣ = 0, (2.13)

where (set below D := (n/2)n/2−1/αÃn,α(2π)−n/2)

aT =
√

2n lnT , bT =

√
2 lnT

n
+

(
1
α −

n
2

)
ln lnT + lnD
√

2n lnT
. (2.14)

Remarks. a) It follows from the proof of Theorem 2.3 that a similar result still
holds for the maximum order statistics process X1:n under the same condition
(since (4.35) holds for the maximum).
b) In several applications it is of interest to consider a random time interval T
instead of T ; see, e.g., [19,28]. As in [28] our result in (2.13) can be extended
for random intervals; we omit that result since it can be shown with similar
arguments as in the aforementioned paper.
c) The deep contribution [26] shows that besides Gumbel limit theorems, of
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interest for applications is the growth of E
(

(supt∈[0,T ] |Xn:n(t)|)p
)

for given

p > 0. In view of Theorem 2.2 (with m = δ = 1) and applying Lemma 4.5 in
[27] we obtain

lim
T→∞

E

(( supt∈[0,T ] |Xn:n(t)|√
2/n lnT

)p)
= 1. (2.15)

3 Proofs

In this section, we present proofs of Theorems 1.1, 2.2 and 2.3. We shall rely
on the methodology developed in the seminal paper [3]. As mentioned therein,
checking the Albin’s conditions for stationary processes is usually a hard task.
In Section 3.1 we consider X to be a stationary process with a.s. continuous
sample paths. In Sections 3.2, 3.3 we concentrate on the special case where X
is a centered stationary Gaussian process with a.s. continuous sample paths
and covariance function ρ(·) satisfying (2.9).

3.1 Proof of Theorem 1.1

We begin with some preliminary lemmas that will be used in the proof of
Theorem 1.1. Unless otherwise specified, {Xr:n(t), t ≥ 0} denotes the rth order
statistics process generated by the stationary process X.

The next lemma plays a key role throughout the proofs. Since its proof is
straightforward, we omit it. Recall that we defined cr,n = n!/(r!(n− r)!).

Lemma 1 If X(0) has a continuous distribution function, then for any t ≥ 0

P (Xr:n(t) > u) = cr,n
(
P (X(t) > u)

)r
(1 + o(1)), u→∞. (3.16)

Lemma 2 If condition A(D) holds for X, then Xr:n(0) has df in the Gumbel
MDA with scaling function wr(u) = rw(u). Further, for any grid of points
0 < t1 < · · · < td <∞ and all y ∈ D we have(
wr(u)(Xr:n(qt1)− u), . . . , wr(u)(Xr:n(qtd)− u)

)∣∣∣(wr(u)(Xr:n(0)− u) > ry
)

d→
(

min
1≤i≤r

rξ(i)y (t1), . . . , min
1≤i≤r

rξ(i)y (td)
)
, u→∞, (3.17)

where ξ
(i)
y , i ≤ n are mutually independent copies of ξy as in condition A(D).

Proof. First, by (1.3) and (3.16)

P
(
Xr:n(0) > u+

x

rw(u)

)
= P (Xr:n(0) > u) e−x(1 + o(1)), x ∈ R
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meaning that Xr:n(0) has df in the Gumbel MDA with wr(u) = rw(u).
Further, it follows from (1.4) that the convergence in distribution(

X∗i (qt1), . . . , X∗i (qtd)
)∣∣∣∣(X∗i (0) > ry)

d→
(
rξ(i)y (t1), . . . , rξ(i)y (td)

)
(3.18)

holds as u → ∞ for all i ≤ n, y ∈ D, where X∗i (t) = wr(u)(Xi(t) − u). Let
further Y ∗r (t) = wr(u)

(
Xr:n(t) − u

)
and fix a grid of points 0 < t1 < · · · <

td < ∞. Next, we show that (3.17) holds when r = n. Indeed, for any given
constants y1, . . . , yd ∈ R by (3.18)

P
(
Y ∗n (qt1) > y1, . . . , Y

∗
n (qtd) > yd

∣∣∣Y ∗n (0) > ny
)

=
P (min1≤i≤nX

∗
i (qtj) > yj , 1 ≤ j ≤ d,min1≤i≤nX

∗
i (0) > ny)

P (min1≤i≤nX∗i (0) > ny)

→ P
(

min
1≤i≤n

nξ(i)y (t1) > y1, . . . , min
1≤i≤n

nξ(i)y (td) > yd

)
(3.19)

as u → ∞. Similarly, the claim of (3.17) holds for all r < n if we show that,
for any given constants y1, . . . , yd ∈ R

P
(
Y ∗r (qt1) > y1, . . . , Y

∗
r (qtd) > yd

∣∣∣Y ∗r (0) > ry
)

=
P (min1≤i≤rX

∗
i (qtj) > yj , 1 ≤ j ≤ d,min1≤i≤rX

∗
i (0) > ry)

