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METHODOLOGY ARTICLE Open Access

Deconvolution of autoencoders to learn
biological regulatory modules from single
cell mRNA sequencing data
Savvas Kinalis1, Finn Cilius Nielsen1, Ole Winther1,2,3 and Frederik Otzen Bagger1,4,5*

Abstract

Background: Unsupervised machine learning methods (deep learning) have shown their usefulness with noisy
single cell mRNA-sequencing data (scRNA-seq), where the models generalize well, despite the zero-inflation of the
data. A class of neural networks, namely autoencoders, has been useful for denoising of single cell data, imputation
of missing values and dimensionality reduction.

Results: Here, we present a striking feature with the potential to greatly increase the usability of autoencoders:
With specialized training, the autoencoder is not only able to generalize over the data, but also to tease apart
biologically meaningful modules, which we found encoded in the representation layer of the network. Our model
can, from scRNA-seq data, delineate biological meaningful modules that govern a dataset, as well as give information
as to which modules are active in each single cell. Importantly, most of these modules can be explained by known
biological functions, as provided by the Hallmark gene sets.

Conclusions: We discover that tailored training of an autoencoder makes it possible to deconvolute biological
modules inherent in the data, without any assumptions. By comparisons with gene signatures of canonical pathways
we see that the modules are directly interpretable. The scope of this discovery has important implications, as it makes
it possible to outline the drivers behind a given effect of a cell. In comparison with other dimensionality reduction
methods, or supervised models for classification, our approach has the benefit of both handling well the zero-inflated
nature of scRNA-seq, and validating that the model captures relevant information, by establishing a link between input
and decoded data. In perspective, our model in combination with clustering methods is able to provide information
about which subtype a given single cell belongs to, as well as which biological functions determine that membership.

Keywords: Interpretable machine learning, Deep learning, Neural networks, Manifold learning, Expression profiles,
Single-cell RNA-sequencing, Gene set enrichment analysis, Functional analysis, Biological pathway analysis

Background
Recent upsurge of data generated by mRNA sequencing
at the single cell level (scRNA-seq) have helped to ad-
dress a number of scientific questions and have also re-
vealed new challenges. It allows researchers to look into
gene expression levels of a specific cell, rather than the
aggregated levels that came with “bulk” RNA sequen-
cing, and create fine molecular profiles of tissues, that

are particularly important for insights into the dynamics
and function of more heterogeneous tissues, such as
cancer tissues.
Using scRNA-seq it has been possible to delineate

cellular populations in an unbiased manner from sev-
eral healthy [1–4] and diseased tissue [5, 6], and a
large number of new methods have addressed the
new computational and analytical challenges with this
data type [7–9].
Modeling of the scRNA-seq data is challenging be-

cause relevant and often categorical biological signal is
usually intertwined with dynamical biological processes
(i.e. cell cycle, maturation, differentiation or metabolic
activity) as well as technical sources of variation (i.e.
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PCR amplification, “dropout” events, sequencing or li-
brary preparation variation tissue dissociation and many
parameters related to laboratory protocol).
Recently, there have been several excellent attempts to

model scRNA-seq data using prior knowledge on spe-
cific sources of variation [10, 11]. In this study, however,
our aim is to extract biological information from a class
of more general, non-linear models, that can assimilate
the information of the manifold shaped by the single-cell
expression profiles.
Artificial neural networks (NN) have proven flexible

and demonstrated representational power and state of
the art results in many applications (i.e. skin cancer clas-
sification [12], retinal disease diagnosis [13], protein
folding [14, 15]). In addition, recent advancements in
the development of software frameworks that efficiently
exploit computing resources, mostly by parallel process-
ing on GPU, render the definition, implementation and
training of a NN quite straightforward.
We hypothesise that simple NN layouts and stringent

training will make deconvolution possible and tease
apart biological signal from heterogeneous cellular popu-
lations. We believe that the distributed nature of NN
models bears the potential of encapsulating, rather than
smoothing over or regressing out sources of variation,
both biological and technical.
In this study we applied autoencoder neural networks

