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Abstract: The class of Dirichlet random vectors is central in numerous probabilistic and statistical applications.

The main result of this paper derives the exact tail asymptotics of the aggregated risk of powers of Dirichlet random

vectors when the radial component has df in the Gumbel or the Weibull max-domain of attraction. We present

further results for the joint asymptotic independence and the max-sum equivalence.
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1 Introduction and Main Result

Let X = (X1, . . . , Xd) be a d-dimensional Dirichlet random vector with parameter α = (α1, . . . , αd) ∈ (0,∞)d and

radial component R > 0 with some distribution function (df) F . By definition, X has the stochastic representation

X
D
=
(
R

Y1∑d
i=1 Yi

, . . . , R
Yd∑d
i=1 Yi

)
=: (RU1, . . . , RUd), (1)

where
D
= stands for equality of dfs and Yi, i ≤ d are independent random variables (rvs) such that Yi has Gamma

distribution with parameters αi and 1 (in our notation the Gamma(a, λ) distribution has probability density function

(pdf) λaxa−1 exp(−λx)/Γ(a) where Γ(·) is the Euler Gamma function). Further R, Y1, . . . , Yd and U = (U1, . . . , Ud)

are mutually independent. Basic distributional and asymptotic properties of Dirichlet random vectors are discussed

in numerous contributions; see e.g., [11, 21, 4, 22, 23, 27, 1, 2] and the references therein.

Clearly, for any 1 ≤ k < d
k∑
i=1

Xi
D
= R

k∑
i=1

Ui
D
= R

∑k
i=1 Yi∑d
i=1 Yi

D
= RB,

where R and B are independent, and B has the Beta distribution with parameters
∑k
i=1 αi and

∑d
k+1 αi. Hence the

df of the total risk
∑k
i=1Xi can be directly calculated if F is known. Clearly, when k = 2 the above holds with B

almost surely equal to 1. Furthermore, if F is in the Gumbel or the Weibull max-domain of attraction (MDA), then

the tail asymptotics of
∑k
i=1Xi follows immediately by Theorem 3.1 in [19].

In this paper we are concerned with the tail asymptotic behaviour of the aggregated risk Sp :=
∑d
i=1 λiX

p
i for some

fixed constant p > 0 and for given non-negative weights λi, i ≤ d. We shall assume first that X with stochastic

representation (1) has a radial component R such that its df F is in the Gumbel MDA, i.e., its survival function

F = 1− F satisfies for any x ≥ 0

F (u+ x/w(u)) ∼ exp(−x)F (u), u ↑ xF (2)
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for some positive scaling function w (here xF is the upper endpoint of F and we abbreviate (2) as F ∈ GMDA(w)).

We use in (2) the standard notation ∼ for the asymptotic equivalence of two real-valued functions. For the sake

of simplicity we shall assume hereafter that xF = ∞ or xF = 1. See [26, 10] for basic results concerned with the

Gumbel MDA. Throughout in the following

1 = λ1 = · · · = λm ≥ λm+1 ≥ · · · ≥ λd ≥ 0 (3)

are given weights with m ≤ d the multiplicity of λ1. For p > 1 and m < d, it turns out that λm+1, . . . , λd do not

influence the tail asymptotics of Sp =
∑d
i=1 λiX

p
i , which is however not the case if p ∈ (0, 1]. Hereafter we set

α :=
∑d
i=1 αi with αi’s being positive constants.

Our principal result below displays the exact asymptotics of the tail of Sp, for any p > 0.

Theorem 1.1 Let X be a d-dimensional Dirichlet random vector with parameter α and representation (1). Suppose

that (2) holds with xF ∈ {1,∞} and some positive scaling function w.

a) If p > 1, then

P {Sp > up} ∼ P

{
m∑
i=1

Xp
i > up

}
∼ m∗

Γ(α)

Γ(α̂)
(uw(u))α̂−αF (u), u ↑ xF , (4)

where α̂ = max1≤i≤m αi, and m∗ is the number of elements of the index set {i ≤ m : αi = α̂}.

b) If m < d, then

P {S1 > u} ∼

(
d−m∏
i=1

(1− λm+i)
−αm+i

)
Γ(α)

Γ(
∑m
i=1 αi)

(uw(u))−
∑d−m

i=1 αm+iF (u), u ↑ xF . (5)

c) If λi > 0, i ≤ d, then for any p ∈ (0, 1) we have

P
{
Sp > λ̃du

p
}
∼ Cα,d(uw(u))−(d−1)/2F (u), u ↑ xF , (6)

with Cα,d some positive constant and λ̃d =
(∑d

i=1 λ
1/(1−p)
i

)1−p
.

