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1 Introduction

Let (Xi1, Xi2), i ≥ 1 be independent bivariate Gaussian random vectors with N(0, 1) distributed marginals and

correlation coefficient ρ ∈ (−1, 1). We have the following stochastic representation

(Xi1, Xi2)
d
= (Xi1, ρXi1 +

√
1− ρ2Wi), i ≥ 1, (1)

with Wi, i ≥ 1 being independent N(0, 1) random variables (rvs) which are further independent of Xi1, i ≥ 1. For

fixed m ≥ 2 we define a bivariate chi-square random vector (ζ1, ζ2) by

ζ1 =

m∑
i=1

X2
i1, ζ2 =

m∑
i=1

X2
i2. (2)

Apart from the case ρ = 0, the bivariate random vector (ζ1, ζ2) has dependent components. By a direct analytic

proof (see Appendix) it follows that, as v →∞, the conditional risk (defined almost surely)

ζ∗v :=
ζ2 − ρ2v

2ρ
√

(1− ρ2)v

∣∣∣(ζ1 = v)

can be approximated by a standard Gaussian rv W , in such a way that

lim
v→∞

sup
x∈R

∣∣∣∣∣P {ζ∗v ≤ x} − P {W ≤ x}

∣∣∣∣∣ = 0. (3)

Instead of conditioning on {ζ1 = v} one can also condition on the event {ζ1 > v}. Again, the same Gaussian

approximation of ζ2 given that {ζ1 > v} can be obtained (see Theorem 2.1 below).

The motivation of analyzing the distributional properties of the conditional models stems both from theory- and

applied-oriented problems. Commonly in finance and risk management applications there are few observations of

risks being large. Therefore, a conditional model, which can be reasonably approximated by some known distribution

functions (dfs), is valuable for statistical models; see e.g., [5, 4, 14, 17, 20, 26, 27, 33, 6] for various results.

Conditional limit results are also crucial for the investigation of the asymptotic behaviour of maximum of random

processes and that of maxima of triangular arrays; see e.g., [1, 7, 8, 28, 21, 34, 2, 18] and references therein. Other

important applications of approximations of the conditional dfs of chi-square risks can be found in [24]. Consider

ζ1,v and ζ2,v to be realizations of some stationary chi-square process {ζ(t), t ≥ 0} at threshold dependent times

t1(v), t2(v). In this case we have threshold dependent correlation coefficient ρv instead of constant ρ. In order to
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get results as those of Berman (see also [1]) we need to assume that ρv tends to 1 at a certain speed. This case has

been considered in the context of maxima of chi-square triangular arrays in Theorem 2.1 in [24], which shows that

(ζ2,v − ζ1,v)|(ζ1,v > v) can be approximated, as v →∞, by a Gaussian rv with df N(−λ, 4λ), provided that

lim
v→∞

2v(1− ρv) = λ ∈ (0,∞). (4)

Given the importance of approximation of conditional dfs both for constant ρ and for ρ(= ρv) that changes with the

threshold v, in this paper we shall investigate approximations of multivariate conditional perturbed chi-square risks

(see Section 2 for the definition) using ideas and techniques from extreme value theory.

Our findings provide a concrete framework for the conditional extreme value model developed in [27, 11], and

therefore statistical inference can be performed by utilising the conditional extreme value methodology therein.

Since our approach is asymptotic in nature, distributional assumptions can be dropped. This makes the model

more appealing for applications. More precisely, we shall drop any distributional assumption on Xi1, i ≥ 1. The

Gaussianity of the components Wi, i ≥ 1 in (1) seems to be crucial; however there are specific models (see Section

3) where this assumption is relaxed.

In this paper we present three applications: The first one establishes the so-called Berman’s sojourn limit theorem

and the tail asymptotics of supremum for a class of time-changed stationary chi-square processes. The second one

strengthens the convergence in distribution of maxima of chi-square triangular arrays (see [24] and [25]) to conver-

gence of the corresponding probability density functions (pdfs). We conclude Section 4 with the third application

concerning extremal behaviour of aggregated log-chi risks.

This contribution is organised as follows: We begin with the description of two main (dependent) perturbed chi-

square models for our multivariate framework and then derive conditional limit theorems for the models both with

fixed parameters and with parameters that depend on the threshold; see Section 2. Section 3 is devoted to discussions.

The aforementioned applications are displayed in Section 4. Proofs of all results are relegated to Section 5 followed

by a short Appendix.

2 Main Results

We first introduce the multidimensional perturbed chi-square random vectors. Let (Xi1, . . . , Xi(k+1)), 1 ≤ i ≤ m be

(k + 1)-dimensional random vectors with stochastic representations

(Xi1, . . . , Xi(k+1))
d
=
(
Xi1, ρ1Xi1 +Wi1, . . . , ρkXi1 +Wik

)
, 1 ≤ i ≤ m, (5)

where ρj ∈ R \ {0}, 1 ≤ j ≤ k, and W := {Wij}1≤i≤m,1≤j≤k is an m× k matrix of centered (non-standard) Gaussian

rvs. Define the (k + 1)-dimensional perturbed chi-square risk ζ := (ζ1, . . . , ζk+1) by

ζ1 =

m∑
i=1

X2
i1, . . . , ζk+1 =

m∑
i=1

X2
i,k+1. (6)

In the sequel we shall consider the following framework:

Assumption A: Random vector (X11, . . . , Xm1) and the Gaussian random matrix W are mutually independent.

Further, we assume that the rows ofW are independent and have the same df as the centered k-dimensional Gaussian

random vector W = (W1, . . . ,Wk). Suppose that ζ1 has its support on [0,∞).