P (min1≤i≤rX∗i (0) > ry)

×(1 + Υr(u)), with lim
u→∞

Υr(u) = 0. (3.20)

Next, we only present the proof for the case that r = n − 1 and d = 1; the
other cases follow by similar arguments. By (3.16)

P
(
Y ∗n−1(0) > (n− 1)y

)
= nP

(
min

1≤i≤n−1
X∗i (0) > (n− 1)y

)
(1 + o(1))

as u→∞. Further

P
(
Y ∗n−1(qt1) > y1, Y

∗
n−1(0) > (n− 1)y

)
= P

(
Y ∗n−1(qt1) > y1 ≥ Y ∗n (qt1), Y ∗n (0) > (n− 1)y

)
+P
(
Y ∗n (qt1) > y1, Y

∗
n−1(0) > (n− 1)y ≥ Y ∗n (0)

)
+P
(
Y ∗n−1(qt1) > y1 ≥ Y ∗n (qt1), Y ∗n−1(0) > (n− 1)y ≥ Y ∗n (0)

)
+P (Y ∗n (qt1) > y1, Y

∗
n (0) > (n− 1)y)

=: I1u + I2u + I3u + I4u.

Since as u→∞

P (X∗n(qt1) ≤ y1, X∗n(0) > (n− 1)y) ≤ P
(
Xn(0) > u+

y

w(u)

)
= o(1),



8 Krzysztof Dȩbicki et al.

we have

I1u = nP
(

min
1≤i≤n−1

X∗i (qt1) > y1, min
1≤i≤n−1

X∗i (0) > (n− 1)y

)
o(1),

and similarly I2u = I1u(1 + o(1)). Using further the fact that

P (X∗n(qt1) ≤ y1, X∗n(0) ≤ (n− 1)y) = 1 + o(1), u→∞,

we have

I3u =
∑
i,i′≤n

P
(

min
1≤j≤n,j 6=i

X∗j (qt1) > y1, X
∗
i (qt1) ≤ y1,

min
1≤j′≤n,j′ 6=i′

X∗j′(0) > (n− 1)y,X∗i (0) ≤ (n− 1)y

)
= nP

(
min

1≤j≤n−1
X∗j (qt1) > y1, min

1≤j′≤n−1
X∗j′(0) > (n− 1)y

)
×P (X∗n(qt1) ≤ y1, X∗n(0) ≤ (n− 1)y)

+c2,nP
(

min
1≤j≤n−2

X∗j (qt1) > y1, min
1≤j′≤n−2

X∗j′(0) > (n− 1)y

)
×P
(
X∗n−1(qt1) ≤ y1, X∗n−1(0) > (n− 1)y

)
P (X∗n(qt1) > y1, X

∗
n(0) ≤ (n− 1)y)

= nP
(

min
1≤j≤n−1

X∗j (qt1) > y1, min
1≤j′≤n−1

X∗j′(0) > (n− 1)y

)
(1 + o(1)).

Since in view of (3.19), for k = 0, 1, 2, as u→∞,

P
(

min
1≤j≤n−k

X∗j (qt1) > y1, min
1≤j′≤n−k

X∗j′(0) > (n− 1)y

)
=
(
P (X(0) > u)

)n−k
O(1),

we conclude that I4u = I3uo(1), and further that (3.20) holds for r = n − 1
and d = 1. This completes the proof. ut
Lemma 3 If condition B is satisfied by X, then for any a, T positive

lim
N→∞

lim sup
u→∞

[T/(aq)]∑
k=N

P (Xr:n(aqk) > u|Xr:n(0) > u) = 0. (3.21)

Proof. First, since for all integers k ≥ 1 and any u positive

P (Xn:n(aqk) > u|Xn:n(0) > u) =
P (Xn:n(aqk) > u,Xn:n(0) > u)

P (Xn:n(0) > u)

=
(
P (X(aqk) > u|X(0) > u)

)n
≤ P (X(aqk) > u|X(0) > u)

holds, condition B implies the claim for r = n. If r < n, then with similar
arguments as in (3.20) we have for large u

P
(
Xr:n(aqk) > u

∣∣∣Xr:n(0) > u
)

=
(
P
(
X(aqk) > u

∣∣∣X(0) > u
))r

(1 + Υr(u))

≤ K
(
P
(
X(aqk) > u

∣∣∣X(0) > u
))r

holds for some K > 0, hence again condition B establishes the proof. ut
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Lemma 4 If condition C is satisfied by X with the parameters as therein,
then there exists some positive constant C∗ such that for all u large

P
(
Xr:n(qt) > u+

λ

w(u)
, Xr:n(0) ≤ u

∣∣∣Xr:n(qt) > u

)
≤ C∗tdλ−b (3.22)

holds for any t positive satisfying 0 < tρ < λ < λ0.

