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Universitätsstraße 25
D-33615 Bielefeld · Germany

e-mail: imw@uni-bielefeld.de
http://www.imw.uni-bielefeld.de/wp/
ISSN: 0931-6558

mailto:imw@uni-bielefeld.de
http://www.imw.uni-bielefeld.de/wp/


SUBMODULAR MEAN FIELD GAMES:

EXISTENCE AND APPROXIMATION OF SOLUTIONS

JODI DIANETTI, GIORGIO FERRARI, MARKUS FISCHER, AND MAX NENDEL

Abstract. We study mean field games with scalar Itô-type dynamics and costs that are
submodular with respect to a suitable order relation on the state and measure space. The
submodularity assumption has a number of interesting consequences. Firstly, it allows us to
prove existence of solutions via an application of Tarski’s fixed point theorem, covering cases
with discontinuous dependence on the measure variable. Secondly, it ensures that the set
of solutions enjoys a lattice structure: in particular, there exist a minimal and a maximal
solution. Thirdly, it guarantees that those two solutions can be obtained through a simple
learning procedure based on the iterations of the best-response-map. The mean field game
is first defined over ordinary stochastic controls, then extended to relaxed controls. Our
approach allows also to treat a class of submodular mean field games with common noise in
which the representative player at equilibrium interacts with the (conditional) mean of its
state’s distribution.

Keywords: Mean field games; submodular cost function; complete lattice; first order
stochastic dominance; Tarski’s fixed point theorem.

AMS subject classification: 93E20, 91A15, 06B23, 49J45.

1. Introduction

In this paper, we study a representative class of mean field games with submodular costs.
Mean field games (MFGs for short), as introduced by Lasry and Lions [21] and, independently,
by Huang, Malhamé and Caines [19], are limit models for non-cooperative symmetric N -
player games with mean field interaction as the number of players N tends to infinity; see,
for instance, [6] and the recent two-volume work [9].

Submodular games were first introduced by Topkis in [28] in the context of static non-
cooperative N -player games. They are characterized by costs of the players that have de-
creasing differences with respect to a partial order induced by a lattice on the set of strategy
vectors. Because the notion of submodularity is related to that of substitute goods in Eco-
nomics, submodular games have received large attention in the economic literature (see [2],
[23], among many others). A systematic treatment of submodular games can be found in [29],
[31], and in the survey [3].

The submodularity assumption has been applied to mean field games by Adlaka and Johari
in [1] for a class of discrete time games with infinite horizon discounted costs, by Wiȩcek in
[32] for a class of finite state mean field games with total reward up to a time of first exit, and
by Carmona, Delarue, and Lacker in [10] for mean field games of timing (optimal stopping),
in order to study dynamic models of bank runs in a continuous time setting. It is also worth
noticing that mean field games considered in recent works adressing the problem of non-
uniqueness of solutions enjoy a submodular structure (see e.g. [4], [12], [14]), even if the latter
is not exploited therein.
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2 DIANETTI, FERRARI, FISCHER, AND NENDEL

Here, we consider a class of finite horizon mean field games with Itô-type dynamics. More
specifically, the evolution of the state of the representative player is described by a one-
dimensional Itô stochastic differential equation (SDE) with random (not necessarily Markov-
ian) coefficients and controlled drift. The diffusion coefficient, while independent of state and
control, is possibly degenerate. Deterministic dynamics are thus included as a special case.
The measure variable, which represents the distribution of the continuum of “other” players,
only appears in the (random, not Markovian) cost coefficients with running costs split into two
parts, one depending on the control, the other on the measure. The measure-dependent costs
are assumed to be submodular with respect to first order stochastic dominance on measures
and the standard order relation on states (cf. Assumption 2.8 below).

The submodularity assumption has a number of remarkable consequences. It yields, in
particular, an alternative way of establishing the existence of solutions and gives rise to
a simple learning procedure. Existence of solutions to the mean field game can be obtained
through Banach’s fixed point theorem if the time horizon is small (cf. [19]). For arbitrary time
horizons, a version of the Brouwer-Schauder fixed point theorem, including generalizations
to multi-valued maps, can be used; cf. [6] and [20]. Under the submodularity assumption,
existence of solutions can instead be deduced from Tarski’s fixed point theorem [26]. This
allows us to cover systems with coefficients that are possibly discontinuous in the measure
variable. Another notable consequence of the submodularity is that the set of all solutions
for a given initial distribution enjoys a lattice structure so that there are a minimal solution
and a maximal solution with respect to the order relation. The existence of multiple solutions
is in fact quite common in mean field games (see [4, 14] and the references therein), and the
submodularity assumption is compatible with this non-uniqueness of solutions. Notice that,
in particular (yet relevant) cases, we can also prove the existence of MFG solutions when the
dynamics of the state process depends on the measure (see Subsection 4.3). Furthermore,
with a slight modification of the set up, our lattice-theoretical approach allows to deal with
a class of MFGs with common noise, in which the representative agent faces a mean field
interaction through the conditional mean of its state given the common noise (see Subsection
4.4). This class of MFGs have been recently considered in [14] and [27], where the authors
address the issue of the uniqueness and selection of equilibria in a linear-quadratic setting.

The problem of how to find solutions to a mean field game in a constructive way has
been addressed by Cardaliaguet and Hadikhanloo [7]. They analyze a learning procedure,
similar to what is known as fictitious play (cf. [18] and the references therein), where the
representative agent, starting from an arbitrary flow of measures, computes a new flow of
measures by updating the average over past measure flows according to the best response to
that average. For potential mean field games, the authors establish convergence of this kind
of fictitious play. A simpler learning procedure consists in directly iterating the best response
map, thus computing a new flow of measures as best response to the previous measure flow.
Under the submodularity assumption, we show that this procedure converges to a mean field
game solution for appropriately chosen initial measure flows, while it needs not converge for
potential or other classes of mean field games.

The rest of this paper is organized as follows. In Subsection 2.1, we introduce the controlled
system dynamics and costs, together with our standing assumptions, and give the definition
of a mean field game, where we take ordinary stochastic open-loop controls as admissible
strategies. In Subsection 2.2, we define the order relation on probability measures which is
crucial for the submodularity assumption on the cost coefficients of the game. That assump-
tion is stated and discussed in Subsection 2.3, while Subsection 2.4 deals with properties of
the best response map. Subsection 2.5 contains our main results, namely Theorem 2.13 on
the existence and lattice structure of MFG solutions and Theorem 2.16 on the convergence
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of the simple learning procedure. In Section 3, we extend the analysis of Section 2 to sub-
modular mean field games defined over stochastic relaxed controls. This allows to re-obtain
the existence and, especially, the convergence result under more general conditions. Section 4
concludes with comments on the linear-quadratic case, systems with multiplicative and mean
field dependent dynamics, and mean field games with common noise. Some auxiliary results
on first order stochastic dominance are collected in the Appendix A.

Notation. Throughout the rest of this paper, given x, y ∈ R, we set x ∧ y := min{x, y}
and x∨ y := max{x, y}. Moreover, given a probability space (Ω,F ,P) and a random variable
X : Ω → R, we use the (not quite standard) notation P ◦ X for the law of X under P, i.e.,
we set P ◦X[E] := P[X ∈ E] for each Borel set E of R. Finally, for a given T ∈ (0,∞) and
a stochastic process X = (Xt)t∈[0,T ], with a slight abuse of notation, we denote by P ◦X the
flow of measures associated to X; that is, we set P ◦X := (P ◦Xt)t∈[0,T ].

2. The submodular mean field game

In this section we develop our set up for submodular mean field games. This set up allows
us to prove the existence of MFG solutions without using a weak formulation or the notion
of relaxed controls. Instead, we combine probabilistic arguments together with a lattice-
theoretical approach in order to prove the existence and approximation of MFG solutions.

2.1. The mean field game problem. Let T > 0 be a fixed time horizon andW = (Wt)t∈[0,T ]

be a Brownian Motion on a complete filtered probability space
(
Ω,F , (Ft)t∈[0,T ],P

)
. Let

ξ ∈ L2(Ω,F0,P) and (σt)t∈[0,T ] ⊂ [0,∞) be a progressively measurable square integrable
stochastic process. Notice that we allow the volatility process to be zero on a progressively
measurable set E ⊂ [0, T ]×Ω with positive measure, thus leading to a degenerate dynamics.
For a set of controls U ⊂ R, define the the set of admissible controls A as the set of all square
integrable progressively measurable processes α : Ω × [0, T ] → U . For a measurable function
b : Ω × [0, T ] × R × U → R and an admissible process α, we consider the controlled SDE
(SDE(α), in short)

(2.1) dXt = b(t,Xt, αt)dt+ σtdWt, t ∈ [0, T ], X0 = ξ.