Remarks: a) An immediate consequence of Theorem 1.1 is that if F is as therein, then the aggregated risk Sp has df

in the Gumbel MDA with scaling function wp(x) = x1/p−1w(x1/p)/p; see also Proposition 2.2 below. Consequently,

in view of the properties of the scaling function w (see e.g., p.143 in [9]) we have assuming xF =∞

E{Sp|Sp > V aRSp
(b)} − V aRSp

(b) ∼ 1

wp(V aRSp
(b))

, b ↑ 1,

with V aRSp
(τ) being the Value-at-Risk of Sp at τ ∈ (0, 1), implying thus

E{Sp|Sp > V aRSp(b)} ∼ V aRSp(b), b ↑ 1.

b) For any df F ∈ GMDA(w) with upper endpoint xF =∞, the Davis-Resnick tail property is crucial, i.e., (see e.g.,

Proposition 1.1 in [6] and p. 113 in [15])

lim
u→∞

(uw(u))µ
F (cu)

F (u)
= 0 (7)

holds for any µ ∈ R and c > 1. Under the assumptions of statement c) in Theorem 1.1 we have λ̃d > λi, i ≤ d. It

follows further by (7) that for xF =∞, i ≤ d and p ∈ (0, 1]

lim
u→∞

P {λiXp
i > u}

P {Sp > u}
= 0. (8)
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Consequently, each risk λiX
p
i has a different asymptotic behaviour compared to Sp.

c) The convergence in (8) reveals a key property of the Dirichlet dependence structure, namely the principle of a

single big jump (see e.g., [12] for details) applies if p > 1. However, this principle does not apply when p ∈ (0, 1],

see (13) below. An example which demonstrates this is furnished by taking X = (X1, . . . , Xd) with independent

components having unit exponential distribution, then X is a Dirichlet random vector with its radial component

having Gamma(d, 1) distribution. Hence since also
∑d
i=1Xi has Gamma(d, 1) distribution if p = 1, then

lim
u→∞

P {max1≤i≤dX
p
i > u}

P {Sp > u}
= 0,

which is valid also for any p ∈ (0, 1).

d) The tail asymptotic behaviour of Lp type weighted norm (
∑d
i=1 λiX

p
i )1/p for various X has been considered by

several authors; see e.g., [25, 14] and the references therein.

In the next section, we discuss our main result and present some important extensions. All the proof are relegated

to Section 3 followed by an Appendix.

2 Discussions and Extensions

A canonical example of a d-dimensional Dirichlet random vector X is the so-called Kotz-Dirichlet random vector,

with Xi, i ≤ d independent such that Xi has Gamma(αi, 1) distribution with αi > 0, i ≤ d; see e.g., [2]. Such a

random vector has stochastic representation (1) with R having Gamma(α, 1) distribution. Hence for this particular

example Theorem 1.1 gives the tail asymptotics of the sum of powers of independent Gamma rvs.

Note that for any p > 1 the rv Xp
i is a subexponential one (see e.g., [9] for the definition and main properties), and

therefore the statement a) in Theorem 1.1 for this case can be directly checked to hold. When p = 1, the claim of

statement b) in Theorem 1.1 follows by Lemma 2.1 in [24], whereas for p ∈ (0, 1) and αi = α > 0, i ≤ d the claim

in statement c) of Theorem 1.1 is established by applying the result of [28], which also gives the explicit formula for

the constant Cα,d with α = (α, . . . , α) ∈ (0,∞)d.

In the previous section we introduced the Dirichlet random vectors in the first quadrant. This restriction can be

removed by introducing indicator rvs I1, . . . , Id independent of X with stochastic representation (1). If P {Ii = 1} =

ci = 1− P {Ii = −1} , i ≤ d, then

Y = (Y1, . . . , Yd)
D
= (I1X

1/p
1 , . . . , IdX

1/p
d ), p > 0

is referred to as a weighted Lp-Dirichlet random vector. For simplicity, we assume here that Xi, i ≤ d has the

Gamma(αi, 1/p) distribution; the above extension allows us to include the Gaussian distribution in the class of Lp-

Dirichlet random vectors. Indeed, if p = 1/α1 = · · · = 1/αd = 2 and I1, . . . , Id are mutually independent with mean

0, then Y is a d-dimensional Gaussian random vector if additionally R2 is chi-square distributed with d degrees of

freedom. If the df of R is not specified in general, then Y is a spherical random vector (see the seminal contribution

[3] for the main distributional properties). We have thus
∑d
i=1 λi|Yi|2 =

∑d
i=1 λiXi, and hence for this particular

case statement b) of Theorem 1.1 implies the claim of Theorem 3.1 in [14].

In the sequel Ba,b stands for the Beta distribution with positive parameters a and b, and V ∼ Ba,b means that the
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rv V has the Beta distribution with parameters a and b.

Concerning the Gumbel MDA assumption imposed on F we first remark that under stronger assumptions on the

scaling function w, namely w is regularly varying at infinity, then in view of [7], it follows that for any homogeneous

function h of order p, i.e., h(tx1, . . . , txd) = tph(x1, . . . , xd) holds for any t > 0 and (x1, . . . , xd) ∈ Rd we have that

h(X)
D
= Rph(U) has df in the Gumbel MDA. Using the terminology of [17] the rv h(X) can be referred to as the

Dirichlet chaos. In the light of the findings of the aforementioned contribution, the exact asymptotics of the Dirichlet

chaos can be derived. In this paper we used a direct approach for the special case of aggregated risk.