Note that we do not assume X11, . . . , Xm1 to be independent or normally distributed. If they are independent

N(0, 1) distributed and for any 1 ≤ i ≤ m, Wij has variance 1− ρ2
j ∈ (0, 1) for all 1 ≤ j ≤ k, then ζ is the (classical)

chi-square risk.
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In order to obtain an approximation for the conditional perturbed chi-square risk (ζ2, . . . , ζk+1)|(ζ1 > v) we need to

impose an asymptotic tail condition on ζ1. We shall assume that ζ1 has df G in the GMDA with positive scaling

function w(·), i.e.,

lim
v→∞

1−G(v + x/w(v))

1−G(v)
= exp(−x), x ∈ R. (7)

We refer to [32, 13, 15] for more details on GMDA. Due to the restrictions imposed by our dependence structure,

not every possible scaling function w(·) can be considered. Thus we assume that

lim
v→∞

(
√
vw(v))−1 = 2c ∈ [0,∞). (8)

Next, we state our first result which shows convergence in distribution of the conditional perturbed chi-square risk.

In what follows, the standard notation
d→ and

p→ denote convergence in distribution and convergence in probability,

respectively, when the argument tends to infinity.

Theorem 2.1 Let ζ := (ζ1, . . . , ζk+1) be a perturbed chi-square risk given in (6). Assume that Assumption A is

satisfied, and let U = (U1, . . . , Uk) have the same df as the centered Gaussian random vector W . Then

P
{
ζ2 − ρ2

1v

2ρ1
√
v
≤ x1, . . . ,

ζk+1 − ρ2
kv

2ρk
√
v
≤ xk

∣∣∣ζ1 = v

}
→ P {U1 ≤ x1, . . . , Uk ≤ xk} , n→∞ (9)

holds for any (x1, . . . , xk) on Rk. Further, if G satisfies (7) with some positive scaling function w(·) which satisfies

(8), then(
w(v)(ζ1 − v),

ζ2 − ρ2
1v

2ρ1
√
v
, . . . ,

ζk+1 − ρ2
kv

2ρk
√
v

)∣∣∣(ζ1 > v)
d
=
(
ζ̃v, ζ̃v

)
d→ (E, ρ1cE + U1, . . . , ρkcE + Uk), (10)

where E is a unit exponential rv independent of U and
(
ζ̃v, ζ̃v

)
, v > 0 are defined on the same probability space as

ζ.

Remark 2.2 In view of Theorem 2.1, Proposition 4.1 in [10] implies that the random vector ζ has asymptotically

independent components, i.e.,

lim
v→∞

P {ζj > v|ζi > v} = 0 (11)

for any pair (i, j) of different indices; see [25] for a similar result.

Our second result is concerned with the threshold dependent perturbed (k + 1)-dimensional chi-square risk ζv :=

(ζ1,v, . . . , ζk+1,v), which is defined similarly as (6) with ρj,v, v > 0 instead of ρj and Gaussian random matrices

Wv, v > 0 instead ofW (note that ζ1,v = ζ1). For ρj,v’s we shall impose the following conditions (compare with (4)):

lim
v→∞

4vw(v)(1− ρj,v) = λj ∈ [0,∞), 1 ≤ j ≤ k. (12)

Since limv→∞ vw(v) =∞, then (12) implies that limv→∞ ρj,v = 1. In the special case that G is a chi-square df, we

have w(v) ≡ 1/2 and thus (12) reduces to (4).

Theorem 2.3 Let ζv := (ζ1,v, . . . , ζk+1,v), v > 0 be a family of threshold dependent perturbed chi-square risks with

correlation coefficients ρj,v ∈ R \ {0}, 1 ≤ j ≤ k, v > 0. Denote the first row of Wv by W v and assume that

Assumption A holds for every v > 0. Suppose further that G satisfies (7) with some positive scaling function w(·).

i) Assume that condition (12) is satisfied and

w(v)
√
vW v

d→ U ,
√
w(v)W v

p→ 0 = (0, . . . , 0) ∈ Rk (13)

3



holds for a random vector U ∈ Rk. Then for any (x1, . . . , xk) ∈ Rk

P
{
w(v)(ζ2,v − v) ≤ x1, . . . , w(v)(ζk+1,v − v) ≤ xk

∣∣∣ζ1 = v +
x

w(v)

}
→ P

{
2U1 −

λ1

2
+ x ≤ x1, . . . , 2Uk −

λk
2

+ x ≤ xk
}

(14)

holds locally uniformly for x ∈ R as v →∞.

ii) If (14) holds locally uniformly for x ∈ [0,∞), then(
w(v)(ζ1 − v), w(v)(ζ2,v − v), . . . , w(v)(ζk+1,v − v)

)∣∣∣(ζ1 > v)
d→
(
E,E + 2U1 −

λ1

2
, . . . , E + 2Uk −

λk
2

)
, (15)

with E being a unit exponential rv independent of U .

An immediate consequence of the above result is the following interesting limit relationship.

Corollary 2.4 Under the assumptions and notation of ii) in Theorem 2.3 we have

lim
v→∞

sup
(x1,...,xk)∈Rk

∣∣∣∣∣P{w(v)(ζ2,v − ζ1) ≤ x1, . . . , w(v)(ζk+1,v − ζ1) ≤ xk
∣∣∣ζ1 > v

}
−P
{

2U1 −
λ1

2
≤ x1, . . . , 2Uk −

λk
2
≤ xk

}∣∣∣∣∣ = 0. (16)

The claim in (16) is of interest for statistical modeling; results in this direction are already available for some other

interesting models (see [14]).