With no further reference, thoughout this paper we will assume that for each (x, a) ∈ R× U
the process b(·, ·, x, a) is progressively measurable and that the usual Lipschitz continuity and
growth conditions are satisfied; that is, there exists a constant C1 > 0 such that for each
(ω, t, a) ∈ Ω× [0, T ]× U we have

|b(ω, t, x, a)− b(ω, t, y, a)| ≤ C1|x− y|, ∀x, y ∈ R,(2.2)

|b(ω, t, x, a)| ≤ C1(1 + |x|+ |a|2), ∀x ∈ R.
Under the standing assumption, by standard SDE theory, for each α ∈ A there exists a unique
strong solution Xα := (Xα

t )t∈[0,T ] to the controlled SDE(α) (2.1).
Let P(R) denote the space of all probability measures on the Borel σ-algebra B(R), endowed

with the classical (Cb-)weak topology, i.e. the topology induced by the weak convergence of
probability measures. The costs of the problem are given by three measurable functions

f : Ω× [0, T ]× R× P(R)→ R,
l : Ω× [0, T ]× R× U → R,(2.3)

g : Ω× R× P(R)→ R,

such that, for each (x, µ, a) ∈ R×P(R)×U , the processes f(·, ·, x, µ), l(·, ·, x, a) are progres-
sively measurable and the random variable g(·, x, µ) is FT -measurable. We underline that the
cost processes f and g are not necessarily Markovian.
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For any given and fixed measurable flow µ = (µt)t∈[0,T ] of probability measures on B(R),

we introduce the cost functional

(2.4) J(α, µ) := E
[∫ T

0

[
f(t,Xα

t , µt) + l(t,Xα
t , αt)

]
dt+ g(Xα

T , µT )

]
, α ∈ A,

and consider the optimal control problem infα∈A J(α, µ).
We say that (Xµ, αµ) is an optimal pair for the flow µ if −∞ < J(αµ, µ) ≤ J(α, µ) for each

admissible α ∈ A and Xµ = Xαµ .

Remark 2.1. The subsequent results of this paper remain valid if we consider a geometric
dynamics for X. Moreover, for suitable choices of the costs, we can also allow for geomet-
ric or mean-reverting state processes with dependence on the measure in the dynamics (see
subsections 4.2 and 4.3 for more details).

We make the following standing assumption.

Assumption 2.2.

(1) For each measurable flow µ of probability measures on B(R), there exists a unique (up
to indistinguishability) optimal pair (Xµ, αµ).

(2) There exists a continuous and strictly increasing function ψ : [0,∞) → [0,∞) with
lims→∞ ψ(s) =∞ and a constant M > ψ(0) such that

(2.5) E
[
ψ
(
|Xµ

t |
)]
≤M for all measurable flows of probabilities µ and t ∈ [0, T ].

Remark 2.3. To underline the flexibility of our set up, Condition (1) in Assumption 2.2 is
stated at an informal level. Condition (1) holds, for example, in the case of a linear-convex
setting in which b(t, x, a) = ct+ptx+qta, for suitable processes c, p, q, l(t, ·, ·) is strictly convex
and lower semicontinuous, f(t, ·, µ) and g(·, µ) are lower semicontinuous, and U is convex and
compact. More general conditions ensuring existence and uniqueness of an optimal pair in
the strong formulation of the control problem can be found in [16] and in Chapter II of [8],
among others.

Remark 2.4. Notice that Condition (2) in Assumption 2.2 is equivalent to the tightness of
the family of laws

{
P ◦Xµ

t : µ is a measurable flow, t ∈ [0, T ]
}

(cf. [13], [22] or [24]). The
latter is satisfied, for example, if U is compact or if b is bounded in a. Alternatively, one can
assume that U is closed and that there exist exponents p′ > p ≥ 1 and constants κ, K > 0
such that E[|ξ|p′ ] <∞ and

|g(x, µ)| ≤ K(1 + |x|p),(2.6)

κ|a|p′ −K(1 + |x|p) ≤ f(t, x, µ) + l(t, x, a) ≤ K(1 + |x|p + |a|p),

for all (t, x, µ, a) ∈ [0, T ] × R × P(R) × U . Indeed, following the proof of Lemma 5.1 in
[20], these conditions allow to have an a priori bound on the p-moments of the minimizers
independent of the measure µ.

Remark 2.5. Differently from the standard conditions in the literature on mean field games,
our existence result (Theorem 2.13) does not require any continuity of the costs f and g in
the measure µ.

For each measurable flow µ of probability measures on B(R), we now define the best-response
by R(µ) := P ◦Xµ, where we set P ◦Xµ :=

(
P ◦Xµ

t

)
t∈[0,T ]

. The map µ 7→ R(µ) is called the

best-response-map.

Definition 1 (MFG Solution). A measurable flow µ∗ of probability measures on B(R) is a
mean field game solution if it is a fixed point of the best-response-map R; that is, if R(µ∗) = µ∗.
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2.2. The lattice structure. In this section, we endow the space of measurable flows with
a suitable lattice structure, which is fundamental for the subsequent analysis. We start by
identifying the set of probability measures P(R) by the set of distribution functions on R,
setting µ(s) := µ(−∞, s] for each s ∈ R and µ ∈ P(R). On P(R) we then consider the order
relation ≤st given by the first order stochastic dominance, i.e. we write

(2.7) µ ≤st ν for µ, ν ∈ P(R) if and only if µ(s) ≥ ν(s) for each s ∈ R.

The partially ordered set (P(R),≤st) is then endowed with a lattice structure by defining

(2.8) (µ ∧st ν)(s) := µ(s) ∨ ν(s) and (µ ∨st ν)(s) := µ(s) ∧ ν(s) for each s ∈ R.

Observe that (see e.g. [25]), for µ, ν ∈ P(R), we have

(2.9) µ ≤st ν if and only if 〈ϕ, µ〉 ≤ 〈ϕ, ν〉
for each increasing function ϕ : R → R such that 〈ϕ, µ〉 and 〈ϕ, ν〉 are finite, where 〈ϕ, µ〉 :=∫
R ϕ(y)dµ(y).

Recall that by (2.5),

E
[
ψ
(
|Xµ

t |
)]
≤M for all measurable flows µ and t ∈ [0, T ].

Then, by Lemma A.2, there exist µMin, µMax ∈ P(R) with

µMin ≤st P ◦Xµ
t ≤st µMax for all measurable flows µ and t ∈ [0, T ].

This observation suggests to consider the interval

[µMin, µMax] =
{
µ ∈ P(R) |µMin ≤st µ ≤st µMax

}
endowed with the Borel σ-algebra induced by the weak topology, i.e. the topology related to
the weak convergence of probability measures. We consider the finite measure π := δ0+dt+δT
on the Borel σ-algebra B([0, T ]) of the interval [0, T ], where δt denotes the Dirac measure at
time t ∈ [0, T ]. Notice that we include δ0 into the definition of the measure π in order to
prescribe the initial law P ◦ ξ. We then define the set L of feasible flows of measures as the
set of all equivalence classes (w.r.t. π) of measurable flows (µt)t∈[0,T ] with µt ∈ [µMin, µMax]

for π-almost all t ∈ (0, T ] and µ0 = P ◦ ξ. On L we consider the order relation ≤L given by
µ ≤L ν if and only if µt ≤st νt for π-a.a. t ∈ [0, T ]. This order relation implies that L can be
endowed with the lattice structure given by

(µ ∧L ν)t := µt ∧st νt and (µ ∨L ν)t := µt ∨st νt for π-a.a. t ∈ [0, T ].

Notice that
(
P ◦ Xα

t

)
t∈[0,T ]

∈ L for every α ∈ A. In particular, the best-response-map

R : L→ L is well defined.

Remark 2.6. We point out that if ψ(x) = x2, then each element of [µMin, µMax] has finite
first-order moment, i.e.

∫
R |y|dµ(y) < ∞ for each [µMin, µMax]. This follows directly from

Lemma A.3. Notice also that a higher integrability requirement in (2.5) implies the existence
and uniform boundedness of higher moments for the elements of [µMin, µMax]. More precisely,

if ψ(x) = xp
′

for some p′ ∈ (1,∞), then

sup
µ∈[µMin,µMax]

∫
R
|y|pdµ(y) <∞ for all p ∈ (1, p′).

We now turn our focus on the main result of this subsection, which is the following lemma.
Its proof follows from the more general Proposition A.4, which is relegated to the Appendix
A.

Lemma 2.7. The lattice (L,≤L) is complete. That is, each subset of L has a least upper
bound and a greatest lower bound.
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2.3. The submodularity condition. Our subsequent results rely on the following key as-
sumption.

Assumption 2.8 (Submodularity condition). For P⊗dt a.a. (ω, t) ∈ Ω× [0, T ], the functions
f(t, ·, ·) and g have decreasing differences in (x, µ); that is, for φ ∈ {f(t, ·, ·), g},

φ(x̄, µ̄)− φ(x, µ̄) ≤ φ(x̄, µ)− φ(x, µ),

for all x̄, x ∈ R and µ̄, µ ∈ P(R) s.t. x̄ ≥ x and µ̄ ≥st µ.

We list here three examples in which Assumption 2.8 is satisfied.

Example 1. Assumption 2.8 is always fulfilled for additively separable functions, i.e. when
φ(x, µ) = φ1(x) + φ2(µ).

Example 2 (Mean-field interaction of scalar type). Consider a mean-field interaction of scalar
type; that is, φ(x, µ) = γ(x, 〈ϕ, µ〉) for given measurable maps γ : R2 → R and ϕ : R→ R. If
the map ϕ is increasing and the map γ : R2 → R has decreasing differences in (x, y) ∈ R2, then
Assumption 2.8 is satisfied. Observe that a function γ ∈ C2(R2) has decreasing differences in
(x, y) if and only if

∂2γ

∂x∂y
(x, y) ≤ 0 for each (x, y) ∈ R2.

Example 3 (Mean-field interactions of order-1). Another example is provided by the inter-
actions of order-1, i.e. when φ is of the form

φ(x, µ) =

∫
R
γ(x, y)dµ(y).

It is easy to check that, thanks to (2.9), Assumption 2.8 holds when γ has decreasing differences
in (x, y).