[16], unsupervised machine learning methods, to
scRNA-seq expression counts. This class of models are
used as a manifold learning technique and are able to ef-
ficiently capture the underlying signal even when the in-
put is perturbed or zeroed out [17], which is particularly
appealing for an application to scRNA-seq data. Variants
of autoencoders have been successfully applied to
scRNA-seq data before, for dimensionality reduction,
denoising and imputation of missing values (see [18–26]
for a complete list of studies).
Here, we will make use of a simple autoencoder architec-

ture and apply methods from the computer graphics com-
munity, known as saliency maps [27], aiming to
deconvolute what the latent representation of the model
captures, and to interpret it in terms of biological pathways.

Results
A simple autoencoder with three layers (input layer, a
hidden or representation layer and an output layer) can
be seen on Fig. 1b. Each layer consists of a number of
units, corresponding to its dimensionality. Briefly, an
autoencoder is trained to learn how to recreate the input
in an output layer. The challenge is to first compress the
input to the internal representation (can be viewed as
the “encoding” process) and then decompressing onto
the output layer. In essence a nonlinear dimensionality
reduction is performed, meaning that we are able to

inspect the original dataset in a manifold of lower di-
mension. Furthermore, from the output we are able to
assess whether a sufficiently complex representation was
made (by evaluating the information loss during com-
pression from input to output).
In this study we trained an autoencoder with a soft or-

thogonality constraint on the representation layer along-
side a Poisson loss function. The orthogonality constraint
pushes the representation layer to contain information
that is disentangled between units.
We applied our model to the scRNA-seq dataset pro-

duced by Paul et al. [2]. With a suitable learning rate we
were able to train the model directly on the read count
data (without log normalization or preprocessing). Fig. 1a
and c show the 2-dimensional Uniform Manifold Ap-
proximation and Projection (UMAP) [28] embedding of
Paul et al. for the original input and the representation
layer, after training is done, respectively. For the UMAP
of the representation layer, we evaluate each single cell
through the encoding part of our network and keep the
values of the lower-dimensional representation. We then
apply UMAP on those representation values.
The embedding and the value of the test loss function

after training are convincing regarding the successful appli-
cation of the autoencoder as a robust dimensionality re-
duction tool that handles dropouts well. Our aim is to
deconvolute the resulting model and establish a link be-
tween the representation layer of our model and biological
function. We evaluate the impact of gene sets on the rep-
resentation layer of the network by the use of saliency
maps. Strikingly, we find that each hidden unit in the dis-
tributed model appears to model a distinct term or modal-
ity in the data. We saw less entanglement or spillover
between nodes, than we expected given the colinearity of
gene expression data. It appears that the division of labour
is well-defined, and may have intelligible interpretation. In
Fig. 1d we visualize the impact of each of the hallmark mo-
lecular pathways [29] to our hidden units in a heatmap (a
zoomed in version of Fig. 1d and e can be found as Add-
itional file 1: Figure S1). This way we can identify pathways
with high impact on hidden units.
We also investigate the difference in impact between two

known cellular populations displaying only the high impact
pathways, that are less likely to model noise terms. In Fig. 1e
we visualize the difference in impact for ‘CMP CD41’ and
‘Cebpe control’ of the Paul et al. dataset. From the latter
heatmap we can identify pathways that behave differently
between the two groups under investigation, in terms of
the impact of that signature. The selected populations are
Common Myeloid Progenitor cells (CMP), and a full haem-
atopoietic background, which also contains mature and dif-
ferentiating cells, as reference. The direction of change in
hidden units that could signify stemness or progenitor
states are up in CMP, i.e. WNT-{beta}catenin-signaling,
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described as key stemness factor [30], and DNA repair and
hypoxia, both associated with stemness [31, 32]. Relative to
the control, the CMPs show less activity in pathways that
could be associated with differentiation, division and

maturation, in terms like mitotic spindle, Apical changes
and Hedgehog signaling [33].
In order to validate that each identified module