Remarks 2.5 a) The relation between (14) and (15) is known from several works of Berman; see e.g., [7] where

additional conditions on the scaling function w(·) are imposed.

b) Assume ζv = (ζ1,v, ζ2,v), v > 0 to be a family of 2-dimensional threshold dependent chi-square risks with

V ar(Wi1,v) = 1 − ρ2
1,v ∈ (0, 1), 1 ≤ i ≤ m and thus w(x) = 1/2. Then from (12) we have that (13) holds with

U1 =
√
λ1V1/2.

c) The proof of (3) shows that under the assumptions of b), similar convergence as in (14) also holds for the

corresponding pdfs.

3 Discussions

As we can see from the proof of Theorem 2.1 (Eq. (33) therein) the symmetry property of Gaussian rvs plays a

crucial role. In this section, we are mainly concerned with two tractable models relaxing the Gaussian assumptions.

First, we consider a bivariate perturbed chi-square risk (ζ1, ζ2) as in (6). We drop the Gaussian assumption on

Wi1, 1 ≤ i ≤ m in (5) and assume that (X11, . . . , Xm1) is a random vector with polar representation

(X11, . . . , Xm1) = R(O1, . . . , Om),

where R > 0 is a rv with infinite upper endpoint, and (O1, . . . , Om) is a random vector which is independent of R

and satisfies
∑m
i=1O

2
i = 1 almost surely. Since

ζ2 = ρ2
1

m∑
i=1

X2
i1 + 2ρ1

m∑
i=1

Xi1Wi1 +

m∑
i=1

W 2
i1

= ρ2
1R

2 + 2Rρ1

m∑
i=1

OiWi1 +

m∑
i=1

W 2
i1
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we obtain

ζ2 − ρ2
1v

2ρ1
√
v

∣∣(ζ1 = v)
d
=

m∑
i=1

OiWi1 +

∑m
i=1W

2
i1

2ρ1
√
v

d→
m∑
i=1

OiWi1, v →∞.

Assume further that O = (O1, . . . , Om) is uniformly distributed on the unit sphere of Rm. Then (cf. [8, 19])

m∑
i=1

OiWi1
d
= O1

√√√√ m∑
i=1

W 2
i1, (17)

which is in general not Gaussian. Wi1, 1 ≤ i ≤ m are iid Gaussian rvs with variance 1− ρ2
1.

Another tractable model is obtained from (6) by restricting the following conditions on the random matrix W.

Suppose that each column (W1j , . . . ,Wmj), 1 ≤ j ≤ k of the random matrix W has stochastic representation

(W1j , . . . ,Wmj) = RjOj = Rj(O1j , · · · , Omj),

where Rj and Oj are independent for any 1 ≤ j ≤ k. Here O1, . . . ,Ok are independent copies of the random vector

O which is uniformly distributed on the unit sphere of Rm. It follows that for any v in the support of ζ1(
ζ2, . . . , ζk+1

)∣∣∣(ζ1 = v)
d
=

(
m∑
i=1

(ρ1ui + Ṽ1)2, . . . ,

m∑
i=1

(ρkui + Ṽk)2

)
, (18)

where Ṽj = RjO1j , 1 ≤ j ≤ k with uj , 1 ≤ j ≤ k are such that
∑m
j=1 u

2
j = v; the proof of (18) is given in Appendix.

A direct implication of (18) is that

ζ̃v
d
=

(
ζ2 − ρ2

1v

2ρ1
√
v
, . . . ,

ζ2
k+1 − ρ2

kv

2ρk
√
v

)∣∣∣(ζ1 = v)
d→

(
Ṽ1, . . . , Ṽk

)
, v →∞.

Consequently, (9) holds with U
d
= (Ṽ1, . . . , Ṽk).

Finally, we mention an extension of Theorem 2.3. It is possible therein to drop the assumptions that the rows of

the matrix Wv have the same df. To this end, the condition (13) needs to be re-stated, requiring the convergence of

w(v)
√
vWv to some random matrix U .

4 Applications

As mentioned in the Introduction, conditional limit results are important in various theoretical and applied mod-

els. In this section, we shall present three applications. The first one concerns the derivation of Berman’s sojourn

limit theorems and the tail asymptotic behaviour of the supremum for certain time-changed stationary chi-square

processes. In the second application we shall investigate the maxima of perturbed chi-square triangular arrays es-

tablishing both the convergence of the maxima and a density type convergence result. Finally, motivated by the

findings of [3], we shall derive the tail asymptotics of aggregated log-chi risks.

Berman’s sojourn limit theorem and extremes of time-changed chi-square processes:

Consider {Xi(t), t ≥ 0}, 1 ≤ i ≤ m to be m independent centered stationary Gaussian processes with covariance

functions ri(·), 1 ≤ i ≤ m satisfying

ri(t) = 1− Ci|t|α + o(|t|α), t→ 0, ri(t) < 1, ∀t > 0, (19)

with α ∈ (0, 2] and Ci, 1 ≤ i ≤ m given positive constants. Define a time-changed stationary chi-square process

{ζ(t), t ≥ 0} by

ζ(t) =

m∑
i=1

X2
i (Θit), t ≥ 0,

5



where Θ = (Θ1, . . . ,Θm) is a random vector with non-negative and bounded components being independent of the

processes Xi, 1 ≤ i ≤ m. We remark that time-changed processes are used extensively; see e.g., [12] and references

therein. Next, let {Zi(t), t ≥ 0}, 1 ≤ i ≤ m be independent copies of a fractional Brownian motion {Z(t), t ≥ 0}
with Hurst index α/2 ∈ (0, 1], i.e., a centered Gaussian process with covariance function

Cov(Z(s), Z(t)) = tα + sα − |t− s|α, s, t ≥ 0.