A natural and relevant question related to Assumption 2.8 concerns its link to the so-called
Lasry-Lions monotonity condition, i.e. the condition

(2.10)

∫
R

(φ(x, µ̄)− φ(x, µ))d(µ̄− µ)(x) ≥ 0, ∀ µ̄, µ ∈ P(R).

In general, there is no relation between the submodularity condition and (2.10). However,
since Assumption 2.8 is equivalent to the fact that the map φ(·, µ̄)− φ(·, µ) is decreasing for
µ, µ̄ ∈ P(R) with µ̄ ≥st µ, Assumption 2.8 and (2.9) imply that∫

R
(φ(x, µ̄)− φ(x, µ))d(µ̄− µ)(x) ≤ 0, ∀ µ̄, µ ∈ P(R) with µ̄ ≥st µ;

the latter, roughly speaking, being sort of an opposite version of the Lasry-Lions monotonicity
condition (2.10).

Remark 2.9. Specific cost functions satisfying Assumption 2.8 are, for example,

f(t, x, µ) ≡ 0, l(t, x, a) =
a2

2
, g(x, µ) =

(
x− 1[0,∞)(〈id, µ〉)

)2
,

where id(y) = y. Notice that the function µ 7→ g(x, µ) is discontinuous, in contrast to the
typical continuity requirement assumed in the literature (see, e.g., [20]). However, in this
specific case, Assumption 2.2 is only satisfied if the control set U is compact.
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2.4. The best-response-map. In the following lemma, we show that the set of admissible
trajectories is a lattice.

Lemma 2.10. If α and ᾱ are admissible controls, then there exists an admissible control
α∨ such that Xα ∨ X ᾱ = Xα∨. Moreover, there exists an admissible control α∧ such that
Xα ∧X ᾱ = Xα∧.

Proof. Let α and ᾱ be admissible controls and define the process α∨ by

α∨s :=

{
αs on {Xα

s > X ᾱ
s } ∪ {Xα

s = X ᾱ
s , b(s,X

α
s , αs) ≥ b(s,X ᾱ

s , ᾱs)},
ᾱs on {Xα

s < X ᾱ
s } ∪ {Xα

s = X ᾱ
s , b(s,X

α
s , αs) < b(s,X ᾱ

s , ᾱs)}.

The process α∨ is clearly progressively measurable and square integrable, hence admissible.
We want to show that Xα ∨X ᾱ = Xα∨ ; that is,

(2.11) Xα
t ∨X ᾱ

t = x0 +

∫ t

0
b(s,Xα

s ∨X ᾱ
s , α

∨
s )ds+

∫ t

0
σsdWs, ∀t ∈ [0, T ], P-a.s.

In order to do so, observe that the process Xα ∨ X ᾱ satisfies, P-a.s. for each t ∈ [0, T ], the
following integral equation

(2.12) Xα
t ∨X ᾱ

t = x0 +

∫ t

0
σsdWs +

(∫ t

0
b(s,Xα

s , αs)ds

)
∨
(∫ t

0
b(s,X ᾱ

s , ᾱs)ds

)
.

Furthermore, defining the two processes A and Ā by

At :=

∫ t

0
b(s,Xα

s , αs)ds and Āt :=

∫ t

0
b(s,X ᾱ

s , ᾱs)ds,

we see that the process S, defined by St := At ∨ Āt, is P-a.s. absolutely continuous. Hence
the time derivative of S exists a.e. in [0, T ] and, in view of (2.12), in order to prove (2.11) it
sufficies to show that dSt/dt = b(t,Xα

t ∨X ᾱ
t , α

∨
t ) for P⊗ dt a.a. (ω, t) ∈ Ω× [0, T ].

Since the processes A, Ā and S are P-a.s. absolutely continuous, for each ω in a set of
full probability, the paths A(ω), Ā(ω) and S(ω) admit time derivatives in a subset E(ω) ⊂
[0, T ] with full Lebesgue measure. We now use a pathwise argument, without stressing the
dependence on ω ∈ Ω. Take t ∈ E such that Xα

t > X ᾱ
t . By continuity, there exists a (random)

neighborhood It of t in R such that Xα
s > X ᾱ

s for each s ∈ It ∩ [0, T ], which, by (2.12), is true
if and only if As > Ās for each s ∈ It ∩ [0, T ]. Hence, by definition of S, we have

dSs
ds

=
dAs
ds

= b(s,Xα
s , αs), ∀ s ∈ It ∩ [0, T ],

and, in particular, dSs/ds = b(s,Xα
s ∨X ᾱ

s , α
∨
s ) for each s ∈ It ∩ [0, T ].

Take now t ∈ E such that Xα
t = X ᾱ

t and b(t,Xα
t , αt) ≥ b(t,X ᾱ

t , ᾱt). From (2.12) it follows
that At = Āt, which in turn implies that

dSt
dt

= lim
h→0

At+h ∨ Āt+h −At ∨ Āt
h

≥ dAt
dt
∨ dĀt

dt
.

In particular,

(2.13)
dAt
dt

= b(t,Xα
t , αt) ≥ b(t,X ᾱ

t , ᾱt) =
dĀt
dt

.

If there exists a sequence {hj}j∈N converging to 0 such that At+hj ≥ Āt+hj for each j ∈ N,
then clearly dSt/dt = dAt/dt = b(t,Xα

t , αt) = b(t,Xα
t ∨ X ᾱ

t , α
∨
t ), as desired. On the other

hand, if such a sequence does not exist, then there exists some δ > 0 such that At+h ≤ Āt+h
for each h ∈ (−δ, δ). Recalling (2.13), this implies that dAt/dt ≤ dSt/dt = dĀt/dt ≤ dAt/dt,
hence we obtain again that dSt/dt = dAt/dt.
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Altogether, we have proved that for a.a. t ∈ [0, T ] with Xα
t > X ᾱ

t or Xα
t = X ᾱ

t and
b(t,Xα

t , αt) ≥ b(t,X ᾱ
t , ᾱt), we have dSt/dt = b(t,Xα

t , αt) = b(t,Xα
t ∨ X ᾱ

t , α
∨
t ). Analogously,

one can prove that dSt/dt = b(t,X ᾱ
t , ᾱt) = b(t,Xα

t ∨X ᾱ
t , α

∨
t ) for a.a. t ∈ [0, T ] with Xα

t < X ᾱ
t

or Xα
t = X ᾱ

t and b(t,Xα
t , αt) < b(t,X ᾱ

t , ᾱt). Therefore dSt/dt = b(t,Xα
t ∨X ᾱ

t , α
∨
t ) for P⊗ dt

a.a. (ω, t) ∈ Ω× [0, T ], which proves (2.11).
The arguments employed above allow to prove that the process Xα ∧X ᾱ satisfies the SDE

controlled by α∧; i.e.

Xα
t ∧X ᾱ

t = x0 +

∫ t

0
b(s,Xα

s ∧X ᾱ
s , α

∧
s )ds+

∫ t

0
σsdWs, ∀t ∈ [0, T ], P-a.s.,

where α∧ is defined by

α∧s :=

{
ᾱs on {Xα

s > X ᾱ
s } ∪ {Xα

s = X ᾱ
s , b(s,X

α
s , αs) ≥ b(s,X ᾱ

s , ᾱs)},
αs on {Xα

s < X ᾱ
s } ∪ {Xα

s = X ᾱ
s , b(s,X

α
s , αs) < b(s,X ᾱ

s , ᾱs)}.

The proof of the lemma is therefore completed. �

We now prove the fundamental property of the best-response-map.

Lemma 2.11. The best-response-map R is increasing in (L,≤L).

Proof. Take µ̄, µ ∈ L such that µ ≤L µ̄ and let (X µ̄, αµ̄) and (Xµ, αµ) be the optimal pairs
related to µ̄ and µ, respectively. Define the set

B := {Xµ
s > X µ̄

s } ∪ {Xµ
s = X µ̄

s , b(s,X
µ
s , α

µ
s ) ≥ b(s,X µ̄

s , αs
µ̄)}.

As it is shown in Lemma 2.10, the process Xµ ∨ X µ̄ is the solution to the dynamics (2.1)
controlled by α∨t := αµt 1B(t) + αµ̄t 1Bc(t), and the process Xµ ∧ X µ̄ is the solution to the

dynamics controlled by α∧t := αµt 1Bc(t) + αµ̄t 1B(t).
By the admissibility of α∨ and the optimality of αµ̄ we can write

0 ≤ J(α∨, µ̄)− J(αµ̄, µ̄) =E
[ ∫ T

0

[
f(t,Xµ

t ∨X
µ̄
t , µ̄t)− f(t,X µ̄

t , µ̄t)
]
dt

]
(2.14)

+ E
[ ∫ T

0

[
l(t,Xµ

t ∨X
µ̄
t , α

∨
t )− l(t,X µ̄

t , α
µ̄
t )
]
dt

]
+ E

[
g(Xµ

T ∨X
µ̄
T , µ̄T )− g(X µ̄

T , µ̄T )
]
.