As mentioned in the Introduction the Davis-Resnick property of F is crucial. In fact, if we assume that F = 1− F

is rapidly varying at infinity, i.e., (7) holds for µ = 0 and c > 1, then for two Dirichlet random vectors X and W

with corresponding radius R and R∗ and parameter α, we obtain by applying Lemma 4.1 in Appendix

P

{
d∑
i=1

λiX
p
i > u

}
∼ L(u)P

{
d∑
i=1

λiW
p
i > u

}
, u→∞, (9)

provided that F is rapidly varying at infinity and P {R > u} ∼ L(u)P {R∗ > u} where L(u) is some slowly varying

function at infinity.

2.1 Weibull MDA

Instead of the Gumbel MDA assumption in (2) we shall suppose that F = 1 − F is regularly varying with index

γ ≥ 0 at the upper endpoint xF = 1, i.e., for any t > 0

F (1− tu)

F (1− u)
∼ tγ , u ↓ 0. (10)

For γ > 0, the above assumption means that F is in the MDA of the Weibull distribution Ψγ(x) = exp(−|x|γ), x < 0.

A canonical example of F in the Weibull MDA is the case of the Beta distribution Ba,b where γ = b. Under (10)

we can derive similar results to those in Theorem 1.1. For simplicity we formulate only the claim of statement b)

therein.

Theorem 2.1 Under the assumptions of statement b) in Theorem 1.1, if further instead of (2) we suppose that the

survival function F of R satisfies (10) for some γ ≥ 0, then

P {Sp > 1− u} ∼

(
d−m∏
i=1

(1− λm+i)
−αm+i

)
Γ(α)Γ(γ + 1)

Γ(
∑m
i=1 αi)Γ(

∑d−m
i=1 αm+i + γ + 1)

u−
∑d−m

i=1 αm+iF (1− u) (11)

holds as u ↓ 0.

In the special case that α1 = · · · = αd = 1/2 = 1/p the claim of Theorem 2.1 agrees with that of Theorem 3.6 in [14].

A specific of the Weibull MDA is that the upper endpoint xF of F is necessarily finite. There is no possibility to

convert xF to be infinite such that the transformed X is still a Dirichlet random vector. Therefore, the result of

this section cannot be retrieved by results available in the literature concerned with the aggregation of dependent

unbounded risks dealt with for instance in [13, 16, 8].
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2.2 Approximation by Max-Stable Distributions

Next, we present an application of Theorem 1.1; a similar application (omitted here) can be given using Theorem

2.1. Let Y = (Y1, . . . , Yd) be a random vector which is obtained by a linear transform of (Xp
1 , . . . , X

p
d ), i.e., for given

constants λij , i, j ≤ d

Y
D
= (

d∑
i=1

λi1X
p
i , . . . ,

d∑
i=1

λidX
p
i ).

We shall denote by G the df of Y , and Gi is its ith marginal df. It is of interest to determine if G is in the max-domain

of attraction of some multivariate max-stable df Q, i.e., if there are constants ani > 0, bni ∈ R, i ≤ d, n ≥ 1 such that

lim
n→∞

sup
xi∈R,1≤i≤d

∣∣∣Gn(an1x1 + bn1, . . . , andxd + bnd)−Q(x1, . . . , xd)
∣∣∣ = 0. (12)

Our next result shows that this is possible, if F is in the Gumbel MDA.

Proposition 2.2 Let λij , i, j ≤ d be non-negative constants and denote by Aj := {i ≤ d : λij = 1}, j ≤ d. Suppose

for p ≥ 1 that Aj , j ≤ d is non-empty and Ai ∩ Aj has no elements for any pair (i, j) of different indices, and for

p ∈ (0, 1) that
∑d
i=1 λ

1/(1−p)
ij = 1 and λij , i, j ≤ d are non-negative such that for any i, j two different indices λik 6= λjk

for some k ≤ d. Under the assumption of Theorem 1.1, then for ani = 1/wp(bni), i ≤ d with bni = G−1i (1−1/n), n ≥ 1

and wp(x) = x1/p−1w(x1/p)/p, x > 0 we have that (12) holds with Q(x1, . . . , xd) = exp
(
−
∑d
i=1 exp(−xi)

)
.

Clearly, the conditions in Proposition 2.2 on λij ’s are satisfied if λii = 1, i ≤ d and λij = 0 for all i, j different indices.

As in the proof of Proposition 2.2 we have

lim
u→∞

P
{
Xp
i > u,Xp

j > u
}

P {Xp
i > u}

= 0.