corresponds to a functional category, we applied our model

a

d e

b c

Fig. 1 General overview of our approach. Expression data act as input to the autoencoder (b) which models the data. The model’s representation of the
data set can be visualized by a dimensionality reduction plot (c). The impact of gene sets of interest to our representation method can be visualized, either
for the whole data set (d) or for a comparison between two groups of cells (e). b: A general outlook of an autoencoder artificial neural network. The
autoencoder shown has an input, a hidden and an output layer, but it is common that it contains more hidden layers. Usually the hidden layer in the middle
of the network acts as the representation layer, which contains the compressed information of the original data. The representation is decompressed in the
output layer, where the input is recreated with some accuracy. a & c: Uniform Manifold Approximation and Projection (UMAP) of Paul et al. The UMAP of the
original input data is visualized on (a) and UMAP of the evaluation of the representation layer, after training is done, is visualized on (c). We can see that the
neighboring structure of the original input data is retained in the representation layer. d & e: Heatmaps of the impact of the Hallmark molecular pathways on
the representation layer of the autoencoder trained on Paul et al. The impact is computed via saliency maps (see Methods section). To enhance visual clarity,
only the high impact pathways are visualized. We plot the impact of the gene signatures for the whole dataset (d) and for the comparison between two
groups of the dataset, CMP CD41 and Cebpe control, which also includes differentiated cells (e). The comparison is done by subtracting the impact of the
hallmark pathways of one group versus the other. The difference in impact is overlaid on the “general” heatmap (d)
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to Velten et al. [1], where we have detailed fluorescence-
activated cell sorting (FACS) data for each cell, effectively
describing their cellular identity, in terms of immunostain-
ing. This dataset consists of human hematopoietic stem
cells. The UMAP embedding of that dataset for original
input data and representation data is displayed on
Additional file 2: Figure S2. We show that the neighboring
structure of the single cells is, again, retained in the lower
dimensional representation layer. In this scenario we
followed a case specific approach and investigated the im-
pact of hematopoiesis related signatures, derived from
DMAP [34] on the representation layer. In Additional file 3:
Figure S3 we show six heatmaps, one for each progenitor
state, as derived by FACS. The progenitor states are defined
as shown in Table 1. In the heatmap, haematopoietic signa-
tures are shown as rows and hidden units as columns. Col-
ours are based on the impact of the genes in the signatures,
vailing low impact nodes.
CMP cells, as identified by FACS (please see Table 1

for definitions of cell types)), clearly elicited activity in
hidden neurons responsible for modelling CMP signa-
ture genes, as identified by differential expression by
gene expression data from the well-annotated DMAP
study, as well as progenitor cells to CMP, like MEP,
GRN. All cells in the study are HSC and progenitor cells,
and HCS signature is also active for all but lymphoid
cells. GMPs are closely related to CMPs, and show simi-
lar activity, but with more activity in GMP signature.
The MEP signature is active in all erythroid cells, which
are also progenitors thereof.
We included a further validation step by applying our

model to a dataset of Peripheral Blood Mononuclear
Cells (PBMC) [35]. In order to compare the cell type sig-
natures that are active in hidden units in our model with
cell type label predicted by Seurat we summarised the

back-propagated activity of the Seurat clusters (Fig. 2) in
our model of the PBMC data. For each of the clusters of
cells it is clear that the same cell type is active in the
representation layer, as predicted by Seurat, except for
CD8 T-cells which does not seem to either have diffuse
profile or not to match any T-cell signatures from
DMAP (data not shown). For the remaining signatures
there is a high overlap, and whereas B- and T-cells are
expected to be more similar than eg. Monocytes [34].
Seurat predicted T-Cells are more intense in B-cell sig-
nature than the B-cells, which may be due to incomplete
set of signatures to describe the data. Only on unit 45–
46 there seem to be a dedicated signal for these B-cells,
assuming that Seurat has correctly labeled all the cells.
NK cells show similarity with a number of cells, but are
unique in having a clear activity in NK signatures in a
hidden unit 13. The difference in the two types of mono-
cytes can be seen in the activity in signatures of progeni-
tor states, thus suggesting a development between the
two, which is confirmed by known FACS panels [34].
We tested the output representation of the model by