Next, from the definition of B and the trivial identity 1 = 1B(t) + 1Bc(t) we find

E
[ ∫ T

0

[
f(t,Xµ

t ∨X
µ̄
t , µ̄t)− f(t,X µ̄

t , µ̄t)
]
dt

]
= E

[ ∫ T

0
1B(t)

[
f(t,Xµ

t , µ̄t)− f(t,X µ̄
t , µ̄t)

]
dt

]
= E

[ ∫ T

0

[
f(t,Xµ

t , µ̄t)− f(t,Xµ
t ∧X

µ̄
t , µ̄t)

]
dt

]
,

as well as

E
[
g(Xµ

T ∨X
µ̄
T , µ̄T )− g(X µ̄

T , µ̄T )
]

= E
[
g(Xµ

T , µ̄T )− g(Xµ
T ∧X

µ̄
T , µ̄T )

]
.

In the same way, by the definition of α∨ and α∧, we see that

E
[ ∫ T

0

[
l(t,Xµ

t ∨X
µ̄
t , α

∨
t )− l(t,X µ̄

t , α
µ̄
t )
]
dt

]
= E

[ ∫ T

0
1B(t)

[
l(t,Xµ

t , α
µ
t )− l(t,X µ̄

t , α
∧
t )
]
dt

]
= E

[ ∫ T

0

[
l(t,Xµ

t , α
µ
t )− l(t,Xµ

t ∧X
µ̄
t , α

∧
t )
]
dt

]
.
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Now, the latter three equalities allow to rewrite (2.14) as

0 ≤ J(α∨, µ̄)− J(αµ̄, µ̄) = E
[ ∫ T

0

[
f(t,Xµ

t , µ̄t)− f(t,Xµ
t ∧X

µ̄
t , µ̄t)

]
dt

]
(2.15)

+ E
[ ∫ T

0

[
l(t,Xµ

t , α
µ
t )− l(t,Xµ

t ∧X
µ̄
t , α

∧
t )
]
dt

]
+ E

[
g(Xµ

T , µ̄T )− g(Xµ
T ∧X

µ̄
T , µ̄T )

]
,

which reads as

(2.16) J(α∨, µ̄)− J(αµ̄, µ̄) = J(αµ, µ̄)− J(α∧, µ̄)

Finally, exploiting Assumption 2.8 in the expectations in (2.15), we deduce that

0 ≤ J(α∨, µ̄)− J(αµ̄, µ̄) ≤ E
[ ∫ T

0

[
f(t,Xµ

t , µt)− f(t,Xµ
t ∧X

µ̄
t , µt)

]
dt

]
(2.17)

+ E
[ ∫ T

0

[
l(t,Xµ

t , α
µ
t )− l(t,Xµ

t ∧X
µ̄
t , α

∧
t )
]
dt

]
+ E

[
g(Xµ

T , µT )− g(Xµ
T ∧X

µ̄
T , µT )

]
= J(αµ, µ)− J(α∧, µ).(2.18)

Hence the control α∧ is a minimizer for J(·, µ), and, by uniqueness of the minimizer, we
conclude that Xµ ∧X µ̄ = Xµ; that is, Xµ

t ≤ X
µ̄
t for each t ∈ [0, T ] P-a.s., which implies that

R(µ) ≤L R(µ̄). �

Remark 2.12. For later use, we point out that we have actually proved that for µ̄, µ ∈ L
such that µ ≤L µ̄ we have that Xµ

t ≤ X
µ̄
t for each t ∈ [0, T ], P-a.s.

2.5. Existence and approximation of MFG solutions. We finally obtain an existence
result for the mean field game solutions.

Theorem 2.13. Under the assumptions 2.2 and 2.8, the set of MFG solutions (M,≤L) is a
nonempty complete lattice: in particular there exist a minimal and a maximal MFG solution.

Proof. Combining Lemma 2.7 together with Lemma 2.11, we have that the best response
map R is an increasing map from the complete lattice (L,≤L) into itself. The statement then
follows from Tarski’s fixed point theorem (see Theorem 1 in [26]). �

Following [28], we introduce learning procedures {µn}n∈N, {µn}n∈N ⊂ L for the mean field
game problem as follows:

• µ0 := inf L, µ0 := supL;

• µn+1 = R(µn), µn+1 = R(µn) for each n ≥ 1.

For simplicity, we make the following assumption.

Assumption 2.14.

(1) The control set U ⊂ R is compact and there exists some p > 1 such that E[|ξ|p] <∞.
(2) The dynamics of the system given by b(t, x, a) = ct + ptx + qta, where c, p and q are

deterministic and continuous in t. The volatility σ is constant.
(3) The cost functions f, g are continuous, the cost function l is convex and lower semi-

continuous.
(4) f, l and g have subpolynomial growth; that is, there exists a constant C > 0 such that

|f(t, x, µ)|+ |l(t, x, a)|+ |g(x, µ)| ≤ C(1 + |x|p), ∀ (t, x, a, µ) ∈ [0, T ]× R× U × [µMin, µMax].

Remark 2.15. Under Assumption 2.14 it can be easily verified that for each admissible control
α the map t 7→ P ◦Xα

t is continuous in the weak topology.
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We then have the following convergence result.

Theorem 2.16. Under Assumptions 2.2, 2.8 and 2.14 we have:

(i) The sequence {µn}n∈N is increasing in (L,≤L) and it weakly converges to the minimal
MFG solution, π-a.e.

(ii) The sequence {µn}n∈N is decreasing in (L,≤L) and it weakly converges to the maximal
MFG solution, π-a.e.

Proof. We only prove the first claim, since the second follows by analogous arguments.
By Lemma 2.11 the sequence {µn}n∈N is clearly increasing. Moreover, the completeness of

the lattice L allows to define µ∗ as the least upper bound in the lattice (L,≤L) of {µn}n∈N,
and, by Remark A.5 in Appendix A, the sequence µn converges weakly to µ∗ π-a.e.

Define now, for each n ≥ 1, the optimal pairs (Xn, αn) := (Xµn−1
, αµ

n−1
). Since the controls

αn take values in the compact set U , the processes Xn are pathwise equicontinuous and
equibounded. Moreover, by Remark 2.12, the sequence (Xn)n∈N is increasing. Therefore, by
Arzelà-Ascoli’s theorem, we can find an adapted process X, such that Xn converges uniformly
on [0, T ] to X, P-a.s.

We now prove that µ∗ is a MFG solution. Since µn
t

= R(µn−1)t = P ◦Xµn−1

t = P ◦Xn
t and

since Xn converges uniformly to X P-a.s. and µn
t

converges weakly to µ∗
t

for π-a.a. t ∈ [0, T ],

we deduce that µ∗
t

= P◦Xt for π-a.a t ∈ [0, T ]. Hence, by the continuity of the map t 7→ P◦Xt

in the weak topology (see Remark 2.15), we have µ∗
t

= P ◦Xt for each t ∈ [0, T ]. It remains

to find an admissible control α such that X = Xα and (X,α) is the optimal pair for µ∗.
In order to do so, thanks to the compactness of U , we invoke Banach-Saks’ theorem to find

a subsequence of indexes (nj)j∈N such that the Cesàro means of (αnj ) converges pointwise to
the process α; that is,

(2.19) βmt :=
1

m

m∑
j=1

α
nj
t → αt, as m→∞, P⊗ dt-a.e.

Observe moreover that, by Assumption 2.14 (2), we haveXβm = 1
m

∑m
j=1X

nj . Hence, because

we already know that Xnj converges to X uniformly in [0, T ], P-a.s. as nj → ∞, we deduce

that Xβm converges uniformly to X P-a.s. as m→∞, and that

Xt = ξ +

∫ t

0
(cs + psxs + qsαs)ds+ σWt, ∀ t ∈ [0, T ], P-a.s.;

that is, the process X is the solution to the dynamics controlled by α. Furthermore, by the
subpolynomial growth of the costs, we have −∞ < J(α, µ∗).

We now prove that the pair (X,α) is optimal for the flow µ∗. Observe that, for each

admissible β and each nj ≥ 1, by the optimality of the pair (Xnj , αnj ) for the flow µnj−1, we
have

J(αnj , µnj−1) ≤ J(β, µnj−1).

Summing over j ≤ m, we write

1

m

m∑
j=1

E
[∫ T

0

[
f(t,X

nj
t , µnj−1

t
) + l(t,X

nj
t , α

nj
t )
]
dt+ g(X

nj
T , µ

nj−1
T )

]
≤ 1

m

m∑
j=1

J(β, µnj−1),
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which, by convexity of l, in turn implies that

E
[ ∫ T

0
l(t,Xβm

t , βmt )dt

]
+

1

m

m∑
j=1

E
[ ∫ T

0
f(t,X

nj
t , µnj−1

t
)dt+g(X

nj
T , µ

nj−1
T )

]
(2.20)

≤ 1

m

m∑
j=1

J(β, µnj−1).

By the convergence of Xβm and βm, thanks to the lower semi-continuity and the subpolyno-
mial growth of l, we can take limits as m→∞ in the first expectation in the latter inequality
to find that

(2.21) E
[ ∫ T

0
l(t,Xt, αt)dt

]
≤ lim

m
E
[ ∫ T

0
l(t,Xβm

t , βmt )dt

]
.

Furthermore, by the convergence of Xn and of µn and the continuity of the costs f and g, we
can use the subpolynomial growth of f and g and the boundedness of the sequence µn (cf.
Remark 2.6) to deduce that
(2.22)

E
[ ∫ T

0
f(t,Xt, µ

∗
t
)dt+ g(XT , µ

∗
T

)

]
= lim

m

1

m

m∑
j=1

E
[ ∫ T

0
f(t,X

nj
t , µnj−1

t
)dt+ g(X

nj
T , µ

nj−1
T )

]
and that

(2.23) J(β, µ∗) = lim
m

1

m

m∑
j=1

J(β, µnj−1).