Consequently, for the case p > 1, by Bonferroni’s inequality it follows that the sum and maximum of λiX
p
i , i ≤ d

are asymptotically equivalent, i.e., the principle of a single big jump holds. More precisely, if xF = ∞ and F ∈

GMDA(w), then for any p > 1

P

{
d∑
i=1

λiX
p
i > u

}
∼ P

{
max
i≤d

λiX
p
i > u

}
, u→∞. (13)

2.3 Converse Results

So far we have assumed that the df of R is in the Gumbel or Weibull MDA and then we showed that the same holds

for the aggregated risk. Recall that we do not consider the case that R has df in the Fréchet MDA since the answer

follows immediately by Breiman’s lemma.

At this point, the question on the validity of the converse results is natural. Namely, if for some λ = (λ1, . . . , λn)

satisfying (3) the aggregated risk Sp has df Gp,λ in the Gumbel MDA, then does also F belong to the Gumbel MDA?

Since in statistical applications, some observations might be missing, neither the radius R nor the total risk Sp can

be observed, also of interest is if Gp,λ belongs to the Gumbel MDA for some λ implies that Gp,λ is in the Gumbel

MDA for any λ that satisfies (3). Note that when F is in the Gumbel MDA, then Gp,λ is in the Gumbel MDA with

scaling function wp(x) = x1/p−1w(x1/p)/p for any p ∈ (0,∞).

We state next the converse of Theorem 1.1 omitting the corresponding result for the Weibull MDA which can be

derived by utilising the same idea.
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Theorem 2.3 Let F, xF ,X be as in Theorem 1.1. If λ is a d-dimensional vector whose components satisfy (3),

then F ∈ GMDA(w) is equivalent with Gp,λ in the Gumbel MDA for some λ and some p ∈ (0,∞). Moreover, the

latter assertion is equivalent with Gp,λ in the Gumbel MDA for any λ and any p ∈ (0,∞).

Recent results concerning the asymptotics of products and converse results for the regularly varying case are derived

in the deep contributions [20, 5]. Therefore, we omit the details for the case that R has a regularly varying survival

function at infinity.

3 Proofs

We state first a lemma which is useful for the proof of Theorem 1.1. In particular, the following lemma shows that

in the bivariate setup Theorem 1.1 can be extended to include some general bivariate random vectors which have

similar dependence structure as the Dirichlet ones. In the sequel we say that Z is regularly varying at xG with index

τ ≥ 0 (we omit often the index τ) if this is the case for its survival function G.

Lemma 3.1 Let B,X, Y be three non-negative rvs with upper endpoints ωB = ωX = 1, ωY ≤ 1.

a) If ωY < 1 and BpX is regularly varying at 1 for some p > 1, then for Sp := BpX + (1−B)pY

P {Sp > 1− u} ∼ P {BpX > 1− u} , u ↓ 0. (14)

b) Under the conditions of statement a), if further ωY = 1 and (1−B)pY is also regularly varying at 1, then

P {Sp > 1− u} ∼ P {BpX > 1− u}+ P {(1−B)pY > 1− u} , u ↓ 0. (15)

c) If B has a continuous pdf g, then for any c, λ positive and p ∈ (0, 1)

P
{
Bpc+ λ(1−B)p > θ̃ − u

}
∼ 23/2

g(θ)√
h′′(c, θ)

√
u, u ↓ 0

holds with h(c, β) = βpc+ λ(1− β)p and θ = (λ/c)1/(p−1)/(1 + (λ/c)1/(p−1)), θ̃ = h(c, θ) = (c1/(1−p) + λ1/(1−p))p−1.

d) Under the assumption and notation in statement c) if further X is regularly varying at c := ωX > 0 with index

γ > 0, then for any λ > 0 and p ∈ (0, 1)

P
{
BpX + λ(1−B)p > θ̃ − u

}
∼

√
2πg(θ)√
h′′(c, θ)

Γ(γ + 1)

Γ(γ + 3/2)
θ−γp

√
uP {X > c− u} , u ↓ 0,

provided that B and X are independent.

Proof of Lemma 3.1 a) For some u > 0 sufficiently small, since ωY < 1, the event {Sp > 1 − u} is possible if

Bp > 1− u and X > 1− u and thus in that case (1−B)pY = O(up). Hence

P {Sp > 1− u} ∼ P {BpX > 1− u(1 + o(1))} , u ↓ 0.

Thus the claim follows by the uniform convergence theorem for regularly varying function, see e.g., [9].

b) As in the proof of a) the event {Sp > 1− u} is also possible if B < u hence BpX ≤ up. Consequently

P {Sp > 1− u} = P {BpX > 1− u(1 + o(1))}+ P {(1−B)pY > 1− u(1 + o(1))} , u ↓ 0
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and again the claim follows by the uniform convergence theorem for regularly varying function.

c) First note that the unique maximum of the function h(c, β) = βpc+ λ(1− β)p for β ∈ [0, 1] is attained at

θ = (λ/c)1/(p−1)/(1 + (λ/c)1/(p−1)) (16)

and we have thus h′(c, θ) = 0 and

θ̃ = h(c, θ) =
λ

(1 + (λ/c)1/(p−1))p−1
= cλ(c−1/(1−p) + λ−1/(1−p))1−p = (c1/(1−p) + λ1/(1−p))1−p.