We obtain below a conditional limit result which is crucial for the derivation of Berman’s sojourn limit theorems

and the tail asymptotic behaviour of the supremum for the time-changed stationary chi-square processes. Since

ζ(0) has a chi-square df, it follows that its df G satisfies (7) with scaling function w(v) ≡ 1/2. We have, for any

0 < t1 < t2 < · · · < td and x > 0 (set ∆i(tj) = Xi(q(v)tj) − ri(q(v)tj)Xi(0), Xi,v(tj) := ri(q(v)tj)Xi(0) and

q(v) = v−1/α)(
w(v)(ζ(q(v)t1)− v), . . . , w(v)(ζ(q(v)td)− v)

)∣∣∣∣∣(ζ(0) = v + x/w(v))

d
=

(
1

2

m∑
i=1

(∆i(Θit1))2 +

m∑
i=1

∆i(Θit1)Xi,v(Θit1) +
1

2

( m∑
i=1

(Xi,v(Θit1))2 − ζ(0)
)

+ x, . . . ,

1

2

m∑
i=1

(∆i(Θitd))
2 +

m∑
i=1

∆i(Θitd)Xi,v(Θitd) +
1

2

( m∑
i=1

(Xi,v(Θitd))
2 − ζ(0)

)
+ x

)∣∣∣∣∣(ζ(0) = v + 2x).

By (19) it follows that

∆i(Θitj)→ 0 and ri(q(v)Θitj)→ 1 almost surely as u→∞, ∀1 ≤ i ≤ m, 1 ≤ j ≤ d.

Consequently, the independence of ∆i(Θitj) and ζ(0) implies(
w(v)(ζ(q(v)t1)− v), . . . , w(v)(ζ(q(v)td)− v)

)∣∣∣∣∣(ζ(0) = v + x/w(v))

d
=

(
Op(1) + (1 + o(1))

m∑
i=1

∆i(Θit1)Xi(0)− 1

2

m∑
i=1

(1− (ri(q(v)Θit1))2)(Xi(0))2 + x, . . . ,

Op(1) + (1 + o(1))

m∑
i=1

∆i(Θitd)Xi(0)− 1

2

m∑
i=1

(1− (ri(q(v)Θitd))
2)Xi(0) + x

)∣∣∣∣∣(ζ(0) = v + 2x).

Furthermore, since (X1(0), . . . , Xm(0)) is a standard Gaussian random vector, we have the stochastic representation

(X1(0), . . . , Xm(0)) = R(O1, . . . , Om),

where (O1, . . . , Om) is a random vector uniformly distributed on the unit sphere of Rm being further independent

of R > 0 which is such that R2 has a chi-square df with m degrees of freedom. Hence, in view of the independence

between the random variables (or vectors) we conclude that(
w(v)(ζ(q(v)t1)− v), . . . , w(v)(ζ(q(v)td)− v)

)∣∣∣∣∣(ζ(0) = v + x/w(v))

d
=

(
Op(1) +

√
v + 2x

m∑
i=1

∆i(Θit1)Oi −
1

2
(v + 2x)

m∑
i=1

(1− (ri(q(v)Θit1))2)O2
i + x, . . . ,

Op(1) +
√
v + 2x

m∑
i=1

∆i(Θitd)Oi −
1

2
(v + 2x)

m∑
i=1

(1− (ri(q(v)Θitd))
2)O2

i + x

)∣∣∣∣∣(R2 = v + 2x)

d→

(
m∑
i=1

Zi(C
1/α
i Θit1)Oi −

m∑
i=1

CiO
2
iΘ

α
i t
α
1 + x, . . . ,

m∑
i=1

Zi(C
1/α
i Θitd)Oi −

m∑
i=1

CiO
2
iΘ

α
i t
α
d + x

)
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as v → ∞, where Zi, Oi, 1 ≤ i ≤ m,Θ are independent random elements. Consequently, Theorem 2.3 implies the

weak convergence of finite dimensional distributions

1

2
(ζ(q(v)t)− v)

∣∣∣(ζ(0) > v)
d→ Z̃(t) :=

m∑
i=1

Zi(C
1/α
i Θit)Oi −

m∑
i=1

CiO
2
iΘ

α
i t
α + E, t ≥ 0,

where E is a unit exponential rv which is further independent of all the other random elements. Note that if

Ci = C ∈ (0,∞), 1 ≤ i ≤ m and Θ has all components equal to 1, then

Z̃(t)
d
= Z(C1/αt)− Ctα + E, t ≥ 0,

which agrees with the findings of [7].

Define the sojourn time of the process ζ above a level v in the interval [0, t] by

Lt(v) =

∫ t

0

1(ζ(s) > v) ds, t > 0, (20)

where 1(·) is the indicator function. By checking the Assumptions in Theorem 3.1 in [7] (as it was done in Theorem

10.1 therein), we obtain the following Berman’s sojourn limit theorem for the time-changed stationary chi-square

processes.

Proposition 4.1 Let {ζ(t), t ≥ 0} be the time-changed stationary chi-square process with covariance functions

satisfying (19), and let Lt(v) be defined as in (20). Then, for all t > 0 small enough

lim
v→∞

∫ ∞
x

P
{
v1/αLt(v) > y

}
v1/αE{Lt(v)}

dy = B(x) (21)

holds at all continuity points x > 0 of B(x) = P
{∫∞

0
1(Z̃(s) > 0) ds > x

}
.

Our next result concerns the tail asymptotics of the supremum of ζ(t) over a fixed interval [0, T ]. See [22] and the

references therein for recent developments in this direction.