Finally, using (2.21), (2.22) and (2.23) in (2.20), we conclude that J(α, µ∗) ≤ J(β, µ∗), which,
in turn, proves the optimality of (X,α) for µ∗. Hence, µ∗ is a MFG solution.

It only remains to prove the minimality of µ∗. Suppose that ν∗ ∈ L is another MFG solution.

By definition, inf L = µ0 ≤L ν∗. Since R is increasing, we have µ1 = R(µ0) ≤L R(ν∗) = ν∗

and by induction we conclude that µn ≤L ν∗ for each n ∈ N. This implies that the same

inequality holds for the least upper bound of {µn}n∈N; that is, µ∗ ≤L ν∗, which completes the
proof of the claim. �

Remark 2.17. In light of Theorem 2.16, a natural question is weather the minimal (resp.
maximal) MFG solution is associated to the minimal expected cost. In fact, this relation does
not hold in general. Nevertheless, it is easy to see that whenever f(t, x, ·) and g(x, ·) are
increasing (resp. decreasing) in µ for each (t, x) ∈ [0, T ] × R, the minimal (resp. maximal)
solution leads to the minimal expected cost and can be approximated via the learning procedure
above.

Remark 2.18. Take µ ∈ L and define the sequence µ0 := µ and µn+1 := R(µn) for n ∈ N.
Following the proof of Theorem 2.16 we see that, if µ0 ≤L R(µ0) = µ1 (resp. µ0 ≥L R(µ0) =
µ1), then the sequence {µn}n∈N is increasing (resp. decreasing) in (L,≤L) and it converges
to a MFG equilibrium. In other words, the learning procedure of Theorem 2.16 which starts
from an arbitrary element converges to a MFG equilibrium whenever the first and the second
element of the sequence are comparable.

3. Relaxed submodular mean field games

In this section we aim at allowing for multiple solutions of the individual optimization
problem, and at overcoming the linear-convex setting in the convergence result. This comes
with the price of pushing the analysis to a more technical level, by working with a weak
formulation of the problem and with the so-called relaxed controls.
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3.1. The relaxed mean field game. Let b, σ, f, l, g, U be given as in Section 2 (see (2.2)
and (2.3)), with the additional assumption that b, f, l, g are deterministic and, for simplicity,
that σ is constant. Let C denote the set of continuous functions on [0, T ]. In view of a weak
formulation of the problem, the initial value of the dynamics will be described through an
initial fixed probability distribution ν0 ∈ P(R).

Let Λ denote the set of deterministic relaxed controls on [0, T ] × U ; that is, the set of
positive measures λ on [0, T ]×U such that λ([s, t]×U) = t− s for all s, t ∈ [0, T ] with s < t.

Definition 2. A 7-tuple ρ = (Ω,F ,F,P, ξ,W, λ) is said to be an admissible relaxed control if

(1) (Ω,F ,F,P) is a filtered probability space satisfying the usual conditions;
(2) ξ is an F0-measurable R-valued random variable (r.v.) such that P ◦ ξ = ν0;
(3) W = (Wt)t∈[0,T ] is a standard (Ω,F ,F,P)-Brownian motion;
(4) λ is a Λ-valued r.v. defined on Ω such that σ{λ([0, t]×E) |E ∈ B(U)} ⊂ Ft, ∀t ∈ [0, T ].

We denote by Ã the set of admissible relaxed controls.

As it is shown Lemma 3.2 in [20], given ρ = (Ω,F ,F,P, ξ,W, λ) ∈ Ã, with a slight abuse of
notation, we can define a process λ : Ω× [0, T ]→ P(U) such that λ(dt, da) = λt(da)dt P⊗dt-
a.e. Through such a disintegration, we see that the set of admissible controls is naturally
included in the set of relaxed controls via the map α 7→ λα(dt, da) := δαt(da)dt.

Furthermore, since b is assumed to satisfy the usual Lipschitz continuity and growth con-
ditions, there exists a unique process Xρ : Ω × [0, T ] → R, solving the system’s dynamics
equation that now reads as

(3.1) Xρ
t = ξ +

∫ t

0

∫
U
b(t,Xρ

t , a)λt(da)dt+ σWt, t ∈ [0, T ].

Then, for a measurable flow of probability measures µ, we define the cost functional

J̃(ρ, µ) := EP
[ ∫ T

0

∫
U

[
f(t,Xρ

t , µt) + l(t,Xρ
t , a)

]
λt(da)dt+ g(Xρ

T , µT )

]
, ρ ∈ Ã,

and we say that ρ ∈ Ã is an optimal relaxed control for the flow of measures µ if it solves the

optimal control problem related to µ; that is, if −∞ < J̃(ρ, µ) = inf J̃(·, µ).
We now make the following assumptions, which will be employed in the existence result of

Theorem 3.5.

Assumption 3.1.

(1) The control space U is compact.
(2) The costs f(t, ·, µ), l(t, ·, ·) and g(·, µ) are lower semicontinuous in (x, a) for each

(t, µ) ∈ [0, T ]× P(R).

(3) There exist exponents p′ > p ≥ 1 and a constant K > 0 such that |ν0|p
′

:=
∫
R |y|

p′dν0(y) <
∞ and such that, for all (t, x, µ, a) ∈ [0, T ]× R× P(R)× U ,

|g(x, µ)| ≤ K(1 + |x|p + |µ|p),
|f(t, x, µ)|+ |l(t, x, a)| ≤ K(1 + |x|p + |µ|p),

where |µ|p =
∫
R |y|

pdµ(y).
(4) f and g satisfy the Submodularity Assumption 2.8.

Remark 3.2. Alternatively, as discussed also in Remark 2.4, we can replace (1) in Assump-
tion 3.1 by requiring U to be closed and the growth condition (2.6) to be satisfied.

Remark 3.3. Under Assumption 3.1, it is well-known that for each measurable flow µ,

arg min J̃(·, µ) is nonempty. This can be proved using the so-called “compactification-method”
(see e.g. [15] and [17], among others). For later use, we now sketch the main argument. Let
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(ρn)n∈N be a minimizing sequence for J̃(·, µ), with ρn = (Ωn,Fn,Fn,Pn, ξn,Wn, λn). Then,
since U is compact, thanks to the growth conditions on b, the sequence Pn◦(ξn,Wn, λn, Xρn) is
tight in P(R×C×Λ×C), so that, up to a subsequence, Pn◦(ξn,Wn, λn, Xρn) weakly converges
to a probability measure P̄ ∈ P(R×C×Λ×C). Moreover, through a Skorokhod representation
argument, we can find an admissible relaxed control ρ∗ = (Ω∗,F∗,F∗,P∗, ξ∗,W∗, λ∗) such that
P̄ = P∗ ◦ (ξ∗,W∗, λ∗, X

ρ∗). Finally, the continuity assumptions on the costs together with their
polynomial growth, allows to conclude that

J̃(ρ∗, µ) ≤ lim inf
n

J̃(ρn, µ) = inf J̃(·, µ);

i.e., ρ∗ ∈ arg min J̃(·, µ). In particular, this argument shows that for any sequence (ρn)n∈N ⊂
arg min J̃(·, µ) we can find an admissible relaxed control ρ∗ = (Ω∗,F∗,F∗,P∗, ξ∗,W∗, λ∗) ∈
arg min J̃(·, µ) such that, up to a subsequence, Pn ◦Xρn weakly converges to P∗ ◦Xρ∗ in P(C).

The compactness of U and (2.2) immediately imply that there exists a constant M > 0
such that,

EP[|Xρ
t |p
′
] ≤M, ∀ t ∈ [0, T ], ρ ∈ Ã.

Hence, Lemma A.2 in the Appendix A allows to find µMin, µMax ∈ P(R) with

µMin ≤st P ◦Xρ
t ≤st µMax, ∀ t ∈ [0, T ], ρ ∈ Ã.

Moreover, as it is shown in Remark 2.6, we have uniform boundedness of the moments

(3.2) sup
µ∈[µMin,µMax]

|µ|q <∞, ∀ q < p′.

Next, define the set of feasible flows of measures L as the set of all equivalence classes
(w.r.t. π := δ0 + dt + δT ) of measurable flows (µt)t∈[0,T ] with µt ∈ [µMin, µMax] for π-almost

all t ∈ (0, T ] and µ0 = ν0. Let 2L be the set of all subset of L, and define the best-response-
correspondence R : L→ 2L by

(3.3) R(µ) :=
{
P ◦Xρ | ρ ∈ arg min J̃(·, µ)

}
⊂ L, µ ∈ L.

We can then give the following definition.

Definition 3. The flow of measures µ∗ is a relaxed mean field game solution if µ∗ ∈ R(µ∗).

3.2. Existence and approximation of relaxed MFG solutions. We now move on to
proving the existence and approximation of relaxed mean field game solutions. In order to
keep a self-contained but concise analysis, the proofs of the subsequent results will be only
sketched whenever their arguments follow along the same lines of those employed in the proofs
of Section 2.

Lemma 3.4. Under Assumption 3.1, the best-response-correspondence satisfies the following:

(i) For all µ ∈ L, we have that infR(µ), supR(µ) ∈ R(µ).
(ii) infR(µ) ≤L infR(µ) and supR(µ) ≤L supR(µ) for all µ, µ ∈ L with µ ≤L µ.

Proof. We prove the two claims separately.

