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Abstract

The query-template alignment of proteins is one of the most critical steps of template-based
modeling methods used to predict the 3D structure of a query protein. This alignment can be
interpreted as a temporal classification or structured prediction task and first order Condi-
tional Random Fields have been proposed for protein alignment and proven to be rather
successful. Some other popular structured prediction problems, such as speech orimage
classification, have gained from the use of higher order Conditional Random Fields due to
the well known higher order correlations that exist between their labels and features. In this
paper, we propose and describe the use of higher order Conditional Random Fields for
query-template protein alignment. The experiments carried out on different public datasets
validate our proposal, especially on distantly-related protein pairs which are the most difficult
to align.

1 Introduction

Proteins carry out most of the work in living cells and their functions (structure, enzyme, mes-
senger, . . .) are largely determined by their three dimensional (3D) structure which in turn is
determined by the amino acid sequence [1]. Decoding the rules of these sequence-structure-
function relationships is one of the most important open problems in science, not only in
order to accelerate the understanding of the molecular functions in life, but also for protein-
based biotechnologies and drug discovery [2]. Due to the high cost of the experimental meth-
ods (X-ray crystallography, nuclear magnetic resonance, . . .), the rate at which new protein
sequences become available is much faster than the rate at which their structure and function
are known [3]. Machine Learning techniques are bringing about new methods that fast and
accurately predict the function [4, 5] and structure [6, 7] of proteins. In this paper we will
focus on structure prediction methods which can be currently classified into one of the follow-
ing two approaches [8]: 1) Free Modeling (FM) and 2) Template-Based Modeling (TBM).
Despite the great progress currently made on FM methods (mainly due to the incorpo-
ration of co-evolutionary information [2, 7, 9, 10]), FM remains computationally expensive
(particularly for long-length proteins) and most of the servers for protein structure prediction
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(I-Tasser, Robetta, RaptorX, . ..) only use FM for those domains of the query protein that can-
not be modeled by TBM. TBM methods basically consist of two steps [11]: 1) Find structurally
related templates to the query protein by means of threading techniques (usually based on a
ranking of the local alignment scores). 2) Build a 3D model of the query protein by means of a
global alignment between the query and the selected template. This alignment is well known to
perform poorly for distantly-related proteins (remote homologs) and in this paper we will
focus on this problem.

Numerous methods have been proposed to solve the alignment problem. Just to name a
few: the first proposed alignments based on substitution matrices [12, 13], PSI-Blast based on
profile-sequence comparison [14], and HHAlign based on HMM sequence profiles [15]. How-
ever, most of these methods result in a poor performance when a query sequence is aligned to
a distantly-related template. This is due to the fact that these methods heavily depend on the
sequence profile [16] (they do not usually incorporate structural features such as secondary
structure and solvent accessibility) and also because the scoring function (the measure of the
alignment on a small region) is linear or has low expressive power (making it difficult to com-
bine sequence and structural features). More information about the contribution to classifica-
tion performance of the different types of features can be found in [15, 17, 18].

More recently, some of the most successful TBM methods have turned out to be those
based on Conditional Random Fields (CRFs) (a discriminative graphical model used in
Machine Learning [19]). To the best of our knowledge, CONTRAlign [20] was the first align-
ment method based on CRFs. It has local factors (scoring functions) based on linear combina-
tions of simple features. Boosting-Threader [18] uses regression-tree factors to learn more
complex relations between evolutionary and structural features and CNFPred [16] incorpo-
rates Neural Network factors and is embedded in the RaptorX server [21] (ranked among the
top servers in the fully-automated blind test CAMEO [22]).