comparing the clustering of our model against the popu-
lar Seurat method [36] and clustering on the raw input.
We performed 20 iterations of k-means clustering both
on the original input and the representation of our
model and compared with the output of the clustering
from the Seurat method. To perform this comparison
we matched the labels of the clusterings to the labels
produced by the Seurat method and computed the nor-
malized mutual information for all possible comparisons.
The results found show that all three methods have
similar clustering output on the PBMC dataset; original
vs representation: 0.780, representation vs Seurat: 0.761,
original vs Seurat: 0.785.
In order to ascertain the contribution of the orthog-

onality criterion, we measured the L2 norm of the
singular values of the representation of the input,
with and without the orthogonality criterion. In our
experiments, the orthogonality criterion improved the
aforementioned norm, for varying orthogonality coef-
ficients. The measured norm was reduced by 78.9%
more per epoch when the best orthogonality con-
straint was used, compared to when no orthogonality
constraint was used.

Discussion
The autoencoder model we trained is simple, robust and
small enough to run on a regular computer. Adding to
the model’s simplicity, we are able to feed raw expres-
sion data to the model, entirely skipping normalization
and transformation processes which usually precede
common dimensionality reduction techniques. In this
study we applied the model to scRNA-seq expression

Table 1 Definition of cell types from FACS markers for Velten
et al. scRNA-seq data

MEP CMP GMP HSC MPP MLP

SSC low low low low low low

FCS mid mid mid mid mid mid

lin low low low low low low

CD38 high high high low low low

CD34 high high high high high high

CD10 low low low high

CD90 high low

CD135 low high high

CD45RA low high low low high

Defining cell types from FACS markers in data from Velten et al., as suggested
by the authors, but with hard gates. High is top 50% of the cells expressing
that marker, low is 50% lowest expressed, and mid is the 2nd and 3rd quartile.
HSC hematopoietic stem cell, MPP multipotential progenitors, CMP common
myeloid progenitor cell, GMP granulocyte monocyte progenitors, MEP
megakaryocyte-erythroid progenitor cell
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data, but exactly the same approach could be followed
with other types of expression data, i.e. sequencing or
microarray of bulk mRNA, epigenetic marks or muta-
tions, if only the space can be reduced sufficiently to be
deciphered through signatures of genes or positions. The
good adaptation to sparse data with random dropouts
make the system, and future developments hereof, very
well suited for scRNA-seq, which will only become more
important in the near future.

With the usage of saliency maps, we attempt to establish
the critical link between the mathematical models that de-
scribe an expression dataset well and the biological func-
tions that are active in the dataset. The orthogonality
requirement is key to achieve this. We added the soft or-
thogonality criterion in the loss function, as an attempt to
deconvolute the highly correlated biological signal, and so
that each of the hidden units correspond in essence to one
dimension of the representation layer. The effect of the

Fig. 2 Impact of hematopoietic signatures on the representation layer of our autoencoderImpact of hematopoietic signatures (rows) on the
representation layer (columns) of the autoencoder trained on PBMC data. The hematopoietic signatures are derived from the DMAP study. To
enhance visual clarity, only the high impact pathways are visualized. The top-left heat map corresponds to all the cells. The rest of the heat maps
correspond to a summary of cells in each cellular population of the study, as clustered and labeled by Seurat. Row names correspond to cell
types categories, or to DMAP labels for sub-classification, where TCELL8A is CD4 + CD45RA-CD62L+ T-cells and BCELL4 is CD19 + lgD-CD27+ B-
cells, respectively. Not shown are Seurat predicted clusters on Megakaryocytes cells (< 1% in human PBMC)
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orthogonality constraint could be further quantified by the
L2 norm of the singular values of the representation of the
input and was indeed shown to improve the reduction of
that norm per epoch. Further to saliency maps a number of
alternative visualisation methods exists, that may also be
able to recapture biological meaningful representations for
models trained in a similar constrained manner [37].
Case specific gene sets can be chosen by the re-