Proposition 4.2 Let {ζ(t), t ≥ 0} be the time-changed stationary chi-square process with covariance functions

satisfying (19). Then, for any T > 0

P

{
sup
t∈[0,T ]

ζ(t) > v

}
= Hα[C1, . . . , Cm]

21−m/2T

Γ(m/2)
v

1
α+m

2 −1 exp
(
−v

2

)
(1 + o(1)), (22)

as v →∞, where Γ(·) denotes the Euler Gamma function and

Hα[C1, . . . , Cm] = lim
a↓0

1

a
P
{

sup
k≥1

Z̃(ak) ≤ 0

}
∈ (0,∞).

Maxima of perturbed chi-square triangular arrays: We write below Hλ for the bivariate Hüsler-Reiss max-

stable df defined as

Hλ(x, y) = exp

(
−e−xΦ

(√λ
2

+
y − x√
λ

)
− e−yΦ

(√λ
2

+
x− y√
λ

))
, x, y ∈ R,

with λ ∈ (0,∞) the dependence parameter, and Φ the standard Gaussian df. This distribution appeared initially in

[9], and was later studied in [28]. It follows that the pdf hλ of Hλ can be written as

hλ(x, y) = e−xHλ(x, y)

(
1√
λ
ϕ
(√λ

2
+
y − x√
λ

)
+ e−yΦ

(√λ
2

+
y − x√
λ

)
Φ
(√λ

2
+
x− y√
λ

))
, x, y ∈ R, (23)

with ϕ the pdf of Φ.

Let (X
(n)
i1 , X

(n)
i2 ), 1 ≤ i ≤ n, n ≥ 1 be a bivariate Gaussian triangular array. Assume that, for any n ≥ 1,

7



(X
(n)
i1 , X

(n)
i2 ), 1 ≤ i ≤ n are independent bivariate Gaussian random vectors with N(0, 1) marginals and correlation

ρn ∈ (−1, 1)/{0}. The seminal contribution [28] shows that the componentwise maxima of (X
(n)
i1 , X

(n)
i2 ), 1 ≤ i ≤ n

is attracted by Hλ if the Hüsler-Reiss condition

lim
n→∞

4 lnn(1− ρn) = λ ∈ [0,∞) (24)

holds. Let Hn denote the joint df of a bivariate chi-square random vector (ζ
(n)
1 , ζ

(n)
2 ) as defined in (2), where in (1)

we put ρn ∈ (−1, 1)/{0} instead of ρ. In [24] the result of [28] was extended to chi-square case proving that under

the condition (24) (set below tn(x) = anx+ bn)

lim
n→∞

sup
x,y∈R

∣∣∣∣∣(Hn(tn(x), tn(y)))n −Hλ(x, y)

∣∣∣∣∣ = 0, (25)

with

an = 2, bn = 2 lnn+ (m− 2) ln(lnn)− 2 ln Γ(m/2). (26)

Later on, in Theorem 2.2 in [25] the same result for a perturbed chi-square vector was obtained, where the Gaussian

assumption on Xi1, 1 ≤ i ≤ m in (2) is removed. Instead therein both marginals Hn,j , i = 1, 2 of Hn are assumed to

be in the GMDA, i.e.,

lim
n→∞

sup
x∈R

∣∣∣∣∣(Hn,j(tn(x)))n − exp(− exp(−x))

∣∣∣∣∣ = 0, j = 1, 2, (27)

where

an = 1/w(bn) = 2(1 + o(1)), bn = G−1(1− 1/n), (28)

with G = Hn,1 the df of ζ
(n)
1 , and further the Hüsler-Reiss condition

lim
n→∞

2
bn
an

(1− ρ2
n) = λ ∈ [0,∞) (29)

holds. Under the conditions (28) and (29), we have by (15) and Remarks 2.5, b) that

nP
{
ζ

(n)
1 > tn(x), ζ

(n)
2 > tn(y)

}
=

P
{
ζ

(n)
1 > tn(x)

}
P
{
ζ

(n)
1 > bn

} P

{
ζ

(n)
2 − tn(x)

an
> y − x

∣∣∣ζ(n)
1 > tn(x)

}
(1 + o(1))

→ exp(−x)P
{√

λV − λ/2 + E > y − x
}
, n→∞,

where V is an N(0, 1) rv independent of the unit exponential rv E. This together with (27) implies (25), and thus

the claim of Theorem 2.2 in [25] follows. The result stated in (14) can be utilised to extend the convergence of dfs

(25) to a convergence of the corresponding pdfs; see e.g., [15] for discussions on the convergence of densities.

Proposition 4.3 Let (ζ
(n)
1 , ζ

(n)
2 ), n ≥ 1 be a family of bivariate chi-square random vectors defined as in (2) with

joint df Hn(x, y), where in (1) we put ρn ∈ (−1, 1)/{0} instead of ρ. If (29) is satisfied with an and bn in (26) and

ĥn(x, y) is the pdf of (Hn(tn(x), tn(y)))n with tn(x) = anx+ bn, then

lim
n→∞

ĥn(x, y) = hλ(x, y) (30)

holds for any x, y ∈ R.

Aggregation of log-chi risks: Let k ≥ 2, and define ζ := (ζ1, . . . , ζk) to be a k-dimensional chi-square risk with

m degrees of freedom defined as in (6) where Wij in (5) has variance 1−ρ2
j ∈ (0, 1) for any 1 ≤ i ≤ m, 1 ≤ j ≤ k−1.
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Define further I1, . . . , Ik to be iid Bernoulli rvs with P {Ii = 1} = p = 1 − P {Ii = −1} and p ∈ (0, 1], which are

independent of ζ. For any constants σj > 0, µj ∈ R, 1 ≤ j ≤ k, define a k-dimensional log-chi risk Z = (Z1, . . . , Zk)

by

Zj = exp(σjIj
√
ζj + µj), 1 ≤ j ≤ k.