Proof. By condition C, for sufficiently large u and C∗ = nC, r = n

P
(
Xn:n(qt) > u+

λ

w(u)
, Xn:n(0) ≤ u

∣∣∣Xn:n(qt) > u

)

≤
n∑
i=1

P
(
Xn:n(qt) > u+ λ

w(u) , Xi(qt) ≤ u
)

P (Xn:n(qt) > u)

≤
n∑
i=1

P
(
Xi(qt) > u+ λ

w(u) , Xi(0) ≤ u,min1≤j≤n,j 6=iXj(qt) > u
)

(P (X(qt) > u))n

=

n∑
i=1

P
(
Xi(qt) > u+ λ

w(u) , Xi(0) ≤ u
)

P (X(qt) > u)

=

n∑
i=1

P
(
Xi(qt) > u+

λ

w(u)
, Xi(0) ≤ u

∣∣∣Xi(qt) > u

)
≤ C∗tdλ−b (3.23)

holds for all t positive satisfying 0 < tρ < λ < λ0. If r < n, then with similar
arguments as in (3.20)

P
(
Xr:n(qt) > u+

λ

w(u)
, Xr:n(0) ≤ u

)
= cr,nP

(
min
1≤i≤r

Xi(qt) > u+
λ

w(u)
, min
1≤i≤r

Xi(0) ≤ u
)

(1 + o(1))

holds as u → ∞. Consequently, it follows from (3.23) that there exists some
positive constant C∗ such that

P
(
Xr:n(qt) > u+

λ

w(u)
, Xr:n(0) ≤ u

∣∣∣Xr:n(qt) > u

)
≤ C∗tdλ−b

holds for all t > 0 and 0 < tρ < λ < λ0 establishing thus the proof. ut
Proof of Theorem 1.1. The proof is based on an application of Theorem 1
in [3], see also Lemma A in [6]. It follows from Lemmas 2, 3 and 4 that the
conditions of Theorem 1 in [3] are satisfied, hence for any T > 0

P

(
sup
t∈[0,T ]

Xr:n(t) > u

)
= TAr

P (Xr:n(0) > u)

q(u)
(1 + o(1)), u→∞,

where the limit in the right-hand side of (1.7) exists with Ar ∈ (0,∞). Hence
the proof follows from (3.16). ut
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3.2 Proof of Theorem 2.2

In the following, we focus on the special case where the process X is a centered
stationary Gaussian process with a.s. continuous sample paths and covariance
function ρ(·) satisfying (2.9). Before proceeding to the proof of Theorem 2.2,
we present four lemmas.

Lemma 5 If {ζ(t), t ≥ 0} is given as in (2.11), then

P (ζ(0) > u) = δm−1
21−m/2

Γ (m/2)
um−2 exp

(
−u

2

2

)
(1 + o(1))

and further the convergence in probability

|X(0)|
∣∣∣(ζ(0) > u

) p→∞ (3.24)

holds as u→∞.

Proof. Since |X(0)|2 /2 has Gamma(m/2, 1) distribution, we have

P (|X(0)| > u) =
21−m/2

Γ (m/2)
um−2 exp

(
−u

2

2

)
(1 + o(1)), u→∞.

Hence, Theorem 2.2 in [18] implies for any δ ∈ (0, 1]

P (ζ(0) > u) = δm−1P (|X(0)| > u) (1 + o(1)), u→∞.

Clearly, (3.24) holds for δ = 1. Next, taking a constant c such that 1 < c <
1/
√

1− δ2 for δ ∈ (0, 1), it follows from the proof of Lemma 2.3 in [18] that

lim
u→∞

P
(

(1− c
√

1− δ2)u < δ |X(0)| < cδu
∣∣∣ζ(0) > u

)
= 1,

implying thus (3.24). Hence the proof is complete. ut

Lemma 6 Let {ζ(t), t ≥ 0} be given as in (2.11). If the covariance function
ρ(·) of the generic stationary Gaussian process X satisfies (2.9), then for any
grid of points 0 < t1 < · · · < td <∞ the joint convergence in distribution(

u(ζ(qt1)− u), . . . , u(ζ(qtd)− u)
)∣∣∣(ζ(0) > u)

d→
(
ξ0(t1), . . . , ξ0(td)

)
holds as u → ∞, where the process ξ0 is given by (2.10) and q = q(u) :=
u−2/α.

Proof. By Lemma 5, for any s ∈ R

lim
u→∞

P
(
ζ(0) > u+ s

u

)
P (ζ(0) > u)

= e−s.