Consequently, since B has a continuous pdf g we get that for εu =
√

2u/h′′(c, θ)

P
{
Bpc+ λ(1−B)p > θ̃ − u

}
∼

∫ θ+εu

θ−εu
g(s) ds ∼ 23/2

g(θ)√
h′′(c, θ)

√
u

as u ↓ 0, hence the claim follows.

d) Let Q denote the df of X and write c > 0 for its upper endpoint. Since X is regularly varying at c with index

γ > 0, then for any t > 0

lim
u↓0

Q(c− tu)

Q(c− u)
= tγ , Q = 1−Q.

We proceed as above, but the choice of εu is different since we condition first on X = c−tu. Choosing εu =
√

2u(1−θpt)
h′′(c,θ)

with θ as in (16), by the independence of X and B we may further write

P
{
BpX + λ(1−B)p > θ̃ − u

}
∼

∫ c

c−u/θp

∫ θ+εu

θ−εu
g(s) dsdQ(t)

∼ −23/2
g(θ)√
h′′(c, θ)

Q(c− u)
√
u

∫ 1/θp

0

√
1− θpt dQ(c− tu)

Q(c− u)

∼ 23/2
g(θ)√
h′′(c, θ)

Q(c− u)
√
uγ

∫ 1/θp

0

(1− θpt)3/2−1tγ−1 dt

∼
√

2π
g(θ)√
h′′(c, θ)

Γ(γ + 1)

Γ(γ + 3/2)
θ−γpQ(c− u)

√
u

as u ↓ 0, and thus the proof is complete. �

Proof of Theorem 1.1 In the sequel Bα,β will denote a Beta rv with df Bα,β . Note that as u ↓ 0

P {Bp > 1− u} ∼ Γ(α+ β)

Γ(α)Γ(β)

∫ 1

1−u/p
(1− x)β−1dx ∼ Γ(α+ β)

pβΓ(α)Γ(β + 1)
uβ . (17)

a) Assume next that m = 1, i.e., 1 = λ1 > λ2 ≥ · · · ≥ λd ≥ 0. By the beta-independence splitting property of

Dirichlet random vectors, we have the stochastic representation

(U1, . . . , Ud)
D
=
(
Bα1,α−α1

, (1− Bα1,α−α1
)Ũ1, . . . , (1− Bα1,α−α1

)Ũd−1

)
, (18)

where (Ũ1, . . . , Ũd−1) is a standard (d−1)-dimensional Dirichlet random vector with parameter (α1, . . . , αd−1) being

independent of Bα1,α−α1
. Consequently

d∑
i=1

λiU
p
i = Bpα1,α−α1

+ λ(1− Bα1,α−α1
)pW,
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where λ ∈ (0, 1) is some constant, Bα1,α−α1
and W are independent, and W has df with upper endpoint equal to 1.

Applying statement a) of Lemma 3.1 we have as u ↓ 0

P

{
d∑
i=1

λiU
p
i > 1− u

}
∼ P {Up1 > 1− u} .

Since further

d∑
i=1

λiX
p
i
D
= Rp

d∑
i=1

λiU
p
i (19)

and Rp has df in the Gumbel MDA with scaling function wp(x) = x1/p−1w(x1/p)/p, see e.g., Lemma 5.2 in [18], the

claim follows by applying Theorem 4.2. Next, by repeating the above arguments, it follows that in the general case

1 ≤ m ≤ d

P

{
d∑
i=1

λiU
p
i > 1− u

}
∼ P

{
m∑
i=1

Upi > 1− u

}
, u ↓ 0.

Since the case m = 1 is shown above suppose that m = 2. Again, by the beta-independence splitting property of

Dirichlet random vectors

Up1 + Up2
D
= Bpα1,α−α1

+ (1− Bα1,α−α1
)pŨ2, (20)

with Ũ2 ∼ Bα2,α−α1−α2
, provided that d > 2. If d = 2, then we simply have

Up1 + Up2
D
= Bpα1,α2

+ (1− Bα1,α2)p. (21)

In both cases, applying statement b) and c) of Lemma 3.1 we obtain

P {Up1 + Up2 > 1− u} ∼ C2u
α−max(α1,α2), u ↓ 0,

with Cm ∈ (0,∞),m ≤ d. By induction on m it follows that

P

{
m∑
i=1

Upi > 1− u

}
∼ Cmuα−maxi≤m αi , u ↓ 0

and further

P

{
m∑
i=1

Upi > 1− u

}
∼ P

 ∑
1≤i≤m:αi=α∗m

Upi > 1− u

 , u ↓ 0,

with α∗m = maxi≤m αi. In order to simplify notation, assume that

α1 = αi, 2 ≤ i ≤ m∗ ≤ m,

where m∗ denotes the number of elements in {1 ≤ i ≤ m : αi = α∗m}. Suppose for simplicity that m = m∗ and

consider next the case m = 2. Clearly, if d = 2, then by (21) with α1 = α2 and Lemma 3.1 it follows that (recall