searcher for specific interpretations of single cells. Over-
saturation of the signature space or testing of correlating
signatures should carry smaller risk of misinterpretation;
selection of signatures does not change the model, nor
requires retraining, and the effect is apparent from a
simple heatmap. When more and better annotated
scRNA-seq data is available in the future, it will be
shown how this method can assist in deciphering, not
only the status or class of a single cell in a population,
but also its total activation within several categories.
This is particularly important for continuous cellular
spaces, or to disentangle the contribution of cellular
state, cellular type or cellular environment.
We used UMAP as a visualization technique for single

cell data due to its efficiency, computational and math-
ematical rigor advantages over similar commonly used
methods, i.e. PCA, t-SNE [38]. UMAP focuses on dis-
playing the neighboring structure of the multidimen-
sional manifold in few dimensions. As we’ve seen in
Fig. 1, the single cells retain the same neighbors in the
UMAP of the original data and the UMAP of the repre-
sentation. However, that should not be the sole criterion
when judging the efficacy of a method. To this point, we
would like to advise to be cautious when interpreting
the 2-dimensional representations of multidimensional
data. The original dataset lies on a multidimensional
space and this should not be neglected when inferring
biological relations (Additional file 2: Figure S2 provides
additional visual explanation to this point).
Our model differs from popular existing methods, i.e. Seu-

rat, SC3 [39], in the identification of gene modules of inter-
est. Although the aforementioned methods exhibit better
clustering performance than our model, partly due to the
application of graph-based methods, the marker gene detec-
tion in both methods relies upon identification of differen-
tially expressed genes, via simple statistical tests of multiple
regression. These tests may be suitable for identification of
marker genes of simple traits, but for more complex data-
sets with added heterogeneity like cancer, this approach may
prove insufficient. A nonlinear neural network is suitable for
pattern recognition in complex data and through guided
backpropagation of the signal (as performed with saliency
maps), we can identify the most important input features
(genes) that affect the formation of those patterns. This is a
clear prospective advantage of our approach compared to
both Seurat and SC3, a more accurate link to the complex

biology that is present in a dataset and this advantage will
manifest itself in greater scale as the size of the gathered
datasets increases. Furthermore, our approach doesn’t re-
quire any particular pre-processing, which is always a prob-
lematic component, as the separation of analysis and
preprocessing (which may have severe implications on the
results) can lead to investigation of artifacts.
When comparing results from our model on PBMC

data with output from popular single cell analysis
suite Seurat we find that we can largely recapture the
labels of the clusters predicted by Seurat (PBMC is
the dataset in Seurat tutorial, and thus well tested by
the authors). We see also that there are overlaps of
back-propagated activity between the cell types, and it
appears that the activity corresponding to Seurat la-
bels, are mainly those that are uniquely active for one
cluster. This fits well with our biological understand-
ing of many shared functionalities (especially in the
related PBMCs) between cells, but where some spe-
cific processes are unique. In this manner e.g. the NK
signatures are active in a dedicated hidden unit over-
lapping an NK signature. This same hidden unit re-
sembles activity for B- and T-Cells, but B- and T-
cells have little activity in that same hidden unit; their
identity is signified by another hidden unit. Thus, our
questions, in the form of back-propagation to genetic
signatures, may not be precise enough to yield unique
closed-form answers about the biology represented in
the model. It is possible that a complete deconvolu-
tion of a large single cell dataset, like the Human Cell
Atlas [4], will enable us to uncover, using our model,
not only cell types but at the same time biological
programs and shared function. This is perfectly pos-
sible, since our approach of deconvolution of the
model, does not affect the model; different types of
signatures can be tested, to pinpoint the identity of
each hidden unit, leaving a reduced representation of
the data, which can be used both to explain each cell,
or cluster of cells, and predict identity or function of
future cells.
We believe that application of our model to a plethora of