One of the main advantages of CRFs is that the scoring function not only represents the
correlation among the features but also between the features and the labels at several positions.
The scoring functions used so far in the above mentioned CRF-based alignment techniques
are of order 1, i. e. they only represent the correlations between the current label (and features)
and the previous one. However, the increase of computational power and the proposal of effi-
cient inference algorithms [23-25] have recently allowed the use of Higher Order Conditional
Random Fields (HO-CRFs) on different structured prediction tasks such as phoneme classifi-
cation [26-28], and image recognition [29], obtaining a very good performance in such tasks
due to the well known higher order correlations that exist in the speech (e. g. triphones) and
image (e. g. superpixels) signals.

Our hypothesis is that the incorporation of a higher order scoring function will also be help-
ful for protein alignment since a larger region of the label-feature correlations could be
learned. The main contribution of this paper is thus the development of a HO-CREF for protein
alignment and the analysis of its performance on different datasets.

The rest of the paper is organized as follows. Sec. 2 is an overview of protein alignment with
standard CRFs, Sec. 3 develops the extension of protein alignment with HO-CRFs, Sec. 4
describes the experimental setup including feature extraction and Sec. 5 analyzes the experi-
mental results. We finish the paper with the most important conclusions and future work.

2 Alignment with standard CRF

Before introducing the alignment method based on HO-CRF we will go over the standard
alignment procedure based on 1st-order CRF presented at [8, 16, 18, 20]. As in [8], we will use
the following notation. L, and L, are the lengths of the query and template proteins,
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(a) 1st-order CRF. (b) 2nd-order CRF.

Fig 1. Alignment matrices and scoring functions ‘¥’ of a 1st and 2nd-order CRF alignment for the label transitions I, — M and M — I, — M, respectively, at the
alignment matrix position (3, 2). ¥ depends on log-factors outputs, Neural Networks (NNs) in our case, which in turn depend on the query and template feature
vectors qt.

https://doi.org/10.1371/journal.pone.0197912.9001

respectively. A = a; — a,. .. — a;, denotes an alignment of length L, where each label or state
a; can be M (match), I, (query insertion) or I, (template insertion). One alignment can also be
represented as a sequence of alignment positions (xy, y1) — (x2, y2). .. — (xz, yi,) Where every
position indicates the query and template residue indexes on the alignment matrix, respec-
tively. As an example, Fig 1a shows an alignment which corresponds to the following label and
position sequence: A=M — [, = M —M—I,—M=(1,1) = (2,1) — (3,2) — (4,3) — (4,
4) — (5, 5). The “Dummy” corner corresponds to the (0, 0) position.

2.1 Probability of one alignment

The order of a CRF is equal to the maximum number of previous labels considered. Taking
into account a 1st-order CRF, let W* ™ "(x;, y;) be the scoring function of a small alignment
region with a label transition u — v at alignment position i. This function depends on the
query-template feature vectors qt but for the sake of simplicity we omit them. The scoring
function can be expressed as the exponential of the sum of a node log-factor ¢ and an edge
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log-factor ¢:
Y (x,00) = exp (97 (x,00) + ¢ (%3, 01)) (1)

The log-factors relate different label transitions with the features and they can be any kind of
functions. Here, they are Neural Networks as in [16] (for further details see Sec. 4.3). In total
there are 12 (9 + 3) independent log-factors as we have 3 labels. Fig 1a depicts the log-factors
(NNs) used to compute the scoring function of a label transition I, — M at position (3, 2). We
can see that the log-factor NN ~ ™ is fed by a final feature vector which is formed by the con-
catenation of 2 feature vectors: qt'(2, 1) and th(3, 2) (see Sec. 4.1).

In a Ist-order CREF, the conditional probability of one alignment A given the query and
template features (qt) and the parameter vector of all the log-factors (in our case NNs parame-
ters 0) can be expressed as follows:

—a, 1 LA a;. —a;
plalat,0) = p e = T [9(x,) @)
i=2
As can be seen, it is obtained as the product of the scoring functions normalized by a factor Z
(known as partition function) that allows to properly compare different alignments. In the
next section we will explain how to efficiently compute Z.