(17))

P

{
m∗∑
i=1

Upi > 1− u

}
∼ m∗P

{
Bpα1,α1

> 1− u
}

∼ m∗
Γ(2α1)

Γ(α1)Γ(α1 + 1)
(u/p)α1

∼ m∗P {Up1 > 1− u} , u ↓ 0.
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For d > 2 we consider the representation (20), where Ũ2 has Beta df with parameters α2 = α1, α− 2α1 > 0. In view

of statement b) and c) of Lemma 3.1 we have

P

{
m∗∑
i=1

Upi > 1− u

}
∼ P

{
Bpα1,α−α1

> 1− u
}

+ P
{

(1− Bα1,α−α1)pŨ2 > 1− u
}

∼ m∗
Γ(α)

Γ(α1)Γ(α− α1 + 1)
(u/p)α−α1 , u ↓ 0.

Using induction and the above arguments, for any m∗ ≥ 2 we obtain

P

{
(

m∗∑
i=1

Upi )1/p > 1− u

}
∼ m∗P {Up1 > 1− pu}

∼ m∗P {Bα1,α−α1
> 1− u}

∼ m∗
Γ(α)

Γ(α1)Γ(α− α1 + 1)
uα−α1 , u ↓ 0,

hence the claim follows by Theorem 4.2.

b) The case m = d− 1 follows easily using the following representation

m∑
i=1

Ui + λm+1Um+1
D
= B(1− λm+1) + λm+1,

where B
D
= B∑m

i=1 αi,αm+1
, and noting further that

P {B(1− λm+1) + λm+1 > 1− u} ∼ (1− λm+1)−αm+1
Γ(α)

Γ(αm)Γ(α− αm + 1)
uα−αm (22)

as u ↓ 0. We consider next the case m < d − 1. By the aggregation property of Dirichlet distributions and the

beta-independence splitting property, we have

m+1∑
i=1

λiUi
D
= BX + λm+1(1−B),

where B and X are independent such that B
D
= Bα−αm+1,αm+1

and X
D
= Bαm,α−

∑m+1
i=1 αi

. Consequently, (28) implies

P

{
m+1∑
i=1

λiUi > 1− u

}
∼ (1− λm+1)−αm+1

Γ(αm+1 + 1)Γ(α−
∑m+1
i=1 αi + 1)

Γ(α− αm + 1)

×P
{
Bα−αm+1,αm+1

> 1− u
}
P
{
Bαm,α−

∑m+1
i=1 αi

> 1− u
}

∼ (1− λm+1)−αm+1
Γ(α)

Γ(αm)Γ(α− αm + 1)
uα−αm

as u ↓ 0. Since (22) holds also for λm+1 = 0, repeating the above argument we have

P

{
d∑
i=1

λiUi > 1− u

}
∼

(
d−m∏
i=1

(1− λm+i)
−αm+i

)
Γ(α)

Γ(αm)Γ(α− αm + 1)
uα−αm

∼

(
d−m∏
i=1

(1− λm+i)
−αm+i

)
P

{
m∑
i=1

Ui > 1− u

}
, u ↓ 0

and hence the proof follows by applying again Theorem 4.2.

c) As above it suffices to determine the tail asymptotics of Zd =
∑d
i=1 λiU

p
i at λ̃d the upper endpoint of the df of Zd.

In view of (18) and statement d) in Lemma 3.1 we have with X :=
∑d−1
i=1 λiŨi being independent of B

D
= Bα−αd,αd

P
{
Zd > λ̃d − u

}
= P

{
BpX + λd(1−B)p > λ̃d − u

}
9



∼
√

2π
gα−αd,αd

(θ)√
h′′(λ̃d−1, θ)

Γ(αd + 1)

Γ(αd + 3/2)
θ−αdp

√
uP
{
X > λ̃d−1 − u

}
, u ↓ 0,

where λ̃d−1 is the upper endpoint of the df of X, gα−αd,αd
is the pdf of B and

θ =
τ1/(p−1)

1 + τ1/(p−1)
, τ =

λd

λ̃d−1
.

From the proof of Lemma 3.1 we see that

λ̃d =
λd

(1 + (λd/λ̃d−1)1/(p−1))p−1
= (λ̃d−1

1/(1−p)
+ λ

1/(1−p)
d )1−p,

hence

λ̃d =
( d∑
i=1

λ
1/(1−p)
i

)1−p
.

Note that above we used the fact that X has a regularly varying survival function at λ̃d−1, which follows by induction.