Consequently, we have the convergence in distribution

u(ζ(0)− u)
∣∣∣(ζ(0)− u > 0)

d→ E, u→∞,
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with E a unit exponential rv. In view of Theorem 5.1 in [11], it suffices to
show that as u→∞(

u(ζ(qt1)− u), . . . , u(ζ(qtd)− u)
)∣∣∣(ζ(0) = ux)

d→
(√

2Z(t1)− tα1 + x, . . . ,
√

2Z(td)− tαd + x
)
, ux := u+ x/u

holds for all d ≥ 1 and almost all x > 0 with Z a standard fBm with Hurst
index α/2. Define

X∗i = ρ(qtj)Xi(0), ∆i(tj) = Xi(qtj)−X∗i , i ≤ m+ 1, j ≤ d.

For any u > 0 and j ≤ d, we have(
u[ζ(qtj)− u]− x

)∣∣∣(ζ(0) = ux)

=

(
δu

√√√√ m∑
i=1

(
X2
i (0) + 2X∗i ∆i(tj)− (1− ρ2(qtj))X2

i (0) +∆2
i (tj)

)
− |X(0)|


+
√

1− δ2u
(
∆m+1(tj)− (1− ρ(qtj))Xm+1(0)

))∣∣∣∣∣(ζ(0) = ux)

=: δAu +
√

1− δ2Bu.

Let Zi, i ≤ m + 1 be mutually independent copies of Z. In view of (2.9) for
s, t > 0 and i ≤ m+ 1

lim
u→∞

u2Cov(∆i(s), ∆i(t)) = sα + tα − |s− t|α = 2Cov(Zi(s), Zi(t)), (3.25)

which implies the following convergence of finite-dimensional distributions

{u∆i(t), t ≥ 0} d→ {
√

2Zi(t), t ≥ 0}, u→∞, i ≤ m+ 1.

By the independence of ∆i’s and Xi’s, the Zi’s can be chosen to be inde-
pendent of ζ(0). Further, since (X1(0), . . . , Xm+1(0)) is a centered Gaussian
random vector with N(0, 1) independent components, we have the stochastic
representation (see [13])

(X1(0), . . . , Xm(0), Xm+1(0))
d
= R(OB, I

√
1−B2), (3.26)

where O = (O1, . . . , Om) is a random vector uniformly distributed on the unit
sphere of Rm. Here the rv I satisfies P (I = ±1) = 1/2, the random radius
R > 0 a.s. is such that R2 has chi-square distribution with m + 1 degrees
of freedom, and the rv B is supported in (0, 1) a.s. such that B2 has beta
distribution with parameters m/2, 1/2. Moreover, O, I, R,B, Zi, i ≤ m+ 1 are
mutually independent. Consequently, using the fact that

√
x0 + x =

√
x0 +
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(2
√
x0)−1x(1 + o(1)) as x → 0, together with (3.25) and (3.26), we obtain as

u→∞

Au =

∑m
i=1 ρ(qtj)Xi(0)[u∆i(tj)]−

∑m
i=1

u(1−ρ2(qtj))
2 X2

i (0) +
∑m
i=1

u∆2
i (tj)
2

|X(0)|

× (1 + op(1))
∣∣∣(ζ(0) = ux)

=

∑m
i=1

√
2Xi(0)Zi(tj)−

∑m
i=1X

2
i (0)

u tαj +
∑m
i=1 Z

2
i (tj)

u

|X(0)|
(1 + op(1))

∣∣∣(ζ(0) = ux)

d
=

(
√

2

m∑
i=1

OiZi(tj)−
RB

u
tαj +

∑m
i=1 Z

2
i (tj)

uRB

)
× (1 + op(1))

∣∣∣(R(δB +
√

1− δ2
√

1−B2I) = ux)

Bu
d
=
(√

2Zm+1(tj)−
R
√

1−B2I

u
tαj

)
(1 + op(1))

∣∣∣(ζ(0) = ux).

Since the following stochastic representation

m∑
i=1

OiZi(tj)
d
= Z1(tj)

( m∑
i=1

O2
i

)1/2
= Z1(tj)

holds, we have further by (3.24)

δAu +
√

1− δ2Bu
d
=

(
√

2
(
δ

m∑
i=1

OiZi(tj) +
√

1− δ2Zm+1(tj)
)
− R(δB +

√
1− δ2

√
1−B2I)

u
tαj

+

∑m
i=1 Z

2
i (tj)

uRB

)
(1 + op(1))

∣∣∣(R(δB +
√

1− δ2
√

1−B2I) = ux)

d→
√

2Z(tj)− tαj , u→∞

establishing the convergence for any fixed tj > 0. The joint convergence in
distribution for 0 < t1 < · · · < td < ∞ can be shown with similar arguments
and is therefore omitted here. ut

Lemma 7 Under the assumptions and the notation of Lemma 6, for any a, T
positive

lim sup
u→∞

[T/(aq)]∑
j=N

P
(
ζ(aqj) > u

∣∣∣ζ(0) > u
)
→ 0, N →∞.