Proof of (i). Take µ ∈ L. In order to show that infR(µ) ∈ R(µ), we recall that, as it
shown in the proof of Lemma A.4 in the Appendix A, we can select a sequence of relaxed
controls (ρn)n∈N ⊂ arg minJ(·, µ) such that inf{Pn ◦ Xρn |n ∈ N} = infR(µ). Without loss
of generality, we can assume that the relaxed controls ρn are defined on the same stochastic
basis; that is, ρn = (Ω,F ,F,P, ξ,W, λn) for each n ∈ N.

We will now employ an inductive scheme. Let ρ1, ρ2 be the first two elements of the
sequence (ρn)n∈N. As in Lemma 2.10, we can define two Λ-valued r.v.’s λ∨ and λ∧ and two
admissible relaxed controls ρ∨ = (Ω,F ,F,P, ξ,W, λ∨) and ρ∧ = (Ω,F ,F,P, ξ,W, λ∧) such
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that Xρ1 ∨Xρ2 = Xρ∨ and Xρ1 ∧Xρ2 = Xρ∧ . Repeating the same arguments which lead to
(2.16) in the proof of Lemma 2.11, we see that

0 ≤ J̃(ρ∨, µ)− J̃(ρ1, µ) = J̃(ρ2, µ)− J̃(ρ∧, µ) = 0,

which implies that P ◦ Xρ∧ = P ◦ Xρ1 ∧ Xρ2 ∈ R(µ). Moreover, since Xρ1 ∧ Xρ2 = Xρ∧ ,

we obviously have P ◦Xρ∧ ≤L P ◦Xρ1 ∧L P ◦Xρ2 . Repeating this construction inductively,
for each n ∈ N we find an admissible relaxed control ρ∧n = (Ω,F ,F,P, ξ,W, λ∧n) such that

P ◦ Xρ∧n ∈ R(µ) and P ◦ Xρ∧n ≤L P ◦ Xρ1 ∧L ... ∧L P ◦ Xρn . Furthermore, the sequence

P ◦Xρ∧n is decreasing in L, since for each n we have Xρ∧n

t = X1
t ∧ ...∧Xn

t ≤ X1
t ∧ ...∧Xn−1

t

for each t ∈ [0, T ] P-a.s. Hence,

infR(µ) = inf{Pn ◦Xρn |n ∈ N} = inf{P ◦Xρ∧n |n ∈ N},

which implies that the sequence P ◦ Xρ∧n converges weakly to infR(µ), π-a.e. Since (P ◦
Xρ∧n)n∈N ⊂ R(µ), by the closure property of R(µ) (see Remark 3.3), we conclude that
infR(µ) ∈ R(µ).

Analogously, it can be shown that supR(µ) ∈ R(µ).

Proof of (ii). Let µ, µ̄ ∈ L with µ ≤L µ̄ and ρ, ρ̄ ∈ Ã with ρ ∈ arg minJ(·, µ) and
ρ̄ ∈ arg minJ(·, µ̄). With no loss of generality, we can assume that ρ and ρ̄ are defined on the
same stochastic basis; that is, ρ = (Ω,F ,F,P, ξ,W, λ) and ρ = (Ω,F ,F,P, ξ,W, λ̄). As in the
proof of claim (i), we can define two Λ-valued r.v.’s λ∨ and λ∧ and two admissible relaxed

controls ρ∨ = (Ω,F ,F,P, ξ,W, λ∨) and ρ∧ = (Ω,F ,F,P, ξ,W, λ∧) such that Xρ ∨X ρ̄ = Xρ∨

and Xρ ∧X ρ̄ = Xρ∧ .
Repeating the arguments which lead to (2.17) in the proof of Lemma 2.11, we exploit the

submodularity of the costs and the definitions of λ∨ and λ∧ to find

0 ≤ J(ρ∨, µ̄)− J(ρ̄, µ̄) ≤ J(ρ∨, µ)− J(ρ̄, µ) = J(ρ, µ)− J(ρ∧, µ) ≤ 0,

where the first and the last inequality hold because of the optimality of ρ and ρ̄. Choosing ρ
and ρ̄ such that P◦X ρ̄ = supR(µ̄) and P◦Xρ = supR(µ) we see that supR(µ) ≤L supR(µ̄).
In the same way, choosing ρ and ρ̄ such that P ◦ X ρ̄ = infR(µ̄) and P ◦ Xρ = infR(µ) we
conclude that infR(µ) ≤L infR(µ̄). �

Theorem 3.5. Under Assumption 3.1, we have that

(i) The set of mean field game solutions M is a nonempty lattice and admits a minimal
and a maximal element.

Assume moreover that the costs f(t, ·, ·) and g(·, ·) are continuous in (x, µ). Then

(ii) For µ0 := inf L and µn := infR(µn−1) for n ∈ N, we have that the learning procedure
(µn)n∈N is increasing and it weakly converges to infM, π-a.e.

(iii) For µ0 := supL and µn := supR(µn−1) for n ∈ N, we have that the learning procedure
(µn)n∈N is decreasing and it weakly converges to supM, π-a.e.

Proof. Claim (i) follows from Lemma 3.4 and Theorem 4.1 in [30].
We now prove only (ii), since the proof of (iii) is similar. By Lemma 3.4 the sequence

(µn)n∈N is increasing, hence it weakly converges to its least upper bound µ∗, π-a.e. For

each n ∈ N, let ρn = (Ωn,Fn,Fn,Pn, ξn,Wn, λn) be an admissible relaxed control such that
Pn ◦Xρn = infR(µn−1). As in Remark 3.3, the sequence (P ◦ (ξn,Wn, λn, Xρn))n∈N is tight,

so that, up to a subsequence, we can assume that the sequence Pn ◦ (ξ,W, λn, Xρn) weakly
converges to a probability measure P̄ ∈ P(R×C×Λ×C). Moreover, we can find an admissible
relaxed control ρ∗ = (Ω∗,F∗,F∗,P∗, ξ∗,W∗, λ∗) such that P̄ = P∗ ◦ (ξ∗,W∗, λ∗, X

ρ∗), and this
implies that µ∗ = P∗ ◦Xρ∗ .
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By the optimality of ρn for the flow of measures µn−1, we have

(3.4) J̃(ρn, µn−1) ≤ J̃(ρ, µn−1), ∀ρ ∈ Ã.

Now, the continuity of the costs f, l and g, together with their polynomial growth and the

uniform integrability condition (3.2), allow to show the continuity of the functional J̃ along
the sequences (ρn, µn−1)n∈N and (ρ, µn−1)n∈N. This in turn enables us to take limits as n→∞
in (3.4) and to deduce that J̃(ρ∗, µ∗) ≤ J̃(ρ, µ∗) for each ρ ∈ Ã. Hence, Xρ∗ is an optimal

trajectory for the flow µ∗ and, since µ∗ = P∗ ◦Xρ∗ , we have µ∗ ∈ R(µ∗); that is, µ∗ is a mean
field game solution.

It remains to show that µ∗ = infM. Let ν ∈ M. By definition, we have µ0 = inf L ≤L ν.

Since infR is increasing by (ii) in Lemma 3.4, µ1 = infR(µ0) ≤L infR(ν) ≤L ν, where

the last inequality follows from ν ∈ R(ν). By induction, we deduce that µn ≤L ν for each

n ∈ N. Recalling that µ∗ = sup{µn|n ∈ N}, we conclude that µ∗ ≤
L ν, which completes the

proof. �

4. Concluding remarks and further extensions

In the following, we provide some comments on our assumptions and further extensions of
the techniques elaborated in the previous sections.

4.1. On linear-quadratic MFG. Assumption 2.8 is fulfilled in the linear-quadratic case

b(t, x, a) = ct + ptx+ qta,

f(t, x, µ) + l(t, x, a) =
1

2
nta

2 +
1

2
(mtx+ m̂t〈id, µ〉)2,

g(x, µ) =
1

2
(htx+ ĥt〈id, µ〉)2,

where id(y) = y, and for deterministic continuous functions c, p, q, n,m, m̂, h and ĥ such that

inft∈[0,T ] qt > 0, inft∈[0,T ] nt > 0, ntm̂t ≤ 0 and htĥt ≤ 0 for each t ∈ [0, T ].
However, the tightness condition (2) in Assumption 2.2 is not satisfied unless we consider a

compact control set U . In fact, when U is not compact, there is a counterexample in Section
7 of [20], which shows that a mean field game solution may not exist.

Nevertheless, our approach allows to treat non-standard linear-quadratic mean field games,
as for example the one considered in Subsection 2.2 in [14].

4.2. On a geometric dynamics. Our results still hold true if we replace (2.1) with a dy-
namics of the geometric form

(4.1) dXt = b(t,Xt, αt)Xtdt+ σtXtdWt, t ∈ [0, T ], X0 = ξ,

for some square-integrable positive r.v. ξ, a bounded drift b and a bounded stochastic process
σ. Indeed, for each square-integrable process α there exists a unique strong solution Xα to
the latter SDE, and classical estimates show that there exists a constant M > 0 such that

sup
t∈[0,T ]

E[|Xα
t |2] ≤M ;

hence, the tightness condition in Assumption 2.2 is satisfied. Moreover, the solution to (4.1)
can be represented as

Xα
t = ξ exp

(∫ t

0

(
b(s,Xα

s , αs)−
1

2
σ2
s

)
ds+

∫ t

0
σsdWs

)
, t ∈ [0, T ],
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and the mapping x 7→ exp(x) is monotone. Hence, since ξ is positive, for any couple of
admissible controls α, ᾱ, we have that for each t ∈ [0, T ] P-a.s.