datasets, can lead to synthesis of a fixed feature extractor
model for expression data. A fixed feature extractor acts as a
pre-trained model that can capture meaningful representa-
tions for new, diverse inputs (see [40] for more information
on feature extractors). In the future we aim to build on top
of our model to create a “universal expression model” that
identifies most of the wanted biological relationships of a
new dataset. By applying that universal model to a new data-
set we will be able to quickly annotate it on various effects,
as well as extract information on biological differences on
distinct phenotypes of the dataset. This would be a big step
forward in our understanding of the biology behind the large
expression datasets gathered daily.
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Conclusions
We present an implementation of autoencoders, with an
orthogonality constraint on the representation layer, that
we apply on scRNA-seq data. We find that the model
handles well the noise and dropout level in the data, and
are able to recapitulate the original neighborhood struc-
ture in the output. By the use of saliency maps we dis-
covered that each hidden unit in the model represent a
well-defined module. These modules correspond to a
large extent to activity in gene signatures of biological
pathways, and we show for three datasets, of different
single cell sequencing protocols, that this gives a precise
description of the biological phenotype. We believe that
our discovery bears the potential for a holistic analysis
through autoencoders, where both normalisation, imput-
ation of random dropouts, and analysis can be per-
formed in a single operation.

Methods
We trained an autoencoder with 2 layers for encoding and
2 for decoding, with dimensions 128, 64 and 128 for the
hidden layers. The size of the representation layer was
chosen to slightly exceed the number of gene sets under
investigation, in our case the hallmark molecular path-
ways. We limited the input dataset to the genes that were
present in the signatures, for faster training and memory
fit. The nonlinearity of the encoding and decoding layers
was chosen to be the SoftPlus nonlinearity [41]. The
weights were initialized with Xavier initialization [42] and
the biases with a small constant. The model was trained
with a Poisson negative log-likelihood loss function, to ac-
count for the fact that RNA-sequencing expression levels
are count data. We have previously seen that this generic
loss function trains well in scRNA-seq data [21] and it fits
the purpose of our current study to provide a general use
framework for the identification of biological information
from neural network models. Recent studies account for
dropouts with specific modeling choices [10], however,
this kind of model should always be applied with caution,
depending on the underlying zero generating process [43].
Thus the loss function with the added soft orthogonality
constraint looks like that:
Loss =mean(x - y * log(x + ε)) + λ * L2_norm(I - WWT)

(eq.1).
where x is the input, y is the reconstructed input; y =

decode(encode(x)), ε is a very small constant, λ is a
hyperparameter that determines the impact of the or-
thogonality constraint, W is the weight matrix of the
final encoding layer, WT the transpose matrix of W and
I-WWT is the orthogonality constraint.
As opposed to other applications of neural networks to

scRNA-seq, we decided to not train with mini-batches,
since, due to the nature of single cell data, our aim was to
distinguish fine differences between samples. In this

particular setting, a mini-batch would push the model to-
wards over-generalization, as beautifully outlined by Li et
al. in a visual comparison of the effects of mini-batch size
on the loss function optimization process [44].
We chose Nesterov accelerated gradient [45] tech-

nique for loss function optimization, that has been
shown to outperform and be more stable than ADAM
[46], which reputedly works well with sparse data.
Hyperparameter optimization was performed with grid
search. The model stopped training when the loss in the
test set would stop improving for 10 epochs. Training
speed is affected negatively by the selection of batch size
of 1. Using a standard personal computer with GPU for
these experiments the time needed to train was: PBMC:
15.4 min for 70 epochs for input matrix of size (2638,
3009); Paul et al.: 38 min for 310 epochs for input matrix
of size (4180, 2560); Velten et al.: 3.5 h for 600 epochs
for input matrix of size (1401, 3331). The model was im-
plemented in Python v.3.6.5 scripting language (https://
www.python.org/), using the PyTorch v.1.0.0 deep learn-
ing framework [47]. The code is available on gitlab:
https://github.com/cphgeno/expression_saliency.
The idea behind vanilla saliency maps in deep learning