We remark further that λ̃d is the attained maximum of the function h(β1, . . . , βd) =
∑d
i=1 λiβ

p
i for βi ∈ [0, 1], i ≤ d

satisfying
∑d
i=1 βi = 1. Continuing, we obtain that

P
{
Zd > λ̃d − u

}
∼ P

{
BpX + λd(1−B)p > λ̃d − u

}
∼ C̃du(d−1)/2, u ↓ 0,

with C̃d a positive constant which can be calculated explicitly, and hence by Theorem 4.2

P

{
d∑
i=1

λiX
p
i > λ̃du

p

}
= P

{
R(Zd/λ̃d)

1/p > u
}

∼ Γ((d− 1)/2 + 1)P
{
Zd

λ̃d
> 1− p

uw(u)

}
P {R > u}

∼ Γ((d+ 1)/2)C̃d

(
pλ̃d
uw(u)

)(d−1)/2

P {R > u}

establishing the proof. �

Proof of Theorem 2.1 Applying Theorem 4.2 as in the proof of Theorem 1.1, we obtain

P

{
d∑
i=1

λiXi > 1− u

}
= P

{
R

d∑
i=1

λiUi > 1− u

}

∼
Γ(
∑d−m
i=1 αm+i + 1)Γ(γ + 1)

Γ(
∑d−m
i=1 αm+i + γ + 1)

P

{
d∑
i=1

λiUi > 1− u

}
P {R > 1− u}

∼
d−m∏
i=1

(1− λm+i)
−αm+i

Γ(
∑d−m
i=1 αm+i + 1)Γ(γ + 1)

Γ(
∑d−m
i=1 αm+i + γ + 1)

× Γ(α)

Γ(
∑m
i=1 αi)Γ(

∑d−m
i=1 αm+i + 1)

u−
∑d−m

i=1 αm+iF (1− u)

as u ↓ 0, hence the proof follows. �

Proof of Proposition 2.2 In view of Theorem 3.1 and Lemma 5.2 in [18], it follows that Yj =
∑d
i=1 λijX

p
i =

Rp
∑d
i=1 λijU

p
i has df in the Gumbel MDA with scaling function wp(x) = x1/p−1w(x1/p)/p, x > 0, hence (see e.g.,

[10])

lim
n→∞

sup
xi∈R

∣∣∣Gni (anixi + bn1)− exp(− exp(−xi))
∣∣∣ = 0, 1 ≤ i ≤ d.

10



Now by [26], the claim follows if we show the pairwise asymptotic independence of Yi, Yj for two different indices i

and j, i.e.,

lim
n→∞

P {Yi > bni, Yj > bni}
P {Yi > bni}

= 0.

By the result of Theorem 1.1, it follows that (see [15])

lim
n→∞

bni
bn1

= 1, 2 ≤ i ≤ d.

Clearly,

P {Yi > bni, Yj > bni}
P {Yi > bni}

≤ P {Yi + Yj > 2bni(1 + o(1))}
P {Yi > bni}

for all n large. For p > 1, since by assumption Yi + Yj =
∑d
k=1(λki + λkj)X

p
k with δk := λki + λkj < 2. Applying

Theorem 1.1 we obtain

P {Yi + λjYj > (1 + λj)bni(1 + o(1))}
P {Yi > bni}

→ 0, n→∞,

which follows by the Davis-Resnick property mentioned in (7). When p = 1, the claim follows by statement b)

in Theorem 1.1 and (7). For p ∈ (0, 1), by the triangle inequality, and the assumption that
(∑d

k=1 λ
q
ki

)1/q
=(∑d

k=1 λ
q
kj

)1/q
= 1 with q := 1/(1− p) , we have

δ̃d =
( d∑
k=1

δqk

)1/q
<
( d∑
k=1

λqki

)1/q
+
( d∑
k=1

λqkj

)1/q
= 2.

Hence statement c) of Theorem 1.1 and (7) imply

P {Yi + Yj > 2bni(1 + o(1))} = P
{
Yi + Yj > δ̃d(2/δ̃d)bni(1 + o(1))

}
= o(P {Yi > bni}), n→∞

and thus the claim follows. �

Proof of Theorem 2.3 In view of representation (19) and the tail behaviour of
∑d
i=1 λiU

p
i found in the proof of

Theorem 1.1, the claim follows by applying Theorem 4.2 in Appendix. �

4 Appendix

In Theorem 4.2 below we present results on the tail asymptotics of the products of two independent non-negative

rvs. For its proof we need the next lemma, which is of some independent interest.