2.2 Forward-backward algorithm for Z function calculation

In this section we will show how to determine the partition function Z by means of the for-
ward-backward algorithm [8]. Since we have 9 label patterns (M — M, M — I, ..., I, — I,) we
have to compute 3 forward and 3 backward terms (they correspond to the different suffixes
and prefixes of these label patterns [24]) at every (x, y) position as follows:

o(x,y) = Z\P“/*”(x,y)oz“/(xp,y},) (3)

u

Blley) = D (0008 (x,0,) (4)

'

where v’ (or V') of the summations goes over the 3 labels. The previous (x,, y,) (or the next (x,,
¥,,)) position is determined by the current (x, y) position and the v (or V') label of the scoring
function ¥ as follows:

(x—1,y-1) ifv=M

(x,,9,) = (x—1,y) if v=1, (5)
(x,y—1) if v=1,

For example, given (x, y) and PM=l then (%5 ¥p) = (%, y = 1) (and (x,,, y,,) = (2, y + 1)).
The partition function can then be computed as:

z2=%"a'(L,L,) = Zﬁ“’(o,m (6)

where the initializations are: @"(0, 0) = 1 and 8“(L,, L,) = 1. The corresponding derivative of

these formulas with respect to each one of the parameters 6 of the log-factors, i. e. %, 0[;’;#
oz
a0

and %, can be obtained as detailed in reference [8].
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2.3 Training procedure

Given a set of N training alignments, the objective is to maximize the probability of observing
them (maximum likelihood training [16]). In order to do so we are going to minimize the fol-
lowing loss function:

Lo

10) = ——Z logp(A,|qt,, 0) + 292 (7)

Hkl

where 0 is the parameter vector of length Lg (Sec. 2.1), log p(A,|qt,, ) is the log probability of
one training alignment A,, (Eq 2) and J, is a regularization term.

We use a stochastic gradient descent with learning rate 7 and momentum ¥ in order to min-
imize the loss function and to find the best parameter vector. We do not split the training set
in batches, so we compute the average over the full training set of the loss function derivative
(6) (Eq 7) with respect to every parameter in order to reestimate the new parameters at every
training epoch. This derivative can be obtained by means of the derivative of the scoring func-
tion and of the partition function (see Sec. 2.2).

2.4 Test

In the test stage we implement the Viterbi algorithm, which consists of a maximization and a
backtracking step, in order to find the optimal global alignment (x;, 1), (x2, y2), - - -(x,, y1,)
given the scoring functions ¥* ~ "(x, y).

In the maximization step, we recursively compute 3 cumulative scores (6*) and 3 optimal
alignment subsequences of labels (®") at each (x, y) position. We replace the sum operator of
Eq (3) by the maximum operator as follows:

0"(x,y) = max ¥ (x,7)6" (x,.,) (8)

@' (x,y) = argmax V" " (x, y)5" (x,,7,) (9)
u' —v
Every ®"(x, y) records an optimal alignment subsequence of the type u* — v.

In the backtracking step, the alignment starts at the corner position (x; , y; ) = (L, L¢) and
at the “move” a;, with the highest cumulative score at that position: a; = argmax, s (xr,5
y1,)- Then we apply the following recursion: given a current position (x;, y;) and a current
move a;, the previous position (x;_j, y;_1) can be determined by a; using Eq (5). The previous
move a;_ is equal to u* where u* — g, = ®“(x,, y,). The recursion finishes when (x;, y;) is out
of the alignment matrix.

3 Alignment with a higher order CRF

We will show now how to extend the 1st-order CRF alignment, described in Sec. 2, to a 2nd-
order CRF alignment building on the HO-CRF formulation presented at [24, 30]. The exten-
sion to higher orders or even to a sparse CRF alignment could be derived in a similar way.