X ᾱ
t ≥ Xα

t if and only if

∫ t

0
b(s,X ᾱ

s , ᾱs)ds ≥
∫ t

0
b(s,Xα

s , αs)ds.

The latter property allows to repeat all the arguments employed in the proof of Lemma 2.10
and (mutatis mutandis) to carry on the analysis that lead to the existence results of Theorems
2.13 and 3.5.

4.3. On mean field dependent dynamics. For a suitable choice of the costs f , g and
l, Theorem 2.13 still holds if we have a “sufficiently simple” mean field dependence in the
dynamics of the system. For the sake of illustration, we discuss here two example.

Let U be a compact subset of R. For any admissible process α and any measurable flow of
probability measures µ, consider a state process given by

(4.2) dXt = Xt(αt +m(µt))dt+ σXtdWt, t ∈ [0, T ], X0 = ξ,

where ξ is a positive square-integrable r.v. and m : P(R)→ R is a bounded function which is
measurable with respect to the Borel σ-algebra associated to the topology of weak convergence
of probability measures. Assume moreover that m is increasing with respect to the first order
stochastic dominance.

Notice that, for each measurable flow µ and for each admissible α, the SDE (4.2) admits
the explicit solution

Xα,µ
t = Et(α)Mt(µ),

where

Et(α) := ξ exp

(∫ t

0

(
αs −

σ2

2

)
ds+ σWt

)
and Mt(µ) := exp

(∫ t

0
m(µs)ds

)
.

Since U is compact and m is bounded, we can find a constant K > 0 which is independent of
µ, such that

sup
t∈[0,T ]

E[|Xα,µ
t |2] ≤ K.

The latter implies the tightness condition in Assumption 2.2. As in Subsection 2.2, this allows
us to define a set L of feasible flows of measures, and to show that (L,≤L) is a complete lattice.

Given µ ∈ L and two admissible controls α and ᾱ, as in Lemma 2.10 we can construct α∨

and α∧ such that Xα,µ
t ∨ X ᾱ,µ

t = Xα∨,µ
t and Xα,µ

t ∧ X ᾱ,µ
t = Xα∧,µ

t . Moreover, due to the
particular structure of (4.2), the construction of α∨ and α∧ does not depend on µ.

Consider now cost functions l(t, x, a) = a2/2 and f(t, x, µ) = xψ(µ), for a measureable
function ψ : P(R)→ R− which is decreasing w.r.t. the first order stochastic dominance. With
such a choice of the costs, the functional J is strictly convex w.r.t. α. Hence, for each µ ∈ L,
there exists a unique minimizer α of J(·, µ) (see, e.g., Theorem 5.2 in [33]). We then have the
following result.

Lemma 4.1. The best-response-map R : L→ L is increasing.

Proof. Take µ, µ̄ ∈ L with µ ≤L µ̄. Let α ∈ arg minJ(·, µ) and ᾱ ∈ arg min J(·, µ̄).
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Similar to Lemma 2.11, we see that

0 ≥ J(α∨, µ)− J(ᾱ, µ) = E
[ ∫ T

0

(
(α∨t )2

2
− ᾱ2

t

2
+ (Xα∨,µ

t −X ᾱ,µ
t )ψ(µt)

)
dt

]
= E

[ ∫ T

0

(
(α∨t )2

2
− ᾱ2

t

2
+ (Et(α

∨)− Et(ᾱ))Mt(µ)ψ(µt)

)
dt

]
≥ E

[ ∫ T

0

(
(α∨t )2

2
− ᾱ2

t

2
+ (Et(α

∨)− Et(ᾱ))Mt(µ̄)ψ(µ̄t)

)
dt

]
= E

[ ∫ T

0

(
(α∨t )2

2
− ᾱ2

t

2
+ (Xα∨,µ̄

t −X ᾱ,µ̄
t )ψ(µ̄t)

)
dt

]
= J(α∨, µ̄)− J(ᾱ, µ̄),

where we have exploited the particular structure of the dynamics and the fact that ψ is
negative and decreasing. Hence α∨ ∈ arg min J(·, µ̄), which, by uniqueness, implies that
α∨ = ᾱ. This in turn implies that Et(α

∨) = Et(α) ∨ Et(ᾱ) = Et(ᾱ). Hence, Et(α) ≤ Et(ᾱ)
and, by monotonicity of m, we find Xα,µ

t = Et(α)Mt(µ) ≤ Et(ᾱ)Mt(µ̄) = X ᾱ,µ̄
t and R(µ) =

P ◦Xα,µ
t ≤L P ◦X ᾱ,µ̄

t = R(µ̄), which completes the proof. �

Thanks to Lemma 4.1, we can invoke Tarski’s fixed point theorem in order to deduce that
the set of mean field game equilibria is a nonempty and complete lattice.

Remark 4.2. Analogous statements still hold if we consider a controlled Ornstein–Uhlenbeck
process with mean field term in the dynamics; that is, if the state process is given by

(4.3) dXt =
(
κXt + αt +m(µt)

)
dt+ σdWt, t ∈ [0, T ], X0 = ξ, with κ ∈ R and σ ≥ 0,

for a measurable bounded increasing function m : P(R)→ R.

4.4. On a class of MFGs with common noise. Our approach allows also to treat a class of
submodular mean field games with common noise, in which the representative player interacts
with the population through the conditional mean of its state given the common noise. We
refer to the recent works [14] and [27] for a related set up. In the following, we provide the
main ingredients of the setting and we show that the set of solutions to the considered class
of MFGs with common noise is a nonempty complete lattice.

Let (Wt)t∈[0,T ] and (Bt)t∈[0,T ] be two independent Brownian motions on a complete filtered

probability space (Ω,F , (Ft)t∈[0,T ],P). Let ξ ∈ L2(Ω,F0,P), σ ≥ 0, and σ0 > 0. For each
α ∈ A (see the beginning of Subsection 2.1), consider a dynamics of the system given by

(4.4) dXt = b(t,Xt, αt)dt+ σdWt + σ0dBt, t ∈ [0, T ], X0 = ξ,

for some bounded measurable function b satisfying the first requirement in (2.2). Here, the
Brownian motion B stands for the common noise, while W represents the idiosyncratic noises
affecting the state processes in the pre-limit N -player game. Notice that, since b is bounded,
the solution Xα to the SDE (4.4) satisfies (P-a.s.) the estimate

|Xα
t | ≤ |ξ|+ t‖b‖∞ + σ|Wt|+ σ0|Bt| =: Yt for all t ∈ [0, T ] and α ∈ A,

with the process (Yt)t∈[0,T ] belonging to L2(Ω× [0, T ]).

Let FB = (FBt ) be the natural filtration generated by B augmented by all P-null sets, and
define L to be the set of all real-valued FB-progressively measurable processes µ = (µt)t∈[0,T ]

such that |µt| ≤ Yt P-a.s., for each t ∈ [0, T ]. Then, for any given µ ∈ L, consider the
optimization problem inf J(·, µ) with J as in (2.4) (with appropriately measurable functions
f : Ω× [0, T ]×R2 → R, g : Ω×R2 → R and l as before), suppose that a unique optimal pair
(Xµ, αµ) exists, and introduce the map R : L→ L defined by

R(µ)t := E[Xµ
t |FBT ] for t ∈ [0, T ].
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Notice that R(µ) is FB-adapted (see Remark 1 in [27]) and continuous in t, and therefore
FB-progressively measurable.

Definition 4. A process µ ∈ L is a MFG solution to the MFG with common noise if

µt = E[Xµ
t |FBT ] for each t ∈ [0, T ].

Consider on L the order relation given by µ ≤ µ̄ if and only if µt ≤ µ̄t P⊗ dt-a.e. Since L
is a bounded subset of the Dedekind complete lattice L2(Ω× [0, T ]), it is a complete lattice.
Moreover, as in Remark 2.12, for µ̄, µ ∈ L with µ ≤ µ̄ we have that Xµ

t ≤ X µ̄
t for each

t ∈ [0, T ], P-a.s., and hence

R(µ)t = E[Xµ
t |FBT ] ≤ E[X µ̄

t |FBT ] = R(µ̄)t, P⊗ dt-a.e.,

which implies that R : L → L is increasing. Once more, using Tarski’s fixed point theorem,
we have proved the following result.

Theorem 4.3. The set of solutions of the MFG with common noise is a nonempty complete
lattice.

Remark 4.4. Notice that the crucial step in order to obtain Theorem 4.3 is the inequality
Xµ
t ≤ X µ̄

t , for each t ∈ [0, T ], whenever µ ≤ µ̄. Following the arguments developed in
Subsection 4.3 for MFG without common noise, a similar relation can be established also in
the case of mean field dependent dynamics as in (4.2) or (4.3) with an additional common
noise term σ0dBt. Note that the latter mean-reverting dynamics is exactly the one considered
in [14] and [27].

Appendix A. Some results on first order stochastic dominance

In this section, we derive some technical results concerning the first order stochastic dom-
inance introduced in Subsection 2.2. As in Subsection 2.2, we identify the set of probability
measures P(R) by the set of distribution functions on R, setting µ(s) := µ(−∞, s] for each
s ∈ R and µ ∈ P(R). On P(R) we then consider the lattice ordering of first order stochastic
dominance given by (2.7) and (2.8).