Proof. It follows from (2.9) that for any ε > 0 small enough

1

2
tα ≤ 1− ρ(t) ≤ 2tα, ∀t ∈ (0, ε].
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Denote by X(qt)−ρ(qt)X(0) = (X1(qt)−ρ(t)X1(0), . . . , Xm(qt)−ρ(qt)Xm(0)),
and define

ζ∗(qt) ≡ δ |X(qt)− ρ(qt)X(0)|+
√

1− δ2(Xm+1(qt)− ρ(qt)Xm+1(0)). (3.27)

Since X(qt) − ρ(qt)X(0) is independent of X(0), and X(qt) − ρ(qt)X(0)
d
=√

1− ρ2(qt)X(0), we have that ζ∗(qt) is independent of ζ(0), and

ζ∗(qt)
d
=
√

1− ρ2(qt)ζ(0).

Moreover, by the triangle inequality

ζ∗(qt) ≥
(
δ |X(qt)|+

√
1− δ2Xm+1(qt)

)
− ρ(qt)

(
δ |X(0)|+

√
1− δ2Xm+1(0)

)
= ζ(qt)− ρ(qt)ζ(0) > u(1− ρ(qt))

provided that ζ(qt) > ζ(0) > u. Therefore

P
(
ζ(qt) > u

∣∣∣ζ(0) > u
)
≤ 2

P (ζ(qt) > ζ(0) > u)

P (ζ(0) > u)

≤ 2
P (ζ∗(qt) > u(1− ρ(qt)), ζ(0) > u)

P (ζ(0) > u)

= 2P

(
ζ(0) > u

√
1− ρ(qt)

1 + ρ(qt)

)
.

Furthermore, it follows from Chebyshev’s inequality and Lemma 5 that for
any p > m

P
(
ζ(qt) > u

∣∣∣ζ(0) > u
)
≤

21+p E(|ζ(0)|p)
tαp/2

, qt ∈ (0, ε],

2P
(
ζ(0) > u

√
λ
2

)
, qt ∈ (ε, T ]

≤
{
Kpt

−αp/2, qt ∈ (0, ε],
Kpu

m−1−p, qt ∈ (ε, T ]
(3.28)

is satisfied for some positive constant Kp, where λ = 1 − supε<s≤T ρ(s) > 0,
and the second inequality is due to the fact that

P (ζ(0) > u) ≤ Cum−1 1√
2πu

exp

(
−u

2

2

)
≤ Cpum−1−p, u > 0

holds for some positive constants C and Cp. Hence, if p = 2(2/α + m − 1),
then for t ≥ 1

P
(
ζ(qt) > u

∣∣∣ζ(0) > u
)
≤ Kp(1 + Tα(p−m+1)/2) max(t−αp/2, t−α(p−m+1)/2)

≤ Cpt
−2, qt ∈ (0, T ].
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Consequently,

lim sup
u→∞

[T/(aq)]∑
j=N

P
(
ζ(aqj) > u

∣∣∣ζ(0) > u
)
≤ Cp

∞∑
j=N

(aj)−2 → 0, N →∞

establishing the proof. ut

Lemma 8 Under the assumptions and the notation of Lemma 6 there exist
positive constants C, p, λ0, u0 and d > 1 such that

P
(
ζ(qt) > u+

λ

u
, ζ(0) ≤ u

)
≤ Ctdλ−pP (ζ(0) > u)

for any positive t satisfying 0 < tα/2 < λ < λ0 and all u > u0.

Proof. By (2.9) there exists ε > 0 such that

ρ(t) ≥ 1

2
and 1− ρ(t) ≤ 2tα

for all t ∈ (0, ε]. Further, for any t positive satisfying 0 < tα/2 < λ < λ0 :=
min(1/8, εα/2) and u > 1

1

ρ(qt)
− 1 ≤ 4

tα

u2
≤ λ

2u2
.

Next, for

X1/ρ(qt) = (X1(qt)− ρ−1(qt)X1(0), . . . , Xm(qt)− ρ−1(qt)Xm(0))

we have by the triangle inequality

|X(qt)| ≤
∣∣X1/ρ(qt)

∣∣+
1

ρ(qt)
|X(0)| .

Further, letting

ζ∗∗(qt) = δ
∣∣X1/ρ(qt)

∣∣+
√

1− δ2
(
Xm+1(qt)− ρ−1(qt)Xm+1(0)

)
,

and by utilising similar arguments as for ζ∗ given in (3.27), we have that ζ∗∗(qt)

is independent of ζ(qt) and ζ∗∗(qt)
d
=
√

1− ρ2(qt)/ρ(qt)ζ(0). Therefore, for
any t positive satisfying 0 < tα/2 < λ < λ0 and u > 1

P
(
ζ(qt) > u+

λ

u
, ζ(0) ≤ u

∣∣∣ζ(qt) > u

)
≤ P

(
ζ∗∗(qt) >

λ

u
+ u− ζ(0)