3.1 Probability of one alignment

The scoring function of a 2nd-order CRF alignment can be expressed as:

W (x,y,) = exp(9F(x,30) + O () + 2T (%) (10)
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If we compare it with the 1st-order CRF scoring function (Sec. 2.1) we can now observe a new
2nd-order log-factor (y) that models a longer alignment subsequence (see Fig 1a and 1b where
the alignment subsequences of ' are indicated by continuous lines). This increases the expres-
sive power of our CRF at the expense of an increase in the number of parameters. Compared
to the 1st-order CRF, not only the number of log-factors (39 = 27 + 9 + 3) has increased but
also the new 2nd-order log-factors are more complex as they are fed by larger size feature vec-
tors (see Sec. 4.1). Nonetheless, we will see in Sec. 5.1 that this increase in the number of
parameters does not produce overfitting.

Then, in a 2nd-order CREF, the probability of one alignment can be now expressed as follows:

T
p(AIqt,0)=p“ﬁ“W“LA=ZH‘P” (X, ;) (11)
i=3

3.2 Forward-backward algorithm

Since we now have 27 label patterns (M = M - M,M — M — I, ..., I; — I, — I,) we have to
compute 9 forward and 9 backward terms (corresponding to the different suffixes and prefixes
of these label patterns [24]) at every (x, y) position as follows:

‘,xuﬂv(x’y) = Z\Ptlﬂuﬂv(xvy)atlau(xpiyp) (12)

Prtey) = 2T )BT (5,0 (13)

The previous (x;, y,) (or the next (x,, y,)) position is determined by the current (x, y) position
and the v (or v') label of the scoring function as in Sec. 2.2. The partition function can now be
computed as:

W v

Z=> o (L,L) =" B (0,0 (14)

RY

where the initializations are: ¢ —~ *(0,0) = 1 and ' — “(Lg Ly) = 1. The corresponding deriva-
tive of these formulas with respect to each parameter 6 of the log-factors can be obtained in a
similar way as in reference [8].

3.3 Training

The loss function used for the 2nd-order CREF is the same one as that employed in the 1st-
order CREF, see Eq (7), but now using the 2nd-order CRF probability (Eq 11) instead. The
same stochastic gradient descent method is also used to find the minimum.

The derivative with respect to every parameter of the loss function requires the derivatives
of the partition function and of the forward terms at the corner position (see Sec. 3.2). In order
to do so, we need to compute the forward and the scoring function derivatives at all positions
which is quite memory demanding and time consuming due to the high number of parameters
and positions (specially in the 2nd-order CRF). In order to reduce computational resources, it
has been implemented in a diagonal recursive way, i. e. we compute all the derivatives of one
alignment matrix diagonal at every iteration. The memory is reduced by maintaining only the
previous diagonals required to compute the current diagonal. The computational time is
reduced because by vectorization we parallelize the computations of diagonal elements which
are independent of each other.
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3.4 Test

A similar Viterbi algorithm to that described in Sec. 2.4 has been implemented for the
HO-CRF but now in the maximization step, we find the 9 cumulative scores (6“ ~ *) and 9
optimal alignment subsequences @ ~ "(x, y) at each (x, y) position. We then replace the sum
operator of Eq (12) by the maximum operator as follows:

0" (x,y) = max W (x,7)0" (%, 7,) (15)
O (x, y) = argmax ¥ (x,7)0" " (x,,,) (16)
' —u—v
Every ®“"(x, y) now records an optimal alignment subsequence of the type t* — u — .

In the backtracking step, the alignment starts at the corner position (x; , y; ) = (L, L¢) and
at the “move” with the highest cumulative score at that position: a;,_; — a; = argmax,/ .,/
5”/*’/(3%, y1,)- Then we apply the following recursion: given a current position (x;, y;) and a
current move a;_; — d; the previous position (x;_j, y;_1) can be determined by a; using Eq (5).
The previous move a; , — a;_; is equal to t* — a;_; where t* — a, | — a, = O 7" (x,, y,).
The recursion finishes when (x;, y;) is out of the alignment matrix.