Lemma 4.1 Let S, S∗, Y, Y ∗ be four independent positive rvs. Let further L be a slowly varying function at infinity

and suppose that the dfs of S and S∗ have upper endpoint equal to 1.

i) Assume that P {S > x} ∼ cP {S∗ > x} as x ↑ 1 for some c ∈ (0,∞). If Y has a rapidly varying survival function

satisfying further P {Y > u} ∼ L(u)P {Y ∗ > u} as u→∞, then for any δ ∈ (0, 1)

P {SY > u} ∼ cP {S∗Y > u} ∼ P {SY > u, S > δ} ∼ L(u)P {SY ∗ > u} , u→∞. (23)
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ii) If Y and Y ∗ have dfs with upper endpoint equal to 1 and P {Y > 1− 1/u} ∼ c∗P {Y ∗ > 1− 1/u} , c∗ ∈ (0,∞) as

u→∞, then we have

P {SY > 1− 1/u} ∼ c∗P {SY ∗ > 1− 1/u} , u→∞. (24)

Proof of Lemma 4.1 i) Along the same lines of the proof of Lemma 1 in [8] for any δ ∈ (0, 1) we have

P {SY > u} ∼
∫ 1

δ

P {Y > u/s} dG(s) = P {Y > u/δ}P {S > δ}+

∫ u/δ

u

P {S > u/y} dF (y) (25)

as u→∞, where F and G are the dfs of Y and S, respectively. Choosing δ close enough to 1 we obtain

P {SY > u} ∼ cP {Y > u/δ}P {S∗ > δ}+ c

∫ u/δ

u

P {S∗ > u/y} dF (y) ∼ cP {S∗Y > u}

as u → ∞. The other asymptotic equivalences are proved in [7], Lemma 4.1; the third claim is due to Lemma A.3

in [29].

ii) By the independence of S, Y, Y ∗ for all u and G the df of S we have

P {SY > 1− 1/u} =

∫ 1

1−1/u
P {Y > (1− 1/u)/s} dG(s)

∼ c∗
∫ 1

1−1/u
P {Y ∗ > (1− 1/u)/s} dG(s)

as u→∞, hence the proof is complete. �

Remark: Let S, S∗, Y be three non-negative independent rvs. Let 1 be the upper endpoint of the dfs of S and S∗

and suppose that the survival function of Y is rapidly varying at infinity. In view of Lemma 2 in [8]

lim
u→∞

P {SY > u}
P {Y > u}

= P {S = 1} , lim
u→∞

P {S∗Y > u}
P {Y > u}

= P {S∗ = 1} ,

hence if c = P {S = 1} /P {S∗ = 1} > 0, then

P {SY > u} ∼ cP {S∗Y > u} , u→∞.

Theorem 4.2 Let S, Y be two independent non-negative rvs. Let F and H denote the dfs of Y and SY , respectively.

Suppose that for L some slowly varying function at infinity and some β ≥ 0

P {S > 1− 1/u} ∼ L(u)u−β , u→∞. (26)

Assume further that F has upper endpoint xF ∈ {1,∞}.

i) If F ∈ GMDA(w), then

P {SY > u} ∼ Γ(β + 1)P {S > 1− 1/(uw(u))}P {Y > u} , u ↑ xF . (27)

Furthermore, if β > 0 and L(x) = L > 0,∀x > 0, then H ∈ GMDA(w) if and only if F ∈ GMDA(w).

ii) If F with xF = 1 satisfies (10) for some γ ≥ 0, then for any λ ∈ (−∞, 1)

P {S(Y − λ) > 1− 1/u} ∼ (1− λ)γ
Γ(β + 1)Γ(γ + 1)

Γ(β + γ + 1)
P {S > 1− 1/u}P {Y > 1− 1/u} , u→∞. (28)

Furthermore, if γ > 0, L(x) = L > 0,∀x > 0, then F is in the Weibull MDA of Ψγ if and only if H is in the Weibull

MDA of Ψβ+γ .
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Proof of Theorem 4.2 i) Suppose that xF = ∞. When S is beta distributed the claim follows from Theorem

4.1 in [18]. Let us consider some general S such that (26) holds. The claim in (27) follows by Theorem 3.1 in [19].

Next, we show that H ∈ GMDA(w) implies F ∈ GMDA(w). Since for any η > 1, u > 0

P {S > 1/η}P {Y > ηu} = P {S > 1/η, Y > ηu} ≤ P {SY > u} ≤ P {Y > u}

and the fact that SY has df in the Gumbel MDA, we conclude that both SY and Y have a rapidly varying survival

function. If L(t) = L > 0, t > 0 and β > 0, then for S̃
D
= Ba,β with a > 0 some arbitrary constant we find applying

Theorem 3.1 in [19] that

P
{
S̃Y > u

}
∼ Γ(a+ β)

LΓ(a)Γ(β + 1)
P {SY > u} , u→∞,

provided that S̃ is independent of Y . Hence S̃Y has df in the Gumbel MDA. It follows from Theorem 4.1 in [18]

that Y has df in the Gumbel MDA with the same scaling function w as S̃Y . In view of (24) the case that xF = 1

follows with similar arguments.

ii) The idea of the proof is the same as that of the proof of the statement i) making further use of ii) in Lemma 4.1,

Theorem 4.5 in [18] and Theorem 3.1 in [19]. �
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