ρ(qt)
, ζ(0) ≤ u

∣∣∣ζ(qt) > u

)
≤ P

(
ζ∗∗(qt) >

λ

u
−
(

1

ρ(qt)
− 1

)
u
∣∣∣ζ(qt) > u

)
≤ P

(
ζ∗∗(qt) >

λ

2u

)
= P

(
ζ(0) >

ρ(qt)√
1− ρ2(qt)

λ

2u

)

≤ P
(
ζ(0) >

λ

8tα/2

)
.
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Consequently, by Chebyshev’s inequality for any positive constant p > 2/α

P
(
ζ(qt) > u+

λ

u
, ζ(0) ≤ u

)
≤ 8pE (|ζ(0)|p) tαp/2λ−pP (ζ(qt) > u)

holds for any t positive satisfying 0 < tα/2 < λ < λ0 and u large. Thus the
proof is complete. ut
Proof of Theorem 2.2 With Lemma 5–Lemma 8, we conclude that the claim
follows by an application of Theorem 1.1. ut

3.3 Proof of Theorem 2.3

In view of [3,6] or [21], we need to verify two additional conditions (see Lem-
mas 9 and 10) for the order statistics processes generated by the stationary
Gaussian process X.

Lemma 9 Under the assumptions of Theorem 2.3, we have for any constants
a, T > 0

lim
ε↓0

lim sup
u→∞

[ε/P(Xn:n(0)>u)]∑
j=[T/(aq)]

P
(
Xn:n(aqj) > u

∣∣∣Xn:n(0) > u
)

= 0. (3.29)

Proof. Recalling that X(t)− ρ(t)X(0) is independent of X(0),

P
(
Xn:n(t) > u

∣∣∣Xn:n(0) > u
)

= P
(
Xn:n(t) > u,Xn:n(0) > u

∣∣∣Xn:n(0) > u
)

= 2n
(
P
(
X(t) > X(0) > u

∣∣∣X(0) > u
))n

≤ 2n
(
P
(
X(t)− ρ(t)X(0) > u(1− ρ(t)), X(0) > u

∣∣∣X(0) > u
))n

≤ 2n

(
1− Φ

(
u

√
1− |ρ(t)|
1 + |ρ(t)|

))n

≤ Ku−n
(

1− |ρ(t)|
1 + |ρ(t)|

)−n/2
exp

(
−nu

2

2

1− |ρ(t)|
1 + |ρ(t)|

)
(3.30)

holds for some positive constant K and u large (the constant K below may be
different from line to line), here Φ(·) denotes the standard normal df.

Now we choose a function g = g(u) such that limu→∞ g(u) =∞, |ρ(g(u))| =
u−2. It follows from u−2 ln g(u) = o(1) that g(u) ≤ exp(ε′u2) for some 0 <
ε′ < n/2(1−|ρ(T )|)/(1+ |ρ(T )|) and sufficiently large u. Now we split the sum
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in (3.29) at aqj = g(u). The first term satisfies

[g(u)/(aq)]∑
j=[T/(aq)]

P
(
Xn:n(aqj) > u

∣∣∣Xn:n(0) > u
)

≤ Kg(u)

aq
u−n

(
1− |ρ(T )|
1 + |ρ(T )|

)−n/2
exp

(
−nu

2

2

1− |ρ(T )|
1 + |ρ(T )|

)
≤ Ku2/α−n exp

(
ε′u2 − nu2

2

1− |ρ(T )|
1 + |ρ(T )|

)
→ 0, u→∞

since ε′ < n/2(1− |ρ(T )|)/(1 + |ρ(T )|). For the remaining term we have

[ε/P(Xn:n(0)>u)]∑
j=[g(u)/(aq)]

P
(
Xn:n(aqj) > u

∣∣∣Xn:n(0) > u
)

≤ K ε

P (Xn:n(0) > u)
u−n

(
1− u−2

1 + u−2

)−n/2
exp

(
−nu

2

2

1− u−2

1 + u−2

)
≤ Kε exp

(
−nu

2

2

(
1− u−2

1 + u−2
− 1

))
≤ Kε, u→∞.

Therefore, the claim follows by taking ε ↓ 0. ut
In the following lemma we shall establish the asymptotic independence of

Xn:n over suitable separate intervals (see condition D′ in [3]). In the notation

used below Ãn,α is the constant appearing in (2.12), and

T = T (u) =
(2π)n/2

Ãn,α
un−

2
α exp

(
nu2

2

)
. (3.31)

Lemma 10 Under the assumptions of Theorem 2.3, if futher T = T (u) is
defined by (3.31) and a > 0, 0 < λ < 1 are given constants, then for any
0 ≤ s1 < · · · < sp < t1 < · · · < tp′ in {aqj : j ∈ Z, 0 ≤ aqj ≤ T} with
t1 − sp ≥ λT we have

lim
u→∞

∣∣∣∣∣P
 p⋂
i=1

{Xn:n(si) ≤ u},
p′⋂
j=1

{Xn:n(tj) ≤ u}


−P

(
p⋂
i=1

{Xn:n(si) ≤ u}

)
P

 p′⋂
j=1

{Xn:n(tj) ≤ u}

∣∣∣∣∣ = 0. (3.32)