4 Experimental setup
4.1 Features

As in [16, 18], we extract evolutionary and structural features using publicly available software.
In particular, we use the program buildFeature of CNFPred to compile all the evolutionary and
structural features in one file (.tgt and .tpl for the query and template proteins, respectively). In
turn, buildFeature calls several external programs that are described next. PSI-BLAST [14] on
the Non Redundant databases NR70 and NR90 to generate the position specific scoring matrix
PSSM for the template and the position specific frequency matrix PSFM for the query. HHPred
together with HHMake also on these databases to obtain the HMM query and template pro-
files. PDB-Tool [31] for the 3-class Secondary Structure (SS3) and Solvent Accessibility (SA)
values of the template and PSIPRED [32] together with RaptorX-ACC [33] for SS3 and SA
state probabilities estimation of the query. Finally, DISOPRED [34] is used to set to 0 all struc-
tural features when disordered regions are detected.

The features used for each CRF label are then the following ones:

« Features for a match label (M): sequence profile similarity (PSSM-PSFM) [18], sequence sim-
ilarity using BLOSUMS50 [13] and SS3 and SA match score [18] of the query-template resi-
dues at the current position.

« Features for a query-insertion label (I,): context hydropathy count [20], Relative Solvent
Accessibility (RSA) and SS3 values of the template residue at the current position.

o Features for a template-insertion label (I;): context hydropathy count, RSA estimation and
SS3 estimation of the query residue at the current position.

The RSA estimation of a query residue at position x is computed based on the probabilities
of being at a buried (B), medium (M) or exposed (E) state at that position as follows:

RSA(x) = 10p(B(x)) + 42p(M(x)) + 100p(E(x)) (17)

where the cutoff values 10 and 42 are chosen as in RaptorX. Compared to [16, 18], we are
using a smaller number of features and all of them are mean and variance normalized in order
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to accelerate the training convergence. The features corresponding to positions out of the
alignment matrix are set to zero.

We have just described the composition of the feature vector associated to each type of CRF
label. Then the final log-factor feature vector has to be obtained. As an example, let us consider
the log-factor NN™ %M of Fig 1b. It is fed by the feature vectors qt*(1, 1), qt(2, 1) and
qt"(3, 2) that are concatenated obtaining a final log-factor feature vector of size 11 =4 + 3 + 4.

4.2 Datasets

We build our dataset from the LINDAHL benchmark (see [35] for description and availability
on the Web). LINDAHL contains 7438 positive pairs, i. e. protein pairs which share the same
fold (structurally-related proteins). From these pairs, we randomly select 50 (12, 7, 31) for
training, 50 (12, 2, 36) for validation and the rest 7338 (1622, 2121, 3595) for our in-house test
set called POSLINDAHL. In parenthesis we indicate the number of pairs resulting at the Fam-
ily, Superfamily and Fold levels. The pairs selected for the training and validation sets are lim-
ited to pairs in which query and template sequence lengths are smaller than 100 amino acids.
We establish this limitation due to the training complexity of the 2nd-Order CRF alignment
(Sec. 3.3 and 4.3). Each protein pair of the POSLINDAHL set shares around 16 (22, 15, 13)%
of sequence identity (SeqID).

In addition to the POSLINDAHL test set, we will evaluate our algorithms with two more
public datasets: PROSUP ([36] for description and availability) which consists of 127 pairs
(16% of SeqID) and SALIGN (test-set) ([37] for description and availability) which consists of
200 pairs (20% of SeqID). In Sec. 5.2 we will give more details about the difficulty of these data-
sets by means of the TM-Score.

In all cases, the structure alignment tool DeepAlign [38] provides us the reference align-
ment. As we are interested in global alignment, only the region between the first and the last
aligned residues provided by this tool are employed in our experiments. For the test sets, the
[minimum, average, maximum] of the sequence lengths and the length difference of the pairs
(|Lq = Li|/max(Lg L,)%) are [4, 137, 527] and 15% for POSLINDAHL, [46, 181, 491] and 11%
for PROSUP, and [117, 278, 741] 10% for SALIGN.