Remark A.1.

a) Notice that by identifying µ by its distribution function, P(R) coincides with the set
of all nondecreasing right continuous functions F : R→ [0, 1] with lims→−∞ F (s) = 0
and lims→∞ F (s) = 1. Moreover, we would like to recall that the weak topology is
metrizable and that the weak convergence coincides with the pointwise convergence of
distribution functions at every continuity point, i.e. µn → µ if and only if

µn(s)→ µ(s) as n→∞ for every continuity point s ∈ R of µ.

Therefore, the weak convergence behaves well with the pointwise lattice operations ∨st

and ∧st. In particular, the maps (µ, ν) 7→ µ ∨st ν and (µ, ν) 7→ µ ∧st ν are continuous
P(R)× P(R)→ P(R).

b) Recall that a nondecreasing function R → R is right continuous if and only if it is
upper semicontinuous (usc). Hence, for a sequence (µn)n∈N ∈ P(R) which is bounded
above, the supremum supn∈N µ

n is exactly the pointwise infimum of the distribution
functions (µn)n∈N.

c) For a nondecreasing function F : R→ R, we define its usc-envelope F ∗ : R→ R by

F ∗(s) := inf
δ>0

F (s+ δ) for all s ∈ R.

Notice that F (s) ≤ F ∗(s) ≤ F (s+ ε) for all s ∈ R and ε > 0. Intuitively speaking, F ∗

is the right continuous version of F . That is, F ∗ differs from F only at discontinuity
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points of F . For a sequence (µn)n∈N ∈ P(R) which is bounded below, the infimum
infn∈N µ

n is then given by the usc-envelope of the pointwise supremum of the distribu-
tion functions (µn)n∈N. That is, one has to modify the pointwise supremum at all its
discontinuity points in order to be right continuous.

d) Combining the previous remarks, leads to the following insight: If (µn)n∈N ⊂ P(R)
is a bounded and nondecreasing or nonincreasing sequence, then (µn)n∈N converges
weakly to its supremum or infimum, respectively.

Lemma A.2. Let K ⊂ P(R) and ψ : [0,∞) → [0,∞) be continuous and strictly increasing
with ψ(s)→∞ as s→∞ and

sup
µ∈M

∫
R
ψ(|x|)dµ(x) <∞.

Then, there exist µMin, µMax ∈ P(R) with µMin ≤st µ ≤st µMax for all µ ∈ K.

Proof. We extend ψ to (−∞, 0) by ψ(s) := ψ(0) for s < 0. Moreover, let C ≥ ψ(0) with

sup
µ∈K

∫
R
ψ(|x|)dµ(x) ≤ C.

Then, we define µMin, µMax : R→ [0, 1] by

(A.1) µMin(s) :=
C

ψ(−s)
∧ 1 and µMax(s) :=

(
1− C

ψ(s)

)
∨ 0

for all s ∈ R. Notice that µMin(s) = 1 for s ≥ 0 and µMax = 0 for s ≤ 0 since ψ(0) ≤ C.
Since ψ(s) → ∞ as s → ∞, it follows that lims→−∞ µ

Min(s) = 0 and lims→∞ µ
Max(s) =

1. Moreover, µMin and µMin are nondecreasing and (right) continuous, which shows that
µMin, µMax ∈ P(R). Now, let µ ∈ K. Then, recalling that ψ is nondecreasing, one has

1− µ(s) ≤ 1

ψ(s)

∫ ∞
s

ψ(|x|)dµ(x) ≤ 1

ψ(s)

∫
R
ψ(|x|)dµ(x) ≤ C

ψ(s)
= 1− µMax(s)

for all s ∈ R with ψ(s) > C. Since µMax(s) = 0 for all s ∈ R with ψ(s) ≤ C, it follows that
µ ≤ µMax. On the other hand,

µ(s) ≤ 1

ψ(−s)

∫ s

−∞
ψ(|x|)dµ(x) ≤ 1

ψ(−s)

∫
R
ψ(|x|)dµ(x) ≤ C

ψ(−s)
= µMin(s)

for all s ∈ R with ψ(−s) > C. Since µMin(s) = 1 for all s ∈ R with ψ(−s) ≤ C, it follows
that µ ≥ µMin. �

Lemma A.3. Let K ⊂ P(R) and ψ : [0,∞) → [0,∞) be continuous and strictly increasing
with ψ(s)→∞ as s→∞ and

sup
µ∈M

∫
R
ψ(|x|)dµ(x) <∞.

Further, let µMin and µMax be given by (A.1) and 0 ≤ α < 1. Then, the map x 7→ ψ(|x|)α is
u.i for [µMin, µMax], i.e.

sup
µ∈[µMin,µMax]

∫
R

1(M,∞)(|x|) · ψ(|x|)αdµ(x)→ 0 as M →∞.

Proof. Let β ∈ (α, 1). Then, by (A.1),

(A.2) ψ(s) =
C

1− µMax(s)
for s ≥ ψ−1(C) and ψ(−s) =

C

µMin(s)
for s ≤ −ψ−1(C)
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Recall ψ−1(C) =
(
µMax

)−1
(0) =

(
µMax

)−1
(1). This together with (A.2) implies that∫ ∞

0
ψ(s)βdµMax(s) =

∫ ∞
ψ−1(0)

(
C

1− µMax(s)

)β
dµMax(s) =

∫ 1

0

(
C

1− u

)β
du <∞

and ∫ 0

−∞
ψ(−s)βdµMin(s) =

∫ −ψ−1(C)

−∞

(
C

µMin(s)

)β
dµMin(s) =

∫ 1

0

(
C

u

)β
du <∞,

where, in both equalities, we used the transformation lemma. It follows that

sup
µ∈[µMin,µMax]

∫
R
ψ(|x|)βdµ(x) ≤

∫ ∞
0

ψ(s)βdµMax(s) +

∫ 0

−∞
ψ(−s)βdµMin(s).

By the De La Vallée-Poussin Lemma, it follows that |x| 7→ ψ(|x|)α is u.i. for [µMin, µMax].
In particular, if ψ(s) ≥ sp for some p ∈ (0,∞), then, x 7→ |x|q is u.i. for [µMin, µMax] for all
q ∈ (0, p).

�

We now turn our focus on measureable flows of probability measures. The following propo-
sition is the starting point in order to apply Tarski’s fixed point theorem in the proof of the
existence of mean field game solutions. We start by building up the setup. Let µ, µ ∈ P(R)

with µ ≤st µ and (S,S, π) be a finite measurable space. We denote by B the Borel σ-algebra
on P(R) generated by the weak topology. We denote the lattice of all equivalence classes of
S-B-measurable functions S → [µ, µ] by L = L0(S, π; [µ, µ]). An arbitrary element µ of L will

be denoted in the form µ = (µt)t∈S . On L we consider the order relation ≤L given by µ ≤L ν
if and only if µt ≤st νt for π-a.a. t ∈ S. The following proposition can be found in a more
general form in [24]. However, for the sake of a self-contained exposition, we provide a short
proof below.

Proposition A.4. The lattice L is complete.

Proof. Let M ⊂ L be a nonempty subset of L. Then, for every countable set Ψ ⊂ M , we
denote by µΨ := supµ∈Ψ f ∈ L. Notice that the S-B-measurability of µΨ follows from Remark
A.1. Let

c := sup

{∫
S

∫
R

arctan(x)dµΨ
t (x)dπ(t)

∣∣∣∣Ψ ⊂M countable

}
.

Moreover, the map t 7→
∫
R arctan(x) dµt is measurable for every µ ∈ L since arctan ∈ Cb(R)

induces a continuous (w.r.t. to the weak topology) linear functional P(R)→ R. By definition
of the constant c, there exists a sequence (Ψn)n∈N of countable subsets of M with∫

S

∫
R

arctan(x)dµΨn

t (x)dπ(t)→ c as n→∞.

Let Ψ∗ :=
⋃
n∈N Ψn and µ∗ := µΨ∗ . We now show that µ∗ ≥ µ π-a.s. for all µ ∈M . In order

to see this, fix some µ ∈M and let Ψ′ := Ψ∗ ∪ {µ}. Then, it follows that

c =

∫
S

∫
R

arctan(x)dµ∗t (x)dπ(t) ≤
∫
S

∫
R

arctan(x)dµΨ′
t (x)dπ(t) ≤ c.

Since arctan is strictly increasing it follows that µΨ′ = µ∗, i.e. µ ≤ µ∗. Moreover, for any
upper bound µ ∈ L of M it is easily seen that µ ≥ µ∗. Altogether, we have shown that
µ∗ = supM . In a similar way, one shows that M has an infimum. �

Remark A.5. Let M ⊂ L be nonempty. Then, we say that M is directed upwards or directed
downwards if for all µ, ν ∈M there exists some η ∈M with µ∨ν ≤ η or µ∧ν ≥ η, respectively.
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a) The proof of the previous theorem shows that if M is directed upwards, then there
exists a nondecreasing sequence (µn)n∈N ⊂ M with µn → supM weakly π-a.e. as
n→∞. The analogous statement holds for the infimum if M is directed downwards.
In particular, if (µn)n∈N is a nondecreasing or nonincreasing sequence in L, then it
converges weakly π-a.e. to its least upper bound or greatest lower bound, respectively.

b) Assume that S is a singleton with π(S) > 0. Then, the previous remark implies
the following: For any nonempty set K ⊂ P(R) that is bounded above and directed
upwards, its supremum exists and can be weakly approximated by a monotone sequence.
An analogous statement holds for the infimum if the set K is bounded below and
directed downwards.
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