Proof. First, taking logarithms on both sides of (3.31) we obtain

lnT =
nu2

2
+

(
n− 2

α

)
lnu+ ln

(
(2π)n/2

Ãn,α

)
,
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which together with u2 = (2/n) lnT (1 + o(1)) implies that

u2 =
2 lnT

n
+

(
2

nα
− 1

)
ln lnT + ln

(
n

2

)1− 2
nα (Ãn,α)

2
n

2π
(1 + o(1)) (3.33)

as T →∞. Further, define (hereafter I{·} denotes the indicator function)

Xij = Xj(si)I{i ≤ p}+Xj(ti−p)I{p < i ≤ p+ p′}, 1 ≤ i ≤ p+ p′, 1 ≤ j ≤ n,

and {Yij , 1 ≤ i ≤ p, 1 ≤ j ≤ n} d
= {Xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n}, independent of

{Yij , p + 1 ≤ i ≤ p + p′, 1 ≤ j ≤ n} d
= {Xij , p + 1 ≤ i ≤ p + p′, 1 ≤ j ≤ n}.

Applying Lemma 12 with Xi(n) = Xn:n(si)I{i ≤ p} + Xn:n(ti−p)I{p < i ≤
p+ p′} (see the Appendix), using similar arguments as in Lemma 8.2.4 in [21]
we obtain that the left-hand side of (3.32) is bounded from above by

Ku−2(n−1)
(
T

q

) ∑
λT≤tj−si≤T

e
− nu2

1+|ρ(tj−si)|
∫ |ρ(tj−si)|
0

(1 + |h|)2(n−1)

(1− h2)n/2
dh

≤ Ku−2(n−1)
(
T

q

) ∑
λT≤aqj≤T

|ρ(aqj)| e−
nu2

1+|ρ(aqj)| , for large u,

where K is some positive constant. The rest of the proof consists of the same
arguments as that of Lemma 12.3.1 in [21] by using (3.33) and the Berman’s
condition ρ(t) ln t = o(1). Hence the proof is complete. ut
Proof of Theorem 2.3 Since Theorem 2.2 and Lemmas 9 and 10 hold for
the nth order statistics process Xn:n, in view of Lemma B in [6] we have for
T = T (u) defined as in (3.31)

lim
u→∞

P

(
sup

t∈[0,T (u)]

Xn:n(t) ≤ u+
x

nu

)
= exp

(
−e−x

)
, x ∈ R.

Hence the proof follows by expressing u in terms of T as in (3.33). ut

4 Appendix

Let X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) be two Gaussian random vectors

with N(0, 1) components and covariance matrices Σ1 = (σ
(1)
ij ) and Σ0 =

(σ
(0)
ij ), respectively. The most elaborated version of Berman’s inequality is due

to Li and Shao [22], where it is shown that for u = (u1, . . . , ud) ∈ Rd (hereafter
the notation x ≤ y for any x,y ∈ Rd means xi ≤ yi for all i ≤ d)∣∣∣∣P (X ≤ u)− P (Y ≤ u)

∣∣∣∣ ≤ 1

2π

∑
1≤i<j≤d

Aij exp

(
−

u2i + u2j
2(1 + ρij)

)
, (4.34)

where ρij := max(|σ(1)
ij |, |σ

(0)
ij |), Aij := |arcsin(σ

(1)
ij )− arcsin(σ

(0)
ij )|.
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Our goal is to establish Li and Shao’s extension of comparison lemma
(Berman’s inequality) for the minimum and the maximum order statistics of
Gaussian random vectors. Let therefore Xj = (Xij , i ≤ d), j ≤ n be n indepen-
dent copies of X. Denote the minimum and maximum order statistics vector
Xn:n = (Xi(n), i ≤ d),X1:n = (Xi(1), i ≤ d) with Xi(n) = minj≤nXij , Xi(1) =
maxj≤nXij , i ≤ d. Similarly, for Y j , j ≤ n independent copies of Y we define
the minimum and maximum order statistics vectors Y n:n and Y 1:n, respec-
tively.

Lemma 11 For arbitrary u ∈ Rd and k = 1, n we have∣∣∣∣P (Xk:n ≤ u)− P (Y k:n ≤ u)

∣∣∣∣ ≤ n

2π

∑
1≤i<j≤d

Aij exp

(
−

u2i + u2j
2(1 + ρij)

)
. (4.35)

Proof. Note that −X and −Y have the same distributions as those of X
and Y , respectively. Using Theorem 2.1 in [23] with constants λij = −ui, i ≤
d, j ≤ n, we have∣∣∣∣P (Xn:n ≤ u)− P (Y n:n ≤ u)

∣∣∣∣
=

∣∣∣∣P (∪di=1 ∩nj=1 {−Yij ≤ −ui}
)
− P

(
∪di=1 ∩nj=1 {−Xij ≤ −ui}

)∣∣∣∣
≤ n

2π

∑
1≤i<l≤d

Ail exp

(
− u2i + u2l

2(1 + ρil)

)
.