4.3 CRF parameters

We describe next how the values of the 1st and 2nd-order CRF parameters are optimized by
means of our training and validation sets. 21 factors (out of the 39 log-factors) are a Neural
Network with one hidden layer of 12 neurons without bias as in [16], the remainder are just
constant values which do not depend on the features. These constant log-factors correspond to
the label transitions that appear in the training set with a probability smaller than 0.002 and for
which there is not enough data to train them properly. In this way we reduce the number of
parameters to be trained which are now Lg = 901 and 2941 for the 1st and 2nd-order CRFs,
respectively. For the sake of simplicity we use the same values for the stochastic gradient
descent parameters in the 1st and 2nd-order CRFs. They are: [, = 0.001, n = 0.01 and y = 0.5.

Fig 2 shows the loss function, and the alignment accuracy of the 1st and 2nd-order CRFs at
every epoch of the training set. Each epoch of the 1st and 2nd-order CRFs takes in our com-
puter (Intel(R) Core(TM) i7-4790 CPU 3.60GHz) around 1 and 8 minutes, respectively. The
Ist and 2nd-order CRF curves cannot be directly compared as they can converge at different
speed, however we can see that, in general, the 2nd-CRF performs better than the 1st-CRF. By
means of the validation sets we selected our best 1st and 2nd-order CRFs models from epochs
93 and 99, respectively.
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Fig 2. Loss function and alignment accuracies of the 1st and 2nd-order CRFs on the training set at every epoch.

https://doi.org/10.1371/journal.pone.0197912.9002

4.4 Baseline software tools

We compare our HO-CRF based alignment with the following alignment methods:

The state of the art CNFPred [16] based on Conditional Neural Fields of order 1. Compared
to our 1st-order CRF, CNFPred employs a wider variety of features such as Secondary Struc-
ture with 8 states (SS8), a position specific gap probability, context-specific potentials

(of size 11) and other strategies such as geometrical constraints in the Viterbi search [39].
Moreover, it has been trained on a larger dataset of 1010 protein pairs and with a more
effective loss function that directly maximizes the TM-Score.

The state of the art alignment method HHAlign [40] based on HMM profiles alignment
[15]. We obtained the HMM profiles with the program HHPred of buildFeature (see Sec.
4.1) and then we ran HHAlign with the options ‘-loc -mact 0.1’ (denoted as loc in future
comparisons) and ‘-glob’ (denoted as glob). These two options provided the best results
among other tried.

CONTRAlign [20], the first CRF alignment method proposed and based on linear factors,
with its default hydropathy options. Compared to our 1st-order CRF, both use the same
global Viterbi algorithm (Sec. 2.4). The only difference lies in the scoring functions (Eq 1)
and, consequently, in the log-factors which are more complex in 1st-order CRF. For exam-
ple, the edge log-factor ¢™ " (x, y) of 1st-order CRF is an NN that depends on the current
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(x, y) structural and evolutionary features while in CONTRAlign it is a constant value which
does not depend on the current features.

o The global alignment NWAlign of MATLAB (with its default parameters) based on the Nee-
dleman-Wunsch [12] algorithm and the BLOSUMS50 matrix [13].

5 Experimental results and discussion
5.1 Results on alignment

Table 1 shows the reference dependent accuracies (%) [16, 18], defined as the percentage of
correctly aligned query amino acids judged by the reference alignments, for several alignment
methods on different test sets. A query amino acid is correctly aligned when the template
amino acid associated by the method is the same as the template amino acid associated by Dee-
pAlign. For the POSLINDAHL set we show the average and the Family, Superfamily and Fold
(Fa., Su., Fo) level accuracies. 1st and 2nd CRF-Align, HHAlign (loc) and (glob), and CNFPred
derive their features from the same .tgt and .tpl files mentioned in Sec. 4.1 in order to have a
fairer comparison.