The introduction of log-chi risks is motivated by [3] where log-normal risks were considered, which are retrieved

when m = 1 and p = 1/2. As a generalization of the result therein, we obtain the asymptotics of the aggregated

log-chi risks.

Proposition 4.4 Let Z1, . . . , Zk be log-chi risks with m degrees of freedom as above. Let σ̃ := σ1 ≥ σ2 ≥ · · · ≥ σk >
0, µ̃ = max1≤j≤k:σj=σ̃ µj, and Jk = ]{1 ≤ j ≤ k : σj = σ̃, µj = µ̃}. Then

P


k∑
j=1

Zj > u

 =
pJk

2m/2−1Γ(m/2)σ̃m−2
(lnu− µ̃)m−2 exp

(
− (lnu− µ̃)2

2σ̃2

)
(1 + o(1)), u→∞. (31)

Note in passing that the tail asymptotics of the maximum max1≤j≤k Zj can be further shown to be tail-equivalent

with the total risk
∑k
j=1 Zj ; see [16] for more examples on this topic.

5 Proofs

Proof of Theorem 2.1 For any v > 0 we have(
ζ2 − ρ2

1v

2ρ1
√
v
, . . . ,

ζk+1 − ρ2
kv

2ρk
√
v

)
d
=

(∑m
i=1(ρ1Xi1 +Wi1)2 − ρ2

1v

2ρ1
√
v

, . . . ,

∑m
i=1(ρkXi1 +Wik)2 − ρ2

kv

2ρk
√
v

)
d
=

(
2ρ1

∑m
i=1Xi1Wi1 +

∑m
i=1W

2
i1

2ρ1
√
v

, . . . ,
2ρk

∑m
i=1Xi1Wik +

∑m
i=1W

2
ik

2ρk
√
v

)
.

Since further by the independence of (X11, . . . , Xm1) and the Gaussian random matrix W we have(
m∑
i=1

Xi1Wi1, . . . ,

m∑
i=1

Xi1Wik

)∣∣∣∣(ζ1 = v)
d
=

(√√√√ m∑
i=1

X2
i1W1, . . . ,

√√√√ m∑
i=1

X2
i1Wk

)∣∣∣∣(ζ1 = v) (32)

d
= (

√
vW1, . . . ,

√
vWk), (33)

where (32) can be established by checking the characteristic functions of the rvs on both sides; see e.g., [23]. Thus,

the first claim follows immediately by the fact that
∑m
i=1W

2
ij/
√
v

p→ 0 for any 1 ≤ j ≤ k.

Next, the assumption that G of ζ1 is in the GMDA implies limv→∞ vw(v) =∞ and the convergence in distribution

w(v)(ζ1 − v)|(ζ1 > v)
d→ E, v →∞.

By the above we obtain (set vz := v + z/w(v))

P
{
ζ2 − ρ2

1v

2ρ1
√
v
≤ x1, . . . ,

ζk+1 − ρ2
kv

2ρk
√
v
≤ xk

∣∣∣∣ζ1 = v + z/w(v)

}
= P

{
ζ2 − ρ2

1vz + ρ2
1z/w(v)

2ρ1
√
vz

√
vz/v ≤ x1, . . . ,

ζk+1 − ρ2
kvz + ρ2

kz/w(v)

2ρk
√
vz

√
vz/v ≤ xk

∣∣∣∣ζ1 = vz

}
(8)
= P

{
ζ2 − ρ2

1vz
2ρ1
√
vz

+ ρ1cz ≤ x1, . . . ,
ζk+1 − ρ2

kvz
2ρk
√
vz

+ ρkcz ≤ xk
∣∣∣∣ζ1 = vz

}
(1 + o(1))

→ P {W1 ≤ x1 − ρ1cz, . . . ,Wk ≤ xk − ρkcz} , v →∞,
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where the convergence holds uniformly with respect to z ∈ R, meaning that we can substitute z by zv, v > 0 satisfying

limv→∞ zv = z ∈ R in the above. Consequently, in view of Lemma 4.2 in [19], we obtain

P
{
ζ2 − ρ2

1v

2ρ1
√
v
≤ x1, . . . ,

ζk+1 − ρ2
kv

2ρk
√
v
≤ xk

∣∣∣∣ζ1 > v

}
=

∫ ∞
v

P
{
ζ2 − ρ2

1v

2ρ1
√
v
≤ x1, . . . ,

ζk+1 − ρ2
kv

2ρk
√
v
≤ xk

∣∣∣∣ζ1 = s

}
dG(s)/(1−G(v))

=

∫ ∞
0

P
{
ζ2 − ρ2

1v

2ρ1
√
v
≤ x1, . . . ,

ζk+1 − ρ2
kv

2ρk
√
v
≤ xk

∣∣∣∣ζ1 = v + z/w(v)

}
dG(v + z/w(v))/(1−G(v))

(8)→
∫ ∞

0

P {W1 ≤ x1 − ρ1cz, . . . ,Wk ≤ xk − ρkcz} exp(−z) dz, v →∞

= P {U1 + ρ1cE ≤ x1, . . . , Uk + ρkcE ≤ xk} , (34)

establishing the proof. �

Proof of Theorem 2.3 First note that (12) implies as v →∞

w(v)(v − ρ2
j,vv) = 2vw(v)(1− ρj,v)(1 + o(1)) = λj/2, 1 ≤ j ≤ k.

Further, the scaling function w(·) is self-neglecting, i.e.,

lim
v→∞

w(v + x/w(v))

w(v)
= 1, ∀x ∈ R.