Next, since |an − bn| ≤ n |a− b| , a, b ∈ [0, 1] and n ∈ N, we have by (4.34)

|P (X1:n ≤ u)− P (Y 1:n ≤ u)| =
∣∣(P (X ≤ u)

)n − (P (Y ≤ u)
)n∣∣

≤ n

2π

∑
1≤i<l≤d

Ail exp

(
− u2i + u2l

2(1 + ρil)

)
,

hence (4.35) for k = 1 follows and thus the proof is complete. ut

Lemma 12 Let Xn:n and Y n:n be the minimum order statistics vectors de-
fined above. Then, for all u > 0∣∣∣∣P (Xn:n ≤ u)− P (Y n:n ≤ u)

∣∣∣∣ ≤ n

(2π)n
u−2(n−1)

∑
1≤i<l≤d

|A∗il| exp

(
− nu2

1 + ρil

)
,

where u = min1≤i≤n ui and

A∗il =

∫ σ
(1)
il

σ
(0)
il

(1 + |h|)2(n−1)

(1− h2)n/2
dh. (4.36)
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Proof. We follow the idea of the proof of Theorem 2.1 in [23]. Let {Zhij , i ≤
d, j ≤ n} be N(0, 1) rvs with covariance matrix Σh = (σhij,lk) where

σhij,lk = E
(
ZhijZ

h
lk

)
= τhilI{j = k}, i, l ≤ d, j, k ≤ n, h ∈ [0, 1],

with τhil := hσ
(1)
il + (1 − h)σ

(0)
il . Clearly, Zh

j = {Zhij , i ≤ d}, j ≤ n are inde-

pendent and identically Nd(0, Σ
h) distributed with Σh = hΣ1 + (1 − h)Σ0.

Without loss of generality, we assume that Σ1 and Σ0 are positive definite.
Consequently, we have (see (3.4) and (3.19) in [23])

P (Xn:n ≤ u)− P (Y n:n ≤ u)

= P
(
Z1

1:n ≥ −u
)
− P

(
Z0

1:n ≥ −u
)

= n
∑

1≤i<l≤d

(σ
(1)
il − σ

(0)
il )

∫ 1

0

dh
(
ϕ(−ui,−ul; τhil)

×P
(
∩ds=1,s6=i,l{Wh

s > −us} ∩nt=2 {Zhit ≤ −ui, Zhlt ≤ −ul}
)
,

whereWh
s = max1≤j≤n Z

h
sj , and ϕ(−ui,−ul; τhil) is the bivariate pdf of (Zhi1, Z

h
l1)

which satisfies

ϕ(−ui,−ul; τhil) =
1

2π(1− (τhil)
2)1/2

exp

(
−u

2
i − 2τhiluiul + u2l

2(1− (τhil)
2)

)
≤ 1

2π(1− (τhil)
2)1/2

exp

(
− u2

1 + ρil

)
, u = min

1≤i≤n
ui.

Next, let (Zi, Z̃l) be a bivariate standardized normal random vector with cor-
relation |τhil | and set u = min1≤i≤n ui > 0. Slepian’s inequality in [25] and
Lemma 2.3 in [24] imply

P
(
Zhit ≤ −ui, Zhlt ≤ −ul

)
≤ P

(
Zi ≤ −ui, Z̃l ≤ −ul

)
≤ (1 + |τhil |)2

u2
ϕ(u, u; |τhil |), t ≤ n.

Consequently, with A∗il defined by (4.36) and x+ = max(x, 0)

P (Xn:n ≤ u)− P (Y n:n ≤ u)

≤ n

(2π)n
u−2(n−1)

∑
1≤i<l≤d

(σ
(1)
il − σ

(0)
il )+ exp

(
− nu2

1 + ρil

)∫ 1

0

(1 + |τhil |)2(n−1)

(1− (τhil)
2)n/2

dh

≤ n

(2π)n
u−2(n−1)

∑
1≤i<l≤d

(A∗il)+ exp

(
− nu2

1 + ρil

)
,

where in the last step we used the equality τhil = h(σ
(1)
il −σ

(0)
il )+σ

(0)
il , and thus∫ 1

0

(1 + |τhil |)2(n−1)

(1− (τhil)
2)n/2

dh =
1

σ
(1)
il − σ

(0)
il

∫ σ
(1)
il

σ
(0)
il

(1 + |h|)2(n−1)

(1− h2)n/2
dh.

This completes the proof. ut
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