is rather intuitive. We compute the gradient of the repre-
sentation units with respect to the gene expression input,
by testing each representation unit in isolation. That is, we
consider that only one representation unit has positive
gradient equal to one and the rest have gradient 0, and we
let the gradient backpropagate through the network. This
way we can see how the representation is affected by small
changes in the gene expression levels, or in other words,
the impact that each gene has on each representation unit.
In our study we compute the guided backpropagation sali-
ency maps, that has shown more clear results [48]. The
difference is that only positive gradients flow back to the
network, the negative gradients are clipped.
In order to compute the impact of a gene set to each hid-

den unit, we simply take the arithmetic mean of the impact
of the genes in the set. The resulting pathway impact
scores are min-max scaled to the range [0, 1]. In the com-
parison scenario, the impact scores of the cells to compare
are subtracted and then scaled. The scaling is now per-
formed by division with the maximum value of the differ-
ence in impact scores, so the final pathways impact scores
fall in the range [− 1, 1]. Hidden units with zero impact for
all pathways under investigation were omitted from the
analysis. In this manner we can evaluate the impact of cus-
tom gene sets on the representation, as we did here with
the hallmark molecular pathways [29] and hematopoietic
signatures on Paul et al. and Velten et al. respectively.
The algorithm can be described as follows:

� Train autoencoder neural network, via optimization
of loss function (eq.1).

Kinalis et al. BMC Bioinformatics          (2019) 20:379 Page 7 of 9

https://www.python.org/
https://www.python.org/
https://github.com/cphgeno/expression_saliency


� Pass expression matrix X through autoencoder and
plot UMAP of computed representation layer;
UMAP(encode(X)).

� For the computation of the impact that a gene set
has on the representation layer:
� Compute the representation layer of an input

of C cells under investigation.
� For each element of the representation layer.

� Compute the absolute value of the guided
saliency (for all C cells).

� For each input variable (gene) compute the
mean saliency, among the C cells.

� Average previously computed mean saliencies
over the genes contained in the gene set.

Hematopoietic signatures were derived from DMAP nor-
malised and processed data (no longer available via Broade
Institue web portal. Please find in project git repository),
performing differential analysis with limma [49] from R bio-
conductor in a one-against-others comparison. For valid-
ation of which signatures are active a subset of cells was
used to represent each population.

Additional files

Additional file 1: Figure S1. Impact of the Hallmark molecular
pathways on the representation layer of our autoencoder. Zoomed in
version of the heatmaps of the impact of the Hallmark molecular
pathways on the representation layer of the autoencoder trained on Paul
et al. The impact is computed via saliency maps (see Methods section for
more information). To enhance visual clarity, only the high impact
pathways are visualized. We plot the impact of the gene signatures for
the whole dataset (d) and for the comparison between two groups of
the dataset, CMP CD41 and Cebpe control, which also includes
differentiated cells (e). The comparison is done by subtracting the impact
of the hallmark pathways of one group versus the other. The difference
in impact is overlaid on the “general” heatmap (d). (EPS 814 kb)

Additional file 2: Figure S2. UMAP of different representations of our
autoencoder vs original data. UMAP of original data (top left) and
representation layer of the autoencoder for the Velten et al. data set. The
clusters of the Velten et al. data set are taken from the Bloodspot
database [50]. The representation layer is visualized for varying number of
training epochs; after no training (bottom left), training for 10 epochs
(bottom right) and after training is done for epoch 1990 (top right). Here
we want to illustrate that the 2 dimensional visualizations of a
multidimensional dataset can be deceiving. A nice visualization on its
own does not qualify as a metric of a well-trained model. (EPS 120 kb)

Additional file 3: Figure S3. Impact of hematopoietic signatures on the
representation layer of our autoencoder, for model trained on Velten
et al. dataset. On the top right we visualize a model of the hematopoietic
system. The rest of the plots depict heatmaps of the absolute values of
the impact of hematopoietic signatures (rows) on the representation
layer (columns) of the autoencoder trained on Velten et al. The
hematopoietic signatures are derived from the DMAP study. To enhance
visual clarity, only the high impact pathways are visualized. The top left
heatmap corresponds to all the cells. The six bottom heatmaps
correspond to each cellular population of the study, as defined by the
FACS profile. (EPS 196 kb)
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