Therefore, the claim of statement i) follows by the assumption (13) and the convergence in distribution(
w(v)(ζ2,v − ρ2

1,vv), . . . , w(v)(ζk+1,v − ρ2
k,vv)

)∣∣∣(ζ1 = v)
d→ (2U1, . . . , 2Uk),

which can be confirmed as in (33), with the aid of the assumption (13). The claim of statement ii) can be established

using similar arguments as in (34). This completes the proof. �

Proof of Proposition 4.3 Denote by hn(x, y) the pdf of Hn(x, y) and write hn,j , j = 1, 2 for its marginal pdfs.

Further, write hn(·|x) for pdf of ζ
(n)
2 |ζ

(n)
1 = x. By Theorem 2.3 and Remarks 2.5 b) we have for any x, y ∈ R

lim
n→∞

P
{
ζ

(n)
2 ≤ tn(y)|ζ(n)

1 = tn(x)
}

= P

{
V ≤

√
λ

2
+
y − x√
λ

}
,

with V an N(0, 1) rv. By symmetry

lim
n→∞

P
{
ζ

(n)
1 ≤ tn(x)|ζ(n)

2 = tn(y)
}

= P

{
V ≤

√
λ

2
+
x− y√
λ

}
.

Consequently, since limn→∞(Hn(tn(x), tn(y)))n = Hλ(x, y)

ĥn(x, y) = a2
nn(Hn(tn(x), tn(y)))n−1hn(tn(y)|tn(x))hn,1(tn(x))

+a2
nn(n− 1)(Hn(tn(x), tn(y)))n−2hn,1(tn(x))hn,2(tn(y))

×P
{
ζ

(n)
2 ≤ tn(y)|ζ(n)

1 = tn(x)
}
P
{
ζ

(n)
1 ≤ tn(x)|ζ(n)

2 = tn(y)
}

= (1 + o(1))Hλ(x, y)

[
anhn(tn(y)|tn(x))annhn,1(tn(x))

+e−x+yP

{
V ≤

√
λ

2
+
y − x√
λ

}
P

{
V ≤

√
λ

2
+
x− y√
λ

}]
.

Since G is a chi-square df we have limn→∞ nanhn1(tn(x)) = exp(−x). Further, in the light of Remarks 2.5 c) we

obtain that

lim
n→∞

anhn(tn(y)|tn(x)) = g(y|x),
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with g(·|x) the pdf of
√
λV − λ/2 + x, implying thus

lim
n→∞

ĥn(x, y) = e−xHλ(x, y)

[
1√
λ
ϕ(

√
λ

2
+
y − x√
λ

) + e−yΦ(

√
λ

2
+
y − x√
λ

)Φ(

√
λ

2
+
x− y√
λ

)

]
= hλ(x, y),

hence the proof is complete. �

Proof of Proposition 4.4 The proof is based on Theorem 4.2 in [30]. Let Z̃ = exp(σ̃I1
√
ζ1 + µ̃). Since ζ1 is a

chi-square df with m degrees of freedom, it follows that (e.g., [23])

P
{
Z̃ > u

}
=

p

2m/2−1Γ(m/2)σ̃m−2
(lnu− µ̃)m−2 exp

(
− (lnu− µ̃)2

2σ̃2

)
(1 + o(1)), u→∞

implying that Z̃ has df in the GMDA with scaling function w(x) = (lnx)/(σ̃2x). Since further limx→∞ w(x) = 0, in

view of Theorem 4.2 in [30] we conclude the claim by checking Assumptions 2.3-2.5 therein. In our setup it suffices

to show them for k = 2. For the simplicity of presentation, we assume further that σ1 = σ2 = 1, p = 1 and

µ1 = µ2 = 0. For any a > 0 we have

P {w(u)Z2 > a|Z1 > u} = P
{
Z2 > au/ lnu

∣∣∣Z1 > u
}

v=(lnu)2

= P
{
ζ2 > (ln a+

√
v − ln

√
v)2
∣∣∣ζ1 > v

}
= P

{
ζ2 − ρ2

1v√
v

>
√
v
[(

1 + (ln a− ln
√
v)/
√
v
)2

− ρ2
1

]∣∣∣ζ1 > v

}
→ 0

as u → ∞, where the last convergence follows from Theorem 2.1 and the fact that ρ2
1 < 1, hence Assumption 2.3

and Assumption 2.4 (by symmetry) in [30] hold. The Assumption 2.5 in [30] follows if we show that

P {min(Z1, Z2) > u/ lnu}
P {Z1 > u}

=
P {min(ζ1, ζ2) > v∗}
P {ζ1 > (lnu)2}

→ 0

as u → ∞, where v∗ = (lnu − ln lnu)2 = (lnu)2(1 + o(1)). By the definition of (ζ1, ζ2) we have the stochastic

representation

ζ1 + ζ2
d
= (1 + ρ1)

m∑
i=1

W 2
i + (1− ρ1)

2m∑
i=m+1

W 2
i ,

where Wi, 1 ≤ i ≤ 2m are iid N(0, 1) rvs. Let X = (X11, X12, X21, X22, · · · , Xm1, Xm2). The last formula follows by

the fact that the covariance matrix Σ of X can be written as Σ = Adiag(λ1, · · · , λ2m)A>, where λ1 = · · · = λm =

1− ρ1, λm+1 = · · · = λ2m = 1 + ρ1, and A ∈ Rm×m is some orthogonal matrix. Without loss of generality we may

assume that ρ1 > 0. Let c := 2/(1 + ρ1) > 1. We have

P {min(ζ1, ζ2) > u} ≤ P {ζ1 + ζ2 > c(1 + ρ1)u}

= (1 + 1/ρ1)m/2
21−mcm/2−1

Γ(m/2)
um/2−1 exp

(
−cu

2

)
(1 + o(1))

as u→∞; see e.g., [23]. Consequently,

lim
u→∞

P {min(Z1, Z2) > u/ lnu}
P {Z1 > u}

≤ lim
v→∞

P {ζ1 + ζ2 > c(1 + ρ1)v∗}
P {ζ1 > v∗(1 + o(1))}

= 0

and thus the proof is complete. �
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6 Appendix

In this section we first present the proof of (18) and then give a direct proof of (3).