We can observe that the two best techniques are 2nd-CRF-Align and CNFPred. On one
hand, 2nd-CRF-Align performs best on POSLINDAHL (51.92%), particularly at Fold level
(37%) which is the most difficult set (composed of distantly-related proteins). On the other
hand, CNFPred obtains the best results on SALIGN and PROSUP. If we now take all the 7665
tested proteins (POSLINDAHL + SALING + PROSUP), we find that the percentage of cases in
which 2nd-CRF-Align outperforms CNFPred is 51.96% (where 219 equal results are dis-
carded). In order to test the significance of this result we have applied a Wilcoxon signed-rank
test at the 0.05 significance level. The result of the test allows us to reject the null hypothesis (i.
e., that the difference between 2nd-CRF-Align and CNFPred results is zero median) with a p-
value = 4.9 x 1072 < 0.05, and to infer that the already mentioned percentage, in which 2nd-
CRF-Align outperforms CNFPred, is statistically significant.

If we carry out a similar comparison with HHAlign (loc) we obtain that the percentage of
cases in which 2nd-CRF-Align outperforms HHAlign (loc) is 67.25% (p-value = 0). The poor
performance of HHAlign (loc) at Fold level (17%) can be explained due to the fact that, as we
mentioned in the Introduction, HHAlign heavily depends on the sequence profile which
becomes sparse and not well estimated at this level. In addition, HHAlign (loc), compared to
CNFPred and 2nd-CRF-Align, does not incorporate structural features which are very useful
at Fold level.

Table 1. Reference dependent alignment accuracy (%) for different methods on the test sets.

Method
2nd-CRF-Align
CNFPred
1st-CRF-Align
HHAlign (loc)
HHAlign (glob)
CONTRAlign
NWAlign

https://doi.org/10.1371/journal.pone.0197912.t001

POSLINDAHL (Fa., Su., Fo.) SALIGN PROSUP
51.92 (71, 48, 37) 67.60 64.68
50.36 (73, 48, 30) 73.26 68.04
47.11 (68, 43, 31) 63.42 59.35
44.70 (72, 46, 17) 68.58 64.26
38.26 (70, 37,7) 67.15 61.19
42.54 (64, 38, 26) 56.37 54.37
37.34 (56, 32, 24) 46.48 45.96
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The comparison between 1st-CRF-Align and 2nd-CRF-Align confirms our initial hypothe-
sis that the incorporation of a higher order scoring function can help in the alignment.
Although 1st-CRF-Align shares the same CRFs architecture as CNFPred, the additional fea-
tures and strategies introduced by CNFPred (and mentioned in Sec. 4.4) can explain why Ist-
CRF-Align performs worse in general. In fact, if we increase our training set to 100 protein
pairs and we consider a context of size 7 for the match label features, the results obtained by
1st-CRF-Align are now 49.70 (69, 45, 35) for POSLINDAHL, 65.50 for SALIGN and 64.26 for
PROSUP, i. e. an absolute improvement of almost 3% on average. All of this suggests that an
increase in feature and training sizes would improve the results of 1st-CRF-Align and, conse-
quently, of 2nd-CRF-Align as well. However, we have avoided this increase on the 2nd-
CRF-Align technique for two reasons. The first one is that the computational cost of the train-
ing stage would be very high (see Sec. 4.3) and the second reason is that, despite the small
training set (50 proteins), our 2nd-CRF-Align technique is not overfitted to the training set
(see Sec. 3.1) and obtains competitive results compared to the other state of the art methods.