For notational simplicity we consider only the case k = 2. We have, for any v in the support of ζ1(
ζ2, ζ3

)∣∣∣(ζ1 = v)
d
=

( m∑
i=1

(ρ1Xi1 +Wi1)2,

m∑
i=1

(ρ2Xi1 +Wi2)2
)∣∣∣∣∣(ζ1 = v)

d
=

(
ρ2

1v + 2ρ1

m∑
i=1

Xi1Wi1 +

m∑
i=1

W 2
i1, ρ

2
2v + 2ρ2

m∑
i=1

Xi1Wi2 +

m∑
i=1

W 2
i2

)∣∣∣∣∣(ζ1 = v).

The assumption that (W1j , . . . ,Wmj)
d
= RjOj , j = 1, 2 implies for any v in the support of ζ1

(
ζ2, ζ3

)∣∣∣(ζ1 = v)
d
=

(
ρ2

1v + 2ρ1R1O11

√√√√ m∑
i=1

X2
i1 +R2

1, ρ
2
2v + 2ρ2R2O12

√√√√ m∑
i=1

X2
i1 +R2

2

)∣∣∣∣∣(
m∑
i=1

X2
i1 = v

)
d
=

(
ρ2

1v + 2ρ1R1O11

√
v +R2

1, ρ
2
2v + 2ρ2R2O21

√
v +R2

2

)
d
=

( m∑
i=1

(ρ1ui +Wi1)2,

m∑
i=1

(ρ2ui +Wi2)2
)

for any ui, i ≤ m such that
∑m
i=1 u

2
i = v, where in the first equality in distribution we used the same technique as

in (17). Hence the claim of (18) follows.

Next, we show the proof of (3). In view of [29] (see also [31]), we have the stochastic representation

(ζ1, ζ2)
d
= (Um, Vm),

where (set N = m+ 1)

Um =

N∑
i=1

(
Xi1 −XN1

)2

, Vm =

N∑
i=1

(
Xi2 −XN2

)2

, XN1 :=

N∑
i=1

Xi1

N
, XN2 :=

N∑
i=1

Xi2

N
,

which follows from the facts that (Um, Vm) is independent of (XN1, XN2), and (XN1

√
N,XN2

√
N) has the same df

as (X11, X12). From equation (3) in [31] we have the following expression for the pdf hm of (Um, Vm):

hm(u, v) =
(uv)m/2−1

2m(Γ(m/2))2 (ρ2
∗)
m/2

exp
(
−u+ v

2ρ2
∗

)
0F1

(
;
m

2
;
ρ2uv

(2ρ2
∗)

2

)
, ∀u, v ∈ (0,∞), (35)

where ρ∗ :=
√

1− ρ2 and 0F1(; a;x) =
∑∞
n=0

Γ(a+n)
Γ(a)

xn

n! . By (35) the pdf gm(x|v), x ∈ R of the conditional rv

Z∗v =
ζ2 − ρ2v

ρ∗
√
v

∣∣∣(ζ1 = v)

is given by (set xρ := ρ̃x
√
v + ρ2v where ρ̃ := 1− ρ2)

gm(x|v) =
ρ̃
√
v

Γ(m/2)(2ρ̃)m/2
x(m−2)/2
ρ exp

(
−x
√
v

2

)
exp

(
−ρ

2v

ρ̃

)
0F1

(
;
m

2
;
ρ2vxρ
(2ρ̃)2

)
.

Utilising the well-known asymptotic expansion

0F1(;m; z) =
Γ(m)

2
√
π
z1/4−m/2 exp(2

√
z)
(

1 +O(1/
√
z)
)
, z →∞

12



we can further write as v →∞

gm(x|v) =
ρ̃
√
v

Γ(m/2)(2ρ̃)m/2
x(m−2)/2
ρ exp

(
−x
√
v

2

)
exp

(
−ρ

2v

2ρ̃

)

×Γ(m/2)

2
√
π

(
ρ2vxρ
(2ρ̃)2

)(1−m)/4

exp

((
ρ2vxρ
ρ̃2

)1/2)
(1 + o(1))

=
1

2
√
π

√
vρ̃√

2ρ̃ρv
exp

(
−x
√
v

2

)
exp

(
−ρ

2v

ρ̃

)
exp

(
ρ2v

ρ̃

(
1 +

ρ̃x

ρ2
√
v

)1/2)

=
1

2
√
π

√
ρ̃√
2ρ

exp

(
−x
√
v

2

)
exp

(
−ρ

2v

ρ̃

)
exp

(
ρ2v

ρ̃

(
1 +

ρ̃x

2ρ2
√
v
− 1

8

ρ̃2x2

ρ4v
+ o(v)

))
(1 + o(1))

=
1√
2π

√
ρ̃

2
√
ρ

exp

(
− ρ̃x

2

8ρ2
+ o(v)

)
(1 + o(1))

=
1√
2π

√
ρ̃

2
√
ρ

exp

(
− ρ̃x

2

8ρ2

)
(1 + o(1)).

Consequently, for any x ∈ R

P

{
ζ2 − ρ2v

2ρ
√

1− ρ2
√
v
≤ x

∣∣∣ζ1 = v

}
= P

{
Z∗v ≤

2ρx√
1− ρ2

}
→ P {W1 ≤ x} , v →∞.

The uniform convergence (in x) of the last formula follows since both functions on the right and left hand sides are

continuous, bounded and increasing.
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