5.2 Results on structure prediction

The results of the CRF based techniques of Table 1 could be biased towards the reference align-
ment (DeepAlign) as the other methods are not trained on it. In order to avoid this possible
advantage, as also done in [16], we will as well evaluate the 3D-model of the query protein pre-
dicted from the query-template alignment. We will use the software MODELLER [41] which
takes both the alignment and the template PDB file and estimates the query PDB file. The qual-
ity of this estimation is measured by the TM-Score [42]. This score compares the estimated
with the true query PDB file and it has a value ranging from 0 to 1, indicating the worst and
best model quality, respectively. The true query PDB file employed in the comparison is the
one comprised between the first and the last aligned residues of the reference alignment pro-
vided by PDB-Tool [31]. Table 2 shows the cumulative TM-Scores (or reference independent
alignment accuracies) for different methods and datasets.

Analyzing Table 2 we can reach the same conclusions as those derived from Table 1. It is
interesting to point out that now the 2nd-CRF-Align technique, apart from obtaining out-
standing results at Fold level, it performs as CNFPred on the POSLINDAHL (at both Family
and Superfamily levels) and PROSUP datasets. From a similar Wilcoxon test we can infer that
2nd-CRF-Align outperforms CNFPred and HHAlign (loc) in 57.63% (p-value = 8.7 x 10719
and 69.38% (p-value = 0) of the cases, respectively.

The performance comparison between the 1st and 2nd-CRF-Align methods finally corrob-
orate the benefits of using a HO-CREF for the alignment. The last row of the table (DeepAlign

Table 2. Reference independent alignment accuracy for different methods on the test sets (measured by cumulative TM-Score of the query 3D model).

Method
2nd-CRF-Align
CNFPred
1st-CRF-Align
HHAlign (loc)
HHAlign (glob)
CONTRAlign
NWAlign

DeepAlign (oracle)

https://doi.org/10.1371/journal.pone.0197912.t1002

POSLINDAHL (Fa., Su., Fo.) SALIGN PROSUP
1041 (965, 912, 1245) 129 72.2
1012 (964, 913, 1159) 137 72.3
962 (933, 841, 1113) 123 66.3

885 (948, 865, 841) 129 69.2
780 (930, 775, 634) 124 65.3
894 (901, 772, 1009) 111 62.5
875 (857, 741, 1027) 103 59.2
1052 (1078, 1216, 1774) 153 86.8
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(oracle)) shows the results that we would obtain if the reference structure alignment was used
and it gives an idea of the maximum performance that we could achieve in 3D structure pre-
diction by alignment methods. If instead of obtaining the cumulative TM-Score of DeepAlign
(oracle), we compute the average per protein TM-Score, we obtain 0.57 (0.66, 0.57, 0.49) for
POSLINDAHL, 0.76 for SALIGN and 0.68 for PROSUP. These numbers, together with the
sequence identity percentage indicated in Sec. 4.2, characterize the difficulty of the different
sets.

These results allow us to reach the following conclusion: when the protein pairs are closely
related, as on SALING (TM-Score = 0.76), 2nd-CRF-Align gives competitive results but
CNFPred is better. However for distantly-related pairs, as at the Fold level in POSLINDAHL
(TM-Score = 0.49), the best predictor is 2nd-CRF-Align.

6 Conclusions

In this work, we have described how to carry out query-template alignment of proteins using a
Higher Order Conditional Random Field (HO-CRF). We have based our proposal on previous
developments regarding the use of first order CRFs for protein alignment [16, 18, 20] and the
formulation of HO-CRFs [23, 24, 30]. The experimental results on different public datasets of
structurally-related proteins have shown that there exist higher order correlations between the
features and the labels of an alignment and that the use of HO-CRF makes sense, especially
when the proteins of the pair are more distantly related (i. e. the most difficult tasks). Although
this paper has focused on 2nd-order CRF alignment, the extension to higher order alignments
would be direct. However, this extension would require an increase in the training size to
avoid overfitting and, consequently, a GPU implementation in order to accelerate HO-CRFs
training. In addition, the exploitation of sparsity aspects and the incorporation of co-evolution
information (as in MRFAlign [10]) are suggested as promising research directions for future
work.
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